THE EFFECTS OF MOVING ELECTRON DENSITY FLUCTUATIONS
ON TIME DOMAIN REFLECTOMETRY IN PLASMAS

by

Michael J. Scherner
B.E. Hofstra University, 1986

A Thesis submitted to the Faculty of
the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Electrical Engineering

APPROVED:

W.A. Davis, Chairman

W. L. Stutzman

D. A. de Wolf

December, 1991
Blacksburg, Virginia
THE EFFECTS OF MOVING ELECTRON DENSITY FLUCTUATIONS ON TIME DOMAIN REFLECTOMETRY IN PLASMAS

by

Michael J. Scherner

W.A. Davis, Committee Chairman

Electrical Engineering

(ABSTRACT)

The effects of time-dependent electron density fluctuations on a synthesized time domain reflectometry response of a one-dimensional cold plasma sheath, are considered. Numerical solutions of the Helmholtz wave equation, which describes the electric field of a normally incident plane wave in a specified static electron density profile, are used. Included in this work is a study of the effects of Doppler shifts resulting from moving density fluctuations in the electron density profile of the sheath.
ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Dr. Leo Staton of the National Aeronautics and Space Administration (NASA), Langley Research Center, for his guidance, help and encouragement during the course of this work. Inspiring lectures and helpful advice brought a lasting interest to this field of electromagnetics. Gratitude is given to Yung Ryn Choe of the Governor's Magnet School for Science and Technology who under mentorship helped with programming and running computer studies. The author is also grateful to Dr. C.R. Cockrell and Mr. C.P. Hearn, and the entire Antenna and Microwave Research Branch (AMRB), for their assistance to this effort. Finally, recognized is Dr. W.A. Davis of the Virginia Polytechnic Institute and State University for directing and reviewing this paper.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. ELECTRON PLASMA MODEL</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Wave Propagation</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Properties of Plasma</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Reflections</td>
<td>8</td>
</tr>
<tr>
<td>3. REFLECTION COEFFICIENTS FOR UNIFORM, LINEAR, AND ARBITRARY INHOMOGENEOUS LAYERS</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Uniform Dielectric Layer</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Linear Layer</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Plasma Layer</td>
<td>19</td>
</tr>
<tr>
<td>3.5 Verification of Runge-Kutta Method</td>
<td>22</td>
</tr>
<tr>
<td>4. TIME DOMAIN MEASUREMENTS</td>
<td>23</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>23</td>
</tr>
<tr>
<td>4.2 Time Domain Theory</td>
<td>23</td>
</tr>
<tr>
<td>4.3 Uniform Dielectric Layer</td>
<td>34</td>
</tr>
<tr>
<td>4.4 Plasma Layer</td>
<td>36</td>
</tr>
<tr>
<td>5. PLASMA FLUCTUATIONS</td>
<td>39</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>5.2 Reduction of Electron Density Profile</td>
<td>40</td>
</tr>
<tr>
<td>5.3 Modulation of Electron Density Profile</td>
<td>41</td>
</tr>
<tr>
<td>6. CONCLUDING REMARKS</td>
<td>44</td>
</tr>
<tr>
<td>Appendix</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>A</td>
<td>Dielectric Model of Plasma</td>
</tr>
<tr>
<td>B</td>
<td>Helmholtz Wave Equation</td>
</tr>
<tr>
<td>C</td>
<td>Computer Program</td>
</tr>
<tr>
<td>D</td>
<td>Uniform Dielectric Layer</td>
</tr>
<tr>
<td>E</td>
<td>Exact Solution for Linear Profile</td>
</tr>
<tr>
<td>F</td>
<td>Reflection Coefficient for Linear Profile</td>
</tr>
<tr>
<td>G</td>
<td>Runge-Kutta Method</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
</tr>
<tr>
<td></td>
<td>VITA</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Reflection coefficients at front interface of inhomogeneous layer (linear profile)</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reflection from a sample plasma electron density profile as a function of distance</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>Electron density profile prediction for MRIS</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>Plane wave incident on a plane uniform dielectric</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>Electron density profile for a uniform dielectric between free space regions</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>Relative permittivity of a uniform dielectric between free space regions</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>Electron density profile for a linear layer between free space regions</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Sample linear electron density profile</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>Plane wave incident on a plasma layer surrounded by free space</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>Magnitude of the reflection coefficient for a 14 cm. thick uniform dielectric slab ($\varepsilon_r=-0.5$)</td>
<td>84</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>10. Phase of the reflection coefficient for a 14 cm. thick uniform dielectric slab (\epsilon_r = 0.5)</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>11. Time domain response for a 14 cm. thick uniform dielectric slab (\epsilon_r = 0.5)</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>12. Propagation delay for a 14 cm. thick uniform dielectric slab (\epsilon_r = 0.5)</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>13. Reduction of sample electron density profile where the critical electron density level is (N_{e,cr})</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>14. Modulation of sample electron density profile where the critical electron density level is (N_{e,cr})</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>15. Time domain responses for reduced electron density profiles for 74 to 76 GHz</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>16. Time domain response for 10% reduction in electron density profile</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>17. Transform reflection coefficient for a modulated electron density profile for 74 to 76 GHz with modulation amplitude, (A = 0.05) and modulation velocity at 2 m/s</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>18. Time domain response (Power) for a modulated electron density profile for 74 to 76 GHz with modulation amplitude, (A = 0.05) and modulation velocity at 2 m/s</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
19. Transform reflection coefficient for 74 to 76 GHz with modulation amplitude, $A=.05$ and modulation velocity at
 (a) 2 m/s, (b) 4 m/s, (c) 6 m/s and
 (d) 8 m/s .. 94

20. Time domain response (Power) for 74 to 76 GHz with modulation amplitude, $A=.05$ and modulation velocity at
 (a) 2 m/s, (b) 4 m/s, (c) 6 m/s and (d) 8 m/s 95

21. Time domain response for 140 to 142 GHz with modulation amplitude, $A=.05$ and modulation velocity at
 (a) .22 m/s, (b) 1.00 m/s, (c) 2.00 m/s and
 (d) 2.67 m/s .. 96

22. Time domain response for 140 to 142 GHz with modulation amplitude, $A=.05$ and modulation velocity at
 (a) 3.33 m/s, (b) 4.00 m/s, (c) 6.00 m/s and
 (d) 8.00 m/s .. 97

23. Time domain response for 74 to 76 GHz with modulation amplitude, $A=.25$ and modulation velocity at
 (a) .67 m/s, (b) 1.33 m/s, (c) 2.00 m/s and
 (d) 2.67 m/s .. 98
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Time domain response for 74 to 76 GHz with modulation amplitude, $A = 0.25$ and modulation velocity at (a) 3.33 m/s, (b) 4.00 m/s, (c) 4.67 m/s and (d) 5.33 m/s</td>
<td>99</td>
</tr>
<tr>
<td>25. Time domain response for 74 to 76 GHz with modulation amplitude, $A = 0.25$ and modulation velocity at (a) 6.00 m/s, (b) 6.67 m/s, (c) 7.33 m/s and (d) 8.00 m/s</td>
<td>100</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Time domain reflectometry measurements in plasmas are of great interest. This is particularly true in studying the high density plasma layer which forms around a spacecraft as it reenters the earth’s atmosphere. It is well established that heat transfer rates for spacecraft in reentry can be greatly influenced by flowfield ionization levels. Knowledge of the ionization level is, therefore, important during reentry as a function of body station - especially in the forebody region. Current analytical models are unverified and incumbered with unproven simplifying assumptions, and, as a result, fall short of providing dependable electron density predictions.

The Microwave Reflectometer Ionization Sensor (MRIS) Experiment\(^1\) will make use of the microwave reflection properties of ionized gases to determine levels of electron density in the forebody shock layer of a reentry vehicle and to measure the distance from the vehicle at which these electron densities occur. Specifically, the experiment will locate the onset and presence of critical electron densities corresponding to selected carrier frequencies by means of the measured power of the reflected signals. The critical electron density is the density at which a rapid increase in reflection coefficient occurs. The distance to the critical density point will be obtained through time domain reflectometry using 64 equally spaced transmitted frequencies, occupying a total bandwidth of 2 GHz. At the receiver 64 frequency responses are collected and an inverse

\(^1\) NASA experiment proposed for 1996
fast Fourier transform then provides a time domain impulse response for the plasma. The propagation delays of the signals reflected from the ionized flow field will be measured to determine the stand-off distances to the location of the critical electron densities detected. The stand-off distance information for the vehicle will be compared to the data predicted from the computational fluid dynamics models for the spacecraft's trajectory. Such a procedure should work well so long as the properties of the plasma layer are constant over the time required for the 64 measurements. Since the positions of the critical electron densities will fluctuate during measurement periods, it is desirable to study the effects of any such fluctuations on the time domain reflectometry response. The purpose of this paper is to study the effects of time dependent fluctuations on time domain reflectometry for a one-dimensional plasma sheath.

The study of plane waves incident on stable plasma layers has been investigated by many authors [1-5]. Their work has been focused on solving the differential equations which describe the electromagnetic behavior of fields within these fixed layers. This paper delves into the electromagnetic behavior of fields within a time-variant plasma layer. Solutions for continuous inhomogeneous layers require, in general, numerical techniques. In this paper the plasma is represented by a one-dimensional dielectric constant which is allowed to vary in the direction of propagation. Practical solutions have been obtained using numerical methods for solving the Helmholtz wave equation describing propagation through the plasma layer. Sequences of density profiles have been generated to emulate the time-dependent behavior of moving density fluctuations. The plasma has been studied for a range of constituent transmitted frequencies (64 stepped frequencies), consistent
with the MRIS experiment, and the resulting responses have been used to synthesize effective time domain responses.

Broadly speaking, this paper is divided into four parts; Chapter 2 deals with the models used for a given plasma layer; Chapter 3 concentrates on reflection coefficients for different plasma models; Chapter 4 looks at simulating the time domain response of the plasma and estimating the location of critical electron densities; Chapter 5 investigates electron density fluctuations and their effect on time domain responses. For the sake of clarity, many of the problems treated are greatly simplified. For instance in Chapter 3, a homogeneous layer and a linear layer are examined as illustrative aids for understanding the solutions for an inhomogeneous plasma layer. An appendix gives support to the theoretical discussions made in the paper and includes a computer program that solves the inhomogeneous plasma layer problem. For propagation studies a time harmonic wave traveling in the positive z-direction with a $e^{-i\omega t}$ time convention is assumed throughout the paper. Normal incidence was chosen to simplify problems and to help focus on the intent of the paper. Issues and considerations regarding the MRIS distance-measuring scheme are discussed in the conclusion.
CHAPTER 2
ELECTRON PLASMA MODEL

2.1 Introduction

Plasma is a collection of charged particles containing about equal numbers of positive ions and electrons. It exhibits properties of a gas but differs from a gas in being a good conductor for electricity and in being affected by a magnetic field. To describe the electromagnetic behavior of fields within a plasma, a model for the plasma is needed. In this paper the plasma is represented by a dielectric medium with a dielectric constant which can have a negative imaginary part representing losses as explained in Appendix A. Sections of this chapter discuss wave propagation through a modeled plasma.

2.2 Wave Propagation

In the solution of any electromagnetic problem Maxwell's equations must be satisfied. As shown in Appendix B these equations can be used to obtain a differential equation describing wave propagation through an arbitrary medium. This differential equation known as the one-dimensional Helmholtz wave equation is written as

$$\frac{\partial^2 E(z)}{\partial z^2} + \omega^2 \mu \epsilon(z) E(z) = 0$$

(2.1)

where E is the electric field intensity, \(\omega \) is the radian frequency, \(\mu \) is the permeability of the medium, and \(\epsilon \) is the dielectric constant of the medium which is shown as a
function of z, the axis along which the electromagnetic fields propagate. For the case where ε does not depend on z (purely homogeneous dielectric), a time-harmonic wave moving in the positive z-direction, with a $e^{-i\omega t}$ time convention, result in a solution written as

$$E(z) = E_1 e^{ikz} + E_2 e^{-ikz}, \quad (2.2)$$

where E_1 and E_2 are undetermined constants independent of z and k, the wavenumber, is

$$k = \omega \sqrt{\mu \varepsilon_r \varepsilon_0}, \quad (2.3)$$

ε_r is the relative dielectric constant of the medium and ε_0 is the dielectric constant of free space. In the solution of the wave equation for E as given by equation (2.2), the first term represents a wave with magnitude E_1 traveling in the positive z direction and the second term represents a wave with magnitude E_2 traveling in the negative z direction.

Now consider a inhomogeneous dielectric, where k varies with distance such that

$$k = \sqrt{\mu \varepsilon_r(z)}, \quad (2.4)$$

and equation (2.2) is no longer valid. The solution can not be conveniently expressed as a forward and backward traveling wave as for the homogeneous dielectric. As shown later in Chapter 3, except for certain special cases such as a linear dependence of ε with z (see section 3.3), to find a solution for the electric field in a inhomogeneous dielectric, equation (2.1) must be solved numerically.
2.3 Properties of Plasma

Let us consider the particular properties of a partially ionized, but electrically neutral, gas insofar as they affect the propagation of electromagnetic waves. Electrons have a natural frequency of oscillation called the plasma electron frequency or more commonly, the plasma frequency. It is represented by \(\omega_N \), and is defined as follows [8]:

\[
\omega_N^2 = \frac{N_e e^2}{\varepsilon_0 m_e},
\]

where \(\varepsilon_0 \) is the permittivity of a vacuum, \(m_e \) is the mass of an electron, \(N_e \) is the electron density, and \(e \) is the charge of an electron.

