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(ABSTRACT) 

The entity-relationship and extended-entity-relationship 

models are outlined. The concepts are used to introduce the 

object-oriented and relational models, operations, implemen- 

tation, and application domains. 

Extensions of relational databases are examined to 

uncover object-oriented techniques utilized. The object- 

oriented techniques include: addition of entity identifiers, 

addition of new types, expansion of the data manipulation and 

definition languages. Differences between object-oriented and 

relational databases are discussed. They include: schema 

design, encapsulation and instantiation, degree of use, 

addition of new types, integrity and security, version 

management, and distributed processing. 

Computer-aided design (CAD), computer-aided software 

engineering (CASE), office information systems (OIS), and 

universities administrative systems (UAS) are selected for a 

comparative analysis of relational and object-oriented



databases. A threshold model consisting of the following 

criteria is designed: schema evolution, encapsulation, ease 

of use and implementation, addition of new types, security and 

integrity, importance of versions, distribution, and use of 

object identifiers. 

The relational and object-oriented databases used in the 

analysis are defined depicting their features as they relate 

to the criteria under analysis. The requirements for CAD, 

CASE, OIS, and UAS categories are defined as well. 

Finally, the threshold model is used to determine the 

suitability of the two database models for each application 

category. It is then concluded that object-oriented databases 

fulfill the requirements of CAD, CASE, and OIS applications 

whereas the relational database fall unacceptably short. 

Object-oriented databases are judged marginally advantageous 

for the UAS application. 

A description of the analysis and the conclusion is 

included.
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OBJECT-ORIENTED AND RELATIONAL DATABASES: 

A COMPARATIVE STUDY OF CONCEPTS AND APPLICATIONS 

I. INTRODUCTION 

While relational databases remain the front-runner in the 

category of commercial applications, their appropriateness to 

other areas of applications such as computer-aided design 

(CAD), office information systems (OIS), and computer-aided 

software engineering (CASE) has been contested. In the past 

few years, the object-oriented model has emerged as the likely 

candidate to fill the gap left by the relational model. While 

several types of object-oriented databases have been iden- 

tified, a standard object-oriented model has not yet emerged. 

However, there are common components that form the basis for 

an object-oriented model. In this paper, we will look at what 

seems to constitute that common thread. [Carey 88] 

Meanwhile, there has been tremendous activity to extend 

the relational model to address the new application cate- 

gories. In general, the extensions aim at capturing more 

semantics in the database while maintaining the attractive 

features of the relational model such as its mathematically 

based structures. 

This paper examines the ways in which the relational 

model is extended to capture more semantics by using object-



oriented techniques. Further, the extended relational and 

object-oriented models is juxtaposed to determine whether 

critical differences exist that could affect the selection of 

one model over the other. 

Lastly, the paper will examine four categories of 

applications: CAD, CASE, OIS, and UAS--~representative of the 

typical commercial application-- to determine whether the 

object-oriented is more appropriate than the relational. 

The remainder of the paper is organized in the following 

fashion: Section I is an introduction to the basic database 

concepts and the relational and object-oriented models; 

Section II is a survey of relational database extensions using 

object-oriented techniques. Section III consists of a 

comparison of the two models in meeting requirements of the 

application categories under study. 

This section will present database concepts and 

terminology. First, the Entity-Relationship (ER) and Extended 

Entity-Relationship (EER) models are outlined. The ER and EER 

model are used as a platform to explain the relational and 

object-oriented models. 

Basic concepts of typical relational and object-oriented 

databases will be defined. For each database, the model, 

typical operations, architecture, integrity, and application 

domain will be explained.



I.A. Database Concepts and Fundamentals 

A database, regardless of the model it espouses must 

possess certain basic features which will characterize it as 

a database. 

- A database management’ system (DBMS) has a 

non-trivial model and language. That is, the DBMS 

understands some structure on the data (the data 

model) it contains, and provides a language for 

manipulating that structured data. 

- A DBMS can represent relationships between entities, 

the relationships can be named, and the language can 

query those relationships. 

- A DBMS provides a persistent and stable store. By 

persistent we mean that data are accessible past the 

end of the process that creates them. By stable, 

we mean that data have some resiliency in the face 

of process failure, system failure, and media 

failure. This resiliency is due to a recovery 

mechanism, which writes information about changes 

to the database to secondary storage, and uses this 

information to make corrections to the data after 

a failure.



A DBMS permits simultaneous use of the database by 

multiple users, although not necessarily of the same 

data items at once. 

The address space of a DBMS is not constrained by 

limitations in the physical processor. Thus, the 

size of a database should not be limited by the 

amount of main memory, or by the address range of 

virtual memory. 

A DBMS can help to ensure the correctness and 

consistency of the data it contains, by enforcing 

integrity constraints, which are statements that 

must always be true for data items in the database. 

[Zdonik 90] 

Two of the models used in the database field are the ER 

and EER models. The ER, EER, relational, and object-oriented 

models each have produced different types of databases. 

However, each of the more recent models have borrowed concepts 

and techniques from the predecessors. In this section, the 

ER and EER models are explained to lay the foundation for the 

definition of relational and object-oriented databases. 

I.A.1. 

The 

The Entity-Relationship Model 

entity-relationship (ER) model has been most 

successful as a tool for communication between the designer



and the end-user during the requirements analysis and 

conceptual design phases because of its ease of understanding 

and its convenience in representation. [Teorey 86] 

In defining the ER model, initially, Chen proposed three 

classes of objects: entities, attributes, and relationships. 

Entity sets were the principal distinguishable objects about 

which information was to be collected and usually denoted a 

person, place, thing, or event of informational interest. 

Attributes were used to detail the entities by giving them 

descriptive properties such as name, color and weight. 

Finally, relationships represented real-world associations 

among one or more entities. [Teorey 86] 

The relational database design approach uses both the ER 

model and the relational model in successive stages. It 

benefits from the simplicity and ease of use of the ER model 

and the structure (and associated formalism) of the relational 

model. [Teorey 86] 

There are two types of attributes: identifiers and 

descriptors. The former is used to uniquely distinguish among 

the occurrences of an entity, whereas the latter is used to 

describe an entity occurrence. Entities can be distinguished 

by the "strength" of their identifying attributes. Strong 

entities have internal identifiers that uniquely determine the 

existence of entity occurrences. Weak entities derive their 

existence from the identifying attributes of one or more 

"parent" entities.



Relationships have semantic meaning, which is indicated 

by connectivity between entity occurrences (one to one, one 

to may, and to may), and the participation in this 

connectivity by the member entities may be either optional or 

mandatory. 

I.A.2. The Extended Entity-Relationship Model 

The EER model introduces category abstraction into the 

ER model. The introduction results in two additional types 

of objects: subset hierarchies and generalization hierarchies. 

The subset hierarchy specifies possibly overlapping subsets, 

while the generalization hierarchy specifiers strictly non- 

overlapping subsets. (Teorey 86] 

A generalization hierarchy occurs when an entity (which 

we call the generic entity) is partitioned by different values 

of a common attribute. The generalization object is called 

an "IS-A" exclusive hierarchy. The introduction of the subset 

and generalization hierarchies allows for the capture of more 

real-world meaning in the database. A subset hierarchy is the 

case in which every occurrence of the generic entity may also 

be an occurrence of other entities that are potentially 

overlapping subsets. These concepts have later been used by 

the object-oriented databases in the development of the model. 

[Teorey 86]



The generalization hierarchy implies that the subsets are 

a full partition, such that the subsets are disjoint and their 

combination makes up the full set. The subset hierarchy 

implies that the subsets are potentially overlapping. [Teorey 

86] 

I.A.3. Schemas and Instances (Evolution and Extensibility) 

It is important to recognize that a database is a 

dynamic, evolutionary body of information. The current 

contents of a database are termed an instance of a database, 

or equivalently, a snapshot of the database is its instance 

at that moment. 

The schema consists of the database entities and the 

relationships among them. As we will see later one major 

difference between the relational and object-oriented model 

is the ease with which the model accommodates dynamic changes 

to the scheme of the database by the user. The evolutionary 

quality of a database is termed extensibility. 

There is a great difference in the way schemas and 

changes to them are managed by relational and object-oriented 

databases. As we will see in section I.B. object-oriented 

databases allow for dynamic changes of the schema and manage 

versions of entities as they change. Relational databases are 

on the other hand incapable of such evolution and change 

control.



I.A.4. Constraints and Semantics 

Disallowed entities or relationships may be excluded by 

defining restrictions called constraints on the entity set. 

Constraints are expected to be true for any structure within 

the database schema. [Tsichritzis 82] 

Semantic data modeling aims at capturing the meaning of 

data while still preserving data independence. Semantic is 

captured with the goal of handling database operations in a 

more intelligent manner. The semantic of data may be 

represented with the generalization, aggregation, and 

association relationships. [Codd 79] 

While both object-oriented and relational databases 

handle constraints on entities and capture meaning of data, 

they differ greatly in the extent of which they accomplish 

those goals. We will see in section I.B how successful each 

database is in maintaining the integrity of the database and 

the modeling of the entities being represented. 

I.B. Relational Databases 

Relational databases are based on the relational model 

proposed by Codd in 1970 which primarily addressed the issue 

of data independence. Relational database management systems



(RDBMS) have successfully been commercially used for some 

years. 

I.B.1. The Relational Model (Representation) 

The relational model was introduced to correct the 

problems of data independence and data inconsistency present 

in the databases of the day. Those databases lacking in the 

properties targeted by Codd were primarily based on the 

network or hierarchical models. [Codd 70] 

Codd proposed that the conceptual view of data should 

remain unchanged when the internal representation of data is 

modified. He also proposed the relational model as a basis 

for treating the issues of redundancy and consistency of 

relations. The following is a description of the relational 

model as it has been implemented in RDBMSs. 

