REAL-TIME DIGITAL SIMULATION OF THE GENERATOR MODEL

by

Yujie Irene Lu

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Electrical Engineering

APPROVED:

A.G. Phadke, Chairman

J. De La Rea Lopez

L.M. Mili

September 1990

Blacksburg, Virginia
REAL-TIME DIGITAL SIMULATION OF THE GENERATOR MODEL

by

Yujie Irene Lu

A.G. Phadke, Chairman

Electrical Engineering

(ABSTRACT)

This thesis is in an attempt to realistically model a real-time digital generator which interfaces to an analog system simulator and which consists of the synchronous machine and its peripheral controllers such as the exciter and the governor-turbine subsystems. In this work, the exciter, the synchronous machine, the machine dynamics and the governor are modeled in detail while a simplified model of the turbine is used.

The synchronous machine, the main component of this simulation, solves the discretized Park's machine equations which include flux derivative terms and terms pertaining to the two amortisseur windings. Treatment of saturation effects in the mutual inductances is also discussed. The Park's model is arranged to obtain a field voltage and machine armature current input - machine terminal voltage output structure, where the armature current and terminal voltage are rotor based quantities (i.e. in d-q domain). In order to interface the Park's machine model to the analog system model, the Park's and inverse Park's transformation are implemented by software modules.

The implementation of a prototype model generator using a Motorola 68020 microprocessor and fast computer peripherals is discussed. The results of the digital computer simulation in real-time for the generator model under various operating conditions are presented.
Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. A.G. Phadke, for his professional guidance and constant encouragement. His intellectual and financial support was indispensable for the successful completion of this thesis. I would also like to thank Dr. J. De La Ree Lopez and Dr. L.M. Mili for serving on my graduate committee. They were constant sources of inspiration to me. Appreciation is expressed to Mrs. P.A. Manning, for her assistance and friendship. I am greatly thankful to the graduate students of the Power System Laboratory for their help and friendship, with special thanks to N. Vishare for allowing me to use his interface software and assisting me with hardware equipment. To the following persons go my sincere thanks; Star Wu and Vinceta Gangla, for doing the thesis proof reading; Dr. Yilu Liu, Weiping Li and Janie Liu, for helping me through my years of graduate school. Thanks are also due to the secretaries of the EE main office who cheerfully let me use the conference room for presenting this thesis.

Thanks to my Mother and Father, Grandmother and Grandfather, for standing behind my decisions.
Table of Contents

Introduction .. 1

1.1 Real-time Power System Simulation .. 1

1.1.1 Power System Scale Models ... 1

1.1.2 Digital Computer Simulation ... 2

1.2 Comparison between Physical Scale Model (TNA) and Digital Computer Simulation 3

1.2.1 The Transient Network Analyzer (TNA) ... 3

1.2.2 Real-time Digital Computer Simulation .. 4

1.3 General View of the Thesis ... 4

1.4 Outline of Thesis ... 9

Simulation Model ... 10

2.1 Exciter Model .. 10

2.2 Synchronous Machine Model ... 15

2.2.1 Physical Description .. 15

2.2.2 Park's Model ... 17

2.2.3 Flux Linkage Equations .. 21

2.2.3.1 Stator Inductances .. 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3.2 Rotor Inductances</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3.3 Stator-to-rotor Mutual Inductances</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3.4 Transformation of Stator Fluxes</td>
<td>24</td>
</tr>
<tr>
<td>2.2.4 Voltage Equations</td>
<td>25</td>
</tr>
<tr>
<td>2.2.5 Equivalent Circuits</td>
<td>30</td>
</tr>
<tr>
<td>2.2.6 Mathematical Model</td>
<td>35</td>
</tr>
<tr>
<td>2.3 Governor-turbine Model</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Mechanical Model</td>
<td>49</td>
</tr>
<tr>
<td>Simulation Algorithm</td>
<td>56</td>
</tr>
<tr>
<td>3.1 Digital Non-linear System Simulation</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Simulation Scheme</td>
<td>57</td>
</tr>
<tr>
<td>3.3 Discretization of Exciter Model</td>
<td>59</td>
</tr>
<tr>
<td>3.4 Discretization of Synchronous Machine Model</td>
<td>63</td>
</tr>
<tr>
<td>3.5 Discretization of Governor-turbine Model</td>
<td>65</td>
</tr>
<tr>
<td>3.6 Discretization of Mechanical Model</td>
<td>70</td>
</tr>
<tr>
<td>Transformation of Input and Output</td>
<td>73</td>
</tr>
<tr>
<td>4.1 Park's and Inverse Park's Transformation</td>
<td>75</td>
</tr>
<tr>
<td>4.2 Microprocessor Implementation</td>
<td>77</td>
</tr>
<tr>
<td>Implementation and Simulation Results</td>
<td>89</td>
</tr>
<tr>
<td>5.1 Hardware Organization</td>
<td>89</td>
</tr>
<tr>
<td>5.2 Software Organization</td>
<td>90</td>
</tr>
<tr>
<td>5.3 Analog Interface</td>
<td>96</td>
</tr>
<tr>
<td>5.4 Computational Workload</td>
<td>97</td>
</tr>
<tr>
<td>5.5 Simulation Results</td>
<td>101</td>
</tr>
<tr>
<td>5.5.1 Open-loop Test</td>
<td>105</td>
</tr>
</tbody>
</table>
List of Illustrations

Figure 1. Structure of model generator ... 6
Figure 2. Simulation scheme ... 7
Figure 3. The block diagram of IEEE Type-I excitation model 12
Figure 4. Saturation function and exciter saturation 14
Figure 5. Pictorial representation of the synchronous machine 20
Figure 6. Schematic diagram of a synchronous machine 28
Figure 7. Equivalent circuits of synchronous machine 31
Figure 8. Structure of equivalent circuits of Solid Iron Rotor Model 32
Figure 9. Solid Iron Rotor Model equivalent circuits 34
Figure 10. Solid Iron Rotor Model equivalent circuits in Thevenin equivalent form 36
Figure 11. Block diagram for simulation of Solid Iron Rotor Model 38
Figure 12. Step by step derivation of d-axis transfer function 39
Figure 13. Step by step derivation of q-axis transfer function 40
Figure 14. Construction used for computing saturation 43
Figure 15. The approximate saturation function 45
Figure 16. The block diagram of electro-hydraulic speed-governing and steam turbine system 47
Figure 17. The block diagram of mechanical model 54
Figure 18. Non-linear, realization block diagram of the IEEE Type-I exciter system 60
Figure 19. Non-linear, realization block diagram of Solid Iron Rotor Model for d-axis 66
Figure 20. Non-linear, realization block diagram of Solid Iron Rotor Model for q-axis 67
Figure 21. Non-linear, realization block diagram of the Westinghouse EH speed-governor 68
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Non-linear, realization block diagram of the mechanical system</td>
<td>71</td>
</tr>
<tr>
<td>23</td>
<td>Typical generator simulation scheme</td>
<td>74</td>
</tr>
<tr>
<td>24</td>
<td>Block diagram of Park Transformation module (PT)</td>
<td>83</td>
</tr>
<tr>
<td>25</td>
<td>Block diagram of Inverse Park Transformation module (IPT)</td>
<td>84</td>
</tr>
<tr>
<td>26</td>
<td>Table look up θ or ϕ in 1st & 2nd quadrant</td>
<td>85</td>
</tr>
<tr>
<td>27</td>
<td>Table look up θ or ϕ in 3rd & 4th quadrant</td>
<td>86</td>
</tr>
<tr>
<td>28</td>
<td>The extrapolation for a piecewise linear function</td>
<td>87</td>
</tr>
<tr>
<td>29</td>
<td>The extrapolation for a sine function</td>
<td>88</td>
</tr>
<tr>
<td>30</td>
<td>Hardware organization</td>
<td>91</td>
</tr>
<tr>
<td>31</td>
<td>Software organization</td>
<td>93</td>
</tr>
<tr>
<td>32</td>
<td>Pre and post filtered waveforms</td>
<td>98</td>
</tr>
<tr>
<td>33</td>
<td>Two-stage RC filter with a cut-off frequency of 382 Hz</td>
<td>99</td>
</tr>
<tr>
<td>34</td>
<td>Bode plots of transfer function $H(j\omega)$</td>
<td>100</td>
</tr>
<tr>
<td>35</td>
<td>Microprocessor generated three phase voltage waveforms</td>
<td>107</td>
</tr>
<tr>
<td>36</td>
<td>Trajectory of V_T for unit step input (open-loop)</td>
<td>108</td>
</tr>
<tr>
<td>37</td>
<td>Trajectory of V_T for unit step input (closed-loop)</td>
<td>109</td>
</tr>
<tr>
<td>38</td>
<td>Plots for constant voltage test</td>
<td>110</td>
</tr>
<tr>
<td>39</td>
<td>Trajectory of E_{FD} for unit step input (open-loop)</td>
<td>111</td>
</tr>
<tr>
<td>40</td>
<td>Trajectory of E_{FD} for unit step input (closed-loop)</td>
<td>112</td>
</tr>
</tbody>
</table>
List of Tables

Table 1. Typical constants of rotating rectifier exciter with static voltage regulator 16
Table 2. Typical parameters of equivalent circuits of Solid Iron Rotor Motor 41
Table 3. Typical parameters of synchronous machine ... 42
Table 4. Speed-governing system and turbine parameters for Figure 16 (B) 48
Table 5. Mechanical parameters .. 52
Table 6. Arithmetic Work Per Timestep .. 102
Table 7. Arithmetic Operation Times ... 103
Table 8. Arithmetic execution times .. 104
Chapter I

Introduction

1.1 Real-time Power System Simulation

The capability of real-time simulation is essential to study certain power system problems, such as power system stability, operation, control, protection etc. Real-time power system simulation can be accomplished in two ways [20]:

1. Simulation by using scale models, and
2. Simulation by using a digital computer.

1.1.1 Power System Scale Models

Traditionally, real-time power system simulation is done on a scaled down physical model of a power system, known as a Transient Network Analyzer (TNA) [20]. It consists of synchronous
machines, passive component \(\pi \) section models of transmission lines, transformers, circuit breakers etc. These elements can be connected together to form an electrical analog of some subset of a power system subjected to various operating conditions. Then, the response of the model to certain operating conditions match that of the power system under study. Transient analysis is best studied by using the TNA. Before the widespread use of digital computers, the TNA was extensively used. Now it is still being applied in some situations where accurate digital simulation is either impossible or computationally expensive.

1.1.2 Digital Computer Simulation

The other type of real-time digital simulation is the process of solving the system difference equations using the system inputs and producing results of system calculations. It is implemented by computer programs which model the system. The time interval between the solution points is the same as the time step used in the input signals. This simulation process requires the following conditions:

1. A knowledge of the mathematical model for the system.
2. A fast, effective calculation algorithm with a suitable time step that is adequate for reasonable accuracy in solution.
3. Accurate and fast measurement of system state variables and conversion of calculated values into system inputs.

Currently, digital computer software packages work on transient and dynamic stability analysis, machine modeling, network analysis, development and testing of protective devices and so on. These programs are powerful tools for the study of power system planning, operation, protection and control.
1.2 Comparison between Physical Scale Model (TNA) and Digital Computer Simulation

1.2.1 The Transient Network Analyzer (TNA)

The advantages offered by a TNA are as follows [3]:

- The phenomena take place in real-time providing an actual time frame for the system under consideration.
- Certain results are considered to be closer to the real system since they are obtained through physical components rather than through a mathematical model.

However, TNA suffers from the following drawbacks [3]:

- Inflexibility. Great care must be taken within setting up each simulator for an experiment, which is a time consuming process. In addition, only a limited number of system configurations can be simulated.
- If simulating a moderate size power system, the models take up considerable space and are quite expensive.
- Certain component models may not exactly reproduce the behavior of the actual system components they represent.

In spite of these disadvantages, TNA has continued to play an important role in transient analysis and can be expected to maintain that position for several more years.
1.2.2 Real-time Digital Computer Simulation

With the advent of fast 16 and 32 bit microprocessors, high precision analog-to-digital (A/D) and
digital-to-analog (D/A) converters, real-time digital computer simulation becomes possible. Each
component of the system can be solved in real-time in the digital domain by a microprocessor, and
then interfaced with the simulation system through A/D and D/A converters. This approach has
several advantages over physical scale models:

1. The mathematical model and the element parameter values are easily modified or changed
 since they are encoded in the software.

2. Due to the low cost of digital hardware, digital computer implementation of a system model
 is far less expensive than the TNA implementation described previously.

3. Having the state variables and other information available in digital form simplifies data logging
 and interfacing to larger computers.

Recognizing this exciting prospect, a power system simulator based on the real-time digital simu-
lation concept was built at Virginia Tech. several years ago [3]. This simulation attempts to refine
the synchronous generator system, one of the main element of the simulator, since the existing
generator is a simplified model.

1.3 General View of the Thesis

The general block diagram of the synchronous generator system model is shown in Figure 1. The
machine terminal voltage V_T is controlled by the exciter and machine armature currents I_a and I_r,
the rotor speed ω by the speed governor-turbine subsystem, and the rotor dynamics $\Delta \omega$ and $\Delta \delta$
by the mechanical subsystem (i.e. swing equation). The structure and the transfer functions of these subsystems have been identified and their characteristics are well known [1,4,9].

This thesis focuses on the six subsystems, which are: exciter, synchronous machine, governor-turbine, mechanical module, Park’s transformation and its inverse (see Figure 1). The simulation scheme is organized as shown in Figure 2. The simulation of the synchronous generator system must have the following capabilities:

- The real-time simulation of the whole system.
- A measurement technique to sense the samples of phase currents i_a, i_b and i_c, and voltages V_a, V_b, and V_c from a real power system or a simulated power system at each $1/720$ second. These samples form the input of the synchronous machine after Park’s transformation.
- Ability of setting the required initial or reference values, like V_{ref}, ω_{ref}, δ_{ref}, P_0 etc.
- Capability of varying the generated voltage amplitude. The exciter subsystem makes use of this facility.
- Provision of changing the generated frequency. The governor-turbine model makes use of this.
- Function for changing the machine torque angle δ, which would be necessitated by the mechanical simulation.
- Capacity of generating the smooth sinusoidal three phase voltage, i.e. the machine terminal voltage, with a minimum amount of distortion and harmonics by inverse Park’s transformation, and simultaneously sending the voltage, through D/A converters, to the three phase power system simulator.

These stringent requirements are very difficult to be realized by using an analog circuit, but can be easily achieved through a microprocessor operating in real-time.

The exciter is modeled in complete detail with the continuously acting regulator and exciter model [1]. The magnitude of the terminal voltage of the machine, V_T (discussed later) is compared with the voltage of the reference set point V_{ref}, and this error signal is input to the exciter system module.
Figure 1. Structure of model generator
Figure 2. Simulation scheme

Module 1
Solves synchronous machine equations

Module 2
Solves synchronous machine subsystem equations

Module 3
Solves swing equation

Module 4
Generates d and q axis currents to be fed into synchronous machine module

Module 5
Generates output waveform to be fed into the external system
(ES). The output of this module is the field voltage E_{sf}, which is one of the inputs of the synchronous machine system.

In general, the synchronous machine is represented in the direct and quadrature axis (d & q) quantities by flux or voltage equations. The transformation from the phase (a, b & c) quantities to d, q-axis quantities is performed by the Park's transformation. In order to simplify analysis, the synchronous machine equations are usually expressed in state space form. For real-time simulation, the machine fluxes form the state vector, the axis currents are the inputs and the axis voltages are the outputs, because it is more convenient to generate a voltage signal by digital-to- analog (D/A) converters than to produce a current signal. In this work, a solid iron rotor model for the synchronous machine [4] is used. The field voltage E_{sf}, from the model ES, is input to the synchronous machine subsystem (SMS). SMS also needs the machine armature currents I_a and I_q as inputs. This module will produce the internal voltage of the machine, which is treated as the terminal voltage of the machine V_T. In addition, the saturation of the machine is calculated as a function of armature flux linkage ψ, represented as $S_\psi = f(\psi)$ in this module.

The governor-turbine subsystem can be considered to be a cascade of low pass filters, each filter block represents a reheat pass of the steam. Nonlinearities like rate and position limits are imposed on the governor valve or gate opening [9]. Here, the governor is modeled as the Westinghouse electro-hydraulic governor with steam feedback speed-governing system, and the steam turbine is simulated as a simplified model, i.e. a nonreheat first-order system. The inputs of the governor-turbine subsystem (GTS) are the angular speed deviation $\Delta \omega$ and the initial mechanical power P_0. The response of the module GTS, i.e. mechanical power P_m, will be forwarded to the mechanical subsystem.

The mechanical dynamics of the synchronous machine is very complex, but usually it can be described by the rotor dynamic equation, known as the swing equation. This is a second order nonlinear differential equation, which governs the motion of the rotor based on the rotor dynamics. This subsystem is implemented by module MS. The mechanical power P_m is compared with the
output electric power P_e of the machine, and this error signal, $(P_m - P_e)$, is input to the MS module. The outputs of the module are the angular speed deviation $\Delta \omega$ and the torque angle deviation $\Delta \delta$.

This thesis also discusses the Park's transformation and its inverse, of currents and voltages at the terminal of the machine, or at the terminal bus of the system simulator. Transforming the three phase currents and voltages of the system to the demodulated quantities in the d-q domain is implemented by the Park's transformation module PT, and the inverse Park's transformation module IPT transfers the machine terminal voltage V_T from the d-q domain to the three phase voltages V_a, V_b and V_c.

1.4 Outline of Thesis

This chapter has provided a brief description of the simulation module. Chapter II focuses on developing four simulation models, which are the exciter, the synchronous machine, the governor-turbine and mechanical subsystems. The simulation algorithm and the discretization for the four models are described in Chapter III. The modeling method and the implementation of the Park's transformation and its inverse for the inputs and outputs of this simulation system are discussed in Chapter IV. Chapter V explains the software and hardware implementation of the above simulation algorithm and presents the simulation results. And in the last chapter, the conclusions and suggestions are summarized.
Chapter II
Simulation Model

A typical machine system simulation model consists of six interconnected subsystems, namely exciter, synchronous machine, governor-turbine, mechanical model, Park's transformation and inverse Park's transformation. These simulation models have to be represented correctly. This chapter focuses on the first four subsystems, while Park's transformation and its inverse are modeled in Chapter IV.

2.1 Exciter Model

The IEEE has standardized some exciter models which can be used to represent the different excitation systems [1]. The Type-I exciter model, i.e. the continuously acting regulator and exciter model, has been chosen for this research. This system is "representative of the majority of the modern systems now in service and presently being supplied." [1]
Figure 3 shows the block diagram of the Type-I exciter model. The transfer functions and nomenclature of Type-I will be described in detail. \(V_T \) is the generator terminal voltage magnitude available as the input to the regulator. The first transfer function is a simple time constant \(T_r \) representing regulator input filtering. Usually, \(T_r \) is very small and can be assumed to be zero. The first summing point compares the regulator reference with the output of the input filter to determine the voltage error input to the regulator amplifier. The second summing point compares the excitation major loop damping signal with the voltage error at the first summing point, where the loop damping is provided by the feedback transfer function \(s K_r / (1 + s T_r) \) from exciter output \(E_{id} \) to the first summing point. Next comes the regulator with a gain of \(K_e \) and a time constant of \(T_e \). The output of the regulator is clamped between two levels. Then this signal is compared with the saturation function of the exciter and the error is fed to the exciter transfer function \(1 / (K_e + s T_e) \). There are two non-linear functions in the exciter model. One is the clamp at the output of the regulator, the other is the saturation function of the exciter. The former is included to keep the regulator output within practical limits (for this research, the upper limit \(V_{rmax} = 7.3 \) and the lower limit \(V_{rmin} = -7.3 \)). Since the gain of the regulator is quite large \((K_e \approx 400) \) and its time constant relatively small \((T_e \approx 0.02 \text{sec.}) \), that portion of the transfer function is very sensitive to large error inputs.

Saturation causes increased excitation requirements and it is dependent on the exciter output. As shown in Figure 4, the saturation function is defined as follows:

\[
S_E = \frac{(x - y)}{y} \quad (2.1)
\]

where \(x \) and \(y \) are points on the constant resistance load saturation line (RL) and the airgap line (AG), respectively, for the same field voltage. This function can be described by the following exponential function

\[
S_E = f(E_{fd}) = P \times \exp(Q \times E_{fd}) \quad (2.2)
\]
Figure 3. The block diagram of the IEEE Type-I excitation model
with reasonable accuracy [2]. The exponential constants P and Q can be determined from some recommended specifications [1], i.e. S_E can be specified at $E_{f_{\text{fmax}}}$ and $0.75E_{f_{\text{fmax}}}$ (= $E_{f_{\text{f}}} \cdot$), which may be denoted as S_{Em} and S_{Eq} respectively. From Figure 4,

$$S_{Em} = (A - B) / B$$

$$S_{Eq} = (E - F) / E$$

$$S_{E/q} = (C - D) / D$$

Taking $E_{f_{\text{f}}}$ as the base

$$E_{f_{\text{fmax}}} = B / D \quad \text{p.u., i.e. } B = D \times E_{f_{\text{fmax}}}$$

and, $B / F = 4 / 3 = (D \times E_{f_{\text{fmax}}}) / F$, which implies that $F = 0.75 \times D \times E_{f_{\text{fmax}}}$. According to the recommendation in [1],

$$S_{Em} = \frac{P \times \exp(Q \times E_{f_{\text{fmax}}})}{E_{f_{\text{fmax}}}}$$

$$S_{Eq} = \frac{P \times \exp(Q \times E_{f_{\text{f}}})}{E_{f_{\text{f}}}}$$

Solving for P and Q,

$$P = \frac{S_{Eq}^4}{S_{Em}^3} \quad (2.3)$$

$$Q = (4 / E_{f_{\text{fmax}}}) \times \ln \left(S_{Em} / S_{Eq} \right) \quad (2.4)$$

while, due to the following restriction [1],

$$V_{R_{\text{fmax}}} = (K + S_{Em}) \times E_{f_{\text{fmax}}}$$
Figure 4. Saturation function and exciter saturation
we get

\[Q = \left(4 \left(K_e + S_{Em} \right) / V_{R_{max}} \right) \times \ln \left(S_{Em} / S_{Eq} \right) \]

In this work, a rotating rectifier with static voltage regulator is used. Table 1 lists the special excitation system constants. From Table 1,

\[P = 0.0983 \]

\[Q = 0.553 \]

2.2 Synchronous Machine Model

In this section, the Park's model for a synchronous machine is developed. The notation used here is consistent with those in [2] and [4], as is the per unit system.

2.2.1 Physical Description

A synchronous machine consists of three stator or armature windings, one field winding on the rotor and several additional rotor windings, known as amortisseur or damper windings. A constant current injected into the field winding will generate a magnetic field aligned with the magnetic axis of the field coil. All of the windings are magnetically coupled. As the rotor is turned, the motion of this magnetic field relative to the fixed stator windings induces voltages in these windings; the instantaneous terminal voltage \(v \) of any winding is of the form,
Table 1. Typical constants of rotating rectifier exciter with static voltage regulator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_r</td>
<td>0.00 sec.</td>
</tr>
<tr>
<td>T_a</td>
<td>0.02 sec.</td>
</tr>
<tr>
<td>T_f</td>
<td>1.00 sec.</td>
</tr>
<tr>
<td>T_s</td>
<td>0.80 sec.</td>
</tr>
<tr>
<td>K_a</td>
<td>400.00</td>
</tr>
<tr>
<td>K_f</td>
<td>0.03</td>
</tr>
<tr>
<td>K_s</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{Rmax}</td>
<td>7.30</td>
</tr>
<tr>
<td>V_{Rmin}</td>
<td>-7.30</td>
</tr>
<tr>
<td>S_{Emax}</td>
<td>0.86</td>
</tr>
<tr>
<td>$S_{E0.75max}$</td>
<td>0.50</td>
</tr>
</tbody>
</table>
\[v = \pm \sum r \times i \pm \sum \dot{\psi} \]

(2.5)

where \(r \) is the winding resistance, \(\dot{\psi} \) is the flux linkage and \(i \) is the current, with the stator current flowing out of the generator terminals taken as positive. The notation \(\pm \sum \) indicates the summation of all appropriate terms with due regard to signs. These expressions for the winding voltages are quite complicated because of the variation of \(\dot{\psi} \) with the rotor position [2]. If the stator windings are arranged such that their magnetic axes are separated by 120° in space, the voltages induced in them will be separated by 120° in phase.

The damper windings are shorted coils, some aligned with and some orthogonal to the magnetic axis of the field winding. The primary effects of the amortisseur windings are to damp rotor speed oscillations and to reduce voltage harmonics [6].

2.2.2 Park's Model

The synchronous machine is assumed to be "ideal" in the sense of Park's transformation, in which some assumptions are made [5]:

- All inductances are independent of current (saturation is neglected).
- All self and mutual inductances may be represented as constants plus a simple variation of the rotor angle \(\theta \) and \(2\theta \).
- All distributed windings may be adequately represented as lumped windings. The effects of currents flowing in the iron parts of the rotor or in the damper windings may be represented by the amortisseur winding coils.
A great simplification in the mathematical description of the synchronous machine is obtained if Park's transformation of variables is performed. It defines a new set of stator variables such as currents, voltages, and flux linkages in terms of the actual winding variables. The new quantities are obtained from the projection of the actual variables on three axes; one along the direct axis of the rotor field winding, called direct axis (d-axis), the second, lagging the d-axis by 90°, along the neutral axis of the main field winding, called quadrature axis (q-axis), and the third one on a stationary axis.

For convenience, the axis of phase A is chosen to be the reference position. Now we define the d-axis of the rotor at some instant of time to be at an angle \(\theta \) (radians) with respect to the fixed reference position, as shown in Figure 5 [6].

The effect of Park's transformation is simply to transfer stator electrical variables from phase A, B, C to a coordinate system fixed on the rotor. A multiplier is used to simplify the numerical calculations. By definition

\[
X_{0dq} = P(\theta) X_{abc}
\]

(2.6)

where \(X \) represents voltages, currents or fluxes, and

\[
X_{0dq} = \begin{bmatrix} X_0 \\ X_d \\ X_q \end{bmatrix}, \quad X_{abc} = \begin{bmatrix} X_a \\ X_b \\ X_c \end{bmatrix}
\]

where:

- \(X_s \) = stationary term representing unbalanced components
- \(X_d \) = "projection" of \(X_{abc} \) along the d-axis
- \(X_q \) = "projection" of \(X_{abc} \) along the q-axis
and where the transformation matrix $P(\theta)$ is defined as:

\[
P(\theta) = \frac{2}{3} \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\cos(\theta) & \cos(\theta - 2\pi/3) & \cos(\theta + 2\pi/3) \\
\sin(\theta) & \sin(\theta - 2\pi/3) & \sin(\theta + 2\pi/3)
\end{bmatrix}
\]

The main field winding flux is along the direction of the d-axis of the rotor. It produces an EMF that lags this flux by 90°. Therefore, the machine EMF E (the stator air gap rms voltage) is primarily along the q-axis. For generator action the phasor \overline{E} should be leading the phasor \overline{V} (machine terminal voltage). The angle between \overline{E} and \overline{V} is the machine torque angle δ if the phasor \overline{V} is in the direction of the reference phase.

