CLASSIFICATION AND ANALYSIS OF LONGWALL DELAYS

by

James Dunlap

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

MINING ENGINEERING

APPROVED:

E. Topuz, Chairman
M. Karfakis
J.R. Lucas G. Luttrell

June, 1990
Blacksburg, Virginia
ABSTRACT

Spectacular production rates have been achieved by certain U.S. longwalls, and yet a large number of longwall operations have failed to meet anticipated production targets. This study attempts to identify the primary factors which contribute to the production shortcomings of many marginal longwall operations. This study presents details of the classification and analysis of delay data for a group of thirty-nine longwall sections located in the eastern and midwestern United States. Downtime data corresponding to over fourteen-thousand shifts were collected and classified according to equipment type, delay type, and specific delay event. A dBase IV-based database was constructed to allow flexible interrogation of the data. The relative downtime contributions of the various equipment components and of the delay types have been determined. Machine availabilities and system availabilities are presented. Probability density functions have been fit to the time-to-failure and to the time-to-repair data sets, both for the principal equipment types and for the longwall system as a whole. Recommendations are made for increasing the availability of longwall systems.
ACKNOWLEDGEMENTS

I would like to thank my advisor and Committee Chairman, Dr. E. Topuz, for his guidance and support throughout this research.

I thank the other members of my committee, Dr. M. Karfakis, Dr. J.R. Lucas, and Dr. G. Luttrell for their valuable criticism and suggestions.

I would also like to thank my office colleagues for their assistance, with special thanks to Mr. Chunming Duan for his invaluable advice regarding computer applications, and to Ms. Janine Cloutier for her assistance in data entry. It has been a pleasure working with the faculty and staff at the Mining and Minerals Engineering Department of VPI&SU.

This project would not have been possible without the generous help of American Electric Power, BethEnergy Mines, BP Coal, Consolidation Coal, Island Creek, Old Ben Coal, Peabody Coal, Pittston Coal, U.S. Steel Mining, and Westmoreland Coal. I reserve a special thanks for the administration and personnel of these companies for taking the time to provide data, advice, and underground tours.

This research has been supported by the Department of the Interior's Mineral Institute program administered by the Bureau of Mines through the Generic Mineral Technology Center in Mine Systems Design and Ground Control under grant number G1175151.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>11</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>111</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>VIII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>X</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. LONGWALL MINING</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Description of Longwall Method</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Distribution of U.S. Longwalls</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Longwall Productivity</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Panel Geometry and Equipment Statistics</td>
<td>8</td>
</tr>
<tr>
<td>III. LONGWALL DELAYS</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Data Collection</td>
<td>10</td>
</tr>
<tr>
<td>3.1.1 Distribution of Mines in Study</td>
<td>10</td>
</tr>
<tr>
<td>3.1.2 Raw Data Formats</td>
<td>11</td>
</tr>
<tr>
<td>3.1.3 Composition of Data</td>
<td>12</td>
</tr>
<tr>
<td>3.1.4 Inadequacies and Inconsistencies of Data</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Classification of Delays</td>
<td>19</td>
</tr>
<tr>
<td>IV. DATABASE DEVELOPMENT</td>
<td>25</td>
</tr>
<tr>
<td>4.1 Raw Database Types</td>
<td>25</td>
</tr>
<tr>
<td>4.1.1 Shift Database Format</td>
<td>25</td>
</tr>
<tr>
<td>4.1.2 Downtime Database Format</td>
<td>28</td>
</tr>
<tr>
<td>4.2 Database Maintenance Programs</td>
<td>30</td>
</tr>
</tbody>
</table>
4.2.1 ADDTYPE Program..............................32
4.2.2 FILLSFT Program..............................33
4.2.3 CORRSFT Program..............................34
4.2.4 INTERSFT Program..............................35
4.2.5 ADDSFT Program..............................36
4.2.6 TRAVRCP Program..............................38
4.2.7 OVERLAP Program..............................39

4.3 Data Generation Programs..........................39
4.3.1 SFTDELAY Program..............................47
4.3.2 SFTAVAIL Program..............................48
4.3.3 TTFPRG Program..............................49
4.3.4 AUTOTTF Program..............................50
4.3.5 TTRPRG Program..............................51
4.3.6 AUTOTTR Program..............................52
4.3.7 EQUIP% Program..............................53
4.3.8 TYPE% Program..............................53
4.3.9 STATS Program..............................54
4.3.10 SECAVAIL Program............................55
4.3.11 MEANITME Program............................55

V. STATISTICAL ANALYSIS...............................56

5.1 Statistics of Study Defined........................56
5.1.1 Time To Failure (TTF)..........................56
5.1.2 Time To Repair (TTR)..........................58
5.1.3 Delay Time..............................59
5.1.4 Availability..............................60
5.1.5 Productivity 61

5.2 Probability Density Functions for TTF and TTR Statistics 61

5.2.1 TTF Probability Density Functions 64

5.2.2 TTR Probability Density Functions 68

5.3 Availability 71

5.3.1 System Availability 72

5.3.2 Face Availability 74

5.3.3 Inherent Delay 77

5.3.4 Equipment Availability 81

5.4 Performance Indicators 90

VI. CONCLUSIONS AND RECOMMENDATIONS ... 100

6.1 Reducing Delay Times Associated with Equipment Breakdowns and Equipment Servicing ... 100

6.1.1 Increasing Mean Time To Failure (MTTF) 101

6.1.2 Reducing Mean Time To Repair (MTTR) 103

6.2 Reducing Inherent Delay Times Associated with Production Shifts 105

6.3 Reducing Inherent Delay Times Associated with Idle Shifts 105

6.4 Summary or Results 106

6.5 Further Research 107

REFERENCES .. 110
APPENDICES .. 115

APPENDIX I Specific Mine Data 116
APPENDIX II Nomenclature Used To Describe
 Specific Delay Events 156
APPENDIX III Data Maintenance And Data
 Generation Programs 164
APPENDIX IV TTF And TTR Probability
 Density Functions 252

VITA ... 259
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Number of U.S. longwalls: 1985 - 1989</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Longwall productivity: 1985 - 1988</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Raw data sample: production report</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>Raw data sample: maintenance report</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>Raw data sample: computer printout from proprietary database</td>
<td>15</td>
</tr>
<tr>
<td>6.</td>
<td>Mean time to failure (MTTF) of primary Equipment Types: average values for 12 selected longwall sections</td>
<td>67</td>
</tr>
<tr>
<td>7.</td>
<td>Mean time to repair (MTTR) of primary Equipment Types: average values for 12 selected longwall sections</td>
<td>70</td>
</tr>
<tr>
<td>8.</td>
<td>System Availability of 12 selected longwall sections</td>
<td>73</td>
</tr>
<tr>
<td>9.</td>
<td>Downtime ranked by Delay Type: scheduled and unscheduled delays averaged for 12 selected longwall sections</td>
<td>73</td>
</tr>
<tr>
<td>10.</td>
<td>Face availability of 12 selected longwall sections</td>
<td>75</td>
</tr>
<tr>
<td>11.</td>
<td>Downtime ranked by Delay Type: unscheduled delays averaged for 12 selected longwall sections</td>
<td>75</td>
</tr>
<tr>
<td>12.</td>
<td>Inherent delay time of 12 selected longwall sections</td>
<td>78</td>
</tr>
<tr>
<td>13.</td>
<td>Availability of primary Equipment Types: low, high, and average availability of 12 selected longwall sections</td>
<td>84</td>
</tr>
<tr>
<td>14.</td>
<td>Downtime ranked by Equipment Type: scheduled and unscheduled delays averaged for 12 selected longwall sections</td>
<td>85</td>
</tr>
<tr>
<td>15.</td>
<td>Downtime ranked by Equipment Type: unscheduled delays averaged for 12 selected longwall sections</td>
<td>85</td>
</tr>
</tbody>
</table>
16. Shearer downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays..........................86

17 Face conveyor downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays....86

18 Shield downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays....87

19 Stageloader downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays....87

20 Crusher downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays..............88

21 Section belt downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays...........88

22 Haulage belt downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.............89

23 Bin downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays..............89

24 Scatter plot showing correlation between tons per shift and downtime per ton.................................97

25 Scatter plot showing correlation between tons per shift and production rate.................................97

26 Linear trend of tons per shift vs. downtime per ton..98

27 Linear trend of tons per shift vs. production rate...98
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Summary of raw data composition</td>
<td>17</td>
</tr>
<tr>
<td>2.</td>
<td>Equipment Types</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>Delay Types</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Specific Delay Events</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>Shift Database format</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>Downtime Database format</td>
<td>26</td>
</tr>
<tr>
<td>7.</td>
<td>TTF Database format</td>
<td>41</td>
</tr>
<tr>
<td>8.</td>
<td>TTR Database format</td>
<td>41</td>
</tr>
<tr>
<td>9.</td>
<td>Result Database format</td>
<td>42</td>
</tr>
<tr>
<td>10.</td>
<td>Mean time to failure (MTTF) of primary Equipment Types: values for 12 selected longwall sections</td>
<td>66</td>
</tr>
<tr>
<td>11.</td>
<td>Mean time to repair (MTTR) of primary Equipment Types: values for 12 selected longwall sections</td>
<td>69</td>
</tr>
<tr>
<td>12.</td>
<td>Available time lost to inherent delay: values for four selected longwall sections</td>
<td>80</td>
</tr>
<tr>
<td>13.</td>
<td>Availability of primary Equipment Types: values for 12 selected longwall sections</td>
<td>82</td>
</tr>
<tr>
<td>14.</td>
<td>Availability of primary Equipment Types: low, high, and average values for 12 selected longwall sections</td>
<td>82</td>
</tr>
<tr>
<td>15.</td>
<td>Major sources of shearer delay downtime</td>
<td>91</td>
</tr>
<tr>
<td>16.</td>
<td>Major sources of face conveyor downtime</td>
<td>91</td>
</tr>
<tr>
<td>17.</td>
<td>Major sources of shield downtime</td>
<td>92</td>
</tr>
<tr>
<td>18.</td>
<td>Major sources of stageloader downtime</td>
<td>92</td>
</tr>
<tr>
<td>19.</td>
<td>Major sources of crusher downtime</td>
<td>93</td>
</tr>
<tr>
<td>20.</td>
<td>Major sources of section belt downtime</td>
<td>93</td>
</tr>
</tbody>
</table>
21. Major sources of haulage belt (mains) downtime....94
22. Major sources of bin downtime..........................94
23. Performance indicators: values for 12 selected longwall sections.........................95
24. Performance indicators: low, high, and average values for 12 selected longwall sections........95
1. INTRODUCTION