The mathematical concept underlying the relational model 

is the set-theoretic relation, which is a subset of the 

Cartesian product of a list of domains. A domain is simply 

a set of values. The Cartesian product of domains 

D1,D2,...,Dk, written D1xD2x...xDk, is the set of all k-tuples 

(v1,v2,...,VK) such that vl is in D1, v2 is in D2, and so on 

{Ullman 82]. 

A relation is any subset of the Cartesian product of one 

or more domains. The members of a relation are called tuples. 

It helps to view a relation as a table, where each row is a
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tuple and each column corresponds to one component. The 

ordering of rows is irrelevant and all rows are distinct. 

The columns are often given names called attributes which are 

the names of the corresponding domains. The ordering of 

columns is significant corresponding to the order of the 

domains D1,D2,...,Dk. However, Codd proposed that users deal 

not with relations which are domain-ordered, but with 

relationships which are their uniquely identifiable 

domain-unordered counterparts, at least within any given 

relation. [Codd 70] [Ullman 82] 

The set of attribute names for a relation is called the 

relation schema. The collection of relation schemas used to 

represent information is called a database schema, and the 

current values of the corresponding relations is called the 

(relational) database. [Ullman 82] 

An attribute (or combination of attributes) ina relation 

scheme has values that can uniquely identify each component 

of that relation scheme. Such an attribute is called a 

primary key. The primary key corresponds to the descriptor 

identifier of the ER model. It is important to note that the 

primary key in the relational database is value-based, which, 

aS we will see later, could restrict the freedom of the user 

in changing its value. 

One of Codd's primary objectives in the proposal of the 

relational model was the elimination of the need for user 

knowledge of the machine representation of data. The
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relational model provides maximal independence between 

programs and machine representation and organization of data. 

This feature of the relational model was its major distin- 

guishing factor from other data models of the day and it has 

been an inherent part of its implementation. [Codd 70] 

I.B.2. Operations 

While the insertion, deletion, and modification of tuples 

are necessary operations on the database; it is however the 

query operations that represent the challenging aspects of a 

data manipulation language. 

Query languages for the relational model are based on two 

broad classes: 

1. Algebraic languages 

2. Predicate calculus languages 

Given the mathematical foundation of the relational 

model, operations on the database are easily formulated and 

optimized. Since relations in the relational model are sets, 

set operators such as union, intersection, and set dif- 

ference are applicable to those relations. Other useful 

operations are the intersection, quotient, join, projection, 

selection, cartesian product, and the normal join. [Ullman 

82] [Codd 70]
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I.B.3. Architecture 

The physical database design, a nontrivial task for large 

and complex databases, requires a good understanding of how 

the database will be used and the frequency of different 

operations. Also of fundamental importance to relational 

database is the management of primary keys. [Date 86] 

Relational DBMS's use different file organizations. 

Among the used implementations are the heap file organiza- 

tion, hashed, and index-sequential schemes. Naturally, the 

goal of the physical design is to speedup data access, 

retrieval, and modification. 

I.B.4. Integrity 

The integrity of databases are maintained by providing 

the DBMS with a mechanism for expressing constraints on 

relations such that errors may be detected and prevented. 

DBMSs should be able to enforce two essentially different 

kinds of constraints. One set of restrictions on relations 

depend on the semantics of domain elements. These 

restrictions depend on understanding what components of tuples 

mean. The second set depend only on the equality or 

inequality of values. Additionally, as it is impossible for 

databases to be devoid of redundancies, it is critical that
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consistency be maintained between different copies of the 

data. 

I.B.5. Applications 

The relational data model was introduced at a time when 

business systems such as employee information systems and 

financial systems were the typical database applications. 

Since the introduction of object-oriented models other 

database categories have been targeted which were not 

satisfactorily addressed by the relational model and its 

predecessors. In section III, we will discuss the suitability 

of the relational model versus that of the object-oriented 

model as they treat each different category of applications. 

I.C. Object-Oriented Databases 

The fields of programming languages, artificial intel- 

ligence, and software engineering have contributed towards the 

development of the object-oriented data model. The first 

appearance of the notion of an object as a programming 

construct was in Simula, a language for programming computer 

Simulations. The object-oriented model like object-oriented 

programming languages prescribes to the idea of encapsulation 

and reusability. Similar to relational databases, object- 

oriented databases possess the basic requirements of a DBMS
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described in section I.A. However, the foundations of the 

object-oriented are entirely different. 

I.C.1. The Object-Oriented Model and Operations 

An object-oriented model is based on the encapsulation 

of objects. An object is an abstract machine that defines a 

protocol through which users of the object may interact . The 

protocol of an object is typically defined by a visible 

interface consisting of a set of messages (i.e. operations) 

with typed signatures. The objects realization (i.e. its data 

structures and the implementation of its operations) are 

hidden from the user. The object interprets the message and 

carries out the operation if parameters are of the correct 

types. [Nierstrasz 89] [Zdonik 90] 

A message is implemented by the object method. A message 

name can be overloaded. In object-oriented systems, opera- 

tions may be polymorphic, that is they work on a variety of 

object types. 

The same operation maintains its behavior transparently 

for different argument types. Class inheritance is closely 

related to polymorphism. The same operations that apply to 

instances of a parent class also apply to its subclasses. 

Polymorphism enhances reusability of code. 

Every object is an instance of some class. A class is 

therefore a template for its instances. Classes are typically
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arranged in a directed graph, with the edges connecting 

superclasses to their subclasses. In object-oriented data- 

bases users are provided with facilities to define their own 

classes and instantiating their own objects. An object class 

specifies a set of visible operations, a set of hidden methods 

that implement operations. [(Nierstrasz 89] 

An important feature of the hierarchy of classes is the 

implementation of inheritance rules. Inheritance varies 

depending on what is inherited and when and how inheritance 

takes place. Class inheritance is often represented as the 

fundamental feature that distinguishes object-oriented models 

from other models. 

Object-oriented models provide for database schema 

evolution or extensibility through mechanisms for creating new 

types. Although the idea of creating new types is not new to 

the database field, the view that a type is really an abstract 

data type that encapsulates its implementation is rather 

original. 

Object-oriented data models are also characterized by the 

ability to make references through an object identity. The 

identity of the object should remain invariant across all 

possible modifications of the object's value. The relational 

database model is however value-based. Since entities are 

identified by their keys, the value of the key may not be 

changed. On the other hand, in the object-oriented model the
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identity which can never be changed is not part of the 

object's realization. 

Similar to the aggregation concept in the EER model, 

another important concept in an object-oriented database is 

the idea of collections --IS-PART-OF-- which serve aS a way 

to aggregate related objects. Like the EER model, the object- 

oriented model allows for sharing of objects. This parallels 

the subset hierarchy of the EER model. Query operations are 

performed over collection of objects. 

As new types are introduced into the database, new 

algebra for queries are added. Unlike relational databases 

in which query languages remain static and can consequently 

allow for optimization, object-oriented databases do not lend 

themselves as easily to optimization. However, the dynamic 

evolution of the database schema is what makes extensibility 

a possibility. We will discuss the advantages and 

disadvantages of object-oriented versus relational databases 

as they pertain to query languages and their efficiency in 

section II. 

In object-oriented databases a relationship consists of 

a correspondence between objects. Relationships or properties 

may be objects themselves and as such they will be subject to 

a protocol which will describe their behavior.
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I.c.2. Architecture 

Object-Oriented databases are typically implemented with 

an interface to an object manager which is in charge of 

handling the activities of objects as they relate to disk 

storage and retrieval, and buffering of data. The degree of 

semantics built into the storage manager is an important 

architectural design issue. 

The intelligence built into the object manager can have 

significant efficiency implications. For example, the object 

manager can improve speed by clustering collections of objects 

in the same physical area. 

I.C.3. Integrity 

Integrity constraints are predicates on the state of the 

database that the database management system is responsible 

for enforcing. Unlike most other DBMSs which typically 

support schema-level constraints, object-oriented databases 

have the capabilities to allow for greater granularity with 

integrity constraints definition at instance-level or for that 

matter at a superclass level. [Zdonik 90]
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I.C.4. Applications 

CAD, CASE, OIS, and scientific applications are among 

databases that object-oriented databases support typically 

not addressed by other DBMSs. However, object-oriented 

databases can also address the application areas previously 

handled by other DBMSs. We will attempt to discover the ease 

and efficiency with which object-oriented databases can manage 

different application areas when compared to relational 

databases. However, it is important to note that while 

relational DBMSs have matured and are in commercial use, 

object-oriented databases are still in developmental stage and 

are just beginning to reach the mass market. As such, our 

discussion is comprised of comparisons of theories, 

techniques, and concepts and does not represent the similarit- 

ies or differences of marketed products.



II. RELATIONAL DATABASE DESIGN USING THE OBJECT-ORIENTED 

APPROACH: TECHNIQUES AND ISSUES 

When introduced in 1970, the relational data model 

primarily addressed a single category of applications: the 

typical business systems. Those applications included among 

others UASs. However, other application areas such as 

computer-aided design (CAD), computer-aided software 

engineering (CASE), and office information systems (OIS) which 

have more complex data requirements have since taken center 

stage in the database field. While the addition of more 

semantics to the database is motivation enough for the 

extension of the relational database, it is, however, to 

address the needs of these new categories of database 

applications that numerous paths in meeting those demands have 

been pursued. The primary goal of initiated efforts consist 

of allowing for more flexibility and control on the part of 

the user in order to represent the application domain more 

accurately. 