If temperature effects are not important a plasma can be modeled as a dielectric as shown in Appendix A, where

\[
\varepsilon_r = 1 - \frac{\omega^2}{\omega_N^2},
\]

\(\omega \) is the transmitted frequency. In the general case \(\omega_N \) can be a function of position, thereby representing an inhomogeneous plasma. The refractive index of the ionized medium is given by [5]

\[
n = (\varepsilon_r)^\frac{1}{2} = \left[1 - \frac{\omega_N^2}{\omega^2} \right]^\frac{1}{2}.
\]
Two cases are possible:

Case 1

\[\omega > \omega_N \quad 1 - \frac{\omega_N^2}{\omega^2} > 0 \quad n \text{ is real} \]

In this case, wave propagation takes place.

Case 2

\[\omega \leq \omega_N \quad 1 - \frac{\omega_N^2}{\omega^2} \leq 0 \quad n \text{ is imaginary} \]

In this case the fields are evanescent and no wave propagation occurs. For a signal to be transmitted through a plasma it is therefore necessary that the frequency of the microwave signal \(\omega \) be higher than the plasma frequency \(\omega_N \). A wave therefore may propagate into a medium having increasing \(\omega_N \), but as \(\omega_N \) approaches \(\omega \), \(\varepsilon_r \) approaches zero and a criterion for reflection is met. The point at which the electron density level causes the plasma frequency \(\omega_N \) to equal \(\omega \) is termed the turning point in this paper. To further illustrate the definition of turning point, in Figure 1 the number \(N_e \) of free electrons per unit volume increases slowly in magnitude, reaches a maximum, and then falls abruptly with further increase in distance. A wave of a given frequency \(\omega \), would enter the plasma without reflection because of the slow change in \(N_e \). When the density \(N_e \) is large enough, however, \(\omega_N(h_1) \cong \omega \). Then the dielectric constants in equation (2.6) vanish and the wave is reflected. In Figure 1, \(h_1 \) is the location of the turning point.
2.4 REFLECTIONS

In the previous section the properties of plasma were studied and it was stated that a plasma can be modeled as an inhomogeneous dielectric. To understand reflections in a plasma a formula for the reflection coefficient must be developed. Before we investigate reflections in the inhomogeneous dielectric model for the plasma we should examine a homogeneous dielectric. Consider a homogeneous dielectric with relative permittivity \(\varepsilon_r \), a plane uniform wave progressing in the \(z \)-direction and having its electric vector in the \(y \)-direction is completely specified by equation (2.2) as

\[
E_y(z) = E_1 e^{ikz} + E_2 e^{-ikz}
\]

(2.8)

where \(k \) is the wavenumber defined by equation (2.3) as

\[
k = \sqrt{\frac{\mu \varepsilon_r \varepsilon_o}{\mu_o}}.
\]

(2.9)

The reflection coefficient at a location \(z_o \) can be defined as a complex number [9]

\[
\Gamma(z_o) = \frac{E_2 e^{-ikz_o}}{E_1 e^{ikz_o}}.
\]

(2.10)

With equation (2.10), equation (2.8) can be written about the point \(z_o \) as
\[E_y(z) = E_i \left[e^{ik(z-z_o)} + \Gamma(z_o)e^{-ik(z-z_o)} \right], \quad (2.11) \]

where \(E_i = E_1 e^{ikz_o} \) is the incident field for the traveling wave at \(z_o \). Taking the derivative with respect to \(z \), equation (2.11) becomes

\[\frac{\partial E_y(z)}{\partial z} = E_i \left[ike^{ik(z-z_o)} - ik\Gamma(z_o)e^{-ik(z-z_o)} \right]. \quad (2.12) \]

We define a quantity \(p \) at the point \(z_o \) as

\[p = \frac{\partial E_y(z_o)}{\partial z} \quad \frac{E_y(z_o)}{E_i} \quad . \quad (2.13) \]

This factor \(p \) is proportional to the admittance of the wave given by \(H_x/E_y \), where \(H_x \) is the magnetic field in the \(x \) direction. The resultant equation for the reflection coefficient at the location \(z_o \) can be written, in terms of \(p \), as

\[\Gamma(z_o) = \frac{ik-p}{ik+p} \quad . \quad (2.14) \]

For values of \(p \) where the magnitude of \(\Gamma \) is zero in equation (2.11), the wave simply propagates in the \(+z\) direction with magnitude \(E_i \). For values of \(p \) where the magnitude of \(\Gamma \) is unity, the wave is reflected and travels in the \(-z\) direction.
with magnitude \(E_1 \).

Having considered a homogeneous dielectric, we can investigate the inhomogeneous dielectric model for the plasma. As mentioned in section 2.2 equation (2.8) is not valid for inhomogeneous media and reference is made to the original Helmholtz wave equation. The Helmholtz wave equation is written here as

\[
\frac{\partial^2 E_y(z)}{\partial z^2} + \omega^2 \mu \epsilon(z) E(z) = 0. \tag{2.15}
\]

As noted earlier, for arbitrary variation of \(\epsilon \) with \(z \) it is not possible to find unique forward and backward waves in equation (2.15). However, the kinds of variation of \(\epsilon \) with \(z \) are such that there is a region of constant permittivity (free space) near the transmitting source. It is only in such a region of constant \(\epsilon \) that equation (2.14) is actually evaluated after having found \(E_y(z) \) everywhere using equation (2.15). Note that this wave equation has many solutions and equation (2.8) is a solution for a homogeneous medium only. To apply this equation for an arbitrarily varying dielectric a solution must be found numerically for the ratio of the field expressions in equation (2.13) and subsequently for the reflection coefficient in equation (2.14) (see section 3.4). When the reflection coefficient for the modeled plasma is calculated at several frequencies the frequency response for the plasma is known for that frequency range and the frequency response data can then be transformed to produce the time domain response for the plasma.
CHAPTER 3

REFLECTION COEFFICIENTS FOR UNIFORM, LINEAR,
AND ARBITRARY INHOMOGENEOUS LAYERS

3.1 Introduction

To simulate the time domain reflectometry response of a fixed one-dimensional cold plasma sheath, solutions for the electric field of a normally incident plane wave in a specified electron density profile\(^2\) are used. As shown in the previous chapter, the intensity of the electric field in the plasma layer is used to determine the reflection coefficient. To help illustrate how this is done, cases with simplified profiles with exact solutions are presented for the reader in this chapter. First, a uniform dielectric layer is examined and second a layer with a linearly increasing electron density profile is investigated. Solutions for a arbitrarily varying inhomogeneous plasma layer however require, in general, numerical techniques. Practical solutions have been found using numerical methods for solving the Helmholtz wave equation describing propagation through the plasma layer. A computer program implementing this technique appears in Appendix C.

3.2 Uniform Dielectric Layer

Consider a plane wave incident on a plane uniform dielectric layer as shown in Figure 3. The incident electric field which is polarized in the y-direction

\(^2\) Electron density profile consistent with experimental predictions (see Figure 2).
propagates in the z-direction through free space (Region I) and is normally incident on the layer (Region II) backed by free space (Region III). Normal incidence was chosen to simplify the problem. The electron density profile for the three regions is shown in Figure 4. In free space (Regions I and III) the electron density is assumed to be zero, and for the dielectric layer (Region II), extending from \(z = z_1 \) to \(z = z_2 \), it is assumed to be \(N_o \). The relative permittivity of the layer \(\varepsilon_d \) can be expressed by equations (2.5) and (2.6) as

\[
\varepsilon_d = 1 - \frac{N_o e^2}{\omega^2 \varepsilon_o m_e } \quad .
\]

(3.1)

\(N_o \) is chosen so that \(\omega_N > \omega \) and therefore \(\varepsilon_d < 0 \). The relative permittivity for this geometry is shown in Figure 5. The field in Region III can be written with unity magnitude as

\[
E(z) = e^{ik_0 z} \quad (z \geq z_2)
\]

(3.2)

and

\[
\frac{\partial E(z)}{\partial z} = ik_0 e^{ik_0 z} \quad (z \geq z_2)
\]

(3.3)

At \(z = z_2 \), the field can be written as

\[
E(z_2) = e^{ik_0 z_2}
\]

(3.4)

and
\[
\frac{\partial E(z)}{\partial z} = ik_0 e^{ik_0 z} \quad .
\]

(3.5)

In Region II,

\[
k = k_0 \sqrt{\varepsilon_d}
\]

(3.6)

and the index of refraction, \(n\) can be written as [9]

\[
n = \sqrt{\varepsilon_r} = \sqrt{\varepsilon_d}
\]

(3.7)

where \(\varepsilon_r\) is the relative permittivity. In general let

\[
\sqrt{\varepsilon_r} = n_r + in_i
\]

(3.8)

where \(n_r\) and \(n_i\) are the real and imaginary part of the index of refraction, respectively. Since \(n\) is purely imaginary for the relative permittivity here,

\[
k = ik_0 n_i
\]

(3.9)

The field in Region II can be written as

\[
E(z) = C_1 e^{ikz} + C_2 e^{-ikz} \quad (z_1 \leq z \leq z_2) \quad .
\]

(3.10)
Using equation (3.9), equation (3.10) can be written as

\[E(z) = C_1 e^{-k_o n_i z} + C_2 e^{k_o n_i z} \quad z_1 \leq z \leq z_2 \]

(3.11)

and

\[\frac{\partial E(z)}{\partial z} = -k_o n_i C_1 e^{-k_o n_i z} + k_o n_i C_2 e^{k_o n_i z} \]

(3.12)

Using the boundary conditions, the tangential electric and magnetic fields are continuous at the interface \(z=z_2 \), we can equate the field expressions in equations (3.2) and (3.11), and equations (3.3) and (3.12) respectively to solve for \(C_1 \) and \(C_2 \) (see Appendix D). Note that

\[\frac{C_2}{C_1} = \frac{1 - \frac{1}{\text{in}_i}}{1 + \frac{1}{\text{in}_i}} e^{-2n_i k_o z_2} \]

will be very small if \(n_i z_2 \) is several free space wavelengths. Choosing \(z_2 \) such that \(k_o n_i (z_2 - z_1) \gg 1 \) renders \(|C_2| \ll |C_1| e^{-2n_i k_o z_1} \). Similarly, in Region I we can equate field expressions at \(z=z_1 \) and the reflection coefficient at \(z=0 \) can be written as (see Appendix D)

\[\Gamma(z=0) = \frac{C_4}{C_3} \]

(3.13)

where
\[C_3 = \frac{n_i}{2i} \left[C_2 \left(1 - \frac{1}{\text{in}_i} \right) e^{k_0 n_i z_1 \left(1 + \frac{1}{\text{in}_i} \right)} \right. \]
\[\left. - C_1 \left(1 + \frac{1}{\text{in}_i} \right) e^{-k_0 n_i z_1 \left(1 - \frac{1}{\text{in}_i} \right)} \right] \]
(3.14)

and

\[C_4 = \frac{n_i}{2i} \left[-C_2 \left(1 + \frac{1}{\text{in}_i} \right) e^{k_0 n_i z_1 \left(1 - \frac{1}{\text{in}_i} \right)} \right. \]
\[\left. + C_1 \left(1 - \frac{1}{\text{in}_i} \right) e^{-k_0 n_i z_1 \left(1 + \frac{1}{\text{in}_i} \right)} \right] . \]
(3.15)

Since \(|C_2| \ll |C_1| e^{-2n_i k_0 z_1} , \)

\[\Gamma(z=0) = \frac{1-\text{in}_i}{1+\text{in}_i} e^{2ik_0 z_1} , \]
(3.16)

where

\[n_i = \sqrt{ |\varepsilon_d| } \]
(3.17)

3.3 Linear Layer

In the previous section we calculated the complex reflection coefficient for a uniform dielectric layer. Now consider a linear layer as shown in Figure 6. A plane wave,
polarized in the y-direction, traveling in the z-direction, through free space (Region I, $N_e=0$), is incident on the layer at $z=z_1$. As the wave progresses through the layer (Region II) it encounters greater electron densities. At the outer edge of the layer, $z=z_2$, the electron density, N_e is at its maximum, N_o. As the wave leaves the layer it returns to free space (Region III, $N_e=0$). The electron density profile can be expressed as

\[
N_e = \frac{N_o}{z_2-z_1} z - \frac{N_0 z_1}{z_2-z_1} \quad (z_1 \leq z \leq z_2) \quad (3.18)
\]

and in air as

\[
N_e = 0 \quad (z \leq z_1 \text{ and } z \geq z_2) \quad (3.19)
\]

When the electron density N_e is large enough, the relative dielectric constant ε_r in equation (3.1) vanishes and the wave is reflected. Let us call this critical electron density value, N_c. For the dielectric constant to vanish

\[
N_c = \frac{\omega^2 \varepsilon_m e}{e^2} \quad (3.20)
\]

By using equation (3.18) we find this to happen at the turning point

\[
z = z_1 + \frac{\omega^2 \varepsilon_m e \Delta z}{N_o e^2} \quad (3.21)
\]

where

\[
\Delta z = z_2 - z_1 \quad (3.22)
\]
The field in Region III can be written with unity magnitude as

\[E(z) = e^{ik_0 z} \quad (z \geq z_2) \quad (3.23) \]

and

\[\frac{\partial E(z)}{\partial z} = ik_0 e^{ik_0 z} \quad (z \geq z_2). \quad (3.24) \]

In Region II the Helmholtz wave equation derived in Appendix B becomes the Airy differential equation as shown in Appendix E. The field expressions can then be written in terms of Airy functions (see Appendix E) as

\[E(u) = C_1 Ai(u) + C_2 Bi(u) \quad (3.25) \]

and

\[\frac{\partial E(u)}{\partial u} = C_1 \frac{\partial}{\partial u} Ai(u) + C_2 \frac{\partial}{\partial u} Bi(u) \quad (3.26) \]

where the variable \(u(z) \) is defined as

\[u(z) = -\left(\frac{k_0^3 \Delta z}{K_1} \right)^{\frac{2}{3}} \left[1 - \frac{K_1}{k_0^2} \left(\frac{z-z_1}{\Delta z} \right) \right] \quad (3.27) \]

and

\[K_1 = \frac{N_0 e^2}{c^2 \varepsilon_0 m_e} \quad . \quad (3.28) \]
Using the boundary conditions at $z=z_1$ and $z=z_2$, we can equate field expressions and solve for the reflection coefficient at $z=0$ (see Appendix F). At $z=0$ we are in free space, a region of constant permittivity, thus by equation (F.18) and the formulas for C_1 and C_2, equations (F.10) and (F.11) respectively, the reflection coefficient at $z=0$ can be written as

$$\Gamma(z=0) = \frac{\left[C_1L_1 + C_2L_2 \right] e^{2ik_0z_1}}{C_1L_3 + C_2L_4} \quad (3.29)$$

where

$$L_1 = \text{Ai}(u(z_1)) - \frac{\partial}{\partial u} \text{Ai}(u(z_1)) \quad (3.30)$$

$$L_2 = \text{Bi}(u(z_1)) - \frac{\partial}{\partial u} \text{Bi}(u(z_1)) \quad (3.31)$$

$$L_3 = \text{Ai}(u(z_1)) + \frac{\partial}{\partial u} \text{Ai}(u(z_1)) \quad (3.32)$$

$$L_4 = \text{Bi}(u(z_1)) + \frac{\partial}{\partial u} \text{Bi}(u(z_1)) \quad (3.33)$$

To illustrate this exact solution for the reflection
coefficient, a particular linear profile was chosen and is shown in Figure 7. The electron density N_e begins at the front interface, $z=0$, at a value of zero and rises to a value of 1×10^{20} electrons per cubic meter at $z=14$ centimeters (the exit point). The real and imaginary parts of the reflection coefficient at the front interface are shown in the right column in Table I for 74 to 75 GHz.