At time $t = 0$, the phasor \overline{V} is located at the axis of phase A. The q-axis is located at an angle δ, and the d-axis is located at

\[
\theta_0 = \delta + \frac{\pi}{2}
\]

At any given time $t > 0$, the rotor makes an angle ωt with θ_0, therefore the d-axis is located at

\[
\theta(t) = \omega t + \delta + \frac{\pi}{2} \quad (\text{rad.}) \tag{2.7}
\]

where $\omega(= \omega_s + \Delta \omega)$ is the angular frequency in rad./sec., ω_s is the rated (synchronous) angular frequency in rad./sec., $\Delta \omega$ is the rotor speed oscillation about synchronous speed and δ is the synchronous torque angle in electrical radians [2].
Figure 5. Pictorial representation of the synchronous machine
2.2.3 Flux Linkage Equations

From Figure 5, we know that a synchronous machine consists of six mutually coupled coils. These are the three phase windings, the field winding, and the two equivalent damper windings. We can write the flux linkage equation for these six circuits as:

\[
\begin{bmatrix}
\psi_a \\
\psi_b \\
\psi_c \\
\psi_f \\
\psi_d \\
\psi_q \\
\end{bmatrix} =
\begin{bmatrix}
L_{aa} & L_{ab} & L_{ac} & L_{aF} & L_{aD} & L_{aQ} \\
L_{ba} & L_{bb} & L_{bc} & L_{bF} & L_{bD} & L_{bQ} \\
L_{ca} & L_{cb} & L_{cc} & L_{cF} & L_{cD} & L_{cQ} \\
L_{Fa} & L_{Fb} & L_{Fc} & L_{FF} & L_{FD} & L_{FQ} \\
L_{Da} & L_{Db} & L_{Dc} & L_{DF} & L_{DD} & L_{DQ} \\
L_{Qa} & L_{Qb} & L_{Qc} & L_{QF} & L_{QD} & L_{QQ} \\
\end{bmatrix}
\begin{bmatrix}
i_a \\
i_b \\
i_c \\
i_F \\
i_D \\
i_Q \\
\end{bmatrix}
\]

(2.8)

where

\[L_{ij} = \text{self inductance when } i = j \quad \text{and} \quad L_{ij} = \text{mutual inductance when } i \neq j \]

and where \(L_{ij} = L_{ji} \) in all cases. Note that the subscript convention in eq.(2.8), where the lower case subscript is used for stator quantities and the upper case subscript for rotor quantities. These inductances may be described as follows.

2.2.3.1 Stator Inductances

The phase-winding self-inductances can be expressed as a Fourier series of the rotor angle. For example, the inductance \(L_{aa} \) is

\[L_{aa} = L_x + L_m (\cos 2\theta + a_4 \cos 4\theta + \cdots) \]
Since all terms beyond the second harmonic in this series may be neglected, and all windings are assumed to be symmetric about either d or q axis, we get:

\[L_{aa} = L_s + L_m \cos 2\theta \]
\[L_{bb} = L_s + L_m \cos 2(\theta - 2\pi/3) \]
\[L_{cc} = L_s + L_m \cos 2(\theta + 2\pi/3) \] (2.9)

where \(L_s > L_m \) and both \(L_s \) and \(L_m \) are constants.

The stator mutual inductances are also functions of \(\theta \) and are symmetric, given approximately by:

\[L_{ab} = L_{ba} = -M_s - L_m \cos 2(\theta + \pi/6) \]
\[L_{bc} = L_{cb} = -M_s - L_m \cos 2(\theta - \pi/2) \]
\[L_{ca} = L_{ac} = -M_s - L_m \cos 2(\theta + 5\pi/6) \] (2.10)

where \(|M_s| > L_m \). Note that the sign of the mutual inductance term depends on assumed current directions and coil orientations. In addition, the second harmonic terms in the stator self and mutual inductances are assumed to be equal.

\subsection{2.2.3.2 Rotor Inductances}

Since saturation and slotting effects are neglected, all rotor self inductances are constants, given by:

\[L_{FF} = L_F \quad L_{DD} = L_D \quad L_{QQ} = L_Q \] (2.11)

The rotor mutual inductances are also constants but do not vary with \(\theta \). Since the d and q axis windings are with 90° displacement, the coefficient of the magnetic coupling between d and q axis is zero, i.e.

\[L_{FD} = L_{DF} = M_R \quad L_{FQ} = L_{QF} = 0 \quad L_{DQ} = L_{QD} = 0 \] (2.12)
2.2.3.3 Stator-to-rotor Mutual Inductances

All of the stator-to-rotor mutual inductances are functions of the rotor angle θ. They can be written as a Fourier series of odd harmonic terms, i.e.

$$M_aF = M_F \left(\cos \theta + b_3 \cos 3\theta + \cdots \right)$$

Remember the assumption that all terms above the second harmonic are ignored. Therefore, the mutual inductances between the phase windings and the field winding may be written as:

$$L_{aF} = L_{Fa} = M_F \cos (\theta)$$
$$L_{bF} = L_{Fb} = M_F \cos (\theta - 2\pi/3)$$
$$L_{cF} = L_{Fc} = M_F \cos (\theta + 2\pi/3) \quad (2.13)$$

Similarly, the mutual inductances between the phase and damper windings are:

$$L_{aD} = L_{Da} = M_D \cos (\theta)$$
$$L_{bD} = L_{Db} = M_D \cos (\theta - 2\pi/3)$$
$$L_{cD} = L_{Dc} = M_D \cos (\theta + 2\pi/3) \quad (2.14)$$

and

$$L_{aQ} = L_{Qa} = M_Q \sin (\theta)$$
$$L_{bQ} = L_{Qb} = M_Q \sin (\theta - 2\pi/3)$$
$$L_{cQ} = L_{Qc} = M_Q \sin (\theta + 2\pi/3) \quad (2.15)$$

Again, the sign of the mutual inductance term depends on assumed current directions and coil orientations.
2.2.3.4 Transformation of Stator Fluxes

We now apply Park's transformation to simplify the stator terms of the flux equation (2.8), which requires that both sides of the equation are multiplied by

$$\begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}$$

where $P(\theta)$ is Park's transform matrix and I is a 3 by 3 unit matrix.

Thus

$$\begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix} \begin{bmatrix}
\psi_{abc} \\
\psi_{FDQ}
\end{bmatrix} = \begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix} \begin{bmatrix}
L_{aa} & L_{aR} \\
L_{Ra} & L_{RR}
\end{bmatrix} \begin{bmatrix}
P^{-1}(\theta) & 0 \\
0 & I
\end{bmatrix} \begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix} \begin{bmatrix}
i_{abc} \\
i_{FDQ}
\end{bmatrix}$$

where

- L_{aa} = stator-to-stator inductances
- L_{aR}, L_{Ra} = stator-to-rotor inductances
- L_{RR} = rotor-to-rotor inductances

Performing the matrix operation, we have:

$$\begin{bmatrix}
\dot{\psi}_0 \\
\dot{\psi}_d \\
\dot{\psi}_q \\
\dot{\psi}_F \\
\dot{\psi}_D \\
\dot{\psi}_Q
\end{bmatrix} = \begin{bmatrix}
L_0 & 0 & 0 & 0 & 0 & 0 \\
0 & L_d & 0 & KMF & KMD & 0 \\
0 & 0 & L_q & 0 & 0 & KMQ \\
0 & KMF & 0 & LF & MR & 0 \\
0 & KMD & 0 & MR & LD & 0 \\
0 & 0 & KMQ & 0 & 0 & LQ
\end{bmatrix} \begin{bmatrix}
i_0 \\
i_d \\
i_q \\
i_F \\
i_D \\
i_Q
\end{bmatrix}$$

(2.16)
where

\[L_d = L_s + M_s + 3/2L_m \]
\[L_q = L_s + M_s - 3/2L_m \]
\[L_0 = L_s - 2M_s \]
\[K = \sqrt{3/2} \]

and where \(\psi_d \) is the flux linkage in a circuit moving with the rotor and centered on the d-axis.

Similarly, \(\psi_q \) is centered on the q-axis.

2.2.4 Voltage Equations

The machine voltage equations are in the form of eq.(2.5). Schematically, the circuits are shown in Figure 6. For the conditions indicated in Figure 6, rewrite eq.(2.5) in matrix form as follows:

\[
\begin{bmatrix}
V_a \\
V_b \\
V_c \\
\vdots \end{bmatrix} = -
\begin{bmatrix}
r_a & 0 & 0 & 0 & 0 \\
0 & r_b & 0 & 0 & 0 \\
0 & 0 & r_c & 0 & 0 \\
0 & 0 & 0 & r_F & 0 \\
0 & 0 & 0 & 0 & r_D \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
i_a \\
i_b \\
i_c \\
i_F \\
i_D \\
i_Q \\
\end{bmatrix}
- \begin{bmatrix}
\dot{\psi}_d \\
\dot{\psi}_b \\
\dot{\psi}_c \\
\dot{\psi}_F \\
\dot{\psi}_D \\
\dot{\psi}_Q \\
\end{bmatrix} + \begin{bmatrix}
V_n \\
0 \\
\end{bmatrix}
\] \hspace{1cm} (2.17)

or in partitioned form:

\[
\begin{bmatrix}
V_{abc} \\
V_{FDQ} \\
\end{bmatrix} = -
\begin{bmatrix}
R_{abc} & 0 \\
0 & R_{FDQ} \\
\end{bmatrix}
\begin{bmatrix}
i_{abc} \\
i_{FDQ} \end{bmatrix}
- \begin{bmatrix}
\dot{\psi}_{abc} \\
\dot{\psi}_{FDQ} \\
\end{bmatrix} + \begin{bmatrix}
V_n \\
0 \\
\end{bmatrix}
\] \hspace{1cm} (2.18)

where \(\bar{V}_n \) is the vector of the neutral voltages.
Similar to transforming the stator fluxes, applying Park’s transformation to the machine voltage equations (2.18), gives:

\[
\begin{bmatrix}
V_{dq} \\
V_{FDQ}
\end{bmatrix} =
\begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
V_{abc} \\
V_{FDQ}
\end{bmatrix}
- \begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
r_{abc} & 0 \\
0 & r_{FDQ}
\end{bmatrix}
\begin{bmatrix}
P^{-1}(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
i_{abc} \\
i_{FDQ}
\end{bmatrix}
\]

(2.19)

\[
- \begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
\dot{\psi}_{abc} \\
\dot{\psi}_{FDQ}
\end{bmatrix}
+ \begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
V_n \\
0
\end{bmatrix}
\]

If the machine is balanced, \(r_e = r_b = r_c = r \), as is usually the case, we may compute the resistance voltage drop terms as:

\[
\begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
r_{abc} & 0 \\
0 & r_{FDQ}
\end{bmatrix}
\begin{bmatrix}
P^{-1}(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
i_{abc} \\
i_{FDQ}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
P(\theta) & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
r_{abc} & 0 \\
0 & r_{FDQ}
\end{bmatrix}
\begin{bmatrix}
i_{abc} \\
i_{FDQ}
\end{bmatrix}
\]

(2.20)

where

\[
\begin{bmatrix}
r_{abc} & 0 \\
0 & r_{FDQ}
\end{bmatrix}
=
\begin{bmatrix}
r & 0 & 0 & 0 & 0 & 0 \\
0 & r & 0 & 0 & 0 & 0 \\
0 & 0 & r & 0 & 0 & 0 \\
0 & 0 & 0 & r_F & 0 & 0 \\
0 & 0 & 0 & 0 & r_F & 0 \\
0 & 0 & 0 & 0 & 0 & r_Q
\end{bmatrix}
\]

The second term on the right side of eq. (2.19) can be transformed by recalling that \(\dot{\psi}_{dq} = P(\theta)\dot{\psi}_{abc} \), from which we compute
\[
\dot{\psi}_{0dq} = P(\theta)\dot{\psi}_{abc} + \dot{P}(\theta)\psi_{abc}
\]

which is rearranged to obtain:

\[
P(\theta)\dot{\psi}_{abc} = \dot{\psi}_{0dq} - \dot{P}(\theta)\psi_{abc} = \dot{\psi}_{0dq} - \dot{P}(\theta)P^{-1}(\theta)\psi_{0dq}
\] (2.21)

Matrix multiplication shows that

\[
\dot{P}(\theta)P^{-1}(\theta) = \omega_s \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}
\]

Next, the third term on the right side of eq. (2.19) is written as:

\[
\begin{bmatrix} P(\theta) & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} V_n \\ 0 \end{bmatrix} = \begin{bmatrix} r_{0dq} \\ 0 \end{bmatrix} = \begin{bmatrix} -3r_n\dot{i}_0 - 3L_n\dot{i}_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\] (2.22)

Note that the voltage drop occurs only in the zero sequence. While, under balanced conditions, the zero sequence voltage vanishes. Finally, the resulting set of equations may be written without the zero sequence equation as:

\[
\begin{align*}
V_d &= -r_d\dot{i}_d - \dot{\psi}_d - \omega\psi_q \\
V_q &= -r_q\dot{i}_q - \dot{\psi}_q - \omega\psi_d \\
V_F &= -r_F\dot{i}_F - \dot{\psi}_F \\
V_D &= -r_D\dot{i}_D - \dot{\psi}_D = 0 \\
V_Q &= -r_Q\dot{i}_Q - \dot{\psi}_Q = 0
\end{align*}
\] (2.23)
Figure 6. Schematic diagram of a synchronous machine.
These equations are coupled with those for the mutual flux linkages. The d-axis and q-axis mutual terms may be calculated from the d and q axes terms respectively, in the flux equation (2.16).

Rewrite each self inductance as the sum of a magnetizing inductance and a leakage inductance:

\[
\begin{align*}
L_d &= L_{md} + L_I \\
L_q &= L_{mq} + L_I \\
L_F &= L_{mF} + l_F \\
L_D &= L_{mD} + l_D \\
L_Q &= L_{mQ} + l_Q
\end{align*}
\]

(2.24)

Substituting eq. (2.24) into (2.16) yields:

\[
\begin{align*}
\psi_d &= (L_{md} + L_I)i_d + KM_F i_F + KM_D i_D \\
\psi_q &= (L_{mq} + L_I)i_q + KM_Q i_Q \\
\psi_F &= KM_F i_d + (L_{mF} + l_F)i_F + M_R i_D \\
\psi_D &= KM_D i_d + M_R i_F + (L_{mD} + l_D)i_D \\
\psi_Q &= KM_Q i_q + (L_{mQ} + l_Q)i_Q
\end{align*}
\]

(2.25)

Therefore, the portion of the armature flux due to \(i_q\) which links the other d-axis circuits is \(L_{md}\).

Similarly, the flux due to \(i_d\) is \(L_{mq}\). Since the mutual flux linkages should be equal, setting \(i_F = i_D = 0\) and \(i_q = 1\) p.u., and exciting each of the other d-axis circuits in turn, gives:

\[
L_{ad} \equiv L_{md} = L_{mF} = L_{mD} = KM_F = KM_D = M_R \quad (p.u.)
\]

(2.26)

After subtracting the per unit leakage flux from the flux linking, the remaining portion is the mutual flux, i.e.:

\[
\psi_{ad} \equiv \psi_d - L_{d}i_d = \psi_F - l_F i_F = \psi_D - l_D i_D \quad (p.u.)
\]

(2.27)

Also, setting \(i_Q = 0\) and \(i_q = 1\) p.u., gives:
\[L_{aq} = L_{mq} = L_{mQ} = K M_Q \ (p.u.) \]

(2.28)

and the q-axis mutual flux is

\[\psi_{aq} \equiv \psi_q - L_d i_q = \psi_Q - L_Q i_Q \ (p.u.) \]

(2.29)

From the voltage and the mutual flux equations, the equivalent circuit for the synchronous machine in the Park's reference frame can be drawn [2, 6]. The equivalent circuit and the simulation model will be discussed in detail in the next two sections.

2.2.5 Equivalent Circuits

The d and q axes equivalent circuits which represent the synchronous machine are shown in Figure 7, where the elements \(L_s \) represent the armature leakage inductances, \(L_{sd} \) and \(L_{sq} \) are the stator-rotor mutual inductances, \(R_s \) and \(L_s \) are the field resistance and leakage inductance respectively, \(R_{ad}, R_{bd}, R_{aq}, \) and \(L_{aq} \) are damper resistances and leakage inductances (the equivalent amortisseur resistance and leakage inductance are written as \(R_0, L_0, R_q \) and \(L_q \)).

Since the seventies, some studies reported in the IEEE Transaction on PAS "have shown that the classical model does not provide enough flexibility for use in system studies in those special cases when the behavior of the synchronous machine and its controls must be represented very accurately. Thus, a new model is needed for accurate simulation of solid rotor turbine-generators during transients introduced by the power system and abnormal operation." [4] In this research, a set of d-axis and q-axis equivalent circuits for turbine-generators with solid iron rotor is adopted. This is referred to as the Jackson-Winchester model [4].
d Axis Equivalent Circuit

q Axis Equivalent Circuit

Figure 7. Equivalent circuits of synchronous machine
Figure 8. Structure of equivalent circuits of Solid Iron Rotor Model
To create a time domain simulation model, it is convenient to start with the analysis for a frequency
domain machine model shown in Figure 8, where sL_{L} represents the impedance of the armature
leakage inductance as a function of the Laplace operator s. In a similar way, sL_{ad} and sL_{aq} represent
the impedance of the armature-rotor mutual inductance; $Z_{p}(s)$ represents a mutual impedance
between the field and rotor body; $Z_{f}(s)$ is the field impedance and $Z_{ad}(s)$ and $Z_{aq}(s)$ describe the
impedances of the iron and any non-excited windings on the rotor [4]. The results of a study have
stated that based on the analysis of plots of the discrete-elements $Z_{p}(s)$, $Z_{f}(s)$, $Z_{ad}(s)$ and
$Z_{aq}(s)$, it is evident that a discrete-element model for the solid iron rotor generator referred to as the
Solid Iron Rotor Model (SIRM), which is shown in Figure 9, would be adequate for most of the
studies that need an accurate machine model [4].

As the values of the resistive and inductive elements of the SIRM are known, the impedances
$Z_{f}(s)$, $Z_{ad}(s)$ and $Z_{aq}(s)$ may be written as follows:

\[Z_{f}(s) = R_{f} + \frac{s}{\omega_{0}} L_{f} \] \hspace{1cm} (2.30)

\[Z_{ad}(s) = \frac{(R_{1d} + \frac{s}{\omega_{0}} L_{1d})(R_{2d} + \frac{s}{\omega_{0}} L_{2d})}{R_{1d} + R_{2d} + \frac{s}{\omega_{0}} (L_{1d} + L_{2d})} \] \hspace{1cm} (2.31)

\[Z_{aq}(s) = \frac{(R_{1q} + \frac{s}{\omega_{0}} L_{1q})(R_{2q} + \frac{s}{\omega_{0}} L_{2q})}{R_{1q} + R_{2q} + \frac{s}{\omega_{0}} (L_{1q} + L_{2q})} \] \hspace{1cm} (2.32)

where, $\omega_{0} = 377 \text{ rad./sec.}$

The corresponding inductances and resistances of the SIRM are listed in Table 2.
Figure 9. Solid Iron Rotor Model equivalent circuits
2.2.6 Mathematical Model

In order to derive the simulation model, it is necessary to convert the parts of the equivalent circuits to the right of L_{rd} and L_{eq} in Figure 9 to Thevenin equivalents, which are shown in Figure 10. The Thevenin impedance in the d-axis is $Z_{eq}(s)$ and the Thevenin voltage is $A(s)E_{fd}$, where

$$Z_{eq}(s) = \frac{Z_{jd}(s) \times Z_{kd}(s)}{Z_{jd}(s) + Z_{kd}(s)} + Z_{fd}(s)$$

(2.33)

$$A(s) = \frac{Z_{kd}(s)}{Z_{jd}(s) + Z_{kd}(s)}$$

(2.34)

To determine the field current, another relation is required:

$$i_{fd} = A(s) \times i_{eq} + B(s) \times E_{fd}$$

(2.35)

where

$$B(s) = \frac{1}{Z_{jd}(s) + Z_{kd}(s)}$$

(2.36)

If $Z_{eq}(s)$ and $Z_{kd}(s)$ can be expressed in the following form:

$$Z_{eq}(s) = R_{eq0} + \frac{s}{\omega_0} L_{eq}(s)$$

(2.37)

$$Z_{kd}(s) = R_{kd0} + \frac{s}{\omega_0} L_{kd}(s)$$

(2.38)

then the flux linkages of the machine can be described as follows [4]:

Simulation Model
Figure 10. Solid Iron Rotor Model equivalent circuits in Thevenin equivalent form
\[d-axis \]
\[
\psi_{eq} = \psi_{ad} + i_{eq}L_{eq}(s)
\]
\[
\psi_{ad} = (i_{eq} - i_d)L_{ad}
\]
\[
\psi_d = \psi_{ad} - i_dL_d
\]
\[
\frac{s}{\omega_0} \psi_{eq} = A(s)E_{fd} - i_{eq}R_{eq0}
\]
\[
e_{fd} = \frac{R_{fd}}{L_{ad}}E_{fd}
\]

\[q-axis \]
\[
\psi_{kq} = \psi_{aq} + i_{kq}L_{kq}(s)
\]
\[
\psi_{aq} = (i_{kq} - i_q)L_{aq}
\]
\[
\psi_q = \psi_{aq} - i_qL_q
\]
\[
\frac{s}{\omega_0} \psi_{kq} = -i_{kq}R_{kq0}
\]

These equations can be described in block diagram form as shown in Figure 11 [4]. The interactions of the loops for the model can be decoupled by suitably alternating the transfer function of the model. The development of such a model for the d and q axes is outlined in Figure 12 and 13, respectively.

Table 3 lists the special three rotor circuit synchronous machine parameters for this research. The relationships between the equivalent circuit inductances and resistances, and the machine parameters (Shown in Figures 9 and 11) are defined in Appendix A [7].

So far, we have established a simulation model for the synchronous machine. The effects of saturation are yet to be studied. Saturation of the machine is often specified in terms of a p.u. saturation function \(S_{\phi} \), which is defined in terms of the open circuit terminal voltage versus field current characteristic shown in Figure 14.

There are several methods to consider a saturation function, one of which is given in [2], which defines:

\[\text{Simulation Model} \]
Figure 11. The block diagram for simulation of Solid Iron Rotor Model
Figure 12. Step by step derivation of d-axis transfer function
Figure 13. Step by step derivation of q-axis transfer function
Table 2. Typical parameters of equivalent circuits of Solid Iron Rotor Motor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Values (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d-axis$</td>
<td></td>
</tr>
<tr>
<td>L_d</td>
<td>0.225</td>
</tr>
<tr>
<td>L_{asi}</td>
<td>2.305</td>
</tr>
<tr>
<td>L_{ld}</td>
<td>0.225</td>
</tr>
<tr>
<td>R_{ld}</td>
<td>0.34</td>
</tr>
<tr>
<td>L_{ld}</td>
<td>0.85</td>
</tr>
<tr>
<td>R_{ld}</td>
<td>1.05</td>
</tr>
<tr>
<td>L_{2d}</td>
<td>0.056</td>
</tr>
<tr>
<td>R_{2d}</td>
<td>1.25</td>
</tr>
</tbody>
</table>

$q-axis$	
L_q	0.225
L_{eq}	1.875
L_{1q}	0.884
R_{1q}	1.61
L_{2q}	0.068
R_{2q}	4.81
Table 3. Typical parameters of synchronous machine

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d-axis$</td>
<td></td>
</tr>
<tr>
<td>T''_{d0}</td>
<td>1.00 sec.</td>
</tr>
<tr>
<td>T'''_{d0}</td>
<td>0.08 sec.</td>
</tr>
<tr>
<td>L_d</td>
<td>2.53 p.u.</td>
</tr>
<tr>
<td>L'_{d}</td>
<td>0.43 p.u.</td>
</tr>
<tr>
<td>L''_{d}</td>
<td>0.39 p.u.</td>
</tr>
<tr>
<td>L'''_{d}</td>
<td>0.267 p.u.</td>
</tr>
<tr>
<td>L_i</td>
<td>0.225 p.u.</td>
</tr>
<tr>
<td>$q-axis$</td>
<td></td>
</tr>
<tr>
<td>T_{q0}</td>
<td>1.176 sec.</td>
</tr>
<tr>
<td>T'''_{q0}</td>
<td>0.139 sec.</td>
</tr>
<tr>
<td>L_q</td>
<td>2.1 p.u.</td>
</tr>
<tr>
<td>L'_{q}</td>
<td>0.826 p.u.</td>
</tr>
<tr>
<td>L''_{q}</td>
<td>0.286 p.u.</td>
</tr>
<tr>
<td>L_i</td>
<td>0.225 p.u.</td>
</tr>
</tbody>
</table>

Machine base is 588 MVA and 22 KV.
Figure 14. Construction used for computing saturation
\[S_G(V_T) = \begin{cases}
0 & V_T < 0.7\text{p.u.} \\
A_G \exp(B_G V_\Delta) & V_T \geq 0.7\text{p.u.}
\end{cases} \tag{2.39} \]

where \(V_\Delta = V_T - 0.7 \), which is the difference between the open circuit terminal voltage and the assumed saturation threshold 0.7 p.u., and

\[A_G = \frac{S_{G1.0}^2}{(1.2 \times S_{G1.2})} \tag{2.40} \]

\[B_G = 5 \ln(1.2 \times S_{G1.2}/S_{G1.0}) \tag{2.41} \]

where

\[S_{G1.0} = (I_B - I_A)/I_A \]

\[S_{G1.2} = (I_C - 1.2 \times I_A)/(1.2 \times I_A) \]

We note that the function \(S_G \) is always positive, and it satisfies the defined values \(S_{G1.0} \) and \(S_{G1.2} \) at \(V_T = 1.0 \) and \(V_T = 1.2 \), respectively. The computed saturation function has the shape shown in Figure 15.

For this research, a typical open circuit saturation curve [8] is considered, which provides the following data:

\[S_{G1.0} = 0.1718 \quad S_{G1.2} = 0.7028 \]

Then we calculate \(A_G, A_G \) and \(B_G \) by using eqs. (2.39), (2.40) and (2.41), and get:

\[A_G = 0.035 \quad B_G = 7.955 \]

\[S_G(V_T) = 0.035 \times \exp(7.955 \times V_\Delta) \]
Figure 15. The approximate saturation function S_G
2.3 Governor-turbine Model

As it has exciter models, the Power System Engineering Committee of IEEE has also standardized "general models applicable to most turbine and speed-governing combinations." [9]. The speed-governing and turbine model shown in Figure 16 is used for this thesis. This model may represent either a mechanical-hydraulic speed-governing system or an electro-hydraulic speed-governing system by means of an appropriate selection of parameters. Here, the Westinghouse EH with steam feedback speed-governing model is finally chosen, and the simplest nonreheat turbine model is used. The typical parameters for the model are listed in Table 4.