One approach attempted in expanding the application 

domain of the database systems has been to extend the current 

relational data models. The introduction of new scalar types, 

structured types, and complex data types and the capability 

to define adequate data manipulation for the new types have 

been the area of focus. 

19
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Meanwhile, the object-oriented model has been introduced 

as an alternate approach to meeting the more rigorous data 

requirements. Object-oriented databases have brought the 

application programs and the database systems closer. In 

doing so, object-oriented databases have successfully 

addressed the more complex data requirements. This has been 

possible in part by mechanisms allowing for the creation of 

new data types using the basic data types embedded in the 

primary database system. Along with the creation of new data 

types, object-oriented databases allow for the definition of 

new operations on those types. 

In this section, we will discuss the techniques used in 

extending the relational data model to accomplish the task of 

expanding its application domain. The methods used will be 

evaluated to determine the extent of their use of object- 

oriented techniques in accomplishing that goal. On the other 

hand, we will analyze areas in which the two models differ, 

disclosing issues which could be a determining factors in the 

choice of one database over the other. 

II.A. Techniques 

The main limitation of the relational model is its 

semantic scantiness, that often prevents relational schemas 

from modeling completely and expressively the natural relatio- 

nships and mutual constraints between entities. Since Codd
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introduced the relational model many extensions have been 

proposed with the intent to enlarge the application domain 

addressed by relational databases. Originally, the relational 

model focused on typical business applications (e.g. inven- 

tory or personnel systems). However, the focus has shifted 

to include more complicated categories such as CAD applica- 

tions. In extending the relational model, a wide variety of 

approaches are used which also include object-oriented 

concepts. In this section, a survey of the most prevalent 

extensions is introduced while comparing the degree of 

adherence to object-oriented concepts. [Zaniolo 90] [Codd 70] 

Codd asserts that a meaning oriented data model stored 

in a computer should enable it to respond to queries and other 

transactions in a more intelligent manner. Such a model could 

also be a more effective mediator between the multiple 

external views employed by application programs and end users 

on the one hand and the multiple internally stored representa- 

tions on the other. Proponents of RDBMSs seeing the need for 

more functionality (i.e. as provided by object-oriented 

models) have attempted to extend the relational databases 

while remaining as close to the original relational model as 

possible. [Codd 79] 

Stonebraker asserts that a complete extended type system 

should allow [Stonebraker 86a]:
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1. The definition of user-defined data types 

2. The definition of new operators for these data types 

3. The implementation of new operators for these data 

types 

4. Optimized query processing for commands containing 

new data types and operators. 

In general, extended relational systems support higher- 

level modeling features, such as are found in semantics data 

models, plus some capabilities found in object-oriented 

databases (OODBs) : adding new scalar types, set- or 

array-valued attributes and DML stored in the database. 

[Zdonik 90] 

In our survey, the various extension techniques will be 

evaluated for the ease in which the database is expanded 

without disrupting ongoing work. However, our analysis of 

extensions to the relational model is examined limited to 

object-oriented techniques. [Codd 70] 

II.A.1. What parts of the database is being extended? 

The primary extension to relational databases has been 

the addition of entity identifiers or surrogates. This is an 

important deviation from the original value-based attribute 

identifiers.
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Further, new types have been introduced into the data- 

base. These new types build upon the primitive types of the 

system and can vary in complexity from scalar types to complex 

types. Along with the introduction of the new types, opera- 

tors have been introduced to handle then. 

II.A.1l.a. Addition of entity identifiers 

Almost universally all new models extending the rela- 

tional database model introduce the idea of an entity or 

object identifier, otherwise called surrogate. Surrogates are 

system assigned and never change. Their value cannot be 

changed by users. Each entity or object is assigned a unique 

ID and all references are made via the ID. Object ID's are 

completely independent of changes in data value and physical 

location. [Codd 79] [Blaha 88] 

Codd asserts that the need for unique and permanent 

identifiers for database entities such as employees, sup- 

pliers, etc., is clear. User-defined and user-controlled 

primary keys in the relational model which were originally 

intended for this purpose pose difficulties. There are three 

problems in employing user-controlled keys as permanent 

identifiers for entities [Codd 79]
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1. The values of user-controlled keys are determined 

by users and must therefore be subject to change by 

them. 

2. Two relations may have user-controlled keys defined 

on distinct domains and yet the entities denoted are 

the same. 

3. It may be necessary to carry information about an 

entity either before it has been assigned a user-co- 

ntrolled key value or after it has ceased to have 

one. 

Since surrogates uniquely identify entities or objects, 

primary keys are no longer necessary for entity identifica- 

tion. Surrogates undertake the role of the primary keys. 

Subsequently, the value-based keys, traditionally known as the 

primary keys become another set of descriptive attributes. 

Thus, the user will no longer have to invent arbitrary keys 

for purposes of identification. Additionally, the primary key 

for relationship tables would be one or more IDs from par- 

ticipating objects. 

There are however extended relational DBMSs that intro- 

duce more semantics into the model without the addition of 

object identifiers. The POSTGRES data model introduces new 

abstract data types such as data of type procedure while still 

maintaining the value-based primary keys of the relational 

DBMS as the identifying component of the tuple. [Rowe 90]
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II.A.1.b. Addition of new types (Abstract data types) 

The most important extension mechanism employed is the 

addition of new types to the primitive system types. The 

relational model has been extended with abstract data types 

including user-defined operators and procedures, relation 

attributes of type procedure, and attribute and procedure 

inheritance. These mechanisms can be used to simulate a wide 

variety of semantic and object-oriented modeling constructs 

including aggregation and generalization, complex objects with 

shared subobjects, and attributes that reference tuples in 

other relations. [Rowe 90] 

II.A.1.b.i. Scalar types 

In relational databases the domain of attributes form a 

small set basic types. Extended and extensible relational 

databases allow for definition of new types based on types 

already existing in the DBMS. In general, the introduction 

of new types into the database facilitate a more accurate 

representation of semantics inherent in the application model. 

[Schwarz 86] 

The capability to add new data types has been one of the 

primary areas of extension of relational databases. This
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capability is launched with the addition of user-defined 

scalar types (i.e. atomic). 

In the original relational model attributes can only be 

atomic (e.g. integer, floating point, or boolean). However, 

extended relational DBMSs allow the user to extend the system 

by adding new atomic types using an ADT definition facility. 

[Rowe 90] 

Although user-defined scalar types are represented by the 

base types, different operators, implemented by extensions to 

the primary database system, need to be defined for then. 

Scalar types facilitate more thorough semantic checking. 

[Schwarz 86] 

IIT.A.1.b.ii. Structured types 

This concept generalizes to hierarchically-structured 

types. As in the case of scalar types, the definition of a 

new structured type would include new operators for the type 

that implemented. Arrays are another construct for structur- 

ing data that are not part of relational databases. However, 

they are widely used in general purpose programming languages. 

In order to eliminate this aspect of the impedance mismatch 

between the database and the programming language, such 

structured types as arrays are also added to the collection 

of types supported by the extended relational DBMS. [Schwarz 

86]
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Among the built-in data types are unbounded varying 

length arrays of fixed types with an arbitrary number of 

dimensions. Variable length arrays are provided for applica- 

tions that need to store large homogeneous sequences of data. 

The availability of set-valued attributes also adds to the 

conciseness and expressivity of the relational database. 

[Rowe 90] 

II.A.1.b.iii. Complex objects (aggregation, generalization, 

and inheritance) 

In order to address the more complex application domain, 

relational databases have added complex objects to their 

repertoire. Complex objects are defined as data structures 

that are composed of an arbitrary collection of records from 

one or more relations. Relational databases have been 

extended by allowing relations with attributes such that their 

domain is a set of relations. A relation inherit attributes 

from its parent(s). Relations may inherit from more than one 

parent. [Schwarz 86] 

Complex objects are generally represented through 

generalization and aggregation relationships. Mechanisms to 

define this type of relationships are provided in the DDL and 

DML. Generalization allows one to refine the structure of 

entities and add detail as needed. One can choose the proper 

level of abstraction for each context. The resulting design
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is robust and extensible. Smith and Smith define generaliza- 

tion as an abstraction in which a set of similar objects is 

regarded as a generic object. There are two aspects to this 

notion: instantiation and subtype. Both are forms of special- 

ization, and their inverses are forms of generalization. The 

extensional counterpart of instantiation is set membership, 

while that of subtype is set inclusion. Associated with a 

generalization hierarchy is the property inheritance rule. 

[Blaha 88] [Codd 79] 

A solution to allow for complex objects is to allow 

records to have fields that themselves are relations. The 

primary database system must be able to retrieve these 

embedded relations and must provide a mechanism for scanning 

or querying them. [Schwarz 86] 

Each object class maps directly to one table. All object 

fields become attributes of tables. Complex objects are 

represented through the generalization, aggregation, and 

association relationships. A generalization or is-a relation- 

ship partitions a class into mutually exclusive subclasses. 

The same object is being represented at each level of the 

generalization. Note that OMT supports multiple inheritance. 

Aggregation is an assembly-component or a-part-of relation- 

ship. Aggregation may be multilevel and recursive. For 

example, a data structure may recursively refer to itself. 

[Blaha 88]
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A generalization relationship has one superclass table 

and multiple subclass tables. The connection between the two 

tables is made via the common object ID. Aggregation rela- 

tionships are represented depending on the multiplicity of the 

relationships. Aggregation relationships are broken down into 

existence-dependent and free-standing aggregations which would 

determine the representations. Associations are mapped to 

distinct tables. 

