Figure 9. The incidence of total injuries in each season. There was no Relationship between incidence of injury and time of season ($p=0.578$).
Figure 10. The incidence of injuries that occurred pre, mid and post season for each sport.
Figure 11. The relationship between the anatomical site of injury and time of season.
Table 1. The relationships among the variables sport, class, site, and season. The p values for each are shown. There were no significant relationships between any of the variables.

<table>
<thead>
<tr>
<th></th>
<th>SEASON</th>
<th>SITE</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPORT</td>
<td>0.124</td>
<td>0.127</td>
<td>0.485</td>
</tr>
<tr>
<td>CLASS</td>
<td>0.622</td>
<td>0.458</td>
<td></td>
</tr>
<tr>
<td>SITE</td>
<td>0.545</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 12. Days to treatment for injuries that occurred pre and midseason. There was no significant difference in median days to treatment between pre and midseason ($p=0.120$).
Figure 13. Median days to treatment for each sport. There was a significant difference ($p=0.023$) between basketball (median=56) and lacrosse (median=14).
Figure 14. The median days to treatment for each academic class. There was no significant difference ($p=0.332$) between the classes.
Figure 15. Median days to treatment for each anatomical site. There were no significant differences ($p=0.264$) between the sites.