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ABSTRACT

This dissertation empirically examines refunding decisions employed by issuers of tax-
exempt bonds. Callable bonds contain embedded call options by virtue of provisions in bond
indentures that permit the issuing firm to buy back the bond at a predetermined strike price. Such
an embedded American call option has two components to its value, the intrinsic value and the
time value. The issuer can realize at least as much as the intrinsic value by exercising
immediately, when the option is in-the-money. Usually it is optimal for the holder of an in-the
money American option to wait rather than exercise immediately, because the option has time
value. It is rational for the holder to exercise the option when the total value of the option is no
more than the intrinsic value. Option pricing theory can be used to identify two sub-optimal
refunding strategies: those that refund too early, and those that refund too late. In such cases the
holder incurs losses.

I analyze the refunding decisions for two different samples of tax-exempt bonds issued
between 1986 and 1993: the first consists of 2,620 bonds that are called, and the second contains
23,976 bonds that are never called. The generalized Vasicek (1977) model in the Heath, Jarrow,
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and Morton (1992) framework is used to construct binomial trees for interest rates, bond prices,
and call option prices. The option pricing lattice is then used to compute the loss in value from
sub-optimal refunding strategies, refunding efficiency, and months from optimal time for bonds
in these two samples.

Results suggest that sub-optimal refunding decisions cause losses to the issuers, which
are present across bond and issuer characteristics. For the pooled sample of 26,596 bonds, the
loss in value from sub-optimal refunding decisions totaled $7.2 billion, amounting to a loss of
about 1.75% of total principal amount. Results indicate that issuers either wait too long to refund
or never refund and cannot realize the present value saving of switching a high coupon bond with
a low coupon bond,  over a longer period of time. These results critically depend on the
assumptions of underlying term structure model and are sensitive to model calibrated parameter
values.
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CHAPTER I
INTRODUCTION

Nine-tenths of wisdom consists in being wise in time.

Theodore Roosevelt
Speech, 14 June 1917, Lincoln, Nebraska

 I. A Introduction

It is logical to presume that agents behave rationally when holding and exercising
derivative securities, that their objective is to maximize their expected wealth. For instance,
option pricing theory assumes that holders of American call options exercise at the optimal
exercise time. Exercising at times other than the optimal exercise time will result in a loss in
value and such an exercise strategy will be sub-optimal. Substantial empirical research has been
done on the calling of convertible corporate bonds. Given the large amount of outstanding
municipal debt, it is surprising that no empirical study has been conducted to evaluate the calling
of municipal bonds. This dissertation empirically examines the refunding decisions employed by
issuers of callable tax-exempt debt by analyzing these decisions in an option pricing framework.

The decision to refund is an important one not only from the standpoint of the issuers but
also its constituents and investors.1 In a rational world the “cost” to the issuer of having the call
feature is exactly equal to the expected value of having the call option available. This implicitly
assumes that the issuer will exercise at the optimal time. Any loss from a sub-optimal refunding
strategy comes at a cost to the issuer and consequently the taxpayers.

Traditionally, refundings are undertaken for one or more of the following reasons:
refundings for interest rate savings, defeasance refundings to remove burdensome covenants,
refundings to stretch out or otherwise restructure debt service, and refundings to take advantage
of improved credit rating. This study examines the refunding decisions purely from the
perspective of interest rate savings.

At the end of 1995, outstanding public and private debt totaled about $8 trillion, out of
which municipal bonds accounted for $1.3 trillion, or 16.3% of the total outstanding debt. In
1993 alone, $338.8 billion of municipal bonds were issued. According to the Public Securities
                                                
1 From an investor’s point of view, advance refunding is a desirable event because credit risk is eliminated by the
defeasance with Treasuries. The lower the credit quality of the issue, the greater the price appreciation due to
advance refunding. The analysis of refunding affects buyers of generic Treasury issues as well because of the large
demand created for Treasury issues to setup escrow accounts via the refunding process. Refundability adds to price
volatility and should be taken into account when calculating duration on a portfolio level.
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Association, $2.77 trillion of tax-exempt municipal bonds were issued between 1980 and 1995.
During the same period $594.8 billion of outstanding municipal debt was refunded by refunding
bond issues. During 1993, when interest rates declined to record low levels, $150 billion of
outstanding tax-exempt debt was refunded, and refunding issues exceeded the extent of new
financing. Figure 1.1 and Table 1.1 show the relative size of tax-exempt debt market to taxable
debt market.

Figure 1.2 shows the number of refunding bond issues during the period 1980-1994.
Largest numbers of refunding bonds were issued in 1993. Figure 1.3 presents the dollar amounts
of tax-exempt refunding bond issues. A peak amount of $150 billion was refunded in 1993.
Figure 1.4 shows the level of spot interest rates and refunding amount in billions of dollars.
Refunding activity picked up when the interest rates were low. Figure 1.5 shows refunding
volume relative to new financing volume. Over the years, refunding has become significant.

Theoretical models of bond refunding have focused on the computation of savings that
accrue by refunding, and on the determination of optimal time to refund. Dynamic models of
bond refunding, that use stochastic interest rates, were first developed in early 1970s. Since then
considerable effort has been expended by academics and practitioners alike to improve upon
optimal refunding criteria.

This dissertation is the first attempt to empirically test the efficiency of refunding
decisions employed by issuers of tax-exempt bonds. The methodology used in this dissertation
builds on the model of Gurwitz, Knez, and Wadhwani (1992), but differs from it in several
important aspects. The objective of this study is to examine the actual refunding decisions
employed by issuers, while their model is used to obtain option adjusted spreads to price tax-
exempt bonds correctly. As such this study can be classified as an empirical study while their
paper presents a theoretical model for valuing embedded call options.

I.B Data and Methodology

The municipal bond issuance data in this study is collected from the U.S. Municipal
Bonds New Issues Database obtained from Securities Data Corporation. This database consists
of 135,966 municipal bonds that were issued between January 1980 and March 1995. From this
database, a sample of 26,596 callable bonds issued between 1986 and 1993 that are candidates
for refunding is obtained. Two sub-samples are created: the first sub-sample consists of 2,620
bonds that are refunded, and the second sub-sample consists of 23,976 bonds that are never
refunded.

Municipal bond yields are obtained from Salomon Brothers Index of Municipal Yields.
Yields are provided on a monthly basis for bonds with maturity of 1, 5, 10, 20, and 30 years. The
available data runs through June 1993. Zero-coupon municipal yield curves are obtained by
bootstrapping the municipal bond par yield curve.

Treasury yields are obtained from McCulloch and Kwon (1993) U.S. Term structure
database.

To value call options embedded in these bonds, a one-factor generalized Vasicek (1977)
model in the Heath, Jarrow, and Morton (1992) framework is implemented. The model is
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calibrated using non-linear Gauss-Newton optimization procedure by pricing bonds on the
municipal yield curve. This model is then used to construct binomial trees for interest rates, bond
and embedded call option pricing lattices for each bond in the sample. Using the option pricing
lattice, the optimal exercise boundary is determined for each bond.

Two sub-optimal refunding strategies can be identified using option pricing framework:
1. “exercising too early,” where the holder chooses to exercise an option when it should not be
exercised until later, and, 2. “exercising too late,” where the holder fails to exercise an option
when it should be exercised. The first case also includes options that are exercised but optimal
exercise boundary is not hit. The second case also includes options that are never exercised but
optimal exercise boundary is hit. These two sub-optimal exercise strategies result in a loss in
value that can be estimated using standard option valuation techniques. In addition, I check
advance refundings for losses arising from investing escrow funds at yields below the reoffering
yield.

I.C Results and Conclusions

Results suggest that sub-optimal refunding decisions cause losses to issuers, which are
present across bond and issuer characteristics. For the pooled sample of 26,596 bonds, the loss in
value from sub-optimal refunding decisions totaled $7.2 billion. For a total principal amount of
$410 billion, this is a loss in value of 1.75%. Results indicate that issuers either wait too long to
refund or never refund and cannot realize the present value saving of switching a high coupon
bond with a low coupon bond, over a longer period of time.

Losses are higher for revenue bonds, bonds rated AA, or BAA and below, issues with
larger gross proceeds, bonds of longer maturity, issuers with large amount of outstanding debt,
and downgraded bonds. General obligation bonds, non-rated bonds, smaller issue size, bonds of
shorter maturity, issuers with lower amount of outstanding debt, and upgraded bonds incur
smaller losses. Issuers wait too long to seek opportunities for issuing refunding bonds with lower
coupons. Over the years refunding efficiency has improved, the loss in value from sub-optimal
refunding strategies is lower, and bonds are called closer to the optimal time. Results suggest that
state and local government agencies in California, Florida, Illinois, New York, and Texas
accrued relatively more losses due to sub-optimal refunding strategies.

The analysis presented in this study is subject to several potential limitations. The
framework used to analyze refunding decisions ignores the role of other criteria in the decision
making process involving bond refundings. The results presented in this study are sensitive to
modeling assumptions, and model calibration. Other issues such as the desire to restructure debt
service or to remove debt with burdensome debt covenants, illiquidity in the secondary market
for municipal bonds, investor influence over the issuer, legislative stipulations, political and
economic climate may play a role in the refunding decision. Future research to investigate these
and other potential reasons for refunding may be warranted. The analysis used in this study can
be employed for valuing securities with embedded options, and for evaluating refinancing
decisions, or prepayment behavior.
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Table 1.1
Outstanding Level of Public and Private Debt, 1980-95

($ Billions)

Agency Mortgage
Year Municipal Treasury Backed U.S. Corporate

Bonds Bonds(1) Securities(2) Bonds
1980 399.4 616.4 110.9 471.5
1981 443.7 683.2 126.4 495.8
1982 508.0 824.4 176.3 527.5
1983 575.1 1,024.4 244.3 564.6
1984 650.6 1,176.6 289.4 627.3
1985 859.5 1,360.2 372.1 719.8
1986 920.4 1,564.3 534.4 860.9
1987 1,010.4 1,675.0 672.1 958.8
1988 1,082.3 1,821.3 749.9 1,071.1
1989 1,135.2 1,945.4 876.3 1,159.3
1990 1,184.4 2,195.8 1,024.4 1,231.9
1991 1,272.2 2,471.6 1,160.5 1,332.5
1992 1,302.8 2,754.1 1,273.5 1,430.6
1993 1,377.5 2,989.5 1,349.6 1,606.5
1994 1,348.2 3,126.0 1,441.9 1,656.6
1995 1,301.1 3,307.2 1,570.4 1,823.4

(1) Interest bearing marketable public debt.
(2) Includes only GNMA, FNMA, and FHLMC mortgage-backed securities.

Sources: U.S. Department of Treasury
Federal Reserve System
Federal National Mortgage Association
Government National Mortgage Association
Federal Home Loan Mortgage Association
Public Securities Association
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Figure 1.2: Number of Refunding Bond Issues, 1980-1994
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Figure 1.4: Level of Spot Rates and Refunding Volume, 1980 - 1994
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CHAPTER II
LITERATURE REVIEW

Our treasure lies in the beehive of our knowledge. We are perpetually on the way thither, being
by nature winged insects and honey gatherers of the mind.

Friedrich Nietzsche
The Genealogy of Moral

II.A Introduction

This chapter presents a review of bond refunding literature for both taxable and tax-
exempt markets. Models of bond refunding can be categorized as either static or dynamic
depending on whether the models are cast in single or multiple periods, respectively.

Interest rate models have been examined in great detail in the literature. However, a brief
note on these models is provided to discuss why the chosen framework is appropriate for the
purpose of this study.

II.B Corporate Bond Refunding Literature

Much of the literature on bond refunding has focused on two different issues. The first
issue is the effect of refunding on shareholder wealth. The second issue deals with the
determination of optimal time to refund. To measure the effects of bond refunding researchers
have proposed decision models that are motivated by the objective of shareholder wealth
maximization. Many of these models are variants of the net present value method, and discuss
the appropriate choice of discount rate to accurately measure the benefits of refunding. These
models address the problem of refunding both high-coupon debt and discounted debt. Since these
models are cast in a one period framework, they can be labeled as “static models.” Such models
do not consider whether it is profitable to wait and refund at some future time and implicitly
assume that the option to call expires if unexercised in the period under consideration.

On the other hand, models that address the problem of determining the optimal time to
refund are setup in a multi-period framework, and can be called “dynamic models”. These
models consider the stochastic nature of interest rates and its impact on the refunding decision.
Dynamic models derive their refunding criteria based on minimizing debt service related costs to
shareholders. Some recent models attempt to synthesize the two approaches to the bond
refunding problem.
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II.B.1 Static Models of Bond Refunding

Bowlin (1966) pointed out that the decision to refund a bond issue for the purpose of
reducing interest costs is an investment decision. Refunding operation requires a cash outlay that
is followed by interest rate savings in future years. The net cash investment equals the sum of (1)
call premium on the refunded bonds, (2) duplicate interest payments, (3) issuance costs on the
refunding bonds, and (4) any discount on the refunding bonds less (a) any premium on the
refunding bonds and (b) any tax saving obtained because the call premium, duplicate interest, and
remaining issue expenses and discounts on the refunded bonds are tax deductible immediately.
An unamortized payment on the old bonds would reduce the tax deductible expenses.

Bierman (1972) shows that the amount of debt to be raised via the refunding issue does
not effect the present value of net benefits from refunding. However, different amounts of debt
will be outstanding and different amounts of cash will be raised.

Bierman and Barnea (1974) consider bond refunding where the decision maker is willing
to accept the money market’s implicit judgments about future interest rates as reflected in the
term structure, and the decision maker uses the expected future (one-period) rates as the basis for
his decision. The assumed objective is to minimize the present value of the cost of the currently
outstanding debt until its maturity. The newly issued debt may have either a matching maturity or
a different maturity.

Mayor and McCoin (1974) posit that the refunding decision can be dichotomized and the
desirability of refunding is independent of the desirability of changes in the firm’s capital
structure. They reason that the firm should analyze the refunding decision on the basis of a pure
refunding rather than a mixed refunding, and the appropriate discount rate to use is the risk-
adjusted net rate of return for the firm’s best alternative use of funds.

Ofer and Taggart (1977) present a framework for evaluating refunding decisions, which
incorporates not only the present value of savings in interest payments, but also the tax savings
that will result from the change in debt capacity. Yawitz and Anderson (1977) examine the
question of the effect of refunding on shareholder wealth by dividing conventional refunding into
(1) a pure leverage problem, and (2) a pure refunding problem. This dichotomy allows them to
isolate the effects on shareholder wealth resulting solely from the refunding.

Emery (1978) considers the treatment of overlapping interest in bond refundings. The
overlap interest cost is determined by the way the interest rate saving are computed. If the interest
savings are computed from the date of the retirement of the old bonds, then the overlap interest
cost is the interest on the new bonds. However, if the interest savings are computed from the date
of issue of the new bonds, as is usually the case, then the appropriate cost of the duplicate interest
is the interest on the old bonds for the overlap period.

Laber (1979) discusses the appropriate discount rates and financing assumptions for bond
refunding decisions. He suggests using a model where tax shields associated with refunding,
form a part of the cash flows from transaction, and all cash flows are discounted at the before-tax
cost of debt.
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Lewellen and Emery (1981) point that refunding decision should be treated independently
of the decision to alter the issuer’s leverage. Keeping the future cash flow burden the same under
refunding neutralizes any stock valuation effects and eliminates the need to debate possible debt-
capacity implications. This debt-service parity approach then enables one to compute the net
advantage from a pure refunding.

Reiner (1980) develops a procedure for evaluating the benefits of refunding high-coupon
debt. His procedure involves constructing a single refunding issue the debt service requirements
of which match those of the refunded issue, keeping the firm’s debt capacity unchanged.

Finnerty (1983) modifies the analytical procedure developed by Riener (1980) to
accommodate sinking-fund issues. He decomposes the issue into a serial obligation and applies
Riener’s (1980) procedure for non-sinking-fund issues separately to each series. This procedure
leads to the maximum number of bonds that the firm could profitably call for immediate
redemption and gives the associated maximum value resulting from exercising the call option.

Emery and Lewellen (1984) analyze the tax advantages from writing off losses connected
with refunding high-coupon non-callable debt by the mechanism of an open-market repurchase.

Finnerty’s (1984) book presents a comprehensive review of the bond refunding literature
and analyzes the bond refunding decision for both high and low coupon bonds. He further
discusses the refunding of sinking-fund issues, as well as the defeasement of existing debt. He
also addresses the issue of timing of the refunding and suggests using dynamic programming
approach similar to Boyce and Kalotay (1979a).

Finnerty, Kalotay, and Farrell’s (1988) book provides a comprehensive theory of
refunding either high-coupon or discounted debt as well as those with sinking-funds. They
develop a model for timing bond refundings which uses optimal stopping time theory (see
Maliaris and Brock (1982) or Duffie (1992)); all benefits are analyzed on an after-tax basis, such
that all side effects on the financial structure are neutralized.

Maris (1989) discusses ways to take into account overlapping interest in refunding
decision models.

Brick and Palmon (1993) compare the tax advantages of issuing callable debt, non-
callable but repurchasable debt, and a proposed bond with an indexed-exercise-price put option
(BIPO). They show that ex-ante tax benefits from refunding, obtained by issuing BIPOs, exceed
those obtained by issuing either repurchasable debt or callable debt.

II.B.2 Static Models of Refunding Discounted Debt

Ang (1975) was first to point out that refunding can be profitable even in cases where
existing debt is selling at a discount, i.e. when current interest rates rise above the offering yield
of the existing debt. Refunding discounted debt results in (1) changing the amount of the periodic
interest payments, (2) changing the amount of payment on the maturity date, and (3) incurring
transaction costs. Such a refunding would be profitable if the present value of the transaction
costs and payments on the refunding issue is lower than the present value of payments on the
refunded issue.
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Mayor and McCoin (1978) refute Ang’s (1975) contention that refunding discounted debt
can be profitable. They point out a flaw in Ang’s (1975) implementation of dynamic
programming model and assert that their calculations do not support Ang’s results. Using the
same assumptions on transaction costs, they find that Ang’s (1975) solution to the debt-exchange
issue is actually less desirable than simply maintaining the level of the original debt. Laber
(1978) shares the essence of their view. Ang (1978) maintains that it is profitable to refund when
interest rates are higher than the current yield on existing debt, when short-term implementation
costs are low.

Kalotay (1978) argues that for a profitable refunding of discounted debt, the corporation
must be a taxable entity. Tax benefits in such refundings arise from the deferment of capital
gains.

Dyl and Spahr (1983) extend Kalotay’s (1978) framework to analyze benefits of
refunding discounted debt by incorporating provisions of the Bankruptcy Tax Act of 1980. They
present evidence, which suggests that these provisions have effectively eliminated any potential
economic gains from refunding discounted debt.

Using agency cost rationale Dhaliwal (1985) hypothesizes that one motivating factor for
refunding discounted debt is the firm’s desire to relax the restrictions imposed by loan covenants.
By doing so, the firm may keep itself from getting into technical default and avoid significant
direct and indirect bankruptcy costs Furthermore, it may enable firms to undertake certain
projects that may cause a wealth transfer from bondholders to stockholders, e.g. issuance of debt
in exchange for equity. He provides indirect empirical evidence that is consistent with this
hypothesis.

Finnerty (1986) discusses tax advantages of refunding discounted debt. Refunding
discounted debt will increase shareholder wealth when the present value of additional tax shields
obtained by full utilization of debt capacity created through the refunding exceeds the sum of (1)
present value of overall increase in pre-tax debt service requirements, (2) transaction costs that
must be paid, and (3) any tax incurred on the gain.

Parker (1986) develops a tax-oriented decision model for measuring the value to
shareholders of refunding non-callable bonds trading at a premium. Gramlich, Abramowicz, and
Parker (1988) update the Parker (1986) model by incorporating the Tax Reform Act of 1986 and
show that the benefits of refunding non-callable bonds diminished since corporate and individual
tax rates were lowered and long-term capital gain deduction was eliminated.

II.B.3 Dynamic Models of Bond Refunding

Bierman (1966) and Weingartner (1967) were among the first to highlight that in deciding
whether to call a bond at any given time, the issuer must compare the potential savings from
current refunding, with those resulting from the decision to postpone. Bierman (1966) proposed
using a Markovian representation of interest rate fluctuation to improve short-run timing when
refunding a bond. Weingartner (1967) formulates the refunding problem in terms of a dynamic
programming model in which predictions of deterministic future term structure of interest rates
are utilized.
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Elton and Gruber (1971) discuss the applicability of dynamic programming approach to
solving the refunding problem. They assume that the debt capacity remains unchanged. At each
node in the decision tree, the “keep” versus “refund” decision is evaluated. The appropriate
discount rate is the yield that must be offered to sell a bond of equal maturity. The issuers act on
point estimates of future interest rates. Alternatively, they employ information about the
distribution of future interest rates in making refunding decisions. The authors present the
dynamic programming approach in both finite and infinite horizon.

Klaymon (1971) formulates the refunding problem as a multi-period decision process in
which future interest rates are determined by a Markovian stochastic process. In each period
issuer decides either to refund the existing bonds at current market interest rates or to keep the
bonds if unexpired. It is assumed that a penalty cost is charged for not meeting fund
requirements, and a bonus is paid for excess funds during any period. This penalty cost or bonus
is designed to model costs of minor short-term borrowings or deposits. Klaymon (1971)
simultaneously solves for the optimal debt capacity and optimal refunding.

Kraus (1973) points out that interest rate savings obtained by the firm’s shareholders
through refunding, represent an opportunity loss of interest earnings to holders of the refunded
issue. As a consequence, rational investors will demand a higher yield from newly issued callable
bonds, if issuers employ optimal refunding decisions.

Kolodny (1974) views the refunding decision as one that involves comparing alternative
refunding policies and choosing one that minimizes the systematic risk while maximizing the
expected return in the Capital Asset Pricing Model framework of Sharpe (1964) and Lintner
(1965). Evaluating this objective function by using the dynamic programming model of Elton
and Gruber (1971) identifies optimal decisions. This technique requires that the issuer specify the
association between future interest rates and the gross national product.