3.4 Plasma Layer

In the two previous sections the complex reflection coefficients for a constant dielectric slab and a linear layer were derived exactly. The solution for an arbitrary inhomogeneous plasma layer however requires, in general, numerical techniques. The plasma is represented by a scalar, isotropic and inhomogeneous dielectric constant. Consider a plasma layer with a electron density profile as shown in Figure 2. An incident electric field, which is polarized in the y-direction, propagates in free space (Region I), in the z-direction, and is normally incident on the plasma layer (Region II), backed by free space (Region III) as shown in Figure 8. Again, normal incidence was chosen to simplify the problem of studying the effects of electron density fluctuations on the time-domain reflectometer response for a one-dimensional plasma sheath.

The Helmholtz wave equation for the electric field in an inhomogeneous plasma layer, derived in Appendix B, is written as

$$\frac{\partial^2 E_y(z)}{\partial z^2} + k^2(z) E_y(z) = 0 \quad (3.34)$$

where k, the wavenumber, is
\[k(z) = \omega \sqrt{\mu \varepsilon(z)} \quad . \]

(3.35)

The wave propagates through the plasma (Region II) and is transmitted to free space (Region III). Since the relative dielectric constant in free space equals one, the solution of equation (3.34) in Region III is readily found.

To begin the solution, the electric field in Region III may again be written with unity magnitude as

\[E_y(z) = e^{ik_0 z} \quad . \]

(3.36)

The derivative needed to define \(p \) in equation (2.13) is again given by

\[\frac{\partial E_y(z)}{\partial z} = ik_0 e^{ik_0 z} \quad . \]

(3.37)

The field at \(z=d \) is assumed to be unity and therefore can be written as

\[E_y(z=d) = e^{ik_0 d} \]

(3.38)

and

\[\frac{\partial E_y(z=d)}{\partial z} = ik_0 e^{ik_0 d} \quad . \]

(3.39)

Equations (3.38) and (3.39) serve as boundary conditions.
for solving equation (3.34). Dropping the polarization notation and making the substitution

\[S(z) = \frac{\partial E(z)}{\partial z} \] \hspace{1cm} (3.40)

equation (3.34) becomes

\[\frac{\partial S(z)}{\partial z} + k^2(z)E(z) = 0 \] \hspace{1cm} (3.41)

Using a fourth-order Runge-Kutta method [10] equations (3.40) and (3.41) can be integrated to find the electric field and its derivative (see Appendix G). Once these are found at \(z=0 \), \(p \) at \(z=0 \) becomes

\[p = \frac{\frac{\partial E(z=0)}{\partial z}}{E(z=0)} \] \hspace{1cm} (3.42)

as defined by equation (2.13) and the reflection coefficient at \(z=0 \), in terms of \(p \), is

\[\Gamma(z=0) = \frac{ik-p}{ik+p} \] \hspace{1cm} (3.43)

A program for calculating the reflection coefficient for a nonhomogeneous plasma layer is given in Appendix C. One can note that only the ratio of \(S(z) \) to \(E(z) \) is actually needed to compute the reflection coefficient. Thus the magnitude of \(E(z) \) can be kept near unity by normalizing the
solution at the end of each Runge-Kutta step. Lines 62 and 63 in the computer program of Appendix C therefore divide both $E(z)$ and $S(z)$ by $|E(z)|$ at the end of each step. This has the advantage of limiting the growth of the field magnitudes that would otherwise occur and reduces dramatically the number of steps necessary for given accuracy.

3.5 Verification of Runge-Kutta Method

In section 3.3 a linear profile was chosen to demonstrate an exact method (Airy-equation) of determining the reflection coefficient. A comparison of the numerical Runge-Kutta solution and this exact solution is made. The particular linear profile chosen is shown in Figure 7. The real and imaginary parts of the reflection coefficient at the front interface for the Runge-Kutta method and the exact method are shown in Table I for 74 to 75 GHz. The Runge-Kutta method compares favorably with the exact solution as can be readily seen in Table I. In all cases the number of Runge-Kutta steps used was tested so that significant changes in computed values were not observed for larger numbers of steps.
CHAPTER 4
TIME DOMAIN MEASUREMENTS

4.1 Introduction

Reflection coefficient measurements made in the frequency domain can be transformed mathematically into the time domain. Complex reflection coefficient data was obtained for the cases studied (see Chapter 3) for a range of frequencies. With the use of an inverse fast Fourier transform [11], the time domain response was acquired for each problem. From the responses, propagation delays of the signals reflected were measured to determine the distances to the location of the critical electron densities. The peak magnitude of the time domain response marked the location of the turning point. To estimate the turning point distance, the velocity through the layers had to be determined.

4.2 Time Domain Theory

Time domain theory plays an important role in the MRIS distance-measuring technique. The response of plasma to a time domain signal is used to estimate distances to critical electron densities. Plasma reflection information in the frequency domain is taken and transformed to the time domain where propagation delays are measured to calculate these distances. In this process a frequency down conversion takes place so that the resulting time domain response emulates a baseband continuous wave signal. Further, an I,Q (In-phase, Quadrature) detector is used to construct the time domain signal. Processing of this signal is done in
the form of windowing to reduce unwanted interference.

To understand exactly how an I,Q detector can obtain a
time domain response by only using discrete samples of
amplitude and phase in the frequency domain, consider first
the problem in reverse. Let a transmitted periodic pulse
train in the time domain be represented by the signal

\[f(t) = \sum_{n=M}^{M+k} a_n e^{-in\omega_0 t} + \sum_{n=-M}^{-(M+k)} a_n e^{-in\omega_0 t} \] (4.1)

with

\[\omega_0 = 2\pi/T_0 \] (4.2)

where \(a_n \) is complex and \(T_0 \) is the period. The signal is
real and periodic with \(2k \) spectral components, where \(k \) is
the number of spectral lines in the positive or negative
frequency domains. The amplitude spectrum starts with \(a_M \) in
the positive frequency domain and \(a_{-M} \) in the negative
frequency domain. \(M \) is chosen here as an arbitrary
constant. Let \(n=-n' \) in the second summation and drop the
primes. The signal becomes one summation

\[f(t) = \sum_{n=M}^{M+k} \left(a_n e^{-in\omega_0 t} + a_{-n} e^{in\omega_0 t} \right) . \] (4.3)

Let \(a_{-n} = a_n^* \) so that \(f(t) \) is real, then

\[f(t) = \sum_{n=-M}^{M+k} \left((a_n + a_n^*) \cos n\omega_0 t - i(a_n - a_n^*) \sin n\omega_0 t \right) . \] (4.4)

Further, let
\[A_n = a_n + a_n^* \] \hspace{1cm} (4.5)

and

\[B_n = i(a_n - a_n^*) \] \hspace{1cm} (4.6)

To make a frequency down conversion of the signal we start by introducing the sinusoidal tone \(\cos p\omega_0 t \). For any \(p \) where

\[M \leq p \leq M+k \quad \text{and} \quad k < M \]

multiply both sides by \(\cos p\omega_0 t \), thus

\[
\begin{align*}
\sum_{n=M}^{M+k} A_n (\cos n\omega_0 t \cdot \cos p\omega_0 t) \\
- B_n (\sin n\omega_0 t \cdot \cos p\omega_0 t)
\end{align*}
\]

\[
= \sum_{n=M}^{M+k} \left(\frac{A_n}{2} \left[\cos(n-p)\omega_0 t + \cos(n+p)\omega_0 t \right] \\
- \frac{B_n}{2} \left[\sin(n+p)\omega_0 t + \sin(n-p)\omega_0 t \right] \right).
\]

(4.7)

Low pass filtering this response for frequencies less than \(2M\omega_0 \) we obtain a filtered version of \(f(t)\cos p\omega_0 t \) as

\[
\text{LPF} \left[f(t)\cos p\omega_0 t\right] = \sum_{n=M}^{M+k} \left(\frac{A_n}{2} \cos(n-p)\omega_0 t - \frac{B_n}{2} \sin(n-p)\omega_0 t \right)
\]

(4.8)
where LPF denotes the low-pass filtering. The frequencies present range from 0 to $k\omega_o$.

Now let $f(t)\cos p\omega_o t$ be placed in a narrow band low pass filter such that frequencies of ω_o and above are completely cut off. Then all of the terms in the summation except for $n=p$ are suppressed and

$$BPF \left[f(t)\cos p\omega_o t\right] = \frac{A_p}{2}$$

(4.9)

where BPF denotes the bandpass filter. This signal would be detected in the I (In-phase) channel of an I,Q synchronous detector with the heterodyne frequency being $p\omega_o$, or equivalently in a homodyne synchronous detector if the signal $f(t)$ represented a single frequency signal of frequency $p\omega_o$ rather than a pulse train signal.

To find the output of the Q (Quadrature) channel multiply $f(t)$ by $\sin p\omega_o t$. Similarly we find

$$f(t)\sin p\omega_o t = \sum_{n=M}^{M+k} \left[A_n \cos n\omega_o t \sin p\omega_o t \\
- B_n \sin n\omega_o t \sin p\omega_o t \right]$$

$$= \sum_{n=M}^{M+k} \left[\frac{A_n}{2} \left[\sin(n+p)\omega_o t + \sin(p-n)\omega_o t \right] \\
- \frac{B_n}{2} \left[\cos(p-n)\omega_o t - \cos(n+p)\omega_o t \right] \right]$$

(4.10)

After filtering out frequencies less than $2M\omega_o$.
\[\text{LPF} \left\{ f(t) \sin p \omega_o t \right\} = \sum_{n=M}^{M+k} \left(\frac{A_n}{2} \sin (p-n) \omega_o t - \frac{B_n}{2} \cos (p-n) \omega_o t \right) \]

(4.11)

and after cutting off at \(\omega_o \) and above

\[\text{BPF} \left\{ f(t) \sin p \omega_o t \right\} = -\frac{B}{2} \]

(4.12)

The quantity \(-B_p/2\) is then the output of the Q channel. If the medium (plasma) being probed is not dependent on time, then the sequence of, essentially d.c. measurements, \(A_p\) and \(B_p\) would be completely sufficient for the construction of \(f(t)\).

With the construction of \(f(t)\) by the I,Q detector, further processing is done to eliminate interference. To show how this is done, consider a real function, later to be called a "window" function

\[w(t) = \sum_{n=M}^{M+k} W_n \cos n \omega_o t \]

(4.13)

and form another function

\[g(t) = \int_{-T_o/2}^{T_o/2} f(\tau)w(t-\tau) \, d\tau \]

(4.14)

where

\[T_o = \frac{2\pi}{\omega_o} \quad \text{for all} \quad \frac{-T_o}{2} \leq t \leq \frac{T_o}{2} \]
Let \(g(t) \) be periodic with period \(T_o \) so that

\[
g(t) = \int_{-T_o/2}^{T_o/2} \left[\sum_{n=M}^{M+k} A_n \cos n\omega_o \tau - B_n \sin n\omega_o \tau \right] \cdot \left[\sum_{m=M}^{M+k} W_m \cos m\omega_o (t-\tau) \right] \, d\tau
\]

\[
= \sum_{n=M}^{M+k} \sum_{m=M}^{M+k} \int_{-T_o/2}^{T_o/2} \left[\left(A_n W_m \cos n\omega_o \tau \cos m\omega_o (t-\tau) \right) - \left(B_n W_m \sin n\omega_o \tau \cos m\omega_o (t-\tau) \right) \right] \, d\tau.
\]

(4.15)

The first term can be expanded where

\[
\cos n\omega_o \tau \cos m\omega_o (t-\tau) = \cos m\omega_o t \left[\frac{1}{2} \cos (n-m)\omega_o \tau + \frac{1}{2} \cos (n+m)\omega_o \tau \right] + \sin m\omega_o t \left[\frac{1}{2} \sin (m+n)\omega_o \tau + \frac{1}{2} \sin (m-n)\omega_o \tau \right]
\]

(4.16)

Note that integration over a complete period \(\tau \) causes all terms to vanish except those where \(m=n \). Expansion of the second term in equation (4.15) gives a similar result. Thus

\[
g(t) = \frac{T_o}{2} \sum_{n=M}^{M+k} W_n \left\{ A_n \cos n\omega_o t - B_n \sin n\omega_o t \right\}.
\]

(4.17)

Then if we identify \(W_n \) as a "window" sequence, the
multiplication term-by-term of the Fourier series representing \(f(t) \) by \(W_n \), produces the Fourier series of \(g(t) \) given by equation (4.14). Thus any pulse train described by a set of \(A_n \)'s and \(B_n \)'s and hence \(f(t) \) can be transformed into another pulse train with a differently shaped pulse by multiplying each term in the Fourier series by \(W_p \).