The share of longwall mining in the underground coal production of the United States had risen from 5% in the late 1970's to more than 20% by 1986 (Merrit, 1984; Sprouls 1986). By the end of 1989, there were ninety-five longwall operations in the U.S., three more than existed the previous year (Sprouls, 1990). Despite the initial growth of the longwall industry, the number of U.S. longwalls has hovered around the 100 mark for the last nine years, whereas earlier predictions called for 200 by this time. Spectacular production rates have been achieved by certain U.S. longwall operations, and yet a large number of such operations have failed to meet anticipated production targets.

This research was begun as a result of the great disparity between highly productive U.S. longwalls and those which were only marginally productive. In many applications of longwall mining, the full production potential of highly mechanized longwall faces has not been achieved. The average productivity of U.S. longwall operations has been steadily rising, reaching 2,004 clean tons per shift in 1988 (Combs, 1990). The range of longwall productivity, however, is very large; the reported productivity low for 1988 was 640 clean tons per
shift, while the reported high was 6,000 tons per shift (Combs, 1990). It is suspected that some production figures are far below the expectation of mine operators, and therefore can be considered as a contributing factor to the failure of some longwall operations. The uncertainty of production forecasts and the large capital cost of longwall mining are factors which have contributed to the slowness of the growth of the U.S. longwall industry.

Historical figures for longwall operational system availability range from roughly 50 to 70 percent. Figures for face availability range from 60 to 80 percent (Curry, 1976; Pimentel, 1981; Topuz, 1982; Lee, 1983). It is believed that low system availability contributes significantly to the marginal performance of many U.S. longwalls.

It was the objective of this study to identify the sources of delays contributing to the low availability of many longwalls. The term "delay" was used in this study to represent any occurrence which lead to the cessation of coal production at a longwall section. Each delay lead to a period during which the longwall face equipment was idled for the purpose of equipment repair or adjustment, or for the performance of some organizational action. This idled period is referred to as "downtime."
In this study, longwall delays have been systematically categorized. Delay sources with large contributions to downtime have been identified, and accurate calculations of system and face availability have been made through the analysis of a large body of field data. Recommendations have been made to increase the availability of longwall operations.
II. LONGWALL MINING

2.1 Description of the Longwall Method

The longwall method involves the removal of coal in thin strips or "shears" from a single, long working face called a longwall. Longwall faces are typically 500 to 1,000 feet wide and join two sets of parallel entries, the "head" entries and the "tail" entries.

U.S. longwall panels are usually mined on the retreat. Development of a retreat longwall panel begins with driving the parallel head and tail entries perpendicularly to a main or submain entry for a distance of 2,500 to 10,000 feet. These entries or gate roads are then joined by a single perpendicular entry. The longwall equipment is then set up along this connecting entry and the entire length of the entry becomes the longwall face. The longwall face is then retreated back towards the main or submain entry from which production began.

As the face is retreated, the roof is controlled in a zone extending the length of the face and out from the face for a distance of 20 to 25 feet. Immediately behind this moving zone the roof is allowed to cave. The roof is supported by self-advancing hydraulic supports which are generally of the shield-support design.
Coal is cut from the face by a shearer or plow which moves back and forth between the gate roads. As the coal is cut it falls onto an armored face conveyor which conveys the coal to one of the gate roads, commonly the head gate. At the head gate, the coal is transferred via a stagemover and crusher to a panel belt and hence to the main haulage system.

The longwall method has many advantages over the room-and-pillar method. First, recovery of the panel block is almost 95%, compared to room-and-pillar's 50% to 75%. The longwall method concentrates a large amount of mechanical power at a single work area, reducing labor costs and increasing productivity. The method also provides increased safety due to the strict control of the roof in the work area and to the small number of face workers needed.

2.2 Distribution of U.S. Longwalls

At the end of 1989 there were ninety-five longwalls in operation (Sprouls, 1990). These longwalls were divided among eleven states as follows: West Virginia (28), Pennsylvania (13), Virginia (12), Alabama (10), Illinois (9), Colorado (6), Kentucky (6), Utah (5), Ohio (4), Maryland (1) and Wyoming (1). Twenty-eight coal companies
were operating these ninety-five longwalls. The following ten principle operators accounted for three quarters of all U.S. longwalls: Consolidation Coal (21), Jim Walter Resources (8), Island Creek (7), Cyprus Coal (6), Peabody Coal (6), U.S. Steel Mining (6), American Electric Power (5), BethEnergy Mines (5), Old Ben Coal (5) and Pittston Coal (3) (Sprouls, 1990). Figure 1 shows the variation in the number of U.S. longwalls during the period 1985 to 1989.

2.3 Longwall Productivity

Longwall unit shift productivity rose at an average annual rate of 28% between 1985 and 1988 (Combs, 1988; Combs, 1989). Figure 2 illustrates the rise in productivity which surged between 1986 and 1988. Increases in productivity were achieved primarily through the use of new and more powerful equipment, larger panels, and more flexible production scheduling. Nineteen-eighty-eight productivity figures show that faces installed after 1984 were 73% more productive than faces installed before that date (Combs, 1990).

It was during this period that equipment models were introduced, particularly shearers and face conveyors, with greater horsepower and improved reliability. All-electric
Figure 1. Number of U.S. longwalls: 1985 - 1989

Figure 2. Longwall productivity: 1985 - 1988
shearer models, in particular, demonstrated far greater reliability and maintainability than the previous, hydraulically powered units; this was brought about, in part, by the elimination of frequent failure of hydraulic hoses and pumps. Modularization of equipment assemblies increased maintainability. Face conveyors with wider pans, larger chains, and increased horsepower were introduced, and low-maintenance, solid-cast conveyor pans also became more common. The new equipment included shield supports with electrohydraulic controls. Shortened cycle time for these supports lead to increased shearer tram rates.

Operating schedules were streamlined at many new faces; scheduled service time was reduced and travel and lunch times were eliminated at many mines. Also, weekend operations became more common. A 1990 survey showed that newer faces averaged 590 production shifts per year, while older faces averaged only 529 (Combs, 1990).

2.4 Panel Geometry and Equipment Statistics

Longwall panels grew in size by 80% between 1984 and 1988. During this time the average face width increased from 518 feet to 692 feet; average panel length increased from 3,786 feet to 5,118 feet (Peake, 1986; Combs, 1990).
By 1989, the average longwall panel contained about one million tons of coal (Combs, 1990).

Equipment power rose significantly between 1985 and 1988. Average shearer horsepower rose by 25% between 1985 and 1988, from 442 hp to 552 hp. During the same period, face conveyor horsepower rose by 25%, from 601 hp to 752 hp (Coal Age, August 1986; Combs, 1990). Face voltage at many faces was increased from 990 v to 2,300 or 4,160 v in order to accommodate more powerful equipment.

Automation of face equipment increased also, particularly the use of shield supports with electrohydraulic controls. In 1985, 16.7% of all faces had shield supports with electrohydraulic controls; by 1988, this figure had risen to 28.4% (Coal Age, August 1986; Combs, 1990). Electrohydraulic controls combined with increased hydraulic fluid-pumping capacity were responsible for reducing support-cycle times to below five seconds at some faces. With the reduced support-cycle time, shearer tram rates were increased to as high as 45 feet per minute.
III. LONGWALL DELAYS

3.1 Data Collection

The following sub-sections provide information about the longwall operations from which data were collected, formats and composition of the data, and inconsistencies observed in the data.

3.1.1 Distribution of Mines in Study

Production and delay data were collected from 39 longwalls operating in 36 mines. Data corresponding to over fourteen thousand shifts were compiled and entered into a computer database. A separate database was established for each longwall section. The mines were distributed among five states as follows: West Virginia - 21, Virginia - 12, Ohio - 3, Illinois - 2, and Pennsylvania - 1. The mines were located in fourteen coal seams, the largest concentration being in the Pittsburgh and Pocahontas #3 seams. Seam height ranged from 44 inches to 108 inches with an average of 70 inches. Seven of the sections consistently cut rock with an average thickness of 6 inches. Fourteen of the sections consistently left top or bottom coal with an average thickness of slightly more than 7 inches. Average panel
width was 671 feet, and average depth of the coal seams was 913 feet. These figures conform closely to the national longwall averages of 73 inches for seam height (Combs, 1988) and 666 feet for panel width (Sprouls, 1989). The 39 longwalls in this study constitute approximately 41% of the U.S. longwalls presently in operation. See Appendix 1 for specific mine data.