Attribute types can be of type procedure. The extended 

relational DBMSs query languages allow for values of type 

procedure to be stored in an attribute. The value of an 

attribute of type procedure is a relation. The value may 

include tuples from different relations. [Rowe 90] 

II.A.1l.c. Query language (additional operators) 

Zero or more operators can be implemented for new The 

precedence level which is required when several user defined 

operators are present and precedence must be established among 

them. The operators are then compiled to be used. [Stonebra- 

ker 86a] 

By introducing new types such as set-valued attributes, 

the extended relational DBMSs provide accordingly for a number 

of new operators such as the following set operators [Zaniolo 

90] 

(set) equals
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{= (set) does not equal 

> properly contains 

>= contains 

< is properly contained in 

<= is contained in 

II.A.1.d. Data access method 

If database are to be used to store the new kind of data 

manipulated by new applications, they must also support the 

specialized access methods needed to retrieve this data with 

the performance such applications require. [Schwarz 86] 

A DBMS should provide a wide variety of access methods, 

and it should be easy to add new ones which will efficiently 

support user-defined data types. In general an access method 

is simply a collection of procedure calls that retrieve and 

update records. An access method implementor utilizing 

interfaces to the log manager, the concurrency control 

manager, and the buffer manager. [Stonebraker 86] 

Access methods fall into three general classes. Access 

methods that are the tightly bound to the primary system. Both 

the structure that implements the access method and the 

information stored in that data structure are supplied by the 

primary database system. Another access method uses one of 

the data structures provided by the primary database system 

to map keys to record-location information, but the data
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stored in the structure is either derived or interpreted in 

a nonstandard way. Still another access method is one for 

which the data structure used to store access information is 

not managed by the primary database system. The data stored 

in the structure may also be derived or interpreted in a 

nonstandard ways. Exogenous access methods are useful for 

applications that can only access data efficiently using 

specialized search structures. 

Current relational database systems use indexes for fast 

access to records in a single relation. An extension could 

be used to manage indexes that could improve the performance 

of multi-relation queries. 

II.A.1l.e. Addition of functions 

The addition of functions is based on the object-oriented 

methods which brings the programming language and the database 

closer together. It provides for operations other than those 

produced for by the DML on the entities. 

In extended relational DBMSs, user-defined procedures may 

be written in a conventional programming language and can be 

used to move a computation from a front-end application 

process to the back-end DBMS process. [Rowe 90]
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II.A.2. Where are the extensions incorporated? 

As new types have been introduced into the relational 

databases, accordingly the data manipulation and data defini- 

tion languages have been extended to manage new types. 

II.A.3.b. DDL 

Once the capability for definition of new types have been 

added to the relational data models, so have mechanisms been 

provided in the data definition language. 

The DDL provides the facilities for the definition of new 

data types, the operators applicable to them, and the new 

access methods. 

The DDL provides support for the new notions of entities 

with surrogates, aggregation, generalization, and set-valued 

attributes. Thus allowing users to define new types as 

needed. 

IIT.A.2.b. DML 

With the addition of user-defined operators and access 

methods, extended relational DBMSs have altered their primi- 

tive DML to support the new extensions. The DML supports 

access methods for the newly defined types, such as new
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indexing mechanisms. It should also be able to implement the 

new query operators defined by the DDL. 

IIT.B. Issues 

Extensions to relational databases have expanded their 

application domain. There are, however, pronounced differen- 

ces from object-oriented databases. In this section, we will 

focus on those diversities and analyze how they could be used 

in addressing application requirements. 

II.B.1. Schema design 

With traditional DBMSs the design phase results in the 

translation of the model into the database schema which is 

specified in the DBMS using the DDL. After the construction 

of the schema and after it has been fine-tuned in the design 

process, the schema is compiled into machine usable form. As 

users create applications and store data for the applications, 

the data must conform to templates specified in the schema. 

The schema is static in the sense that modifications often 

require a system shutdown and/or reorganization of the 

database, which can be very expensive for a large database. 

This large overhead effectively prevents the use of dynamic 

or interactive schema in traditional DBMSs. For many new
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database applications such as CAD, CASE, and OIS there is need 

to consider interactive systems with schema. [Diedrich 89] 

Existing conventional database systems allow only a few 

types of schema changes. This is because the applications 

they support (conventional record-oriented business applica- 

tions) do not require more than a few types of a schema 

changes, and also the data models they support are not as rich 

as object-oriented models. [Kim 89a] 

While extended relational databases may allow for 

addition of new types, they are however static once defined. 

The schema is compiled and cannot be changed dynamically. 

II.B.2. Encapsulation and instantiation 

Encapsulation represents a software engineering methodol- 

ogy that makes a sharp distinction between the specification 

of a module and the code and data structures that are used to 

implement this specification. Encapsulation is a powerful 

system-structuring technique in which a system is made up of 

a collection of modules, each accessible through a well-defin- 

ed interface. The abstract data-type approach defines the 

interface by a set of strongly typed operation (also called 

message) signatures. It also requires that each type define 

a representation (an instance of some existing data type) that 

is allocated for each of its instances. This representation 

is used to store the state of the object. Only the methods



35 

implementing operations for the objects are allowed to access 

the representation, thereby making it possible to change the 

representation without disturbing the rest of the system. 

[Zdonik 90] 

In the extended relational data models, new types may be 

constructed, but the underlying representation of the type 

remains visible. While encapsulation is an inherent part of 

object-oriented databases, it is absent in relational DBMSs. 

Instantiation is perhaps the most basic object-oriented 

reusability mechanism. Every programming language provides 

some built-in data types (like integers) that can be instan- 

tiated as needed. Objects may be either statically or 

dynamically instantiated. [Diedrich 89] 

Limited instantiation capabilities have been added to 

extended relational DBMSs with the introduction of generaliza- 

tion, specialization, and inheritance concepts. 

II.B.3. Ease of use and implementation 

In general, relational databases allow for limited 

dynamic modifications, such as addition of attributes, but are 

predominantly static in incorporating new mechanisms. In 

addition, newly defined operators have to be compiled to be 

recognized by the data manipulation language. Likewise, data 

access methods have to be compiled to be recognized by the 

DML.
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Object-oriented databases allow for the run-time defini- 

tions of types and methods. Thus, system shutdown is not a 

necessary condition of schema evolution. This allows the user 

more freedom to manipulate the database and the adaptability 

of the database to the application domain. This is possible 

because types, methods, etc. are also objects contained within 

the database. 

II.B.4. Manipulation of complex objects/new types 

Many applications require the ability to define and 

Manipulate a set of objects as a single logical entity for 

purposes of semantic integrity, and efficient storage and 

retrieval. Collections of objects augment the semantic 

integrity of an object-oriented data model through the notion 

of dependent objects. A dependent object is one whose 

existence depends on the existence of another object, and is 

owned by exactly one object (i.e. IS-PART-OF). The definition 

of a collection of objects as a composite object also offers 

an opportunity to improve the performance of a database 

system. A composite object may be used as a unit for cluster- 

ing related objects in the database. This is because, when 

an application accesses the root object, it is often likely 

to access all (or most) dependent objects as well. Thus, it 

is advantageous to store all constituents of a composite 

object as close to one another as possible on secondary
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storage. Further, in a multiuser environment, a composite 

object may be used as the unit of locking to reduce the system 

overhead associated with concurrency control; that is a 

composite object may be locked as a unit, rather than requir- 

ing a lock for each component of a composite object. [Kim 87] 

A problem in the relational model is that a complex 

object typically must be decomposed into tuples over several 

relations, and there is no data item that represents the 

object as a whole. Hence, some approaches concentrate on 

treating the complex object as a single unit for purposes of 

query, copying, locking or physical placement. Other projects 

have focused on the ability of complex objects to share 

subparts. In most relational database systems, there is no 

sharing of records between aggregate structures, or a record 

can participate in a fixed number of aggregates. The intro- 

Guction of surrogates is a mechanism for support of shared 

subparts. [Zdonik 90] 

While extended relational DBMSs have added new types 

which include complex objects, they still have to superimpose 

the tuple structure on them introducing efficiency problems. 

II.B.5. Integrity and security (classes and type checking) 

Security refers to the protection of data against 

unauthorized disclosure, alteration, or destruction; integrity
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refers to the accuracy or validity of data [Date 86]. In 

other words: 

- security involves ensuring that users are allowed 

to do the things they are trying to do. 

- integrity involves ensuring that the things they are 

trying to do are correct. 

Various kinds of failures (program, processor, media) and 

violations (consistency, access, typing) can compromise the 

integrity and security of a database. A database system must 

be able to cope with failure by restoring the database to a 

consistent state, and should prevent violations from occurr- 

ing. By program failure we mean that an application program 

may fail to complete due to a run-time error. Processor 

failures, consist of the processor storage management functio- 

ning improperly. The database must remain intact in the face 

of the mentioned failures. By media failure we mean disk flaws 

such as bad sectors which may cause committed data to be lost. 

Protecting against the first two kind of failure requires that 

copies of objects on disk be kept consistent and updated 

carefully, while the third type of failure requires replica- 

tion of objects on disk. [Bretl 89] 

A DBMS can help to ensure correctness and consistency of 

the data it contains by enforcing integrity constraints, which 

are statements that must always be true for data items in the
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database. Some common kinds of constraints are domains for 

fields in records, which specify the range of legal values for 

a field; keys, which say that certain data values serve to 

identify uniquely items in a collection; and referential 

integrity constraints, which assert that a reference in one 

data item indeed leads to another data item. [Zdonik 90] 

Almost all constraints that current DBMSs, including 

relational DBMSs, support are schema-level constraints. They 

are defined relative to entities in the schema, and apply to 

all instances of a type or to all elements of a collection. 