As an example of how a signal \(f(t) \) is windowed, let a set of \(A_n \)'s and \(B_n \)'s be chosen arbitrarily, for instance let \(A_n = 1/k \) for all \(M \leq n \leq M+k \) and \(B_n = 0 \) for all such \(n \). Thus using equations (4.5) and (4.6) in equation (4.4) gives

\[
f(t) = \sum_{n=M}^{M+k} \left(\frac{1}{k} \right) \cos n\omega_o t \quad . \tag{4.18}
\]

Note that \(f(t) \) is clearly periodic with period \(2\pi/\omega_o \) and has equally weighted spectral components. Consider the function \(f(t) \) for \(-\pi/\omega_o \leq t \leq \pi/\omega_o \). In order to illustrate the windowed function \(f(t) \), consider a limiting form for this function obtained by letting \(\omega_o \to 0 \), \(M \to \infty \), \(k \to \infty \) in a certain way so that the number of components in the spectrum becomes infinite. We first write

\[
f(t) = \sum_{n=M}^{M+k} \left(\frac{1}{k} \right) \cos n\omega_o t = \sum_{n=M}^{M+k} \frac{\omega_o T_o}{\omega_o T_o k} \cos n\omega_o t \quad , \tag{4.19}
\]

so

\[
f(t) = \frac{T_o}{2\pi k} \sum_{n=M}^{M+k} (\cos n\omega_o t)\omega_o \quad , \quad T_o = \frac{2\pi}{\omega_o} \quad . \tag{4.20}
\]

Then let \(\omega_o \to 0 \), \(M \to \infty \), \(k \to \infty \) such that

\[
n\omega_o = \omega \quad \tag{4.21}
\]
\[
\omega_o = \Delta \omega
\]
\[
M \omega_o = \Omega_1
\]
\[
(M+k) \omega_o = \Omega_2
\]
\[
\frac{T_o}{k} = T = \frac{2\pi}{\Omega_2 - \Omega_1}
\]

We can write \(f_1(t) \) for this limiting case

\[
f_1(t) = \frac{T}{2\pi} \int_{\Omega_1}^{\Omega_2} \cos \omega t \, d\omega = \frac{T}{2\pi} \frac{1}{t} \left[\sin \Omega_2 t - \sin \Omega_1 t \right]
\]

\[
\text{(4.26)}
\]

Now

\[
\sin \Omega_2 t - \sin \Omega_1 t = 2 \left[\sin \left(\frac{\Omega_2 - \Omega_1}{2} \right) t \right] \cos \frac{\Omega_2 + \Omega_1}{2} t
\]

\[
\text{(4.27)}
\]

so the limiting form of \(f(t) \) is

\[
f_1(t) = \frac{T_o}{\pi} \left[\frac{\Omega_2 - \Omega_1}{2} \right] \left[\frac{\sin \frac{\Omega_2 - \Omega_1}{2} t}{\frac{\Omega_2 - \Omega_1}{2} t} \right] \cos \frac{\Omega_2 + \Omega_1}{2} t
\]

\[
\text{(4.28)}
\]

a carrier at \((\Omega_1 + \Omega_2)/2\) modulated by a sinc function whose first zero is at \(t = 2\pi/(\Omega_2 - \Omega_1)\). The limiting form of the pulse in equation (4.28) may be repeated such that \(f(t+nT_o) \approx f(t) \) for all integer \(n\). In reality this limiting form of the pulse shape is not achieved. We must really deal with the finite sum and finite \(\omega_o\) of equation (4.18).
Thus the "sinc" modulation is only suggestive of what the actual pulse shape using finite ω_0 will be.

The use of no window implies that we are using a pulse train exactly given by equation (4.18), which in the limiting case looks like a "sinc"-modulated carrier pulse train given by equation (4.28). Other shaped pulse trains can be produced by windowing $f(t)$, to give

$$g(t) = \sum_{n=M}^{M+k} W_n \cdot \frac{1}{k} \cos n\omega_0 t$$ \hspace{1cm} (4.29)

The Kaiser-Bessel set of frequency weights W_n gives a well defined pulse shape that is nearly zero over most of the T_0 period except for the desired pulse itself. Equation (4.18) or (4.29) may be considered as the transmitted signal at some reference point (reference plane, antenna terminals, etc.). This transmitted signal will propagate into the plasma medium and result in a scattered electromagnetic field which will then appear at the same reference point. One should expect, for a frequency dependent medium such as a plasma, that the scattered signal will be distorted as well as delayed with respect to the transmitted pulse train. The effect of the medium will appear in the measured reflection coefficient at the reference point for each constituent frequency in the signal. This set of reflection coefficients can be determined in principle by homodyne synchronous (I,Q) detection of the received signal at each of the stepped radio frequencies and normalization by the magnitude of the transmitted signal. The preceding discussion thus shows that the response of a time independent, but frequency dispersive plasma medium to a time domain pulse train signal can be rigorously emulated by a sequence of frequency domain measurements taken one
frequency at a time.

If R_n is the complex reflection coefficient at frequency $n\omega_0$, then the effective received time domain signal $f_R(t)$ due to equation (4.18) is

$$f_R(t) = \frac{1}{2} \sum_{n=M}^{M+k} R_n e^{-i n\omega_0 t} + \frac{1}{2} \sum_{n=-M}^{-(M+k)} R_n e^{-i n\omega_0 t}$$

$$= \sum_{n=M}^{M+k} |R_n| \cos(n\omega_0 t + \phi_n)$$

where

$$\phi_n = \tan^{-1} \left(\frac{\text{Im} (R_n)}{\text{Re} (R_n)} \right)$$

(4.30)

Note that R_n is complex and that we take $R_{-n} = R_n^*$. Thus $f_R(t)$ is real. As written equation (4.30) is the response of the medium to a pulse train that resembles the "sinc" modulated pulse train form of equation (4.26). A "window" sequence W_n can be applied at this point to give the received windowed signal f_{RW}, which may be written as

$$f_{RW}(t) = \frac{1}{2} \sum_{n=M}^{M+k} R_n W_n e^{-i n\omega_0 t} + \frac{1}{2} \sum_{n=-M}^{-(M+k)} R_n W_n e^{-i n\omega_0 t}$$

$$= \sum_{n=M}^{M+k} W_n |R_n| \cos(n\omega_0 t + \phi_n)$$

(4.31)

where ϕ_n is the same as in equation (4.30) and $W_n \equiv W_{-n}$. Note again that each R_n is measured essentially as a (complex) d.c. quantity even though the value of R_n is that appropriate for the response of the medium at frequency $n\omega_0$. Since we are interested primarily in the time delays associated with the received signals in order to measure
distances to the turning point, we are not really interested in the radio frequency behavior of $f_{RWB}(t)$ of equation (4.31). Without any loss of desired information, we can set $M=0$ in equation (4.31) and emulate a baseband pulse train which represents the envelope of the received signal. The final version of the emulated received signal is a received, windowed, baseband signal f_{RWB}, written as

$$f_{RWB}(t) = \frac{1}{2} \sum_{n=0}^{k} \omega_n R_n e^{-i\omega_0 t} + \frac{1}{2} \sum_{n=0}^{-k} \omega_n R_n e^{-i\omega_0 t}$$

$$= \sum_{n=0}^{k} \omega_n |R_n| \cos(n\omega_0 t + \varphi_n)$$ (4.32)

with

$$\varphi_n = \tan^{-1}\left(\frac{\text{Im}(R_n)}{\text{Re}(R_n)}\right)$$

where

$$R_n = R_{M+n}$$ (4.33)

and

$$\omega_n = \omega_{M+n}$$ (4.34)

The baseband transmitted pulse train may be represented by equation (4.13) as

$$g_t(t) = \sum_{n=0}^{k} \omega_n \cos n\omega_0 t$$ (4.35)

Equation (4.32) will be a distorted and delayed version of equation (4.35). The comparison of the delay between the
two equations represents the distance measurement. The left side of equation (4.32) can either be obtained by the indicated summation for any t or by using the inverse discrete Fourier transform on the complex amplitudes \tilde{W}_n. The direct evaluation of equations (4.32) and (4.35) can produce the values of $f_{\text{RWB}}(t)$ for any value of t, so that a smooth curve can be obtained. The discrete Fourier transform also tends toward a smooth curve if the number of points is increased in the transform by adding zeroes for higher frequencies. The zero padded transform does an interpolation between points that is just what the Fourier series of equation (4.32) produces directly.

4.3 Uniform Dielectric Layer

As stated, the complex reflection coefficient, for a range of constituent transmitted microwave frequencies, can be used to synthesize the effective time domain response of a plasma layer. Sixty four frequencies, for a bandwidth of 2 GHz, were chosen to be consistent with the MRIS experiment. Reflection coefficient data in the frequency domain is shifted and transformed to give a baseband time domain response using a decimation-in-time fast inverse Fourier transform [11]. The resulting time domain response emulates a baseband continuous wave signal, where the peak magnitude marks the location of the turning point.

The frequency domain data is windowed by a Kaiser-Bessel window to reduce unwanted interference and it should be noted that the peak response of the data is normalized to the response of the window. To illustrate the technique of using the time domain response to locate the turning point, the results of section 3.2 are used for a uniform dielectric layer.

Consider a plane wave incident on a uniform dielectric
slab, with \(\varepsilon_r = -0.5 \), located ten centimeters from the source, as shown in Figure 5. A negative permittivity was chosen to simulate a purely reactive dielectric reflector. The wave propagates through free space (Region I) at the speed of light \(c \) and is normally incident on the slab at \(z_1 = 10 \) centimeters. The slab is fourteen centimeters thick (Region II) and is backed by free space (Region III). As stated by equation (2.10), the ratio of the amplitude of the field reflected by the dielectric slab to the amplitude of the field incident at \(z = z_1 \) is called the reflection coefficient \(\Gamma \) of the uniform dielectric slab. We should note by equation (3.16) that \(\Gamma \) is the reflection coefficient pertaining to \(z = 0 \) and takes into account the effect of the propagation path from \(0 \) to \(z_1 \). The effects of the back of the slab are attenuated and not seen. The wave is incident and reflected at the \(z = z_1 \) interface, which is the turning point for the dielectric layer. The magnitude and phase of the reflection coefficient for the uniform dielectric layer are shown in Figures 9 and 10 respectively for 74 to 76 GHz. The phase plot is relative to the phase at 74 GHz. This reflection coefficient data was transformed and windowed with the resulting time domain response of the layer as shown in Figure 11. The response is shifted to the left of time \(t = 0 \) and the shift is the propagation delay of the wave. Note that this delay is measured on the negative side of the time axis and has negative values. Due to the truncated frequency domain, ringing is associated with the time domain response. A Kaiser-Bessel window [10] was chosen and the frequency data were multiplied by the real Kaiser-Bessel weights to emulate a pulse train with very low sidelobes or "ringing" between pulses. Sidelobes can limit the dynamic range of the time domain measurement by hiding low level responses within the sidelobes of the higher level responses.
To estimate the location of the turning point, the time for the wave to travel to the turning point had to be determined. The time domain response was used to calculated this propagation time. In Figure 12 we see the transformed reflection coefficient for -2 to 2 nanoseconds plotted with the effective transmitted pulse (i.e. the transformed Kaiser-Bessel window) as a reference centered at t=0. The time shift between the two plots corresponds to the round-trip propagation delay for the wave and is labeled $2t_d$, where t_d is the one-way propagation delay measured on the negative side of the time axis. Since the wave traveled at the speed of light c in Region I and t_d was measured to be .3352 nanoseconds, the wave traveled 10 centimeters before it was reflected. This is in agreement with the geometry of the problem, where the turning point is located at $z=z_1$ ($z_1=10$ centimeters).

4.4 Plasma Layer

For the plasma layer the turning point is located within the layer. To estimate the turning point distance, the velocity through the plasma must be obtained. This suggests a problem since the plasma is modeled as an inhomogeneous dielectric and the velocity of the propagating wave is dependent on the permittivity of the medium. Some means must be found to approximate the velocity profile. A possible solution is to assume that regions of the plasma profile are piecewise linear to find average velocities for each such region. To approach this problem, let us look at the linear layer discussed in section 3.3. The electron density profile of the layer bounded on both sides by free space is shown in Figure 6. The phase velocity through the layer is
\[v_p(z) = \frac{c}{\sqrt{\varepsilon_r(z)}} \]

(4.35)

The group velocity which describes the transport of energy is related to the phase velocity and is:

\[v_g(z) = \frac{c^2}{v_p(z)} \]

(4.36)

At the front interface of the layer \(z=z_1 \) the relative permittivity is that of free space and is equal to one. The group velocity there is simply the speed of light \(c \). As the wave travels through the layer it encounters greater electron density \(N_e \) values and its group velocity decreases. When the electron density is large enough, the relative dielectric constant \(\varepsilon_r \) vanishes in equation (2.6) and the phase velocity becomes infinite forcing the group velocity in equation (4.36) to become zero. Note that this occurs at the turning point. It is therefore possible to assume that the average group velocity, as the wave propagates from the front interface to the turning point, is \(c/2 \). For investigations of wave propagation in a linear layer plasma, such an assumption is therefore quite permissible. However, as the plasma becomes nonlinear the \(c/2 \) assumption becomes less accurate.