3.1.2. Raw Data Formats

Raw data were collected from three sources: 1) section foremans’ production reports, 2) maintenance foremans’ reports, and 3) computer printouts from proprietary databases. The section foremans’ reports were the most desirable because they usually recorded the exact time of occurrence for all longwall delays in addition to the duration of each delay. Foremans’ reports frequently provided useful information about shift production, percent reject, rate of advance, work-force size, and scheduled delay time. Maintenance foremans’ and computer generated reports rarely recorded the times of occurrence for delays. This information was needed for the calculation of time-to-failure (TTF) statistics. Computer printouts were the least desirable because they often grouped delays into summaries, obscuring the frequency and duration of individual delays. Figures 3, 4, and 5 provide
examples of data from each of the three formats. All data were acquired directly from mine management. Several companies maintained an industrial engineering department which archived delay data. In other cases, production and delay data were kept by a longwall coordinator. A number of companies had entered selected details from section foremans’ reports into a computer database and subsequently disposed of the original data. These databases were only useful in establishing mean-time-to-failure (MTTF) and mean-time-to-repair (MTTR) for major equipment failures.

Whenever possible, the mine site was visited and an underground tour was made. Survey information concerning equipment, geological conditions and panel geometry was sought for each longwall section. Equipment-rebuild data was also obtained when possible.

3.1.3 Composition of Data

Delay data corresponding to an estimated 14,398 production shifts were collected from 39 longwall sections. The number of shifts represented has been estimated because of instances where the delay events were recorded without specific reference to the number of production shifts elapsed. With the exception of one mine, the data range in date of origin from March 1986 to
Figure 3. Raw data sample: production report
Work Report

1. Washed shearer off
2. Washed headders, FF Jacks 3-15
3. Took sealer and telephoned back out and took cable to end of track
4. Drilled and installed 7 rock-drifts
5. Supplied and rock-drilled 400ft in track HP
6. Helped supply crew and delivered rock-drift to HP box
7. Cleared Beta-bus
8. Got 3 bars of Timbers along rib in belt entry
9. Charged Mt-603 scoop
10. Repaired 1 hinge and lid on tool box
11. Trashed, rock-drilled (spillers) and built 6 cables in yard.
12. Ppared all oils in air host and refilled
13. Put cables and hoses on dollars and pulled them down

FOREMAN

MINE FOREMAN

Figure 4. Raw data sample: maintenance report
Figure 5. Raw data sample: computer printout from proprietary database.
March 1989. Most of the data were recorded in 1987 and 1988. Specific delay incidents were recorded for 8,517 of these shifts. Aggregate delay times of grouped delay events were recorded for 5,881 shifts. Section foreman's production reports were available for fifteen longwall sections from thirteen mines. Five of these fifteen sections were further covered by maintenance foreman's reports. Twenty-four longwall sections from twenty-three mines were covered by computer-delay databases. Eighteen of these databases recorded individual delay occurrences. The remaining six recorded aggregate delay times for similar occurrences. Table 1 summarizes the composition of the data.

3.1.4 Inadequacies and Inconsistencies of Data

Certain inadequacies were apparent in much of the data. The failure to record a time of occurrence for each delay was an inadequacy of most computer printout and maintenance data, which precluded the calculation of TTF statistics for many longwall sections. Another deficiency was the failure to record delays of minor consequence. This problem was prevalent among all computer printout data and much of the section foreman's and maintenance foreman's data. Omission of short-duration delays, such as the breaking of rock or momentary conveyor overloads,
<table>
<thead>
<tr>
<th>SECT.</th>
<th>SHIFTS</th>
<th>TIME INTERVAL</th>
<th>IND nodual INCIDENT</th>
<th>COMBINED INCIDENT</th>
<th>PROD. REPORT</th>
<th>MAINT. REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW 1</td>
<td>228</td>
<td>09/19/88-02/07/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 2</td>
<td>384</td>
<td>06/20/88-02/28/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 3</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 4</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 5</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 6</td>
<td>60</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 7</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 8</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 9</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 10</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 11</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 12</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 13</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 14</td>
<td>50</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 15</td>
<td>600</td>
<td>12/01/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 16</td>
<td>50</td>
<td>12/02/87-12/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 17</td>
<td>5136</td>
<td>1978-1988</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 18</td>
<td>175</td>
<td>03/01/86-06/31/86</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 19</td>
<td>241</td>
<td>12/01/88-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 20</td>
<td>200</td>
<td>12/01/88-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 21</td>
<td>114</td>
<td>12/01/88-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 22</td>
<td>245</td>
<td>12/01/88-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 23</td>
<td>238</td>
<td>12/01/88-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 24</td>
<td>455</td>
<td>05/01/88-12/31/88</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 25</td>
<td>1431</td>
<td>12/12/85-07/15/88</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 26</td>
<td>701</td>
<td>10/01/87-12/31/88</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 27</td>
<td>691</td>
<td>01/05/88-02/28/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 28</td>
<td>630</td>
<td>09/01/87-10/04/88</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 29</td>
<td>576</td>
<td>10/04/87-07/23/88</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 30</td>
<td>229</td>
<td>01/03/89-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 31</td>
<td>171</td>
<td>01/03/89-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 32</td>
<td>174</td>
<td>01/03/89-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 33</td>
<td>195</td>
<td>01/03/89-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 34</td>
<td>185</td>
<td>01/03/89-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 35</td>
<td>185</td>
<td>01/03/89-03/31/89</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 36</td>
<td>104</td>
<td>01/02/87-03/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 37</td>
<td>72</td>
<td>01/02/87-03/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 38</td>
<td>129</td>
<td>01/02/87-03/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LW 39</td>
<td>265</td>
<td>01/02/87-03/31/87</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
resulted in an inflation of availability figures. Scheduled delays and inherent delays such as travel time were also omitted in some databases. System availability figures could not be calculated for these mines. Other deficiencies included the occasional omission of delay durations and the failure to qualify delays with an equipment or delay type.

Inconsistencies in the data made it necessary to perform certain remedial operations upon the databases. One inconsistency was mixed or confused shift designs. A standard designation was chosen, and all shift designs were converted to this standard. Also, shift arrival and leave times sometimes overlapped. In such cases, arrival times were not altered; instead, leave times were adjusted to the arrival times of the ensuing shift. Repair operations which spanned a shift transition boundary were split between the consecutive shifts. Delays were sometimes assigned to the wrong shift, which was evident when repair intervals began after the recorded leave time for a particular shift. A program which compared repair intervals to a crew's work interval was used to correct improper shift designs. Where overlapping repair intervals were recorded in databases, a maintenance program was written which truncated secondary repairs, thereby eliminating overlapping delays.
3.2 Classification of Delays

In this study, longwall delays were classified according to equipment type, delay type and specific delay event. Delays were identified as either scheduled or unscheduled, and a short description of each delay was included in the downtime record. This hierarchical classification scheme permitted the identification of equipment types with a large downtime contribution, as well as of the predominant delay types and component failures which plagued the machine.

Equipment Types: Twenty-two Equipment Types were identified and are listed in Table 2. Eight of the twenty-two were considered primary: 1) shearer, 2) face conveyor, 3) shields, 4) stage loader, 5) crusher, 6) section belt, 7) haulage belt, and 8) bin. The availabilities of these primary equipment types were studied individually.

Delay Types: Nine Delay Types were identified and are listed in Table 3. In distinguishing between delay types, causal information about each delay was recorded. Failures of a geologic nature were filtered out of the TTF and TTR analysis of the eight primary Equipment Types. This eliminated much of the environmental bias experienced by individual mines and made equipment performance
Table 2. Equipment Types

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>CODE</th>
<th>QUALIFYING EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BN</td>
<td>BIN, BIN FEEDER, BUNKER, SILO</td>
</tr>
<tr>
<td>2</td>
<td>CR</td>
<td>CRUSHER</td>
</tr>
<tr>
<td>3</td>
<td>CU</td>
<td>COMMUNICATION EQUIPMENT</td>
</tr>
<tr>
<td>4</td>
<td>FA</td>
<td>FACE PROBLEM, SUPPLY, CREW, LUNCH</td>
</tr>
<tr>
<td>5</td>
<td>FC</td>
<td>ARMORED FACE CONVEYOR</td>
</tr>
<tr>
<td>6</td>
<td>HB</td>
<td>BELT OTHER THAN SECTION BELT</td>
</tr>
<tr>
<td>7</td>
<td>HO</td>
<td>HOSE, PIPE</td>
</tr>
<tr>
<td>8</td>
<td>LI</td>
<td>LIGHTING EQUIPMENT</td>
</tr>
<tr>
<td>9</td>
<td>MM</td>
<td>METHANE MONITOR</td>
</tr>
<tr>
<td>10</td>
<td>MT</td>
<td>MANTRIP, TRACK, MONORAIL</td>
</tr>
<tr>
<td>11</td>
<td>PD</td>
<td>PORTAL DELAY</td>
</tr>
<tr>
<td>12</td>
<td>PM</td>
<td>PUMP</td>
</tr>
<tr>
<td>13</td>
<td>PW</td>
<td>POWER</td>
</tr>
<tr>
<td>14</td>
<td>RF</td>
<td>ROOF PROB., JACKS, PROPS, CRIBS, TIMBERS</td>
</tr>
<tr>
<td>15</td>
<td>RX</td>
<td>DRAW ROCK INTERFERENCE</td>
</tr>
<tr>
<td>16</td>
<td>SA</td>
<td>SAFETY MEETINGS, INSPECTIONS, DRILLS</td>
</tr>
<tr>
<td>17</td>
<td>SB</td>
<td>SECTION BELT/TAILPIECE</td>
</tr>
<tr>
<td>18</td>
<td>SD</td>
<td>SHIELDS</td>
</tr>
<tr>
<td>19</td>
<td>SH</td>
<td>SHEARER</td>
</tr>
<tr>
<td>20</td>
<td>SL</td>
<td>STAGELOADER</td>
</tr>
<tr>
<td>21</td>
<td>VT</td>
<td>VENTILATION PROBLEM/WORK, DUST PROB.</td>
</tr>
<tr>
<td>22</td>
<td>UK</td>
<td>UNKNOWN/OTHER</td>
</tr>
</tbody>
</table>

Table 3. Delay Types

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>CODE</th>
<th>DELAY TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>UNDER CAPACITY</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>ELECTRICAL FAILURE</td>
</tr>
<tr>
<td>3</td>
<td>EH</td>
<td>ELECTROHYDRAULIC FAILURE</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>GEOLOGIC DISTURBANCE</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>HYDRAULIC FAILURE</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>MECHANICAL FAILURE</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>PREPARATORY ACTIVITY</td>
</tr>
<tr>
<td>8</td>
<td>SA</td>
<td>SAFETY REQUIREMENTS</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>VENTILATION REQUIREMENTS</td>
</tr>
</tbody>
</table>
comparisons more relevant.