The transfer functions and nomenclature of the model will be explained in detail as follows. One of the inputs, $\Delta \omega$, is the speed deviation resulting from the mechanical subsystem (i.e. swing equation). The other input P_i (initial mechanical power) is the load reference. This initial value is combined with the increments due to speed deviation to obtain the total power at gate, P_{ov}, subject to the time lag, T_3, introduced by the servomotor mechanism. K is the total effective speed-governing system gain. There are two limit functions in the model, one introduces the rate limits \dot{P}_{up} and \dot{P}_{down}, which limit the rate of change of power imposed by control valve rate limits; the other gives position limits P_{max} and P_{min}, which limits power imposed by valve or gate travel. Here, we take

$$\dot{P}_{up} = 0.1 \ p.u./sec. \quad \dot{P}_{down} = -0.1 \ p.u./sec.$$

and

$$P_{max} = 1.2 \ p.u. \quad P_{min} = 0.9 \ p.u.$$
Figure 16. The block diagram of electro-hydraulic speed-governing and steam turbine system (A) Functional block diagram; (B) Approximate mathematical representation for Westinghouse EH system.
Table 4. Speed-governing system and turbine parameters for Figure 16 (B)

<table>
<thead>
<tr>
<th>System description</th>
<th>Symbol</th>
<th>Values (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westinghouse EH with steam feedback speed-</td>
<td>T_1</td>
<td>2.80</td>
</tr>
<tr>
<td>governing system</td>
<td>T_2</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>0.15</td>
</tr>
<tr>
<td>Nonreheat turbine system</td>
<td>T_{ch}</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>100 / (% steady-state speed regulation)</td>
</tr>
</tbody>
</table>
The power at gate \(P_{ov} \) is fed to the turbine model, which is represented as \(1 / (1 + sT_{ch}) \). Then, we obtain the mechanical power \(P_m \), the output of this module. Next, \(P_m \) will be inputed to the mechanical subsystem, which will be discussed in detail in the next section.

2.4 Mechanical Model

In general, the mechanical dynamics of the synchronous machine is quite complicated. The model described here, however, intended for validation of the simulation generator dynamics, is very simple. "The turbine-generator-shaft system is modeled by a single lumped inertia. This simple model is widely used in transient stability studies" [10, 6]. And a differential damping term was also added to the mechanical dynamics model to force a rapid return to steady state following a transient.

This module is built by a second-order non-linear differential equation, known as the swing equation, which can be written in the form

\[
J \frac{d^2\theta}{dt^2} + D \frac{d\theta}{dt} = T_a = T_m - T_e
\]

(2.42)

where:

- \(T_e \) is the net accelerating torque in N-m.
- \(T_m \) is the mechanical input torque to the synchronous machine in N-m.
- \(T_e \) is the electrical or electromagnetic torque in N-m.
- \(J \) is the lumped moment of inertia in kg-m\(^2\).
- \(D \) is the differential damping coefficient in Joule-sec..
- \(t \) is the time in sec..
- \(\theta \) is the angular displacement of the rotor with respect to a stationary axis in mechanical radians (Given in eq.(2.7)).
Differentiating θ twice gives:

$$\frac{d\theta}{dt} = \omega = \omega_s + \frac{d\delta}{dt}$$

$$\frac{d^2\theta}{dt^2} = \frac{d^2\delta}{dt^2}$$

Substituting into the swing equation (2.42), gives:

$$J \frac{d^2\delta}{dt^2} + D \frac{d\delta}{dt} = T_m - T_e \quad (N - m) \quad (2.43)$$

We recall from elementary dynamics that power is the product of torque and angular velocity and so, multiplying eq. (2.43) by ω, obtains

$$J\omega \frac{d^2\delta}{dt^2} + D\omega \frac{d\delta}{dt} = P_m - P_e \quad (W) \quad (2.44)$$

where:

P_m is the mechanical input power to the synchronous machine in W.

P_e is the electrical power crossing its airgap in W.

In eq. (2.44), the coefficient $J\omega$ is the angular momentum of the rotor, at the synchronous speed ω_r. It is denoted by M and called the inertia constant of the machine. The unit in which M is expressed is joule-sec. per mechanical radian. The coefficient M here, is not a constant in the strictest sense since ω does not equal the synchronous speed ω_r, under all conditions of operation.

"However, in practice, ω does not differ significantly from the synchronous speed when the machine is stable, and power is more convenient in calculations than torque" [10], therefore eq. (2.44) is preferred. For stability studies, another constant, H, related to the inertia is very often encountered. H is defined by
\[H = \frac{\text{stored kinetic energy in megajoules at synchronous speed}}{\text{machine rating in MVA}} \]

\[= \frac{1}{2} \frac{J\omega_s^2}{S_{\text{mach}}} \]

\[= \frac{1}{2} \frac{M\omega_s}{S_{\text{mach}}} \quad (MJ/MVA) \quad (2.45) \]

where \(S_{\text{mach}} \) is the three phase rating of the machine in MVA. Solving for \(M \) in eq. (2.45), we can get

\[M = \frac{2H}{\omega_s} S_{\text{mach}} \quad MJ/\text{mech} \quad \text{rad.} \quad (2.46) \]

Plugging eq. (2.46) into eq. (2.44), gives

\[\frac{2H}{\omega_s} \frac{d^2\delta}{dt^2} + \frac{D\omega_s}{S_{\text{mach}}} \frac{d\delta}{dt} = \frac{P_m - P_e}{S_{\text{mach}}} \quad (2.47) \]

In order to simplify the calculation, we redefine the damping coefficient:

\[D^* = \frac{D\omega_s}{S_{\text{mach}}} \]

Thus,

\[\frac{2H}{\omega_s} \frac{d^2\delta}{dt^2} + D^* \frac{d\delta}{dt} = P_m - P_e \quad (p.u.) \quad (2.48) \]

This equation leads to a very simple result. In this work, the typical inertia constant \(H \) and damping coefficient \(D^* \) are taken, which are listed in Table 5.

In order to derive the simulation model, eq. (2.48) can be written as a set of two first-order differential equations by defining:
Table 5. Mechanical parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H</td>
<td>10.0</td>
</tr>
<tr>
<td>D'</td>
<td>0.08</td>
</tr>
</tbody>
</table>
\[x_1 = \delta \]
\[x_2 = \dot{x}_1 = \frac{d\delta}{dt} \]

This gives

\[\dot{x}_1 = x_2 \]
\[\dot{x}_2 = -D^* \frac{\omega_s}{2H} x_2 + \frac{\omega_s}{2H} (P_m - P_e) \quad (2.49 - a) \]

or in matrix form

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
0 & D^* \frac{\omega_s}{2H}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} +
\begin{bmatrix}
0 \\
\frac{\omega_s}{2H}
\end{bmatrix} (P_m - P_e) \quad (2.49 - b)
\]

From eq. (2.49-a) or (2.49-b), the block diagram of the mechanical model may be drawn as Figure 17. Here the mechanical power \(P_m \) is the input of the mechanical subsystem. And the electrical power \(P_e \) can be obtained by two ways, one by equation [2]:

\[P_e = \omega T_e = \omega \times \frac{1}{3} (i_q \psi_d - i_d \psi_q) \quad (2.50) \]

and the other by equation [6]:

\[P_e = \frac{EV}{x} \sin \delta \quad (2.51) \]

where \(x = x_d + x_l \)

The latter equation (2.51) is used in this work, and its detail will be discussed below.

Assume the generator is modeled as a constant magnitude voltage source behind a transient reactance, then the only generator dynamics are those in the swing equation. When the constant
Figure 17. The block diagram of mechanical model
voltage behind transient reactance model is connected through a purely reactive line to an infinite bus, an equilibrium solution to the swing equation can be found. For the configuration', the electrical power P_t is satisfied with eq. (2.51). Note that E is the generator voltage magnitude, V is the infinite bus voltage, x'_d is the transient reactance of the generator, x_l is the transmission line reactance, and δ is the angle of the generator voltage source with respect to the infinite bus voltage. At equilibrium, δ is constant and the derivatives $\frac{d\delta}{dt}$ and $\frac{d\delta}{dt}$ are zero, eq. (2.48) becomes

$$P_m = \frac{E V}{x} \sin \delta = 0$$

(2.52)

Thus

$$\delta_{eq} = \sin^{-1}\left[\frac{P_m x}{E V} \right]$$

(2.53)

Picking some typical numbers,

- $P_m = 1.0 \; p.u.$
- $E = 1.0 \; p.u.$
- $V = 1.0 \; p.u.$
- $x_l = 0$
- $x'_d = 0.43 \; p.u. \; (\text{Given in Table 3})$

Finally, we obtain the equilibrium angle $\delta_{eq} = 0.4445\text{rad}$.

Simulation Model
Chapter III
Simulation Algorithm

3.1 Digital Non-linear System Simulation

"As is evident from the overall transfer function, the clamp and saturation non-linearities prevent a straight forward application of linear system analysis. The so called 'direct method' of system analysis is the natural choice for real time digital simulation" [3]. This method is required to have a fixed sampling rate that is a multiple of the fundamental frequency, the reasons for which are given in the reference [3]. Many elegant numerical methods like Runge-Kutta and the trapezoidal integration are examples of direct methods. They usually employ a small time step and the result is updated after each iteration. The non-linearities are also computed and updated during the same time interval. If the sampling rate is sufficiently high, the results are close to continuous time analysis. Since the fact that the final simulation should be carried out in real time on a microprocessor, in order to solve the ordinary differential equations, a fast and efficient numerical method with easy adaptability for non-linearities is needed. Elegance and high accuracy, although desirable, are not of utmost importance because of inherent inaccuracies and loss of precision in the other
components of the simulation process, such as A/D, D/A conversion, integer arithmetic truncation, round off errors and so on.

Traditionally, discrete time control systems are implemented by simple first and second-order algorithm, a heuristically derived algorithm (pole-zero mapping), or the analytical solution to the differential equation over a time step [6]. The order 2 Runge-Kutta Algorithm, also called the trapezoidal integration method, currently does find application in real-time calculation on small computers or microprocessors [11]. Here, this algorithm is employed to work on real-time simulation. When given a solution to the differential equation at time \(k \), it uses a simple Euler integration to predict the solution at time \(k + 1 \). This prediction is then improved by using the trapezoidal rule to provide the solution at time \(k + 1 \). It offers a very excellent combination of speed and accuracy.

3.2 Simulation Scheme

Algorithmically, the trapezoidal integration method can be described as follows. Based on the linear system theory, for a linear time-invariant system, the dynamic equations are written [12]:

\[
\begin{align*}
\text{State equation:} & \quad \dot{X}(t) = AX(t) + BU(t) \\
\text{Output equation:} & \quad Y(t) = CX(t) + DU(t)
\end{align*}
\]
\tag{3.1}

where \(X(t) \) is defined as the state vector, \(U(t) \) as the input vector, \(Y(t) \) as the output vector and \(A, B, C \) and \(D \) as the coefficient matrices of the system. State equations with a zero-order hold (ZOH) process on the input vector \(U \) at each sampling interval results in two steps as follows:

\[
X^p(k + 1) = X(k) + T\dot{X}(k)
\]
\tag{3.3}

Simulation Algorithm
\[X(k+1) = X(k) + \frac{T}{2} \left[\dot{X}(k) + \dot{X}^p(k+1) \right] \] (3.4)

where \(\dot{X}(k) = AX(k) + BU(k) \) and \(T \) is the step size. This is a predictor-corrector algorithm in which the corrector is only applied once, although iteration is possible.

The output equation follows immediately as

\[Y(k+1) = CX(k+1) + DU(k + 1) \] (3.5)

The above equations (in matrix form) are used to describe the system differential equations and they are reminiscent of digital filter equations. This is easy to understand since digital filters are mathematically equivalent to continuous systems with sampled data inputs and outputs [3]. Note that for the real-time simulation, the current input \(U(k+1) \) is required to produce the current state \(X(k+1) \), and the output \(Y(k+1) \). So the input must be sampled and the output produced simultaneously, and the intervening computations should take no time. In practice, if sufficient margin is left in the sample window following the output operation for the continuous systems to respond, the phase lag added by the computation time is usually not significant to the system behavior. As mentioned before, a 720 Hz sampling rate, corresponding to \(T = 0.001389 \text{ sec.} \), is used by this simulation model. The discussion so far deals with a linear time-invariant system.

On observing the exciter, synchronous machine and governor models, it is not difficult to find that they are not linear time-invariant systems, but include some non-linear functions, such as saturation and limitation. Therefore, treating non-linearities as either inputs or states is a necessary technique in the discrete non-linear generator system. Within the sampling interval, the ZOH is an ideal integrator. Each non-linearity occurring in the model can be sampled, clamped and designated as a state variable.

There is a study [3] which provides a technique to simulate the non-linear functions. As we know, during state transition, the samplers are open. "Before transition into the next sample instant, the
samplers are closed and the new sample is held during the next interval. This introduces a second set of equations which account for the resetting of the states at the sampling or the 'jump' instants. A jump matrix \(J \) is chosen to satisfy the following equation at the sampling instant.\cite{3}

\[
X^+(k+1) = J \times X^-(k+1)
\]

(3.6)

where the superscripts + and − denote the values immediately after and before the sampling instant. At the sampling instant, none of the continuous time variables change instantly but the non-linearity clamps do change.

The digital simulation for each subsystem will be explained in section 3.3, 3.4, 3.5 and 3.6.

3.3 Discretization of Exciter Model

The expanded block diagram of the exciter subsystem is shown in Figure 18.

The system coefficient matrix \(A \) and jump matrix \(J \) are written as follows:

\[
\dot{X}(k) = \begin{bmatrix}
-1/T_a & -K_f/T_f T_e & 1 & 0 & 0 \\
0 & -K_e/T_e & 0 & 1 & -1 \\
0 & K_f/T_f T_e & -1/T_f & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} X(k) + \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix} \Delta V_T(k)
\]

and

Simulation Algorithm
Figure 18. Non-linear realization block diagram of the IEEE Type-A excitation system.
\[
X^+(k) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
(K_a/T_a)f(X_1) & 0 & 0 & 0 & 0 \\
0 & S_e(X_2)/T_e & 0 & 0 & 0 \\
\end{bmatrix} X^-(k)
\]

where the functions \(f(X_1) \) and \(S_e(X_2) \) represent the saturation and the limiter non-linearities in the \(J \) matrix. These are the functions \(^1\) of state variables \(X_1 \) and \(X_2 \) respectively. For the rotating rectifier exciter with static voltage regulator having the constants shown in Table 1, the system matrix is given as

\[
\dot{X}(k) = \begin{bmatrix}
-50.00 & -0.0375 & 1 & 0 & 0 \\
0.00 & -1.2500 & 0 & 1 & -1 \\
0.00 & 0.0375 & -1 & 0 & 0 \\
0.00 & 0.00 & 0 & 0 & 0 \\
0.00 & 0.00 & 0 & 0 & 0 \\
\end{bmatrix} X(k) + \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix} \Delta V_f(k)
\]

Expanding the subsystem difference equations:

\[
\dot{X}_1(k) = -1/T_a \times X_1(k) - K_d(T_d/T_a) \times X_2(k) + X_3(k) + (V_{ref} - V_f(k))
\]
\[
\dot{X}_2(k) = -K_e/T_e \times X_2(k) + X_4(k) - X_5(k)
\]
\[
\dot{X}_3(k) = K_f(T_f/T_d) \times X_2(k) - 1/T_f \times X_3(k)
\]

The jump equations valid at the sampling instants are:

\(^1\) The details for the two functions are described in Chapter II.
\[X_4^+(k) = \begin{cases} -7.3 & X_1(k) \leq X_{1min} \\ X_4^-(k) & X_{1min} < X_1(k) < X_{1max} \\ 7.3 & X_1(k) \geq X_{1max} \end{cases} \]

\[X_5^+(k) = S_e(X_2(k) / T_e) \]

where

\[X_{1max} = \frac{V_{max}}{(K_a / T_a)} \]
\[X_{1min} = \frac{V_{min}}{(K_a / T_a)} \]

Using the trapezoidal integration algorithm, the following steps are taken to compute the exciter model performance:

Step 1: Pick starting values for \(X(0) = X_0 \) at \(t = 0 \) i.e. \(k = 0 \).

Step 2: Calculate the derivatives of state variables \(\dot{X}(k) \) at \(t = T \times k \) by eq. (3.1).

Step 3: Calculate the predicting state variables \(X^r(k+1) \) at \(t = T \times (k+1) \) by eq. (3.3).

Step 4: Find the derivatives of predicting state variables \(\dot{X}^r(k+1) \) at \(t = T \times (k+1) \) by eq. (3.1).

Step 5: Update the state variables \(X(k+1) \) at \(t = T \times (k+1) \) by eq. (3.4).

Repeat steps 2 through 5 for the next sampling interval, where all the calculation must be completed within the given sampling interval for the real-time simulation. At the end of each step, the output \(E_{f_d} \) follows immediately as

\[E_{f_d}(k+1) = 1/T_e \times X_2(k+1) \]
3.4 Discretization of Synchronous Machine Model

The realization block diagrams of the synchronous machine are shown in Figures 19 and 20, which were derived from Figures 12 and 13; and these have the typical constants shown in Tables 2 and 3.

It is obvious that the simulation model for d-axis of the synchronous machine is considered as a seventh order subsystem, and that for q-axis as a third order system. In order to increase simulation speed and save computer space, both the d-axis and q-axis models are separated into three and two parts, respectively.

Expanding the state differential equations for part I of d-axis model:

\[
\dot{X}_{61}(k) = X_{62}(k) \\
\dot{X}_{62}(k) = -8.36 \times X_{61}(k) - 7.8 \times X_{62}(k) + E_{df}(k)
\]

and the relevant output equation:

\[
Y_1(k + 1) = 0.539 \times X_{61}(k + 1) + 0.443 \times X_{62}(k + 1) + 0.028 \times E_{fd}(k + 1)
\]

For part II of d-axis model:

\[
\dot{X}_{71}(k) = X_{72}(k) \\
\dot{X}_{72}(k) = -8.36 \times X_{71}(k) - 7.8 \times X_{72}(k) + i_d(k)
\]

and

\[
Y_2(k + 1) = -(4.32 \times X_{71}(k + 1) + 6.68 \times X_{72}(k + 1)) + 0.74 \times i_d(k + 1) \\
+ 0.044 \times [i_d(k + 1) - i_d(k)] / T
\]
And for part III of d-axis model:

\[
\begin{align*}
\dot{X}_{81}(k) &= X_{82}(k) \\
\dot{X}_{82}(k) &= X_{83}(k) \\
\dot{X}_{83}(k) &= -0.77 \times X_{81}(k) - 7.93 \times X_{82}(k) - 8.12 \times X_{83}(k) + Y_3(k + 1)
\end{align*}
\]

where

\[
Y_3(k + 1) = Y_1(k + 1) + Y_2(k + 1)
\]

Finally, the output for d-axis is:

\[
\psi_d(k + 1) = 8.36 \times X_{81}(k + 1) + 7.8 \times X_{82}(k + 1) + X_{83}(k + 1) - 0.225 \times i_d(k + 1)
\]

where the superscript \(- \) denotes the value before dealing with saturation.

Next, expanding the state differential equations and the output equations:

\[
\begin{align*}
\dot{X}_6(k) &= -6.76 \times X_6(k) + i_q \\
Y_d(k + 1) &= -20 \times X_6(k + 1) + 4.16 \times i_q + 0.63 \times [i_q(k + 1) - i_q(k)] / T
\end{align*}
\]

and

\[
\begin{align*}
\dot{X}_{101}(k) &= X_{102}(k) \\
\dot{X}_{102}(k) &= -4.19 \times X_{101}(k) - 8.91 \times X_{102}(k) - Y_d(k + 1)
\end{align*}
\]

Finally, the output equation of q-axis is as follows:

\[
\psi_q(k + 1) = 6.54 \times X_{101}(k + 1) + 0.97 \times X_{102}(k + 1) - 0.225 \times i_q(k + 1)
\]

Thus the flux linkage of the synchronous machine \(\psi^- \) (before dealing with saturation) is given as:
\[\psi^- = \sqrt{\psi_d^2 + \psi_q^2} \]

Similar to the simulation of the exciter model, the state equations and output equations can be computed by the trapezoidal integration algorithm, where the procedure is exactly the same as that described in Section 3.3. Remember until now we have not considered the saturation non-linearity function \(S_\sigma(V_T) \), which is defined in Section 2.2.6, for the machine model. The saturation can also be dealt with the specified technique which is mentioned in Section 3.2. Here, the relevant 'jump' term is written as follows:

\[
\psi^+(k + 1) = \begin{cases}
\psi(k + 1) - S_\sigma(V_T(k + 1) - 0.7) \times \psi^-(k + 1) & V_T(k + 1) > 0.7 \text{ p.u.} \\
\psi(k + 1) & V_T(k + 1) \leq 0.7 \text{ p.u.}
\end{cases}
\]

where the superscripts + and − denote the value after and before dealing with saturation at the same sampling window, and

\[\psi = \text{Flux linkage when saturation effect is neglected} \]

\[\psi^- = \text{Flux linkage when saturation is considered} \]

3.5 Discretization of Governor-turbine Model

As we know, the specified block diagram for the EH speed-governing system and nonreheat steam turbine has been given in Figure 16 (B) in the previous chapter, and the relevant parameters are listed in Table 4. The non-linear realization block diagram for this model is drawn in Figure 21.

Like the calculation for the exciter and synchronous machine models, the trapezoidal integration algorithm may be performed to solve both the state difference equations and the output equations
Figure 2.6: Non-linear realization block diagram of Solid Iron Rotor
Model for q-axis
Figure 21. Non-linear, realization block diagram of the Westinghouse EH speed-governor & turbine system
for the governor-turbine, where the procedure is exactly the same as that described in Section 3.3.

Based on Figure 21, the relevant equations are written as follows:

\[
\begin{align*}
\dot{X}_{112}(k) &= -1/T_1 \times X_{111}(k) + T_2 \times (\dot{\delta}(k) - \dot{\delta}(k - 1))/T \\
\dot{X}_{113}(k) &= -1/T_1 \times X_{113}(k) + \dot{\delta}(k) \\
Y_7(k + 1) &= K/T_1 \times (X_{113}(k + 1) + X_{113}(k + 1)) \\
\dot{X}_{112}(k) &= -1/T_3 \times X_{112}(k) + 1/T_3 \times (P_0 - Y_7(k + 1)) \\
\dot{X}_{12}(k) &= -1/T_{ch} \times X_{12}(k) + X_{112}(k + 1) \\
P_m &= 1/T_{ch} \times X_{12}(k + 1)
\end{align*}
\]

where the values of \(T_1\), \(T_2\), \(T_3\), \(T_{ch}\) and \(K\) are listed in Table 4.

In Figure 21, both non-linear functions \(f_1(.)\) and \(f_2(.)\) represent the change of rate limiter and position limiter, respectively. These are treated by the 'jump' term which satisfies the following equations at the sampling instant,

\[
f_1(.) = \begin{cases}
\dot{P}_{\text{down}} & X_{112}(k) \leq \dot{P}_{\text{down}} \\
\dot{X}_{112}(k) & \dot{P}_{\text{down}} < X_{112}(k) < \dot{P}_{\text{up}} \\
\dot{P}_{\text{up}} & X_{112}(k) \geq \dot{P}_{\text{up}}
\end{cases}
\]

where \(P_{\text{up}}\) and \(P_{\text{down}}\) have been defined in the previous chapter. And

\[
f_2(.) = \begin{cases}
P_{\text{min}} & X_{112}(k) \leq P_{\text{min}} \\
X_{112}(k) & P_{\text{min}} < X_{112}(k) < P_{\text{max}} \\
P_{\text{max}} & X_{112}(k) \geq P_{\text{max}}
\end{cases}
\]

where \(P_{\text{max}}\) and \(P_{\text{min}}\) have already been specified previously.

\[2\] The definition of these non-linear functions are given in Chapter II.
3.6 Discretization of Mechanical Model

This system is linear. The realization block diagram of the model is shown in Figure 22, which is derived from Figure 17. The mechanical constants for this model have been given in Table 5.

Note that

\[X_{131}(k) = \delta(k) \]
\[X_{132}(k) = \dot{\delta}(k) \]

we rewrite the discretized system equations as:

\[
\begin{align*}
\dot{X}_{131}(k) &= X_{132}(k) \\
\dot{X}_{132}(k) &= -D^* \frac{\omega_s}{2H} \times X_{132}(k) + \frac{\omega_s}{2H} \left[P_m(k) - P_e(k) \right]
\end{align*}
\]

and

\[
\begin{align*}
X_{131}(k+1) &= X_{131}(k) + \frac{T}{2} \left[\dot{X}_{131}(k+1) + \dot{X}_{131}(k) \right] \\
X_{132}(k+1) &= X_{132}(k) + \frac{T}{2} \left[\dot{X}_{132}(k+1) + \dot{X}_{132}(k) \right]
\end{align*}
\]

where \(X_{131}(k+1) \) represents the torque angle \(\delta \), and \(X_{132}(k+1) \) is the speed derivative, denoted by \(\Delta\omega \) or \(\dot{\delta} \) at \(t = T \times (k + 1) \).

As was done while dealing with exciter, synchronous machine and governor-turbine models, the state equations and output equations of this subsystem can be solved by the trapezoidal rule too, whose steps have been explained in detail in Section 3.3.
Figure 22. Non-linear, realization block diagram of the mechanical system
Section 3.3 through 3.6 have described how to perform the numerical calculation by the trapezoidal integration algorithm for the whole discrete generator model. In this work, first the digital computer simulation is implemented by a FORTRAN simulation program (See Appendix B), i.e. an off-line simulation on a Microvax computer. However, we lay emphasis on the digital computer real-time simulation, the implementation of real-time simulation on the Motorola MC68020, and the software organization which will be discussed in Chapter V in detail.
Chapter IV

Transformation of Input and Output

Many of the common forms of the generator equations treat machine armature currents i_d and i_q as inputs and machine terminal voltages V_a and V_δ as outputs, where i_d, i_q, V_a and V_δ are variables in the d-q domain. However, the real currents, measured from either the real power system or the simulating system, are of three phase components i_a, i_b, and i_c, and the most important components of the simulation scheme are the three phase voltages V_a, V_b, and V_c, which form the output of the generator simulation model.

The well known Park's transformation in machine theory can easily solve this problem. Transformation from the phase a, b, c domain to the d-q domain involves Park's transform (PT), and conversely, involves inverse Park's transform (IPT). The simulation model of the generator system is as shown in Figure 23 [3].
Figure 23. Typical generator simulation scheme
4.1 Park's and Inverse Park’s Transformation

In this simulation system, the Park’s transformation is used to generate the direct and quadrature axes currents i_d, i_q. This transformation is given by:

$$
\begin{bmatrix}
 i_0 \\
 i_d \\
 i_q
\end{bmatrix} = \frac{2}{3} \begin{bmatrix}
 \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
 \cos(\theta) & \cos(\theta - 2\pi/3) & \cos(\theta + 2\pi/3) \\
 \sin(\theta) & \sin(\theta - 2\pi/3) & \sin(\theta + 2\pi/3)
\end{bmatrix}
\begin{bmatrix}
 i_a \\
 i_b \\
 i_c
\end{bmatrix}
$$

(4.1)

where 3

$$
\theta = \omega t + \delta + \frac{\pi}{2} = (\omega_r + \Delta \omega) t + \delta + \frac{\pi}{2}
$$

(4.2)

The sample values of three phase currents i_a, i_b, i_c are obtained from either the real power system or a power system simulator at each $1 / 720$ second, which is suitably scaled. Moreover, the transformation is based on per unit (p.u.).