To illustrate this point, shown in Figure 2 is an electron density profile which is consistent with the MRTS experiment that is being simulated. As an example let us assume the profile to be linear for electron densities less than \(1.00 \times 10^{14} \text{cm}^{-3} \). We will assume this to be true only for this region in order to derive an average group velocity for the region. Note that for electron densities less than
$1.00 \times 10^{14}/\text{cm}^3$ the critical frequency is less than 90 GHz by equation (2.5). For this region, as before, the average group velocity is approximated as $c/2$. For 74 to 76 GHz the time domain response was obtained. With this result the turning point was estimated at .77 centimeters. This is in reasonable agreement with the exact location of .87 centimeters. It should be emphasized that this approach was given here as an example and that a better approximation could be made by further segmenting the same region to find more accurate velocity values. Such further segmenting would require additional measurements at frequencies below 74 GHz.
CHAPTER 5
PLASMA FLUCTUATIONS

5.1 Introduction

In the previous chapter we synthesized the effective time domain reflectometry response of a plasma using a range of transmitted microwave frequencies. These results as a whole gave us an estimate for the location of the critical electron densities in static plasma models. However, macroscopic effects of electron density fluctuations, which are not included in standard aerothermodynamic simulations, may have a noticeable effect on hypersonic reentry flow fields [12]. In order to monitor these effects, we will extend the foregoing discussion on the propagation of waves through static plasma models. Thus we consider the important effects of time-dependent electron density fluctuations on the time domain response of a plasma.

Fluctuation of the profile results in motion of the turning point and is emulated between frequency step measurements. Motion occurs between frequency step measurements, assuming that each individual measurement is accurate at each step. Two Doppler effects resulting in motion are studied; the first type of motion involves reducing the electron density profile while preserving the shape of the profile and the second type of motion involves modulating the density profile. The first effect is demonstrated in Figure 13 where a sample electron density profile is reduced, moving the turning point from h_1 to h_2 and then h_3. The second effect can be seen in Figure 14 after the same electron density profile is modulated. Two different rippled profiles are shown moving the turning
point from \(d_1 \) to \(d_2 \). Both effects are applied incrementally between frequency steps and consequentially results in erratic motion of the turning point. The nonuniform motion of the turning point is estimated by calculating the location of the turning point at specific times during the measurement period. These discrete calculations give an indication of the overall motion of the turning point caused by the two effects. Turning point velocities achieved are significantly less than predicted flow field Mach velocities of hypersonic reentry vehicles [13].

5.2 Reduction of Electron Density Profile

The first type of motion resulted by reducing the given electron density profile values of Figure 2 by percentages without changing the shape of the profile. Shown in Figure 15 are the time domain responses for three electron density profiles for 74 to 76 GHz. Time \(t=0 \) corresponds to the location of the time domain response of the window used. The first profile has 100% density values, the second has 95% values and the third has 90% values. It is evident that the responses shift toward the left, moving the turning point left of time \(t=0 \), with decreasing percentages. To understand the displacement of the turning point, the location of the turning point was calculated for the 100% case and the 90% case at 75 GHz. By using equations (2.5) and (2.6) the turning point moved .13 centimeters for the 10% variation in the profile. Using the dwell time of 2.5 milliseconds for the proposed MRIS instrument\(^3\), a turning point velocity of .52 meters per second was computed.

\(^3\)MRIS Experiment Requirements Document (ERD)
To emulate a moving profile response, where the turning point moves as the frequency is stepped from 74 to 76 GHz, the profile was reduced from 100% to 90%. The time domain response for this emulated variation in the profile is shown in Figure 16, left of a static 95% profile response. The 95% profile response is considered to be the response at which the turning point is at its average position for the 10% variation in the profile. A shift between this average and emulated response of 0.17 nanoseconds was computed. By using an average velocity of $c/2$, the turning point was found to have shifted 1.28 centimeters in comparison to the variation in the static profile turning point of 0.13 centimeters. This significant increase in profile shift due to the media motion is a major potential error.

5.3 Modulation of Electron Density Profile

For the second type of motion investigated, modulation was introduced into the profile. An expression is written in the form

$$1 + A \cos(Kz + \psi)$$ \hspace{1cm} (5.1)

where A is the amplitude, ψ is the phase of the modulating wave and K is the spatial wavenumber defined as

$$K = \frac{2\pi}{\lambda},$$ \hspace{1cm} (5.2)

where λ is the spatial wavelength. This function was used to modulate the profile. By varying the phase ψ of this function, the disturbance described by equation (5.1) was set into motion and traveled across the profile.
A modulating wave with an amplitude of .05 and a wavelength of 2 centimeters was chosen. To mimic a modulation velocity of 2 meters per second, the phase \(\psi \) of equation (5.1) was varied from 0 to 90 degrees as the frequency was stepped from 74 to 76 GHz. The time domain response is shown in Figure 17. By squaring the transform reflection coefficient in Figure 17, the power distribution in the time domain can be viewed. The power distribution for the response in Figure 17 is shown in Figure 18. Greater modulation velocities up to 8 meters per second were investigated and results for the reflection coefficient and the power distribution are shown in Figures 19 and 20 respectively. Further work was done for 140 to 142 GHz with the same modulating wave to illustrate greater effects at higher frequencies, the transform reflection coefficients were determined and the associated power distributions are shown in Figures 21 and 22. An addition, for 74 to 76 GHz the amplitude of the modulation was raised to .25 and results are shown in Figures 23 through 25.

Smearing and shifting of the time domain reconstruction is quite evident for the cases studied. For example at 140 to 142 GHz the response maximum moved from -1 nanoseconds to -2.4 nanoseconds as the modulation velocity was increased from .22 meters per second to 3.33 meters per second (see Figures 21 and 22) and as the velocity was increased further to 8 meters per second the response became more smeared and shifted with multiple echoes (see Figure 22d). Various methods for finding the turning point from these responses can be employed. Two approaches are presently realizable; one approach involves finding the peak power level and designating it as the location of the turning point and another approach involves finding the centroid of the area under the power distribution plot, where the centroid would mark the location of the turning point. There are
a few problems with these approaches. Smearing of the time domain response results in several peaks which may be used to define the turning point, limiting the accuracy of the first approach. Shifting of the response centroid would also limit the success of the centroid approach. Using the previous example for 140 to 142 GHz, the centroid of the distribution moves from -1 nanosecond to -2.6 nanoseconds as the modulation velocity is increased from .22 to 3.33 meters per second.

From the results presented a limitation of 2.67 meters per second on the modulation velocity is estimated for the accuracy of the instrument at 140 to 142 GHz with modulation amplitude $A = .05$. For 74 to 76 GHz with modulation amplitude $A = .25$ it is estimated that there is potential error with modulation velocities greater than 4.67 meters per second.

The following conclusions should be kept in mind when assessing the location of the turning point:

1. Amplitude fluctuations in the electron density profile cause a shift or delay in the effective time domain response.
2. Smearing of the time domain response, creating multiple peaks, becomes significant for rapid fluctuations in the electron density profile.
3. Strategies for locating the turning point can be chosen to possibly minimize adverse effects resulting in shifting and smearing of the time domain response.
CHAPTER 6
CONCLUDING REMARKS

The results of studying the effects of moving electron density fluctuations on frequency generated time-domain reflectometry in a one-dimensional plasma layer have been presented. On the basis of the studies made and the data obtained, the following remarks and conclusions may be made:

(a) Different models for a plasma layer have been developed and discussed in length.

(b) Equations describing wave propagation through different plasma models have been formulated.

(c) A computer program included in this paper (Appendix C) synthesizes, using sixty four frequencies, the time domain response of a given plasma electron density profile. A linear profile with an exact solution (Airy solution) compared accurately with the program's numerical Runge-Kutta solution. A uniform dielectric slab with a known turning point was also used successfully to verify the code.

(d) The average velocity of a electromagnetic wave propagating through plasma must be accurately estimated to determine the location of critical electron densities.

(e) Varying electron density levels corrupt time domain and distance measurements. In this work it has been
shown that lowering or reducing the electron density levels of a given electron density profile, while maintaining the shape of the profile as in Figure 13, results in motion of the turning point and the effective motion has a significant effect on measuring critical electron density locations.

(f) Modulating an electron density profile with a waveform, creates a disturbance or ripple adversely effecting the time domain response of a plasma. Waveforms with phase variations emulating motion across the profile were used and greatly influenced simulated measurements, especially for rapid phase variations.

(g) A technique such as the centroid method for locating the turning point may be used to reduce the effects of electron density fluctuations on turning point estimates.

All of these issues, and perhaps more which now remain unidentified, must be addressed and quantified in order to arrive at an estimate of the usefulness of time domain reflectometry for locating critical electron densities in plasma.

A ten percent reduction of the electron density profile as described in section 5.2 shifts the turning point significantly and may contribute to error. By modulating the electron density profile as in section 5.3 there is a potential for error when modulation velocities greater than 2.67 meters per second are achieved at 140 to 142 GHz with modulation amplitude A=.05. For 74 to 76 GHz with modulation amplitude A=.25 modulation velocities greater than 4.67 meters per second may also induce errors. It must be concluded that a distance-measuring scheme using time
domain reflectometry (i.e. MRIS) could become inaccurate if some of the plasma fluctuations investigated in this paper are encountered. It has been the intent of this paper to help identify and possibly solve similar induced errors should they occur.
Appendix A

Dielectric Model of Plasma

The formulas for the complex dielectric constant of a medium such as the ionosphere have been associated with the theory of Sir Edward Appleton [6]. Using the restrictions of Appleton, we assume that the properties of the medium are as follows:

(1) Electrically neutral.
(2) Charges distributed with statistical uniformity so there is no resultant space charge.
(3) Uniform external magnetic field.
(4) Electrons only are effective.
(5) Electronic collisions are independent of electron energy.
(6) The thermal motions of the electrons are unimportant. Such a medium is called a cold plasma.
(7) The magnetic properties are those of free space.

The Appleton formula [6] can be written as

\[
\varepsilon_r = 1 - \frac{X}{1 - iZ - \frac{Y_T^2}{2(1-X-iZ)} \pm \sqrt{\frac{Y_T^4}{4(1-X-iZ)} + Y_L^2}}
\]

(A.1)
where

\[X = \frac{N e^2}{\varepsilon_0 m_e \omega^2} \] \hspace{1cm} (A.2)

\[Y_L = \frac{e B_L}{m_e \omega} \] \hspace{1cm} (A.3)

\[Y_T = \frac{e B_T}{m_e \omega} \] \hspace{1cm} (A.4)

and

\[Z = \frac{\nu}{\omega} \] \hspace{1cm} (A.5)

the quantity \(\varepsilon_r \) stands for the relative dielectric constant, \(N \) is the electron density, \(e \) is the electronic charge, \(\varepsilon_0 \) is the permittivity of free space, \(m_e \) is the mass of an electron, \(\omega_N \) is the plasma radian frequency, \(B \) is the magnetic field, and \(\nu \) is the collision frequency. The subscripts \(T \) and \(L \) refer to the transverse and longitudinal components of the imposed magnetic field with reference to the direction of propagation.

In this paper the magnetic field \(B \) is that of the earth, estimated to be only \(\frac{1}{2} \) Gauss [7], making the terms \(Y_T \) and \(Y_L \) small in comparison to the other terms in equation (A.1). Thus in the absence of any imposed magnetic field \((Y_T=Y_L=0)\) we may express

\[\varepsilon_r = 1 - \frac{X}{1-iZ} \] \hspace{1cm} (A.6)
If collisions are also neglected ($Z=0$), we have a dielectric medium expressed by

$$
\varepsilon_r = 1 - \frac{\omega_N^2}{\omega^2},
$$

(A.7)

where ω is the transmitted radian frequency.
Appendix B

Helmholtz Wave Equation

Maxwell's two curl equations appear throughout literature and are written as

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \] \hspace{1cm} (B.1)

\[\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \] \hspace{1cm} (B.2)

where \(\vec{E} \) is the electric field intensity, \(\vec{B} \) is the magnetic flux density, \(\vec{H} \) is the magnetic field, \(\vec{J} \) is the current density and \(\vec{D} \) is the electric flux density. Plasma, as explained in Appendix A can be represented by a scalar, isotropic and inhomogeneous dielectric constant \(\varepsilon(x,y,z) \) which may have a negative imaginary part representing losses. Using the fact that

\[\vec{D} = \varepsilon \vec{E} \] \hspace{1cm} (B.3)

equation (B.2) can be written as

\[\nabla \times \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t} \] \hspace{1cm} (B.4)

with no conduction current \(\vec{J} \). Taking the curl of equation (B.1):

\[\nabla \times \nabla \times \vec{E} = -\frac{\partial}{\partial t}(\mu_0 \nabla \times \vec{H}) \] \hspace{1cm} (B.5)

where

\[\vec{B} = \mu \vec{H} \] \hspace{1cm} (B.6)
and $\mu = \mu_0$, the permeability of free space. Now using a $e^{-i\omega t}$ time convention, where $\frac{\partial}{\partial t}$ is replaced by $-i\omega$, equation (B.1) can be written as

$$\nabla \times \vec{E} = i\omega \vec{B} = i\omega \mu_0 \vec{H} \quad . \quad (B.7)$$

Then

$$\frac{\partial}{\partial t} (\nabla \times \vec{E}) = \omega^2 \mu_0 \vec{H} \quad . \quad (B.8)$$

and equation (B.2) can be written as

$$\nabla \times \vec{H} = -i\omega \vec{E} \quad . \quad (B.9)$$

Substituting equation (B.9) into (B.5)

$$\nabla \times \nabla \times \vec{E} = i\omega \mu_0 (-i\omega \vec{E}) = \omega^2 \mu_0 \varepsilon \vec{E} \quad . \quad (B.10)$$

