List of Figures

Figure 2.1: Dividing a complex domain into a triangle and quadrilaterals..................8
Figure 2.2: A pre-ordered structured triangular grid...8
Figure 2.3: A pre-ordered structured quadrilateral grid..9
Figure 2.4: Unstructured triangular mesh..10
Figure 2.5: Unstructured quadrilateral mesh...10
Figure 2.6: Quadtree decomposition of a simple 2D domain............................11
Figure 2.7: Delaunay criterion illustration...13
Figure 2.8: Advancing front illustration...14
Figure 2.9: Paving method applied to a square domain.....................................15
Figure 2.10: Splitting triangle method...16
Figure 2.11: Combining triangle method, no triangle left in the domain.............17
Figure 2.12: Combining triangle method, two triangles left in the domain.........17
Figure 3.1: A simple 3D light frame wooden house...24
Figure 3.2: Showing detailed view of section M-M...24
Figure 3.3: Typical FEM model generated in SAP 2000. The stud wall
 is modeled as roller supports..27
Figure 3.4: Typical FEM model generated in SAP 2000. The stud wall
 is modeled as spring supports...28
Figure 3.5: Free body diagram for maximum tie down force calculation (length
 units are in inches)...29
Figure 3.6: Stud wall modeled as roller support and tie down spring
 stiffness = 5,000 kips/in..31
Figure 3.7: Stud wall modeled as roller support and tie down spring
 stiffness = 50,000 kips/in..32
Figure 3.8: Stud wall modeled as roller support and tie down spring
 stiffness = 500,000 kips/in...33
Figure 3.9: Stud wall modeled as spring support with stiffness = 76 kips/in.
 and tie down spring stiffness = 5,000 kips/in..................................34
Figure 3.10: Stud wall modeled as spring support with stiffness = 76 kips/in.
and tie down spring stiffness = 50,000 kips/in. ..35

Figure 3.11: Stud wall modeled as spring support with stiffness = 76 kips/in.
and tie down spring stiffness = 500,000 kips/in.36

Figure 3.12: Stud wall modeled as spring support with stiffness = 19 kips/in.
and tie down spring stiffness = 5,000 kips/in.37

Figure 3.13: Stud wall modeled as spring support with stiffness = 19 kips/in.
and tie down spring stiffness = 50,000 kips/in.38

Figure 3.14: Stud wall modeled as spring support with stiffness = 19 kips/in.
and tie down spring stiffness = 500,000 kips/in.39

Figure 4.1: Interior domain lying on the left of initial generation front43

Figure 4.2: Interior domain lying on the right of initial generation front43

Figure 4.3: A node in 3D vector space ..44

Figure 4.4: Line segment AB ..44

Figure 4.5: Shortest distance between node N and line segment AB44

Figure 4.6: Generation front ..45

Figure 4.7: Area operator ...45

Figure 4.8: Intersection operator ..46

Figure 4.9: Valid node set ..47

Figure 4.10: α quality of some example triangles48

Figure 4.11: Pseudo code for triangular element generation process50

Figure 4.12: Formula for NSF at any point P(x,y)52

Figure 4.13: Domain with multiple openings and multiple constraint lines ...53

Figure 4.14: Square shaped domain in xy-plane54

Figure 4.15: L-shaped domain in xy-plane ...54

Figure 4.16: Square-shaped domain with an opening in xy-plane55

Figure 4.17: Square-shaped domain with a constraint line in xy-plane55

Figure 4.18: Square shaped domain with two openings and two constraint lines in xy-plane ...56

Figure 4.19: Virginia Tech logo in xy-plane56
Figure 4.20: A convex domain with an inside point lying to the left of all boundary segments.

Figure 4.21: A non-convex domain with an inside point lying to the left of all the boundary segments except for the one shown with dash style.

Figure 4.22: Showing ray tracing method.

Figure 4.23: Rays intersecting vertices of the domain.

Figure 4.24: Rays overlapping edges of the domain.

Figure 4.25: Showing solution to the problem of ray intersecting the vertices of boundary edges.

Figure 4.26: Showing solution to the problem of ray being collinear with the boundary edges.

Figure 4.27: Showing line segments AB and CD.

Figure 4.28: Showing orientation of AB with respect to normal N.

Figure 4.29: Showing distance of point from a line segment.

Figure 4.30: A simple quadrilateral domain.

Figure 4.31: Boundary nodes named in continuous order.

Figure 4.32: Showing subdivision of shorter segments from opposite edges.

Figure 4.33: Dividing opposite edges into same number of subdivisions as the opposite shorter edges.

Figure 4.34: Showing quadrilateral element generation process.

Figure 4.36: Showing a skewed quadrilateral domain.

Figure 5.1: Class xyz’s attributes and methods (C++ interface).

Figure 5.2: Inherited class uvw’s attributes and methods. All public and protected attribute and methods of class xyz also belongs to class uvw (C++ interface).

Figure 5.3: Showing polymorphism (operator overloading, C++ interface).

Figure 5.4: Basic architecture of the WoodFrameMesh program.

Figure 5.5: Interface of KMDomainBldr class.

Figure 5.6: Interface of KMTxtFileReader class.

Figure 5.7: Interface of the KMDomain class.

Figure 5.8: Interface for the KMFEModelBldr class.
Figure 6.7: Example showing addition of new code (shown in bold) in the main program if a new numberer child class is added.