Specific Delay Events: Specific Delay Event classifications describe a particular repair or service activity or the failure of a specific equipment component or assembly. One hundred and twelve Specific Delay Events were recognized. These events were divided among the nine Delay Types according to their causal nature. The identification of Specific Delay Events allows expected life analyses of equipment components to be performed. Such analyses can be used for rebuild and replacement scheduling and for identifying substandard parts. A complete list of Specific Delay Events is given in Table 4.
<table>
<thead>
<tr>
<th>Electrical</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 Haul Dr</td>
<td>050 Splice/trim belt</td>
</tr>
<tr>
<td>002 Cutter Drive</td>
<td>051 Gears, Gearbox</td>
</tr>
<tr>
<td>003 Ground, Fuse, CIR Wire, Connection</td>
<td>052 Tension Chain</td>
</tr>
<tr>
<td>004 Cables, Splices</td>
<td>053 Broken Chain, Rope off TP tu</td>
</tr>
<tr>
<td>005 Breakers</td>
<td>054 Chain Hung or Fouled in Race</td>
</tr>
<tr>
<td>006 Remote Control, Host, Sequence Roll, Pull Cord, Lock out</td>
<td>055 Broken/Hung Flight</td>
</tr>
<tr>
<td>007 Thermister</td>
<td>056 Cow, Cowl Arm/Blade</td>
</tr>
<tr>
<td>008 Overloads</td>
<td>057 Shearer Drum</td>
</tr>
<tr>
<td>009 Communications, Prestart</td>
<td>058 Spill Tray, Guard</td>
</tr>
<tr>
<td>010 Lights</td>
<td>059 Bretby, Cable Anchor</td>
</tr>
<tr>
<td>011 Power Center, High Voltage</td>
<td>060 Trapping Shoe, Shearer Derailed</td>
</tr>
<tr>
<td>012 Junction Box, Panel Box, Power Supply</td>
<td>061 Bushing, Bearing</td>
</tr>
<tr>
<td>013 Mantrip, Elev</td>
<td>062 Align Tailpiece, Push Stage Loader</td>
</tr>
<tr>
<td>014 Drives (Other) [booster, static-starter, quad, friction, FC] Bin Feeder</td>
<td>063 Remove Belt</td>
</tr>
<tr>
<td>016 Problem, Unknown Inoperable, Trouble Shoot, Malfunction</td>
<td>064 Straighten Panline</td>
</tr>
<tr>
<td>015 Batteries</td>
<td>065 Bin, Tipple, Silo, Skip, Hoist, Outside Belt</td>
</tr>
<tr>
<td></td>
<td>066 Weld Bits, Spot Bit</td>
</tr>
<tr>
<td></td>
<td>067 Service and Bit</td>
</tr>
<tr>
<td></td>
<td>068 Base Lift Jack, Clevis</td>
</tr>
<tr>
<td></td>
<td>069 Relay Bar, Bridge Plate</td>
</tr>
<tr>
<td></td>
<td>070 Set Tips, Adjust Canopy</td>
</tr>
<tr>
<td></td>
<td>071 Covers / Hub Caps Off</td>
</tr>
<tr>
<td></td>
<td>072 Eicotrack, Haulage Wheel</td>
</tr>
<tr>
<td></td>
<td>073 Sprocket, Dynachain</td>
</tr>
<tr>
<td></td>
<td>074 Goose Neck, Pans, Sandwich Plate, Dog Bone</td>
</tr>
<tr>
<td></td>
<td>075 Ranging Arms</td>
</tr>
<tr>
<td></td>
<td>076 Impactor</td>
</tr>
<tr>
<td></td>
<td>077 Lump Breaker</td>
</tr>
<tr>
<td></td>
<td>078 Torque Shaft, Quill Shaft</td>
</tr>
<tr>
<td></td>
<td>079 Rollers, Belt Brake</td>
</tr>
<tr>
<td></td>
<td>080 Tailpiece Take-Up</td>
</tr>
<tr>
<td></td>
<td>081 Problem, Off, Inoperable Down</td>
</tr>
<tr>
<td></td>
<td>082 Friction Drives, Drives (Other)</td>
</tr>
<tr>
<td></td>
<td>083 Drive Belt Off</td>
</tr>
</tbody>
</table>
Table 4. Specific Delay Events (continued)

<table>
<thead>
<tr>
<th>HYDRAULIC</th>
<th>GEOLOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 HYDRAULIC HOSE/PIPE FITTING LEAK</td>
<td>150 BREAK ROCK</td>
</tr>
<tr>
<td>101 WATER HOSE/PIPE FITTING LEAK</td>
<td>151 GOBBED OUT, HUNG</td>
</tr>
<tr>
<td>102 HYDRAULIC PUMP</td>
<td>153 SOFT BOTTOM SHIELDS PLOWING PAN LEANING</td>
</tr>
<tr>
<td>103 WATER PUMP</td>
<td>PAN NOT PUSH TAILPIECE HUNG</td>
</tr>
<tr>
<td>104 VALVES</td>
<td>154 SHIELDS WON'T SET OR REACH TOP</td>
</tr>
<tr>
<td>105 RANGING ARM RAM, SHIELD PUSH RAM</td>
<td>155 CUT ROCK RECUR BOTTOM BINDER ROCK</td>
</tr>
<tr>
<td>106 LEG RAM</td>
<td>156 CLEARANCE PROB</td>
</tr>
<tr>
<td>107 HYDRAULIC props</td>
<td>157 BAD TOP/RIBS CRIB/TIMBER/PROP /BOLTING WORK</td>
</tr>
<tr>
<td>109 TORQUE CONVERTER, COUPLER, SOFT PLUGS, SPEED REDUCER</td>
<td>159 CLEAN SHIELDS</td>
</tr>
<tr>
<td>110 FILTERS</td>
<td>160 FAULT</td>
</tr>
<tr>
<td>111 GEAR/HYDRAULIC OIL, SERVICE, WATER IN OIL</td>
<td>161 ROCK/ROOF FALL</td>
</tr>
<tr>
<td>112 WATER SPRAYS, NOZZLE WATER MANIFOLD</td>
<td>162 FLOODED FACE OR TRACK</td>
</tr>
<tr>
<td>113 TAILPIECE TAKE-UP ADVANCE RAM</td>
<td>163 GROUT FACE/TOP</td>
</tr>
<tr>
<td>114 PROBLEM, DOWN, OFF TROUBLE SHOOT</td>
<td>164 SHOOT OR CUT KETTLEBOTTOM, OR ROOF ROLL</td>
</tr>
<tr>
<td>115 HAULAGE DRIVE (SH)</td>
<td>166 DRAW ROCK CAUSE STOPPAGE OF SPECIFIC PIECE OF EQUIPMENT</td>
</tr>
<tr>
<td>116 CUTTER DRIVE</td>
<td></td>
</tr>
<tr>
<td>117 DRIVES (OTHER)</td>
<td></td>
</tr>
<tr>
<td>118 COWL</td>
<td></td>
</tr>
<tr>
<td>CAPACITY</td>
<td>SAFETY</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>200 WAIT ON SHIELDS</td>
<td>300 INJURY</td>
</tr>
<tr>
<td>201 BIN, BIN FEEDER</td>
<td>301 INSPECTION, VIOLATION</td>
</tr>
<tr>
<td>TIPPLE, SILO, SKIP, HOIST</td>
<td>PERMISSIBILITY CHECK</td>
</tr>
<tr>
<td>202 SPILLAGE</td>
<td>302 TRAINING, DRILLS</td>
</tr>
<tr>
<td>203 OVERLOAD/UNLOAD</td>
<td>303 SAFETY MEETING</td>
</tr>
<tr>
<td>FACE CONVEYOR, BELT, CRUSHER, STAGELOADER</td>
<td></td>
</tr>
<tr>
<td>PREPARATORY</td>
<td>VENTILATION</td>
</tr>
<tr>
<td>250 POWER CENTER MOVE</td>
<td>350 AIR QUANTITY LOW, FAN DOWN</td>
</tr>
<tr>
<td>251 DATA COLLECTOR, OIL SAMPLE</td>
<td>351 ROCK DUST, DUST</td>
</tr>
<tr>
<td>252 TRAINING</td>
<td>352 METHANE WARNING, SMOKE</td>
</tr>
<tr>
<td>253 RUN SUPPLIES IN/OUT, REMOVE MONO-RAIL,</td>
<td>354 BUILD/KNOCK STOPPING ADJUST VENTILATION</td>
</tr>
<tr>
<td>MOVE EQUIP</td>
<td>CURTAINS</td>
</tr>
<tr>
<td>254 REMOVE TIMBERS FROM GATEWAYS OR PAN</td>
<td></td>
</tr>
<tr>
<td>255 PRODUCTION MEETING</td>
<td>NOT AVAILABLE</td>
</tr>
<tr>
<td>RCP, LUNCH</td>
<td>401 PROBLEM, UNKNOWN</td>
</tr>
<tr>
<td>256 MEASURE CENTERS OR FACE HEIGHT OR WEB,</td>
<td>DOWN, OFF, TROUBLE</td>
</tr>
<tr>
<td>CALIBRATE METH MON</td>
<td>SHOOT</td>
</tr>
<tr>
<td>257 MANTRIP UNAVAILABLE, PORTAL DELAY, CREW</td>
<td></td>
</tr>
<tr>
<td>SHORT OR LATE</td>
<td></td>
</tr>
<tr>
<td>258 OVER SUMP, XTRA CUT AT GATE END, CUT 1</td>
<td></td>
</tr>
<tr>
<td>WAY WHERE BIDI NORMAL</td>
<td></td>
</tr>
<tr>
<td>259 FLIT</td>
<td></td>
</tr>
<tr>
<td>260 TRAVEL IN/OUT</td>
<td></td>
</tr>
</tbody>
</table>
4.1 Raw Database Types

dBase IV database software was used to record and organize the field data collected. Raw data were entered into one of two database formats: the Shift Database and the Downtime Database. One Shift Database and Downtime Database were created for each longwall section, except when prevented by a severe omission of data. Tables 5 and 6 list the field names, field types, and contents of the Shift Database and of the Downtime Database respectively.