Brennan and Schwartz (1977) employ the option pricing framework to price callable
bonds under the assumption that interest rates follow a Gauss-Wiener process and that the pure
expectation hypothesis holds. More specifically, they assume that capital markets are perfect,
with no transaction costs, taxes, restrictions on short sales or other institutional frictions, and that
the bonds are default-free. Given the stochastic process for the interest rates, they obtain a partial
differential equation (equation 30, page 79) that all callable bonds must satisfy subject to the
following boundary conditions: the terminal value condition; the limiting interest rate condition;
and the call policy condition. Finite difference methods that solve the differential equation
subject to these boundary conditions to value callable bonds. A callable bond is shown to be
equivalent to a straight bond less the value of an American call option to purchase the bond at the
call price.

Boyce and Kalotay (1979a) introduce the concept of refunding efficiency as an alternative
to the optimal stopping theory. Refunding efficiency is the ratio of the savings immediately
available and the savings expected if one used the optimal strategy in the future, that is the value
of the call option at that time. Boyce and Kalotay (1979b) present tax arguments for the
preference by corporations to issue callable bonds over noncallable bonds.

Howard and Kalotay (1988) stress the importance of computing refunding efficiency over
the present value savings of benefits from refunding. They value embedded call options by a
simple binomial interest rate tree. They demonstrate that refunding efficiency is critically
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determined by (1) assumed volatility of future interest rates, (2) structure of the refunding issue,
i.e., whether it is callable or noncallable, and  (3) marginal tax rates of the firm.

Chiang and Narayanan (1991) develop a dynamic model of bond refunding in which the
objective is to maximize shareholder wealth.  This is done by estimating benefits of refunding as
the difference between the market price of the bond and the price of the refunding bond, keeping
the debt capacity unchanged, and incorporating taxes and issuance costs. If the markets are
efficient then rational bond refunding decisions do not affect shareholder wealth. Ling (1991)
presents a similar dynamic model of refunding but he includes taxes and transaction costs.

Kalotay, Williams, and Fabozzi (1993) present a model to value embedded options such
as those present in callable bonds. This is done by constructing binomial trees for forward rates
and then valuing the bonds at each node, checking for optimal exercise, and then obtaining the
expected present value of the bond by discounting the cash flows.

Despite the importance of bond refunding decision to corporate and tax-exempt issuers,
as evidenced by the numerous papers that attempt to model the refunding decision, there have
been very few papers that investigate refunding related issues empirically. Vu (1986) examines
call behavior for corporate non-convertible bonds and the impact of calls on the market price of
securities. He finds that while some firms wait long enough after the market value of bonds first
exceeds the call price before calling their straight bonds, this does not necessarily imply that the
firm is acting suboptimally because transaction costs and market imperfections may prevent the
firm from calling exactly at the optimal time. When firms finally call their bonds, the market
value of the called bonds is usually below the call price. Comparing the refunding rate with the
adjusted interest rate on refunded bonds Vu (1986) finds that most refundings are profitable.
Although bondholders benefit when firms call bonds whose market value is below the call price,
no evidence is found that stockholders are expropriated. An examination of bond indenture
agreements reveals that when the call relaxes restrictive covenants, the firm on average pays a
larger premium to call debt. He concludes that there are several motives for calls and no single
predominant one.

Thatcher and Thatcher (1992) measure how well firms time bond refunding decisions.
Using a sample of 161 public utility bond refundings, they compare the actual timing
performance with the timing performance achieved by three benchmark models.2

II.C Municipal Bond Refunding Literature

The municipal bond market is different from the corporate bond market, not only by
virtue of its tax-exemption feature, but also in its institutional and regulatory structure. Miller
(1993) provides an excellent explanation of the mechanism of refunding and the regulatory
constraints pertinent to refunding by municipal issuers. Some of the salient points from his article
are recapitulated below as an understanding of the economic and legal issues germane to
refunding are essential to the analysis presented in subsequent chapters.

                                                
2 The first model is random selection model, the second model is the 100 basis-point refunding model (e.g., Finnerty
(1984), Boyce and Kalotay (1979a)), and the third model is the stopping-time model of Finnerty, Kalotay, and
Farrell (1988).
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A refunding involves the issuance of new bonds, the proceeds of which are used to pay
debt service (principal, interest, or call premium) on any other bond. Defeasance of a prior bond
on the other hand, involves a formal release of the lien of the bondholder on the pledged assets or
revenues in exchange for the pledge of cash or highly rated securities sufficient to repay the
bond. The source of funds need not be from refunding bond proceeds. The procedure by which a
bond may be defeased is provided in the bond resolution or trust indenture authorizing the
issuance of the bond; as a general rule, in the absence of a defeasance provision a bond cannot be
legally defeased.

A current refunding is defined as a refunding in which refunded bonds are called or
mature within 90 days of the issuance of the refunding bonds; all other refundings are treated as
advance refundings.

Refundings are often categorized as either “high-to-low” refundings or “low-to-high”
refundings. A high-to-low refunding involves the refunding of a high coupon prior bond with
lower interest bond for interest rate savings, calling the prior bond before its maturity. By
contrast, a low-to-high refunding generally involves escrowing the prior bond to maturity, and is
usually undertaken for reasons other than interest rate savings.

Issuers refund for the following four reasons:

1. high-to-low refundings for interest rate savings,

2. defeasance refundings to remove burdensome covenants,

3. refundings to stretch out or otherwise restructure debt service, and

4. refundings to produce economic benefits other than interest rate savings.

A high-to-low refunding is the exercise by the issuer of an in-the-money call right on a
callable prior bond at the redemption price. In an advance refunding, the exercise of the call right
has been effected in advance of the actual call date through the complexities of an escrow for
prior bonds, but the net effect is the same. Hence, unless the prior bond is callable there can be
no interest rate savings on a refunding of the prior bond.3

The exercise of the call option is a function of many variables which includes:

1. interest rate on the prior bonds,

2. yield on the refunding bonds,

3. maturity date of the prior bonds,

4. call date on the prior bonds,

5. available yield on the refunding escrow investment portfolio, and the possibility of
“negative arbitrage,”

6. call premium on prior bonds,

                                                
3 The inclusion of call provision in the initial bond issue is a necessary condition for refunding. Kessel (1971)
estimated that about 50% of the tax-exempt bonds issued during 1959-1976 had call options.
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7. any possible rebate on funds held by the issuer in connection with the refunding issue,
and

8. in certain cases, transferred proceeds penalties that are incurred as a result of the
refunding.

Miller (1993) illustrates through examples how the present value savings as a percentage
of the refunded bond are higher (1) higher the coupon on prior bonds, (2) longer the maturity of
prior bonds, (3) shorter the time to the call date on prior bonds, (4) lower the yield on refunding
bonds, (5) lower the call premium and issuance costs, (6) higher the permissible escrow
investment yields, and (7) lower the rebate and transferred proceeds penalty if any.

Miller (1993) discusses the tax constraints on refundings.4 Most of these relate to the
circumstances under which state and local governments must restrict the yield on their bond
proceeds. Some of the major limitations that affect issuers’ willingness or ability to refund
outstanding bonds are discussed.

Miller (1993) discusses three different types of advanced refundings. The first and the
most dominant type of advance refunding is the “net cash refunding.” In a net cash refunding, the
principal, interest, and call premium on the prior bond are paid with the proceeds of the
refunding issue.

The second type is the “crossover refunding,” in which the refunding escrow pays interest
on the refunding bonds through the call date of the prior bonds, and then pays the principal and
call premium of the prior bond on the call date. In this way, the refunding bond “pays for itself”
through the redemption of the prior bonds, after which time the debt service on the refunding
bonds is paid out of the revenue stream that would have been used to pay the debt service on the
redeemed prior bonds. Conversely, until their redemption, the interest on the prior bonds
continue to be a liability of the issuer, and the prior bonds are not defeased and removed from the
issuer’s balance sheet. Since there is no defeasance, the issuer has the flexibility to invest the
refunding escrow and has the potential to earn a higher yield.

The third type of refunding is a “full cash” or “gross” refunding. This type of refunding is
archaic and the issuer will undertake this type of refunding only if the prior bond resolution or
trust indenture requires an initial deposit to the escrow of the full amount of the principal,
interest, and call premium of the prior bonds, disregarding any interest that may be earned on the
refunding escrow. However, because the escrow will generate investment income, the investment
income can be used to pay the debt service on a portion of the refunding bonds, known as
“special obligation bonds.” Tax regulations preclude full cash refunding unless the bond
documents specifically require it.

All bond resolutions and indentures require the deposit to a defeasance escrow of cash,
U.S. Treasuries, or obligations guaranteed by the U.S. government. Sometimes defeasance with
bank CDs and pre-refunded municipals, or federal agency obligations is also allowed.

                                                
4 The tax law limitations with respect to arbitrage, rebate, and advance refundings are found in I.R.C. §§ 148 &
149(d); the regulations with respect to these provisions are found in Treasury Regulations §§ 1.103-13 through -15 &
1.148-1.150.
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Dyl and Joehnk (1976) discuss current (which they call “direct”) and advanced refundings
and outline the computation of present value savings for these types of refundings. They trace
regulations related to restrictions on arbitrage profits via advanced refundings from 1966 through
1973. These restrictions appear to be the precursors of the present day arbitrage restrictions. Dyl
and Joehnk (1977) modify their advance refunding model to incorporate a revision in 1976 by the
IRS of the regulations related to advanced refundings of municipal bonds.

Ziese and Taylor (1977) explain how the 1976 changes in IRS regulations on arbitrage
profits succeeded in eliminating the arbitrage profits of advance refunding to issuers and
underwriters. They mention how advance refundings can still provide municipal issuers with
significant present value savings, when high-coupon bonds are replaced with low-coupon bonds
in a low interest rate market. Higher coupon issue can also refund low coupon bond issues, but
such refundings would produce break-even present value savings at best. They mention other
compelling reasons for issuers to undertake refundings. These include such factors as prevention
of default, cash flow savings, and restructuring of debt.

Gurwitz (1990) discusses the optimal timing of refunding by municipal bond issuers. He
advocates using refunding efficiency as a criterion, which overcomes this problem. When an
issuer executes a refunding, it is realizing the intrinsic value of the call option and is giving up
the time value. Refunding efficiency is defined as the ratio of the intrinsic value of an issuer’s
call option (the present value savings) to the total value of the call option. Estimating the later
requires assumptions about the future volatility of interest rates. If volatility is low, then the
chances of realizing substantially greater savings in the near term are also relatively low. Thus,
the higher the anticipated market volatility, the greater will be the time value of the issuer’s call
option and the lower will be the efficiency of a refunding generating any given level of present
value savings.

Gurwitz, Knez and Wadhwani (1992) develop a model to value call options embedded in
municipal bonds. Their model builds on the Litterman and Iben (1991) method of valuing
embedded call options in corporate bonds. This methodology obtains the term structure of
interest rates for individual issuers by adding the credit risk spread specific to the issuers’ rating
class, to a benchmark term structure of interest rates for bonds that are assumed to be default-
free. Assessing the credit risk involves a determination of the probabilities of default embedded
in bond prices. Using the Black, Derman, and Toy (1990) binomial interest rate tree to
characterize future paths of interest rates, they show how to compute the option adjusted yield,
assuming rational calling by the issuer and checking for the possibility of advance refunding at
each node.

Naparst (1993) explains the advance refunding process and shows how the refundablitity
of a bond affects its value and risk. If issuers refund rationally and the market rallies
significantly, the present value of the cash flows to the first call will be close to the market price
of the bond.

Lack of data on municipal bond prices has been the primary reason for the scarcity of
empirical research on municipal bond refunding. A few papers that have researched refunding
related issues for the municipal bond markets are discussed below.

In a study on the use of call provision by state and local governments, Kidwell (1976a &
1976b) found only a moderate relationship between interest rates and the frequency of existing
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call provisions. Based on the low explanatory power of interest rates on exercising call options,
he concluded, “refunding was not the dominant motive for exercising the call option for
municipalities.” He suggests that, for political reasons, a governmental unit may be reluctant to
refund bonds at a lower interest rate, which would impose a cost on bondholders, if local
financial institutions or constituents held a considerable amount of debt.

Kidwell and Hendershott (1978) conducted an empirical study of advance refunding
issues in the state of Indiana to examine whether the issuance of such bonds increases the
borrowing costs of issuers. This may be so as advance refunding increases the overall supply of
state and local government bonds outstanding because, until the refunded issue is retired, there
are two outstanding bond issues representing the same project. They found that the impact upon
borrowing costs of advance refunding issues was no different than that caused by other bond
issues.

Mitchell (1979) found evidence contrary to Kidwell’s (1976b) study. For annual data
between 1901-1975, he found that when outstandings, the aggregate state and local government
demand to refund deflate annual refunding (supply of refunding bonds) is highly sensitive to
cyclical interest rates. This characteristic was typical for both general obligation and revenue
bonds, and for “large” and “average” size issues. He concludes that interest rate savings do
appear to be an important motivation by state and local governments, although he opines that
there are no a priori reasons to believe that refundings should be related to cyclical interest rates,
as refundings could be undertaken for reasons other than interest rate savings, such as (1)
restructuring of debt, (2) removal of restrictive debt covenants, and (3) avoidance of actual or
imminent default.

Fischer (1983) studies the response of the municipal bond secondary market to advance
refundings. He hypothesizes that advance refundings introduce a reduction in the default risk of
the prior bonds, as their debt service is secured by default-free U.S. Treasury securities. He
examines the response of yields on pre-refunded bonds to changes in credit quality resulting from
advance refundings. Based on a sample of 50 prerefunded bonds during 1977, he finds that news
of an advance refunding causes a rapid decline in the prerefunded bond’s yield, and the size of
the yield response is generally larger for lower-rated bonds. Finnerty (1992) examines conditions
under which in-substance defeasance of nonredeemable high coupon debt can be more profitable
to the issuer than a cash repurchase.5 He discusses the application of these concepts to the in-
substance defeasance by The Tennessee Valley Authority in 1989 of $6.9 billion of its
outstanding non-redeemable high-coupon bonds.

Kalotay, Williams, and Pedvis (1994) discuss the regulatory constraints on refunding of
tax-exempt and corporate bonds and review the concept of refunding efficiency and its role in
refunding decision. They present a case study in which an application of these techniques is
provided.

II.D A Note on the Models of the Term Structure of Interest Rates

                                                
5 Previous studies of in-substance defeasance include Peterson, Peterson, and Ang (1985), Lovata, Nichols, and
Philipich (1987), and Johnson, Parl, and Rosenthal (1989).
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Interest rate models have been aptly reviewed in the literature (see Abken (1990), Leong
(1992), Hull (1993), and Ho (1995).) The purpose of this section is therefore to focus solely on
the background and setting of these models and to discuss why the chosen model is appropriate
for our purpose.

Since the path breaking article on option pricing by Black and Scholes (1973), contingent
claims analysis has revolutionized the approach taken by researchers to term structure modeling.
Implementations of these models have vastly benefited from the binomial pricing approach of
Cox, Ross, and Rubinstien (1979).

Modern term structure models can be broadly classified into two categories: General
equilibrium models and partial equilibrium models.

Among the former are models of Cox, Ingersoll, and Ross (1985), Longstaff (1989), and
Wang (1996). Partial equilibrium models of term structure of interest rates include the models of
Vasicek (1977), Dothan (1978), Richard (1978), Schaefer and Schwartz (1984), Ho and Lee
(1986), Hull and White (1990), Heath, Jarrow, and Morton (1992), Black, Derman, Toy (1990),
Longstaff and Schwartz (1992), and Brace and Musiela (1994).

General equilibrium models take investor preferences and unforecastable shocks to
physical investment opportunities as given, and the term structure movements are explained
endogenously. In partial equilibrium models, on the other hand, the initial term structure and the
process generating shift in that structure is determined exogenously. The former class of models
have a deeper theoretical foundation, are more ambitious in terms of economic modeling, and do
a better job in explaining the liquidity or term premium. The practical distinction, however, is not
as sharp when using these models to value bond options. Features such as mean reversion,
multiple risk factors, and arbitrage-free valuation have been successfully incorporated into all
models. On the other hand, all models suffer from one or more shortcomings such as, the
possibility of negative interest rates; preference based valuation; intense computer time required
for implementation; difficulty in pricing and hedging; exploding volatility parameter; analytical
intractability (more specifically, the absence of closed form solutions for bonds and interest rate
sensitive claims); and non-conformity with initial term structure data. Users base their choice on
the following desirable features, determined largely by the specific application:6

1. ease of “calibration,” goodness of fit, and hedge effectiveness,

2. computational speed,

3. analytical tractability, and

4. versatility.

Based on these criteria the Heath, Jarrow, and Morton (hereafter HJM)(1992) model is
the preferred framework for this study. The model can be calibrated with relative ease, is bound
to conform to the initial term structure of interest rates, provides closed form solutions when the
instantaneous short rate is Gaussian, and can be easily adapted to incorporate multiple factors.
However, constraining the spot rate to be Gaussian, introduces the possibility of negative interest

                                                
6 See Leong (1992).
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rates, a which is deficiency albeit not a serious one.7 For reasons stated above, recently several
related papers in the literature have used the HJM (1992) model.8

                                                
7 See Ritchken and Boenawan (1990) for a suggested modification to the Ho and Lee (1986) model to eliminate the
possibility of negative interest rates. Black (1995) also comments on these aspects.

8 See for example Das (1995), Singh and McConnell (1996).
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CHAPTER III
THE TERM STRUCTURE OF INTEREST RATES AND RATIONAL EXERCISE OF

EMBEDDED BOND OPTIONS

No theory is good except on condition that one use it to go on beyond.

André Gide
Journals 1889–1949.

III.A Introduction

In this chapter the methodology to value interest rate contingent claims in the Heath,
Jarrow, Morton (henceforth, HJM) (1992) framework for the term structure of interest rates is
discussed. In the context of the HJM (1992) paradigm a one-factor generalized Vasicek (1977)
model is implemented. The methodology to calibrate and implement this model is presented.
Valuation of call options embedded in bonds, and the computation of the optimal exercise
boundary is discussed. Optimal and sub-optimal exercise strategies are identified and the
determination of losses resulting from sub-optimal exercise is presented.

III.B The Heath, Jarrow, and Morton Framework

This section reviews the HJM (1992) framework for the term structure of interest rates.
Consider a probability space  ( , F, Q) with an augmented Brownian filtration {Ft: t∈[0, ]}
generated by an n-dimensional Brownian motion {W1(t), . . . , Wn(t): t∈[0, ];  < ∞} initialized at
zero. Let the trading interval be [0, ]. Define f(t,T), 0 = t = T = , to be the forward rate
contracted at time t for instantaneous borrowing and lending at time T. Forward rates are
assumed to follow a diffusion process of the form:
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which could depend on the level of the term structure itself, and dWi(t) is the Wiener increment.
Integrating equation (3.1) with respect to t yields the following stochastic equation for the
forward rate:
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The spot rate at time t, r(t), is given by f(t,t). From (3.2) we obtain the process for the spot rate:
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The dynamics of the spot rate can then be obtained as:

(3.3b) dr t df t s
s
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Let P(t,T) be the price at time t, of a pure discount bond that matures at time T. By
definition, the bond price is given by
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and P(T,T) = 1 for all T∈[0, ], P(t,T) > 0 for all T∈[0, ]. We also define an accumulation
factor, M(t), corresponding to the value of a money market account initialized at time 0 with a
dollar investment, i.e.,
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From (3.4) it is evident that bond prices depend on forward rates; hence the drift and volatility
structure of bond returns must be related to the drift and volatility structure of forward rates. In
particular, let
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Where  p(t,T) and i
 p(t,T) for i = 1, . . . , n are the drift and volatility parameters of bond returns.

We assume as in Harrison and Pliska (1981) the absence of arbitrage opportunities given
completeness of markets. Arbitrage arguments then lead to:9

(3.7a) − = −
=
∑ i
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1

and

(3.7c) i
p

i
f

t

T
t T t s ds( , ) ( , )= −∫ 

 

                                                
9Equation (3.7a) is a standard assumption in finance. For a proof of equations (3.7b) and (3.7c) see Priyadarshi
(1996).
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where i is the market price of risk associated with the random factors Wi(t) for i = 1,....,n,
respectively. Equation (3.7b) is the forward rate restriction in the HJM (1992) framework. Using
(3.7b) and (3.7c) we can rewrite Equation (3.1) as:

(3.8) df t T t T t dt t T t s ds t T dW ti
f
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i
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= = =
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1 1 1 

 

and we can rewrite equation (3.6) using (3.7a) as:
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Assuming the market price of risk satisfies the Novikov condition,
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0
, referred to

as the risk-neutral Brownian motion, is a Brownian motion on [0, ].

Under these assumptions (3.8) and (3.9) reduce, respectively, to10:
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(3.11)  
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The market prices of risk drop out of expression (3.10) and (3.11) and they are replaced
with an expression involving the volatilities across different maturities of the forward rates, i.e. a
“term structure of volatilities.”

Integrating (3.10) with respect to t we obtain the preference-free process for the forward
rate and the spot rate11
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Using (3.4) and (3.12) we obtain

                                                
10 See Karatzas and Shreve (1988).

11 Certain regularity conditions, which require the volatility to be Lipshitz continuous, must hold for existence of
solutions to equations (3.12) and (3.13). See Carverhill (1995) for details.
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From equations (3.12), (3.13), and (3.14), we note that the initial term structure and the
volatility structures are the only exogenous elements in the model, and together they completely
determine the evolution of the entire term structure.

III.C The Generalized Vasicek Model

The computation of prices in the HJM (1992) framework is non-trivial since the evolution
of the term structure under the martingale measure is usually non-Markovian with respect to the
finite-dimensioned state space. An exception to this case is when volatilities of all forward rates
are non-random. In this case, simplification results and analytical solutions for certain claims are
available. For example Jamshidian (1989, 1990, 1991), HJM (1992), and Ritchken and
Sankarasubramanian (1995) have developed term-structure-constrained models for debt options
in a dynamically complete model.