In equation (B.10) we will assume that

$$\vec{E} = \vec{E} \hat{y} \quad . \quad (B.11)$$

and

$$\nabla \varepsilon = \frac{\partial \varepsilon}{\partial z} \hat{z} \quad . \quad (B.12)$$

and there is no charge density and therefore the divergence of \vec{E} is zero. Equation (B.10) can be written as

$$\nabla \times \nabla \times \vec{E} = \nabla \nabla \dot{\vec{E}} - \nabla^2 \vec{E} \quad . \quad (B.13)$$

Since $\nabla \cdot \vec{E} = 0$ and there is no variation in the y direction,
\[\nabla x \nabla \hat{E} = \hat{y} \left[-\frac{\partial^2 \hat{E}_y}{\partial z^2} - \frac{\partial^2 \hat{E}_y}{\partial x^2} \right] \]

(B.14)

and substituting equation (B.14) into (B.10)

\[-\frac{\partial^2 \hat{E}_y}{\partial z^2} - \frac{\partial^2 \hat{E}_y}{\partial x^2} = \omega^2 \mu_o \epsilon \hat{E}_y \]

(B.15)

Note that

\[\hat{E}_y = \hat{E}_y(x,z) \]

Assuming \(e^{ik_x x} \) variation as the \(x \) dependence of \(\hat{E}_y \), we can write

\[\frac{\partial^2 \hat{E}_y}{\partial x^2} = (ik_x)^2 \hat{E}_y = -k_x^2 \hat{E}_y \]

(B.16)

where \(\hat{E}_y \) is now a function only of \(z \). With equation (B.15) we can write

\[-\frac{\partial^2 \hat{E}_y(z)}{\partial z^2} + k_x^2 \hat{E}_y(z) - \omega^2 \mu_o \epsilon \hat{E}_y(z) = 0 \]

or

\[\frac{\partial^2 \hat{E}_y(z)}{\partial z^2} + (\omega^2 \mu_o c - k_x^2) \hat{E}_y(z) = 0 \]

(B.17)

For normal incidence and propagation in the +z direction, \(k_x = 0 \), equation (B.17) becomes

\[\frac{\partial^2 \hat{E}_y(z)}{\partial z^2} + \omega^2 \mu \epsilon(z) \hat{E}_y(z) = 0 \]

(B.18)
where μ is the permeability of the medium and is equal to, for this case, μ_0 the permeability of free space. Equation (B.18) is called the Helmholtz wave equation.
Appendix C

Computer Program

C *** PROGRAM FOR CALCULATING REFLECTION COEFFICIENT FOR NORMALLY INCIDENT
C *** EM WAVE IN INHOMOGENEOUS COLD PLASMA
C
C ****** SOLVES EQUATION \(\epsilon'' = -k_0^2 \epsilon \)
C
LOGICAL BFLAG, REFLG
COMPLEX*8 ESS, EFRSS, EX
COMPLEX*16 F, R, CJ, E, EFR, EFPR, K02EPS, K, XX
REAL*8 NE, PI, K0SQ, A, F, H, X, EFRHIZ, EXPO, EPPAC
REAL*8 RMAQ, RANG, FRQRI, RF0H1Z, EF, SF, SFH1Z
REAL*8 PI, FALL
COMMON /ACOEFF/ A(3,16), EPPAC, K0SQ, F, CJ
EXTERNAL DERIVY, DERIVZ
CJ=(0.1.)

OPEN(UNIT=1,FILE='LE014.OUT')
OPEN(UNIT=2,FILE='REFMAG1.OUT')
OPEN(UNIT=3,FILE='FRQ1.OUT')
OPEN(UNIT=4,FILE='PHA1.OUT')
OPEN(UNIT=5,FILE='E1.OUT')

Create 'A' coefficients for profile

CALL PROFILE

PRINT *, 'ENTER NUMBER OF STEPS FOR MEASUREMENT (H)'
READ (5,*) H
PRINT *, 'NUMBER OF RK POINTS=', M
PRINT *, 'ENTER FREQUENCY IN GHZ'
READ (5,*) FRQ1
F=FRQ1*1.0D9

*** ASSUME PLASMA THICKNESS OF 14.97 CM DUE TO PARABOLIC FIT PROBLEM

C - .0023615 IS THE DISTANCE IN CM FROM WALL TO FIRST POINT
C
H=(.1407-.000023615)/M
C=2.99796*08
PI=3.141592653589
MS=.10918-31
EO=0.0542E-12
QS=1.6021E-19
K0SQ=4.*PI*PI*F/F/C/C
EPPAC=EO/HE/4./PI/PI/F/F

*** SOLVE DIFFERENTIAL EQUATIONS USING 4TH ORDER RUNGE-KUTTA METHOD
C
C
mcount=0
EXPO=0.
BFLAG=.FALSE.
REFLG=.FALSE.
X=.1407
EPR=DCMUL(X,0,DSQRT(DABS(K2EPS(X))))
E=CDXEF(EPR*X)
EPR=EPR*E

C **** Main integration loop
DO 65 J = 1,N
GO TO 615

C **** These lines allow for changing step size along the way
IF (redflag) GO TO 615
IF (1.GT.5000) THEN
 h=h/10.
 redflag=.TRUE.
END IF

C 615 CALL CRK21(X,E,EPR,EPFP,-H,DERIVY,DERIVZ)
C
C *** Develop local wave number and single precision values for printing
C
C X2=K2EPS(X)
C K=DSQRT(K2)
C EPS=E
C K2=K
C COUNT=COUNT+1
C IF (COUNT.EQ.100) THEN
 WRITE (9,61) X,E,EPR
 COUNT=0
END IF

C
C *** Re-normalize E to magnitude 1 and normalize E(pri) to E
C
C ETHP=CDABS(E)
C E=E/ETHP
C EPR=EPFP/ETHP
C
C 65 CONTINUE
C
C ******** I has its value from last time through loop
C
C XKR=DRKAL(X)
C IF (XKR.LT.0.) THEN
 PRINT *, 'X IS NEGATIVE; REFLECTION COEFFICIENT_UNDEFINED'
 GO TO 67
END IF
C
F=EPR/E
R=(1.-CJ*F/K)/(1.+CJ*F/K)
PRINT *, 'FREQUENCY=',F
PRINT *, 'FIELD RATIO=',R
PRINT *, 'REFLECTION COEFF.=',R
RMAG=CDABS(R)
RANG=DATAN2(DIMAG(R),DREAL(R))*180./PI
PRINT *, 'REF. COEFF. (MATERIAL)','=',RMAG,RANG
C
WRITE (2,*) RMAG
C
WRITE (3,*) F
C
WRITE (4,*) RANG
THETA=(RANG-03.808672023634130)*PI/180.
WRITE (1,*), 'NEW PHASE ANGLE=', RANG-03.8086720236
TANH=DATAN(THETA)
TANSQ=TANH*TANH
RREAL=DSQRT(1/(TANSQ+1))
RIMAG=TANH*RREAL
WRITE (1,*), 'NEW REF COEFF=', RREAL, RIMAG

67 STOP
END

COMPLEX*16 FUNCTION K02EFS(X)
C ********** DEVELOP 'K0**2*(1- ((F/F)**2)/(1.+CJ+FCOLL/F))
REAL*8 X,A,FFAC,KOSQ,CHE,FCOLL,F
COMPLEX*16 CJ
COMMON /AFOEFF/A(3,16),FFAC,KOSQ,F,CJ
C ********** Convert X in meters to centimeters to generate table index
IX:DINT(100.*X)+1
CNEA(IX)+A2(IX)+A3(IX)+X*X
K02EFS=KOSQ*(1.-FFAC*CHE/(1.+CJ+FCOLL(X,F)/F))
END

REAL*8 FUNCTION FCOLL(X,F)
C ********** DEVELOP COLLISION FREQUENCY IN HERTZ
REAL*8 X,F
FCOLL=0.
RETURN
END

SUBROUTINE DERIVY(X,Y,Z,YP)
COMPLEX*16 Y,Z,YP
REAL*8 X
YP=Y
RETURN
END

SUBROUTINE DERIVZ(X,Y,Z,ZP)
COMPLEX*16 Y,Z,ZP,K02EFS
REAL*8 X
ZP=K02EFS(X)*Y
RETURN
END

SUBROUTINE CRK2I(X,Y,YP,ZP,H,DERIVY,DERIVZ)
C
FOURTH-ORDER RUNGE-KUTTA SOLUTION OF TWO FIRST-ORDER COUPLED DIFF'L
EQUATIONS WHERE THE DEPENDENT VARIABLES ARE COMPLEX. X IS THE (REAL)
INDEPENDENT VARIABLE, Y, YP AND Z, ZP ARE THE DEPENDENT VARIABLES AND
DERIVATIVES, RESPECTIVELY, YP IS EVALUATED IN A SEPARATE
SUBROUTINE NAMED DERIVY(X,Y,Z,YP), AND ZP IN DERIVZ(X,Y,Z,ZP). H IS
THE STEP SIZE IN X.
DERIV AND DERIVZ MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM.
ROUTINE IS BASED ON FORMULA 25.5.10 ON PAGE 99 OF ABRAHOMITZ
AND STEFFT.

COMPLEX*16 Y, YP, Z, ZP, CK1, CK2, CK3, CK4, CL1, CL2, CL3, CL4, Y1, Z1
REAL*8 X, H, H1

H1=H/2.
CALL DERIVY(X,Y,Z,YP)
CALL DERIVZ(X,Y,Z,ZP)
CK1=H*YP
CL1=H*ZP
X=X+H1
Y1=Y+CK1/2.
Z1=Z+CL1/2.
CALL DERIVY(X,Y1,Z1,YP)
CALL DERIVZ(X,Y1,Z1,ZP)
CK2=H*YP
CL2=H*ZP
Y1=Y+CK2/2.
Z1=Z+CL2/2.
CALL DERIVY(X,Y1,Z1,YP)
CALL DERIVZ(X,Y1,Z1,ZP)
CK3=H*YP
CL3=H*ZP
X=X+H1
Y1=Y+CK3
Z1=Z+CL3
CALL DERIVY(X,Y1,Z1,YP)
CALL DERIVZ(X,Y1,Z1,ZP)
CK4=H*YP
CL4=H*ZP
Y=Y+(CK1+2.*CK2+2.*CK3+CK4)/6.
Z=Z+(CL1+2.*CL2+2.*CL3+CL4)/6.
RETURN
END

SUBROUTINE PROFILE

C ******** DEVELOP A(I,J) COEFFICIENTS FOR PLACHA PROFILE
C ********
REAL*8 NE(I), A(I,J), A2(J,I) = A(2,J) * X + A(3,J) * X**2
VECTOR(SL(17), DIS, ANE(54), FPFA, KOSQ, F)
VECTOR*16 CJ
C ********
CONVIN /ACOFF/ (A(3,16), FPFA, KOSQ, F, CJ

C ****** G(J) & NE(J) DATA IS IN CENTIMETERS - CONVERSION OF RESULTS TO METERS
C ****** IS DONE AT END OF THIS SUBROUTINE

C

DATA (G(J), J=1,54)/0023615.0047231.0070846.0094462.012327.
* 015942.02013.025362.031744.038531.046003.054621.064785.
* 068204.113008.13873.17005.20827.25469.31177.38116.
* 46562.5691.64681.84884.1.0384.1.2652.1.5443.1.8849.
* 2.30042.58073.3.4257.4.0566.4.6875.5.3185.5.9494.6.5803.
* 7.7127.8422.9.4721.10.104.1.1.35011.16.36810.997.11.626.
* 17.306/
DATA (NE(J), J=1,54)/9.677E+12,9.4649E+12,9.3733E+12,9.3568E+12,
*+9.4101E+12,9.5751E+12,9.8421E+12,1.034E+13,1.0791E+13,1.1517E+13,
+1.242E+13,1.366E+13,1.492E+13,1.654E+13,1.843E+13,2.056E+13,
+2.324E+13,2.6267E+13,2.983E+13,3.395E+13,3.885E+13,4.464E+13,
+5.152E+13,5.967E+13,6.927E+13,8.069E+13,9.395E+13,1.083E+14,
+1.246E+14,1.4864E+14,1.539E+14,1.734E+14,1.954E+14,2.059E+14,
+2.356E+14,2.426E+14,2.641E+14,2.875E+14,3.158E+14,3.425E+14,
+3.70E+14,3.966E+14,4.37E+14,4.77E+14,5.03E+14,1.054E+14,
+6.026E+13,1.041E+13,1.350E+11,4.2529E+09,2.056E-21,2.019E-69,
+2.438E-39,2.49E-09

C ***** NUM IS THE NUMBER OF PROFILE POINTS
NUM=54

C *** INTERPOLATION OF FLASMA PROFILE USING 'N' 2ND ORDER POLYNOMIALS

C ***** N IS NUMBER OF DIVISIONS IN PROFILE
N=15
DIS=1.
D(1)=0.
DO 25 M = 2,N+1
 D(M)=D(M-1)+DIS
25 CONTINUE
D(1)=S(1)

C *** INTERPOLATE DIVIDING PTS. IN PROFILE

C ANR(1)=NE(1)
 DO 40 L = 2,N+1
 ANR(L)=ANR(L-1)
 40 CONTINUE
 DO 35 M = 2,N+1
 IF (S(M).GE.D(L)) Go TO 35
 ANR(L)=((NE(M+1)-NE(M))*(D(L)-S(M))/(S(M+1)-S(M)))+NE(M)
 35 CONTINUE