4.1.1 Shift Database Format

The Shift Database format contains all information relevant to the shift as a whole. Each record in a particular Shift Database corresponds to a single shift at a single section. Fields one and two contain the date and shift during which the given data were collected. These two fields were used to correlate data between Shift Databases and Downtime Databases. Fields three through six list arrival and departure times and the mining interval. These times were recorded as minutes after midnight 01/01/85. This reference base was used to locate all timed events. Field seven, LEAV2_SECT, is an adjusted
Table 5. Shift Database format

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Name</th>
<th>Field Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATE</td>
<td>D</td>
<td>DATE</td>
</tr>
<tr>
<td>2</td>
<td>SHIFT</td>
<td>C/1</td>
<td>SHIFT</td>
</tr>
<tr>
<td>3</td>
<td>ARR_SECT</td>
<td>N/7.0</td>
<td>ARRIVAL TIME ON SECTION</td>
</tr>
<tr>
<td>4</td>
<td>START_MINE</td>
<td>N/7.0</td>
<td>START TIME COAL LOADING</td>
</tr>
<tr>
<td>5</td>
<td>END_MINE</td>
<td>N/7.0</td>
<td>STOP TIME COAL LOADING</td>
</tr>
<tr>
<td>6</td>
<td>LEAVE_SECT</td>
<td>N/7.0</td>
<td>DEPARTURE TIME OFF SECTION</td>
</tr>
<tr>
<td>7</td>
<td>LEAV2_SECT</td>
<td>N/7.0</td>
<td>ADJUSTED DEPARTURE TIME</td>
</tr>
<tr>
<td>8</td>
<td>TIME_IN</td>
<td>N/2.0</td>
<td>TRAVEL TIME IN</td>
</tr>
<tr>
<td>9</td>
<td>TIME_OUT</td>
<td>N/2.0</td>
<td>TRAVEL TIME OUT</td>
</tr>
<tr>
<td>10</td>
<td>TIME_RCP</td>
<td>N/2.0</td>
<td>TIME FOR FACE INSPECTION</td>
</tr>
<tr>
<td>11</td>
<td>MDELAY</td>
<td>N/3.0</td>
<td>FACE DELAY TIME</td>
</tr>
<tr>
<td>12</td>
<td>TDELAY</td>
<td>N/3.0</td>
<td>TOTAL SHIFT DELAY TIME</td>
</tr>
<tr>
<td>13</td>
<td>TDEL_BEGIN</td>
<td>N/3.0</td>
<td>DELAY WITH BEGIN TIME</td>
</tr>
<tr>
<td>14</td>
<td>IDELAY</td>
<td>N/3.0</td>
<td>INHERENT DELAY</td>
</tr>
<tr>
<td>15</td>
<td>MAVAIL</td>
<td>N/5.2</td>
<td>FACE AVAILABILITY</td>
</tr>
<tr>
<td>16</td>
<td>TAVAIL</td>
<td>N/5.2</td>
<td>SYSTEM AVAILABILITY</td>
</tr>
<tr>
<td>17</td>
<td>TTF_FACTOR</td>
<td>N/6.4</td>
<td>TTF ADJUSTMENT FACTOR</td>
</tr>
<tr>
<td>18</td>
<td>WORKERS</td>
<td>N/2.0</td>
<td>NUMBER OF WORKERS</td>
</tr>
<tr>
<td>19</td>
<td>PASSES</td>
<td>C/5</td>
<td>NUMBER OF SHEARER PASSES</td>
</tr>
<tr>
<td>20</td>
<td>FEET_HEAD</td>
<td>C/5</td>
<td>ADVANCE AT HEAD (FEET)</td>
</tr>
<tr>
<td>21</td>
<td>FEET_TAIL</td>
<td>C/5</td>
<td>ADVANCE AT TAIL (FEET)</td>
</tr>
<tr>
<td>22</td>
<td>FEET_ADVAN</td>
<td>C/5</td>
<td>AVERAGE ADVANCE HEAD/TAIL</td>
</tr>
<tr>
<td>23</td>
<td>RAW_TONS</td>
<td>C/4</td>
<td>RAW SHIFT TONNAGE</td>
</tr>
<tr>
<td>24</td>
<td>CLEAN_TONS</td>
<td>C/4</td>
<td>CLEAN SHIFT TONNAGE</td>
</tr>
<tr>
<td>25</td>
<td>COMMENTS</td>
<td>C/40</td>
<td>SPECIAL CONDITIONS</td>
</tr>
</tbody>
</table>

Table 6. Downtime Database format

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Name</th>
<th>Field Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATE</td>
<td>D</td>
<td>DATE</td>
</tr>
<tr>
<td>2</td>
<td>SHIFT</td>
<td>C/1</td>
<td>SHIFT</td>
</tr>
<tr>
<td>3</td>
<td>EQUIP</td>
<td>C/6</td>
<td>EQUIPMENT TYPE/FAILURE CODE</td>
</tr>
<tr>
<td>4</td>
<td>TIME</td>
<td>N/7.0</td>
<td>TIME OF BREAKDOWN (MIN PAST BENCHMARK)</td>
</tr>
<tr>
<td>5</td>
<td>BEGIN</td>
<td>N/4.0</td>
<td>TIME OF BREAKDOWN (MIN PAST MIDNIGHT)</td>
</tr>
<tr>
<td>6</td>
<td>BEGIN2</td>
<td>N/4.0</td>
<td>ADJUSTED TIME OF BREAKDOWN</td>
</tr>
<tr>
<td>7</td>
<td>DURATION</td>
<td>N/4.0</td>
<td>TIME TO REPAIR</td>
</tr>
<tr>
<td>8</td>
<td>DURATION2</td>
<td>N/4.0</td>
<td>ADJUSTED DURATION</td>
</tr>
<tr>
<td>9</td>
<td>TYPE</td>
<td>C/4</td>
<td>FAILURE TYPE (M, E, H, G, ETC)</td>
</tr>
<tr>
<td>10</td>
<td>SCHEDULED</td>
<td>L</td>
<td>SCHEDULED DELAY YES/NO</td>
</tr>
<tr>
<td>11</td>
<td>COMM</td>
<td>C/35</td>
<td>DESCRIPTION OF BREAKDOWN</td>
</tr>
</tbody>
</table>
leave time which extends the listed departure time to encompass work between shifts. Fields eight and nine are incoming and outgoing travel times. Field ten, TIME_RCP, records the pre-mining interval used for face and safety checks. Field eleven, MDELAY, records the minutes of face delay time during the shift. Field twelve, TDELAY, contains the minutes of total delay time. TDEL_BEGIN records the minutes of delay time for all downtime events with a recorded time of occurrence. Field fourteen, IDELAY, records the inherent or organizational delay time. Inherent delays constitute such items as travel time, face checks, safety talks, lunch and production meetings. Field fifteen, MAVAIL, contains the face availability, and TAVAIL lists the total system availability. The difference between MAVAIL and TAVAIL is due to the effect of inherent delay time and the effect of delays during transit to and from the section. TTFFACTOR is an indicator of the percentage of delays which were recorded without a time of occurrence. The calculation of TTFFACTOR is described in Section 5.1.1. Such occurrences cannot be located in time and therefore are excluded from all TTF calculations. The effect of filtering out these incidents is to inflate the apparent active time between failures. Fields eighteen and nineteen list the number of face workers and the number of complete shears. Fields twenty
through twenty-two record the feet of advance of the headgate, the tailgate, and an average advance for the entire face. The final three fields record raw tonnage and clean tonnage for the shift and a notation of any special face conditions.

4.1.2 Downtime Database Format

The Downtime Database format contains all information relevant to a singular downtime occurrence. The eleven fields of the Downtime Database are listed in Table 6. Each record in a Downtime Database corresponds to a singular delay occurrence on a particular longwall face. Fields one and two identify the date and shift during which the downtime event took place. Correlation of these fields with identical fields in the Shift Database makes it possible to calculate the shift statistics MDELAY, TDELAY, TDEL_BEGIN, IDELAY, MAVAIL and TAVAIL. Field three, EQUIP, contains two letters identifying the equipment type followed by three digits identifying the Specific Delay Event responsible for a period of delay. The fields TIME and BEGIN record the time of occurrence of the delay incident. Time is recorded in minutes past midnight 01/01/85. This permits the calculation of statistics such as TTF upon a timeline common to all database section records. BEGIN records the same time of
occurrence in minutes after midnight on the day of occurrence, and is intended for ease of operator interpretation. Field five, BEGIN2, presents an adjusted time of occurrence in minutes after midnight which differs from BEGIN in cases where downtime incidents have overlapped. The treatment of overlapping downtime will be discussed in Section 4.2.7. Fields seven and eight list the duration and adjusted duration of the downtime occurrence, also called the time to repair (TTR). The adjusted duration results from an overlapping delay. The field TYPE indicates which of the nine delay types best characterizes the delay event. SCHEDULED is a logical field which indicates whether the event was scheduled (.T.) or unscheduled (.F.). The COMMENTS field contains a brief description of the specific delay occurrence, and is intended to supplement the EQUIP field by providing a description more detailed than that used to categorize each of the one-hundred-and-twelve Specific Delay Events. A complete listing of the nomenclature used in the COMMENTS field is given in Appendix II.