An Itô process with deterministic drift and diffusion is a Gaussian process, meaning that
its value at any time  t  is normally distributed. Hence the forward  rate  f(t,T) is  Gaussian if 
f(t,T) and i

 f(t,T) are deterministic for each t  and T. This, in particular implies that forward rates
and the short rate are normally distributed.12 Under the equivalent martingale measure, a
Gaussian forward rate model has bond prices that are log-normally distributed, with the forward
bond price as the mean.

The determination of the evolution of the term structure and the valuation of interest rate
sensitive claims becomes computationally efficient when the short rate is Markovian. If in
addition, the volatility structure is stationary and non-random, then it must have the Vasicek
(1977) form (see Carverhill (1995), pages 307-309):

(3.15) i
f

i
T tt T e i( , ) ( )= − −

where, i
 = i

  f(t,t), is the ith  component of the short rate volatility, and i is the  mean reversion
parameter. When i = 0, i

f
it T( , ) = . We constrain the volatility to be of the generalized

Vasicek (1977) form. This allows us to construct simple numerical procedures for option
valuation, such as the binomial or trinomial procedures of Nelson and Ramaswamy (1990) or
Hull and White (1990b), respectively. For a one-factor exponentially dampened volatility
structure, such as  e- (T-t) the forward rates and spot rates are normally distributed and the model
is path-independent. The spot interest rate becomes the only state variable and the term structure
is Markovian with respect to the spot interest rate r(t), and can be completely described by , and

.

The stochastic processes for the forward rates and spot rates can be obtained from (3.12)
and (3.13) respectively, as:

                                                
12 See Duffie (1992) for details.
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Note from equations (3.16) and (3.17) that forward rates and spot rates can be negative with
positive probability. The instantaneous change in the spot rate is given by:

(3.18) [ ] [ ]dr t f t r t e
t

f t dt dW tt( ) ( , ) ( ) ( , ) ~( )= − + − +








+−0
2

1 0
2

2

 

Bond prices are obtained as:
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III.D Model Implementation

The implementation of the generalized Vasicek (1977) model in discrete time is
accomplished by partitioning the time interval [0, T] into n subintervals, each of  length ∆t = T/n.
Instead of taking the spot interest rate as the state variable it is easier to work with the
transformed variable13, Y(t), defined as

(3.20) Y(t) = R(t) - Φ( )t

where

(3.21) R(t) = r(t) - f(0,t)

and

(3.22) Φ( )t t
e t

= + −










−2 2

2 2
1

2

A recombining tree for the transformed variable Y is set up. In each time increment Y can
move up to one of two points. Specifically at any node (i,j), Y(i,j) can move up to Y(i+1,j) or
move down to Y(i+1,j+1), where

(3.23a) Y i j Y i j t( , ) ( , )+ = +1 ∆ i = 1, . . . m;  j = 1, . . . i.

and

(3.23b) Y i j Y i j t( , ) ( , )+ + = −1 1 ∆ i = 1, . . . m;  j = 1, . . . i.

as depicted in Figure 3.1.

                                                
13 See Nelson and Ramaswamy (1990) or Priyadarshi (1996) for details.
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      Y(i+1,j)      r(i+1,j)

          Y(i,j)          r(i,j )

      Y(i+1,j+1)     r(i+1,j+1)

Figure 3.1: Interest Rate Trees

Given the lattice for the transformed variable Y, the interest rate lattice can be constructed
as

(3.24a) r i j Y i j f i i( , ) ( , ) ( , ) ( )+ = + + + + +1 1 0 1 1Φ with probability, q

and

(3.24b) r i j Y i j f i i( , ) ( , ) ( , ) ( )+ + = + + + + + +1 1 1 1 0 1 1Φ  with probability, 1 - q.

where, q, the probability of an up move is given by

(3.25)

[ ] [ ]

[ ]q

t
e t R t

t
e t R t

t
e t R t=

+ − − − ≤ + − − − ≤

+ − − − <









































1

2 2

2

2
1 2 0

1

2 2

2

2
1 2 1

0,
1

2 2

2

2
1 2 0

1

∆ ∆

∆

( ) ( )

( )

,

,  if 

                                                      if 

                                                      otherwise

Hence the entire term structure can be computed using equation (3.19). If the time period
at which valuation is done coincides with the expiration date of the claim, then we can establish
the terminal value of the claim. Once this is done, backward recursion procedure can be used to
obtain the fair value of the claim.

Let B(t,Tm) represent the price at time t of a bond with coupon stream D, maturing at time
Tm and with a principal amount of $1. The bond provides a total of m coupons. Let the  jth

coupon occur at Tj where 1 = j = m. Hence

(3.26) B t T P t T DP t Tm m j
j

m

( , ) ( , ) ( , )= +
=

∑
1

The interest rate lattice can be used to price coupon bonds using backward recursion. Let
the value of the bond at node (i,j) be B(i,j), and the terminal price of the bond be $1, i.e., B(m,j) =
$1 at the terminal node. Let B(i+1,j), be the value of the bond at node (i+1,j) when the interest
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rate is r(i+1,j) and let B(i+1,j+1), be the value of the bond at node (i+1,j+1) when the interest
rate is r(i+1,j+1). If these values are known then the bond price at node (i,j) can be obtained by
discounting the probability weighted average of the next two outcomes by the one period
discount factor, P(i,i+1;j), applicable at node (i,j). We can perform backward recursion and the
price of the bond at node (i,j) is given by

(3.27) [ ]B i j qB i j q B i j P i i j( , ) ( , ) ( ) ( , ) ( , ; )= + + − + + +1 1 1 1 1

where q is the probability of an up move. If the bond pays the coupon at node (i,j), then coupon D
is added to the above value.

Call options on coupon bonds are also computed by backward recursion. Let the price of
a call option on the coupon bond at node (i,j) be C i j( , ) . The value of the American call at node
(i,j) is given by

(3.28) C i j B i j K qC i j q C i j P i i j( , ) max[ ( , ) , ( , ) ( ) ( , , )] ( , ; )= − + + − + + +  1 1 1 1 1

where K is the exercise price.

III.E Model Calibration

Municipal bond yield information was obtained from the Salomon Brothers
Municipal Bond Index. This index provides monthly municipal bond yields for maturities of 1, 5,
10, 20, and 30 years. The available data for this index ends in June 1993. Yields for intermediate
maturities are obtained by linear interpolation as follows:14

let y(i), be the yield for a bond maturing in i years. If y(i), and, y(i+n), are known values then
yields for bonds with intermediate maturity is given by:

( )y i j y i j n y i n y i( ) ( ) ( / ) ( ) ( )+ = + + − ;   j  = 1,…, n-1.

The zero-coupon municipal yield curve is obtained by the bootstrapping15 the Salomon
Brothers Municipal Bond Index in the following manner:

The model is calibrated by pricing bonds on the municipal yield curve. The spot rate
volatility, ,  and mean reversion parameter, , are obtained using the Gauss-Newton non-linear
estimation procedure which regresses the residual onto the partial derivatives of the model with
respect to the parameters until the estimates converge. This estimation procedure requires an
initial start value, or “guess” for the parameters, and partial derivatives with respect to each
parameter.

The municipal forward rates are computed from the term structure of municipal yields as
follows

                                                
14 This is a reasonable approximation since municipal yield information for all maturities and by different credit risk
classes for general obligation bonds and for revenue bonds is generally not available. The sparseness of yield data in
the Salomon Brothers Index is not much of a problem given the fact that spreads for long term bonds are very close.

15 See Hull (1993) pages 84-86 for an excellent discussion of the bootstrap method used here.
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(3.29) f t T
P t T

P t t T
( , )

( , )
( , )

=
+ ∆

where, P(t,T) is the price of a discount bond at time t, maturing at time T computed from the
municipal zero-coupon yield curve. These forward rates are converted to continuously
compounded rates as follows:

(3.30) ~( , )
ln ( , )

f t T
f t T

t
=

∆

By adding the credit risk spread specific to the issuer’s rating class, to the zero-coupon
yield curve, I obtain the term structure of interest rates for individual issuers. The spot rate is the
one year municipal bond yield.

The lattice for the transformed variable, Y(i,j)  and the corresponding lattice for interest
rates, r(i,j) are computed for each bond based on the issuer’s term structure of interest rates. To
counter the possibility of negative interest rates a reflecting barrier is imposed. Furthermore, if
interest rates become high with respect to the initial forward rate curve, the mean reversion
phenomenon pulls the spot rate to the long run mean, i.e. the initial forward rate curve. When this
happens, the drift becomes negative and up move probabilities can fall below zero when spot rate
is very high. The reverse hold true when the spot rate is too low compared to the initial forward
rate curve. The drift becomes large and up move probabilities can go above 1 when the spot rate
is too low. In such cases the probability is constrained to be zero when negative and restricted to
1 when more than one.16

Given these lattices, one period discount bond prices P i i j( , ; )+ 1 are obtained for each
(i,j) node using equation (3.19). This equation requires the difference between the prevailing spot
rate and the initial forward rate curve, which is obtained in the discrete case as r i j f i( , ) ( , )− 0 .
Bond price and call option lattices are constructed based on the interest rate lattice.

III.F Rational Exercise of Call Options Embedded in Callable Bonds and Refunding
Efficiency

Callable bonds contain embedded call options by virtue of provisions in the indentures
that permit the issuing firm to buy back the bond at a predetermined price or the strike price, at
certain times in the future. Essentially, the bond holders have sold a call option to the issuer.
These provisions typically allow the issuer to refund the bond, or in other words, exercise the call
option at any time after the call protection date. An in-the-money  American  call  option  is
worth   at   least  as   much   as   its  intrinsic value, max [B(i,j) - K, 0], where, B(i,j), is the
prevailing bond price and, K, is the predetermined strike price, and the option holder can realize
the intrinsic value by exercising immediately.    Usually it is optimal for the holder of an in-the-
money American option to wait rather than exercise immediately. In such cases the option is said
to have time value. The total value of an option can be thought of as the sum of its intrinsic value
and its time value.
                                                
16 The reflecting barrier and the constraints on the probabilities introduce arbitrage possibilities. However, this
happens only at the extreme nodes near the end of the tree.
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The optimal exercise boundary or the critical level of interest rates is obtained by tracing
through the lattice for the call option and determining the highest level of interest rates at which
early exercise is possible. In particular, let r*(i,j*) be level of interest rate in period i,
corresponding to the highest possible interest rate when the following two criteria are met:

1. the call option can be exercised optimally, i.e. its intrinsic value is equal to the value
of the call, and

2. yield on the escrow funds is higher than the critical interest rate, r*(i,j*), before the
call protection date.

Rational exercise is one in which the holder exercises the option when the total value of
the option is no more than its intrinsic value, and the exercise is optimal. Based on the optimal
exercise boundary, r*(i,j*), and the actual interest rate evolution, Ractual(i,j); one can obtain t*, as
the first instance when:

(3.31) R t j r t jactual ( *, *) *( *, *)≤  1 = t* = i; 1 = j* = i; 1 = i = m.

This is to the first hit to the optimal exercise boundary, and, t*,  is labeled as the “optimal time to
exercise.17”

Two sub-optimal exercise strategies are possible:

1.  “exercising too early,” where the holder chooses to exercise an option when it should
not be exercised until later (Figure 3.2). This also includes options that are exercised
but optimal exercise boundary is not hit (t* does not exist: Figure 3.3), and,

2.  “exercising too late,” where the holder fails to exercise an option when it should be
exercised (Figure3.4). This also includes options that are never exercised but optimal
exercise boundary is hit (t* exists: Figure 3.5).

These two sub-optimal exercise strategies result in a loss in value that can be estimated
using standard option valuation techniques. In the first case, when the holder exercises too early,
the holder is giving up the time value of the option and the loss in value is given by:

Loss in value from exercising too early = Value of the option on date of exercise -
Intrinsic value on date of exercise.

(3.32) [ ]Loss  =  case one C s j B s j K( , ) ( , )− − 1 = i = m; s ⊂  i; 1 = j = s

where s is the date of exercise.

In the second case, when the holder exercises too late, the holder is giving up the intrinsic
value of the option when exercise was optimal, and the loss in value is given by:

Loss in value from exercising too late = Intrinsic value on date on which exercise is first
optimal - Value of the option if left unexercised.

(3.33) [ ]Loss  =  case two B t j K C t jsub optimal( *, *) ( *, *)− − −

                                                
17 Refundings within ±6 months of t* are deemed optimal.
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where t* optimal time to exercise, as defined in (3.31), and

(3.34) [ ]C s j qC s j q C s j P s s jsub optimal− − = + − + −( , ) ( , ) ( ) ( , ) ( , ; )1 1 1 1

and

(3.35) [ ]C i j qC i j q C i j P i i jsub optimal sub optimal sub optimal− − −= + + − + + +( , ) ( , ) ( ) ( , ) ( , ; )1 1 1 1 1

where  t* = i = s - 2; 1= j = i.

Csub-optimal(t*,j*) is the probability weighted discounted value of the call value arising from the sub-
optimal decision at time s, where s is the eventual exercise data or m - 1 if not exercised, m is the
maturity of the bond, and P(i,i+1;j) is the one period discount factor obtained from (3.19).18

Since the terminal price of the bond is $1, the loss in value obtained from equations
(3.32) and (3.33) is the per unit loss, and represents cost of sub-optimal refunding strategy as a
fraction of each dollar of the principal amount of the bond with the embedded call option.

In addition, I check if there are losses from investing escrow funds at yields below the
reoffering yield, for periods when the bond is advance refunded. This loss is computed as
follows:

(3.36) 
( )[ ]{ }Loss from escrow investment =  max 0,

Proceeds of Refunding Bond.

Y Y s x s

x s

refunding treasury− − +

−

( ; ) .

* ( ) *

0125%

where Yrefunding  is the reoffering yield, Ytreasury(s;x-s) is the yield on U.S. treasury securities at time s,
with maturity of x-s, and x is the call protection date on the refunded bond.19

The absolute dollar loss can be computed as the sum of  (1) product of per unit loss in
option value and the principal amount of the bond, and (2) loss from escrow investments, and is
given by:

(3.37) Dollar Loss = Per Unit Loss x Gross Proceeds + Loss from escrow investments.

Refunding efficiency from either of the above two sub-optimal exercise strategies can be
computed as:

(3.38) Refunding Efficiency, %  = (1 - Per Unit Loss) x 100.

Refunding efficiency is the ratio of actual savings realized by exercising the call option
on the date of exercise to the potential saving obtainable from optimal exercise.20

                                                
18 The value of the call at bond maturity is zero.

19 Federal arbitrage rules state that an issuer cannot invest tax-exempt bond proceeds at a higher yield than the
interest rate on the bond issue, except in specific circumstances. More accurately, the yield on the investments can
only be 1/8 of 1% higher, or arbitrage restrictions apply. For example, if the yield on the refunding bond is 6%, the
issuer is limited to a 6.125% return on the investment of the bond proceeds.
20 This definition of refunding efficiency is slightly different than that in the literature (Boyce and Kalotay (1979a),
Howard and Kalotay (1988), and Guruwitz (1990)). This definition does not assume that issuers always refund at the
optimal time.
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If the model is specified correctly, then interest costs of refunding at the optimal time are
lower than the actual interest costs by refunding at a time other than optimal. To test this, an ex-
post measure of the interest costs is constructed. This ex-post measure of the interest costs is the
ratio of ex-post actual interest costs and, the potential interest costs by refunding optimally. This
ratio is computed as follows:

(3.39) Ratio of Ex-Post Interest Cost = 
D P i i D P i i

D P i i D P i i

refunded refunding
i s

m

i

s

refunded refunding
i t

m

i

t

( , ) ( , )

( , ) ( , )
*

*

+ + +

+ + +

= +=

= +=

∑∑

∑∑

1 1

1 1

11

11

where Drefunded is the coupon on the refunded bond, Drefunding is the coupon on the refunding bond,
P(i,i+1) is the one period discount factor obtained from (3.19). If this ratio is more than one, then
by refunding at the optimal time issuers save on total interest costs.

Months away from time when first optimal to exercise is given by s - t*.



Chapter III 31

0

2

4

6

8

10

12

Time Period

In
te

re
st

 R
at

es
Optimal Exercise Boundary
Actaul Interest Rates

t*s

Figure 3.2:  Case 1: Exercising Too Early. When Bond is Refunded at Time s, Before
the Optimal Time t*.
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Figure 3.3:  Case 1: Exercising Too Early. When Bond is Refunded at Time s, but the
Optimal Exercise Boundary is Not Hit.
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Figure 3.4:  Case 2: Exercising Too Late. When Bond is Refunded at Time s, After the
Optimal Time t*.
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Figure 3.5:  Case 2: Exercising Too Late. When Bond is Not Refunded, but the Optimal
Exercise Boundary is Hit.
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CHAPTER IV
BOND REFUNDING EFFICIENCY IN THE MUNICIPAL BOND MARKET

After all, the ultimate goal of all research is not objectivity, but truth.

Helene Deutsch
The Psychology of Women, vol. 1.

IV.A Introduction

This chapter presents the results of the analysis of refunding decisions employed by
issuers of callable tax-exempt debt. Using the generalized Vasicek (1977) model in the HJM
(1992) framework, I construct binomial option pricing trees and obtain the optimal exercise
curve for a sample of 26,596 callable bonds. For these bonds, refunding efficiency, ratio of ex-
post interest costs, loss in value, and months from optimal time are computed from option pricing
trees. These are analyzed by several bond and issuer characteristics. The results show widespread
refunding inefficiencies and losses in the municipal bond market.

IV.B Data and Sample Characteristics

The data in this study is collected from the U.S. Municipal Bonds New Issues Database
obtained from Securities Data Corporation. This database consists of 135,966 municipal bonds
issued between January 1980 and March 1995. Each observation has over 140 data elements
including issuer name, county and state; book and co-managers, financial advisors, legal
counsels, trustees and paying agents; offering terms and ratings; use of proceeds; net interest
costs, true interest costs, gross spread and breakdown; call features and refunding information.
This data is obtained from official statements, news sources, trade publications, proprietary
surveys and information from investment bankers and other advisors.

Out of 135,966 bonds issued between January 1980 and March 1995, 78,620 issues or
57.8% contain call provisions which enable issuers to call these bonds. The remaining 57,346
issues are non-callable bonds. Table 4.1 reports the characteristics of the data for callable and
non-callable bonds. Analysis of the data according to whether the issue was callable or non-
callable, shows interesting results. Non-callable bonds are primarily general obligation bonds,
have lower gross proceeds compared to those that are callable, and are issued for much shorter
maturities. Table 4.1 indicates that 75.2% of non-callable bonds are general obligation bonds.
Non-callable bonds have average gross proceeds of $13.3 million and are issued for an average
maturity period of 12.65 years. For comparison, only 41% of the callable bonds are general
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obligation bonds, have average gross proceeds of $21.5 million and are issued for an average
maturity period of 21.11 years. Non-callable bonds are issued at an average yield of 6.01%
compared to 7.00% for the callable bonds. Thus the spread between callable bonds and non-
callable bonds is approximately 1.00%. Table 4.2 shows the frequency of issuance of callable
and non-callable bonds between January 1990 and March 1995. Half of all callable bonds were
issued between 1990 and 1993.

Municipal bond yield information was obtained from the Salomon Brothers
Municipal Bond Index, the available data for which ends in June 1993. Treasury yields are
obtained from McCulloch and Kwon (1993) U.S. Term structure database. Consumer Price Index
(CPI) data, obtained from the Federal Reserve Bank of Saint Louis, is used to convert all dollar
amounts to end 1995 figures.

Out of the 78,620 callable bonds in the Securities Data Corporation database, only 7,973
bonds contain information on the matching refunding issue. Two or more issues were used to
refunded 489 of these called bonds. I consider only the first instance of refunding.

During the 1980s, the federal government became concerned that municipal governments
were abusing their power to issue bonds by issuing bonds unnecessarily in order to try to earn
arbitrage.21 The 1986 Tax Reform Act put into place a variety of restrictions and regulations
designed to prevent abuse. Several of the major restrictions are discussed below.

Federal arbitrage rules state that an issuer cannot invest tax-exempt bond proceeds at a
higher yield than the interest rate on the bond issue, except in specific circumstances. More
accurately, the yield on the investments can only be 1/8 of 1% higher, or arbitrage restrictions
apply.

For example, if the yield on the refunding bond is 6%, the issuer is limited to a 6.125%
return on the investment of the bond proceeds. The issuer can purchase special low-yield U.S.
Treasury securities called the state and local government series to meet this requirement if the
normal market instruments are paying more.

Sometimes the issuer does earn prohibited arbitrage that had not been foreseen. If this
happens, any earnings in excess of the bond yield must be returned to the U.S. Treasury in a
process called "rebating." There are two possible penalties for an issuer who fails to comply with
rebate requirements -- the IRS can declare the bonds taxable retroactive to the date of issue, or
the IRS can assess a monetary penalty.

Also, private activity bonds cannot be advance refunded at all. This restriction prevents
the federal subsidization, through tax-exempt arbitrage earnings, of private activities.

The purpose of this study is to analyze refunding decision from the perspective of interest
rate saving. As such, bonds issued before 1986 are excluded from this study, due to the
possibility of earning arbitrage. Private Activity Bonds are also excluded from the sample

                                                
21 Arbitrage in the municipal bond market is the difference in the interest paid on an issuer's tax-exempt bonds and
the interest earned by investing the bond proceeds in taxable securities. Proceeds from a bond issue are usually put
into short-term investments until either they are spent on their intended use or, in the case of a refunding issue, used
to call the original bonds. Both of these situations can generate arbitrage earnings. If interest rates on the investments
are below the interest rates on the bonds, then there is "negative arbitrage."
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because of the numerous limitations, volume caps, restriction on advance refunding of these
bonds; these rules effect the flexibility of the issuers’ desire or ability to refund these bonds.