The inverse Park’s transformation is applied to produce the machine terminal three phase voltage waveforms. The transformation is given by:

$$
\begin{bmatrix}
 V_a \\
 V_b \\
 V_c
\end{bmatrix} = \begin{bmatrix}
 1 & \cos(\theta) & \sin(\theta) \\
 1 & \cos(\theta - 2\pi/3) & \sin(\theta - 2\pi/3) \\
 1 & \cos(\theta + 2\pi/3) & \sin(\theta + 2\pi/3)
\end{bmatrix}
\begin{bmatrix}
 V_0 \\
 V_d \\
 V_q
\end{bmatrix}
$$

(4.3)

Since we have got the machine terminal voltage V_T, a slight improvisation can be made here to be used in the transformation. As we know,

3 In this work, set $\omega_{ref} = \omega_r = 60$ Hz.
\[V_d = V_T \sin \delta \]
\[V_q = V_T \cos \delta \]

(4.4)

Omitting the zero sequence voltage component, normalizing and rewriting eq. (4.3):

\[V_a = V_d \cos \theta + V_q \sin \theta \]
\[V_b = V_d \cos(\theta - 2\pi/3) + V_q \sin(\theta - 2\pi/3) \]

(4.5)
\[V_c = V_d \cos(\theta + 2\pi/3) + V_q \sin(\theta + 2\pi/3) \]

Plugging eq. (4.3) into (4.4), gives:

\[V_a = V_T \sin(\theta + \delta) \]
\[V_b = -\frac{V_a}{2} - \frac{\sqrt{3}}{2} V_T \cos(\theta + \delta) \]
\[V_c = -V_a - V_b \]

(4.6)

This equation is used to generate the three phase outputs voltages, where \(V_T \) is suitably scaled, so that 1 p.u. \(V_T \) in d-q domain generates 1 p.u. machine output (in sinusoidal form) in the phase a-b-c domain. However this transformation has the following limitations:

- The zero sequence quantities are omitted and so that zero sequence can not be obtained.
- The inverse Park’s transform has been manipulated to accept \(V_T \) instead of \(V_d \) and \(V_q \).

It should be noted that the inverse Park’s transform may be implemented without any of the above limitations, if all of the quantities \(V_d \), \(V_q \) and \(V_0 \) are available [3].

Transformation of Input and Output
4.2 Microprocessor Implementation

Implementing eq. (4.1) and (4.6) requires finding sines and cosines of the cumulative rotor angle \(\theta \) (i.e. \(\omega t + \delta + \frac{\pi}{2} \)) which changes with time. Sine and cosine look up tables from 0 to \(\frac{\pi}{2} \) radians with a resolution of 0.001 radians were developed.\(^4\) There are a total of 1572 entries in each table. A single entry takes one word of memory, so each table occupies slightly over 3K bytes of memory. The calculation rate of the Park’s transform and inverse Park’s transform modules (PT & IPT) is 720 Hz. This corresponds to 30° of a 60 Hz waveform. In each time interval, the values of \(i_d \) and \(i_q \) are computed by the PT module, and the values of \(V_a, V_b \) and \(V_c \) are calculated and stored in memory by the IPT module [3].

The look up tables are stepped through with an angle change of 30° each calculation time. A count of the total angle, \(\theta \), is maintained in each time interval. Whenever both of PT and IPT modules are executed one time, the count of \(\theta \) is incremented by a value which is sum proportional to the 30° advance in phase and changes in \(\omega \) and \(\delta \). Here this stepping interval (SI) is regarded as the angle between samples on the current or voltage wave.

\[
\text{No. of entries in each table (0 - } \frac{\pi}{2} \text{ rad.) = 1572 words}
\]

\[
\text{Stepping interval for an angle } \frac{\pi}{6} \text{ rad. (i.e. 30°) = 524 words}
\]

When the frequency is keeping at precisely \(\omega_s \) (60 Hz), the stepping interval is 524 words of memory corresponding to 30°. However, if the frequency deviates from the synchronous frequency, i.e. \(\Delta f \) or \(\Delta \omega \) has some value, the stepping interval will change. For example, for \(\Delta f = 2 \text{ Hz} \) i.e. \(\Delta \omega = 4\pi \text{ rad./sec.} \), the new stepping interval is:

\[
524 + \frac{524}{30} \times 4\pi \times \frac{180}{\pi} \times 0.001389 \approx 542 \text{ words}
\]

\(^4\) The programs which develop the sine and cosine look up tables are listed in Appendix B.
which corresponds to an angle of 31°. For this simulation model, the actual rotor angular speed \(\omega \) is obtained from the mechanical system, and then the calculation for finding the stepping interval can be done during each time interval.

Changes in \(\delta \) may be determined similarly. Assume that \(\delta \) is varying from one calculation cycle to another. Since \(\delta \) just changes the phase but not the frequency, an offset which is proportional to \(\delta \) will be added to the stepping interval as the phase changes, while, the offset corresponding to the \(\delta \) in the previous calculation cycle should be subtracted. In each calculation cycle, the real torque angle \(\delta \) could also be found from the mechanical system.

For example, at calculation cycle \(k \), i.e. at time \(t = T \times k \), \(\theta \) is:

\[
\theta_k = (\omega t + \delta + \frac{\pi}{2})_k
\]

If the new stepping interval due to changes in \(\omega \) and \(\delta \) is \(\gamma \), then \(\theta \) at calculation cycle \(k + 1 \) has the value:

\[
\theta_{k+1} = (\omega t + \delta + \frac{\pi}{2})_k + \gamma = \theta_k + \gamma
\]

Since the look up tables are stored in memory sequentially, the sines and cosines would be obtained by reading the value at a particular memory location with an offset from the starting address of the table. Since the two tables contain sine and cosine values only for angles lying in the first quadrant, certain logic incorporated in the software would determine the quadrant and hence the sine and cosine of \(\theta \).

The steps for finding the particular memory location for \(\sin \theta \) and \(\cos \theta \) from the look up tables in any time interval are as shown below:
1. Let a setting of \((C500)_{16}\) be the starting address of the sine table, and \((D500)_{16}\) be set as the starting address of cosine table.

2. Perform a logical calculation to determine the quadrant of \(\theta\) and transfer \(\theta\) to the first quadrant, if it is greater than \(\frac{\pi}{2}\) rad.

3. Find the memory location for the particular angle \(\theta\) \((0 \leq \theta \leq \frac{\pi}{2}\) rad.):

 The memory location of \(\sin(\theta)\) = \((C500)_{16} + (2000 \times \theta)_{16}\)

 The memory location of \(\cos(\theta)\) = \((D500)_{16} + (2000 \times \theta)_{16}\)

 Save the two addresses in two data registers \(D_{1}\) and \(D_{2}\), respectively.

4. Transfer the two memory locations from the two data registers, \(D_{1}\) and \(D_{2}\), to two address registers \(A_{1}\) and \(A_{2}\), separately, then read the value of \(\sin(\theta)\) and \(\cos(\theta)\) from these specified address registers.

5. Do a logical calculation to obtain the real \(\sin(\theta)\) and \(\cos(\theta)\) for \(0 \leq \theta \leq 2\pi\) rad.

This logic is flowcharted in Figures 24, 25, 26, and 27. It is implemented by subprograms PT and IPT, the source codes for which are listed in Appendix B.

Both the PT and IPT modules execute at 720 Hz, and their inputs to PT and IPT are clamped by a control flag at 720 Hz. So the outputs of PT, \(i_{i}\), \(i_{q}\), and the outputs of IPT, \(V_{s}\), \(V_{d}\) and \(V_{e}\) are also given at the same frequency. Moreover, \(V_{s}\), \(V_{d}\) and \(V_{e}\) are sent to D/A converters at exact sampling point. Also, in order to get smoother output voltage waveforms, the values of \(V_{s}\), \(V_{d}\) and \(V_{e}\) at other three points in each time interval are needed, so that the three phase voltages are actually outputted at 2880 Hz.

In view of the fact that the simulation must be carried out in real-time, fast, simple and efficient numerical methods like the interpolation and extrapolation algorithms are developed to calculate these output points within each time interval. We can either directly interpolate or extrapolate the non-linear output function, or treat the output as a piecewise linear function for each time interval, and then implement interpolation and extrapolation. The former would result in a smoother and more precise sinusoidal waveform, but take longer execution time, while, the latter may complete.
calculation faster, but which causing the sinusoidal waveform is not smooth enough, especially in the peak area of the waveform. Mathematically, both linear and non-linear interpolation and extrapolation algorithms can be explained as follows.

1. Interpolation and extrapolation by piecewise linear function

Assume that the output voltage waveforms are piecewise linear (i.e. a spline of degree 1 [11]) for each time step. By referring to Figure 28 and using the point-slope of a line, we obtain

\[
S_k(t) = V_k + m_k(t - t_k)
\]

(4.7)

where \(m_k \) is the slope of the line and is therefore given by the formula

\[
m_k = \frac{V_{(k+1)} - V_k}{t_{(k+1)} - t_k} = \frac{V_{(k+1)} - V_k}{T}
\]

Taking phase A as an example, during simulation cycle \(k \), we may get new output \(V_{a(k+1)} \) (also denoted as \(V_s(t_{k+1}) \)) from IPT module. The calculation completes at time \(t_s \), where \(t_s < t_s < t_{s+1} \), and the outputs at the other three points occurs at time \(t_s + \frac{iT}{4} \) for \(i = 1, 2, 3 \). If \((t_s + \frac{iT}{4}) < t_s \), find \(V_s(t_s + \frac{iT}{4}) \) by extrapolation

\[
V_s(t_s + \frac{iT}{4}) = \frac{i}{4} [V_{ak} - V_{a(k-1)}] + V_{ak}
\]

(4.8)

where \(V_{a(k-1)} \) is IPT output at previous sampling point. And if \((t_s + \frac{iT}{4}) \geq t_s \), by interpolation calculate \(V_s(t_s + \frac{iT}{4}) \)

\[
V_s(t_s + \frac{iT}{4}) = \frac{i}{4} [V_{a(k+1)} - V_{ak}] + V_{ak}
\]

(4.9)

As seen above, a logical operation is required to determine which algorithm (extrapolation or interpolation) should be used for calculation of these intermediate output points. This operation is performed by setting an output control flag, 'outputflag', while executing the simulation...
module. At the starting point of a sampling window, i.e. $t = t_0$, set outputflag = 0, and at $t = t_1$, reset outputflag = 1. This is implemented in each time interval.

2. Interpolation and extrapolation by sine function

Similar to the linear interpolation and extrapolation, taking phase A as an example, during simulation cycle k, we can use $V_{a(k+1)}$, V_{ak} and $V_{a(k-1)}$ to implement extrapolation or interpolation. By referring to Figure 29, assume

$$V_{a(k-1)} = V \sin \theta$$ \hspace{1cm} (4.10)

$$V_{ak} \approx V \sin(\theta + 30^\circ)$$ \hspace{1cm} (4.11)

$$= \frac{\sqrt{3}}{2} V \sin \theta + \frac{1}{2} V \cos \theta$$

$$= \frac{\sqrt{3}}{2} V_{a(k-1)} + \frac{1}{2} V \cos \theta$$

$$V_{a(k+1)} \approx V \sin(\theta + 60^\circ)$$ \hspace{1cm} (4.12)

From eq.(4.11), we get

$$V \cos \theta = 2V_{ak} - \sqrt{3} V_{a(k-1)}$$ \hspace{1cm} (4.13)

Now we may find the other three outputs at position $\theta + 37.5^\circ$, $\theta + 45^\circ$ and $\theta + 52.5^\circ$ by extrapolation

$$V_{ak7.5} = V \sin(\theta + 37.5^\circ)$$

$$= V \sin \theta \cos 37.5^\circ + V \cos \theta \sin 37.5^\circ$$

$$= V_{a(k-1)} \cos 37.5^\circ + (2V_{ak} - \sqrt{3} V_{a(k-1)}) \sin 37.5^\circ$$

$$= V_{a(k-1)}(\cos 37.5^\circ - \sqrt{3} \sin 37.5^\circ) + V_{ak}(2 \sin 37.5^\circ)$$

Transformation of Input and Output
On the analogy of eq.(4.14)

\[V_{ak15} = V \sin(\theta + 45^\circ) \]
\[= V_{a(k-1)}(\cos 45^\circ - \sqrt{3} \sin 45^\circ) + V_{ak}(2 \sin 45^\circ) \quad (4.15) \]

\[V_{ak2.5} = V \sin(\theta + 52.5^\circ) \]
\[= V_{a(k-1)}(\cos 52.5^\circ - \sqrt{3} \sin 52.5^\circ) + V_{ak}(2 \sin 52.5^\circ) \quad (4.16) \]

Comparing the piecewise linear extrapolation and interpolation algorithm with the non-linear extrapolation algorithm, we find that the non-linear algorithm can result in more exact and smooth output waveforms, and the execution time is reasonable. In this simulation, the non-linear extrapolation algorithm is applied, which is implemented by subroutine 'EXTRAPOLATE' (See Appendix B).
Calculate SI

$\theta = \theta + SI$

$\theta = \theta + 2\pi$

< 0 θ > 2π

$\theta = \theta - 2\pi$

$0 < \theta < 2\pi$

Determine the quadrant rotor angle θ is in

Get $\sin \theta$, $\cos \theta$ using algorithm shown in Fig. 26, 27

Perform Park's transformation and save values of i_d and i_q

Synchronous machine module

Figure 24. Block diagram of Park Transformation module (PT)
Figure 25. Block diagram of Inverse Park Transformation module (IPT)

Transformation of Input and Output 84
Figure 26. Table look up θ or φ in 1st & 2nd quadrant
Figure 27. Table look up θ or ϕ in 3rd & 4th quadrant
Figure 28. The extrapolation for a piecewise linear function
Figure 29. The extrapolation for a sine function
This chapter discusses the microprocessor implementation of the discretized generator model and the simulation results. There are many possible strategies for implementing the model, each with its own cost benefit trade-offs. In this work, the real-time simulation of the discretized generator model is implemented by software on the Motorola MC68020.

5.1 Hardware Organization

The hardware for this simulation consists of the following:

1. MicroVAX host computer and VT220 terminal.
2. Motorola MC68020 microcomputer board.
3. Two data translation 12 bit, 16 channel A/D converter, 2 channel D/A converter boards (DT 1401).
4. Three Crown PS-400 watt audio power amplifiers.
5. Tektronix 2221 60 MHz digital storage oscilloscope.
6. Three signal conditioners and three two-stage RC filters.

All the boards are VME compatible making interface easy because of the wide acceptance of this bus in the industry. In addition to the above, this simulation system includes of transformer model, transmission line model and load model. The host computer is supported by the VAX/VMS operating system and the Digital Command Language (DCL), and software for this host includes a Micro Assembler and a FORTRAN compiler. The hardware is organized as shown in Figure 30.

5.2 Software Organization

"Microprocessor programming for real-time, time-constrained applications is very much different from ordinary programming. It forces the programmer to be efficient often at the expense of neatness and order." [3] Most real-time programs are not structured, since subroutine calls and jumps take up too much time. Difficulty in deciphering real-time software is compounded by the fact that it is in assembly language.

In this application, the processor is interrupted at a frequency of 2880 Hz, which is set by programming the on board MC68901 timer. The interrupts, which occur at equal intervals of 347.2 μs, form the basic calculation time frame. There are two different sampling rates in the simulation. The exciter, synchronous machine, governor-turbine, mechanical and Park's transformation modules are executed for every 1388.8 μs (720 Hz). The inverse Park's transformation and extrapolation subprogram are also solved once every 1388.8 μs (720 Hz), while the values of V_x, V_s and V_e are calculated for subintervals and sent to D/A converters (DAC) at the rate of 2880 Hz. Note that the outputs, V_x, V_s and V_e, resulting from inverse Park's transformation are transferred to the DAC at
Figure 30. Hardware organization
exactly the sampling point. Therefore the effective sampling rate for the inverse Park's transformation and interpolation & extrapolation, i.e. output module, is 2880 Hz. The software organization is shown in Figure 31.

The software consists of the following modules and a description of each is given below:

The Main Module: This module (which is named as 'Generator Model' and listed in Appendix B) is made up of the exciter system, the synchronous machine system, the governor-turbine system, the mechanical system (i.e. swing equation), the Park's and inverse Park's transformation models, and the extrapolation subroutine. In addition to the above programs, four functional look up tables (Sine, Cosine, Exponential and square root) and a machine saturation subroutine are embraced in the main module.

The development and calculation of the particular memory location for both sine and cosine look up tables have been discussed in the previous chapter. Similarly, an exponential look up table from 0 to 5 with a resolution of 0.002 and a square root table from 0 to 16 with a resolution of 0.004 are also developed. There are a total of 2500 entries in the exponential table and 4000 entries in the square root table. One entry occupies one word of memory. The computation for determining the specific location for exponential and square root look up tables in a time step is as explained below:

1. Let the setting of \((9100)_{16}\) be the starting address of the exponential table, and \((4500)_{16}\) be as the starting address of the square root table.

2. Find the memory location for the specific state variable \(X_2\) and machine terminal voltage \(V_T\):

 the memory location of \(\exp(X_2) = (9100)_{16} + (1000 \times X_2)_{16}\)

 the memory location of \(\sqrt{V_T} = (4500)_{16} + (500 \times V_T)_{16}\)

 and then store these memory addresses in two data registers, \(D_{il}\) and \(D_{i2}\), respectively.

3. Transfer the memory locations from \(D_{il}\) and \(D_{i2}\) to two address registers \(A_{il}\) and \(A_{i2}\), separately, then read the value of \(\exp(X_2)\) from \(A_{il}\) and \(\sqrt{V_T}\) from \(A_{i2}\).
Figure 3.1. Software organization

Note: * See N. Vichare's program "Error Model Generator" in Appendix B.
All the digital calculation takes place in this module, and it is executed once every 1388.8 μs (720 Hz). The inputs to this module are:

1. The phase a, b and c current samples.
2. The reference point values, which include V_{ref}, P_0, ω_{ref} and δ_{ref}. For this simulation, in the main module, set

\[
V_{ref} = 1.04 \text{ p.u.} \quad P_0 = 1.09 \text{ p.u.} \\
\delta_{ref} = 0.4445 \text{ rad.} \quad \omega_{ref} = 377 \text{ rad./sec.}
\]

The outputs of this module are balanced three phase voltages which represent the output of the generator. The algorithms used in this model are given in complete detail earlier in Chapter III and IV, respectively.

As shown in Figure 31, the interrupts occur at regular intervals at the rate of 2880 Hz. They are set as 0, 1, 2 and 3 respectively in one calculation time frame which spans over four interrupts giving a sampling rate of 720 Hz, i.e. four output points would be given in one time interval. In each time step, as #3 is serviced (i.e. TIMGLG = 3 \(^5\)), a control flag ‘Phasorflg’ is set up enabling the main simulation module to be executed. If Phasorflg = 1, the main program ‘generator model’ is started to be executed, and if Phasorflg = 0, the main program is held at the beginning point. During the real-time simulation, Phasorflg = 1 occurs at exactly the sampling point for each time interval (1388.8 μs). The main module starts from memory location (8000)\(_{16}\). Subroutine EXTRAPOLATE is executed first, it extrapolates three points of V_a, V_b and V_c in a 60 Hz sine wave, where the input is two points measured at the rate of 720 Hz and the output is three points calculated at 2880 Hz, and then saves them in consecutive memory locations starting at VEXTRA (See program list in Appendix B). In order to compensate the 10\(^9\) the analog interface \(^6\), subroutine EXTRAINPUT is called to extrapolate the sample inputs i_a, i_b and i_c, which are located in reserved

\[^5\text{ See program ‘Error Model Generator’ in Appendix B in detail.}\]

\[^6\text{ Analog interface will be discussed in Section 5.3.}\]
storage space IA, IB and IC (See Appendix B). Next the subprogram PT transfers the calculated inputs, which named \(l_{q5} \), \(l_{10} \) and \(l_{105} \), from phase a-b-c domain to \(l_q \) and \(l_i \) in d-q domain by Park’s transformation. Then module ES estimates the field voltage \(E_{ds} \) and SMS (which includes two parts, d-axis and q-axis models) calculates the armature flux linkage \(\psi \) and the terminal voltage of the machine, \(V_f \). And then subprogram GTS is run to find mechanical power \(P_m \). The swing equation, MS, is then solved. Finally, IPT transfers \(V_f \) to phase values \(V_a \), \(V_b \) and \(V_c \) by inverse Park’s transformation and stores them in consecutive memory locations starting at VABCNEW (Appendix B). The procedure of execution for the whole simulation model can be seen in Figure 31.

The Interrupts and I/O Module:

The module (which is named ‘Error Model Generator’ and listed in Appendix B) consists of the main program, A/D conversion (ADC) and collection of raw data subroutine, phasor calculation subroutine and timer handling routine, which may generate the rate of 2880 Hz for D/A conversion (DAC), but call ADC and phasor calculation at the rate of 720 Hz. Timer handling routine is also used for waiting cycles. First the I/O module performs the initialization of all the peripherals. The interrupt module services interrupt numbers 0, 1, 2 and 3. They output the values of \(V_a \), \(V_b \) and \(V_c \) calculated by IPT or EXTRAPOLATE to the right D/A channels. They also load the starting address of the next service routine into the level 5 interrupt vector. This ensures that they are cyclically executed. As shown in Figure 31, the flag ‘Phasorflg’ is set up while servicing #3 and this enables to start a calculation cycle for the main module. Actually, the author did not work on developing the interrupt and I/O module, but only called the program ‘Error Model Generator’ as a subroutine to implement real-time simulation at the sampling rate of 720 Hz.

7 This module is programmed by Nitin Vichare, Research Assistant at Power System Lab, VPI.

8 See Appendix B and Ref. [3 & 19] for further information on interrupt, timer handling, ADC & DAC and I/O routines.
5.3 Analog Interface

The microcomputer generated sinusoidal waveform at the output of the D/A converter is as shown in Figure 32. Because the samples of the waveform are output at 2880 Hz, a 60 Hz sine wave would have 48 sample points in each cycle. A zero order hold process is in effect between the samples. Based on the analysis of FFT, the waveform is with a significant frequency component at 2880 Hz, which can be seen on the digital storage oscilloscope. A two-stage RC filter with a cut-off frequency of 382 Hz was used to remove those higher frequency component. The transfer function of a two-stage RC filter is given by:

\[H(j\omega) = \frac{1}{1 + j\omega (R_1 C_1 + R_2 C_2 + R_1 C_2) - \omega^2 (R_1 C_1 R_2 C_2)} \]

(5.1)

Figure 33 shows a two-stage RC filter circuit with this transfer function and a cut-off frequency of 382 Hz. The bode plots of \(H(j\omega)\) are given in Figure 34. As can be seen, the cut-off frequency is indeed 382 Hz, and the phase lag at the fundamental power frequency (60 Hz) is about 10°.

Based on Figure 1, we know that the input signals \(i_n, i_b\) and \(i_c\) depends on the machine terminal voltage and the load, which are represented as:

\[i_{ph} = \frac{v_{ph}}{Z_{load}} \]

where \(Z_{load} = R_{load} + jX_{load}\). It is obvious that the phase shift of output voltage should cause the same phase lag for input current. In order to compensate the phase shift, a extrapolating calculation for input \(i_n, i_b\) and \(i_c\) is asked before performing Park’s transformation. Taking phase A as an example, at the starting point of simulation cycle \(k\), we can read the input \(i_{a_k}\) from I/O module, and then use \(i_{a_k}\) and the previous input \(i_{a(k-1)}\) to preform extrapolation. Assume

\[i_{a(k-1)} = I \sin(\phi) \]

(5.2)

Implementation and Simulation Results
\[i_{nk} = I \sin(\phi + 30^\circ) \] (5.3)

Now we may calculate the input current with considering the compensation of the 10° phase lag by

\[
\begin{align*}
 i_{nk10} &= I \sin(\phi + 40^\circ) \\
 &= I \sin \phi \cos 40^\circ + I \cos \phi \sin 40^\circ \\
 &= i_{nk(k-1)}(\cos 40^\circ - \sqrt{3} \sin 40^\circ) + isunak(2 \sin 40^\circ) \\
 &\approx -0.3473 \times i_{nk(k-1)} + 1.2856 \times i_{nk}
\end{align*}
\] (5.4)

In this work, the extrapolation algorithm is implemented by subroutine ‘EXTRAINPUT’ (See Appendix B). and then \(i_{nk10}, i_{nk10} \) and \(i_{nk10} \) are regarded as the input of Park’s transformation.

5.4 Computational Workload

At each step, the generator model performs:

- Park’s transformation on incoming sample data \(i_r, i_s \) and \(i_t \).
- Recursive update of state equations for exciter, generator, governor- turbine and mechanical modules.
- Inverse Park’s transformation, extrapolation and interpolation on output voltage \(V_T \).

The arithmetic work required to perform each of these operations is shown in Table 6. In addition to the arithmetic operations, enough time margin must remain in the processing window to allow for any processing overhead, such as data movement and shift, logical operation, A/D conversions, interrupts and timer handling, scaling of input and output quantities and data collection.

Implementation and Simulation Results
Figure 32. Pre and post filtered waveforms
Figure 33: Two-stage RC filter with a cut-off frequency of 382 Hz.
Figure 34. Bode plots of transfer function $H(j\omega)$
The prototype simulation model is designed to run at a sampling rate of 720 Hz, i.e. the processing window during which all of the above operations must be carried out is 1388.8 µs long. Given currently available microprocessor technology, it is possible to implement the model generator by using a commercial microprocessor. An excellent performance 32-bit microprocessor, Motorola 68020 is well supported in Virginia Tech's Power System Laboratory. Approximate operation times, in clock cycle, are listed in Table 7 [6, 13, 15 and 18] for two possible system configurations.

Based on Table 6 and Table 7, the minimum time needed to perform the arithmetic computations for one time interval of the generator model can be computed. This minimum time for each configuration is given in Table 8. However, for an additional 60% added to the processing time by the overhead, the floating configuration will not be able to meet the 1388.8 µs time limit. Since the Motorola MC68020 is to be used, the generator model has to be implemented in fixed point arithmetic.

5.5 Simulation Results

The system being simulated is that shown in Figures 2 and 30, the generator terminal phase voltages are amplified by the power amplifiers and fed to the external load models, and then the load currents i_a, i_b and i_c, as input signals, are sent through three signal conditioners back to the machine. This section reports the results of validation simulation for the model generator with the external load $Z_l = 4.98 + j0.0$ p.u..

