List of Figures

Figure 1.1	Proportions of dry weight of organic materials relative to the growth stages of cool season grasses44
Figure 1.2	The scheme of carbohydrate fractions for the horse, as a comparison of proximate analysis and fractions as digested45
Figure 1.3	Metabolic and endocrine fluctuations associated with the feeding-fasting cycle46
Figure 1.4	Growth of Thoroughbred foals from birth to 700 d of age47
Figure 1.5	Endochondral ossification at the cellular level of the articular-epiphyseal or the metaphyseal growth cartilage complexes
Figure 1.6	The regulation of bone growth is orchestrated by the actions of many hormones and growth factors49
Figure 2.1	The comparison of non-structural carbohydrate, neutral detergent fiber and acid detergent fiber in fiber sources used in these studies74
Figure 3.1	Monthly body weights of 1994 Thoroughbred foals from birth to weaning and from weaning to sale
Figure 3.2	Monthly body condition scores of 1994 Thoroughbred foals from birth to weaning and from weaning to sale
Figure 3.3	Girth circumference and growth curve for body length of 1994 Thoroughbred foals from birth to 16 mo of age
Figure 3.4	Growth curves for wither and hip heights of 1994 Thoroughbred foals from birth to 16 mo of age87
Figure 3.5	Growth curves for physis and fetlock circumferences of 1994 Thoroughbred foals from birth to 16 mo of age

Figure 3.6	Growth curves for forearm, front and hind cannon lengths of 1994 Thoroughbred foals from birth to 16 mo of age	39
Figure 4.1	Monthly body weights of 1995 Thoroughbred foals from birth to weaning and from weaning to sale	98
Figure 4.2	Monthly body condition scores of 1995 Thoroughbred foals from birth to weaning and from weaning to sale	99
Figure 4.3	Girth circumference and growth curve for body length of 1995 Thoroughbred foals from birth to 16 mo of age10	00
Figure 4.4	Growth curves for wither and hip heights of 1995 Thoroughbred foals from birth to 16 mo of age10	21
Figure 4.5	Growth curves for physis and fetlock circumferences of 1995 Thoroughbred foals from birth to 16 mo of age10	02
Figure 4.6	Growth curves for forearm, front and hind cannon lengths of 1995 Thoroughbred foals from birth to 16 mo of age10	23
Figure 5.1	The relationship between a 2 cm cross section of equine third metacarpal bone and radiographic bone aluminum equivalents12	22
Figure 5.2	Estimated bone mineral content in 1994 Thoroughbreds from approximately 4 to 12 mo of age12	23
Figure 5.3	Estimated bone mineral content in 1995 Thoroughbreds from approximately 4 to 12 mo of age12	23
Figure 5.4	Estimate bone mineral content in Thoroughbreds from approximately 4 to 12 mo of age. Data are combined from 40 foals born in 1994 and 199512	24
Figure 5.5	Standardized subjective scores for physitis at the carpus, front and hind fetlocks of 1994 Thoroughbreds from approximately 4 to 12 mo of age12	26

Figure 5.6	Standardized subjective scores for joint effusion, angular limb deformities and flexural limb deformities of 1994 Thoroughbreds from approximately 4 to 12 mo of age
Figure 5.7	Standardized subjective scores for physitis at the carpus, front and hind fetlocks of 1995 Thoroughbreds from birth to one year of age128
Figure 5.8	Standardized subjective scores for joint effusion, angular limb deformities and flexural limb deformities of 199 Thoroughbreds from birth to one year of age
Figure 6.1	Fat, protein, lactose and solids in mares' colostrum sampled at 6 to 12 h after foaling142
Figure 6.2	Immunoglobulin G concentration in mares' colostrum sampled at 6 to 12 h after foaling143
Figure 6.3	Linoleic acid expressed as a percentage of total fatty acids in mares' colostrum and milk144
Figure 7.1	Plasma glucose changes in two mares in response to an oral glucose dose of .2 g/kg BW (a) or a meal of oats (b)160
Figure 7.2	Plasma changes in glucose, insulin and cortisol concentrations in response to an oral glucose dose in mares during the third trimester of pregnancy
Figure 7.3	Plasma changes in glucose, insulin and cortisol concentrations in response to an oral glucose dose in mares during early lactation
Figure 7.4	Plasma changes in glucose, insulin and cortisol concentrations in response to an oral glucose dose in mares during late lactation163

Figure 8.1	Seasonal variation in pasture composition of hydrolyzable carbohydrate, as analyzed by direct methods, versus non-structural carbohydrate, as calculated by difference
Figure 8.2	Estimation of hydrolyzable carbohydrate from non-structural carbohydrate using data from the starch and sugar concentrate (a) or the fat and fiber supplement (b)174
Figure 8.3	Estimation of hydrolyzable carbohydrate from non-structural carbohydrate using data from 107 pasture and hay samples175
Figure 8.4	Estimation of hydrolyzable carbohydrate from non-structural carbohydrate. Linear equation (a) fit using combined data from a starch and sugar supplement and a fat and fiber supplement. Quadratic equation (b) was fit using combined data from pasture and hay samples and a fat and fiber supplement
Figure 8.5	Estimation of hydrolyzable carbohydrate from non-structural carbohydrate. The quadratic equation was fit with data combined from pasture and hay samples, a fat and fiber supplement, and a starch and sugar supplement