This study looks at bonds that are called and bonds that are not called. Accordingly, two
samples are constructed. The first sample consists of 2,620 bonds that are called and meet the
following selection criteria:

1.  complete pricing information is available for refunding and refunded bonds,

2.  original years to maturity at issuance is less than 30 years,

3.  bond is issued between January 1986 and June 1993, and

4.  it is not a Private Activity Bond.

A second sample consists of 23,976 callable bonds that are not called and meet the
following selection criteria:

1.  complete pricing information is available for the bond,

2.  original years to maturity at issuance is less than 30 years,

3.  bond is issued between January 1986 and June 1993, and

4.  it is not a Private Activity Bond.

Four refunding strategies can be identified using option pricing theory, two of which are
optimal refundings strategies, and the other two are sub-optimal refunding strategies. The two
optimal strategies are:

1.  calling the bond when it is optimal to refund, and

2.  not calling the bond when early exercise is not optimal.

Refunding when optimal results in zero-loss and a refunding efficiency of 100%. For a
sub-optimal refunding strategy, the loss in value is non-zero and positive, and refunding
efficiency is less than 100%.

The two sub-optimal strategies are:

1.  calling too early. This also includes the case when bonds are called but optimal
exercise boundary is not hit.

2.  calling too late. This also includes the case when bonds are never called but optimal
exercise boundary is hit.

The generalized Vasicek (1977) model in the HJM (1992) framework is used to construct
binomial option pricing trees as outlined in Chapter III, sections D and E. Optimal exercise
boundary is obtained from the option pricing trees. For each bond in the first sample, refunding
efficiency, ratio of ex-post interest costs, loss in value, and months from optimal time are
computed from option pricing trees. For the second sample, the loss from not calling is
computed. Computations are based on the option pricing trees as explained in Chapter III, section
F. These measures are analyzed by several bond and issuer characteristics.
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IV.C Hypotheses

The following hypotheses are tested:

HYPOTHESIS 1: H0 : Mean (and median) refunding efficiency is 100%. The purpose of
this test is to determine if refunding decisions employed by issuers of callable debt are optimal.
This test is conducted for the first sample.

HYPOTHESIS 2: H0 : Mean (and median) ratio of ex-post interest costs is 1. The purpose
of this test is to determine the efficacy of model to analyze refunding decisions. This test is
conducted for the first sample.

HYPOTHESIS 3: H0 : Mean (and median) dollar loss from refunding is 0. The purpose of
this test is to determine if issuers of callable debt incur losses from sub- optimal refunding
decisions. This test is conducted for both samples.

HYPOTHESIS 4: H0 : Mean (and median) deviation from the optimal time is 0 months.
The purpose of this test is to determine if issuers of callable debt refund at the optimal time. This
test is conducted for the first sample.

IV.D Refunding Efficiency, Optimal Timing, and Associated Costs

Given the large amount of outstanding municipal debt, one would argue that the issuers
will carefully analyze refunding opportunities. Any loss from a sub-optimal refunding strategy
comes at a cost to tax-payers.  Hence it is critical to accurately value the embedded call option in
callable bonds. This study empirically examines whether the decision to exercise the call option
was rational. The value of this option and its optimal exercise are functions of the following
variables:

1.  coupon and yield on the refunding and refunded bond,

2.  prevailing level of interest rates and the volatility parameters of the interest rate
process,

3.  remaining years to maturity of the refunded bond,

4.  cost of refinancing and issuing new bonds,

5.  outstanding long term debt, and

6.  credit risk.

The data in the Securities Data Corporation U.S. New Municipal issues database, does
not provide the cost of refinancing and issuing refunding bonds. In absence of this information, a
0.5% cost of refunding is assumed for all issues.

IV.D.1 Bonds that are refunded

In the first sample of 2,620 bonds that are called, 1,941 are sub-optimally exercised, i.e.
they are either called early (253 issues), or late (1,688 issues). Only in 26% of all cases are the
bonds called at the optimal time. Table 4.3 reports the refunding efficiency and the loss in value
from sub-optimal exercise strategies. Average refunding efficiency of sub-optimal refundings is
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97.49%, which suggests that such issuers fail to capture 2.51% of the potential savings that
would accrue from refunding at optimal time. Average loss in value is $2.07 million per issue,
with a total loss of $4 billion. For an average issue size of  $29.95 million, that figure translates
to a loss of 6.91% of the principal amount of the bond. Issuers exercise 21.31 months later than
the optimal time, on average. These results suggest that issuers who refund late cannot realize the
present value savings of switching a high coupon bond with a low coupon bond for a longer
period of time. Null hypotheses 1 through 4 are rejected at the 99% confidence interval.

Table 4.4 reports the analysis of refunding efficiency and loss in value where refunding is
identified as either advanced refunding or current refunding. A current refunding is defined as a
refunding in which refunded bonds are called or mature within 90 days of the issuance of the
refunding bonds; all other refundings are treated as advance refundings. Intuition suggests that
advanced refundings permit a larger choice of refunding opportunities to the issuer, hence such
refundings should be more efficient than current refundings. Table 4.4 presents results to the
contrary. The average refunding efficiency is 98.11% for advance refundings and 98.34% for
current refundings. The average loss in value is $1.69 million per issue for advance refundings
and $0.36 million per issue for current refundings. When the issuers advance refund late, there is
a high likelihood of “negative arbitrage;” the attainable yield on escrow funds is below the
reoffering yield. This loss is in addition to the loss from the call option value.

Results indicate that revenue bonds seem to incur larger losses compared to general
obligation bonds. The average offer size of revenue bonds is $44.68 million, compared to $20.34
million for general obligation bonds. Sub-optimal refunding of revenue bonds results in an
average loss of $2.02 million per issue compared to $1.22 million for general obligation bonds as
reported in Table 4.5. Total loss in value for revenue bonds is $2.05 billion versus a total loss of
$1.96 billion for general obligation bonds.

AAA rated bonds are refunded relatively more efficiently with a refunding efficiency of
98.22% and an average loss of $1.09 million per issue. Bonds rated BAA and below, on the other
hand, are refunded less efficiently with refunding efficiency of 97.71% and an average loss of
$3.04 million per issue. They are refunded about 22.8 months later than optimal. Table 4.6 shows
the analysis of refunding decisions by different bond rating classes. Moody’s bond ratings are
used when available, otherwise those of S&P Corporation are used. Non-rated bonds refund
efficiently with a refunding efficiency of 98% and an average loss of $0.47.

Table 4.7 presents evidence that bonds with larger offering size incur larger losses. On
comparing the refunding efficiency and loss in value across quintiles of issue sizes, I find that
bonds with an average issue size of $2.00 million are refunded with 98.31% efficiency and only
accrue an average loss of $0.14 million per issue, compared to 97.89% refunding efficiency and a
loss of about $5.92 million per issue for bonds in the 5th quintile with an average issue size of
$115.32 million.

Analysis of refunding decisions by quintiles of original years to maturity at issuance is
reported in Table 4.8. Bonds with fewer years to maturity are refunded with 98.31% efficiency,
compared to 98.04% for the 5th quintile. The average loss in value is $0.46 million per issue for
the 1st quintile, and $3.71 million for the 5th quintile.

Table 4.9 reports refunding efficiency, loss in value, and months from optimal time for
quintiles of outstanding long term debt. These suggest that issuers with lower outstanding long



term debt refund more efficiently than those with larger outstanding debt, with an average loss
per issue of $0.26 million and a refunding efficiency of 98.06% for the 1st quintile compared to
an average loss of $4.98 million per issue and a refunding efficiency of 97.83% for the 5 th

quintile. The total loss from sub-optimal exercise for the  5   th   quintile is $5.67 billion.

Table 4.10 presents the analysis by upgrades or downgrades in bond rating which is a
proxy for perceived changes in credit quality. Since upgrades result in lower interest rate costs to
the issuers, i.e., lower coupons, such cases would result in higher savings. This is borne out by
the result. Losses are lower for bonds that were upgraded and higher for those that are
downgraded. However, 67% of the issuer’s debt underwent no rating changes.

If the coupon on refunding bond is lower than the coupon on refunded bond then
incentives to refund efficiently are higher. Results suggest that issuers wait too long to issue
lower coupon bonds, as shown in Table 4.11. Bonds with the most favorable difference in
coupon, i.e. the 1st quintile with a mean coupon difference of -4.5%, are refunded 28 months later
than optimal, and achieve a refunding efficiency of 96.75% as compared to 31months later than
optimal and a refunding efficiency of 99.08% for the 4 th quintile with a mean coupon difference
of -1.27%, and compared to 4.66 months later than optimal, and a refunding efficiency of 97.42%
for the 5 th quintile with a mean coupon difference of -0.24%.

Table 4.12 reports time series analysis of refunding decisions. Over the years refunding
efficiency has improved and losses have declined substantially. Table 4.13 shows that bonds used
for transportation incurred larger losses. Table 4.14 shows results of analyzing refunding
decisions by quartiles of losses from escrow investments. These losses are mainly confined to the
4 th quartile, which have larger gross proceeds (average size $61.13 million) and were refunded
25 months later than optimal. The mean and median loss from escrow investments are $4.55
million and $1.5 million per issue.

Table 4.15 reports the refunding decision analysis by issuing state. The states of Florida,
Illinois, New York and Texas accumulated total losses of $1.44 billion. The state of New York,
which issued tax-exempt debt totaling $7.9 billion for bonds included in the sample, lost an
average of $10.74 million per issue due to sub-optimal refunding strategies and was 13 months
late in refunding.

IV.D.2 Bonds that are never called

In addition to analyzing bonds that are called, I also analyze bonds that are not called
before the bonds mature or before 1993, whichever is earlier. Decisions are sub-optimal if they
should have been called according to option pricing theory, but are not called by the issuer.
Conversely, optimal decisions are identified as those where the issuer decided not to refunded
and it was theoretically the correct decision.

Table 4.16 reports the results of the cross-sectional analysis of the decision not to call for
the second sample of 23,976 callable bonds. 52% of the sample, or 12,444 bonds were not called
but should have been called. This sub-optimal decision results in an average loss in value of
$0.25 million per issue with total losses of  about $3.17 billion for 12,444 bonds that were not
called. This translates to a loss of about 1.72% of the principal amount.
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Loss in value from not calling is analyzed by the type of security and results are presented
in Table 4.17. Losses are about the same across general obligation bonds and revenue bonds.
Table 4.18 reports results of the analysis by bond ratings. Bonds rated AA incur an average  loss
of $0.22 million per issue. Total losses for bonds that are not rated and are not called, amount to
$2.06 billion.

Analysis of the decisions not to call, when it is optimal to call, split up by quintiles of
issue size present results similar to those for the first sample. Bonds with highest gross proceeds
(Quintile 5: average issue size $55.31million) incur average losses of $0.53 million per issue,
with total losses of  $2.54 billion, as can be seen from Table 4.19. Bonds with lowest gross
proceeds (Quintile 1: average issue size $0.52 million) do not incur significant losses.

Table 4.20 presents results of analyzing refunding decisions by quintiles of original bond
maturity at issuance. Bonds with longest maturities, i.e., in the 5th quintile (median maturity 25
years) incur a loss of $0.29 million per issue on average with a combined loss of about $1.37
billion. Bonds with shortest maturities, i.e., in the 1st quintile (median maturity 9 years) incur a
loss of $0.03 million per issue on average with a combined loss of about $151 million. Table
4.21 reports the analysis by quintiles of outstanding long term debt. Bonds in the 5th quintile,
with the largest amount of debt outstanding (average outstanding long term debt $1.82 billion)
lost $0.45 million per issue with total losses of  $2.18 billion. Time series analysis of the losses
arising from the decision not to call are presented in Table 4.22. These results indicate that losses
have sharply reduced over the years. Table 4.23 shows the results of the analysis by use of
proceeds. Finally Table 4.24 presents the analysis by the state of issuance. The states of
California, Florida, New York, and Texas accumulated total losses of $1.27 billion by not
calling.
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Table 4.1

Characteristics of U.S. Municipal Bonds New Issues, 1980-1995

This table reports the characteristics of U.S. Municipal Bonds issued between January 1980 and
March 1995. Interest costs are the true interest costs (TIC) or net interest costs (NIC), as reported
by the issuers. Gross proceeds are in millions of dollars and include all serial and term maturities
contained in the issue. Source: Securities Data Corporation; U.S. Municipal New Issues
Database, 1995

Non-Callable Callable All Bonds
N Percent N Percent N Percent

Panel A:  Security Type
General Obligation Bonds 43,140 (75.2%) 32,220 (41.0%) 75,360 (55.4%)
Revenue Bonds 14,206 (24.8%) 46,400 (59.0%) 60,606 (44.6%)
Total 57,346 78,620 135,966

Panel B:  Gross Proceeds, $ million
Mean 13.30$      21.50$         18.04$         
Median 2.50$        6.00$           4.34$           
Total 762,545$  1,690,386$  2,452,931$  

Panel C:  Years to maturity
Mean 12.65 21.11 17.55
Median 2 20 15

Panel D:  Yield to Maturity
Mean 6.01% 7.00% 6.56%
Median 6.00% 6.84% 6.57%
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Table 4.2

Frequency of U.S. Municipal Bonds New Issues, 1980-1995

This table reports the frequency of U.S. Municipal Bonds issued between January 1980 and
March 1995. Source: Securities Data Corporation; U.S. Municipal New Issues Database, 1995

Non-Callable Callable Total
Year of Issuance N Percent N Percent N Percent

1980 765 1% 1,006 1% 1,771 1%
1981 1,173 2% 845 1% 2,018 1%
1982 1,635 3% 1,337 2% 2,972 2%
1983 1,608 3% 1,565 2% 3,173 2%
1984 1,525 3% 2,302 3% 3,827 3%
1985 2,201 4% 4,540 6% 6,741 5%
1986 4,565 8% 4,493 6% 9,058 7%
1987 3,887 7% 4,438 6% 8,325 6%
1988 5,264 9% 4,644 6% 9,908 7%
1989 6,143 11% 5,467 7% 11,610 9%
1990 4,397 8% 7,221 9% 11,618 9%
1991 5,837 10% 8,831 11% 14,668 11%
1992 5,840 10% 10,593 13% 16,433 12%
1993 6,483 11% 11,672 15% 18,155 13%
1994 5,731 10% 9,179 12% 14,910 11%

1Q 1995 292 1% 487 1% 779 1%

Total 57,346 100% 78,620 100% 135,966 100%



Chapter IV 42

Table 4.3

Refunding Efficiency and Loss in Value from Sub-Optimal Refunding Strategies
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between
1980-1993.  This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in
value, and months from optimal time. Refunding decisions are identified as optimal when the bonds are refunded at
the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal.
N-Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-
optimal exercise to potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest
costs to the potential interest costs by refunding optimally. Loss is sum of call option value lost, and the loss from
escrow investments.  All dollar amounts have been converted to 1995 figures using CPI data. Months from optimal is
the difference of the actual month of refunding and the month of optimal refunding. The p-values in each panel
represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized
mean and median values, respectively.

Panel A: Sample Characteristics
Refunding Gross Proceeds, $ million Frequency
Decision Mean Total N N-Sub

Optimally Exercised 29.28$    19,878.47$     679 0
Sub-Optimally Exercised 29.95$    58,138.85$     1941 1941

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Optimally Exercised 100% 100% 1.00 1.00 0.001 0.001
Sub-Optimally Exercised 97.49% 98.56% 0.001 0.001 1.17 1.04 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Optimally Exercised 0 0 0
Sub-Optimally Exercised 2.07$      0.32$              0.001 0.001 4,008.34$   

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Optimally Exercised 0 0 0 0 0
Sub-Optimally Exercised 21.31 18.00 0.001 0.001 23.32 18.00 13.03%
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Table 4.4

Refunding Opportunities and Rational Exercise
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between
1980-1993.  This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in
value, and months from optimal time by type of refunding. Advance refundings are those in which the bond is called
before the call protection date, otherwise they classified as current refundings. Refunding decisions are identified as
optimal when the bonds are refunded at the optimal time as obtained by using the generalized Vasicek model;
otherwise they are identified as sub-optimal. N-Sub is the frequency of sub-optimal refunding. Refunding efficiency
is the ratio of the actual saving from sub-optimal exercise to potential saving from optimal exercise. Ratio of ex-post
interest costs is the ratio of actual interest costs to the potential interest costs by refunding optimally. Loss is sum of
call option value lost, and the loss from escrow investments.  All dollar amounts have been converted to 1995 figures
using CPI data. Months from optimal is the difference of the actual month of refunding and the month of optimal
refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon sign-rank
tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Refunding Gross Proceeds, $ million Frequency
Type Mean Total N N-Sub

Advanced Refunding 31.90$    73,792.64$     2313 1736
Current Refunding 13.76$    4,224.68$       307 205

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Advanced Refunding 98.11% 99.10% 0.001 0.001 1.12 1.02 0.001 0.001
Current Refunding 98.34% 99.22% 0.001 0.001 1.14 1.01 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Advanced Refunding 1.69$      0.18$              0.001 0.001 3,898.14$   
Current Refunding 0.36$      0.03$              0.002 0.001 110.21$      

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Advanced Refunding 15.92 15.00 0.001 0.001 17.35 15.00 9.51%
Current Refunding 14.09 12.00 0.001 0.001 16.11 12.00 12.05%
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Table 4.5

Security Type and Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between
1980-1993.  This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in
value, and months from optimal time by the type of security: either General Obligation Bond or Revenue Bond.
Refunding decisions are identified as optimal when the bonds are refunded at the optimal time as obtained by using
the generalized Vasicek model; otherwise they are identified as sub-optimal. N-Sub is the frequency of sub-optimal
refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to potential saving from
optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest costs by
refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of
refunding and the month of optimal refunding. The p-values in each panel represent the significance level of the t-
tests and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Security Gross Proceeds, $ million Frequency
Type Mean Total N N-Sub

General Obligation Bonds 20.34$    32,619.04$     1604 1174
Revenue Bonds 44.68$    45,398.28$     1016 767

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

General Obligation Bonds 98.00% 98.23% 0.001 0.001 1.11 1.03 0.001 0.001
Revenue Bonds 98.14% 99.11% 0.001 0.001 1.15 1.02 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

General Obligation Bonds 1.22$      0.11$              0.001 0.001 1,959.94$   
Revenue Bonds 2.02$      0.24$              0.001 0.001 2,048.41$   

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

General Obligation Bonds 16.53 15.00 0.001 0.001 17.77 15.00 9.41%
Revenue Bonds 14.40 12.00 0.001 0.001 16.32 15.00 10.43%
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Table 4.6

Bond Rating and Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by bond rating. Bond ratings are those of Moody’s when available, otherwise those of S&P Corporation are used.
Refunding decisions are identified as optimal when the bonds are refunded at the optimal time as obtained by using the
generalized Vasicek model; otherwise they are identified as sub-optimal. N-Sub is the frequency of sub-optimal refunding.
Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to potential saving from optimal exercise. Ratio
of ex-post interest costs is the ratio of actual interest costs to the potential interest costs by refunding optimally. Loss is sum of
call option value lost, and the loss from escrow investments.  All dollar amounts have been converted to 1995 figures using CPI
data. Months from optimal is the difference of the actual month of refunding and the month of optimal refunding. The p-values in
each panel represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized
mean and median values, respectively.