As described in sections 4.2, 5.2 and 5.3, a phase of the computer generated voltage waveform (48 samples/cycle) and its filtered version is shown in Figure 32. The time delay between the two waveforms is due to the zero order hold and filter delay. The three phase output voltage waveforms generated by the microprocessor are shown in Figure 35.
Table 6. Arithmetic Work Per Timestep

<table>
<thead>
<tr>
<th>Function</th>
<th>Add</th>
<th>Subtract</th>
<th>Multiply</th>
<th>Divide</th>
<th>Sin/Cos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Word/Byte</td>
<td>Long</td>
<td>Word/Byte</td>
<td>Long</td>
<td>-</td>
</tr>
<tr>
<td>Extrapolation</td>
<td>3'</td>
<td></td>
<td></td>
<td></td>
<td>6'</td>
</tr>
<tr>
<td>Park's Transform</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Recursions</td>
<td>53</td>
<td>32</td>
<td>25</td>
<td>6</td>
<td>119</td>
</tr>
<tr>
<td>Inverse Park's transform</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Extrapolation</td>
<td>9'</td>
<td></td>
<td></td>
<td></td>
<td>18'</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>41</td>
<td>39</td>
<td>11</td>
<td>156</td>
</tr>
</tbody>
</table>

Note: * MC68881 Floating-point arithmetic
Table 7. Arithmetic Operation Times

<table>
<thead>
<tr>
<th>System</th>
<th>Add/Sub</th>
<th>Multiply</th>
<th>Divide</th>
<th>Sin/Cos</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC68001 Floating-Point Coprocessor</td>
<td>72 (S)</td>
<td>92 (S)</td>
<td>124 (S)</td>
<td>410 (S)</td>
</tr>
<tr>
<td>Fixed Point Arithmetic</td>
<td>76 (X)</td>
<td>96 (X)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 (B/W)</td>
<td>70</td>
<td>158</td>
<td>138**</td>
</tr>
<tr>
<td></td>
<td>6 (L)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
* S -- Single precision real
X -- Extended precision real
** Assume table look up
Table 8. Arithmetic execution times

<table>
<thead>
<tr>
<th>System</th>
<th>Cycles</th>
<th>Microseconds (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20 MHz</td>
</tr>
<tr>
<td>MC68881 Floating-Point Coprocessor</td>
<td>34732 *</td>
<td>1736.6</td>
</tr>
<tr>
<td>Fixed Point Arithmetic **</td>
<td>16402</td>
<td>820.1</td>
</tr>
</tbody>
</table>

Note: * The arithmetic operation times are based on single precision real (S).

** Subroutine ‘EXTRAPOLATE’ and ‘EXTRAINPUT’ are implemented on MC68881 floating-point coprocessor, and the arithmetic operation times are based on extended precision real (X).
An easy way of evaluating the real-time simulation is to compare it with off-line computations for a known set of inputs \[3\].

5.5.1 Open-loop Test

A reference of 1 p.u. is set at the reference input and then the simulation started. The value of the terminal voltage \(V_T\) is output to a D/A converter and the trace may shown on a scope. This is compared with the same test conducted off-line on the simulation model. The output results are shown in Figure 36. The trace (a) is the trajectory calculated off-line at a sampling rate of 720 Hz in the microcomputer. The other trace (b) is the real-time solution as calculated by using fixed-point arithmetic on the microprocessor and output through a D/A converter. The slight difference in trajectories are due to the truncation and quantization errors.

5.5.2 Closed-loop Test

The value of the machine terminal voltage \(V_T\) calculated by the program is fed to the exciter model, which is compared with the reference set point \(V_{rf}\), and this error signal is as the input of this simulation test. The reference voltage is set to 1 p.u. Similarly, the simulation results are compared with the off-line simulation as shown in Figure 37. A 720 Hz sampling rate was used to carry out both real-time and off-line simulation results.

5.5.3 Constant Voltage Test

To verify the governing action and the equilibrium analysis, the synchronous machine electrical dynamics were replaced by a constant voltage magnitude. For this test, set
\[V_T = 1.05 \text{ p.u.} \quad P_0 = 1.05 \text{ p.u.} \]

Under these conditions, the dynamics in this model are the mechanical dynamics represented by the swing equation (2.43) and the governing action described in section 2.3. Recall that the equilibrium angle for this system is \(\delta_{eq} = 0.4445 \) radians.

The results of the electrical power \(P_e \) versus time, the mechanical power \(P_m \) versus time, the rotor speed oscillation \(\Delta \omega \) versus time and the torque angle \(\delta \) versus time are shown in Figure 38.

The resulting equilibrium angles did not match the value predicted in section 2.4. The reason for this error is that the electrical power delivered by the model generator to the external system is not constant. The power function is only being sampled at 720 Hz, as a result, much of the information content of the power function is lost. This loss of information by the model generator causes the errors in the equilibrium angle.

5.5.4 Exciter Subsystem Tests

The exciter subsystem functions as a closed loop system in the model generator. It senses the changes in the machine terminal voltage \(V_T \) due to external disturbances and performs a corrective action upon the error with the reference. The exciter is also tested for both real-time and off-line simulations under open-loop and closed-loop conditions. For open-loop test, a reference of 1 p.u. is set at the reference input and the simulation begun, and for closed-loop test, the reference is also set to 1 p.u., the terminal voltage is negative feedback from the the synchronous subsystem to this subsystem. The real-time simulation results are again compared with the off-line simulation as shown in Figures 39 and 40. A 720 Hz sampling rate was used for both real-time and off-line simulations. The difference in trajectories is due to the truncation and quantization errors.
Figure 35. Microprocessor generated three phase voltage waveforms
Figure 36. Trajectory of V_T for unit step input (open-loop)
Figure 37. Trajectory of V_T for unit step input (closed-loop)
(a) P vs. Time (p.u.) (b) P_m vs. Time (p.u.)

(c) $\frac{d\delta}{dt}$ vs. Time (rad./sec.) (d) δ vs. Time (rad.)

720 Hz, off-line, micro VAX host computer

Figure 38. Plots for constant voltage test
Figure 39. Trajectory of E_{pd} for unit step input (open-loop)
Figure 40. Trajectory of E_{id} for unit step input (closed-loop)
Chapter VI

Conclusions and Suggestions for Future Research

6.1 Conclusions

A real-time digital simulation of the generator model on Motorola MC68020 was developed in this thesis. This could offer much more flexibility than the TNA, and a much more comprehensive and accurate representation than the existing generator simulation model.

The following conclusions and observations may be written from the implementation of the real-time digital simulation scheme:

1. The trapezoidal integration algorithm, i.e. second order Runge-Kutta numerical method, was used in solving the difference equations of the simulation system. Due to real-time digital simulation in fixed point arithmetic, the solution trajectories and values are slightly different from those of the off-line computer simulation results as explained in Chapter V.
2. A new direct and quadrature axis dynamic model for simulating solid iron rotor generators was implemented on Motorola MC68020 in real-time. Techniques for obtaining the coefficients of the model in terms of a quite detailed model of the machine impedance are presented.

3. The IEEE Type-I excitation system was modeled on Motorola MC68020 in real-time. Reference is made to previous studies which have used this model.

4. Since the machine swing equation and prime mechanical input power are modeled, a variable frequency voltage source was developed. This is a significant improvement over the constant frequency, voltage behind reactance presentation of a synchronous machine.

5. Park’s and inverse Park’s transformation were programmed by means of two functional look-up tables on Motorola MC68020. Due to the extrapolation for three points between two sampling points outputted at the rate of 720 Hz, the three phase voltages are actually outputted at 2880 Hz.

6. Minimum amount of external hardware is used as all the modeling is done in software.

6.2 Suggestions for Further Research

This thesis attempted to show that this real-time digital simulation of generator model is really technically and economically feasible, and considerably comprehensive. As far as we know, this is probably the first time that anyone has implemented such a comprehensive simulation for the generator model in real-time on a microprocessor. However, a lot of improvements may be done to perfect this simulation scheme. Some suggestions can be made as follows:

1. The off-line simulation results are correct, while the real-time work couldn’t confirm the input signals \(i_a\), \(i_b\) and \(i_c\) from signal conditioner. Further test is needed in signal conditioner, A/D conversion and Park’s transformation model.
2. Most likely the error from real-time simulation is due to signal conditioner and excitation subsystem coded by word size (16 bits). The exciter model is particularly important since it forms one of the control inputs to the synchronous machine. An improved excitation model with higher precision (long word size) is required for further detailed real-time simulation.

3. Implement a more complete turbine model, such as the tandem compound or the cross compound double reheat turbine model.

4. Add in the boiler subsystem, since the boiler and turbine are closely coupled and are often considered as a single subsystem.

5. Simulate the exciter by the IEEE Type-III excitation system. In fact, some static systems cannot be represented by Type-I, because the generator terminal current is used with potential as the excitation source.

6. Increase the precision of numerical computations. This can be done with a math coprocessor which has floating point capability and can be operated in a parallel fashion, so that some subsystems may be simulated by fixed point arithmetic, and some by floating point arithmetic, based on the accuracy requirements. Of course, the arithmetic operation times should be considered first.

In summary, the suggestions for enhancing the performance of the simulator are possible and could be explored for further improvements in the computational speed, accuracy and memory requirements, while, from both hardware and software point of view, a thorough and comprehensive technical evaluation should be done to justify the additional effort.

9 In this work, the subroutines which extrapolate the output voltages and the input currents have used the floating point arithmetic.
References

Appendix A

Inductances and Time Constants of Machine

d-Axis

\[T'_{d0} = \frac{L_{ad} + L_{fd}}{r_{fd}} \]

\[T''_{d0} = \frac{L_{1d} + \frac{L_{ad}L_{fd}}{L_{fd} + L_{ad}}}{r_{1d}} \]

\[T'''_{d0} = -\frac{L_{2d} + \frac{1}{L_{ad}} + \frac{1}{L_{fd}} + \frac{1}{L_{2d}}}{r_{2d}} \]
\[L_d = L_i + L_{ad} \]
\[L_d' = L_i + \frac{1}{\frac{1}{L_{ad}} + \frac{1}{L_{fd}}} \]
\[L_d'' = L_i + \frac{1}{\frac{1}{L_{ad}} + \frac{1}{L_{fd}} + \frac{1}{L_{1d}}} \]
\[L_d''' = L_i + \frac{1}{\frac{1}{L_{ad}} + \frac{1}{L_{fd}} + \frac{1}{L_{1d}} + \frac{1}{L_{2d}}} \]

q-Axis

\[T_{q0} = \frac{L_{aq} + L_{1q}}{\gamma_{1q}} \]
\[T_{q0}' = \frac{L_{aq} + L_{1q}L_{2q}}{\gamma_{2q}} \]
\[T_{q0}'' = \frac{L_{aq} + \frac{L_{1q}L_{2q}}{L_{1q} + L_{2q}}}{\gamma_{2q}} \]
\[L_q = L_i + L_{aq} \]
\[L_q' = L_i + \frac{1}{\frac{1}{L_{aq}} + \frac{1}{L_{1q}}} \]
\[L_q'' = L_i + \frac{1}{\frac{1}{L_{aq}} + \frac{1}{L_{1q}} + \frac{1}{L_{2q}}} \]
Appendix B

Program listings
THE MAIN SIMULATION MODULE, WHICH INCLUDES THE EXCITER
SYSTEM, THE SYNCHRONOUS MACHINE SYSTEM, THE GOVERNOR-
TURBINE SYSTEM, THE MECHANICAL SYSTEM, THE PARK'S AND
INVERSE PARK'S TRANSFORMATION MODELS AND THE EXTRAPOLA-
TION SUBROUTINE.

TTL 'GENERATOR MODEL'
LEN 110
EXPTBL EQU $9100
SQRBL EQU $A500
SINTBL EQU $C500
COSTBL EQU $D500
XDEF IDLE,VEXTRA,VABCNEW,VABC,VABCOLD
XDEF PSID1,PSIQ1,PSI,PSIL,FIRST,LAST
XREF VREAL,VIMAG
XREF SIGNALDATA,PHASORFLG,EXTRAPOLATE

ORG $8000

IDLE: CMP.W #1,PHASORFLG
BNE IDLE
MOVE.W #0,PHASORFLG

JSR EXTRAPOLATE

JSR PARK

JSR PARK

EXCITATION SUBSYSTEM

MOVE X2,D0 ;X2 IN D0
MOVE X3,D1 ;X3 IN D1
MULS #$A,D0 ;AKF/TE*X2 IN D0
SUB D1,D0 ;AKF/TE*X2-X3=FB

MOVE.L #$6000,D2 ;VREF=1.04
SUB.L D0,D2 ;VREF-FB IN D2
MOVE VT,D3
CMPI #$40,D3
BGT SETIN
MOVE #$40,D3
SETIN ASL.L #8,D3
SUB.L D3,D2 ;UE=VREF-FB-VT

MOVE.L X1,D3 ;X1 IN D3
MOVE #$FFCE,D4 ;TAA=-50 IN D4
MOVE.L D3, D5
ASR.L #8, D3
ASR.L #1, D3
MULS D4, D3
ASR.L #1, D2
ADD.L D3, D2 ;DXK=A*X+UE IN D2
MOVE #$FEE4, D4 ;A*T IN D4
MULS D2, D4 ;DXK*A*T IN D4
ASR.L #8, D4
ASR.L #4, D4
ASL #1, D2 ;2*dxk in d2
ADD D2, D4 ;2*dxk+a*t*dxk
 ;in d4
MULS #$5B, D4 ;(d4)*t in d4
ASR.L #8, D4
ADD.L D4, D5 ;x1 in d5
 ;EQ.to CALL MEM
MOVE.L D5, X1 ;X1 BE STORED
ASR.L #6, D5
MULS #$4E20, D5 ;X4 = XA/TA*X1
ASR.L #2, D5 ; IN D5
ASR.L #8, D5
MOVE.L D5, D6 ;X4 IN D6
CMPI.L #$74D, D6
BGT LOOP ;X4 > 7.3
CMPI #$F8B3, D6 ;GOTO LOOP
BLT LOOP1 ;X4 < -7.3
BRA LOOP2 ;GOTO LOOP1

* LOOP
MOVE #$74D, D6 ;X4=7.3
BRA LOOP2

* LOOP1
MOVE #$F8B3, D6 ;X4=-7.3
BRA LOOP2

* LOOP2
MOVE D6, D2 ;X4 IN D2
MOVE D6, X4
MOVE X2, D3 ;X2 IN D3
MOVE #$FEC0, D4 ;TEE=-1.25
CLR D5 ; IN D4
JSR MEM1 ;X2 IN D5
MULS #$B1, D5 ;AFTER CALL
SUB.B #$7F, D5
CMPI.B #0, D5
BLE.B EXC
ADD #$100, D5
EXC
ASR.L #8, D5
MULS #1000, D5
SUB.B #$7F, D5
CMPI.B #0, D5
BLE.B EXC1
ADD #$100, D5
EXC1
ASR.L #8, D5 ;D5 IS INTEGER
AND.L #$FFFE, D5 ;D5 IS EVEN
ADD #$9100, D5
MOVEA.L D5,A0
MOVE (A0),D5 ;EXP(Q/TE*X2K)
MULS #$19,D5 ;*P=X5K IN D5
SUB.B #$7F,D5
CMPI.B #0,D5
BLE.B EXC2
ADD #$100,D5
EXC2 ASR.L #$8,D5

* SUB D5,D6 ;X4-X5=US IN D6
MOVE #$FEC0,D4 ;TEE IN D4
MOVE X2,D3 ;X2 IN D3
CLR D5
MOVE D6,D2 ;US IN D2
JSR MEM1 ;CALL MEM1
MOVE D5,X2 ;X2K BE SAVED
MULS #$140,D5 ;EFD=X2K/TE
ASR.L #$8,D5 ;IN D5
MOVE D5,EFD

* MULS #$7,D5 ;UF=EFD*AKF IN
ASR.L #$8,D5 ; D5
MOVE #$ff00,D4;TF IN D4
MOVE X3,D3
MOVE D5,D2 ;UF IN D2
JSR MEM ;CALL MEM

* MOVE D5,X3 ;X3 BE SAVED
**
* GENERATOR D---AXIS SUBSYSTEM *
**
MOVE X61,D0 ;X61 IN D0
MOVE X62,D1 ;X62 IN D1
MOVE #$F7A4,D2;A21 IN D2
MOVE #$F833,D3;A22 IN D3
MOVE EFD,D5 ;EFD IN D5
NEG D5

* JSR MULM1 ;CALL MULM1
MOVE D0,X61 ;X61 BE SAVED
MOVE D1,X62 ;X62 BE SAVED
MULS #$8A,D0 ;.539*X61 IN D0
MULS #$71,D1 ;.443*X62 IN D1
MOVE EFD,D6
MULS #$7,D6 ;.028*EFD IN D6
ASR.L #$4,D6
ADD.L D0,D1
ASR.L #$8,D1
ASR #$2,D1
ADD D1,D6 ;Y1 IN D6
MOVE D6,A0 ;Y1 IN A0

* MOVE X71,D0 ;X71 IN D0
MOVE X72,D1 ;X72 IN D1
MOVE #$F7A4,D2;A21 IN D2
MOVE #$F833, D3 ; A2 IN D3
MOVE A1,D5
MOVEA D5,A1
NEG D5

*
JSR MULM ; CALL MULM
MOVE D0,X71
MOVE D1,X72
MOVE A1,D2 ; ID1 IN D2
MOVEA D2,A3 ; ID1 IN A3
MULS #$BD,D2 ; 0.74*ID1 IN D2
MOVEA A1,D2 ; ID IN A2
SUBA A2,A1 ; ID1-ID IN A1
MOVE A1,D3 ; ID1-ID IN D3
MULS #$1FAD, D3 ; 0.044*(DID/dT) IN D3
MULS #$452, D0 ; 4.32*X71 IN D0
MULS #$6AE, D1 ; 6.68*X72 IN D1
ADDL D0,D1
ASRL #6,D1
ADDL D3,D2
SUBL D1,D2 ; Y2 IN D2
ASRL #4,D2
ADDL A0,D2 ; Y3=Y1+Y2 IN D2

*
MOVE.L X81,D0
MOVE.L X82,D1
MOVE X83,D3
MOVE.L D0,D4 ; MAKE COPY X8
MOVE.L D1,D5
MOVE D3,D6
ASRL #8,D0
ASRL #2,D0
MULS #$C5,D0 ; 0.77*X81 IN D0
ASRL #8,D0
ASRL #6,D1
MULS #$7EE,D1 ; 7.93*X82 IN D1
ASRL #8,D1
MULS #$81F,D3 ; 8.12*X83 IN D3
ASRL #8,D3
ADDL D0,D1
ADDL D1,D3
ASRL #2,D2
SUB D3,D2 ; DXK(3,1) IN D2

*
MOVE D6,D0 ; X83 IN D0
MULS #$5B,D0 ; 0.001389*X83
ASRL #8,D0
ASRL #3,D0 ; T/2*X83 IN D0
ADDL D5,D0 ; (X82+T/2*X83)
ASRL #6,D0
MULS #$5B,D0
ASRL #4,D0
ADDL D4,D0 ; X81 IN D0
MOVE D2, D7 ; COPY DXK(3, 1)
MULS #5B, D2 ; IN D7
ASR L #5, D2
ASR L #8, D2
ASR L #1, D2
ADD D6, D2 ; DXK(2, 1) + T/2
MULS #5B, D2 ; DXK(3, 1) IN D2
ASR L #8, D2
ASR L #5, D2
ADD L D5, D2 ; XK82 IN D2
MULS #1FD, D7 ; 2 * DXK(3, 1)
ASR L #8, D7 ; + T * A33 * DXK(3, 1)
ASR L #6, D5
MULS #46, D5
ASR L #8, D5 ; T * 0.77 * DXK(1, 1)
ASR L #8, D5 ; IN D5

* MOV.E D6, D4 ; COPY X83 IN D4
MULS #2D, D4 ; 7.93 * T * DXK(2, 1)
ASR L #8, D4 ; IN D4
ASR L #4, D4
SUB D5, D7
SUB D4, D7
MULS #5B, D7
ASR L #8, D7
ASR L #8, D7
ADD D6, D7 ; XK83 IN D7
MOVE A3, D1 ; AID1 IN D1
MULS #39, D1 ; 0.225 * AID1
ASR L #2, D1
MOVE L D0, X81
MOVE L D2, X82
MOVE D7, X83
ASR L #8, D0

* ASR L #2, D0
MULS #85C, D0 ; 8.36 * XK81
ASR L #8, D0
ASR L #6, D2
MULS #5CC, D2 ; 7.8 * XK82
ASR L #8, D2
ADD L D0, D2
ADD D7, D2
SUB D1, D2 ; PSID1 IN D2
ASR #6, D2
MOVEA D2, A0 ; PSID1 IN A0
MOVE D2, PSID1 ; SAVE PSID1

* GENERATOR Q--AXIS SUBSYSTEM

* MOVE AIQ1, D2
MOVE X9, D3
MOVE #$F954, D4 ; -6.67 IN D4
MOVE D2,D6 ;COPY IQ1 IN D6
JSR MEM2 ;CALL MEM2
MOVE D5,X9 ;X9 BE STORED
MOVE A1Q,D4
MOVE D6,D7 ;COPY IQ1 IN D7
SUB D4,D6 ;IQ1-IQ
MULS #$2D5B,D6 ;.063*(IQ1-IQ)
ASR.L #8,D6 ;/T
MOVEA D7,A4 ;COPY IQ1 IN A4
MOVEA D4,A5 ;AIQ IN A5
MULS #$428,D7 ;4.16*AIQ1
ASR.L #8,D7

MULS #$14,D5
ASR.L #7,D5
ADD D7,D6 ;Y4 IN D6
SUB D5,D6
MOVE D6,D5
MOVE X101,D0
MOVE X102,D1
MOVE #$FBCF,D2 ;A2(2,1)=-4.19
MOVE #$F717,D3 ;A2(2,2)=-8.91

JSR MULM ;CALL MULM
MOVE D0,X101
MOVE D1,X102
MOVE A4,D2 ;IQ1 IN D2
MULS #$39,D2 ;.225*IQ1
NEG.L D2
MULS #$F8,D1 ;.97*X102
ASR.L #4,D1
MULS #$68A,D0 ;6.54*X101
ASR.L #4,D0
ADD.L D1,D0
ASR.L #2,D0
ADD.L D0,D2 ;PSIQ1 IN D2
ASR.L #8,D2
MOVEA D2,A1 ;PSIQ1 IN A1
MOVE D2,PSIQ1 ;SAVE PSIQ1

JSR $9000 ;CALL SATUR
MOVE DDEL,D3
MULS #$AE,D3
ASR.L #8,D3
ASR.L #8,D3
ADD #$1000000,D3 ;(377+DDEL)
 ;/377 IN D3

MOVE PSID,D6 ;PSID IN D6
MOVE PSIQ,D7 ;PSIQ IN D7
MOVE A3,A1D ;ID1=ID
MOVE A4,1Q ;IQ1=IQ
MOVE D1,PSID ;PSID1=PSID
MOVE D2,PSIQ ;PSIQ1=PSIQ
SUB D1,D6 ;PSID-PSID1 IN D6
SUB D2,D7 ;PSIQ-PSIQ1 IN D7
MULS #1E8E,D6 ;DIVIDED BY
ASR.L #8,D6 ;T*377
ASR.L #4,D6
MULS #1E8E,D7
ASR.L #8,D7
ASR.L #4,D7
MULS D3,D1 ;WK*PSID1 IN D0
ASR.L #4,D1
MULS D3,D2 ;WK*PSIQ1 IN D2
ASR.L #4,D2
MOVEA D3,A6 ;WK IN A6
MOVE A3,D3 ;ID1 IN D3
MOVE A4,D4 ;IQ1 IN D4
MULS #$A,D3 ;Ra*ID1
MULS #$A,D4 ;Ra*IQ1
SUB.L D4,D1 ;WK*PSID1-Ra
ASR.L #8,D1 ;*IQ1 IN D1
ADD.L D3,D2 ;Ra*ID1+WK
ASR.L #8,D2 ;*PSIQ1 IN D2
ADD D1,D7 ;VQK1 IN D7
SUB D2,D6 ;VDK1 IN D6

MOVE D7,D5
MOVE D6,D4
MULS D5,D7 ;VQK1^2
MULS D4,D6 ;VDK1^2
ADD.L D6,D7 ;VQK1^2+VDK1^2
ASR.L #8,D7 ;IN D7

MULS #500,D7
ASR.L #8,D7 ;D7 IS INTEGER
AND.L #$FFE,D7 ;D7 IS EVEN
ADD #$A500,D7
MOVEA.L D7,A2
MOVE (A2),D7 ;VT IN D7
MOVE D7,VT ;SAVE VT

**
** GOVERNOR & TURBINE SUBSYSTEM **
**

MOVE X111,D3
MOVE.L DDEL1,D2

JSR MEM3
ADD X111,D4 ;X111 IN D4
MOVE D4,X111 ;SAVE X111

MOVE X113,D3
MOVE.L DDEL1,D2
SUB.L DDEL,D2
ASR.L #8,D2
ASR.L #2,D2
MULS #$2D0,D2
ASL.L #8,D2

Program listings 127
ASL.L #2,D2
JSR MEM3 ;(DDEL1-DDEL)/T
ADD X113,D4 ;= INPUT
MOVE D4,X113 ;SAVE X113
ADD X111,D4 ;(X111+X113)*K
MULS #$11DB,D4 ;/T1 = Y7
ASR.L #8,D4 ;K=50, T1=2.8
ASR.L #3,D4
MOVE D4,DDEL3
*
SUB #$1150,D4 ;P0 = 1.09
NEG D4 ;P0-Y7 IN D4
MULS #$6AB,D4 ;(P0-Y7)/T3
ASR.L #8,D4
MOVE D4,D6 ;(P0-Y7)/T3
*
ASR.L #4,D4
MOVE D4,D2 ;INPUT IN D2
MOVE X112,D3
MOVE #$F955,D4 ;-1./T3 IN D4
*
JSR MEM1 ;CALL MEM1
MOVE D5,X112 ;SAVE X112
MULS #$6AB,D5 ;X112/T3
ASR.L #4,D5
SUB D6,D5 ;(Po-y7)/t3-
NEG D5 ;x112/T3=y5
ASR.L #4,D5 ; IN D5
*
CMPI #$1A,D5 ;IF Y5 > .1
BGT LUP ;GOTO LUP
*
CMPI #$FFE6,D5 ;IF Y5 < -.1
BLT LDOWN ;GOTO LDOWN
BRA NOR
*
LUP ASR.L #4,D6
SUB #$1A,D6 ;(P0-y7)/t3-.1
MULS #$266,D6 ;(D6)*T3
ASR.L #8,D6
ASR.L #4,D6
MOVE D6,X112 ;SAVE X112
BRA NOR
*
LDOWN ASR.L #4,D6
ADD #$1A,D6 ;(P0-y7)/T3+.1
MULS #$266,D6 ;(D6)*T3
ASR.L #8,D6
ASR.L #4,D6
MOVE D6,X112 ;SAVE X112
*
NOR MOVE X112,D2 ;X112 IN D2
CMPI #$133,D2 ;IF X112 > 1.2
BGT MAX ;GOTO MAX
CMPI #$E6,D2 ;IF X112 < .9
BLT MIN ;GOTO MIN
BRA MID ; .9 < X112 < 1.2
*
MAX MOVE #$133,D2 ;GOTO MID
BRA MID
*
MIN MOVE #$E6,D2 ;SET X112 = .9
*
MID MOVE X12,D3
MOVE #$FD80,D4 ;-1/Tch IN D4
*
JSR MEM ;CALL MEM
MOVE D5,X12 ;SAVE X12
MULS #$280,D5 ;Pmk1=X12/Tch
*
MOVE.L DDEL1,D2
ASR.L #$8,D2
MULS #$AE,D2 ;DDEL1/377.
ASR.L #$8,D2
ASR.L #$8,D2
ADD.L #$10000,D2
ASR.L #$4,D2
DIVS D2,D5 ;Pmk1/Wk1=Tmk1
ASL.L #$4,D5
AND.L #$FFFFFF,D5
MOVE.L D5,TM1 ;SAVE TM1
*