In some cases the information available concerning delay incidents from a particular section was either too sparse or otherwise given in a format which could not be translated into the previously described Shift and Downtime Database formats. In most cases, unacceptable
formats were the result of some sort of aggregation or summarization of data. In such cases, information was usually not available concerning specific delay incidents or the delays specific to a single shift. Alternative formats were designed which were amenable to these data. In general these data were not deemed useful for the calculation of availability figures or for the generation of time-to-failure (TTF) and time-to-repair (TTR) statistics. As such these alternative formats will not be discussed.

4.2 Database Maintenance Programs

Seven database maintenance programs have been written for the purpose of simplifying data entry and to correct inconsistencies within the data. A controlling program, MAINTAIN, is used to run the seven maintenance programs in an automated sequence. In order to run the maintenance programs, and to run the data generation programs which follow, a Shift Database and a Downtime Database must be created in accordance with Sections 4.1.1 and 4.1.2. The names and field types of all database fields must be identical to those presented in Table 5 and Table 6. The Shift and Downtime Databases must be created using Ashton-Tate dBASE software version III-Plus, IV or a
compatible version. Refer to a dBASE manual for an
description of the field types. Data must be input using
the following units: time (minutes), distance (feet) and
tonnage (short ton).

To perform the database maintenance process, the
following programs must first be copied to a hard-drive
subdirectory: MAINTAIN, ADDTYPE, FILLSFT, CORRSFT,
INTERSFT, ADDSFT, TRAVRCP and OVERLAP. If disk copies of
these programs are not available, program files identical
to those found in Appendix III may be created using the
MODIFY COMMAND editor from dBASE. Next, the Shift and
Downtime Databases which are to be maintained must be
copied into the same subdirectory. dBASE III Plus or dBASE
IV, or a compatible version from the same subdirectory,
should then be booted up. User should then exit from the
assist menu to the dot prompt, type MAINTAIN and enter the
names of the Shift Database and Downtime Database to be
maintained at the program query. When the maintenance
sequence is completed, all database files will be closed
and the cursor will return to the dot prompt. "Use
<database name>" should be typed at this prompt, followed
by "browse" in order to enable the newly maintained
databases to be viewed.

At this time both dBASE III-Plus and dBASE IV have a
number of "bugs." Therefore when preparing to run the data
maintenance or data generation sequences the dBase command
"RUN" may not be invoked. This command temporarily
transfers control to DOS and may lead to problems with the
RAM memory stack. Problems of this type typically are
accompanied by messages such as "DISK FULL" or "DATA
ERROR." If this occurs dBASE should be re-installed and
all damaged program and database files should be recopied.
Damaged files can be identified with a utility program
such as the Norton Utilities Disk Doctor. The use of DOS
4.0 should be avoided, and memory resident programs such
as "Fastopen," "Sidekick" or "Burnout" may not be
installed while dBASE is in use. Because it was necessary
to include the dBASE "RUN" command at the end of the
MAINTAIN sequence and at the end of the DATAGEN sequence,
it is recommended that dBASE be rebooted after each of
these runs.

4.2.1 ADDTYPE Program

The seven maintenance programs are performed in a
series, the first being the ADDTYPE program. ADDTYPE
operates exclusively upon the Downtime Database.
ADDTYPE's function is to simplify the data entry process
by automating the assignment of a Delay Type code to the
TYPE field of the Downtime Database. Specific failure
event codes are grouped by delay type. For example, codes
001 to 049 represent electrical failures and codes 050 to 099 represent mechanical failures. Because of this grouping, a delay type can be positively identified on the basis of the last three characters of the EQUIP field. The TYPE field was created, despite this apparent redundancy, to facilitate the frequently performed operation of filtering out delays of a particular type. When entering raw data into a Downtime Database it is not necessary to enter a Delay Type into the TYPE field. Assignment of a Specific Delay Event code should be made in light of the particular equipment component which has failed and the causal nature of the delay.

4.2.2 FILLSFT Program

The second program of the maintenance series, FILLSFT, operates on both the Shift Database and the Downtime Database. This program performs the following three functions: 1) it fills in blank DATE and SHIFT fields of the Downtime Database; 2) it deletes empty records; and 3) it calculates and substitutes average shift advance to the FEET_ADVAN field.

A thorough foreman's report may list as many as fifteen work stoppages during a single shift. Such a report would yield fifteen records within a Downtime Database, each with an identical DATE and SHIFT field.
The first function of FILLSFT requires that the DATE and SHIFT fields be entered for the first delay of a particular shift only; the remaining delays during that shift need not contain a DATE or SHIFT field entry.

A common method for inputting data with the Ashton-Tate dBase is by use of the APPEND command. This command creates a blank record at the end of a database file. There are a number of ways in which a collection of these empty records can be accidentally gathered. Such records can thwart attempts to determine the range of the DATE field. The second function of the FILLSFT program is to delete any empty records.

Whenever possible, rate-of-advance data was entered as two figures, advance at the headgate and advance at the tailgate. This information makes it possible to study the effect of alignment problems upon the productivity of a face. For comparison of advance rates between sections, a single figure for the average advance of the entire face is calculated and entered into the FEETADVAN field. It is the third function of FILLSFT which performs this operation.

4.2.3 CORRSFT Program

The first function of CORRSFT is to correct the SHIFT field designations within the Shift and Downtime
Databases. CORRSFT also converts all fields which locate an occurrence in time to minutes after midnight 01/01/85. BEGIN and BEGIN2 are exceptions which remain in minutes after midnight of the day of occurrence.

Two situations arise in which the SHIFT field needs to be redesignated. The first case arises when the shift designations found in the raw data differ from those used in the standardized Shift and Downtime Database formats. The standard used in this study is as follows: shift = "1" (midnight to 8 AM), shift = "2" (8 AM to 4 PM), shift = "3" (4 PM to midnight). The second type of correction occurs when a downtime incident is assigned to a shift from which it is temporally excluded. This is the case when the time of occurrence of a delay event is either before the shift crew's arrival at the face or after the crew's departure from the face.

4.2.4 INTERSFT Program

The fourth program of the maintenance series, INTERSFT, adjusts shift departure times whenever delays occur between shifts and splits delays which span two shifts.

When a delay occurs between shifts without extending beyond the arrival of the inbound crew, the departure time of the outbound crew is adjusted to equal the arrival time
of the inbound crew. In such cases, it is assumed that a contingent of the retiring crew remained behind to operate or repair equipment until the arrival of the relief crew. Extending the departure time of the outbound crew extends the available face time and renders face availability calculations more accurate. Note that, if downtime is recorded during an interval when no crew is at the face, the calculated face availability would be less than zero.

Delays which span two shifts are split. The first portion of the delay goes to the retiring shift and ends upon arrival of the relief crew. The second portion of the delay goes to the relief shift and begins upon the arrival at the face of the relief crew. The departure time of the retiring crew is adjusted to the arrival time of the relief crew.

4.2.5 ADDSFT Program

The ADDSFT program creates surrogate records in both the Shift and Downtime Databases. Surrogate records are used to fill gaps in these databases.

In the case of the Shift Database, the gaps filled are missing Shift Database records for which a Downtime Database record exists. In the study data, such occurrences were the result of two shifts' downtime having been logged on a single production report (an event which
occurred frequently when a single delay spanned two shifts) or typographical errors. In such cases, ADDSFT creates a surrogate Shift record with the following information:

1) **DATE** - Date of missing shift record.
2) **SHIFT** - Missing shift.
3) **ARR_SECT** - Average arrival time for this shift.
4) **LEAVE_SECT** - Average departure time for this shift.
5) **LEAV2_SECT** - Same as LEAVE_SECT.
6) **TIME_IN** - Average travel time, ingoing.
7) **TIME_OUT** - Average travel time, outgoing.
8) **TIME_RCP** - Average face check/preparation time.
9) **COMMENTS** - "SURROGATE SHIFT RECORD TYPE #2".

The remaining fields are left blank. These records make it possible to calculate availability figures for cases of missing Shift Database records.

ADDSFT fills gaps in Downtime Databases for which there are no Shift Database and no Downtime Database records. A surrogate Downtime Database record is created in cases which correspond to idle periods on the section or to production reports which were lost. The following
Information is contained in the surrogate Downtime Database record:

1) **DATE** - Date of missing downtime record.
2) **SHIFT** - Missing shift.
3) **EQUIP** - Day of week of DATE.
4) **TIME** - Minutes between midnight 01/01/85 and time of the start of the shift.
5) **BEGIN** - Start of shift, minutes after midnight \((SHIFT - 1) \times 480\).
6) **DURATION** - 480.
7) **TYPE** - P.
8) **SCHEDULED** - (.T.)
9) **COMM** - "NO WORK OR MISSING SHIFT RECORD."

These surrogate records make the timeline continuous. All time between delays must be accounted for in order to calculate TTF statistics.