Panel A: Sample Characteristics
Rating Gross Proceeds, $ million Frequency
Class Mean Total N N-Sub

AAA 25.79$    26,844.09$     1041 747
AA 59.92$    15,040.42$     251 193
A 38.26$    29,075.76$     760 574
BAA and Below 22.16$    2,615.43$       118 103
Not Rated 9.87$      4,441.63$       450 324

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

AAA 98.22% 99.23% 0.001 0.001 1.14 1.02 0.001 0.001
AA 98.16% 98.84% 0.001 0.001 1.09 1.03 0.001 0.001
A 98.17% 99.03% 0.001 0.001 1.11 1.02 0.001 0.001
BAA and Below 97.71% 98.63% 0.001 0.001 1.11 1.04 0.001 0.001
Not Rated 98.00% 99.19% 0.001 0.001 1.12 1.02 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

AAA 1.09$      0.17$              0.001 0.001 1,137.41$   
AA 2.94$      0.37$              0.001 0.001 737.90$      
A 2.06$      0.18$              0.001 0.001 1,563.30$   
BAA and Below 3.04$      0.19$              0.042 0.001 358.60$      
Not Rated 0.47$      0.05$              0.001 0.001 211.14$      

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

AAA 14.59 12.00 0.001 0.001 15.75 12.00 9.89%
AA 17.95 15.00 0.001 0.001 18.95 15.00 7.57%
A 16.87 15.00 0.001 0.001 18.32 15.00 7.89%
BAA and Below 22.79 18.00 0.001 0.001 23.26 18.00 3.39%
Not Rated 13.04 12.00 0.001 0.001 15.98 12.00 15.78%
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 Table 4.7

Issue Size and Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by quintiles of gross proceeds. Refunding decisions are identified as optimal when the bonds are refunded at the
optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-Sub is the
frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to potential
saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest costs by
refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  Quintiles run from lowest to
highest. All dollar amounts have been converted to 1995 figures using CPI data. Months from optimal is the difference of the
actual month of refunding and the month of optimal refunding. The p-values in each panel represent the significance level of the -
t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Gross Gross Proceeds, $ million Frequency
Proceeds Mean Total N N-Sub

Quintile 1 2.00$      1,053.01$       527 397
Quintile 2 4.99$      2,624.42$       526 381
Quintile 3 8.88$      4,669.47$       526 386
Quintile 4 19.55$    10,281.18$     526 394
Quintile 5 115.32$  59,389.24$     515 383

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Quintile 1 98.31% 99.08% 0.001 0.001 1.14 1.04 0.001 0.001
Quintile 2 98.45% 99.28% 0.001 0.001 1.12 1.03 0.001 0.001
Quintile 3 98.12% 99.02% 0.001 0.001 1.12 1.02 0.001 0.001
Quintile 4 97.92% 99.08% 0.001 0.001 1.14 1.02 0.001 0.001
Quintile 5 97.89% 99.03% 0.001 0.001 1.09 1.02 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Quintile 1 0.14$      0.04$              0.001 0.001 73.06$        
Quintile 2 0.25$      0.08$              0.001 0.001 129.26$      
Quintile 3 0.43$      0.14$              0.001 0.001 224.86$      
Quintile 4 1.01$      0.30$              0.001 0.001 530.03$      
Quintile 5 5.92$      1.43$              0.001 0.001 3,051.13$   

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Quintile 1 16.49 15.00 0.001 0.001 18.28 15.00 9.68%
Quintile 2 14.64 12.00 0.001 0.001 15.89 12.00 7.60%
Quintile 3 15.65 12.00 0.001 0.001 17.15 15.00 9.89%
Quintile 4 15.71 12.00 0.001 0.001 17.41 13.50 11.03%
Quintile 5 16.07 12.00 0.001 0.001 17.33 12.00 10.87%
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Table 4.8

Bond Maturity and Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by quintiles of original bond maturity at issuance. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  Quintiles run from
lowest to highest. All dollar amounts have been converted to 1995 figures using CPI data. Months from optimal is the difference
of the actual month of refunding and the month of optimal refunding. The p-values in each panel represent the significance level
of the t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Original Gross Proceeds, $ million Frequency Original Bond Maturity
Bond Maturity Mean Total N N-Sub Mean Median

Quintile 1 11.04$    4,779.69$       433 305 10.11 10.50
Quintile 2 15.79$    11,023.71$     698 538 16.91 17.00
Quintile 3 25.28$    15,015.57$     594 446 19.99 20.00
Quintile 4 28.57$    10,656.70$     373 279 22.02 22.00
Quintile 5 70.00$    36,541.65$     522 373 27.70 28.00

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Quintile 1 98.31% 99.22% 0.001 0.001 1.12 1.02 0.001 0.001
Quintile 2 98.26% 99.04% 0.001 0.001 1.14 1.03 0.001 0.001
Quintile 3 98.02% 99.13% 0.001 0.001 1.10 1.02 0.001 0.001
Quintile 4 98.03% 99.08% 0.001 0.001 1.14 1.02 0.001 0.001
Quintile 5 98.04% 99.14% 0.001 0.001 1.1 1.01 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Quintile 1 0.46$      0.05$              0.001 0.001 200.81$      
Quintile 2 0.74$      0.12$              0.001 0.001 517.25$      
Quintile 3 1.31$      0.18$              0.001 0.001 776.80$      
Quintile 4 1.55$      0.21$              0.001 0.001 576.90$      
Quintile 5 3.71$      0.39$              0.001 0.001 1,936.58$   

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Quintile 1 13.74 12.00 0.001 0.001 16.14 12.00 16.86%
Quintile 2 18.38 15.00 0.001 0.001 19.53 15.00 6.45%
Quintile 3 16.41 15.00 0.001 0.001 17.54 15.00 6.57%
Quintile 4 16.25 15.00 0.001 0.001 17.3 15.00 6.43%
Quintile 5 12.25 12.00 0.001 0.001 14.28 12.00 14.56%
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Table 4.9

Outstanding Long Term Debt and Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by quintiles of outstanding long term debt at issuance. Refunding decisions are identified as optimal when the bonds
are refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-
optimal. N-Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal
exercise to potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the
potential interest costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.
Quintiles run from lowest to highest. All dollar amounts have been converted to 1995 figures using CPI data. Months from
optimal is the difference of the actual month of refunding and the month of optimal refunding. The p-values in each panel
represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and
median values, respectively.

Panel A: Sample Characteristics
Outstanding Gross Proceeds, $ million Frequency Outstanding Debt, $ mi
Long Term Debt Mean Total N N-Sub Mean Median

Quintile 1 4.72$      2,483.14$       526 402 3.88$          3.98$      
Quintile 2 7.30$      3,838.60$       526 369 13.79$        13.35$    
Quintile 3 12.01$    6,291.04$       524 382 35.44$        33.94$    
Quintile 4 24.45$    12,763.18$     522 381 116.15$      101.00$  
Quintile 5 100.85$  52,641.37$     522 407 1,929.36$   715.38$  

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Quintile 1 98.06% 99.07% 0.001 0.001 1.14 1.03 0.001 0.001
Quintile 2 98.38% 99.30% 0.001 0.001 1.14 1.02 0.001 0.001
Quintile 3 98.15% 99.11% 0.001 0.001 1.12 1.02 0.001 0.001
Quintile 4 98.27% 99.13% 0.001 0.001 1.11 1.02 0.001 0.001
Quintile 5 97.83% 98.91% 0.001 0.001 1.10 1.02 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Quintile 1 0.26$      0.07$              0.001 0.001 137.00$      
Quintile 2 0.32$      0.08$              0.001 0.001 166.53$      
Quintile 3 0.49$      0.13$              0.001 0.001 258.34$      
Quintile 4 0.94$      0.22$              0.001 0.001 488.93$      
Quintile 5 5.67$      0.96$              0.001 0.001 2,957.54$   

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Quintile 1 16.27 15.00 0.001 0.001 17.94 15.00 8.75%
Quintile 2 14.59 12.00 0.001 0.001 15.92 12.00 9.70%
Quintile 3 15.10 12.00 0.001 0.001 16.69 12.00 10.11%
Quintile 4 15.91 12.00 0.001 0.001 17.19 15.00 9.39%
Quintile 5 16.68 15.00 0.001 0.001 18.32 15.00 11.11%
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Table 4.10

Bond Rating Changes and Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by rating changes, either upgrades or downgrades. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  Quintiles run from
lowest to highest. All dollar amounts have been converted to 1995 figures using CPI data. Months from optimal is the difference
of the actual month of refunding and the month of optimal refunding. The p-values in each panel represent the significance level
of the t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values, respectively.

P a n e l A :  S a m p l e  C h a r a c t e r i s t i c s
U p g r a d e s / G r o s s  P r o c e e d s ,  $  m il l io n F r e q u e n c y
D o w n g r a d e s M e a n T o ta l N N - S u b

U p g r a d e d  4  c l a s s e s 3 0 . 0 2$     2 , 7 6 1 . 8 1$        9 2 6 6
U p g r a d e d  3  c l a s s e s 1 9 . 1 8$     1 , 3 2 3 . 6 6$        6 9 6 2
U p g r a d e d  2  c l a s s e s 3 1 . 7 7$     1 1 , 6 6 0 . 1 3$      3 6 7 2 6 5
U p g r a d e d  1  c l a s s 4 9 . 6 8$     5 , 3 1 6 . 1 3$        1 0 7 8 4
N o  c h a n g e  i n  r a t i n g 2 7 . 2 0$     4 7 , 7 6 9 . 5 3$      1 7 5 6 1 2 7 6
D o w g r a d e d  1  c l a s s 6 8 . 4 9$     4 , 2 4 6 . 3 6$        6 2 5 1
D o w g r a d e d  2  c l a s s e s 2 5 . 7 0$     2 , 4 9 2 . 7 2$        9 7 8 2
D o w g r a d e d  3  c l a s s e s 6 0 . 5 8$     1 , 9 9 9 . 1 1$        3 3 2 6
D o w g r a d e d  4  c l a s s e s 1 2 . 1 0$     4 4 7 . 8 8$           3 7 2 9

P a n e l B :  R e f u n d i n g  E f f i c i e n c y  a n d  R a t i o  o f  E x - P o s t  I n t e r e s t  C o s t s
R e f u n d i n g  E f f i c i e n c y R a t io  o f  E x - P o s t  I n t e r e s t  C o s t s

M e a n M e d i a n p  ( m e a n ) p ( m e d ) M e a n M e d i a n p  ( m e a n ) p ( m e d )

U p g r a d e d  4  c l a s s e s 9 7 . 6 6 % 9 9 . 0 8 % 0 . 0 0 1 0 . 0 0 1 1 . 1 2 1 . 0 0 0 . 0 1 5 0 . 0 0 2
U p g r a d e d  3  c l a s s e s 9 6 . 5 3 % 9 8 . 6 6 % 0 . 0 0 1 0 . 0 0 1 1 . 1 5 1 . 0 5 0 . 0 0 2 0 . 0 0 1
U p g r a d e d  2  c l a s s e s 9 8 . 2 3 % 9 9 . 1 7 % 0 . 0 0 1 0 . 0 0 1 1 . 1 0 1 . 0 2 0 . 0 0 1 0 . 0 0 1
U p g r a d e d  1  c l a s s 9 7 . 4 8 % 9 8 . 7 8 % 0 . 0 0 1 0 . 0 0 1 1 . 0 8 1 . 0 3 0 . 0 0 5 0 . 0 0 1
N o  c h a n g e  i n  r a t i n g 9 8 . 2 4 % 9 9 . 1 8 % 0 . 0 0 1 0 . 0 0 1 1 . 1 2 1 . 0 2 0 . 0 0 1 0 . 0 0 1
D o w g r a d e d  1  c l a s s 9 8 . 2 8 % 9 8 . 6 1 % 0 . 0 0 1 0 . 0 0 1 1 . 1 6 1 . 0 3 0 . 0 0 3 0 . 0 0 1
D o w g r a d e d  2  c l a s s e s 9 8 . 3 8 % 9 8 . 8 8 % 0 . 0 0 1 0 . 0 0 1 1 . 1 2 1 . 0 4 0 . 0 0 1 0 . 0 0 1
D o w g r a d e d  3  c l a s s e s 9 7 . 7 5 % 9 8 . 6 6 % 0 . 0 0 1 0 . 0 0 1 1 . 1 5 1 . 0 4 0 . 0 0 6 0 . 0 0 1
D o w g r a d e d  4  c l a s s e s 9 8 . 1 0 % 9 8 . 9 9 % 0 . 0 0 1 0 . 0 0 1 1 . 2 2 1 . 0 4 0 . 0 0 3 0 . 0 0 1

P a n e l C :  L o s s ,  $  m il l io n
M e a n M e d i a n p  ( m e a n ) p ( m e d ) T o ta l

U p g r a d e d  4  c l a s s e s 1 . 5 2$       0 . 1 2$               0 . 0 2 3 0 . 0 0 1 1 3 9 . 5 1$      
U p g r a d e d  3  c l a s s e s 3 . 5 4$       0 . 3 5$               0 . 1 3 0 . 0 0 1 2 4 4 . 4 6$      
U p g r a d e d  2  c l a s s e s 1 . 7 6$       0 . 1 8$               0 . 0 0 1 0 . 0 0 1 6 4 5 . 4 9$      
U p g r a d e d  1  c l a s s 2 . 9 7$       0 . 3 0$               0 . 0 0 1 0 . 0 0 1 3 1 7 . 7 3$      
N o  c h a n g e  i n  r a t i n g 1 . 1 3$       0 . 1 4$               0 . 0 0 1 0 . 0 0 1 1 , 9 9 0 . 0 9$   
D o w g r a d e d  1  c l a s s 6 . 5 7$       0 . 1 4$               0 . 0 2 6 0 . 0 0 1 4 0 7 . 3 1$      
D o w g r a d e d  2  c l a s s e s 1 . 1 8$       0 . 1 6$               0 . 0 0 3 0 . 0 0 1 1 1 4 . 4 3$      
D o w g r a d e d  3  c l a s s e s 4 . 1 4$       0 . 1 7$               0 . 0 5 6 0 . 0 0 1 1 3 6 . 7 5$      
D o w g r a d e d  4  c l a s s e s 0 . 3 4$       0 . 0 9$               0 . 0 4 4 0 . 0 0 1 1 2 . 5 7$        

P a n e l D :  M o n t h s  f r o m  o p tim a l :  P o o l e d  a n d  A b s o l u t e
P o o l e d  D e v i a t i o n A b s o l u t e  D e v i a t i o n P r o p o r t i o n  

M e a n M e d i a n p  ( m e a n ) p ( m e d ) M e a n M e d i a n C a l l i n g  E a r l y

U p g r a d e d  4  c l a s s e s 9 . 5 8 9 . 0 0 0 . 0 0 1 0 . 0 0 1 1 3 . 7 0 1 2 . 0 0 2 5 . 0 0 %
U p g r a d e d  3  c l a s s e s 2 2 . 5 0 1 8 . 0 0 0 . 0 0 1 0 . 0 0 1 2 3 . 3 2 1 8 . 0 0 8 . 7 0 %
U p g r a d e d  2  c l a s s e s 1 6 . 0 2 1 2 . 0 0 0 . 0 0 1 0 . 0 0 1 1 7 . 4 9 1 2 . 0 0 8 . 7 2 %
U p g r a d e d  1  c l a s s 1 9 . 8 0 1 5 . 0 0 0 . 0 0 1 0 . 0 0 1 2 1 . 4 6 1 5 . 0 0 7 . 4 8 %
N o  c h a n g e  i n  r a t i n g 1 5 . 0 5 1 2 . 0 0 0 . 0 0 1 0 . 0 0 1 1 6 . 4 2 1 2 . 0 0 9 . 6 8 %
D o w g r a d e d  1  c l a s s 1 9 . 1 1 1 6 . 5 0 0 . 0 0 1 0 . 0 0 1 2 1 . 4 4 1 8 . 0 0 8 . 0 6 %
D o w g r a d e d  2  c l a s s e s 1 7 . 9 7 1 5 . 0 0 0 . 0 0 1 0 . 0 0 1 1 9 . 5 3 1 5 . 0 0 7 . 2 2 %
D o w g r a d e d  3  c l a s s e s 1 7 . 8 1 2 4 . 0 0 0 . 0 0 1 0 . 0 0 1 1 9 . 5 5 2 4 . 0 0 1 2 . 1 2 %
D o w g r a d e d  4  c l a s s e s 1 9 . 0 8 2 1 . 0 0 0 . 0 0 1 0 . 0 0 1 1 9 . 7 5 2 1 . 0 0 5 . 4 1 %
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Table 4.11

Difference in Coupon and Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by quintiles of the difference in coupon of the refunded bond and the refunding bond. Refunding decisions are
identified as optimal when the bonds are refunded at the optimal time as obtained by using the generalized Vasicek model;
otherwise they are identified as sub-optimal. N-Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of
the actual saving from sub-optimal exercise to potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio
of actual interest costs to the potential interest costs by refunding optimally. Loss is sum of call option value lost, and the loss
from escrow investments.  Quintiles run from lowest to highest. All dollar amounts have been converted to 1995 figures using
CPI data. Months from optimal is the difference of the actual month of refunding and the month of optimal refunding. The p-
values in each panel represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference from
hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Difference Gross Proceeds, $ million Frequency  Difference in Coupon, %
in Coupon Mean Total N N-Sub Mean Median

Quintile 1 22.62$    12,123.80$     536 473 -3.44 -3.25
Quintile 2 26.05$    13,574.10$     521 420 -2.12 -2.10
Quintile 3 35.73$    18,972.45$     531 400 -1.66 -1.65
Quintile 4 32.26$    16,485.64$     511 315 -1.27 -1.30
Quintile 5 32.36$    16,861.32$     521 333 -0.24 -0.60

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Quintile 1 96.75% 97.54% 0.001 0.001 1.14 1.07 0.001 0.001
Quintile 2 98.53% 98.99% 0.001 0.001 1.17 1.04 0.001 0.001
Quintile 3 98.96% 99.37% 0.001 0.001 1.17 1.03 0.001 0.001
Quintile 4 99.08% 99.57% 0.001 0.001 1.10 1.00 0.001 0.001
Quintile 5 97.42% 99.41% 0.001 0.001 1.04 1.00 0.013 0.008

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Quintile 1 1.84$      0.29$              0.001 0.001 984.95$      
Quintile 2 1.46$      0.14$              0.001 0.001 761.97$      
Quintile 3 1.94$      0.14$              0.001 0.001 1,027.63$   
Quintile 4 0.88$      0.07$              0.001 0.001 447.81$      
Quintile 5 1.51$      0.07$              0.001 0.001 785.98$      

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Quintile 1 28.29 24.00 0.001 0.001 28.48 24.00 1.68%
Quintile 2 18.73 18.00 0.001 0.001 19.02 18.00 3.07%
Quintile 3 15.51 15.00 0.001 0.001 15.78 15.00 3.95%
Quintile 4 9.31 9.00 0.001 0.001 10.68 12.00 10.96%
Quintile 5 4.66 0.00 0.001 0.001 10.58 9.00 29.75%
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Table 4.12

Time Series Analysis of Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by the year of issuance of the refunded bond. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of refunding and
the month of optimal refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively. A “-” entry indicates that the number is
insignificant at the second decimal level.

P a n e l  A:  Sam p le Character i s t ics
Y e a r  o f G ross  Proceeds ,  $  m il l ion Frequency
I s suance M ean T o tal N N -Sub

1 9 8 6 37 .07$     23 ,725 .43$      6 4 0 5 2 6
1 9 8 7 26 .18$     11 ,909 .70$      4 5 5 2 8 4
1 9 8 8 26 .35$     14 ,148 .77$      5 3 7 4 5 1
1 9 8 9 22 .82$     8 ,924 .54$        3 9 1 3 5 8
1 9 9 0 28 .95$     10 ,622 .88$      3 6 7 2 2 2
1 9 9 1 31 .64$     6 ,295 .72$        1 9 9 6 9

P a n e l  B:  Refunding  Ef f i c i ency  and  Rat io  o f  Ex-Pos t  In teres t  Cos t s
R e funding  Ef f ic iency R a tio of  E x -Post  In teres t  Costs

M ean M edian p  ( m e a n ) p ( m e d ) M ean M edian p  ( m e a n ) p ( m e d )

1 9 8 6 97 .15% 98 .37% 0.001 0 .001 1 .20 1 .06 0 .001 0 .001
1 9 8 7 98 .42% 99 .20% 0.001 0 .001 1 .04 1 .00 0 .001 0 .001
1 9 8 8 98 .34% 98 .73% 0.001 0 .001 1 .10 1 .04 0 .001 0 .001
1 9 8 9 98 .63% 99 .26% 0.001 0 .001 1 .24 1 .05 0 .001 0 .001
1 9 9 0 99 .07% 99 .71% 0.001 0 .001 1 .09 1 .00 0 .001 0 .001
1 9 9 1 98 .26% 100 .00% 0.001 0 .001 0 .95 1 .00 0 .001 0 .001

P a n e l  C:  Loss ,  $  m illio n
M ean M edian p  ( m e a n ) p ( m e d ) T o tal

1 9 8 6 2 .99$       0 .40$               0 .001 0 .001 1 ,913 .04$    
1 9 8 7 1 .12$       0 .08$               0 .001 0 .001 508 .81$       
1 9 8 8 1 .05$       0 .20$               0 .001 0 .001 565 .08$       
1 9 8 9 0 .79$       0 .18$               0 .001 0 .001 309 .12$       
1 9 9 0 0 .87$       0 .04$               0 .047 0 .001 320 .22$       
1 9 9 1 0 .81$       -$                0 .008 0 .001 161 .47$       

P a n e l  D:  M onths  f rom  opt im a l: P o o l e d  a n d  A b s o l u t e
P o o led  Dev ia t ion A b s o lute D e v iat ion Propor t ion  

M ean M edian p  ( m e a n ) p ( m e d ) M ean M edian C a lling  Ear ly

1 9 8 6 28 .18 27 .00 0 .001 0 .001 29 .25 27 .00 4 .8%
1 9 8 7 10 .27 9 .00 0 .001 0 .001 13 .41 12 .00 10 .3%
1 9 8 8 16 .43 18 .00 0 .001 0 .001 17 .41 18 .00 4 .8%
1 9 8 9 15 .71 12 .00 0 .001 0 .001 16 .20 12 .00 3 .6%
1 9 9 0 6 .95 12 .00 0 .001 0 .001 8 .29 12 .00 10 .6%
1 9 9 1 -1 .55 0 .00 0 .001 0 .001 1 .55 0 .00 34 .7%
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Table 4.13

Use of Proceeds and  Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by the use of proceeds of the refunded bond. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of refunding and
the month of optimal refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Use of G ross Proceeds, $ m illion Frequency
Proceeds Mean Total N N -Sub

Education 18.55$    20,291.15$     1094 777
General Purpose 35.09$    27,056.55$     771 596
Pollution Control 92.08$    552.47$          6 5
Transportation 96.43$    8,582.32$       89 68
Utility 68.11$    7,014.90$       103 75
W aste Recovery 34.60$    1,314.74$       38 26
W ater/Sewer/Gas 25.44$    13,205.19$     519 394

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Education 98.27% 99.21% 0.000 0.000 1.11 1.02 0.000 0.000
General Purpose 98.09% 99.06% 0.000 0.000 1.13 1.03 0.000 0.000
Pollution Control 95.81% 98.63% 0.172 0.063 0.91 0.95 0.687 0.688
Transportation 97.11% 98.84% 0.000 0.000 1.17 1.02 0.000 0.000
Utility 98.09% 99.19% 0.000 0.000 1.10 1.00 0.014 0.002
W aste Recovery 97.22% 99.18% 0.020 0.000 1.07 1.00 0.273 0.102
W ater/Sewer/Gas 98.21% 99.02% 0.000 0.000 1.12 1.02 0.000 0.000

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Education 0.84$      0.12$              0.000 0.000 913.88$      
General Purpose 2.41$      0.14$              0.000 0.000 1,854.42$   
Pollution Control 3.33$      0.27$              0.315 0.063 20.00$        
Transportation 4.80$      0.46$              0.000 0.000 427.40$      
Utility 1.53$      0.30$              0.000 0.000 157.12$      
W aste Recovery 0.66$      0.19$              0.002 0.000 25.24$        
W ater/Sewer/Gas 1.18$      0.18$              0.000 0.000 610.28$      

Panel D: Months from optimal:  Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Education 14.38 12.00 0.000 0.000 15.71 12.00 9.96%
General Purpose 17.83 15.00 0.000 0.000 19.12 15.00 8.56%
Pollution Control 9.00 9.00 0.748 0.750 17.00 18.00 33.33%
Transportation 15.94 15.00 0.000 0.000 18.47 15.00 14.61%
Utility 10.95 12.00 0.000 0.000 16.12 12.00 21.36%
W aste Recovery 9.88 10.50 0.000 0.000 13.59 12.00 23.68%
W ater/Sewer/Gas 16.74 15.00 0.000 0.000 17.74 15.00 6.94%
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Table 4.14

Losses From Escrow Investments and  Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by quartiles of losses from escrow investments. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of refunding and
the month of optimal refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Losses From Gross Proceeds, $ million Frequency Losses from Investments
Escrow Investments Mean Total N N-Sub Mean Median

Quartile 1 28.16$    38,241.03$     1358 944 -$           -$       
Quartile 2 9.55$      2,034.20$       213 141 0.04$          0.04$      
Quartile 3 10.78$    5,648.25$       524 388 0.24$          0.22$      
Quartile 4 61.13$    32,093.84$     525 468 4.55$          1.57$      

Panel B: Refunding Efficiency and Ratio of Ex-Post Interest Costs
Refunding Efficiency Ratio of Ex-Post Interest Costs

Mean Median p (mean) p (med) Mean Median p (mean) p (med)

Quartile 1 98.09% 99.18% 0.001 0.001 1.09 1.02 0.001 0.001
Quartile 2 98.38% 99.27% 0.001 0.001 1.10 1.02 0.001 0.001
Quartile 3 98.62% 99.31% 0.001 0.001 1.16 1.03 0.001 0.001
Quartile 4 97.68% 98.59% 0.001 0.001 1.19 1.04 0.001 0.001

Panel C: Loss, $ million
Mean Median p (mean) p (med) Total

Quartile 1 0.65$      0.05$              0.001 0.001 876.09$      
Quartile 2 0.20$      0.06$              0.007 0.001 42.98$        
Quartile 3 0.42$      0.24$              0.001 0.001 220.58$      
Quartile 4 5.46$      1.88$              0.001 0.001 2,868.69$   

Panel D: Months from optimal: Pooled and Absolute
Pooled Deviation Absolute Deviation Proportion 

Mean Median p (mean) p (med) Mean Median Calling Early

Quartile 1 12.38 12.00 0.001 0.001 14.98 12.00 14.51%
Quartile 2 12.74 12.00 0.001 0.001 14.16 12.00 9.86%
Quartile 3 15.94 15.00 0.001 0.001 16.15 15.00 4.01%
Quartile 4 25.01 21.00 0.001 0.001 25.08 21.00 3.43%
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Table 4.15

Issuing States and  Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by the state making the refunding decision. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of refunding and
the month of optimal refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively.