* MECHANICAL SUBSYSTEM *

*
MOVE VT,D2
MULS VT,D2 ;VT^2 IN D2
ASR.L #$8,D2
MULS #$2536,D2 ;VT^2/XDD IN
ASR.L #$8,D2 ;D2
*
MOVE.L DEL,D3
ASR.L #$8,D3
ASR.L #$4,D3
CMPI #$0,D3
BGE PE ;IF DEL < 0
ADDI #$6488,D3 ;DEL + 2*PI
BRA PE1
*
PE CMPI #$6488,D3
BLE PE1 ;IF DEL > 2*PI
SUBI #$6488,D3 ;DEL - 2*PI
*
PE1 CMPI #$1922,D3 ;IF DEL > PI/2
BGT PE2 ;GOTO PE2
JSR SSIN ;SIN(DEL) IN D3
BRA PEC
PE2 CMPI #$3244,D3 ;IF DEL > PI
BGT PE3 ;GOTO PE3
SUBI #3244,D3 ;PI-DEL IN D3
NEG D3
JSR SSIN ;SIN(DEL) IN D3
BRA PEC

* PE3 CMPI #$4B66,D3 ;IF DEL>1.5*PI
 BGT PE4 ;GOTO PE4
 SUBI #$3244,D3 ;DEL-PI IN D3
 JSR SSIN
 NEG D3 ;SIN(DEL) IN D3
 BRA PEC

* PE4 SUBI #$6488,D3
 NEG D3 ;1.5*PI<DEL<2*PI
 JSR SSIN
 NEG D3 ;SIN(DEL) IN D3
 PEC MULS D2,D3 ;Pe IN D3
 ASR.L #4,D3 ;SET Pe = Te (P.U.)
 MOVE.L D3,TE1 ; SAVE Te1

* SUB.L D3,D5 ;Tm-Te IN D5
 ASR.L #1,D5
 MULS #$25B3,D5 ;(D5)*377/AJ (AJ=2H)
 MOVE.L DDEL1,D3
 MOVE.L D3,DDEL ;DDEL1=DDEL

* CMP.L #$150000,TIME
 BGT SWING
 ADD.L #$5B,TIME
 BRA INV

* SWING ASR.L #8,D3
 ASR.L #2,D3
 MULS #$8CF0,D3 ;DDEL*AJJ IN D3
 ASL.L #1,D3 ;(AJJ=-D*377/2H=3.016)
 ADD.L D3,D5 ;DDEL*AJJ+(D5) IN D5
 ASR.L #8,D5
 ASR.L #1,D5

* MOVE #$FF6A,D4 ;AJJ*.001389
 MULS D5,D4 ;*(D5) IN D4
 ASR.L #8,D4
 ASL.L #5,D5 ;2*(D5) IN D5
 ADD.L D5,D4 ;2*(D5)+(D4)
 ASR.L #4,D4
 MULS #$5B,D4
 ASR.L #7,D4 ;(D4)*T/2
 ADD.L DDEL1,D4 ;DDEL1 IN D4
 MOVE.L D4,DDEL1 ;SAVE DDEL1
 ASR.L #8,D4
 ASR.L #1,D4
 MULS #$5B,D4 ;T*DDEL1
 ASR.L #7,D4
 ADD.L DEL,D4 ;TORQUE ANGLE IN D4
MOVE.L D4,DEL ;SAVE THE ANGLE IN DEL

* **
* INVERSE PARK TRANSFORMATION
* **

INV
MOVE.L DDEL1,D6
ASR.L #8,D6
ASR.L #1,D6
MULS #$5B,D6 ;DDEL1*T IN D6
ASR.L #7,D6
ADD.L #$860A91,D6 ;WT*T

MOVE.L DEL,D5
ASL.L #1,D5 ;2*DEL IN D5
MOVE.L FI,D4
ADD.L D5,D4 ;2*DEL + FI
 ; IN D4

MOVE.L #VABCNEW,A2
ADD.L D6,D4 ;2*DEL+FI+WT
MOVE.L D4,D1 ;IN D4 & D1
MOVE.L D4,FI
ASR.L #8,D1
ASR.L #4,D1

CMPI #0,D1
BGE FGE
ADDI #$6488,D1 ;FI+2*PI
BRA FGE1

FGE
CMPI #$6488,D1
BGE FGE1 ;IF FI < 0
BLE FGE1 ;IF FI > 0
SUBI #$6488,D1 ;FI-2*PI
SUB.L #$6487ED5,FI ;SAVE FI

FGE1
CMPI #$1922,D1 ;IF FI > PI
BGT FGE2 ;GOTO FGE2
JSR SSIN1 ;SIN(FI) IN D3
BRA IPARKT ;COS(FI) IN D5

FGE2
CMPI #$3244,D1 ;IF FI > PI
BGT FGE3 ;GOTO FGE3
SUBI #$3244,D1;
NEG D1 ;PI-FI IN D1
JSR SSIN1 ;SIN(FI) IN D3
NEG D5 ;COS(FI) IN D5
BRA IPARKT

FGE3
CMPI #$4B66,D1 ;IF FI>1.5*PI
BGT FGE4 ; FI-PH
SUBI #$3244,D1
JSR SSIN1
NEG D3 ;SIN(FI) IN D3
NEG D5 ;COS(FI) IN D5
BRA IPARKT
FGE4

SUBI #$6488, D1; 1.5*PI<FI<2*PI
NEG D1
JSR SSIN1 ; COS(FI) IN D5
NEG D3 ; SIN(FI) IN D3

* IPARKT

MULS VT, D3 ; Va=VT*SIN(FI)
ASR.L #6, D3
MOVE.W D3, (A2)+ ; SAVE VaNEW
ASR #2, D3

* MULS #$DDB, D5 ; .866*COS(FI)
ASR.L #8, D5
MULS VT, D5 ; .866*VT*COS(FI)
ASR.L #8, D5 ; IN D5
ASR.L #4, D5
ASR #1, D3 ; Va/2 IN D3
ADD D3, D5
NEG D5 ; Vb IN D5
ASL #2, D5
MOVE.W D5, (A2)+ ; SAVE VbNEW

* ASL #1, D3
ASR #2, D5
ADD D3, D5
NEG D5 ; Vc IN D5
ASL #2, D5
MOVE.W D5, (A2)+ ; SAVE VcNEW

* MOVE.L DEL, D6
ASL.L #1, D6
SUB.L D6, FI

* MOVE.L #VABC, A2
MOVE.L #VABCOLD, A3
MOVE (A2)+, (A3)+ ; SEND VABC
MOVE (A2)+, (A3)+ ; TO VABCOLD
MOVE (A2)+, (A4)+ ;

* MOVE.L #VABCNEW, A2
MOVE.L #VABC, A4
MOVE (A2)+, (A4)+ ; SEND VABCNEW
MOVE (A2)+, (A4)+ ; TO VABC
MOVE (A2)+, (A4)+ ;

* BRA IDLE

* ***
* ***
* SUBROUTINE MEM
* ***
* ***

MEM

EQU *
MOVE D3, D5 ; X IN D5
MULS D4, D3 ; A*X IN D3
ASR.L #8, D3
ASR.L #8, D3
ADD D3, D2 ; A*X+U IN D2
MULS D2, D4 ; DXK*A IN D4
ASR.L #8, D4 ; DXK=A*X+U
ASL #1, D2 ; 2*DXK IN D2
MULS #$5B, D4 ; DXK*A*T IN D4
ASR.L #8, D4
ASR.L #8, D4
ADD D2, D4 ; 2*DXK+DXK*A*T
 ; IN D4
MULS #$5B, D4 ; (D4) * T IN
ASR.L #8, D4 ; D4
ASR #1, D4
ADD D4, D5 ; XK IN D5
RTS

**

SUBROUTINE MEM1

MEM1
EQU *
MOVE D3, D5 ; X IN D5
MULS D4, D3 ; A*X IN D3
ASR.L #8, D3
ADD D3, D2 ; A*X+U IN D2
MULS D2, D4 ; DXK*A IN D4
ASR.L #8, D4
ASL #1, D2 ; 2*DXK IN D2
MULS #$5B, D4 ; DXK*A*T IN D4
ASR.L #8, D4
ASR.L #8, D4
ADD D2, D4 ; 2*DXK+DXK*A*T
 ; IN D4
MULS #$5B, D4 ; (D4)*T IN D4
ASR.L #8, D4
ASR.L #1, D4
ASR.L #8, D4
ADD D4, D5 ; XK IN D5
RTS

**

SUBROUTINE MEM2

MEM2
EQU *
MOVE D3, D5 ; X IN D5
MULS D4, D3 ; A*X IN D3
ASR.L #8, D3
ASR.L #7, D3
ADD D3, D2 ; DXK=A*X+U IN D2
MULS D2, D4 ; DXK*A IN D4
ASR.L #8, D4
ASL #1, D2 ; 2*DXK IN D2
MULS #$5B, D4 ; DXK*A*T IN D4
ASR.L #8, D4
ASR.L #8, D4
ADD D2, D4 ; 2*DXK+DXK*A*T
MULS #$5B,D4
ASR.L #8,D4
ASR #2,D4 ;T/2*(D4)
ADD D4,D5 ;XK IN D5
RTS

SUBROUTINE MEM3

MEM3 EQU *
MULS #$FFA5,D3 ;-X111/2.8
ASL.L #1,D3
ADD.L D3,D2 ;DXK=A*X+U
MOVE.L D2,D5 ; IN D2,D5
ASR.L #8,D2
ASR.L #4,D2

MOVE #$FFDF,D4 ;.001389/2.8
MULS D2,D4 ;DXK*A*T IN D4
ASR.L #4,D4
ASL.L #1,D5 ;2*DXK+
ADD.L D5,D4 ;DXK*A*T IN D4
ASR.L #8,D4
ASR.L #2,D4
MULS #$5B,D4 ;T*(D4)
ASR.L #8,D4
ASR.L #8,D4 ;T/2.*(D4)
RTS

SUBROUTINE MULM

MULM EQU *
MOVE D0,D4 ;XK1 IN D4
MOVE D1,D6 ;XK2 IN D6
MULS D2,D4 ;A21*XK1 IN D4
MULS D3,D6 ;A22*XK2 IN D6
ADD.L D4,D6
ASR.L #8,D6
ASR.L #4,D6
SUB D6,D5 ;DXK2 IN D5
NEG D5
MOVE D5,D7 ;DXK2 IN D7
MOVE D1,D6 ;XK2=DXK1 IN D6
ASL #1,D6 ;2*DXK1 IN D6
MULS #$5B,D7 ;T*DXK2 IN D7
ASR.L #8,D7
ASR.L #4,D7
ADD D7,D6 ;2*DXK1+T*DXK2
MULS #$5B,D6 ; IN D6
ASR.L #1,D6 ;(D6)*T/2 IN D6
ASR.L #8,D6
ASR.L #8,D6
ADD D6,D0 ;XK11 IN D0
MULS D7,D3 ;T*DXK2*A22 IN
ASR.L #4,D3 ; D3
ASR.L #8,D3
ASL #1,D5 ;2*DXK2 IN D5
ADD D5,D3
MULS D1,D2
ASR.L #8,D2
MULS #$5B,D2
ASR.L #8,D2 ;T*A21*DXK1 IN
ASR.L #8,D2 ; D2
ASR #4,D2
ADD D2,D3 ;T*DXK2*A22+2*
MULS #$5B,D3 ;DXK2+T*A21*DXK1
ASR.L #8,D3 ;T/2*(...) IN D3
ASR.L #4,D3
ASR #1,D3
ADD D3,D1 ;XK12 IN D1
RTS

*
* **
* SUBROUTINE MULM1
*
MULM1 EQU *
MOVE D0,D4 ;XK1 IN D4
MOVE D1,D6 ;XK2 IN D6
MULS D2,D4 ;A21*DXK1 IN D4
MULS D3,D6 ;A22*DXK2 IN D6
ADD.L D4,D6
ASR.L #8,D6
ASR.L #4,D6
ASL #2,D5
SUB D6,D5 ;DXK2 IN D5
NEG D5
MOVE D5,D7 ;DXK2 IN D7
MOVE D1,D6 ;XK2=DXK1 IN D6
ASL #1,D6 ;2*DXK1 IN D6
MULS #$5B,D7 ;T*DXK2 IN D7
ASR.L #8,D7
ASR.L #4,D7
ADD D7,D6 ;2*DXK1+T*DXK2
MULS #$5B,D6 ; IN D6
ASR.L #1,D6 ;(D6)*T/2 IN D6
ASR.L #8,D6
ASR.L #8,D6
ADD D6,D0 ;XK11 IN D0
MULS D7,D3 ;T*DXK2*A22 IN
ASR.L #4,D3 ; D3
ASR.L #8,D3
ASL #1,D5 ;2*DXK2 IN D5
ADD D5,D3
MULS D1,D2
ASR.L #8,D2
MULS #$5B,D2
ASR.L #8,D2 ;T*A21*DXK1 IN
AS.R.L #8,D2 ; D2
ASR #4, D2
ADD D2, D3 ; T*DXK2*A22+2*
MULS #$5B, D3 ; DXK2+T*A21*DXK1
ASR.L #8, D3 ; T/2*(...) IN D3
ASR.L #4, D3
ASR #1, D3
ADD D3, D1 ; XK12 IN D1
RTS

*
** SUBROUTINE SSIN

* SSIN
EQU *
MULS #2000, D3
ASR.L #8, D3
ASR.L #4, D3 ; D3 IS INTEGER
AND.L #$FFFE, D3 ; D3 IS EVEN
ADD #$C500, D3
MOVEA.L D3, A0
MOVE (A0), D3 ; SIN(DEL) IN D3
RTS

* SUBROUTINE SSIN1

* SSIN1
EQU *
MULS #2000, D1
ASR.L #8, D1
ASR.L #4, D1 ; D1 IS INTEGER
AND.L #$FFFE, D1; D1 IS EVEN
ADD #$C500, D1
MOVEA.L D1, A0
MOVE (A0), D3 ; SIN(FI) IN D3
ADDA #$1000, A0
MOVE (A0), D5 ; COS(FI) IN D5
RTS

* SUBROUTINE PARK

* PARK
EQU *
MOVE.L DDEL1, D0
ASR.L #8, D0
ASR.L #1, D0
MULS #$5B, D0
ASR.L #7, D0
ADD.L #$860A91, D0; (W0+DDEL1)*T
ADD.L SITA, D0 ; PI/2+WT*I IN
MOVE.L D0, SITA ; D0, SAVE SITA
ASR.L #8, D0
ASR.L #4, D0

* CMPI #0, D0
BGE SGE ; IF SITA<0
ADDI #$6488, D0 ; SITA+6.28
BRA SGE1

SGE
CMI $6488,D0 ; IF SITA>6.28
BLE SGE1 ;SAVE SITA
SUBI $6488,D0 ; SITA-6.28
SUB.L #$6487DE5,SITA

SGE1
CMI $1922,D0 ; IF SITA>1.57
BGT SGE2 ; GOTO SGE2
MULS #2000,D0
ASR.L #8,D0
ASR.L #4,D0
AND.L #$FFFE,D0 ; (D0) IS EVEN
ADD #$C500,D0
MOVEA.L D0,A0
MOVE (A0),D3 ; SINA(SITA)
ADDA #$1000,A0 ; IN D3
MOVE (A0),D4 ; COSA(SITA)
BRA PARKT ; IN D4

SGE2
CMI #$3244,D0 ; IF SITA>3.14
BGT SGE3 ; GOTO SGE3
MULS #2000,D7
SUB D0,D7 ; PI-SITA IN D7
ASR.L #8,D7
ASR.L #4,D7
AND.L #$FFFE,D7 ; (D7) IS EVEN
ADD #$C500,D7
MOVEA.L D7,A0
MOVE (A0),D3 ; SINA(SITA)
ADDA #$1000,A0 ; IN D3
MOVE (A0),D4
NEG D4 ; COSA(SITA) IN D4
BRA PARKT

SGE3
CMI #$4B66,D0
BGT SGE4
SUBI #$3244,D0 ; SITA-PI IN D5
MULS #2000,D0
ASR.L #8,D0
ASR.L #4,D0
AND.L #$FFFE,D0 ; (D0) IS EVEN
ADD #$C500,D0
MOVEA.L D0,A0
MOVE (A0),D3 ; SINA(SITA)
ADDA #$1000,A0 ; IN D3
MOVE (A0),D4
NEG D4 ; COSA(SITA)
BRA PARKT ; IN D4

SGE4
MOVE #$6488,D7
SUB D0,D7 ; 2*PI-SITA
MULS #2000,D7 ; IN D7
ASR.L #8, D7
ASR.L #4, D7
AND.L #$FFFF, D7 ;(D7) IS EVEN
ADD #$C500, D7
MOVEA.L D7, A0
MOVE (A0), D3
NEG D3 ;SIN(SITA)
ADDA #$1000, A0 ;IN D3
MOVE (A0), D4 ;COS(SITA)
* PARKT
MOVE D3, D6 ;SIN(SITA) IN
* D3, D6
MOVE D4, D7 ;COS(SITA) IN
MOVE D7, D0 ;D7, D4, D0
ASR #1, D3 ;(D3)/2
ASR #1, D4 ;(D4)/2
MOVE.L #VABC1, A1
LEA SIGNALDATA, A0
MOVE.L (A0)+, (A1)+ ;READ INPUT SAMPLES
MOVE.W (A0)+, (A1)+ ;VA, VB, VC (DIDN'T USE)
MOVE.L (A0)+, IABCNEW ;READ INPUT SAMPLES
MOVE.W (A0)+, IABCNEW+4 ;IA, IB, IC (PHASE CURRENT)
*
JSR EXTRAINPUT
*
MOVE IA, D5 ;COS(SITA)
MULS D5, D0 ;*IA IN D0
ASR.L #8, D5 ;*IA IN D5
* MULS #$DDB, D6 ;SIN(SITA)
ASR.L #8, D6 ;*.866 IN D6
ASR.L #4, D6
MULS #$DDB, D7 ;COS(SITA)
ASR.L #8, D7 ;*.866 IN D7
ASR.L #4, D7
*
MOVE D4, D2
ADD D6, D4 ;COS(SITA)/2
*
MOVE IC, D1 ;.866*SIN(SITA)
MULS D1, D4 ;IC*(D4) IN D4
ASR.L #8, D4
*
SUB D2, D6 ;.866*S-.5*C
MOVE IB, D2
MULS D2, D6 ;IB*(D6) IN D6
ASR.L #8, D6
*
SUB D4, D6
ADD D6, D0
MULS #$AAB, D0 ;ID IN D0
ASR.L #8, D0
ASR.L #8, D0

Program listings
MOVE D3, D6 ; .5*s in d6
ADD D7, D3 ; (S/2+.866*C)
MULS D2, D3 ; *IB IN D3
ASR.L #8, D3
SUB D6, D7 ; (.866*C-S/2)
MULS D1, D7 ; *IC IN D7
ASR.L #8, D7

SUB D3, D7
ADD D7, D5
MULS #$AAB, D5 ; IQ IN D5
ASR.L #8, D5
ASR.L #8, D5

MOVE D0, A1D1 ; SAVE ID
MOVE D5, A1Q1 ; SAVE IQ
RTS

SUBROUTINE EXTRAINPUT

EXTRAINPUT: MOVEM.L D0-D7/A0-A6, SAVEII

MOVE.L #IABCNEW, A0
MOVE.L #IABCOLD, A1

FMOVE.S #-.3472963, FP0
FMOVE.S #1.2855752, FP1
MOVE.L #IA, A2

MOVE.W #2, D0
FMOVE.W (A0)+, FP2
FMOVE.W (A1)+, FP3
FMUL.X FP0, FP3
FMUL.X FP1, FP2
FADD.X FP2, FP3
FMOVE.W FP3, (A2)+
DBRA D0, CAL

MOVE.W IB, D0
MOVE.W IC, IB
MOVE.W D0, IC
MOVE.L #IABCNEW, A0
MOVE.L #IABCOLD, A1
MOVE.L (A0)+, (A1)+
MOVE.W (A0)+, (A1)+
MOVEM.L SAVEII, D0-D7/A0-A6

RTS

DEL DC.L $71CA47
TIME DC.L $5B
SITA DC.L $1921FB5
FI DC.L $1921FB5

* FIRST DS.L 1
EPD DS.W 1
VT DS.W 1
AID1 DS.W 1
AID DS.W 1
AIQ1 DS.W 1
AIQ DS.W 1
IA DS.W 1
IB DS.W 1
IC DS.W 1
PSID1 DS.W 1
PSID DS.W 1
PSIQ1 DS.W 1
PSIQ DS.W 1
PSI DS.W 1
PSIL DS.W 1
TE1 DS.L 1
TM1 DS.L 1
DDEL DS.L 1
DDELI DS.L 1
DDELI3 DS.W 1

* X1 DS.L 1
X2 DS.W 1
X3 DS.W 1
X4 DS.W 1
X61 DS.W 1
X62 DS.W 1
X71 DS.W 1
X72 DS.W 1
X81 DS.L 1
X82 DS.L 1
X93 DS.W 1
X9 DS.W 1
X101 DS.W 1
X102 DS.W 1
X111 DS.W 1
X112 DS.W 1
X113 DS.L 1
X12 DS.W 1

* VABCNEW DS.W 3 ;VA, VB, VC STORAGE SPACE
VABC DS.W 3 ;
VABCOLD DS.W 3 ;
VEXTRA DS.W 9 ;STORAGE FOR Vextra
VABC1 DS.W 3
IABCOLD DS.W 3 ;OLD IA, IB, IC STORAGE SPACE
IABCNEW DS.W 3 ;REAL IA, IB, IC STORAGE SPACE
SAVEII DS.L 20
LAST DS.L 1

* END
* THIS SUBROUTINE IS USED TO CALCULATE THE SYNCHRONOUS MACHINE'S SATURATION FUNCTION. *

* XREF PSID1,PSIQ1,PSI,PSIL
*
ORG $9000
MOVE PSID1,D1
MULS PSID1,D1 ;PSID*PSID
MULS PSIQ1,D2 ;PSIQ*PSIQ
ADD.L D2,D1 ;PSIL*PSIL
ASR.L #8,D1 ;IN D1
*
CMP #$1000,D1
BLE LIMI
MOVE #$1000,D1
*
LIMI
MULS #500,D1
ASR.L #8,D1 ;(D1)=INTEGER
AND.L #$FFE,D1 ;(D1)=EVEN NO
ADD #$A300,D1
MOVEA.L D1,A2
MOVE (A2),D1 ;PSIL IN D1
MOVE D1,D5 ;PSIL IN D5
MOVE D1,PSIL
*
CMPI #$3B,D1 ;IF PSIL>.7
BGT SATU ;GOTO SATU
*
MOVE D1,PSI
MOVE PSID1,D1
MOVE PSIQ1,D2
BRA SATU1
*
SATU
MOVE PSI,D3 ;(D3)=PSI
MOVE D3,D4 ;(D4)=PSI
SUB #$33B,D3 ;(D3)=PSI-.7
MULS #$7FF,D3 ;(D3)=(D3)*BG
ASR.L #8,D3 ;(BG=7.995)
MULS #1000,D3
ASR.L #8,D3 ;(D3)=INTEGER
AND.L #$FFE,D3 ;(D3)=EVEN NO
ADD #$9100,D3
MOVEA.L D3,A2
MOVE (A2),D3 ;EXP((BG*(PSI-.7))
MULS #$9,D3 ;SG=AG*EXP(..) IN D3
ASR.L #4,D3 ;(AG=0.035)
MULS PSI,D3 ;PSI*SG IN D3
ASR.L #8,D3
ASR.L #4,D3
SUB D3,D1 ;PSIL-PSI*SG IN D1
* CMP D4,D1 ;PSI<PSI1
* BLT SATU2
* BRA SATU3
SATU2 MOVE D4,D1
SATU3 MOVE D1,PSI ;SAVE PSI
* MOVE D1,D2
MULS PSID1,D1 ;PSID1*PSI
DIVS D5,D1 ;PSID1*PSI/PSIL
* MULS PSIQ1,D2 ;PSIQ1*PSI
DIVS D5,D2 ;PSIQ1*PSI/PSIL
* MOVE D1,PSID1 ;SAVE PSID1
MOVE D2,PSIQ1 ;SAVE PSIQ1
SATU1 RTS
USER INTERFACE INITIALIZE SYSTEM

TIMER HANDLING AND INTERRUPT ROUTINE

A/C CONVERSION AND COLLECTION OF RAW DATA

**

XDEF VREAL, VIMAG, PHASORFLG, sdata1
XDEF SIGNALDATA, EXTRAPOLATE
XREF IDLE, VEXTRA, VABNEW, VABC, VABCOLD
XREF FIRST, LAST

TTL 'ERROR MODEL GENERATOR'

ADDRESS SPACE OF MULTIFUNCTION PERIPHERAL 68901

GPIP EQU $FF80000
AER EQU $FF80002
DDR EQU $FF80004
IEPA EQU $FF80006
IERB EQU $FF80008
IPRA EQU $FF8000A
IPRB EQU $FF8000C
ISRA EQU $FF8000E
ISRB EQU $FF80010
IMRA EQU $FF80012
IMRB EQU $FF80014
VR EQU $FF80016
TACR EQU $FF80018
TBCR EQU $FF8001A
TCDCR EQU $FF8001C
TADR EQU $FF8001E
TBDR EQU $FF80020
TCDR EQU $FF80022
TDDR EQU $FF80024
SCR EQU $FF80026
UCR EQU $FF80028
RSR EQU $FF8002A
TSR EQU $FF8002C
UDR EQU $FF8002E

ADDRESS SPACE OF A/D BOARD DT 1401 BOARD 1

BASE EQU $FFFFFF00
CSR EQU BASE
ADCHAN EQU BASE+2
PCLK EQU BASE+4
ADDATA EQU BASE+6
DAC0 EQU BASE+8
DAC1 EQU BASE+10
DIOREG EQU BASE+12

ADDRESS SPACE OF A/D BOARD DT 1401 BOARD 2

Program listings 143
BASE2 EQU $FFFFFFE00
CSR2 EQU BASE2
ADCHAN2 EQU BASE2+2
PACLK2 EQU BASE2+4
ADDATA2 EQU BASE2+6
DAC02 EQU BASE2+8
DAC12 EQU BASE2+10
DIGREG2 EQU BASE2+12
CORLEN EQU 8