In relational databases typechecking is performed when writing 

the transaction to the database. However, in object-oriented 

databases typechecking is performed dynamically. In relation- 

al databases referential integrity which is directly related 

to functional dependencies are extremely difficult to main- 

tain. This is due to the syntactic nature of the model. 

However, object-oriented databases which capture more semantic 

do consequently manage functional dependencies more naturally. 

[Zdonik 90] 

Versioning also introduces another dimension of integrity 

control into the database. Propagation control is an impor- 

tant aspect of version management which includes control of 

the consistency of data over the timing of the version update 

and the objects that are updated. 

Transactions in business data processing are the unit of 

atomicity, recovery, integrity, and visibility by other users.
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The trend in transaction support for CAD, CASE, and OIS is to 

provide these capabilities at different levels of granularity. 

For design applications in particular, it is useful to have 

constraints that apply to a single object. [Zdonik 90] 

II.B.6. Versioning 

There is a general consensus that version control is one 

of the most important functions in various data-intensive 

application domains, such as CAD systems and OIS dealing with 

compound documents. Users in such environments often need to 

generate and manipulate with multiple versions of an object, 

before selecting one that satisfies their requirements. 

A version can be created from a relation or a snapshot. 

Updates to a version do not modify the underlying relation and 

updates to the underlying relation will be visible through the 

version unless the value has been modified in the version. 

A merge command is provided that will merge the changes made 

in a version back into underlying relation. 

A selection of a set of mutually consistent versions is 

normally referred to as configuration management. In a CASE 

environment, a configuration is one version of each of the 

modules in a system such that set of versions produces a 

consistent system. The task of selecting this set of versions 

is referred to as configuration management. [Zdonik 90]
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The notion of automatic propagation of values is related 

to the problem of version and configuration management. This 

information propagation or triggering is called percolation. 

When an object is updated or deleted, or a new version of the 

object is created, some or all of the objects that have 

referenced it may become invalid, and thus need to be notified 

of the change. [Zdonik 90] 

Version management is of critical importance to ver- 

Sionable databases. These databases introduce the idea of 

transient and working (or generic) versions to control update 

propagation. They also present rules to manage the stability 

of the database. These rules are based on invariants that 

have to hold true before and after the update is applied to 

the database. 

For the most part relational databases do not provide 

versioning which is a significant requirement of CAD and OIS. 

Versions are a way to record the history of an object. A 

given version can have several successors as well as several 

predecessors. The latter case is used for merging competing 

versions into a single agreed-on combined form. Few extended 

relational DBMSs allow users to save and query historical data 

and versions. By default, data in a relation is never deleted 

or updated. Conventional retrievals always access the current 

tuples in the relation. [Zdonik 90] [Stonebraker 86b]
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II.B.7. Distributed databases 

Modern database systems are frequently distributed, 

meaning that the data is kept at multiple sites. A common 

reason for installing a distributed system in the first place 

is simply that there may not exist any single machine with 

adequate capacity for the application. The various sites are 

connected into a communication network. A user (end-user or 

application programmer) at any site can access data stored at 

any site. In many ways of a distributed system represents a 

partnership among a set of independent but cooperating 

centralized system, rather than as some kind of monolithic and 

indivisible object. It is normal for the links to be relative- 

ly low speed relative to the speed at which a file can be read 

off of a disk. The consequence of this assumption about 

communication is that the transfer of data between computers 

becomes a bottleneck, and most of the issues unique to 

distributed systems concern ways of dealing with this bot- 

tleneck. [Date 86] [Ullman 82] 

- special optimization techniques 

- concurrency control problems 

One opportunity for better performance in an object-orie- 

nted framework derives from the fact that programs (i.e., 

methods) are objects. As such, they can be moved around in
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the distributed database just like any other object. In 

performing a computation or processing a query, the system 

has the choice of moving the data to the programs, or of 

moving the programs to the data. [Zdonik 90] 

To simplify programming and to preserve data indepen- 

dence, a major objective of distributed systems is to provide 

what is usually called location transparency - meaning that 

users should not need to know at which site any given piece 

of data is stored, but should be able to access the entire 

database as if it were stored at their own local site: it 

simplifies the logic of application programs, and it allows 

data to be moved from one site to another. [Date 86] [Zdonik 

90] 

A second objective in distributed databases is to support 

data fragmentation. A system supports data fragmentation if 

a logical object can be divided up into pieces (fragments) for 

physical storage. In relational databases a fragment could 

be any arbitrary subrelation that is derivable from the 

original relation by means of restriction and projection 

operations. In object-oriented databases, the methods may be 

separated from the objects instance variables. A system that 

supports data fragmentation should also support fragmentation 

transparency - i.e. users should be able to behave in all 

cases as if the relation were not fragmented at all (data 

independence again). Relations are easy to fragment, ant the 

fragments are easy to recombine. [Date 86]



IIT. APPLICATION SUITABILITY: RELATIONAL VERSUS OBJECT- 

ORIENTED 

In this section we will look at four different categories 

of applications and their database needs. Computer-aided 

design (CAD), computer-aided software engineering (CASE), and 

office information systems (OIS) have of late been the focus 

of database developers. Each category has its own particular 

set of requirements. To fulfill the database gap created by 

these applications new database models have been introduced 

that aim at meeting those requirements. This section will 

compare the suitability of relational or object-oriented in 

meeting the needs of CAD, CASE, OIS, and UAS. This comparison 

is aimed at exhibiting the applicability of the database 

models in meeting the new application categories as well as 

the typical commercial applications. 

We will define the criteria based on which the appropria- 

teness of object-oriented databases versus relational databas- 

es will be judged as they apply to each application category. 

The criteria included in the threshold model will be described 

in section III.A. They are chosen based on the differences 

between the two models. 

Section III.B will put forth the relational and ob- 

ject-oriented databases that will be used to evaluate the 

applicability of each model to the application categories. 

Neither the relational nor the object-oriented databases 

44
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outlined represent a particular commercial database but rather 

an abstract representation of concepts common to most databas- 

es implementing each model. 

Section III.C will enumerate the requirements of each 

application category. The requirements are stated without 

regard for any particular database model. In fact, it may be 

possible that those requirements will not be satisfied by 

either of the two models under consideration. 

Finally, in section III.D, the paper addresses the 

suitability of the models to each of the application categori- 

es. For each application, the relative suitability of the 

relational and object-oriented models will be examined. 

III.A. The Model 

In order to determine the suitability of relational 

versus object-oriented databases for each of the application 

categories under study, a threshold model on which the 

analysis is based was created. The model addresses criteria 

that may or may not be a feature of either database. 

The model consists of eight criteria where the relational 

and object-oriented databases differ. In some instances, the 

difference is due partly to marginal diversities in the 

feature. In other instances, the disparity is more extreme 

such as the absence of the feature in one or both of the two 

databases. When a feature is absent in the model, such as
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encapsulation in relational database, it is not automatically 

a disadvantage for that database. It is, rather, compared 

against the requirements of the application category. If the 

application requirements demand the feature, then it is 

considered a disadvantage for the applicability of the 

database. 

Figure I is the format for the representation of the 

suitability of the relational and object-oriented databases 

as ranked based on each criteria. The “application category" 

in the table will in each case be replaced by the specific 

application category such as CAD, CASE, OIS, or UAS. The 

title for each row represents the criteria used to evaluate 

the applicability of the database model. The data for each 

model is recorded under their appropriately titled columns of 

the table. 

The values will range from 0 to 10 expressing not 

suitable at all to perfectly satisfactory. An example of a 

zero ranking would be the case where an application requiring 

version management cannot obtain the feature with the proposed 

database model (i.e. the feature is absent in the model). A 

value of 10 will represent the case where the application has 

a strong need for a feature and the database model completely 

satisfies that requirement. The ranking reflects the 

importance of the feature to the application category and the 

ability of the database to satisfy the needs of that
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Figure I - The Treshold Model 
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application category. However, if a feature is not needed by 

an application category it will be marked not applicable. 

III.A.1. Schema evolution 

Traditionally databases make a very strong distinction 

between instances and schemas. Instances are in the database, 

whereas schema information is stored in the data dictionary. 

Many database systems have two different languages to deal 

with instances and schemas. The Data Manipulation Language 

(DML) deals with operations on instances. The Data Definition 

Language (DDL) deals with operations, mainly creation, on 

schemas. Traditional databases allow very little flexibility 

for evolution of their classes. Schema evolution is very 

restricted. Relational systems are better than other system 

in that they sometimes permit adding attributes. However, 

dropping attributes or moving them to other relations is 

seldom permitted (see Section II.B.1). [Tsichritzis 88] 

Object-oriented systems, however, can manipulate instan- 

ces and classes (schemas). Classes are in fact genuine 

objects. Existing commercial database systems do not provide 

such facilities. They do provide, however, extensive facilit- 

ies for class definitions in the database dictionary. It is 

conceivable that these facilities can be made available, and 

integrated as database operations. However, in doing so 

database systems will lose some of the simple user interfaces.
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The great advantage of relational systems is based on the 

relative few, very basic and very clear. operations. 

[Tsichritzis 88] 

The relationships supported between database classes, 

whether they be relations or record types, etc., are quite 

restricted. They may be statically defined between classes, 

as in entity-relationship schemas. Relational systems, on the 

other hand, allow many relationships, but they are completely 

syntactic, based on contents and operations like joins. 

[Tsichritzis 88] 

This criteria will be used to evaluate the application 

category requirements for schema evolution and the degree of 

suitability of the database model. The schema evolution 

criteria will be used to determine schema extensibibity 

required by the application and how well each of the two 

database models accommodate that need. 

IITI.A.2. Is encapsulation a necessary condition? 