P a n e l A :  S a m p l e  C h a r a c t e r i s t i c s
I s s u i n g G r o s s  P r o c e e d s ,  $  m il l io n F r e q u e n c y
S t a t e M e a n T o ta l N N - S u b

A K 4 9 . 6 0$     4 4 6 . 4 2$           9 8
A L 4 1 . 1 3$     1 , 2 3 3 . 9 6$        3 0 2 3
A R 3 . 9 7$       2 4 1 . 8 9$           6 1 4 3
A Z 3 9 . 0 8$     2 , 6 5 7 . 3 4$        6 8 5 6
C A 3 9 . 5 0$     5 , 4 5 0 . 9 1$        1 3 8 9 6
C O 2 1 . 3 4$     1 , 0 8 8 . 1 9$        5 1 4 0
C T 1 2 4 . 9 2$   1 , 2 4 9 . 2 2$        1 0 8
D E 5 0 . 2 6$     4 0 2 . 1 1$           8 7
F L 5 1 . 2 3$     8 , 4 0 2 . 2 9$        1 6 4 1 2 9
G A 3 5 . 2 2$     1 , 2 6 8 . 0 2$        3 6 2 9
H I 4 9 . 8 4$     2 9 9 . 0 6$           6 4
I A 5 . 4 8$       1 4 7 . 9 3$           2 7 2 4
I D 8 . 3 8$       8 3 . 8 1$             1 0 8
I L 4 2 . 9 0$     4 , 2 4 7 . 2 2$        9 9 7 5
I N 1 8 . 4 7$     1 , 1 0 8 . 2 8$        6 0 3 9
K S 1 3 . 5 2$     8 1 1 . 3 9$           6 0 4 3
K Y 4 8 . 8 8$     8 7 9 . 9 2$           1 8 1 3
L A 8 4 . 2 9$     8 4 2 . 9 5$           1 0 7
M A 1 2 1 . 2 5$   1 , 5 7 6 . 3 1$        1 3 1 1
M D 6 8 . 2 7$     1 , 2 2 8 . 8 9$        1 8 1 5
M E 1 7 . 1 5$     1 7 . 1 5$             1 1
M I 1 7 . 9 1$     1 , 8 2 7 . 0 8$        1 0 2 7 8
M N 8 . 7 4$       1 , 3 5 5 . 0 0$        1 5 5 1 2 1
M O 2 8 . 6 0$     1 , 0 8 6 . 6 3$        3 8 3 1
M S 1 6 . 3 3$     2 1 2 . 3 3$           1 3 1 2
M T 5 3 . 4 5$     2 1 3 . 7 9$           4 3
N C 3 9 . 1 8$     1 , 1 3 6 . 3 1$        2 9 2 4
N D 5 . 7 5$       5 7 . 4 8$             1 0 8
N E 9 . 5 3$       4 9 5 . 5 4$           5 2 3 6
N H 5 4 . 6 9$     2 7 3 . 4 4$           5 5
N J 3 3 . 8 8$     2 , 4 0 5 . 2 1$        7 1 5 8
N M 2 0 . 8 4$     1 4 5 . 8 9$           7 5
N V 8 1 . 3 5$     6 5 0 . 7 9$           8 8
N Y 1 7 5 . 6 9$   7 , 9 0 5 . 8 8$        4 5 3 4
O H 3 6 . 3 7$     2 , 1 0 9 . 1 8$        5 8 4 8
O K 2 3 8 . 5 0$   1 , 6 6 9 . 5 1$        7 5
O R 1 3 . 5 2$     4 8 6 . 5 6$           3 6 2 8
P A 1 3 . 1 2$     5 , 5 7 7 . 6 5$        4 2 5 2 3 6
P R 3 4 6 . 8 6$   1 , 7 3 4 . 2 8$        5 5
R I 1 1 1 . 1 3$   5 5 5 . 6 3$           5 3
S C 2 4 . 4 0$     6 5 8 . 7 4$           2 7 2 0
S D 8 . 9 9$       1 7 9 . 8 3$           2 0 1 4
T N 1 1 . 5 3$     9 9 1 . 2 6$           8 6 7 1
T X 2 1 . 7 4$     4 , 7 6 1 . 2 9$        2 1 9 1 8 0
U T 1 5 . 0 6$     3 9 1 . 5 1$           2 6 2 0
V A 6 1 . 3 2$     2 , 0 2 3 . 4 8$        3 3 2 4
V T 2 9 . 2 6$     1 1 7 . 0 4$           4 3
W A 2 8 . 7 4$     3 , 3 6 2 . 8 0$        1 1 7 9 5
W I 1 1 . 0 8$     1 , 1 5 2 . 4 3$        1 0 4 7 9
W V 6 3 . 2 4$     3 1 6 . 2 2$           5 4
W Y 1 8 . 8 9$     9 4 . 4 5$             5 2
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Table 4.15 (Continued)

Issuing States and  Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by the state making the refunding decision. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of refunding and
the month of optimal refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively.

P a n e l  B :  R e f u n d i n g  E f f i c i e n c y  a n d  R a t i o  o f  E x - P o s t  I n t e r e s t  C o s t s
R e f u n d i n g  E f f i c i e n c y R a t io  o f  E x - P o s t  I n t e r e s t  C o s t s

M e a n M e d i a n p  ( m e a n ) p ( m e d ) M e a n M e d i a n p  ( m e a n ) p ( m e d )

A K 9 6 . 7 5 % 9 7 . 9 9 % 0 . 0 1 6 0 . 0 0 8 1 . 1 0 1 . 0 9 0 . 0 3 6 0 . 0 6 3
A L 9 5 . 8 5 % 9 8 . 8 4 % 0 . 0 0 4 0 . 0 0 0 1 . 0 5 1 . 0 0 0 . 3 8 7 0 . 1 8 4
A R 9 8 . 5 6 % 9 9 . 3 8 % 0 . 0 0 0 0 . 0 0 0 1 . 1 9 1 . 0 2 0 . 0 0 0 0 . 0 0 0
A Z 9 7 . 3 4 % 9 7 . 6 0 % 0 . 0 0 0 0 . 0 0 0 1 . 1 2 1 . 0 3 0 . 0 0 0 0 . 0 0 0
C A 9 8 . 5 8 % 9 9 . 1 8 % 0 . 0 0 0 0 . 0 0 0 1 . 0 5 1 . 0 1 0 . 0 2 2 0 . 0 0 0
C O 9 8 . 8 3 % 9 9 . 3 3 % 0 . 0 0 0 0 . 0 0 0 1 . 3 7 1 . 0 5 0 . 0 0 0 0 . 0 0 0
C T 9 8 . 5 1 % 9 8 . 2 2 % 0 . 0 0 3 0 . 0 0 8 1 . 0 5 1 . 0 1 0 . 0 5 2 0 . 0 3 1
D E 9 8 . 3 8 % 9 8 . 3 6 % 0 . 0 0 7 0 . 0 1 6 1 . 2 2 1 . 0 5 0 . 2 5 7 0 . 0 3 1
F L 9 8 . 1 2 % 9 9 . 1 0 % 0 . 0 0 0 0 . 0 0 0 1 . 1 5 1 . 0 2 0 . 0 0 0 0 . 0 0 0
G A 9 8 . 2 1 % 9 8 . 4 4 % 0 . 0 0 0 0 . 0 0 0 1 . 3 3 1 . 0 5 0 . 0 0 1 0 . 0 0 0
H I 9 8 . 6 5 % 9 9 . 7 1 % 0 . 1 4 4 0 . 1 2 5 1 . 0 1 1 . 0 1 0 . 0 9 0 0 . 2 5 0
I A 9 8 . 3 5 % 9 8 . 4 9 % 0 . 0 0 0 0 . 0 0 0 1 . 1 1 1 . 0 5 0 . 0 0 1 0 . 0 0 0
I D 9 7 . 2 9 % 9 7 . 2 9 % 0 . 0 0 5 0 . 0 0 8 1 . 1 3 1 . 0 2 0 . 0 7 8 0 . 0 1 6
I L 9 8 . 0 9 % 9 8 . 7 6 % 0 . 0 0 0 0 . 0 0 0 1 . 0 7 1 . 0 2 0 . 0 0 5 0 . 0 0 0
I N 9 8 . 6 5 % 9 9 . 4 2 % 0 . 0 0 0 0 . 0 0 0 1 . 0 6 1 . 0 1 0 . 0 0 1 0 . 0 0 0
K S 9 7 . 5 0 % 9 8 . 5 9 % 0 . 0 0 0 0 . 0 0 0 1 . 1 2 1 . 0 2 0 . 0 3 1 0 . 0 0 0
K Y 9 7 . 0 4 % 9 8 . 1 6 % 0 . 0 0 8 0 . 0 0 0 1 . 0 7 1 . 0 0 0 . 5 9 3 0 . 6 4 1
L A 9 8 . 4 3 % 9 9 . 1 9 % 0 . 0 5 2 0 . 0 1 6 1 . 1 8 1 . 1 1 0 . 0 2 3 0 . 0 1 6
M A 9 7 . 6 4 % 9 8 . 4 5 % 0 . 0 0 6 0 . 0 0 1 1 . 0 1 1 . 0 0 0 . 6 7 9 0 . 4 6 1
M D 9 5 . 0 6 % 9 8 . 8 7 % 0 . 0 6 9 0 . 0 0 0 1 . 1 1 1 . 0 2 0 . 0 2 5 0 . 0 0 3
M E 9 9 . 3 7 % 9 9 . 3 7 % . 1 . 0 0 0 1 . 0 2 1 . 0 2 . 1 . 0 0 0
M I 9 7 . 7 6 % 9 8 . 5 7 % 0 . 0 0 0 0 . 0 0 0 1 . 0 7 1 . 0 2 0 . 0 0 2 0 . 0 0 0
M N 9 8 . 8 6 % 9 9 . 0 0 % 0 . 0 0 0 0 . 0 0 0 1 . 0 6 1 . 0 4 0 . 0 0 0 0 . 0 0 0
M O 9 8 . 4 4 % 9 8 . 9 6 % 0 . 0 0 0 0 . 0 0 0 1 . 2 1 1 . 0 3 0 . 0 0 4 0 . 0 0 0
M S 9 5 . 9 0 % 9 5 . 7 8 % 0 . 0 0 0 0 . 0 0 0 1 . 1 0 1 . 0 9 0 . 0 0 0 0 . 0 0 1
M T 9 9 . 0 3 % 9 9 . 4 4 % 0 . 2 3 4 0 . 2 5 0 0 . 9 8 1 . 0 1 0 . 7 2 8 0 . 8 7 5
N C 9 8 . 7 7 % 9 8 . 9 9 % 0 . 0 0 0 0 . 0 0 0 1 . 0 3 1 . 0 3 0 . 3 2 4 0 . 0 0 0
N D 9 7 . 7 9 % 9 8 . 9 7 % 0 . 0 4 8 0 . 0 0 8 1 . 1 1 1 . 0 3 0 . 1 1 4 0 . 0 1 6
N E 9 9 . 1 3 % 9 9 . 4 3 % 0 . 0 0 0 0 . 0 0 0 1 . 1 3 1 . 0 1 0 . 0 3 8 0 . 0 0 0
N H 9 8 . 0 2 % 9 8 . 0 8 % 0 . 0 0 1 0 . 0 6 3 1 . 0 8 1 . 1 2 0 . 0 8 0 0 . 1 8 8
N J 9 8 . 0 3 % 9 9 . 1 2 % 0 . 0 0 0 0 . 0 0 0 1 . 1 3 1 . 0 4 0 . 0 0 5 0 . 0 0 0
N M 9 5 . 1 2 % 9 9 . 3 8 % 0 . 2 8 4 0 . 0 6 3 1 . 1 4 1 . 0 2 0 . 3 2 1 0 . 3 1 3
N V 9 5 . 3 7 % 9 7 . 5 7 % 0 . 1 0 0 0 . 0 0 8 1 . 0 4 1 . 0 5 0 . 1 3 0 0 . 2 1 9
N Y 9 7 . 1 8 % 9 8 . 8 2 % 0 . 0 0 5 0 . 0 0 0 1 . 2 7 1 . 0 2 0 . 0 1 3 0 . 0 0 0
O H 9 7 . 7 5 % 9 8 . 9 5 % 0 . 0 0 0 0 . 0 0 0 1 . 1 4 1 . 0 4 0 . 0 0 0 0 . 0 0 0
O K 9 6 . 6 5 % 9 7 . 9 8 % 0 . 0 6 7 0 . 0 6 3 1 . 1 5 1 . 0 3 0 . 5 7 1 0 . 8 4 4
O R 9 8 . 6 9 % 9 9 . 3 3 % 0 . 0 0 2 0 . 0 0 0 1 . 0 9 1 . 0 4 0 . 0 0 4 0 . 0 0 0
P A 9 9 . 0 1 % 9 9 . 8 5 % 0 . 0 0 0 0 . 0 0 0 1 . 1 3 1 . 0 0 0 . 0 0 0 0 . 0 0 0
P R 9 6 . 8 3 % 9 7 . 9 9 % 0 . 0 8 8 0 . 0 6 3 1 . 0 4 1 . 0 2 0 . 1 4 0 0 . 2 5 0
R I 9 7 . 8 9 % 9 9 . 1 7 % 0 . 2 8 0 0 . 2 5 0 1 . 4 1 1 . 0 0 0 . 1 7 8 0 . 5 0 0
S C 9 8 . 9 3 % 9 8 . 9 6 % 0 . 0 0 0 0 . 0 0 0 1 . 1 4 1 . 0 3 0 . 0 0 1 0 . 0 0 0
S D 9 8 . 6 7 % 9 9 . 1 9 % 0 . 0 1 6 0 . 0 0 0 1 . 1 2 1 . 0 3 0 . 1 5 9 0 . 0 2 0
T N 9 8 . 2 3 % 9 8 . 9 5 % 0 . 0 0 0 0 . 0 0 0 1 . 0 8 1 . 0 4 0 . 0 0 0 0 . 0 0 0
T X 9 6 . 4 6 % 9 7 . 4 1 % 0 . 0 0 0 0 . 0 0 0 1 . 1 3 1 . 0 5 0 . 0 0 0 0 . 0 0 0
U T 9 7 . 2 4 % 9 9 . 0 3 % 0 . 0 0 2 0 . 0 0 0 1 . 0 8 1 . 0 3 0 . 0 1 4 0 . 0 0 0
V A 9 8 . 4 7 % 9 8 . 7 9 % 0 . 0 0 0 0 . 0 0 0 1 . 1 2 1 . 0 2 0 . 0 0 5 0 . 0 0 0
V T 9 9 . 3 1 % 9 9 . 4 7 % 0 . 1 5 1 0 . 2 5 0 1 . 0 8 1 . 0 1 0 . 3 8 1 0 . 5 0 0
W A 9 8 . 1 1 % 9 8 . 7 6 % 0 . 0 0 0 0 . 0 0 0 1 . 1 7 1 . 0 4 0 . 0 0 0 0 . 0 0 0
W I 9 8 . 6 1 % 9 9 . 1 6 % 0 . 0 0 0 0 . 0 0 0 1 . 0 6 1 . 0 3 0 . 0 4 5 0 . 0 0 0
W V 9 8 . 1 0 % 9 9 . 1 7 % 0 . 2 0 4 0 . 1 2 5 1 . 2 9 1 . 1 0 0 . 2 1 3 0 . 2 5 0
W Y 9 9 . 4 6 % 1 0 0 . 0 0 % 0 . 1 9 2 0 . 5 0 0 1 . 0 2 1 . 0 0 0 . 3 7 4 1 . 0 0 0
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Table 4.15 (Continued)

Issuing States and  Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by the state making the refunding decision. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of refunding and
the month of optimal refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively. A “-” entry indicates that the number is
insignificant at the second decimal level.

P a n e l  C :  L o s s ,  $  m i l l i o n
M e a n M e d i a n p  ( m e a n ) p ( m e d ) T o t a l

A K 3 . 9 0$       3 . 1 7$               0 . 0 0 4 0 . 0 0 8 3 5 .0 9$         
A L 1 . 6 0$       0 . 3 1$               0 . 0 4 2 0 . 0 0 0 4 8 .1 5$         
A R 0 . 1 0$       0 . 0 3$               0 . 0 0 0 0 . 0 0 0 6 . 3 9$           
A Z 2 . 2 3$       0 . 5 6$               0 . 0 0 0 0 . 0 0 0 1 5 1 . 9 7$       
C A 1 . 5 2$       0 . 3 1$               0 . 0 0 2 0 . 0 0 0 2 0 9 . 2 8$       
C O 0 . 7 9$       0 . 1 5$               0 . 0 0 1 0 . 0 0 0 4 0 .4 0$         
C T 4 . 2 7$       0 . 7 1$               0 . 1 2 9 0 . 0 0 8 4 2 .7 3$         
D E 4 . 4 3$       0 . 5 0$               0 . 0 9 7 0 . 0 1 6 3 5 .4 3$         
F L 1 . 8 9$       0 . 4 9$               0 . 0 0 0 0 . 0 0 0 3 1 0 . 5 6$       
G A 2 . 4 3$       0 . 8 2$               0 . 0 0 6 0 . 0 0 0 8 7 .5 5$         
H I 3 . 7 0$       0 . 2 3$               0 . 2 5 1 0 . 1 2 5 2 2 .2 0$         
I A 0 . 2 0$       0 . 0 4$               0 . 0 8 4 0 . 0 0 0 5 . 3 8$           
I D 0 . 7 8$       0 . 3 5$               0 . 0 2 1 0 . 0 0 8 7 . 7 9$           
I L 3 . 1 9$       0 . 1 1$               0 . 0 0 9 0 . 0 0 0 3 1 5 . 8 3$       
I N 0 . 9 7$       0 . 1 0$               0 . 0 3 3 0 . 0 0 0 5 8 .0 6$         
K S 0 . 7 6$       0 . 0 8$               0 . 0 9 7 0 . 0 0 0 4 5 .7 4$         
K Y 1 . 8 7$       0 . 1 6$               0 . 2 2 0 0 . 0 0 0 3 3 .7 5$         
L A 2 . 3 5$       1 . 0 7$               0 . 0 5 6 0 . 0 1 6 2 3 .4 7$         
M A 3 . 1 4$       1 . 4 7$               0 . 0 1 4 0 . 0 0 1 4 0 .8 0$         
M D 3 . 6 5$       0 . 9 3$               0 . 0 3 2 0 . 0 0 0 6 5 .6 4$         
M E 0 . 1 1$       0 . 1 1$               . 1 . 0 0 0 0 . 1 1$           
M I 0 . 8 8$       0 . 2 7$               0 . 0 0 0 0 . 0 0 0 8 9 .5 8$         
M N 0 . 2 2$       0 . 0 5$               0 . 0 0 0 0 . 0 0 0 3 3 .6 1$         
M O 1 . 3 2$       0 . 1 8$               0 . 1 2 6 0 . 0 0 0 5 0 .2 9$         
M S 2 . 0 9$       0 . 3 1$               0 . 2 7 6 0 . 0 0 0 2 7 .2 3$         
M T 0 . 2 1$       0 . 1 6$               0 . 1 9 8 0 . 2 5 0 0 . 8 3$           
N C 1 . 0 3$       0 . 3 0$               0 . 0 0 7 0 . 0 0 0 2 9 .8 7$         
N D 0 . 2 1$       0 . 0 4$               0 . 1 3 5 0 . 0 0 8 2 . 1 1$           
N E 0 . 2 9$       0 . 0 4$               0 . 0 7 2 0 . 0 0 0 1 5 .1 9$         
N H 4 . 9 0$       3 . 4 0$               0 . 0 8 4 0 . 0 6 3 2 4 .4 9$         
N J 1 . 1 5$       0 . 3 9$               0 . 0 0 0 0 . 0 0 0 8 1 .7 0$         
N M 3 . 8 9$       0 . 2 3$               0 . 1 5 1 0 . 0 6 3 2 7 .2 5$         
N V 8 . 5 5$       1 . 9 5$               0 . 2 5 0 0 . 0 0 8 6 8 .3 6$         
N Y 1 0 .7 4$     0 . 7 9$               0 . 0 0 9 0 . 0 0 0 4 8 3 . 2 4$       
O H 2 . 3 7$       0 . 2 4$               0 . 0 1 1 0 . 0 0 0 1 3 7 . 7 0$       
O K 0 . 8 3$       0 . 3 1$               0 . 1 7 6 0 . 0 6 3 5 . 8 2$           
O R 0 . 4 2$       0 . 1 4$               0 . 0 0 0 0 . 0 0 0 1 5 .1 6$         
P A 0 . 4 4$       0 . 0 3$               0 . 0 0 0 0 . 0 0 0 1 8 8 . 2 9$       
P R 6 1 .1 2$     4 3 .5 4$             0 . 0 7 7 0 . 0 6 3 3 0 5 . 5 8$       
R I 7 . 8 3$       0 . 2 1$               0 . 2 9 3 0 . 2 5 0 3 9 .1 4$         
S C 0 . 6 2$       0 . 2 6$               0 . 0 0 2 0 . 0 0 0 1 6 .6 9$         
S D 1 . 0 7$       0 . 0 4$               0 . 1 9 8 0 . 0 0 0 2 1 .3 5$         
T N 0 . 3 9$       0 . 1 4$               0 . 0 0 0 0 . 0 0 0 3 3 .2 9$         
T X 1 . 5 2$       0 . 3 5$               0 . 0 0 0 0 . 0 0 0 3 3 2 . 2 4$       
U T 0 . 7 6$       0 . 1 5$               0 . 0 0 3 0 . 0 0 0 1 9 .6 5$         
V A 2 . 1 5$       0 . 3 3$               0 . 0 0 0 0 . 0 0 0 7 0 .9 9$         
V T 1 . 1 6$       0 . 4 0$               0 . 2 8 9 0 . 2 5 0 4 . 6 4$           
W A 1 . 4 7$       0 . 1 6$               0 . 0 0 0 0 . 0 0 0 1 7 1 . 7 3$       
W I 0 . 8 2$       0 . 0 5$               0 . 0 8 3 0 . 0 0 0 8 5 .3 3$         
W V 2 . 0 5$       1 . 1 0$               0 . 1 6 4 0 . 1 2 5 1 0 .2 3$         
W Y 0 . 1 7$       -$                0 . 2 0 8 0 . 5 0 0 0 . 8 3$           
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Table 4.15 (Continued)