C *** CALCULATE COEFFICIENTS OF 2ND ORDER POLYNOMIALS

C *** CALCULATE STARTING SLOPE
C
SL(1)=(NE(14)-NE(1))/(S(14)-S(1))
 DO 45 J = 1,N+1
 A(3,J)=ANR(3,J+1)-ANR(3,J)-D(J)*SL(J)+S(J))
 45 CONTINUE
C
C *** EXPRESS RESULTS IN METERS RATHER THAN CENTIMETERS
C
C SL(1)=1.D0*SL(1)
 DO 50 J=1,N+1
 A(1,J)=1.D0*A(1,J)
 A(2,J)=1.D0*A(2,J)
 A(3,J)=1.D0*A(3,J)
 50 CONTINUE
RETURN
END
Appendix D

Uniform Dielectric Layer

A plane wave is incident on a plane uniform dielectric layer as shown in Figure 3. The electron density profile for the three regions is shown in Figure 4. From section 3.2, the field in Region III can be written as

$$ E(z) = e^{ik_0z} \quad (z \geq z_2) \quad (D.1) $$

and

$$ \frac{\partial E(z)}{\partial z} = ik_0e^{ik_0z} \quad (z \geq z_2) \quad (D.2) $$

Likewise, in Region II

$$ E(z) = C_1e^{ik_0z} + C_2e^{-ik_0z} \quad (z_1 \leq z \leq z_2) \quad (D.3) $$

Using equation (3.9), equation (D.3) can be written as

$$ E(z) = C_1e^{-k_0n_1z} + C_2e^{k_0n_1z} \quad (z_1 \leq z \leq z_2) \quad (D.4) $$

and

$$ \frac{\partial E(z)}{\partial z} = -k_0n_1C_1e^{-k_0n_1z} + k_0n_1C_2e^{k_0n_1z} \quad (D.5) $$

Since the fields are continuous at $z=z_2$, we can equate field expressions. Equations (D.1) and (D.4), and equations (D.2)
and (D.5) can be respectively equated to

\[C_1 e^{-k_0 n_i z_1} + C_2 e^{k_0 n_i z_2} = e^{i k_0 z_2} \] \hspace{1cm} (D.6)

and

\[-C_1 e^{-k_0 n_i z_2} + C_2 e^{k_0 n_i z_2} = \frac{i}{n_i} e^{i k_0 z_2} \] \hspace{1cm} (D.7)

Solving for \(C_1 \) by using equations (D.6) and (D.7) we find

\[C_1 = \frac{1}{2} \left(1 + \frac{1}{n_i} \right) e^{(1-\frac{1}{n_i}) n_i k_0 z_2} \] \hspace{1cm} (D.8)

Likewise, solving for \(C_2 \) we find

\[C_2 = \frac{1}{2} \left(1 - \frac{1}{n_i} \right) e^{-(1+\frac{1}{n_i}) n_i k_0 z_2} \] \hspace{1cm} (D.9)

In Region I we can write

\[E(z) = C_3 e^{i k_0 z} + C_4 e^{-i k_0 z} \] \hspace{1cm} (z ≤ z_1) \hspace{1cm} (D.10)

where

\[\frac{\partial E(z)}{\partial z} = i k_0 C_3 e^{i k_0 z} - i k_0 C_4 e^{-i k_0 z} \] \hspace{1cm} (z ≤ z_1). \hspace{1cm} (D.11)

At \(z = z_1 \),

\[E(z_1) = C_3 e^{i k_0 z_1} + C_4 e^{-i k_0 z_1} \] \hspace{1cm} (D.12)

and
\[
\frac{\partial E(z_1)}{\partial z} = i k_o C_3 e^{i k_o z_1} - i k_o C_4 e^{-i k_o z_1} \quad .
\]

We can equate the field equations (D.4) and (D.12), and equations (D.5) and (D.13) respectively at \(z = z_1 \). So

\[
C_3 e^{i k_o z_1} + C_4 e^{-i k_o z_1} = C_1 e^{-k_o n_i z_1} + C_2 e^{k_o n_i z_1} \quad .
\]

and

\[
\begin{align*}
 i k_o C_3 e^{i k_o z_1} - i k_o C_4 e^{-i k_o z_1} &= -k_o n_i C_1 e^{-k_o n_i z_1} \\
 &+ k_o n_i C_2 e^{k_o n_i z_1} .
\end{align*}
\]

Solving for \(C_3 \) and \(C_4 \) we find

\[
C_3 = \frac{n_i}{2i} \left[C_2 \left(1 + \frac{1}{in_i}\right)e^{k_o n_i z_1} (1 + \frac{1}{in_i}) \right.
\]

\[
- C_1 \left(1 + \frac{1}{in_i}\right)e^{-k_o n_i z_1} (1 - \frac{1}{in_i}) \right]
\]

and

\[
C_4 = \frac{n_i}{2i} \left[-C_2 \left(1 + \frac{1}{in_i}\right)e^{k_o n_i z_1} (1 - \frac{1}{in_i}) \right.
\]

\[
+ C_1 \left(1 - \frac{1}{in_i}\right)e^{-k_o n_i z_1} (1 + \frac{1}{in_i}) \right] .
\]

From equations (2.8) and (2.10) the reflection coefficient at \(z = 0 \) can be written as

\[
\Gamma(z=0) = \frac{C_4}{C_3} .
\]
Note that

$$\frac{C_2}{C_1} = \frac{1 - \frac{1}{\imath n_1}}{1 + \frac{1}{\imath n_1}} e^{-2\imath n_1 k_o z_2}$$

will be very small if $n_1 z_2$ is several free space wavelengths. Choosing z_2 such that $k_o n_1 \gg 1$ renders $|C_2| \ll |C_1|$. Thus for $n_1 k_o z_2 \gg 1$, C_2 is negligible compared to C_1 and

$$\Gamma(z=0) = \frac{1 - \imath n_1}{1 + \imath n_1} e^{2\imath k_o z_1} \quad \text{(D.19)}$$
Appendix E

Exact Solution for Linear Profile

Consider the Helmholtz wave equation (B.18) as it applies to a medium such as that labeled Region II in Figure 6. It will be shown that within such a region equation (B.18) can be transformed into the Airy equation [10] having the tabulated Airy functions as exact solutions. Within Region II the electron density profile can be expressed as

\[N_e = N_0 \frac{z-z_1}{z_2-z_1} \] \hspace{1cm} (E.1)

From equation (2.6) the relative permittivity can be written as

\[\varepsilon_r(z) = 1 - K_1 \frac{z-z_1}{k_o^2(z_2-z_1)} \] \hspace{1cm} (E.2)

where

\[K_1 = -\frac{N_0 e^2}{c^2 \varepsilon_o m_e} \] \hspace{1cm} (E.3)

Substituting equation (E.2) into the Helmholtz wave equation (B.18) describing propagation through the inhomogeneous linear layer (derived in Appendix B), we find
\[
\frac{\partial^2 E}{\partial z^2} + k_o^2 \left(1 - \frac{K_1}{k_o^2} \left(\frac{z-z_1}{z_2-z_1} \right) \right) E = 0 \quad . \tag{E.4}
\]

Now divide equation (E.4) by \(k_o^2 \) and let

\[
x = k_o z \quad . \tag{E.5}
\]

so that

\[
x_1 = k_o z_1
\]

and

\[
x_2 = k_o z_2
\]

therefore

\[
\frac{\partial^2 E(x)}{\partial x^2} + \left(1 - \frac{K_1}{k_o^2} \left(\frac{x-x_1}{x_2-x_1} \right) \right) E(x) = 0 \quad . \tag{E.6}
\]

Then let

\[
y = - \left(1 - \frac{K_1}{k_o^2} \left(\frac{x-x_1}{x_2-x_1} \right) \right) \quad , \tag{E.7}
\]

so that

\[
\frac{\partial y}{\partial x} = \frac{K_1}{k_o^2 (x_2-x_1)} \quad . \tag{E.8}
\]
Then the wave equation becomes

\[\frac{\partial^2 E(y)}{\partial y^2} - \left(\frac{k_0^2(x_2-x_1)}{K_1} \right)^2 y E(y) = 0 \] \hspace{1cm} (E.9)

Further let

\[u = \left(\frac{k_0^2(x_2-x_1)}{K_1} \right) \frac{2}{3} y \] \hspace{1cm} (E.10)

Thus

\[\frac{\partial u}{\partial y} = \left(\frac{k_0^2(x_2-x_1)}{K_1} \right) \frac{2}{3} \] \hspace{1cm} (E.11)

\[\frac{\partial}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial}{\partial u} = \left(\frac{k_0^2(x_2-x_1)}{K_1} \right) \frac{2}{3} \frac{\partial}{\partial u} \] \hspace{1cm} (E.12)

and

\[\frac{\partial^2}{\partial y^2} = \left(\frac{k_0^2(x_2-x_1)}{K_1} \right) \frac{4}{3} \frac{\partial^2}{\partial u^2} \] \hspace{1cm} (E.13)

The wave equation finally can be written in the form

\[\frac{\partial^2 E(u)}{\partial u^2} - u E(u) = 0 \] \hspace{1cm} (E.14)
where by equations (E.7) and (E.10)

\[
 u = - \left(\frac{k_0^3(z_2-z_1)}{k_1} \right)^{\frac{2}{3}} \left[1 - \frac{k_1}{k_0} \frac{z-z_1}{z_2-z_1} \right] . \tag{E.15}
\]

The general solution for equation (E.14) can be written in terms of Airy functions \(\text{Ai} \) and \(\text{Bi} \) as [10]

\[
 E(u) = C_1 \text{Ai}(u) + C_2 \text{Bi}(u) , \tag{E.16}
\]

with \(C_1 \) and \(C_2 \) as constants.
Appendix F

Reflection Coefficient for Linear Profile

A linear layer, as shown in Figure 6, is presented in section 3.3. A plane wave, traveling in the z-direction, through free space, is incident on the layer at $z=z_1$. The field in Region I is written with unity magnitude as

$$E(z) = e^{ik_o z} \quad (F.1)$$

where

$$\frac{\partial E(z)}{\partial z} = ik_o e^{ik_o z} \quad (F.2)$$

In Region II the field expressions are written in terms of Airy functions (see Appendix E) as

$$E(u) = C_1 Ai(u) + C_2 Bi(u) \quad (F.3)$$

and

$$\frac{\partial E(u)}{\partial u} = C_1 \frac{\partial}{\partial u} Ai(u) + C_2 \frac{\partial}{\partial u} Bi(u) \quad (F.4)$$

where the variable $u(z)$ is defined as

$$u(z) = -\left(\frac{k_o^2 \Delta z}{K_1}\right)^{\frac{2}{3}} \left[1 - \frac{K_1}{k_o^2} \left(\frac{z-z_1}{\Delta z}\right)\right] \quad (F.5)$$
and

\[K_1 = \frac{N_0 e^2}{c^2 \varepsilon_o m_e} \] \hspace{1cm} (F.6)

Using the boundary condition at \(z = z_2 \) we can equate field expressions. Equations (F.1) and (F.3), and equations (F.2) and (F.4) can be respectively equated to

\[C_1 \text{Ai}(u(z_2)) + C_2 \text{Bi}(u(z_2)) = e^{ik_o z_2} \] \hspace{1cm} (F.7)

and

\[C_1 \frac{\partial}{\partial u} \text{Ai}(u(z_2)) + C_2 \frac{\partial}{\partial u} \text{Bi}(u(z_2)) = ik_o e^{ik_o z_2} \cdot \frac{\partial z}{\partial u}, \] \hspace{1cm} (F.8)

where \(\frac{\partial z}{\partial u} \) can be written by equation (F.5) as

\[\frac{\partial z}{\partial u} = \left[\frac{\Delta z}{K_1} \right] = 3^{\frac{2}{3}} \left[\frac{k_o^2 \Delta z}{K_1} \right] = \left[\frac{\Delta z}{K_1} \right] \frac{1}{3} \] \hspace{1cm} (F.9)

Solving for \(C_1 \) by using equations (F.7) and (F.8) we find

\[C_1 = \left[\frac{ik_o \frac{\partial z}{\partial u} \text{Bi}(u(z_2)) - \frac{\partial}{\partial u} \text{Bi}(u(z_2))}{\frac{\partial}{\partial u} \text{Ai}(u(z_2)) \text{Bi}(u(z_2)) - \text{Ai}(u(z_2)) \frac{\partial}{\partial u} \text{Bi}(u(z_2))} \right] e^{ik_o z_2}. \] \hspace{1cm} (F.10)
Likewise, solving for C_2 we find

$$C_2 = \left[\frac{ik_o \frac{\partial}{\partial u} \text{Ai}(u(z_2)) - \frac{\partial}{\partial u} \text{Ai}(u(z_2))}{\text{Ai}(u(z_2)) \frac{\partial}{\partial u} \text{Bi}(u(z_2)) - \frac{\partial}{\partial u} \text{Ai}(u(z_2)) \text{Bi}(u(z_2))} \right] e^{ik_o z_2}.$$

(F.11)

In Region I we can write

$$E(z) = C_3 e^{ik_o z} + C_4 e^{-ik_o z} \quad (z \leq z_1)$$

(F.12)

where

$$\frac{\partial E(z)}{\partial z} = ik_o C_3 e^{ik_o z} - ik_o C_4 e^{-ik_o z} \quad (z \leq z_1).$$

(F.13)

We can equate the field equations (F.3) and (F.12), and equations (F.4) and (F.13) respectively at $z = z_1$. Thus

$$C_1 \text{Ai}(u(z_1)) + C_2 \text{Bi}(u(z_1)) = C_3 e^{ik_o z_1} + C_4 e^{-ik_o z_1}$$

(F.14)

and

$$C_1 \frac{\partial}{\partial u} \text{Ai}(u(z_2)) + C_2 \frac{\partial}{\partial u} \text{Bi}(u(z_2)) =$$

$$\left[ik_o C_3 e^{ik_o z} - ik_o C_4 e^{-ik_o z_1} \right] \frac{\partial z}{\partial u}.$$