We will consider the encapsulation criteria from two 

different perspectives. First, the ability of the database 

to modify its instance variables and methods without affecting 

related objects. Second, the success of the database in 

reusing code and inheritance control. 

Encapsulation is a technique for minimizing interdepen- 

dencies among separately-written modules by defining strict
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external interfaces (see Section II.B.2). A module is 

encapsulated if clients are restricted by the definition of 

the DBMS to access the object only via its defined external 

interface. To maximize the advantage of encapsulation, one 

should minimize the exposure of implementation details in 

external interfaces. A DBMS supports encapsulation to the 

degree that it allows minimal external interfaces to be 

defined and enforced. One characteristic of an object-orient- 

ed DBMS is whether it permits a designer to define a class 

such that its instance variables can be renamed without 

affecting clients. [Snyder 90] 

This issue raises the fundamental question of the purpose 

of inheritance. One can view inheritance as a private 

decision of the designer to "reuse" code because it is useful 

to do so; it should be possible to easily change such a 

decision. alternatively, one can view inheritance as making 

a public declaration that objects of the child class obey the 

semantics of the parent class, so that the child class is 

merely specializing or refining the parent class. [Snyder 90] 

In relational databases entities are accessed by reading 

instance variables (i.e. primary key), defying the encapsula- 

tion rule. Most DBMSs, however, promote inheritance as a 

technique for specialization and do not permit a class to 

exclude an inherited operation from its own external inter- 

face. [Snyder 90]
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Since this criteria may only be present in object-orient- 

ed databases it could possibly eliminate the applicability of 

the relational databases entirely. However, if the applica- 

tion category has no need for this database feature, it will 

then be of no significance to the evaluation of the two 

databases (i.e. N/A). The encapsulation criteria will also 

focus on how well methods or functions are embedded within the 

database. 

TII.A.3. Ease of use and implementation 

Database systems traditionally provide very few general- 

ized types (i.e., record types, relations, etc.). Asa result 

they can provide a small number of very general operations for 

queries and updates on the database objects. The operations 

are the same regardless of the semantics of the objects 

involved. Queries and updates on employees, cars, accounts 

etc. utilize the same operations. Thus, the operations are 

easy to learn. [Tsichritzis 88] 

Object-oriented systems require that all objects provide 

their own set of operations, with some sharing through object 

classes and inheritance mechanisms. In addition, the methods 

can be logically complex. Most of the work in object-oriented 

databases deals with extending databases operations to 

accommodate particular object types. The extensions take two 

forms. First, complex objects can be defined, thus dealing



52 

with structural complexity within objects. Second, operations 

specific to object classes can be defined. Multiple in- 

heritance can be used to define new classes that share 

operations and attributes with existing classes. 

Object-oriented systems provide facilities to manipulate 

instances and classes. Classes are in fact genuine objects. 

Relational DBMSs do not provide such facilities. They do 

provide, however, extensive facilities for schema definitions 

in the database dictionary. However, the great advantage of 

relational systems is based on the relative few, very basic 

and very clear operations. [Tsichritzis 88] 

This criteria will be determined by two variables: 

1. ease of learning 

2. ease of extensibility 

The ease of learning will be measured based on the 

simplicity of the query language. The extensibility feature, 

in turn, stresses ease of implementation. This feature is 

important in evaluating how flexible the DDL is in dynamically 

mapping the logical schema of the database to the database 

schema.
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TII.A.4. Is there a need for new types? 

This criteria will determine whether the primitive data 

types of the system are sufficient for the application 

category under scrutiny. It will determine how well new types 

may be added to the database (see section II.B.4). The new 

types typically include scalar types, structured types, and 

complex types (aggregation and specialization/generalization). 

In particular, complex objects are of special interest. 

Many applications require the ability to define and 

manipulate a set of objects as a single logical entity. We 

define a composite object as an object with a hierarchy of 

classes to which the objects belong as a composite object 

hierarchy. A composite object hierarchy captures the IS-PART- 

-OF relationship between a parent class and its component 

classes, whereas a class hierarchy represents the IS-A 

relationship between a superclass and its subclasses. 

[Banerjee 87] 

III.A.5. Are security and integrity issues? 

Due to the encapsulation of the methods within the 

object, typechecking for object-oriented databases is no 

longer limited to static typechecking or only at write time. 

The timing of the integrity checks also becomes a factor.
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Since our database models both have solid integrity and 

security controls, this criteria will evaluate the granularity 

at which they are applied. The significance of the granulari- 

ty is studied as it applies to the application categories. 

We will also examine the temporal aspects of integrity 

mechanisms. By this, we mean the time at which integrity 

constraints are applied to the entities. 

III.A.6. Importance of versions 

Versions are variations of the same object that are 

related to the history of their derivation. Most application 

systems in the CAD and OIS domains require version control. 

A common requirement of these applications is the desire to 

preserve alternative states for a particular entity. Users 

in such environments often need to generate and experiment 

with multiple versions of an object before selecting one that 

satisfies their requirements. [Banerjee 87] [Fishman 89] 

Many things have properties that vary with time, or with 

respect to other parameters. Does it make sense to version 

such things as employees, departments, products, projects, 

schedules, inventories, documents, etc.? [Kent 89] 

With this criteria, we will evaluate the need of each 

application for versions. Further, the manner in which 

updates to versions are managed (propagation control) will be 

examined.
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How is update managed? Is it necessary to pre-declare 

an object type versioned? Versioning is generally associated 

with a change in the state of an object. But what constitutes 

the "state" of an object? [Kent 89] 

What are the application areas that require versioning 

support? Electronic design, mechanical design, software 

engineering, document management, and what else? [Kent 89] 

TIIT.A.7. Degree and/or importance of distribution 

Traditional databases deal with distribution, if at all, 

by hiding it. A distributed database is a logically in- 

tegrated, physically distributed database. The network is 

not visible, and we seldom have a notion of context, either 

aS a geographic location, i.e., a workstation, or as a logical 

context (see Section II.B.7). [Tsichritzis 88] 

Object-oriented systems need a strong definition of 

context. First, we believe that objects should be aware of 

where they are. Physical location in the network may affect 

their behavior. Second, objects, or collection of objects, 

may encapsulate beliefs, and we therefore need a context to 

define a boundary. Third, objects!’ behavior may be affected 

by their context. Sometimes they should even directly inherit 

methods from their context. A simple example is a text object 

that inherits formatting characteristics of globally coor- 

dinated object managers where objects are managed by local
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object managers but in a completely integrated and transparent 

manner. [Tsichritzis 88] 

We are therefore faced with an interesting dilemma. On 

one hand distributed databases strive to provide a uniform 

globally integrated database. On the other hand object-orien- 

ted systems seem to require a strong notion of context. To 

what extent the two can co-exist depends a lot on how objects 

are mapped into databases. [Tsichritzis 88] 

This criteria will determine whether an application 

category needs a distributed system and as such how well it 

can be satisfied by either the relational or object-oriented 

databases. 

TII.A.8. Use of object of identifiers 

When we model real-world objects with some particular 

purpose in mind, however, we only include some subset of that 

object's description in the model. This subset may not be 

complete enough to capture the object's uniqueness. In some 

cases uniqueness is external (e.g., an object is unique if it 

has some local attribute values and belongs to a different 

set, or is related to a different object). If the concept of 

identity is built into a DBMS, then an object's uniqueness is 

modeled even though its description is not unique. [Khoshafi- 

an 90]
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Database systems utilize object identifiers internally 

for implementation purposes. These identifiers are to be 

visible and available for manipulation by the user in older 

database systems. In the relational model, and in some 

relational systems tuples do not have a visible identifier. 

They are identified by their contents, via primary or secon- 

dary keys. [Tsichritzis 88] 

There are a host of powerful data modeling concepts which 

have been introduced in database models. One of these 

concepts is the need to model arbitrarily complex and dynamic 

objects with versions. A more specific need in this represen- 

tation is the ability to distinguish objects from one another 

regardless of their content, location or addressability, and 

to be able to share objects. Object identity enables us to 

realize this goal. [Khoshafian 90] 

There are several problems with identifier keys which are 

due to the fact that the concepts of data value and identity 

are mixed (see Section II.A.1.a). The solution calls for 

built-in support for identity in the language which is 

independent of its external descriptive data, so that the 

system can provide a strong notion of identity in the represe- 

ntation. [Khoshafian 90] 

Several researchers have argued for a temporal data 

model. The reason is that most real-world organizations deal 

with histories of objects, but they have little support from 

existing systems to help them in modeling and retrieving
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historical data. Strong support of identity in the temporal 

dimension is even more important for temporal data models, 

because a single retrieval may involve multiple historical 

versions of a single object. Such support requires the 

database system to provide a continuous and consistent notion 

of identity throughout the life of each object, independently 

of any descriptive data or structure which is user modifiable. 

This identity is the common thread that ties together these 

historical versions of an object. [Khoshafian 90] 

To deal with this, database languages usually provide 

the capability to map the user's conceptual schema onto an 

internal schema, which describes the way that data is actually 

stored. An internal schema may have multiple copies of the 

conceptual schema and may further partition the attributes of 

an object of the conceptual schema. Some way of relating 

these multiple copies and attribute partitions to the same 

conceptual object is needed. The object's identity provides 

a convenient way of doing this. 

The most powerful technique for supporting identity is 

through surrogates. Surrogates are system-generated, globally 

unique identifiers, completely independent of any physical 

location. Surrogates provide full location independence. 

[Khoshafian 90] 

This criteria will be used to determine how static the 

identifiers of objects are and how important it is to allow 

the freedom to change primary key values. This criteria will
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examine the need for the reintroduction of identifiers into 

databases. It will also examine the effect of object iden- 

tifiers on the realization of complex objects. 