Issuing States and  Refunding Decisions
The sample includes 2,620 municipal bonds, with original maturity less than 30 years, that were refunded between 1980-1993.
This table reports sample characteristics, refunding efficiency, ratio of ex-post interest costs, loss in value, and months from
optimal time by the state making the refunding decision. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as sub-optimal. N-
Sub is the frequency of sub-optimal refunding. Refunding efficiency is the ratio of the actual saving from sub-optimal exercise to
potential saving from optimal exercise. Ratio of ex-post interest costs is the ratio of actual interest costs to the potential interest
costs by refunding optimally. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts
have been converted to 1995 figures using CPI data. Months from optimal is the difference of the actual month of refunding and
the month of optimal refunding. The p-values in each panel represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively.

P a n e l  D :  M o n t h s  f r o m  o p t i m a l :  P o o l e d  a n d  A b s o l u t e
P o o l e d  D e v i a t i o n A b s o l u t e  D e v i a t i o n P r o p o r t i o n  

M e a n M e d i a n p  ( m e a n ) p ( m e d ) M e a n M e d i a n C al l in g  E a r ly

A K 2 2 . 1 3 2 1 . 0 0 0 . 0 5 4 0 . 0 7 0 2 8 . 8 8 2 7 . 0 0 2 2 . 2 2 %
A L 1 1 . 1 1 1 2 . 0 0 0 . 0 2 3 0 . 0 1 4 1 8 . 6 7 1 2 . 0 0 2 3 . 3 3 %
A R 1 2 . 3 2 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 3 . 6 8 1 2 . 0 0 1 1 . 4 8 %
A Z 2 3 . 9 0 2 4 . 0 0 0 . 0 0 0 0 . 0 0 0 2 4 . 7 7 2 4 . 0 0 1 3 . 2 4 %
C A 9 . 6 5 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 2 . 9 2 1 2 . 0 0 1 3 . 0 4 %
C O 1 7 . 2 2 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 1 8 . 9 0 1 5 . 0 0 7 . 8 4 %
C T 2 2 . 2 0 1 8 . 0 0 0 . 0 1 0 0 . 0 0 8 2 2 . 2 0 1 8 . 0 0 0 . 0 0 %
D E 2 4 . 8 6 2 4 . 0 0 0 . 0 0 6 0 . 0 3 1 2 4 . 8 6 2 4 . 0 0 1 2 . 5 0 %
F L 1 3 . 9 5 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 5 . 5 5 1 2 . 0 0 1 2 . 8 0 %
G A 1 9 . 9 2 1 9 . 5 0 0 . 0 0 0 0 . 0 0 0 2 0 . 4 2 1 9 . 5 0 2 . 7 8 %
H I 1 1 . 4 0 1 5 . 0 0 0 . 0 7 9 0 . 2 5 0 1 1 . 4 0 1 5 . 0 0 1 6 . 6 7 %
IA 2 5 . 7 8 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 2 6 . 4 4 1 5 . 0 0 3 . 7 0 %
ID 2 4 . 3 0 2 4 . 0 0 0 . 0 0 6 0 . 0 0 8 2 4 . 3 0 2 4 . 0 0 0 . 0 0 %
IL 1 6 . 8 6 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 8 . 7 6 1 5 . 0 0 1 2 . 1 2 %
IN 1 1 . 1 4 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 2 . 3 6 1 2 . 0 0 6 . 6 7 %
K S 1 6 . 2 1 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 7 . 7 9 1 2 . 0 0 1 1 . 6 7 %
K Y 1 0 . 1 3 9 . 0 0 0 . 0 6 8 0 . 0 2 9 1 4 . 2 5 9 . 0 0 1 6 . 6 7 %
L A 1 6 . 8 0 1 3 . 5 0 0 . 0 0 8 0 . 0 1 6 1 6 . 8 0 1 3 . 5 0 0 . 0 0 %
M A 1 5 . 5 5 1 2 . 0 0 0 . 0 1 2 0 . 0 0 4 1 5 . 5 5 1 2 . 0 0 1 5 . 3 8 %
M D 1 7 . 6 0 2 1 . 0 0 0 . 0 0 0 0 . 0 0 0 1 7 . 6 0 2 1 . 0 0 1 6 . 6 7 %
M E 1 2 . 0 0 1 2 . 0 0 . 1 . 0 0 0 1 2 . 0 0 1 2 . 0 0 0 . 0 0 %
M I 1 7 . 4 9 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 1 7 . 8 7 1 5 . 0 0 8 . 8 2 %
M N 1 9 . 2 8 1 8 . 0 0 0 . 0 0 0 0 . 0 0 0 1 9 . 6 4 1 8 . 0 0 3 . 8 7 %
M O 1 7 . 5 1 1 8 . 0 0 0 . 0 0 0 0 . 0 0 0 1 8 . 4 9 1 8 . 0 0 7 . 8 9 %
M S 2 8 . 1 5 2 4 . 0 0 0 . 0 0 0 0 . 0 0 0 2 8 . 1 5 2 4 . 0 0 0 . 0 0 %
M T 1 3 . 5 0 1 5 . 0 0 0 . 0 7 8 0 . 2 5 0 1 3 . 5 0 1 5 . 0 0 0 . 0 0 %
N C 2 1 . 7 2 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 2 2 . 3 4 1 5 . 0 0 3 . 4 5 %
N D 1 4 . 4 0 1 3 . 5 0 0 . 0 3 8 0 . 0 1 6 1 6 . 2 0 1 3 . 5 0 1 0 . 0 0 %
N E 1 1 . 1 2 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 3 . 2 4 1 2 . 0 0 9 . 6 2 %
N H 3 3 . 6 0 3 6 . 0 0 0 . 0 7 2 0 . 1 2 5 3 9 . 6 0 3 6 . 0 0 2 0 . 0 0 %
N J 1 6 . 5 0 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 1 7 . 5 9 1 5 . 0 0 1 1 . 2 7 %
N M 1 0 . 2 9 1 2 . 0 0 0 . 2 2 9 0 . 4 3 8 1 5 . 4 3 1 5 . 0 0 1 4 . 2 9 %
N V 2 7 . 0 0 2 4 . 0 0 0 . 0 0 7 0 . 0 1 6 2 7 . 0 0 2 4 . 0 0 1 2 . 5 0 %
N Y 1 3 . 4 6 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 7 . 8 5 1 5 . 0 0 2 0 . 0 0 %
O H 1 6 . 8 5 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 1 7 . 6 2 1 5 . 0 0 8 . 6 2 %
O K 7 . 7 1 0 . 0 0 0 . 5 1 0 0 . 6 2 5 2 1 . 4 3 1 8 . 0 0 2 8 . 5 7 %
O R 1 5 . 3 3 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 1 5 . 3 3 1 5 . 0 0 0 . 0 0 %
P A 8 . 8 3 9 . 0 0 0 . 0 0 0 0 . 0 0 0 1 0 . 2 8 9 . 0 0 1 1 . 5 3 %
P R 2 4 . 7 5 2 1 . 0 0 0 . 0 5 9 0 . 1 2 5 2 4 . 7 5 2 1 . 0 0 2 0 . 0 0 %
R I 1 2 . 0 0 1 2 . 0 0 0 . 1 8 2 0 . 5 0 0 1 2 . 0 0 1 2 . 0 0 2 0 . 0 0 %
S C 1 3 . 2 2 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 3 . 2 2 1 2 . 0 0 0 . 0 0 %
S D 1 0 . 9 5 1 5 . 0 0 0 . 0 0 6 0 . 0 1 0 1 5 . 4 5 1 6 . 5 0 1 0 . 0 0 %
T N 1 8 . 7 4 1 8 . 0 0 0 . 0 0 0 0 . 0 0 0 1 9 . 5 2 1 8 . 0 0 4 . 6 5 %
T X 2 4 . 0 8 2 4 . 0 0 0 . 0 0 0 0 . 0 0 0 2 5 . 1 3 2 4 . 0 0 6 . 8 5 %
U T 1 7 . 8 8 1 2 . 0 0 0 . 0 0 0 0 . 0 0 0 1 9 . 5 6 1 2 . 0 0 7 . 6 9 %
V A 1 6 . 1 8 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 1 7 . 4 5 1 5 . 0 0 3 . 0 3 %
V T 3 . 7 5 1 0 . 5 0 0 . 6 4 2 0 . 8 7 5 1 2 . 7 5 1 2 . 0 0 2 5 . 0 0 %
W A 2 0 . 3 1 1 5 . 0 0 0 . 0 0 0 0 . 0 0 0 2 1 . 2 7 1 5 . 0 0 5 . 9 8 %
W I 1 3 . 1 9 1 3 . 5 0 0 . 0 0 0 0 . 0 0 0 1 5 . 3 1 1 5 . 0 0 1 6 . 3 5 %
W V 1 6 . 2 0 2 4 . 0 0 0 . 2 3 0 0 . 2 5 0 2 3 . 4 0 2 4 . 0 0 2 0 . 0 0 %
W Y 3 . 7 5 0 . 0 0 0 . 3 9 1 1 . 0 0 0 3 . 7 5 0 . 0 0 2 0 . 0 0 %
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Table 4.16

Loss in Value from Not Calling

The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were
candidates for refunding but issuer  never called these bonds. This table reports the loss in value and sample
characteristics for optimal and sub-optimal decisions. Loss is the product of the unit loss in value from not calling,
and the gross proceeds, in $ millions. All dollar amounts have been converted to 1995 figures using CPI data. The p-
values in panel B represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference
from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Refunding Gross Proceeds, $ million Frequency
Decision Mean Total N N-Sub

Optimal Decision 12.84$    148,051.07$   11532 0
Sub-Optimal Decision 14.77$    183,835.44$   12444 12444

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

Optimal Decision 0.00 0.00 0.00
Sub-Optimal Decision 0.25$      0.04$              0.001 0.001 3,166.19$    
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Table 4.17

Security Type and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were
candidates for refunding but issuer  never called these bonds. This table reports sample characteristics, and loss in
value for such sub-optimal decisions by type of security: either General Obligation Bonds or Revenue Bonds. Loss is
the product of the unit loss in value from not calling, and the gross proceeds, in $ millions. All dollar amounts have
been converted to 1995 figures using CPI data. The p-values in panel B represent the significance level of the t-tests
and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values, respectively. A “-”
entry indicates that the number is insignificant at the second decimal level.

Panel A: Sample Characteristics
Security Gross Proceeds, $ million Frequency
Type Mean Total N N-Sub

General Obligation Bonds 10.92$    157,027.97$   14382 7522
Revenue Bonds 18.23$    174,858.55$   9594 4922

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

General Obligation Bonds 0.13$      -$               0.001 0.001 1,824.47$  
Revenue Bonds 0.14$      -$               0.001 0.001 1,341.71$  
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Table 4.18

Bond Rating and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Bond ratings are those of Moody’s when available,
otherwise those of S&P Corporation are used. Decisions are sub-optimal if the bonds were candidates for refunding
but issuer  never called these bonds. This table reports sample characteristics, and loss in value for such sub-optimal
decisions by bond rating criteria. Loss is the product of the unit loss in value from not calling, and the gross
proceeds, in $ millions. All dollar amounts have been converted to 1995 figures using CPI data. The p-values in
panel B represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference from
hypothesized mean and median values, respectively. A “-” entry indicates that the number is insignificant at the
second decimal level.

Panel A: Sample Characteristics
Rating Gross Proceeds, $million Frequency
Class Mean Total N N-Sub

AAA 16.17$    5,157.32$       319 226
AA 20.76$    4,068.99$       196 120
A 16.97$    90,003.74$     5305 3051
Not Rated 12.81$    232,656.46$   18156 9047

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

AAA 0.17$      0.03$              0.001 0.001 55.43$        
AA 0.22$      0.03$              0.001 0.001 42.41$        
A 0.19$      0.01$              0.001 0.001 1,011.94$   
Not Rated 0.11$      -$               0.001 0.001 2,056.41$   
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Table 4.19

Issue Size and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were
candidates for refunding but issuer  never called these bonds. This table reports sample characteristics, and loss in
value for such sub-optimal decisions by bond rating criteria. Loss is the product of the unit loss in value from not
calling, and the gross proceeds, in $ millions. All dollar amounts have been converted to 1995 figures using CPI
data. The p-values in panel B represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the
difference from hypothesized mean and median values, respectively. A “-” entry indicates that the number is
insignificant at the second decimal level.

Panel A: Sample Characteristics
Gross Gross Proceeds, $million Frequency
Proceeds Mean Total N N-Sub

Quintile 1 0.52$      2,496.63$       4796 2106
Quintile 2 1.68$      8,063.63$       4795 2403
Quintile 3 3.77$      18,065.35$     4796 2514
Quintile 4 7.92$      37,933.56$     4792 2655
Quintile 5 55.31$    265,327.34$   4797 2766

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

Quintile 1 -$       -$               0.001 0.001 16.95$         
Quintile 2 0.02$      -$               0.001 0.001 72.13$         
Quintile 3 0.03$      0.01$              0.001 0.001 165.34$       
Quintile 4 0.08$      0.02$              0.001 0.001 372.41$       
Quintile 5 0.53$      0.09$              0.001 0.001 2,539.36$    
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Table 4.20

Bond Maturity and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were
candidates for refunding but issuer  never called these bonds. This table reports sample characteristics, and loss in
value for such sub-optimal decisions by original bond maturity at issuance. Loss is the product of the unit loss in
value from not calling, and the gross proceeds, in $ millions. All dollar amounts have been converted to 1995 figures
using CPI data. The p-values in panel B represent the significance level of the t-tests and of the Wilcoxon sign-rank
tests of the difference from hypothesized mean and median values, respectively. A “-” entry indicates that the
number is insignificant at the second decimal level.

Panel A: Sample Characteristics
Original Gross Proceeds, $ million Frequency Original Bond Maturity
Bond Maturity Mean Total N N-Sub Mean Median

Quintile 1 4.81$      24,449.99$     5081 1977 7.25 9.00
Quintile 2 6.90$      38,621.63$     5599 3133 13.69 14.00
Quintile 3 11.44$    40,420.48$     3534 2008 17.56 18.00
Quintile 4 15.00$    74,706.56$     4982 2817 20.00 20.00
Quintile 5 32.15$    153,687.85$   4780 2509 25.03 25.00

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

Quintile 1 0.03$      -$               0.001 0.001 151.11$      
Quintile 2 0.08$      -$               0.001 0.001 432.76$      
Quintile 3 0.10$      0.01$              0.001 0.001 370.52$      
Quintile 4 0.17$      0.01$              0.001 0.001 844.33$      
Quintile 5 0.29$      0.01$              0.001 0.001 1,367.46$   
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Table 4.21

Outstanding Long Term Debt and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were
candidates for refunding but issuer  never called these bonds. This table reports sample characteristics, and loss in
value for such sub-optimal decisions by quintiles of outstanding long term debt at the time of issuance of the
refunded bond. Quintiles run from lowest to highest. Loss is the product of the unit loss in value from not calling,
and the gross proceeds, in $ millions. All dollar amounts have been converted to 1995 figures using CPI data. The p-
values in panel B represent the significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference
from hypothesized mean and median values, respectively. A “-” entry indicates that the number is insignificant at the
second decimal level.

Panel A: Sample Characteristics
Outstanding Gross Proceeds, $ million Frequency Outstanding Debt, $ mi
Long Term Debt Mean Total N N-Sub Mean Median

Quintile 1 1.42$      6,830.99$       4795 2131 1.48$         1.34$      
Quintile 2 3.32$      15,918.64$     4796 2355 6.92$         6.63$      
Quintile 3 5.92$      28,399.43$     4795 2510 21.32$       20.26$    
Quintile 4 11.54$    55,333.70$     4796 2686 75.14$       66.24$    
Quintile 5 47.02$    225,403.76$   4794 2762 1,820.79$  544.16$  

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

Quintile 1 0.01$      -$               0.001 0.001 64.47$       
Quintile 2 0.03$      -$               0.001 0.001 144.05$     
Quintile 3 0.05$      -$               0.001 0.001 257.38$     
Quintile 4 0.11$      0.01$              0.001 0.001 520.98$     
Quintile 5 0.45$      0.02$              0.001 0.001 2,179.30$  



Chapter IV 64

Table 4.22

Time Series Analysis of  The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were
candidates for refunding but issuer  never called these bonds. This table reports sample characteristics, and loss in
value for such sub-optimal decisions by the year of issuance of the refunded bond. Loss is the product of the unit loss
in value from not calling, and the gross proceeds, in $ millions. All dollar amounts have been converted to 1995
figures using CPI data. The p-values in panel B represent the significance level of the t-tests and of the Wilcoxon
sign-rank tests of the difference from hypothesized mean and median values, respectively. A “-” entry indicates that
the number is insignificant at the second decimal level.

Panel A: Sample Characteristics
Year of Gross Proceeds, $ million Frequency
Issuance Mean Total N N-Sub

1986 22.57$    53,128.62$     2354 2206
1987 16.01$    37,785.40$     2360 2031
1988 14.93$    36,515.49$     2445 2319
1989 13.42$    38,326.65$     2856 2722
1990 11.73$    41,424.37$     3530 3141
1991 12.82$    55,210.19$     4306 25

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

1986 0.48$      0.07$              0.001 0.001 1,126.52$   
1987 0.23$      0.04$              0.001 0.001 542.33$      
1988 0.28$      0.04$              0.001 0.001 675.10$      
1989 0.17$      0.04$              0.001 0.001 480.59$      
1990 0.10$      0.02$              0.001 0.001 338.57$      
1991 -$       -$               0.051 0.001 3.07$          
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Table 4.23

Use of Proceeds and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called
between 1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the
optimal time as obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were
candidates for refunding but issuer  never called these bonds. This table reports sample characteristics, and loss in
value for such sub-optimal decisions by use of proceeds of the refunded bond. Loss is the product of the unit loss in
value from not calling, and the gross proceeds, in $ millions. All dollar amounts have been converted to 1995 figures
using CPI data. The p-values in panel B represent the significance level of the t-tests and of the Wilcoxon sign-rank
tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Use of Gross Proceeds, $ million Frequency
Proceeds Mean Total N N-Sub

Education 10.31$    76,428.63$     7410 3826
General Purpose 15.30$    147,191.99$   9620 5048
Pollution Control 37.22$    11,016.02$     296 151
Transportation 29.18$    28,540.77$     978 507
Utility 21.49$    14,356.87$     668 343
Waste Recovery 19.87$    9,834.29$       495 234
Water/Sewer/Gas 9.87$      44,517.94$     4509 2335

Panel B: Loss, $ million
Mean Median p (mean) p (med) Total

Education 0.11$      0.00 0.001 0.001 830.58$      
General Purpose 0.14$      0.00 0.001 0.001 1,381.68$   
Pollution Control 0.19$      0.00 0.001 0.001 57.15$        
Transportation 0.20$      0.00 0.001 0.001 196.06$      
Utility 0.31$      0.00 0.003 0.001 208.25$      
Waste Recovery 0.15$      0.00 0.001 0.001 72.26$        
Water/Sewer/Gas 0.09$      0.00 0.001 0.001 420.20$      
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Table 4.24

Issuing States and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called between
1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the optimal time as
obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were candidates for refunding but issuer
never called these bonds. This table reports sample characteristics, and loss in value for such sub-optimal decisions by states
making the refunding decisions. Loss is the product of the unit loss in value from not calling, and the gross proceeds, in $
millions. All dollar amounts have been converted to 1995 figures using CPI data. The p-values in panel B represent the
significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values,
respectively.