* MAIN PROGRAM *

ORG $5000
MOVE.L #$5000,A7

MOVE.L #$TIMER,(03F4) ;Define address of the
* ;interrupt routine

MOVE.L #DUMMY1,A0
MOVE.L #DUMMY2,A1
INI: MOVE.L #0,(A0)+
CMPA.L A0,A1
BGE INI

MOVE.L #FIRST,A0
MOVE.L #LAST,A1
INI1: MOVE.L #0,(A0)+
CMPA.L A0,A1
BGE INI1

FMOVE.S #0.2610523,FP6 ;Initialization for
FMOVE.S #1.2175229,FP7 ;EXTRAPOLATE

MOVE.L #0,OFFSET_FLG
MOVE.W #0,LEDCOUNT
MOVE.L #MASTAB,A3 ;MOVE VALUE OF TABLE BEGINNING
MOVE.L A3,SAVADR ;SAVE FOR NEXT STEP

MOVE.W #$1000,CSR ;Initialising the AD board
MOVE.W #$0300,CSR ;Set the DIOREG as 16 bit

ANDI #$00CF,DDR
ORI #$00B0,AER
ANDI #$00CF,GPIP
ORI #$0030,DDR
MOVE.W #$2400,SR

MOVE.W #$00F0,VR ;Set the vector intterrupt address
MOVE.W #$0010,TACR ;STARTING TIMER #A
MOVE.W #$0059,TADR
MOVE.W #$0001,TACR
MOVE.B #$20,IERA+1
MOV.E.B #$20,IMRA+1
*
BRA IDLE
*

* A/D CONVERSION AND COLLECTION OF RAW DATA *

AD:

MOVEM.L D0-D7/A0-A6,SAVE ;SAVING THE REGISTERS
MOV.E.L #0,D1
MOV.E.L #SDATA1,A1 ;SET PointERS TO TEMporARY
MOV.E.B #0,ADCHAN+1
MOV.E.B #6,ADCHAN
MOV.E.W #6,D4
*
MOV.E.W #$1000,CSR ;Initialize AD board
MOV.E.W #$0300,CSR
*
START:
CMP.W #0,D4
BEQ DONAD
MOV.E.W #$0700,CSR
*
CK_TO:
MOV.E.W CSR,D0
ANDI.W #$0002,D0
BNE CK_TO
*
MOV.E.W #$0305,CSR

CK_DN:
MOV.E.W CSR,D0
ANDI.W #$0080,D0
BEQ CK_DN
*
MOV.E.B ADCHAN+1,D0
MOV.E.B ADCHAN,D1
CMP.B D0,D1
BNE READ1
*
MOV.E.W CSR,D0
*
ANDI.W #$0020,D0
BEQ READ2
*
*
JMP DONAD
*
READ1:
MOV.E.W ADDATA,(A1)+ ;Moving data in the
SUB.W #1,D4 ;temperory buffer
JMP START ;before it can be processed
*READ2:
MOV.E.W ADDATA,(A1) ;Last channel read
*
DONAD:
MOV.E.L #SDATA1,A1 ;SET PointERS TO TEMporARY &
MOV.E.L #SDATA,A2 ;FINAL DESTINATION ARRAYS
move.l $signaldata,a3
*
MOVE.W #5, D4 ; COUNTER FOR 6 PHASES
MOVE.W (A1)+,(A2) ; SCALING LOOP WHICH MOVES DATA
MOVE.W (A2)+,D0 ; FROM ARRAY SDATA1 INTO SDATA
MOVE.W D0,D1 ; & CALCULATES FACTORS
MOVE.W D1,D2 ; 1/2*CONV(i) & SQRT(3)/2*CONV(i)
movw d2,d3
asl.w #2,d3
asr.w #1,d1
sub.w d1,d3
asr.w #2,d1
SUB.W D1,D0
asr.w #1,d1
add.w d1,d3
asr.w #1,d1
sub.w d1,d3
asr.w #2,d1
SUB.W D1,D0
asr.w #1,d1
add.w d1,d3
asr.w #2,d1
SUB.W D1,D0
ASR.W #1,D2
MOVE.W D0,(A2)+
MOVE.W D2,(A2)+
movw d3,(A3)+
DBRA D4,XY ; END OF SCALING LOOP
MOVM.L SAVE,D0-D7/A0-A6 ; RESTORING THE REGISTERS
RTS

*** *

* PHASOR CALCULATION ROUTINE *

* PHASOR: MOVEM.L D0-D7/A0-A6,SAVE ; SAVING REGISTERS
MOV.W #1,VIFLG ; INITIALIZE COUNT
MOVEA.L SAVADR,A3 ; RETRIEVE MASTER ADDRESS
ADD #6,A3 ; UPDATE THE MASTER ADDRESS
CMPA #MASTEN,A3 ; RESET, IF NEEDED
BNE SKIP ;
MOV.L #MASTAB,A3 ; MOVE VALUE OF TABLE BEGINNING
MOVE.L A3,SAVADR ; SAVE FOR NEXT STEP
MOVE (A3)+,A1 ; GET SUBROUTINE ADDRESS
MOVE.L (A3),A2 ; GET CORRECTION ADDRESS
MOVEA.L SDATA,A3 ; GET INPUT DATA ADDRESS
MOVEM (A3)+,D0-D2 ; MOVE THE DATA FROM THE
MOVE (A3)+,D6 ; INPUT BUFFER INTO THE
MOVE (A3)+,A0 ; REGISTERS FOR USE HERE
MOVE (A3)+,D7 ;
MOVE (A3),D3-D5 ;
MOVEA.L #PHTABL,A4 ; GET OLD PHASOR ADDRESS
JMP (A1) ; JUMP TO SUBROUTINE
STARTI: ADD.W #1,VIFLG ; CHECK VOLTAGE/CURRENT FLAG
MOVEM (A3)+,D0-D2 ; MOVE THE DATA FROM THE
MOVE (A3)+,D6 ; INPUT BUFFER INTO THE
MOVE (A3)+, A0 ; REGISTERS FOR USE HERE
MOVE (A3)+, D7 ;
MOVEM (A3)+, D3-D5 ;
JMP (A1) ; JUMP TO SUBROUTINE
*
* 12 SUBROUTINES TO HANDLE EACH VALUE OF K START HERE
*
DATA ORGANIZATION

D0 ------ Va
D1 ------ Va'
D2 ------ Va''
D3 ------ Vc
D4 ------ Vc'
D5 ------ Vc''
D6 ------ Vb
D7 ------ Vb'
A0 ------ Vb''

Va' = Va * 0.866
Va'' = Va * 0.500

K0: SUB A0, D1 ; SUBROUTINE FOR K = 0
 MOVE D1, D0 ;
 SUB (A2), D1 ;
 ADD D1, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT
 MOVE D0, (A2)+ ; SAVE REAL VALUE CORRECTION
 ADD D7, D2 ;
 SUB D2, D3 ;
 MOVE D3, D0 ;
 SUB (A2), D3 ;
 SUB D3, (A4)+ ; MOVE PHASOR-IMAG TO OUTPUT
 MOVE D0, (A2)+ ; SAVE IMAG VALUE CORRECTION
 BRA CHECKVI ;
K1: ADD D7, D5 ; SUBROUTINE FOR K = 1
 SUB D5, D0 ;
 MOVE D0, D1 ;
 SUB (A2), D0 ;
 ADD D0, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT
 MOVE D1, (A2)+ ; SAVE REAL VALUE CORRECTION
 SUB A0, D4 ;
 MOVE D4, D1 ;
 SUB (A2), D4 ;
 SUB D4, (A4)+ ; MOVE PHASOR-IMAG TO OUTPUT
 MOVE D1, (A2)+ ; SAVE IMAG VALUE CORRECTION
 BRA CHECKVI ;
K2: SUB D4, D1 ; SUBROUTINE FOR K = 2
 MOVE D1, D0 ;
 SUB (A2), D1 ;
 ADD D1, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT
 MOVE D0, (A2)+ ; SAVE REAL VALUE CORRECTION
 ADD D2, D5 ;
 SUB D6, D5 ;
 MOVE D5, D0 ;
 SUB (A2), D5 ;
 SUB D5, (A4)+ ; MOVE PHASOR-IMAG TO OUTPUT
 MOVE D0, (A2)+ ; SAVE IMAG VALUE CORRECTION
 BRA CHECKVI ;
K3: ADD D7, D2 ; SUBROUTINE FOR K = 3
SUB D3, D2
MOVE D2, D0
SUB (A2), D2
ADD D2, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT
MOVE D0, (A2)+ ; SAVE REAL VALUE CORRECTION
SUB A0, D1
MOVE D1, D0
SUB (A2), D1
SUB D1, (A4)+ ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D0, (A2)+ ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI

K4: SUB D4, A0 ; SUBROUTINE FOR K = 4
MOVE A0, D3
SUB (A2), A0
MOVE A0, D1
ADD D1, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT
MOVE D3, (A2)+ ; SAVE REAL VALUE CORRECTION
ADD D7, D5
SUB D5, D0
MOVE D0, D3
SUB (A2), D0
SUB D0, (A4)+ ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D3, (A2)+ ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI

K5: ADD D5, D2 ; SUBROUTINE FOR K = 5
SUB D2, D6
MOVE D6, D0
SUB (A2), D6
ADD D6, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT
MOVE D0, (A2)+ ; SAVE REAL VALUE CORRECTION
SUB D4, D1
MOVE D1, D0
SUB (A2), D1
SUB D1, (A4)+ ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D0, (A2)+ ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI

K6: SUB D1, A0 ; SUBROUTINE FOR K = 6
MOVE A0, D0
SUB (A2), A0
MOVE A0, D4
ADD D4, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT
MOVE D0, (A2)+ ; SAVE REAL VALUE CORRECTION
ADD D7, D2
SUB D3, D2
MOVE D2, D0
SUB (A2), D2
SUB D2, (A4)+ ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D0, (A2)+ ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI

K7: ADD D7, D5 ; SUBROUTINE FOR K = 7
SUB D0, D5
MOVE D5, D3
SUB (A2), D5
ADD D5, (A4)+ ; MOVE PHASOR-REAL TO OUTPUT

Program listings 148
MOVE D3, (A2) + ; SAVE REAL VALUE CORRECTION
SUB D4, A0 ;
MOVE A0, D3 ;
SUB (A2), A0 ;
MOVE A0, D6 ;
SUB D6, (A4) + ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D3, (A2) + ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI ;

K8: SUB D1, D4 ; SUBROUTINE FOR K = 8
MOVE D4, D0 ;
SUB (A2), D4 ;
ADD D4, (A4) + ; MOVE PHASOR-REAL TO OUTPUT
MOVE D0, (A2) + ; SAVE REAL VALUE CORRECTION
ADD D5, D2 ;
SUB D2, D6 ;
MOVE D6, D0 ;
SUB (A2), D6 ;
SUB D6, (A4) + ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D0, (A2) + ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI ;

K9: ADD D7, D2 ; SUBROUTINE FOR K = 9
SUB D2, D3 ;
MOVE D3, D0 ;
SUB (A2), D3 ;
ADD D3, (A4) + ; MOVE PHASOR-REAL TO OUTPUT
MOVE D0, (A2) + ; SAVE REAL VALUE CORRECTION
SUB D1, A0 ;
MOVE A0, D0 ;
SUB (A2), A0 ;
MOVE A0, D6 ;
SUB D6, (A4) + ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D0, (A2) + ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI ;

K10: SUB A0, D4 ; SUBROUTINE FOR K = 10
MOVE D4, D3 ;
SUB (A2), D4 ;
ADD D4, (A4) + ; MOVE PHASOR-REAL TO OUTPUT
MOVE D3, (A2) + ; SAVE REAL VALUE CORRECTION
ADD D7, D5 ;
SUB D0, D5 ;
MOVE D5, D3 ;
SUB (A2), D5 ;
SUB D5, (A4) + ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D3, (A2) + ; SAVE IMAG VALUE CORRECTION
BRA CHECKVI ;

K11: ADD D5, D2 ; SUBROUTINE FOR K = 11
SUB D2, D0 ;
MOVE D6, D2 ;
SUB (A2), D2 ;
ADD D2, (A4) + ; MOVE PHASOR-REAL TO OUTPUT
MOVE D0, (A2) + ; SAVE REAL VALUE CORRECTION
SUB D1, D4 ;
MOVE D4, D0 ;
SUB (A2), D4 ;
SUB D4, (A4) + ; MOVE PHASOR-IMAG TO OUTPUT
MOVE D0,(A2)+ ;SAVE IMAG VALUE CORRECTION
CHECKVI CMP.L #1,VIPLG ;CHECK FOR END
BNE STARTI ;THE RESULTS PROCESSING
MOVE.L #PHIABL,A4
FMOVE.S #81.458701,FP1
FMOVE.W (A4)+,FP0
FDIV FP1,FP0
FMOVE.W FP0,VREAL
FMOVE.W (A4)+,FP0
FDIV FP1,FP0
FMOVE.W FP0,VIMAG
MOVEM.L SAVE,D0-D7/A0-A6 ;RESTORE THE REGISTERS FOR RTS ;RETURN TO CALLING PROGRAM

**
** * * * TIMER HANDLING ROUTINE * * * *
** GENERATES 2880 HZ, *
** CALLS 'AD' & 'PHASOR' AT 720 HZ *
**
**
**
TIMER: MOVEM.L SAVE2,D0/A0 ;SAVE THE REGISTERS
MOVE.W #$0010,TACR
MOVE.W #0,D0
DELAY: DBRA D0,DELAY
NOP
NOP
MOVE.W #$0001,TACR ;The three intermediate values
CMP.L #18,OFFSET_FLG;for voltages are extrapolated
BNE SKIP_P ;and outputed at 2880 Hz
AND.W #$FF00,DIOREG ;Set hold mode
MOVE.L #VABCNEW,A0
MOVE.W (A0)+,DAC02 ;Output VA,VB,VC
MOVE.W (A0)+,DAC0
MOVE.W (A0)+,DAC1
BSR AD ;Perform A/D conversion
OR.W #$000F,DIOREG ;Set sample mode
BSR PHASOR ;Calculate voltage phasor
MOVE.W #1,PHASORFLG
MOVE.L #0,OFFSET_FLG ;OFFSET_FLG vary from 0 to 18
ADD.W #1,LEDCOUNT ;in steps of 6
CMP.W #720,LEDCOUNT
BEQ RUNLIGHT
MOVEM.L SAVE2,D0/A0 ;RESTORE THE REGISTERS
RTE

SKIP_P:
MOVE.L #$VEXTRA,A0 ;Calculate the address for
MOVE.L A0,D0 ;the extrapolated
ADD.L OFFSET_FLG,D0 ;values of the voltages
MOVE.L D0,A0
MOVE.W (A0)+,DAC02 ;Output VA,VB,VC
MOVE.W (A0)+,DAC0
MOVE.W (A0)+,DAC1
ADD.L #$6,OFFSET_FLG ;Update the offset
MOVEM.L SAVE2,D0/A0 ;RESTORE THE REGISTERS

Program listings
RTE

RUNLIGHT:
MOVE.W DIOREG,D0
BCHG #4,D0
MOVE.W D0,DIOREG
MOVE.W #0,LEDCOUNT
MOVEM.L SAVE2,D0/A0 ;RESTORE THE REGISTERS
RTE

MASTER TABLE STARTS HERE

MASTAB: DC KO ; SUBROUTINE KO ADDRESS
DC.L CORTAB+(0*CORLEN) ;CORRECTION TERMS ADDRESS
DC K1 ;
DC.L CORTAB+(1*CORLEN);
DC K2 ;
DC.L CORTAB+(2*CORLEN);
DC K3 ;
DC.L CORTAB+(3*CORLEN);
DC K4 ;
DC.L CORTAB+(4*CORLEN);
DC K5 ;
DC.L CORTAB+(5*CORLEN);
DC K6 ;
DC.L CORTAB+(6*CORLEN);
DC K7 ;
DC.L CORTAB+(7*CORLEN);
DC K8 ;
DC.L CORTAB+(8*CORLEN);
DC K9 ;
DC.L CORTAB+(9*CORLEN);
DC K10 ;
DC.L CORTAB+(10*CORLEN);
MASTEN: DC KO1 ;
DC.L CORTAB+(11*CORLEN);

* The subroutine extrapolates three points in a 60 Hz *
* sine wave. The input is two points measured at rate *
* of 720 Hz and output is three points calculated at *
* 2880 Hz. *

EXTRAPOLATE MOVEM.L D0-D7/A0-A6,SAVEI
* ;SAVING THE REGISTERS
*

MOVE.L #VEXTRA,A4
BSR CAL
*

FMOVE.S #-0.517638,FP6
FMOVE.S #1.4142136,FP7
BSR CAL
*

FMOVE.S #-0.7653668,FP6
FMOVE.S #1.5867067,FP7

Program listings 151
BSR CAL

* FMOVE.S #-0.2610523,FP6
 FMOVE.S #1.2175229,FP7

* MOVEM.L SAVEI,D0-D7/A0-A6
 RTS

* CAL:
 MOVE.L #VABCOLD,A3
 MOVE.L #VABC,A2

* FMOVE.W (A2)+,FP0
 FMOVE.W (A2)+,FP1
 FMOVE.W (A2)+,FP2
 FMOVE.W (A3)+,FP3
 FMOVE.W (A3)+,FP4
 FMOVE.W (A3)+,FP5

* FMUL.X FP6,FP3
 FMUL.X FP6,FP4
 FMUL.X FP6,FP5
 FMUL.X FP7,FP0
 FMUL.X FP7,FP1
 FMUL.X FP7,FP2
 FADD.X FP3,FP0
 FADD.X FP4,FP1
 FADD.X FP5,FP2

* FMOVE.W FP0,(A4)+
 FMOVE.W FP1,(A4)+
 FMOVE.W FP2,(A4)+

* RTS

DUMMY1 DS.L 1
OFFSET_FLG DS.L 1
LEDCOUNT DS.W 1
SDATA1 DS.W 6
SDATA DS.W 19
SIGNALDATA DS.W 6
SAVE DS.L 20
SAVEI DS.L 20
SAVE2 DS.L 20
SAVADR DS.L 1
VIFLG DS.W 1
VREAL DS.W 1
VIMAG DS.W 1
PHASORFLG DS.W 1
PHTABL DS.W 4
CORTAB DS.L 24
DUMMY2 DS.L 1
TABEL EQU $F000
END
TTL 'EXPOENTIAL FUNCTION LOOK-UP TABLE'

*
ORG $9100
DC.W $100
DC.W $0101, $0101, $0102, $0102, $0103
DC.W $0103, $0104, $0104, $0105, $0105
DC.W $0106, $0106, $0107, $0107, $0108
DC.W $0108, $0109, $0109, $010A, $010A
DC.W $010B, $010C, $010C, $010D, $010D
DC.W $010E, $010E, $010F, $010F, $0110
DC.W $0110, $0111, $0111, $0112, $0113
DC.W $0113, $0114, $0114, $0115, $0115
DC.W $0116, $0116, $0117, $0118, $0118
DC.W $0119, $0119, $011A, $011A, $011B
DC.W $011B, $011C, $011D, $011D, $011E
DC.W $011E, $011F, $011F, $0120, $0121
DC.W $0121, $0122, $0122, $0123, $0124
DC.W $0124, $0125, $0125, $0126, $0126

: : : :

: : : :

: : : :

DC.W $8148, $818B, $81CD, $8210, $8252
DC.W $8295, $82D8, $831B, $835E, $83A1
DC.W $83E5, $8429, $846C, $84BC, $84F4
DC.W $8538, $857D, $85C1, $8606, $864A
DC.W $868F, $86D4, $8719, $875E, $87A4
DC.W $87E9, $882F, $8875, $88BB, $8901
DC.W $8947, $898D, $89D4, $8A1A, $8A61
DC.W $8AA8, $8AEF, $8B36, $8B7E, $8BC5
DC.W $8C0D, $8C55, $8CD9, $8CE5, $8D2D
DC.W $8D75, $8DBE, $8E06, $8E4F, $8E98
DC.W $8EE1, $8F2A, $8F74, $8FB0, $9007
DC.W $9051, $909B, $90E5, $912F, $9179
DC.W $91C4, $920F, $925A, $92A5, $92F0
DC.W $933B, $9387, $93D2, $941F, $946A

END
* TTL

'\text{SQUARE ROOT FUNCTION LOOK-UP TABLE}'

\text{TTL}\quad \text{ORG}\quad $A500

\text{SQRBL}\quad \text{DC.W}\quad 0

\text{DC.W}\quad \text{$10,$17,$1C,$20,$24,$28,$2B,$2E,$31,$33}

\text{DC.W}\quad \text{$36,$38,$3A,$3D,$3F,$41,$43,$45,$47,$48}

\text{DC.W}\quad \text{$4A,$4C,$4E,$50,$52,$54,$56,$57,$59}

\text{DC.W}\quad \text{$5A,$5C,$5D,$5E,$60,$61,$62,$64,$65,$66}

\text{DC.W}\quad \text{$68,$69,$6A,$6B,$6D,$6E,$6F,$70,$71,$72}

\text{DC.W}\quad \text{$74,$75,$76,$77,$78,$79,$7A,$7B,$7C,$7D}

\text{DC.W}\quad \text{$7E,$7F,$80,$82,$83,$84,$85,$86,$87,$88,$89,$8A,$8B,$8C,$8D,$8E,$8F,$90,$91,$92,$93,$94,$95,$96,$97,$98,$99,$9A,$9B,$9C,$9D,$9E,$9F,$A0,$A1,$A2,$A3,$A4,$A5,$A6,$A7,$A8,$A9,$AA,$AB,$AC,$AD,$AE,$AF,$B0,$B1,$B2,$B3,$B4,$B5,$B6,$B7,$B8,$B9,$BA,$BB,$BC,$BD,$BE,$BF,$C0}

<table>
<thead>
<tr>
<th>TTL</th>
<th>'SINE FUNCTION LOOK-UP TABLE'</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORG</td>
<td>$c500</td>
</tr>
<tr>
<td>SINTBL</td>
<td></td>
</tr>
<tr>
<td>DC.W</td>
<td>$0</td>
</tr>
<tr>
<td>DC.W</td>
<td>$00, $01, $01, $01, $01, $02, $02, $02, $03</td>
</tr>
<tr>
<td>DC.W</td>
<td>$03, $03, $03, $04, $04, $04, $04, $05, $05</td>
</tr>
<tr>
<td>DC.W</td>
<td>$05, $06, $06, $06, $06, $07, $07, $07, $08</td>
</tr>
<tr>
<td>DC.W</td>
<td>$08, $08, $08, $09, $09, $09, $09, $0A, $0A</td>
</tr>
<tr>
<td>DC.W</td>
<td>$0A, $0B, $0B, $0B, $0C, $0C, $0C, $0D, $0D</td>
</tr>
<tr>
<td>DC.W</td>
<td>$0D, $0E, $0E, $0E, $0E, $0F, $0F, $0F</td>
</tr>
<tr>
<td>DC.W</td>
<td>$10, $10, $10, $10, $11, $11, $11, $12, $12</td>
</tr>
<tr>
<td>DC.W</td>
<td>$12, $12, $13, $13, $13, $14, $14, $14</td>
</tr>
<tr>
<td>DC.W</td>
<td>$15, $15, $15, $15, $16, $16, $16, $16</td>
</tr>
<tr>
<td>DC.W</td>
<td>$17, $18, $18, $18, $19, $19, $19, $19</td>
</tr>
<tr>
<td>DC.W</td>
<td>$1A, $1A, $1A, $1B, $1B, $1B, $1C, $1C, $1C</td>
</tr>
<tr>
<td>DC.W</td>
<td>$1C, $1D, $1D, $1D, $1E, $1E, $1E, $1F</td>
</tr>
<tr>
<td>DC.W</td>
<td>$1F, $1F, $1F, $20, $20, $20, $20, $21, $21</td>
</tr>
<tr>
<td>DC.W</td>
<td>$21, $22, $22, $22, $23, $23, $23, $24</td>
</tr>
</tbody>
</table>

DC.W	$FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
DC.W	$FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
DC.W	$FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100, $100
DC.W	$100, $100, $100, $100

END
* THIS FORTRAN PROGRAM IS USED TO SIMULATE THE GENERATOR MODEL (OFF-LINE).
* TRAPEZOIDAL INTEGRATION ALGORITHM (I.E. ORDER 2 RUNGE-KUTTA OR MODIFIED EULER NUMERICAL METHOD) IS USED IN SOLVING THE DIFFERENCE EQUATIONS OF THE SIMULATION SYSTEM.