4.2.6 **TRAVRCP Program**

The TRAVRCP program creates Downtime Database records for the following scheduled delay events: travel in, travel out, and face check/preparation (RCP). This is the final phase of filling gaps within the timeline. All time which is not accounted for by listed delays, travel
in/travel out delays, face check/preparation delays and idle shifts is assumed to be active production time.

4.2.7 OVERLAP Program

The OVERLAP program adjusts the Downtime Database fields BEGIN and DURATION in order to eliminate overlapping delay time. The adjusted field values are recorded in the fields BEGIN2 and DURATION2. Generally, when two delay events overlap one event remains unchanged while the other is shortened to remove the overlapping portion. The priority of a delay event determines which delay is truncated. The following is a list of delay categories in decreasing priority: 1) listed delay event (listed on production report), 2) travel delay, 3) RCP delay, and 4) idle shift delay. When a travel delay overlaps with any delay, the travel delay's DURATION field is set to 0. It is assumed that crews are changing out at the face if the delay (repair) is ongoing during crew travel. The OVERLAP program is the final program of the MAINTAIN series.

4.3 Data Generation Programs

After maintaining the Shift Database and the Downtime Database for a particular longwall section, the data
generation programs can be run. The eleven data generation programs are: SFTDELAY, SFTAVAIL, TTFRPG, TTPRPG, AUTOTTF, AUTOTTR, EQUIP%, TYPE%, STATS, SECAVAIL, and MEANTIME. With the exception of TTFRPG and TTPRPG, these programs are run in an automated sequence controlled by the program DATAGEN. Data generation programs manipulate the raw data contained in the Shift Database and the Downtime Database in order to calculate various statistics which characterize the performance of a particular longwall section. The calculated statistics either fill empty fields of the Shift Database or fill fields in newly generated databases. The Shift Database fields which are filled with generated data are: MDELAY, TDELAY, TDEL, BEGIN, IDelay, MAVAIL, TAVAIL, and TTFFACTOR. See Table 6 for a description of these fields. Three types of generated databases are created: 1) TTF Database, 2) TTR Database, and 3) Result Database.

A TTF Database or TTR Database can be created for any Equipment Type or Delay Type, or combination thereof. Tables 7, 8, and 9 list the field types and contents of the TTF, TTR, and Result Databases respectively.

The TTR database fields DATE, SHIFT, EQUIP, TIME and BEGIN are identical to the Downtime Database fields having the same names. These fields were included for correlation between the TTR database and the Downtime
Table 7. TTF Database format

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Name</th>
<th>Field Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATE</td>
<td>D</td>
<td>DATE</td>
</tr>
<tr>
<td>2</td>
<td>SHIFT</td>
<td>C/1</td>
<td>SHIFT</td>
</tr>
<tr>
<td>3</td>
<td>EQUIP</td>
<td>C/6</td>
<td>EQUIPMENT TYPE/FAILURE CODE</td>
</tr>
<tr>
<td>4</td>
<td>TIME</td>
<td>N/7.0</td>
<td>TIME OF OCCURRENCE (MIN. PAST BM)</td>
</tr>
<tr>
<td>5</td>
<td>BEGIN</td>
<td>N/4.0</td>
<td>TIME OF OCCURRENCE (MIN. PAST 12 PM)</td>
</tr>
<tr>
<td>6</td>
<td>DURATION2</td>
<td>N/4.0</td>
<td>ADJUSTED DURATION</td>
</tr>
<tr>
<td>7</td>
<td>ACCUMDOWN</td>
<td>N/7.0</td>
<td>INTER-DELAY DOWNTIME</td>
</tr>
<tr>
<td>8</td>
<td>TIME_IDLE</td>
<td>N/7.0</td>
<td>INTER-DELAY IDLE TIME</td>
</tr>
<tr>
<td>9</td>
<td>TTFACT</td>
<td>N/7.0</td>
<td>ACTIVE TIME TO FAILURE</td>
</tr>
<tr>
<td>10</td>
<td>TTFTOT</td>
<td>N/7.0</td>
<td>TOTAL TIME TO FAILURE</td>
</tr>
</tbody>
</table>