(F.15)
Solving equations (F.14) and (F.15) for C_3 and C_4 we find

\[
C_3 = \frac{C_1}{2} e^{-ik_0z_1} \left[Ai(u(z_1)) + \frac{\partial Ai(u(z_1))}{ik_0 \frac{\partial z}{\partial u}} \right] \\
+ \frac{C_2}{2} e^{-ik_0z_1} \left[Bi(u(z_1)) + \frac{\partial Bi(u(z_1))}{ik_0 \frac{\partial z}{\partial u}} \right]
\] (F.16)

and

\[
C_4 = \frac{C_1}{2} e^{ik_0z_1} \left[Ai(u(z_1)) - \frac{\partial Ai(u(z_1))}{ik_0 \frac{\partial z}{\partial u}} \right] \\
+ \frac{C_2}{2} e^{ik_0z_1} \left[Bi(u(z_1)) - \frac{\partial Bi(u(z_1))}{ik_0 \frac{\partial z}{\partial u}} \right].
\] (F.17)

From equation (2.10) the reflection coefficient at $z=0$ is written as

\[
\Gamma(z=0) = \frac{C_4}{C_3}.
\] (F.18)
Appendix G

Runge-Kutta Method

An inhomogeneous plasma layer with an electron density profile as shown in Figure 2 is considered in section 3.4. The field at a distance d is assumed to be unity and therefore is written as

$$E(z=d) = e^{i k_0 d} \quad (G.1)$$

and

$$\frac{\partial E(z=d)}{\partial z} = ik_0 e^{i k_0 d} \quad (G.2)$$

Rewriting the Helmholtz wave equation by making the substitution

$$S(z) = \frac{\partial E(z)}{\partial z} \quad (G.3)$$

equation (3.34) becomes

$$\frac{\partial S(z)}{\partial z} + k^2(z)E(z) = 0$$

or

$$\frac{\partial S(z)}{\partial z} + k_0^2 \varepsilon(z)E(z) = 0 \quad (G.4)$$

Using a fourth-order Runge-Kutta method [10] and the coupled differential equations (G.3) and (G.4), the electric field at a given point $z=d-nh$, where h is the spacing within the layer with thickness d, is represented by E_n and at $z=d-(nh+h)$ as E_{n+1}. The solution takes the form
\[E_{n+1} = E_n + \frac{1}{6} \left(f_1 + 2f_2 + 2f_3 + f_4 \right) \] \hspace{1cm} (G.5)

\[S_{n+1} = S_n + \frac{1}{6} \left(g_1 + 2g_2 + 2g_3 + g_4 \right) \] \hspace{1cm} (G.6)

where

\[f_1 = h \cdot S_n \] \hspace{1cm} (G.7)

\[f_2 = h \cdot \left(S_n + \frac{1}{2}g_1 \right) \] \hspace{1cm} (G.8)

\[f_3 = h \cdot \left(S_n + \frac{1}{2}g_2 \right) \] \hspace{1cm} (G.9)

\[f_4 = h \cdot \left(S_n + g_3 \right) \] \hspace{1cm} (G.10)

with

\[g_1 = -hk^2 \varepsilon \left(d - nh \right) \cdot E_n \] \hspace{1cm} (G.11)

\[g_2 = -hk^2 \varepsilon \left(d - nh - \frac{1}{2}h \right) \cdot \left(E_n + \frac{1}{2}f_1 \right) \] \hspace{1cm} (G.12)

\[g_3 = -hk^2 \varepsilon \left(d - nh - \frac{1}{2}h \right) \cdot \left(E_n + \frac{1}{2}f_2 \right) \] \hspace{1cm} (G.13)

\[g_4 = -hk^2 \varepsilon \left(d - nh - h \right) \cdot \left(E_n + f_3 \right) \] \hspace{1cm} (G.14)

In this procedure, \(n \) varies from zero to \(N-1 \), where \(N \) is the number of Runge-Kutta points used. The initial values of \(E_0 \) and the derivative of \(E_0 \) are given by equations (G.1) and (G.2). Once the field and its derivative are found at \(z=0 \), p at \(z=0 \) becomes
\[p = \frac{\frac{\partial E(z=0)}{\partial z}}{E(z=0)} \quad (G.15) \]

by equation (2.13) and the reflection coefficient at \(z=0 \), in terms of \(p \), is

\[\Gamma(z=0) = \frac{ik-p}{ik+p} \quad (G.16) \]
<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Runge-Kutta Real</th>
<th>Runge-Kutta Imag</th>
<th>Exact-Airy Real</th>
<th>Exact-Airy Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>74.0317</td>
<td>0.9682</td>
<td>0.2503</td>
<td>0.9682</td>
<td>0.2503</td>
</tr>
<tr>
<td>74.0635</td>
<td>0.8746</td>
<td>0.4848</td>
<td>0.8746</td>
<td>0.4848</td>
</tr>
<tr>
<td>74.0952</td>
<td>0.7252</td>
<td>0.6885</td>
<td>0.7252</td>
<td>0.6885</td>
</tr>
<tr>
<td>74.1270</td>
<td>0.5294</td>
<td>0.8484</td>
<td>0.5294</td>
<td>0.8484</td>
</tr>
<tr>
<td>74.1587</td>
<td>0.2996</td>
<td>0.9541</td>
<td>0.2996</td>
<td>0.9541</td>
</tr>
<tr>
<td>74.1905</td>
<td>0.0504</td>
<td>0.9987</td>
<td>0.0504</td>
<td>0.9987</td>
</tr>
<tr>
<td>74.2222</td>
<td>-0.2023</td>
<td>0.9793</td>
<td>-0.2023</td>
<td>0.9793</td>
</tr>
<tr>
<td>74.2540</td>
<td>-0.4422</td>
<td>0.8989</td>
<td>-0.4422</td>
<td>0.8989</td>
</tr>
<tr>
<td>74.2857</td>
<td>-0.6538</td>
<td>0.7566</td>
<td>-0.6539</td>
<td>0.7566</td>
</tr>
<tr>
<td>74.3175</td>
<td>-0.8235</td>
<td>0.5673</td>
<td>-0.8236</td>
<td>0.5672</td>
</tr>
<tr>
<td>74.3492</td>
<td>-0.9401</td>
<td>0.3410</td>
<td>-0.9401</td>
<td>0.3408</td>
</tr>
<tr>
<td>74.3810</td>
<td>-0.9957</td>
<td>0.9222</td>
<td>-0.9958</td>
<td>0.9207</td>
</tr>
<tr>
<td>74.4127</td>
<td>-0.9867</td>
<td>-0.1628</td>
<td>-0.9866</td>
<td>-0.1630</td>
</tr>
<tr>
<td>74.4444</td>
<td>-0.9132</td>
<td>-0.4076</td>
<td>-0.9131</td>
<td>-0.4078</td>
</tr>
<tr>
<td>74.4762</td>
<td>-0.7799</td>
<td>-0.8259</td>
<td>-0.7797</td>
<td>-0.6261</td>
</tr>
<tr>
<td>74.5079</td>
<td>-0.5953</td>
<td>-0.8035</td>
<td>-0.5951</td>
<td>-0.8036</td>
</tr>
<tr>
<td>74.5397</td>
<td>-0.3715</td>
<td>-0.9285</td>
<td>-0.3712</td>
<td>-0.9286</td>
</tr>
<tr>
<td>74.5714</td>
<td>-0.1229</td>
<td>-0.9924</td>
<td>-0.1227</td>
<td>-0.9924</td>
</tr>
<tr>
<td>74.6032</td>
<td>0.1339</td>
<td>-0.9910</td>
<td>0.1341</td>
<td>-0.9910</td>
</tr>
<tr>
<td>74.6349</td>
<td>0.3820</td>
<td>-0.9242</td>
<td>0.3822</td>
<td>-0.9241</td>
</tr>
<tr>
<td>74.6667</td>
<td>0.6050</td>
<td>-0.7962</td>
<td>0.6052</td>
<td>-0.7960</td>
</tr>
<tr>
<td>74.6984</td>
<td>0.7881</td>
<td>-0.6155</td>
<td>0.7883</td>
<td>-0.6153</td>
</tr>
<tr>
<td>74.7302</td>
<td>0.9191</td>
<td>-0.3939</td>
<td>0.9192</td>
<td>-0.3937</td>
</tr>
<tr>
<td>74.7619</td>
<td>0.9893</td>
<td>-0.1462</td>
<td>0.9893</td>
<td>-0.1460</td>
</tr>
<tr>
<td>74.7937</td>
<td>0.9938</td>
<td>0.1114</td>
<td>0.9938</td>
<td>0.1116</td>
</tr>
<tr>
<td>74.8254</td>
<td>0.9323</td>
<td>0.3617</td>
<td>0.9322</td>
<td>0.3619</td>
</tr>
</tbody>
</table>
TABLE I (continued)

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Runge-Kutta</th>
<th>Exact-Airy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>74.8571</td>
<td>0.3088</td>
<td>0.5881</td>
</tr>
<tr>
<td>74.8889</td>
<td>0.6314</td>
<td>0.7754</td>
</tr>
<tr>
<td>74.9206</td>
<td>0.4119</td>
<td>0.9112</td>
</tr>
<tr>
<td>74.9524</td>
<td>0.1647</td>
<td>0.9864</td>
</tr>
<tr>
<td>74.9841</td>
<td>-0.9377</td>
<td>0.9956</td>
</tr>
<tr>
<td>75.0159</td>
<td>-0.3462</td>
<td>0.9382</td>
</tr>
</tbody>
</table>
Figure 1 Reflection from a sample plasma electron density profile as a function of distance. The turning point is located at h_1.
Figure 2 Electron density profile prediction for MRIS. [P. Gnoffo, "Conservation Equations and Physical Model for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium." NASA TP-2867, February 1989.]
Figure 3 Plane wave incident on a plane uniform dielectric (Region II). Regions I and III are free space.
Figure 4 Electron density profile for a uniform dielectric (Region II) between free space regions I and III.
Figure 5 Relative permittivity of a uniform dielectric (Region II) between free space regions I and III.
Figure 6 Electron density profile for a linear layer (Region II) between free space regions I and III.
Figure 7 Sample linear electron density profile.
Figure 8 Plane wave incident on a plasma layer (Region II) surrounded by free space (Regions I and III).
Figure 9 Magnitude of the reflection coefficient for a 14 cm. thick uniform dielectric slab ($\varepsilon_r =-0.5$).
Figure 10 Phase of the reflection coefficient for a 14 cm thick uniform dielectric slab ($\varepsilon_r = -0.5$).
Figure 11 Time domain response for a 14 cm. thick uniform dielectric slab ($E_F = -0.5$).
Figure 12 Propagation delay for a 14 cm. thick uniform dielectric slab ($\varepsilon_r = -0.5$). The shift $2t_d$ corresponds to the round-trip propagation delay. The delay is measured on the negative side of the time axis.
Figure 13 Reduction of sample electron density profile where the critical electron density level is \(N_{e,c} \). The turning point moves from \(h_1 \) to \(h_2 \) and then \(h_3 \) as the profile is reduced.
Figure 14 Modulation of sample electron density profile where the critical electron density level is $N_{e,cr}$. The turning point moves from d_1 to d_2 as the ripple on the profile changes.
Figure 15 Time domain responses for reduced electron density profiles for 74 to 76 GHz. Shown are responses for 100%, 95% and 90% values for the profile.
Figure 16 Time domain response for a 10\% reduction in electron density profile. The 95\% response is used as a reference.
Figure 17 Transform reflection coefficient for a modulated electron density profile for 74 to 76 GHz with modulation amplitude, A=0.05 and modulation velocity at 2 m/s.
Figure 18 Time domain response (Power) for a modulated electron density profile for 74 to 76 GHz with modulation amplitude, $A=0.05$ and modulation velocity at 2 m/s.
Figure 18. Transform reflection coefficient for 74 to 76 GHz with modulation amplitude, A = 0.05 and modulation velocity at (a) 2 m/s, (b) 4 m/s, (c) 6 m/s and (d) 8 m/s.
Figure 20 Time domain response (Power) for 74 to 76 GHz with modulation amplitude $A=0.05$ and modulation velocity at (a) 2 m/s, (b) 4 m/s, (c) 6 m/s and (d) 8 m/s.
Figure 21. Time domain response for 140 to 142 GHz with modulation amplitude, $A = 0.05$ and modulation velocity at (a) 0.22 m/s, (b) 1.60 m/s, (c) 2.00 m/s and (d) 2.67 m/s.
Figure 22. Time domain response for 140 to 142 GHz with modulation amplitude, $A=0.05$ and modulation velocity at.
(a) 3.33 m/s, (b) 4.00 m/s, (c) 6.00 m/s and (d) 8.00 m/s.
Figure 23 Time domain response for 74 to 76 GHz with modulation amplitude $A = 0.25$ and modulation velocity at (a) 0.67 m/s, (b) 1.33 m/s, (c) 2.00 m/s and (d) 2.67 m/s.
Figure 24 Time domain response for 74 to 76 GHz with modulation amplitude, $A=0.25$ and modulation velocity at (a) 3.33 m/s, (b) 4.00 m/s, (c) 4.67 m/s and (d) 5.33 m/s.
Figure 25 Time domain response for 74 to 76 GHz with modulation amplitude, $A = 0.25$ and modulation velocity at (a) 6.00 m/s, (b) 6.67 m/s, (c) 7.33 m/s and (d) 8.00 m/s.
REFERENCES

VITA

I received a B.E. in Engineering Science in 1986 from Hofstra University. I am currently a research engineer at the Antenna and Microwave Research Branch (AMRB) at NASA Langley Research Center.

Michael J. Scherner