**

DIMENSION X6(2,1),X6K(2,1),X7K(2,1),X7K1(2,1),X8K(3,1),
X8K1(3,1),X10K(2,1),X10K1(2,1),X11K(2,1),X11K1(2,1),
DXX(2,1),DXXK(3,1),ADXX1(2,1),ADXXK(3,1),
B1(2,1),B2(2,1),B3(3,1),A1(2,2),A2(2,2),A3(3,3)

T = .0001389
PI = 3.1415926
P = .0983
Q = .553
VRMAX = 7.3
VRMIN = -7.3
SEM = .86
SEQ = .5
WO = 377.0
DELTA = 0.4445
PO = 1.09
RA = .005
XOD = .43
XLL = 0
TA = .02
TAA = -1./TA
TE = .8
TEE = -1./TE
TF = 1.0
TFF = -1./TF
KA = 400.0
KE = 1.0
AKF = .03
K = 1.0
AJ = 10.0
D = .08
AJJ = -377*D/KJ
T1 = 2.8
T11 = -1./T1
T1 = .15
T33 = -1./T3
TCH = .3
TCHM = -1./TCH
A14 = -6.67
DATA B1,B3,B2/0,1,0,0,1,0,1/
DATA A1,A3,A2/0,-8.36,1,-7.8,0,0,-.77,1,0,-7.93,3,1,-8.12.
DATA X1K,X2K,X3K,X4K,X5K,X6K,X7K,X8K,X9K,X10K,X11K,X12K/0,
Program listings
CALL MULM(2,1,2,DXK1,X7K,X7K1,ADXK1,A1,B1,T,AIDK1)
Y2 = -4.32*X7K(1,1)+6.68*X7K(2,1)+.74*AIDK1+.044*(AIDK1-AIDK)/T
Y3 = Y1+Y2
Y3 IS THE INPUT ELEMENT
CALL MULM(3,1,3,DXK3,X8K,X9K1,ADXK3,A3,B3,T,Y3)
PSIDX1 = 8.36*X8K(1,1)+7.8*X8K(2,1)+X8K(3,1)-.225*AIDK1
**
* GENERATOR Q-AXIS SUBSYSTEM
**
X9K = X9K1
X10K(1,1) = X10K1(1,1)
X10K(2,1) = X10K1(2,1)
IQK1 IS THE INPUT ELEMENT
CALL MEM(DXK,X9K1,X9K,T,AIL4,AILQK1)
Y4 = -20*X9K1+4.16*AILQK1+.063*(AILQK1-AILQ)/T
Y4 IS THE INPUT ELEMENT
CALL MULM(2,1,2,DXK1,X10K,X10K1,ADXK1,A2,B2,T,Y4)
PSIQK1 = .97*X10K1(2,1)+6.54*X10K1(1,1)-.225*AILQK1
TREATING THE MACHINE SATURATION
PSIL1 = PSIL
IF (I.LE. 4000) THEN
PSIL = SQRT(PSIDK1**2 + PSIQQ1**2)
ELSEIF (I .GT. 4000) THEN
PSIL = PSIL + ABS(PSIL-PSIL1)
ENDIF

IF (PSIL .LT. .7) THEN
PSI = PSIL
GOTO 1000
ELSEIF (PSIL .GE. .7) THEN
PSIL = PSI
AG = 0.035
BG = 7.955
SG = AG*EXP(BG*(PSI-.7))
PSI = PSI - PSI*SG
IF (PSI .LT. PSIL) PSI = PSIL
ENDIF
PSIDK1 = PSI*PSIDK1/PSIL
PSIQK1 = PSI*PSIQK1/PSIL
1000 W = W0 + DDEL
VQK1 = -RA*AILQK1+W*K*PSIK1-(PSIQK1-PSIQK)/T/W

Program listings
VDK1 = -RA*AIWK1-WK*PSIQK1-(PSIDK1-PSIDK1)/T/W
PSIQK = PSIQK1
PSIDK = PSIDK1
AIWK = AIWK1
AIWK = AIWK1
VT = SQRT(VDK1**2+VQK1**2)

**
* GOVERNOR-TURBINE SUBSYSTEM *
**

PMK = X12K*3.333
TMK = PMK/WK
X11K(1,1) = X11K1(1,1)
X11K(2,1) = X11K1(2,1)
X12K = X12K1

DDELL IS THE INPUT ELEMENT

CALL MEM(DXK,X11K1(1,1),X11K1(1,1),T,T11,DDELL)

Y7 = X11K1(1,1)*100./T1+(DDELL-X11K1(1,1)/T1)*100./T1
UG = (P0-Y7)/T3

UG IS THE INPUT ELEMENT

CALL MEM(DXK,X11K1(2,1),X11K1(2,1),T,TCHH,UG)

Y5 = 1./T3*(P0-Y7-X11K1(2,1))
IF(Y5.GT..1) GOTO 145
IF(Y5.LT.-.1) GOTO 150
GOTO 155

145

Y5 = .1
X11K1(2,1) = (P0*1./T3-Y7*1./T3-.1)*T3
X11K(2,1) = X11K1(2,1)
GOTO 155

150

Y5 = -.1
X11K1(2,1) = (P0*1./T3-Y7*1./T3+.1)*T3
X11K(2,1) = X11K1(2,1)

155

Y6 = X11K1(2,1)
IF(Y6.GT.1.2) GOTO 160
IF(Y6.LT.1.9) GOTO 165
GOTO 170

160

Y6 = 1.2
X11K(2,1) = Y6
GOTO 170

165

IS = 0.9
X11K(2,1) = Y6

170

CALL MEM(DXK,X12K1,X12K,T,TCHH,X11K(2,1))
PMK1 = X12K1/TCH
WK1 = (377+DDELL)/377
TMK1 = PMK1/WK1

**
* MECHANICAL SUBSYSTEM *
**

DDELL = DDELL

Program listings 160
PEK1 = VT*1.0/XDD*SIN(DELTA)
TEK1 = PEK1/WK1
UKK = (PKM1-PEK1)*377/AJ

UKK IS THE INPUT ELEMENT

CALL MEM(DXX,DDEL1,DDEL,T,AJJ,UKK)

DEL=DEL+(DDEL1+DDEL)*T/2
DELTA=DEL+DELTA0
TEK = TEK1

**
* INVERSE PARK TRANSFORMATION *
**

TI = T/4
DO 200 J = 0,3
 FIK1 = (W0+DDEL1)*T*(I-1) + 2*DELTA + (W0+DDEL1)*TI*J
 IF (FIK1) 201,202,202
 FIK1 = FIK1 + 2*PI
 GOTO 205
202
 IF (FIK1 - 2*PI) 203,204,204
 FIK1 = FIK1 - 2*PI
 GOTO 202
203
 IF (FIK1 .GT. PI) GOTO 206
 SS = SIN(FIK1)
 CC = COS(FIK1)
 GOTO 210
206
 IF (FIK1 .GT. PI) GOTO 207
 SS = SIN (PI - FIK1)
 CC = COS (PI - FIK1)
 GOTO 210
207
 IF (FIK1 .GT. 3*PI/2) GOTO 208
 SS = -SIN(FIK1 - PI)
 CC = -COS(FIK1 - PI)
 GOTO 210
208
 CALL IPT(SS,CC,VT,VAG,VBG,VCG)
210 CONTINUE

**
* LOAD MODEL *
**

WT = (377+DDEL1)*T*I
ZL = SQRT((XL+XLL)**2+RL**2)
AIA = VT/ZL*SIN(WT-APF)-VT/ZL*SIN(-APF)*EXP(ARL*T*I)
AIB = VT/ZL*SIN(WT-APF-2./3.*PI-APF-2./3.*PI)
1 *EXP(ARL*T*I)
AIC = VT/ZL*SIN(WT-APF+2./3.*PI)-VT/ZL*SIN(-APF+2./3.*PI)
1 *EXP(ARL*T*I)

**
* PARK TRANSFORMATION *
**
SITA = (377+DDELL1)*T*I+DELTA
2 IF(SITA.GT.0) GOTO 5
SITA = SITA+2*PI
GOTO 2
5 IF(SITA.LT.2*PI) GOTO 15
SITA = SITA-2*PI
GOTO 5
15 IF(SITA.GT.PI/2) GOTO 25
S = SIN(SITA)
C = COS(SITA)
GOTO 105
25 IF(SITA.GT.PI) GOTO 35
S = SIN(P1-SITA)
C = COS(P1-SITA)
GOTO 105
35 IF(SITA.GT.3*PI/2) GOTO 45
S = -SIN(SITA-P1)
C = -COS(SITA-P1)
GOTO 105
45 S = -SIN(2*PI-PITA)
C = COS(2*PI-PITA)
105 A1D1K1 = 2./3.*((A1A*C+AEI*(-.5*C+.866*S)+AEI+(-.5*C+.866*S))
A1Q1K1 = 2./3.*((A1I*S+AEI*(-.5*S+.866*C)+AEI+(-.5*S+.866*C))
A1G1K1 = SQRT(A1D1K1**2+A1Q1K1**2)
2
IF(25*K.EQ.1) GOTO 40
GOTO 100
40 K=K+25
50 FORMAT(3X,5F14.6)
PRINT 50,TK,VT,EF,PSI1K1,PSI1K1
WRITE(1,50)TK,VT,EF,PSI1K1,PSI1K1
K=K+1
100 CONTINUE
END

**
* SUBROUTINE OF MODIFIED EULER METHOD, JUST FOR SCALAR *
**

SUBROUTINE MEM(DKX,XK1,XK,T,A,U)
DKX=A*XK+U
XK1=XK+T/2*(2*DKX+T*A*DKX)
RETURN
END

**
* SUBROUTINE OF MULTIPLICATION OF MATRIX (MEM) *
**

SUBROUTINE MULM(L,M,N,DXK,XK,XK1,ADXK,A,B,T,UU)
DIMENSION DXK(L,M),ADXK(L,M),XK(L,M),XK1(L,M),A(L,N),B(L,M)
DO 10 I=1,L
DO 10 J=1,M
DXK(I,J)=0
10 CONTINUE

DO 20 K=1,N
 DXK(I,J)=DXK(I,J)+A(I,K)*XX(K,J)
 DXK(I,J)=DXK(I,J)+B(I,J)*U
 ADXX(I,J)=0
DO 25 K=1,N
 ADXX(I,J)=ADXX(I,J)+A(I,K)*DXK(K,J)*T
 XX1(I,J)=XX(I,J)+T/2*(2*DXK(I,J)+ADXX(I,J))
CONTINUE
RETURN
END

**
* SUBROUTINE OF INVERSE PARK TRANSFORMATION
**

SUBROUTINE IPT(SS,CC,V,VA,VB,VC)
 VA = V * SS
 VB = -VA/2 - 1.732/2*V*CC
 VC = -VA -VB
RETURN
END
* THIS PROGRAM IS USED TO BUILD EXPONENTIAL FUNCTION
* LOOK-UP TABLE
* (X RANGES FROM 0.0 TO 5.0)
*
**

CHARACTER*1 HEX(16), A(2), B(20), C(2),
DATA HEX/'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'/
OPEN(1, FILE='EXPTBL.SRC', STATUS='UNKNOWN')
WRITE(/9X, 'ORG', 5X, 6H$10000)
WRITE(1, 5)
WRITE(1, 10)
FORMAT(1X, 'EXPTBL', 2X, 'DC.W', 4X, 4H$100)
K=1
DO 20 I=1, 2500
X=I*.002
Y=EXP(X)
CALL TABLE(Y, A, C, HEX)

IF(I.EQ.5*K) GOTO 40
GOTO 20

WRITE(1, 30) (B(J), J=1,20)
PRINT 30, (B(J), J=1,20)
FORMAT(9X, 'DC.W', 4X, 4('S4A1','j','S4A1')
K=K+1
CONTINUE
CLOSE(1)
END

**

SUBROUTINE TABLE (Y, A, C, HEX)
CHARACTER*1 HEX(16), A(2), C(2)
JY=Y
IY=JY/16
IDO=JY-IY*16
ID1=IY
R=Y-JY
IR=R*16
Z=R*16-IR
IZ=Z*16
T=Z*16-IZ
IT=T*16

C
IF(IT.LT.8) GOTO 25
IF(IZ.EQ.15) GOTO 45
IZ=IZ+1
GOTO 25

:15
IZ=0
IF(IZ.EQ.15) GOTO 55
IZ=IZ+1
GOTO 25

:25
IR=0
IF(ID0.EQ.15) GOTO 65
ID0=ID0+1
GOTO 25

C
:65
ID0=0
ID1=ID1+1
C

RETURN
END
Cette programme est utilisé pour construire une table de fonction (X varie de 0.0 à 16)

```
* INTEGER U
* CHARACTER*1 HEX(16), A(2), B(20)
* DATA HEX/"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
*     "A", "B", "C", "D", "E", "F"/
* OPEN(1, FILE='SQRTBL.SRC', STATUS='UNKNOWN'
* FORMAT(//9X,'ORG',5X,5H$B500)
* WRITE(1,5)
* PRINT 5
* U=0
* PRINT 10, U
* WRITE(1,10) U
10 FORMAT(1X,'SQRTBL',2X,'DC.W',4X,'$',11)
* K=1
* DO 20 I=1,4000
* X=I*0.004
* Y=SQRT(X)
* IF(I.GT.250.AND.I.LE.1000) GOTO 60
* IF(I.GT.1000.AND.I.LE.2250) GOTO 110
* IF(I.GT.2250) GOTO 140
* CALL TABLE(Y,A,HEX)
* IK=2*(I-(K-1)*10)-1
* IRK=IK+1
* B(IK)=A(1)
* B(IRK)=A(2)
* IF(I.EQ.10*K) GOTO 40
* GOTO 20
* WRITE(1,30) (B(J),J=1,20)
* PRINT 30,(B(J),J=1,20)
* FORMAT(9X,'DC.W',4X,9('$2A1','1','$2A1')
* GOTO 75
* Y=Y-1
* CALL TABLE(Y,A,HEX)
* IK=2*(I-(K-1)*10)-1
* IRK=IK+1
* B(IK)=A(1)
* B(IRK)=A(2)
* IF(I.EQ.10*K) GOTO 70
* GOTO 20
* WRITE(1,80) (B(J),J=1,20)
* PRINT 80,(B(J),J=1,20)
* FORMAT(9X,'DC.W',4X,9('$12A1','1','$12A1')
* GOTO 35
* Y=Y-2
* CALL TABLE(Y,A,HEX)
```
IK=2*(I-(K-1)*10)-1
IKK=IK+1
B(IK)=A(1)
B(IKK)=A(2)
IF(I.EQ.10*K) GOTO 120
GOTO 20
120 WRITE(1,130)(B(J),J=1,20)
PRINT 130,(B(J),J=1,20)
130 FORMAT(9X,'DC.W',4X,9('$2'2A1',''),'$2'2A1')
GOTO 35
C
140 Y=Y-3
\LL TABLE(Y,A,HEX)
IK=2*(I-(K-1)*10)-1
IKK=IK+1
B(IK)=A(1)
B(IKK)=A(2)
IF(I.EQ.10*K) GOTO 150
GOTO 20
150 WRITE(1,160)(B(J),J=1,20)
PRINT 160,(B(J),J=1,20)
160 FORMAT(9X,'DC.W',4X,9('$3'2A1',''),'$3'2A1')
C
5 K=K+1
GOTO 20
95 PRINT 96
96 WRITE(1,96)
97 FORMAT(9X,'DC.W',4X,4H$100)
K=K+1
20 CONTINUE
21 FORMAT(9X,3HEND)
WRITE(1,21)
PRINT 21
END
C

SUBROUTINE TABLE(Y,A,HEX)
CHARACTER*1 HEX(16),A(2)
IY=Y+16
Z=Y+16-IY.
IZ=Z+16
T=Z+16-IZ
IT=T+16
IF(IT.LT.8) GOTO 25
IF(IZ.EQ.15) GOTO 45
IZ=IZ+1
GOTO 25
45 IZ=0
IY=IY+1
25 A(1)=HEX(IY+1)
A(2)=HEX(IZ+1)
RETURN
END
*** THIS PROGRAM IS USED TO BUILD SINE FUNCTION
 (LOOK-UP TABLE)
 (X RANGES FROM 0.0 TO 1.57 RADIANS) ***

INTEGER U
CHARACTER*1 HEX(16), A(20)
DATA HEX/"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
 "A", "B", "C", "D", "E", "F"/
OPEN (1, FILE= "SINTBL.SRC", STATUS= "UNKNOWN")
U=00
5 FORMAT (//9X, 'ORG', 5X, 6H$11500)
WRITE (1, 5)
PRINT 5
WRITE (1, 10) U
10 FORMAT (1X, 'SINTBL', 2X, 'DC.W', 4X, '$'..II)
K=1
DO 20 I=1, 1500
 X=I*.001
 Y=SIN(X)
 CALL TABLE(Y, A, HEX)
 IX=2*(I-(K-1)*10)-1
 IF (K.EQ.10*X) GOTO 40
 GOTO 20
20 WRITE (1, 20) (B(J), J=1, 20)
PRINT 31, (B(J), J=1, 20)
10 FORMAT (9X, 'DC.W', 4X, 9('$.2Al', '), $.2A1')
2
K=K+1
10 CONTINUE
PRINT 31
WRITE (1, 31)
31 FORMAT (9X, 'DC.W', 4X, 31H$FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF)
DO 32 J=1, 12
PRINT 32
WRITE (1, 32)
32 FORMAT (9X, 'DC.W', 4X, 24H$100, $100, $100, $100)
33 CONTINUE
PRINT 34
WRITE (1, 34)
34 FORMAT (9X, 'DC.W', 4X, 14H$100, $100, $100)
WRITE (1, 35)
35 FORMAT (9X, 3HEND)
CLOSE (1)
END
SUBROUTINE TABLE(Y, A, HEX)
CHARACTER*1 HEX(16), A(2)
IY=Y*16
Z=Y*16-IY
IZ=Z*16
T=Z*16-IZ
IT=T*16
IF(IT.LT.8) GOTO 25
IF(IZ.EQ.15) GOTO 45
IZ=IZ+1
GOTO 25
15 IZ=0
IV=TY+1
75 A(1)=HEX(IY+1)
A(2)=HEX(IZ+1)
RETURN
END
*** This program is used to build cosine function lookup table ***
(X ranges from 0.0 to 1.57 radian) ***

```
* 10A, ER=1, HEX(16), A(20)
DATA HEX/ 'O', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'/
OPEN(1, FILE='COSTBL.SRC', STATUS='UNKNOWN')
FORMAT(/9X,'ORG', 5X, 6H$12500)
WRITE(1, 5)
PRINT 5
U=100
PRINT 10, U
WRITE(1, 10) U
FORMAT(1X, 'COSTBL', 2X, 'DC.W', 4X, 'S', 'I3)
DO 33 L=1, 12
PRINT 32
WRITE(1, 32)
FORMAT(9X, 'DC.W', 4X, 24H$100, $100, $100, $100)
33 CONTINUE
PRINT 34
WRITE(1, 34)
FORMAT(9X, 'DC.W', 4X, 9H$100, $100)
PRINT 31
WRITE(1, 31)
FORMAT(9X, 'DC.W', 4X, 31H$FF, $FF, $FF, $FF, $FF, $FF, $FF)
K=8
DO 20 I=71, 1571
X=I*.001
Y=COS(X)
CALL TABLE(Y, A, HEX)
IK=2*(I-(K-1)*10)-1
IKX=IK+1
B(IKX)=A(1)
B(IK)=A(2)
IF (I.EQ.10*K) GOTO 40
GOTO 20
20 WRITE(1, 30) (B(J), J=1, 20)
K=K+1
CONTINUE
M=00
PRINT 50, M
WRITE(1, 50) M
FORMAT(9X, 'DC.W', 4X, 'S', 'I1')
FORMAT(9X, 'HEX')
```

PRINT 51
WRITE(1,51)
CLOSE(1)
END

SUBROUTINE TABLE(Y,A,HEX)
CHARACTER*1 HEX(16),A(2)
IY=Y*16
Z=Y*16-IY
IZ=Z*16
T=T*16-IZ
IT=T*16
IF(IT.LT.8) GOTO 25
IF(IT.EQ.15) GOTO 45
IZ=IZ+1
GOTO 25
45
IZ=0
IY=IY+1
A(1)=HEX(IY+1)
A(2)=HEX(IZ+1)
RETURN
END

Note: The software 'Error Model Generator' is programmed by
Nitin Vichare, research assistant of Power System
Research Center, Dept. of Elec. Eng. of VPI.
Appendix C

Nomenclature

All quantities are in per unit unless noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_T</td>
<td>Generator terminal voltage</td>
</tr>
<tr>
<td>V_{ref}</td>
<td>Regulator reference voltage setting</td>
</tr>
<tr>
<td>E_{fd}</td>
<td>Exciter output voltage</td>
</tr>
<tr>
<td>$E_{fd\text{max}}$</td>
<td>Exciter output voltage ceiling</td>
</tr>
<tr>
<td>E_{fd0}</td>
<td>$0.75 \times E_{fd\text{max}}$</td>
</tr>
<tr>
<td>$E_{fd\text{f}}$</td>
<td>E_{fd} at full load</td>
</tr>
<tr>
<td>T_1, T_r</td>
<td>Exciter model time constants</td>
</tr>
<tr>
<td>T_s, T_d</td>
<td>See Figure 3 and Table 1.</td>
</tr>
<tr>
<td>K_F, K_E</td>
<td>Exciter model gains</td>
</tr>
<tr>
<td>K_r</td>
<td>See Figure 3 and Table 1.</td>
</tr>
<tr>
<td>V_R</td>
<td>Regulator output voltage</td>
</tr>
<tr>
<td>$V_{R\text{max}}$</td>
<td>Maximum value of V_R</td>
</tr>
</tbody>
</table>
\(V_{r_{\text{min}}} \) Minimum value of \(V_R \)

\(S_E \) Exciter saturation function

\(S_{E_{\text{Em}}} \) \(S_E \) at \(E_{\text{Em}_{\text{max}}} \)

\(S_{E_q} \) \(S_E \) at \(E_{\theta q} \)

\(S_{E_{\text{fd}}} \) \(S_E \) at \(E_{\text{fd}} \)

\(P, Q \) Coefficients of exciter saturation function

\(s \) Laplace operator

\(i_a, i_b, i_c \) Armature currents, phase components

\(V_a, V_b, V_c \) Armature voltages, phase components

\(i_d, i_q, i_0 \) Armature currents, d, q axis and zero sequence components

\(V_d, V_q, V_0 \) Armature voltages, d, q axis and zero sequence components

\(\omega_{\text{ref}} \) Base angular speed of rotor

\(\omega_r \) Synchronous speed \(\omega_r = \omega_{\text{ref}} \)

\(\Delta \omega \) Rotor speed oscillation about \(\omega_{\text{ref}} \)

\(\omega \) Rotor speed \((\omega_{\text{ref}} + \Delta \omega) \)

\(\delta_{\text{ref}} \) Reference \(\delta \)

\(\Delta \delta \) Machine torque angle oscillation about \(\delta_{\text{ref}} \)

\(\delta \) Machine torque angle

\(\theta \) Cumulative rotor angle \((\omega t + \delta) \)

\(\theta_0 \) Rotor angle at time \(t = 0 \)

\(\phi \) \((\theta + \delta) \)

\(\mathcal{P}(\theta) \) Park's transformation matrix

\(\bar{E} \) Machine EMF

\(\bar{V} \) Machine constant terminal voltage

\(e_{\text{fd}} \) Generator field voltage on MVA base

\(\psi \) Armature flux linkage

\(\psi_{t} \) Armature flux linkage when saturation effect is neglected

\(\psi_d, \psi_q \) Armature flux linkages, d and q axis components
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_a, \psi_b, \psi_c)</td>
<td>Armature flux linkages, phase components</td>
</tr>
<tr>
<td>(\psi_r, \psi_d, \psi_q)</td>
<td>Rotor flux linkages</td>
</tr>
<tr>
<td>(L_{aa}, L_{bb}, L_{cc})</td>
<td>Phase-winding self inductances</td>
</tr>
<tr>
<td>(L_{ab}, L_{aa}, L_{bc})</td>
<td>Phase-winding mutual inductances</td>
</tr>
<tr>
<td>(L_{ah}, L_{ac}, L_{bc})</td>
<td></td>
</tr>
<tr>
<td>(L_{ff}, L_{dd}, L_{qq})</td>
<td>Rotor-winding self inductances</td>
</tr>
<tr>
<td>(L_{fd}, L_{df}, L_{fq})</td>
<td>Rotor-winding mutual inductances</td>
</tr>
<tr>
<td>(L_{qf}, L_{dq}, L_{qd})</td>
<td></td>
</tr>
<tr>
<td>(L_{af}, L_{fa}, L_{af})</td>
<td>Mutual inductances between the phase windings and the field winding</td>
</tr>
<tr>
<td>(L_{bf}, L_{br}, L_{bf})</td>
<td></td>
</tr>
<tr>
<td>(L_{ad}, L_{da}, L_{bd})</td>
<td>Mutual inductances between the phase and the damper windings</td>
</tr>
<tr>
<td>(L_{db}, L_{ed}, L_{db})</td>
<td></td>
</tr>
<tr>
<td>(L_{qg}, L_{qg}, L_{qg})</td>
<td></td>
</tr>
<tr>
<td>(L_d, L_q, L_0)</td>
<td>Stator inductances, d, q axis and zero sequence components</td>
</tr>
<tr>
<td>(L_{ad}, L_{aq})</td>
<td>Stator-rotor mutual inductances</td>
</tr>
<tr>
<td>(\psi_{ad}, \psi_{aq})</td>
<td>Stator-rotor mutual flux linkages</td>
</tr>
<tr>
<td>(L_i)</td>
<td>Armature leakage inductances</td>
</tr>
<tr>
<td>(L_{ld})</td>
<td>Field leakage inductances</td>
</tr>
<tr>
<td>(R_{md}, R_{mq}, R_{m0}, L_{mq})</td>
<td>Damper resistances and leakage inductances</td>
</tr>
<tr>
<td>(R_{ld})</td>
<td>Field resistance</td>
</tr>
<tr>
<td>(r_a, r_b, r_c)</td>
<td>Phase-winding resistances</td>
</tr>
<tr>
<td>(r_F)</td>
<td>Field-winding resistance</td>
</tr>
<tr>
<td>(r_D, r_Q)</td>
<td>Damper-winding resistances</td>
</tr>
<tr>
<td>(V_F)</td>
<td>Field-winding voltage</td>
</tr>
<tr>
<td>(V_D, V_Q)</td>
<td>Damper-winding voltages</td>
</tr>
<tr>
<td>(i_F)</td>
<td>Field-winding current</td>
</tr>
<tr>
<td>(i_d, i_q)</td>
<td>Damper-winding currents</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>$Z_{rh}(s)$, $Z_{ld}(s)$</td>
<td>Operational impedances of the solid</td>
</tr>
<tr>
<td>$Z_{sd}(s)$, $Z_{sd}(s)$</td>
<td>Rotor machine detailed equivalent circuit</td>
</tr>
<tr>
<td>$A(s)$, $B(s)$</td>
<td>Transfer functions in the time domain model</td>
</tr>
<tr>
<td>$Z_{re}(s)$</td>
<td>Impedances and inductances obtained by algebraic reduction of L_{eq}, L_{eq}</td>
</tr>
<tr>
<td>R_{re0}, R_{re0}</td>
<td>Resistive components of $Z_{re}(s)$ and $Z_{re}(s)$, respectively, at extreme low slip</td>
</tr>
<tr>
<td>S_G</td>
<td>Synchronous machine saturation function</td>
</tr>
<tr>
<td>$S_{G1.0}$</td>
<td>S_G at $V_T = 1.0$ p.u.</td>
</tr>
<tr>
<td>$S_{G1.2}$</td>
<td>S_G at $V_T = 1.2$ p.u.</td>
</tr>
<tr>
<td>A_G, B_G</td>
<td>Constants of machine saturation function</td>
</tr>
<tr>
<td>V_a</td>
<td>$(V_T - 0.7)$</td>
</tr>
<tr>
<td>P_0</td>
<td>Initial (time = 0) mechanical power</td>
</tr>
<tr>
<td>P_{GV}</td>
<td>Power at gate or valve outlet</td>
</tr>
<tr>
<td>T_1, T_2, T_3</td>
<td>Governor model time constants</td>
</tr>
<tr>
<td>T_{ch}</td>
<td>Steam chest time constant</td>
</tr>
<tr>
<td>K</td>
<td>Total effective speed-governing system gain</td>
</tr>
<tr>
<td>P_{up}, P_{down}</td>
<td>Limits on Rate of change of power imposed by control valve rate limits</td>
</tr>
<tr>
<td>P_{max}, P_{min}</td>
<td>Power limits imposed by valve or gate travel</td>
</tr>
<tr>
<td>P_m</td>
<td>Mechanical power</td>
</tr>
<tr>
<td>P_e</td>
<td>Electrical or Electromagnetic power</td>
</tr>
<tr>
<td>T_m</td>
<td>Mechanical input torque to the synchronous machine in N-m</td>
</tr>
<tr>
<td>T_e</td>
<td>Electrical or electromagnetic torque in N-m</td>
</tr>
<tr>
<td>J</td>
<td>Lumped moment of inertia in $kg - m^2$</td>
</tr>
<tr>
<td>D</td>
<td>Differential damping coefficient in Joule-sec.</td>
</tr>
<tr>
<td>δ_{se}</td>
<td>δ at equilibrium</td>
</tr>
<tr>
<td>x_t</td>
<td>Transmission line reactance</td>
</tr>
</tbody>
</table>

Nomenclature
x_d Machine transient reactance
T Sampling period
Vita

Yujie Lu was born on January 1st, 1958, in Beijing, China. She attended Beijing 26th High School, and graduated in January 1976. After two and half years of employment at Beijing Power Supply Bureau, she entered the Department of Electrical Engineering, Huazhong University of Science and Technology, where she received a Bachelor of Engineering degree in Electrical Engineering in July 1982. She worked at Scientific and Technical Information Institute of Electric Power, Ministry of Electric Power of China, Beijing, China, from August 1982 to May 1987. She joined the Department of Electrical Engineering, Virginia Polytechnic Institute and State University as a graduate student in December 1987. She is a member of the IEEE.