III.B. The Databases 

The relational and object-oriented databases depicted in 

this section represent an abstraction of common features 

present in the corresponding commercial or prototypical 

databases currently in use. We assume that both databases 

have the basic requirements of a database as enumerated in 

section I.A. 

The databases are further outlined to express their 

differences as used in evaluating the degree of suitability 

to each application category. 

III.B.1 The relational database 

We will use Ullman's definition of the relational model 

as the basis for the analysis. The relational database is a 

distributed multiuser system which is based on the relational 

model as defined by Ullman. Thus, it is based on the premise 

of entities represented as tuples. It provides for the 

typical relational operations such as joins, projections, etc. 

(see section I). It possesses a DDL which is based on the 

system defined types and does not allow for type extensions.
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Operations are constrained to the system defined types as 

well. [Ullman 82] 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Schema Evolution: dynamic schema evolution is 

limited to addition of new attributes. 

Encapsulation: is not available. 

Ease of use and implementation: the set-theoretic 

basis of the DML renders the relation database easy 

to use. In addition, the model has the capability 

of being conceptually represented in table form thus 

making it easy to comprehend. 

New types: The relational database is limited to 

its primitive atomic types (integer, floating point, 

fixed-length strings, etc.). 

Integrity: is maintained when writing to the 

database. Integrity constraints are applied at 

relation schema level. 

Versioning: not available. 

Distribution: is supported by allowing for multiple 

sites and fragmentation. 

Object Identifiers: in relational databases, entity 

identifiers are the value-based primary keys. Thus, 

unique identifiers or surrogates are not utilized.
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III.B.2. The object-oriented database 

The object-oriented database represents a collection of 

features common in the currently operational or proposed 

object-oriented databases. The features under scrutiny in 

the threshold model are further explained. 

(1) Schema Evolution: the object-oriented database 

allows for changes to its hierarchy of classes as 

well as to the classes themselves. It also accom- 

modates active data such that an object can trigger 

an action upon being accessed. Changes to the class 

definitions include adding and deleting instance 

variables and methods. Changes to the class 

hierarchy include creation and deletion of a class, 

and alteration of the IS-A relationship between 

classes. [Kim 87] 

Changes to the class hierarchy can be broadly 

categorized as (1) changes to the contents of a 

class, (2) changes to an hierarchy, and (3) changes 

to a class. [Banerjee 87] 

1. Changes to the contents of a class 

1.1 changes to an instance variable 

1.2 changes to a method 

2. Changes to an hierarchy
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2.1 make a class S a superclass of a class C 

2.2 remove a class S from the superclass list 

of a class C 

2.3 change the order of superclasses of a 

class C 

3. Changes to a class 

3.1 adda new class 

3.2 drop an existing class 

3.3 change the name of a class 

Encapsulation: is a necessary requirement for 

object-oriented models (see section I). 

Ease of Use and Implementation: the object-oriented 

database is conceptually more complex than the 

relational model. The result of this complexity is 

that object-oriented databases are harder to use and 

learn than relational databases. However, the 

schema of the object-oriented database is more 

flexible and therefore lends itself more easily to 

the implementation of complex data objects. 

New Types: can be implemented by building on the 

concept of a metatype. The object-oriented database 

is therefore highly flexible in providing for new 

types. 

Integrity and Security: are implemented at the 

object level.
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(6) Versioning: the object-oriented database provides 

for accessing versions of an object's state, and for 

assembling configurations of consistent versions of 

objects. [Zdonik 90]. 

(7) Distribution: the object-oriented database allows 

for distribution and fragmentation. 

(8) Object Identifiers: are an inherent part of the 

object-oriented database. In object-oriented 

systems object identifiers are very important for 

two reasons. First, identifiers provide a permanent 

handle for objects that may evolve or move, in much 

the same way that file names hide the fact that a 

file's contents and physical location may change. 

Second, if an object's contents are properly 

encapsulated, they cannot be expected to provide a 

means for identification. [Tsichritzis 88] 

III.c. Definition of the Application Categories 

In this section, the requirements of each of the four 

application categories under study will be enumerated. These 

requirements will later be used in section III.D to evaluate 

the appropriateness of the relational and object-oriented 

databases.
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ITII.C.1. CAD 

CAD applications are unlike typical commercial environ- 

ments in some important respects, necessitating a distinct 

approach to their modelling [Bapa Rao 86]: 

1. Designs are developed by evolution; details are 

added incrementally to the design. Versions, or 

evolutionary alternatives of the design, must be 

maintained. 

2. Designs are implemented by re-using’ other, 

previously defined, designs, leading to a component 

hierarchy. 

3. A design often represents an integration of multiple 

views (or representations), each denoting some 

aspect of that design (e.g., the logical and 

physical views of a VLSI chip). Uniform descrip- 

tions of component structures and views must be 

maintained along with multiple versions of those 

components and views ("configuration management") . 

(4) CAD applications, such as VLSI circuit design, 

typically requires a group of designers to complete 

a complex design by closely interacting among 

themselves and dynamically sharing design data. 

This necessitates a distributed database 

environment. [Korth 90]
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(5) CAD applications require the capability, to define, 

store, and retrieve as a single unit a collection 

of related objects known as a composite object. A 

composite object explicitly captures and enforces 

the IS-PART-OF integrity constraint between child 

and parent pairs of objects in a hierarchical 

collection of objects. Further, it can be used as 

a unit of storage and retrieval to enhance the 

performance of a database. [Kim 87] 

III.C.2. CASE 

A software environment is an application which requires 

the management of highly interconnected data. Modern 

environments attempt to provide a facility for managing the 

design, construction, testing, use, and eventual reuse of 

software. One of the most important requirements of a 

software environment is providing a central store for managing 

the myriad of objects that makeup a software project and 

keeping those objects up-to-date in the face of the many 

changes made over the lifetime of a project. [Hudson 89] 

(1) As modern software environments will most likely be 

used in distributed workstation applications, this 

facility is viewed as crucial. It will be necessary 

to allow different users at different machines to
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configure their own environments privately and share 

information. [Hudson 89] 

Software environments include complex data types 

such as programs, requirement specifications, 

milestone reports, configurations, documentation, 

and many other. These types are often defined in 

terms of each other, and need to be broken down into 

categories. For example a configuration is made up 

of a number of instances of the type program; source 

and object modules might be viewed as subtypes of 

type program. The idea is to provide a database of 

tool that would serve as the central repository of 

an environment, and to allow the sorts of derived 

information needed in an environment to be specified 

with as little additional code as possible. [Hudson 

87] 

The ability to extend the type structure is neces- 

sary to allow users of the software environment to 

dynamically add new tools such as debuggers and 

compilers. [Hudson 87] 

An efficient rollback and recovery mechanism, which 

provides the framework for the recall of versions. 

It is of particular importance that versions not be 

represented as largely redundant objects, as objects 

in a software environment are likely to be quite 

large. [Hudson 87]
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Software environments typically deal with highly 

structured and interrelated objects. A primary 

example of this is of course computer programs, but 

software environments may also wish to deal with 

objects involving the management and control of an 

overall software development project. The sorts of 

object generally included in descriptions of 

existing and proposed environments include: software 

components and software dependencies, versions, 

documentation, requirements, milestone reports, test 

data, verification results, bug reports, etc. Note 

that "software components" which are themselves 

highly structured and interrelated entities as only 

one element of this list. Because of the complexity 

of the interrelationships defined in this model, its 

is essential that the consistency of the database 

is maintained automatically. [Hudson 87] 

Software environments, unlike most applications, 

deal with entities which change dramatically over 

time. The ability to retrieve and manipulate 

multiple versions of programming entities can be 

crucial to the programming process. In addition, 

we need the ability to manipulate versions and 

version streams as objects in themselves in order 

to support configuration management tools within the 

system. [Hudson 87]
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As described, software environments typically deal 

with data that is interrelated in such a way that 

changing one piece of data can have effects on many 

other data items. The data type "milestone" within 

an environment typically models the scheduled and 

expected completion times of a software component. 

One milestone may depend on another, and changing 

the expected completion date for one milestone may 

have effects that ripple throughout the expected 

completion dates for other milestones in the system. 

changing a milestone is an instance of a simple 

modification which affects the consistency of the 

database. If the expected completion date of a 

milestone is changed without also updating all the 

milestones that directly or indirectly depend on it, 

the database will be inconsistent an incorrect. 

[Hudson 87] 

OIS 

Office applications have characteristics that distinguish 

them from conventional data processing applications. Some of 

these characteristics have to do with the character of the 

applications themselves and some have to do with the character 

of the data on which these applications operate. [Zdonik 84]



(1) 

(2) 

(3) 

(4) 

69 

An office database should be a "total" information 

resource in that it should be capable of storing 

data of many arbitrary types. Users of such a 

system should be able to store conveniently their 

documents and graphics objects in the same logical 

storage space as their more traditional record-orie- 

nted data. [Zdonik 84] 

All of the many information types that will be 

stored in the database of an office workstation must 

be usable together effectively. It must be possible 

to be able to create connections dynamically between 

them as well a to treat them differently in dif- 

ferent contexts. Many of the objects that occur in 

an office environment are built out of other 

objects. This kind of structure can be seen in 

reports that contain chapters and the chapters that 

further contain paragraphs. [Zdonik 84] 

Objects frequently need to reflect new understand- 

ings or conditions. Not only does the content of 

these objects change, but often the basic structure 

will change as well. Consider the many revisions 

that a typical final report will undergo. 

The objects in an office are often used in many 

different ways. The semantics of an object can 

depend on how it is being used. A chapter ina 

final report might be printed differently than the
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same chapter in a working paper. Incremental 

development of new object types never stops. An 

office environment constantly produces exceptions 

to the previous way of expressing things. New 

definitions of what constitutes a report are always 

being discovered. 