Pane l  A:  Sample  Character i s t i c s
Issu ing G ross  Proceeds ,  $  m il l ion Frequency
State M ean Tota l N N -Sub

A K 24.09$     1 ,300 .74$        5 4 4 2
A L 11.13$     5 ,021 .20$        4 5 1 2 0 7
A R 3.15$       1 ,481 .24$        4 7 0 2 3 1
A Z 15.05$     7 ,389 .15$        4 9 1 3 2 0
C A 21.68$     41 ,647 .91$      1 9 2 1 1 0 4 5
C O 11.04$     6 ,129 .79$        5 5 5 3 5 6
C T 39.42$     7 ,883 .61$        2 0 0 9 7
D C 147 .96$   2 ,367 .35$        1 6 1 2
D E 41.98$     1 ,301 .43$        3 1 1 9
F L 36 .49$     20 ,032 .16$      5 4 9 3 0 2
G A 19.67$     3 ,717 .86$        1 8 9 1 0 2
G U 84.71$     338 .83$           4 1
H I 60 .60$     1 ,939 .12$        3 2 2 4
I A 3.16$       2 ,946 .17$        9 3 3 4 6 1
I D 5.84$       612 .69$           1 0 5 4 7
IL 12 .74$     13 ,745 .04$      1 0 7 9 5 0 0
I N 9.45$       5 ,035 .48$        5 3 3 2 5 8
K S 6.42$       3 ,804 .63$        5 9 3 2 6 9
K Y 9.92$       5 ,646 .47$        5 6 9 3 0 5
L A 18.01$     7 ,277 .84$        4 0 4 2 4 0
M A 27.57$     9 ,511 .55$        3 4 5 1 6 4
M D 38.85$     6 ,488 .03$        1 6 7 1 0 3
M E 15.34$     644 .11$           4 2 1 7
M I 6.90$       8 ,230 .17$        1 1 9 2 6 5 8
M N 3.94$       7 ,432 .53$        1 8 8 7 1 0 1 9
M O 7.61$       4 ,677 .79$        6 1 5 2 6 6
M S 6.50$       1 ,813 .19$        2 7 9 1 4 2
M T 9.17$       1 ,192 .38$        1 3 0 5 0
N C 13.21$     3 ,565 .96$        2 7 0 1 3 6
N D 2.95$       645 .77$           2 1 9 9 8
N E 2.26$       1 ,072 .17$        4 7 4 1 8 2
N H 22.37$     2 ,348 .66$        1 0 5 6 2
N J 25 .98$     15 ,667 .37$      6 0 3 2 7 8
N M 9.80$       970 .45$           9 9 5 4
N V 14.18$     1 ,375 .64$        9 7 6 1
N Y 69.75$     37 ,106 .54$      5 3 2 2 2 2
O H 13.31$     7 ,490 .77$        5 6 3 2 3 5
O K 8.83$       1 ,571 .91$        1 7 8 7 3
O R 7.77$       2 ,789 .63$        3 5 9 2 1 5
P A 15.43$     17 ,886 .48$      1 1 5 9 6 7 8
P R 220 .37$   2 ,644 .48$        1 2 6
R I 14 .00$     1 ,483 .61$        1 0 6 6 0
S C 10.74$     3 ,017 .44$        2 8 1 1 6 4
S D 5.33$       671 .91$           1 2 6 5 0
T N 10.79$     4 ,553 .52$        4 2 2 2 0 6
T X 12.07$     18 ,625 .72$      1 5 4 3 9 7 4
U T 14.39$     2 ,259 .38$        1 5 7 9 8
V A 26.29$     7 ,229 .70$        2 7 5 1 5 4
V I 51 .96$     311 .75$           6 3
V T 17.16$     497 .70$           2 9 2 1
W A 9.31$       8 ,888 .82$        9 5 5 4 8 0
W I 5.32$       7 ,990 .28$        1 5 0 1 6 4 6
W V 29.72$     1 ,248 .41$        4 2 1 6
W Y 6.43$       167 .13$           2 6 1 4
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Table 4.24 (Continued)

Issuing States and The Loss in Value from Not Calling
The sample includes 23,976 callable municipal bonds, with original maturity less than 30 years, that were not called between
1980-1993. Refunding decisions are identified as optimal when the bonds should have been called at the optimal time as
obtained by using the generalized Vasicek model. Decisions are sub-optimal if the bonds were candidates for refunding but issuer
never called these bonds. This table reports sample characteristics, and loss in value for such sub-optimal decisions by states
making the refunding decisions. Loss is the product of the unit loss in value from not calling, and the gross proceeds, in $
millions. All dollar amounts have been converted to 1995 figures using CPI data. The p-values in panel B represent the
significance level of the t-tests and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values,
respectively. A “-” entry indicates that the number is insignificant at the second decimal level.

P a n e l  B :  L o s s ,  $  m i l l ion
M e a n M e d i a n p  ( m e a n ) p ( m e d ) T o t a l

A K 0 . 6 2$       0 . 0 7$               0 . 1 4 3 0 . 0 0 0 3 3 . 4 7$         
A L 0 . 0 6$       -$                0 . 0 0 0 0 . 0 0 0 2 6 . 4 0$         
A R 0 . 0 1$       -$                0 . 0 0 0 0 . 0 0 0 5 . 3 0$           
A Z 0 . 3 1$       0 . 0 4$               0 . 0 0 0 0 . 0 0 0 1 5 1 . 8 1$       
C A 0 . 2 1$       0 . 0 1$               0 . 0 0 0 0 . 0 0 0 4 0 3 . 9 4$       
C O 0 . 0 7$       0 . 0 1$               0 . 0 0 0 0 . 0 0 0 4 0 . 5 1$         
C T 0 . 3 3$       -$                0 . 0 0 0 0 . 0 0 0 6 5 . 7 3$         
D C 1 . 2 3$       0 . 5 9$               0 . 0 0 5 0 . 0 0 0 1 9 . 6 7$         
D E 0 . 2 2$       0 . 0 4$               0 . 0 0 1 0 . 0 0 0 6 . 6 9$           
F L 0 . 2 9$       0 . 0 1$               0 . 0 0 0 0 . 0 0 0 1 5 6 . 9 3$       
G A 0 . 1 6$       -$                0 . 0 0 0 0 . 0 0 0 3 0 . 5 6$         
G U 0 . 0 8$       -$                0 . 3 9 1 1 . 0 0 0 0 . 3 4$           
H I 0 . 5 2$       0 . 3 1$               0 . 0 0 0 0 . 0 0 0 1 6 . 6 9$         
I A 0 . 0 2$       -$                0 . 0 0 0 0 . 0 0 0 1 7 . 3 2$         
I D 0 . 0 5$       -$                0 . 0 0 0 0 . 0 0 0 5 . 4 5$           
I L 0 . 1 3$       -$                0 . 0 0 0 0 . 0 0 0 1 4 3 . 2 1$       
I N 0 . 0 4$       -$                0 . 0 0 0 0 . 0 0 0 2 3 . 1 9$         
K S 0 . 0 6$       -$                0 . 0 0 0 0 . 0 0 0 3 5 . 5 1$         
K Y 0 . 0 8$       -$                0 . 0 1 3 0 . 0 0 0 4 8 . 3 0$         
L A 0 . 3 1$       0 . 0 2$               0 . 0 0 0 0 . 0 0 0 1 2 4 . 1 7$       
M A 0 . 2 0$       -$                0 . 0 0 3 0 . 0 0 0 6 8 . 4 7$         
M D 0 . 3 0$       0 . 0 4$               0 . 0 0 0 0 . 0 0 0 4 9 . 3 2$         
M E 0 . 0 7$       -$                0 . 0 0 9 0 . 0 0 0 2 . 8 3$           
M I 0 . 0 9$       -$                0 . 0 0 0 0 . 0 0 0 1 0 6 . 1 8$       
M N 0 . 0 2$       -$                0 . 0 0 0 0 . 0 0 0 4 1 . 4 7$         
M O 0 . 1 2$       -$                0 . 0 3 6 0 . 0 0 0 7 2 . 0 9$         
M S 0 . 1 5$       -$                0 . 0 0 0 0 . 0 0 0 4 2 . 2 9$         
M T 0 . 0 6$       -$                0 . 0 2 2 0 . 0 0 0 7 . 3 0$           
N C 0 . 0 6$       -$                0 . 0 0 0 0 . 0 0 0 1 6 . 2 5$         
N D 0 . 0 2$       -$                0 . 0 0 1 0 . 0 0 0 5 . 0 9$           
N E 0 . 0 1$       -$                0 . 0 0 0 0 . 0 0 0 3 . 7 9$           
N H 0 . 1 9$       0 . 0 3$               0 . 0 0 0 0 . 0 0 0 2 0 . 3 1$         
N J 0 . 1 1$       -$                0 . 0 0 0 0 . 0 0 0 6 4 . 5 0$         
N M 0 . 1 6$       -$                0 . 0 9 5 0 . 0 0 0 1 6 . 1 5$         
N V 0 . 4 0$       0 . 0 1$               0 . 0 0 3 0 . 0 0 0 3 8 . 6 8$         
N Y 0 . 5 4$       -$                0 . 0 0 0 0 . 0 0 0 2 8 5 . 9 0$       
O H 0 . 0 8$       -$                0 . 0 0 0 0 . 0 0 0 4 6 . 9 8$         
O K 0 . 1 3$       -$                0 . 0 0 1 0 . 0 0 0 2 3 . 2 8$         
O R 0 . 0 8$       0 . 0 1$               0 . 0 0 0 0 . 0 0 0 2 9 . 2 3$         
P A 0 . 0 9$       0 . 0 1$               0 . 0 0 0 0 . 0 0 0 1 0 5 . 7 5$       
P R 0 . 7 8$       0 . 1 2$               0 . 0 3 9 0 . 0 3 1 9 . 3 3$           
R I 0 . 0 9$       0 . 0 2$               0 . 0 0 0 0 . 0 0 0 9 . 6 3$           
S C 0 . 1 2$       0 . 0 2$               0 . 0 0 0 0 . 0 0 0 3 4 . 7 8$         
S D 0 . 0 5$       -$                0 . 1 8 7 0 . 0 0 0 6 . 0 2$           
T N 0 . 0 8$       -$                0 . 0 0 0 0 . 0 0 0 3 2 . 0 0$         
T X 0 . 2 7$       0 . 0 3$               0 . 0 0 0 0 . 0 0 0 4 2 3 . 2 6$       
U T 0 . 1 6$       0 . 0 1$               0 . 0 0 1 0 . 0 0 0 2 4 . 5 6$         
V A 0 . 2 0$       0 . 0 2$               0 . 0 0 0 0 . 0 0 0 5 6 . 1 0$         
V I 0 . 2 6$       0 . 1 2$               0 . 1 6 7 0 . 2 5 0 1 . 5 6$           
V T 0 . 1 2$       0 . 0 3$               0 . 0 0 2 0 . 0 0 0 3 . 4 1$           
W A 0 . 0 9$       -$                0 . 0 0 0 0 . 0 0 0 8 6 . 6 9$         
W I 0 . 0 5$       -$                0 . 0 0 4 0 . 0 0 0 7 0 . 4 7$         
W V 0 . 1 1$       -$                0 . 0 1 4 0 . 0 0 0 4 . 5 3$           
W Y 0 . 0 4$       -$                0 . 0 0 8 0 . 0 0 0 1 . 0 2$           
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Table 4.25

Loss in Value from Sub-Optimal Refunding Strategies: Pooled Sample
The pooled sample includes 26,596 municipal bonds. Sample 1 contains 2,620 callable bonds, with original maturity
less than 30 years, that were refunded between 1980-1993. Sample 2 includes 23,976 callable bonds, with original
maturity less than 30 years, that were not called between 1980-1993. This table reports sample characteristics, and
loss in value from sub-optimal refunding strategies. Refunding decisions are identified as optimal when the bonds are
refunded at the optimal time as obtained by using the generalized Vasicek model; otherwise they are identified as
sub-optimal. Loss is sum of call option value lost, and the loss from escrow investments.  All dollar amounts have
been converted to 1995 figures using CPI data. The p-values in panel B represent the significance level of the t-tests
and of the Wilcoxon sign-rank tests of the difference from hypothesized mean and median values, respectively.

Panel A: Sample Characteristics
Gross Proceeds, $ million Frequency Proportion

Samples Mean Total N N-Sub Sub-Optimal

Sample 1 29.78$    78,017.32$     2620 1941 74.1%
Sample 2 13.84$    331,886.51$   23976 12444 51.9%

Pooled Sample 15.41$    409,903.83$   26596 14385 54.1%

Panel B: Loss, $ million
Mean Median p (mean) p(med) Total

Sample 1 1.53$      0.14$              0.0001 0.0001 4,008.34$        
Sample 2 0.13$      0.0012$          0.0001 0.0001 3,166.19$        

Pooled Sample 0.27$      0.003$            0.0001 0.0001 7,174.53$        
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CHAPTER V
CONCLUSION

The universe is wider than our views of it.

Henry David Thoreau
Walden

V. A Introduction

This dissertation empirically examines the refunding decisions employed by issuers of
callable tax-exempt debt  by analyzing  2,620 bonds that were called, and 23,976 bonds that were
never called. I use the generalized Vasicek (1977) model in the HJM(1992) framework to
construct binomial trees for interest rates, and compute the optimal exercise boundary for call
options embedded in these bonds. For the first sample of 2,620 bonds that are called, refunding
efficiency, loss in value from sub-optimal refunding strategies, ratio of ex-post interest costs, and
months from optimal time are computed using the option pricing lattice. For the second sample
of 23,976 bonds that are not called, I compute the loss in value using the option pricing lattice.

V. B Synopsis of Results

This study documents efficiencies in bond refunding decisions by state and local
government agencies. For the pooled sample of 26,596 bonds, the combined loss from sub-
optimal refunding is $7.17 billion. For a total principal amount of $410 billion, this is a loss in
value of 1.75%, as reported in Table 4.25.

Results suggest that losses seem to be higher for revenue bonds, bonds rated AA, issues
with larger gross proceeds, bonds of longer maturity, issuers with large amount of outstanding
debt, and downgraded bonds. General obligation bonds, AAA rated bonds, smaller issue size,
bonds of shorter maturity, issuers with lower amount of outstanding debt, and upgraded bonds
incur lower losses. Over the years refunding efficiency has improved, the loss in value from sub-
optimal refunding strategies is lower and bonds are called closer to the optimal time. Results
presented in Chapter 4, suggest that states of California, Florida, New York, and Texas accrued
relatively higher losses due to sub-optimal refunding. Results suggest that issuers either wait too
long to refund or never refund.
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V. C Implications

Gurwitz (1990) points out that the embedded call option is a “wasting asset;” its value
decreases as it approaches expiration. By waiting too long, issuers cannot realize the present
value savings of switching a higher coupon bond with a lower coupon bond, for a longer period
of time. Gurwitz (1990) mentions that  municipal bond issuers typically establish a target level of
present value savings, measured as a percentage of refunding bond issue. Once a bond passes its
first call date such a target rule begins to become less appropriate, since the interest rate required
to achieve any given level of present value savings decreases, slowly at first and then rapidly.

Apart from financial considerations, other issues such as investor influence over the
issuer, bond indentures, federal and local regulations, political and economic climate may play a
role in the refunding decision. This study ignores the role of such criteria in the decision making
process involving bond refundings and examines refunding decisions purely from the perspective
of interest rate savings.

Miller (1993) mentions that issuers undertake refundings for reasons other than interest
rate savings. These include defeasence, debt restructuring, and other economic benefits.
Defeasing existing debt might be done to remove burdensome covenants, generally limited to the
refunding of older revenue bonds which might have antiquated covenant structures that do not
reflect modern financial practices applicable to the issuer. Issuers also undertake refunding to
defer or stretch out their existing debt service. Finally, refundings may also be done in order to
realize an economic benefit other than interest rate savings. This may include (1) investing the
escrow at a rate higher than the arbitrage yield limit so as to offset negative arbitrage in other
escrows, or (2) releasing reserve funds so as to invest them in assets with a higher yield.

The are limitations on advanced refundings that might hinder issuers’ desire or ability to
refund optimally. These are listed below:

1. If the original “new money” financing was issued on or after January 1, 1986, those
bonds, or any successor current refunding bonds, may be advance refunded once. New
money bonds issued prior to January 1, 1986, may be advance refunded twice. All
advance refundings done prior to March 15, 1986, count as one advance refunding
towards the two refunding limit

2. Private activity bonds may not be advance refunded.

3. If the refunding prior bonds may produce present value savings, the prior bonds  must
be called on the first call date.

4. The yield on the portion of the escrow fund provided from refunding bonds proceeds
may not be invested at a yield above the aggregate reoffering yield of the refunding
issue.
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5. There may be industry-specific limitations that will affect the ability of an issuer to
advance refund bonds.22

6. Finally, certain advance refunding structures or techniques that have been labeled as
“abusive,” are prohibited under the Tax Code.23

In contrast, the only major limitations on current refundings is that for private activity
bonds - other than bonds for airports, docks and wharves - the  “amount” of the refunding bonds
cannot exceed the “amount” of the prior bonds. Other limitations, applicable to both current and
advanced refundings, include the payment of “rebates” and “transferred proceeds penalty.”24

Another reason that  might prevent issuers from refunding optimally is that bonds of a
particular series may be subject to “inverse order call requirement” that they may be called in
inverse order of maturity. If so, the viability of refunding of a particular maturity may be affected
by the existence of a lower coupon bond with a later maturity that would cost the issuer if called.

Ziese and Taylor (1977) mention that interest rate savings might not be the motivating
reason to undertake refunding. Other compelling reasons for issuers to undertake refundings
include such factors as prevention of default, cash flow savings, and restructuring of debt.

In a study on the calling of non-convertible corporate bonds, Vu (1986) finds that such
bonds are called late. He suggest that transaction costs and market imperfections may prevent the
firm from calling exactly at the optimal time. The same reason apply  to issuers of tax-exempt
debt.

Kidwell (1976a & 1976b) studies the use of call provision by state and local
governments, found only a moderate relationship between interest rates and the frequency of
existing call provisions. Kidwell concludes that “refunding was not the dominant motive for
exercising the call option for municipalities.” He suggests that, for political reasons, a
governmental unit may be reluctant to refund bonds at a lower interest rate, which would impose
a cost on bondholders, if local financial institutions or other constituents held a considerable
amount of debt.

                                                
22 For example, “501(c)(3)” organizations, which include nonprofit hospitals, private higher educational institutions,
and other nonprofit organizations, are limited to a $150 million volume cap on the amount of bonds that can be held
by investors for non-hospital projects; both advance refunding bonds and the refunded prior bonds count against this
limit until prior bonds are retired.

23 These structures include: (1) certain combinations of taxable and tax-exempt refundings, (2) investment of the debt
service fund and/or prior bond construction funds in the escrow for a longer period of time than would otherwise be
the case had the refunding not taken place, (3) factoring into the arbitrage yield on the refunding bonds the gross
bond insurance premium on any refunding bonds, and (4) a reduction in the coupon on the prior bonds as a result of
the refunding and defeasance not offset a by matching reduction in the yield on the refunding escrow.

24 Rebate is a requirement that 100% of the investment earnings in excess of the bond yield be rebated to the U.S.
Treasury. The transferred proceeds penalty is an economic adjustment to the yield on the refunding escrow equal to
the present value of the spread between the yield on the escrow established with the prior bonds proceeds and the
yield on the refunding bond issue from and after the call date of the prior bond. This penalty will occur most often in
a high-to-low refunding of a prior issue that was itself a low-to-high refunding. This penalty, however, does not
apply to taxable refundings or to a defeasance with the issuer’s own revenues.
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Illiquidity in the secondary market for municipal bonds may also play a part in the
refunding decision. Another reason for the inefficient refunding may be legislative stipulations
requiring a minimum rate of present value savings to initiate refunding. Future research to
investigate these and other potential reasons for inefficient refunding may be of interest.

V. D Limitations of This Study

The analysis presented in this study has several potential limitations. As mentioned
above, this study examines refunding decisions purely from the perspective of interest rate
savings. Many refundings in the sample under consideration might have been undertaken for
reasons other than interest rate savings and these refundings might have been efficient from that
point of view; for example, if a refunding is undertaken to restructure debt, or to remove
burdensome covenants then it is efficient from in that respect.

The results of this analysis critically depend on the following:

1. choice of term structure model,

2. underlying assumptions of the chosen model,

3. model calibration or parameter values, and,

4. sample selection bias.

It is quite likely that under a different set of assumptions and another term structure model the
results may be vastly different.25 The results are sensitive to the values of volatility and mean
reversion parameters. Measurement and calibration errors might cause potential flaws in the
analysis and therefore this study is subject to the same criticism that applies to studies of similar
nature, such as the joint hypotheses problem common in empirical finance. Also, sample
selection criteria might introduce a potential selection bias. Since, this study examines only 34%
of the all callable bonds issued during the period under consideration, it is likely that those that
have been left out due to incomplete information have relatively higher refunding efficiencies.

The analysis used in this study can be employed for valuing securities with embedded
options, and for evaluating refinancing decisions, or prepayment behavior.

                                                
25 Chiang and Narayanan (1991) argue that refunding criteria is independent of the type of stochastic process
followed by interest rates, since current prices reflect all information regarding investors’ expectations of future
interest rates. However, in order to implement their dynamic programming model to evaluate refunding an interest
rate model is required. This implementation is accomplished by employing the finite difference method similar to
that outlined in Brennan and Schwartz (1977).
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