(5) OIS applications require an environment facilitating 

electronic mail. Electronic message passing takes 

place in a distributed environment. 

(6) Calendars and schedules represent another aspect of 

OIS applications. Events in a calendar may trigger 

reactions in other entities in the office. 

Office activities have been described as largely event-d- 

riven and semistructured, with a high level of parallelism 

requiring synchronization and coordination. [Weiser 89] 

III.C.4. UAS 

The UAS is a representative of the typical commercial 

business system. This is the type of application that has 

successfully been addressed by relational databases. However, 

we are interested in discovering whether an object-oriented 

database might better satisfy the requirements of such a 

system.
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The UAS will be operating from different sites, 

however, the information must be available across 

campus. 

The data descriptions of the UAS can be expressed 

as a (relatively) small number of object types, 

whose structures are (relatively) slow to evolve. 

The system needs to represent people with different 

roles (i.e. employee, student-employee, professor, 

etc.). 

Database Suitability 

This section will evaluate the suitability of relational 

and object-oriented databases as defined in section III.B for 

each of the application categories outlined in section III.c. 

Each criteria in the model is ranked for both databases. 

The ranking does not represent absolute empirical data, it 

rather illustrates the disparity or similarity in satisfying 

the application requirements. 

III.D.1. CAD 

Figure II represents the collection of the evaluation of 

each criteria for CAD applications. Each ranking is further 

explained as follows.
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Schema Evolution: CAD designs are dynamic by nature 

(see requirement one in section III.C.1). The 

relational database schema evolution, limited to 

tuple addition, is essentially unsatisfactory. On 

the other hand, the object-oriented database can 

directly address this requirement with its dynamic 

schema evolution. 

Encapsulation: As stated in section III.B.1, 

encapsulation is missing from the _ relational 

database. However, it is a basic component in 

object-oriented databases (see section III.B.2). 

CAD applications have a strong need for this feature 

for satisfying the reusability notion in their 

environment. 

Ease of Use and Implementation: In CAD applica- 

tions, the capability to reflect the design environ- 

ment is crucial. The ranking reflects the fact that 

while the relational database has an easier user 

interface, it is, however, the capability to 

represent the application (ease of extensibility) 

that takes precedence. 

New Types: As stated in requirement five in section 

III.c.1, there is a need to create and manipulate 

complex objects. This feature is absent in the 

relational database as we have defined.
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CAD Relational Object-Oriented 

Schema Evolution 0 10 

Encapsulation 0 10 

Ease of Use 1 9 

New Types 0 10 

Security/Integrity 2 8 

Versions 0 10 

Distribution 10 10 

Object Identifiers 0 10 

Total 13 77       
Figure II - The Treshold Model for CAD Applications 
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Security/Integrity: The unit of design in CAD 

applications being an object, integrity and security 

constraints need to be applied at the object level. 

Versions: Requirement three in section III.c.1 

defines the need for CAD versions. The relational 

database does not have the capability, while the 

object-oriented database is well suited to this 

need. 

Distribution: is relatively well-handled by both 

databases. 

Object Identifiers: The requirement for represent- 

ing multiple view of the same entity (see require- 

ment three) and the need for versions (requirement 

one) necessitate the availability of object iden- 

tifiers present only in the object-oriented data- 

base. 

CASE 

Figure III represents the ranking of the criteria for 

CASE applications. The following further explains the 

disparities and/or similarities between the two databases.
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Schema Evolution: Similar to CAD, CASE applications 

require the capability to evolve due to their 

inherent design nature (see requirement three). 

Encapsulation: Reusability is one of the most 

important needs of CASE applications (see require- 

ment two). 

Ease of Use and Implementation: In CASE environ- 

ments, this criteria dwells in the capability to 

manage change (i.e. configuration management) and 

the myriad of components ina software. The object- 

oriented database addresses this need with its 

schema evolution and new types. The ease of use is 

measured by evaluating the ease with which CASE 

components can be managed. 

New Types: Entities in CASE applications may be as 

complex as a debugger (see requirement three in 

section III.C.2). The relational database is 

incapable of addressing this need. 

Security/Integrity: By allowing for versions, the 

object-oriented database may address the rollback 

and recovery mechanism stated in requirement four. 

In addition, the capability to provide for derived 

data and triggers, the object-oriented database can 

address the need to maintain the consistency 

described in requirement five.
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CASE Relational Object-Oriented 

Schema Evolution 0 10 

Encapsulation O 10 

Ease of Use 0 10 

New Types 0 10 

Security/Integrity 0 10 

Versions 0 10 

Distribution 10 10 

Object Identifiers 0 10 

10 80 

Total       
Figure III - The Treshold Model for CASE Applications 
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Versions: Requirement six undoubtedly describes 

the need of CASE applications for version manage- 

ment. 

Distribution: As described in requirement one, 

software applications will most likely be used in 

a distributed environment. 

Object Identifiers: The highly complex, variable, 

and interrelated data and the need for versions 

dictates the use of object identifiers. 

OISs 

Figure IV represents the ranking of the threshold model 

criteria for OIS applications. The following further explains 

the ranking of the two databases. 

(1) 

(2) 

(3) 

Schema Evolution: Requirement three in section 

III.D.3 outlines the need for schema evolution for 

OIS applications. 

Encapsulation: Reusability is an important factor 

in OIS applications (see requirement four in section 

III.c.3). 

Ease of Use and Implementation: Similar to CAD and 

CASE applications, OIS applications require a great
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ois Relational Object-Oriented 

Schema Evolution 0 10 

Encapsulation 0 10 

Ease of Use 2 10 

New Types 0 10 

Security/Integrity 2 7 

Versions 0 10 

Distribution 10 10 

Object Identifiers 0 10 

Total 14 77       
Figure IV - The Treshold Model for OIS Applications 
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deal of flexibility. Thus, ease of extensibility 

is the important factor. 

(4) New Types: Based on requirement two, OIS applica- 

tions require to represent complex objects (i.e. 

objects defined in terms of other objects). The 

object-oriented database satisfies this requirement. 

(5) Security/Integrity: Again, in OIS applications 

integrity needs to be maintained at the object level 

(e.g. a document). 

(6) Versions: OIS applications have a strong need for 

version management (e.g. revisions to a document). 

(7) Distribution: The electronic mail described in 

requirement five in section III.C.3 points to the 

need for distribution support. 

(8) Object Identifiers: Again, similar to CAD and CASE 

applications, OIS applications require object 

identifiers. 

III.D.4. UAS 

Figure V represents the ranking of the model criteria for 

the UAS. The following outlines the applicability of the two 

databases. 

(1) Schema Evolution: The UAS is rather static. The 

schema is stable and well established.
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Universities Relational Object-Oriented 

Schema Evolution N/A N/A 

Encapsulation N/A N/A 

Ease of Use 9 1 

New Types 0 5 

Security/Integrity 7 7 

Versions N/A N/A 

Distribution 10 10 

Object Identifiers 0 10 

26 33 

Total     
  

Figure V - The Treshold Model for the Universities System 
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Encapsulation: N/A 

Ease of Use and Implementation: Extensibility is 

not a critical factor in the UAS. Since, the 

relational database is easier to use, we show a 

higher ranking in this criteria. 

New Types: Requirement three in section III.c.4 

speaks to the notion of specialization/ generaliza- 

tion which can be represented by the object-oriented 

database. 

Security/Integrity: This requirement can be served 

equally well by both databases. 

Versions: The UAS does not have a distinct need for 

versions. 

Distribution: Both databases address equally well 

the distribution requirement explained in section 

III.C.4. 

Object Identifiers: Object identifiers are needed 

to maintain uniqueness despite changes to attribu- 

tes representing the entities (i.e. change of 

department name).



IV. CONCLUSION 

In general, we can assert that relational databases fall 

dramatically short for the CAD, CASE, and OIS applications 

with the more demanding requirements. However, in the UAS 

application category where relational databases have been used 

with great success, there may also be room for improvement by 

using object-oriented databases. However, the improvements 

acquired are marginal and may not justify the move if other 

criteria such as performance and/or cost are also considered. 

The need for object identifiers is universal across 

applications. It is important that the identity of entities 

remain intact despite changes in attributes. The evolution 

of relational databases has led to the inclusion of object 

identifiers or surrogates in the DBMS, hence, correcting this 

shortcoming. 

Entity versions are explicitly needed by CAD, CASE, and 

OIS applications. However, typical commercial applications 

such as the UAS could also benefit from the inclusion of a 

version management feature in the database. For example, a 

course taught in different semesters, could be represented as 

different versions of the same entity. 
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Vv. SUMMARY 

Relational databases are still widely used in commercial 

applications. Extensions to those databases, such as addition 

of surrogates (entity identifiers), have corrected apparent 

shortcomings. At this time, it is unlikely that object- 

oriented databases will replace those well established 

databases. Rather, object-oriented concepts have been added 

to relational databases including aggregation and 

generalization mechanisms. 

On the other hand, object-oriented databases have 

penetrated application areas, such as CAD, CASE, and OIS where 

relational databases have not been able to accommodate. While 

object-oriented databases are still in their infancy, they are 

rapidly maturing and reaching the mass market. Object- 

oriented databases can also meet requirements of the typical 

commercial applications. However, since they do not add a 

noticeable amount of functionality over relational databases 

(due to the more modest application requirements) they do not 

demonstrate a more advantageous front. 

In the end, at this time, the two databases seem to serve 

different application categories. However, it is not clear, 

whether in the future the separating line will remain as 

clear. 
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