Table 8. TTR Database format

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Name</th>
<th>Field Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATE</td>
<td>D</td>
<td>DATE</td>
</tr>
<tr>
<td>2</td>
<td>SHIFT</td>
<td>C/1</td>
<td>SHIFT</td>
</tr>
<tr>
<td>3</td>
<td>EQUIP</td>
<td>C/6</td>
<td>EQUIPMENT TYPE/FAILURE CODE</td>
</tr>
<tr>
<td>4</td>
<td>TIME</td>
<td>N/7.0</td>
<td>TIME OF OCCURRENCE (MIN. PAST BM)</td>
</tr>
<tr>
<td>5</td>
<td>BEGIN</td>
<td>N/4.0</td>
<td>TIME OF OCCURRENCE (MIN. PAST 12 PM)</td>
</tr>
<tr>
<td>6</td>
<td>TTR</td>
<td>N/7.0</td>
<td>DURATION OF DELAY</td>
</tr>
<tr>
<td>Field</td>
<td>Field Name</td>
<td>Field Type</td>
<td>Content</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>MINE</td>
<td>C/2</td>
<td>MINE ID. PREFIX</td>
</tr>
<tr>
<td>2</td>
<td>RAW_AVE</td>
<td>N/4.0</td>
<td>RAW SHORT TONS/SFT</td>
</tr>
<tr>
<td>3</td>
<td>CLEAN_AVE</td>
<td>N/4.0</td>
<td>CLEAN SHORT TONS/SFT</td>
</tr>
<tr>
<td>4</td>
<td>REJECT</td>
<td>N/5.2</td>
<td>REJECT (%)</td>
</tr>
<tr>
<td>5</td>
<td>PROD_RATE</td>
<td>N/5.2</td>
<td>TONS PER ACTIVE FACE MIN.</td>
</tr>
<tr>
<td>6</td>
<td>TON_MAN</td>
<td>N/4.0</td>
<td>TONS PER FACE MAN * SHIFT</td>
</tr>
<tr>
<td>7</td>
<td>PASS_SFT</td>
<td>N/4.1</td>
<td>SHEARS PER SHIFT</td>
</tr>
<tr>
<td>8</td>
<td>ADVAN_SFT</td>
<td>N/4.1</td>
<td>FACE ADVAN (FT./SFT)</td>
</tr>
<tr>
<td>9</td>
<td>DOWNPRTON</td>
<td>N/7.3</td>
<td>DOWNTIME (MIN./TON)</td>
</tr>
<tr>
<td>10</td>
<td>SFT_WEEK</td>
<td>N/4.1</td>
<td>PRODUCTION SHIFTS PER WEEK</td>
</tr>
<tr>
<td>11</td>
<td>TON_WEEK</td>
<td>N/6.0</td>
<td>RAW TONS/WEEK</td>
</tr>
<tr>
<td>12</td>
<td>WORKER_AVE</td>
<td>N/4.1</td>
<td>NUMBER OF SECTION WORKERS</td>
</tr>
<tr>
<td>13</td>
<td>SHMTTF</td>
<td>N/5.0</td>
<td>MTTF SHEARER</td>
</tr>
<tr>
<td>14</td>
<td>FCMTTF</td>
<td>N/5.0</td>
<td>MTTF FACE CONVEYOR</td>
</tr>
<tr>
<td>15</td>
<td>SDMTTF</td>
<td>N/5.0</td>
<td>MTTF SHIELDS</td>
</tr>
<tr>
<td>16</td>
<td>SLMTTF</td>
<td>N/5.0</td>
<td>MTTF STAGELOADER</td>
</tr>
<tr>
<td>17</td>
<td>CRMSTTF</td>
<td>N/5.0</td>
<td>MTTF CRUSHER</td>
</tr>
<tr>
<td>18</td>
<td>SBMTTF</td>
<td>N/5.0</td>
<td>MTTF SECTION BELT</td>
</tr>
<tr>
<td>19</td>
<td>HBMTTF</td>
<td>N/5.0</td>
<td>MTTF HAULAGE BELT</td>
</tr>
<tr>
<td>20</td>
<td>BNMTTF</td>
<td>N/5.0</td>
<td>MTTF BIN/SKIP/TIPPLE</td>
</tr>
<tr>
<td>21</td>
<td>SYMSTTF</td>
<td>N/5.0</td>
<td>MTTF SYSTEM</td>
</tr>
<tr>
<td>22</td>
<td>SHMTTR</td>
<td>N/5.0</td>
<td>MTTR SHEARER</td>
</tr>
<tr>
<td>23</td>
<td>FCMTR</td>
<td>N/5.0</td>
<td>MTTR FACE CONVEYOR</td>
</tr>
<tr>
<td>24</td>
<td>SDMTR</td>
<td>N/5.0</td>
<td>MTTR SHIELDS</td>
</tr>
<tr>
<td>25</td>
<td>SLMTTR</td>
<td>N/5.0</td>
<td>MTTR STAGELOADER</td>
</tr>
<tr>
<td>26</td>
<td>CRMTR</td>
<td>N/5.0</td>
<td>MTTR CRUSHER</td>
</tr>
<tr>
<td>27</td>
<td>SBMTTR</td>
<td>N/5.0</td>
<td>MTTR SECTION BELT</td>
</tr>
<tr>
<td>28</td>
<td>HBMTR</td>
<td>N/5.0</td>
<td>MTTR HAULAGE BELT</td>
</tr>
<tr>
<td>29</td>
<td>BNMTTR</td>
<td>N/5.0</td>
<td>MTTR BIN/SKIP/TIPPLE</td>
</tr>
<tr>
<td>30</td>
<td>SYMTR</td>
<td>N/5.0</td>
<td>MTTR SYSTEM</td>
</tr>
<tr>
<td>31</td>
<td>SHAVAIL</td>
<td>N/7.3</td>
<td>SHEARER AVAILABILITY</td>
</tr>
<tr>
<td>32</td>
<td>FCavail</td>
<td>N/7.3</td>
<td>FACE CONVEYOR AVAILABILITY</td>
</tr>
<tr>
<td>33</td>
<td>SDavail</td>
<td>N/7.3</td>
<td>SHIELD AVAILABILITY</td>
</tr>
<tr>
<td>34</td>
<td>SLavail</td>
<td>N/7.3</td>
<td>STAGELOADER AVAILABILITY</td>
</tr>
<tr>
<td>35</td>
<td>CRAVAIL</td>
<td>N/7.3</td>
<td>CRUSHER AVAILABILITY</td>
</tr>
<tr>
<td>36</td>
<td>SBavail</td>
<td>N/7.3</td>
<td>SECTION BELT AVAILABILITY</td>
</tr>
<tr>
<td>37</td>
<td>HBavail</td>
<td>N/7.3</td>
<td>HAULAGE BELT AVAILABILITY</td>
</tr>
<tr>
<td>Field</td>
<td>Field Name</td>
<td>Field Type</td>
<td>Content</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>38</td>
<td>BNAVAIL</td>
<td>N/7.3</td>
<td>BIN AVAILABILITY</td>
</tr>
<tr>
<td>39</td>
<td>FACEAVAIL</td>
<td>N/7.3</td>
<td>FACE AVAILABILITY</td>
</tr>
<tr>
<td>40</td>
<td>SYSTAVAIL</td>
<td>N/7.3</td>
<td>SYSTEM AVAILABILITY</td>
</tr>
<tr>
<td>41</td>
<td>INHERDELAY</td>
<td>N/3.0</td>
<td>INHERENT DELAY</td>
</tr>
<tr>
<td>42</td>
<td>SH_UNS</td>
<td>N/7.3</td>
<td>SH % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>43</td>
<td>FC_UNS</td>
<td>N/7.3</td>
<td>FC % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>44</td>
<td>SD_UNS</td>
<td>N/7.3</td>
<td>SD % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>45</td>
<td>SL_UNS</td>
<td>N/7.3</td>
<td>SL % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>46</td>
<td>CR_UNS</td>
<td>N/7.3</td>
<td>CR % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>47</td>
<td>SB_UNS</td>
<td>N/7.3</td>
<td>SB % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>48</td>
<td>HB_UNS</td>
<td>N/7.3</td>
<td>HB % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>49</td>
<td>BN_UNS</td>
<td>N/7.3</td>
<td>BN % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>50</td>
<td>SH_ALL</td>
<td>N/7.3</td>
<td>SH % OF ALL DELAYS</td>
</tr>
<tr>
<td>51</td>
<td>FC_ALL</td>
<td>N/7.3</td>
<td>FC % OF ALL DELAYS</td>
</tr>
<tr>
<td>52</td>
<td>SD_ALL</td>
<td>N/7.3</td>
<td>SD % OF ALL DELAYS</td>
</tr>
<tr>
<td>53</td>
<td>SL_ALL</td>
<td>N/7.3</td>
<td>SL % OF ALL DELAYS</td>
</tr>
<tr>
<td>54</td>
<td>CR_ALL</td>
<td>N/7.3</td>
<td>CR % OF ALL DELAYS</td>
</tr>
<tr>
<td>55</td>
<td>SB_ALL</td>
<td>N/7.3</td>
<td>SB % OF ALL DELAYS</td>
</tr>
<tr>
<td>56</td>
<td>HB_ALL</td>
<td>N/7.3</td>
<td>HB % OF ALL DELAYS</td>
</tr>
<tr>
<td>57</td>
<td>BN_ALL</td>
<td>N/7.3</td>
<td>BN % OF ALL DELAYS</td>
</tr>
<tr>
<td>58</td>
<td>E_UNS</td>
<td>N/7.3</td>
<td>E % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>59</td>
<td>M_UNS</td>
<td>N/7.3</td>
<td>M % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>60</td>
<td>H_UNS</td>
<td>N/7.3</td>
<td>H % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>61</td>
<td>EH_UNS</td>
<td>N/7.3</td>
<td>EH % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>62</td>
<td>G_UNS</td>
<td>N/7.3</td>
<td>G % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>63</td>
<td>C_UNS</td>
<td>N/7.3</td>
<td>C % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>64</td>
<td>P_UNS</td>
<td>N/7.3</td>
<td>P % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>65</td>
<td>SA_UNS</td>
<td>N/7.3</td>
<td>SA % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>66</td>
<td>V_UNS</td>
<td>N/7.3</td>
<td>V % OF UNSCHEDULED DELAYS</td>
</tr>
<tr>
<td>67</td>
<td>E_ALL</td>
<td>N/7.3</td>
<td>E % OF ALL DELAYS</td>
</tr>
<tr>
<td>68</td>
<td>M_ALL</td>
<td>N/7.3</td>
<td>M % OF ALL DELAYS</td>
</tr>
<tr>
<td>69</td>
<td>H_ALL</td>
<td>N/7.3</td>
<td>H % OF ALL DELAYS</td>
</tr>
<tr>
<td>70</td>
<td>EH_ALL</td>
<td>N/7.3</td>
<td>EH % OF ALL DELAYS</td>
</tr>
<tr>
<td>71</td>
<td>G_ALL</td>
<td>N/7.3</td>
<td>G % OF ALL DELAYS</td>
</tr>
<tr>
<td>72</td>
<td>C_ALL</td>
<td>N/7.3</td>
<td>C % OF ALL DELAYS</td>
</tr>
<tr>
<td>73</td>
<td>P_ALL</td>
<td>N/7.3</td>
<td>P % OF ALL DELAYS</td>
</tr>
<tr>
<td>74</td>
<td>SA_ALL</td>
<td>N/7.3</td>
<td>SA % OF ALL DELAYS</td>
</tr>
<tr>
<td>75</td>
<td>V_ALL</td>
<td>N/7.3</td>
<td>V % OF ALL DELAYS</td>
</tr>
<tr>
<td>76</td>
<td>DATAQUAL</td>
<td>N/6.3</td>
<td>DATA QUALITY</td>
</tr>
</tbody>
</table>

Table 9. Result Database format (continued)
Database. The field TTR is identical to the Downtime Database field DURATION. Note that the unadjusted delay time is used to represent repair time.

The TTF database fields DATE, SHIFT, EQUIP, TIME, BEGIN and DURATION2 are identical to the Downtime Database fields of the same name. The TTF database and the Downtime Database are correlated with these fields. The remaining four fields contain statistics which are calculated by TTFPRG and are discussed in Section 4.3.3.

The Result Database contains seventy-six fields. All fields of the Result Database are filled with data generated during the DATAGEN run. Field one, MINE, contains the two-character identification prefix which is entered in response to a DATAGEN screen query. Fields two through twelve contain statistics generated by the STATS program. Fields two and three contain raw and clean average shift production in short tons. Field four contains the average reject for the section. Field five, PROD_RATE, contains the average value of raw tons produced per operational minute. TON_MAN contains the average value of raw tons produced per face man per shift. Field seven, PASS_SFT, records the average number of complete shears made per shift. ADVAN_SFT contains the average feet of advance per shift of the face. DOWNPERTON records the average minutes of downtime per raw ton of coal produced.
Field ten, SFT_WEEK, contains the average weekly number of production shifts; TON_WEEK records the average weekly raw coal production. WORKER_AVE contains the average number of workers at the section including face workers, mechanics, helpers, and the section boss. Fields thirteen through thirty contain the MTTF and MTTR statistics for the eight primary Equipment Types, and for the system (SY) as a whole. Fields thirty-one through thirty-eight contain availability figures for the primary Equipment Types. Fields thirty-nine and forty contain the average face availability and the average system availability. These figures are the average values of the Shift Database fields MAVAIL and TAVAIL. Field forty-one contains the average value of the Shift Database field IDelay, or inherent delay per production shift. Fields forty-two through forty-nine contain the relative contribution (in percent) of each of the eight primary Equipment Types toward the total unscheduled delay time. Fields fifty through fifty-seven contain similar figures calculated for all downtime, scheduled and unscheduled. Fields fifty-eight through sixty contain the relative contribution (in percent) of each of the nine Delay Types toward the total unscheduled delay time. Fields sixty-seven through seventy-five contain similar figures calculated for all downtime, scheduled and unscheduled.
Field seventy-six, DATAQUAL, contains an index which rates the quality of the Downtime Database. The calculation of DATAQUAL is described in Section 5.3.2.

To run the data-generation sequence, the eleven data-generation programs and the files TTF.DBF, TTR.DBF and RESULT.DBF must first be copied to the hard drive subdirectory containing the previously maintained Shift Database and Downtime Database. If disk copies of these programs are not available, the MODIFY COMMAND editor from dBase may be used to reproduce these files as they appear in Appendix III. Next, "DATAGEN" must be typed at the dot prompt from within dBase. DATAGEN will issue a screen prompt for the names of the Shift Database and the Downtime Database to be worked on. (The ".DBF" extension given to all dBASE files should not be included when file names are typed.) DATAGEN will then issue a prompt for a two-character prefix to be used for identifying the TTF, TTR, and Result Databases which will be generated during the run. This prefix is to be inside quotes, e.g., "20." It is recommended that all Downtime Databases be named with two digits followed by "D," and that all Shift Databases be named with two digits followed by "S."

The DATAGEN output is a series of TTF and TTR Databases and a single Result Database. The names of the output databases will be constructed as follows:
Characters one and two will be the identification prefix, and for TTF and TTR Databases this will be followed by two characters indicating the Equipment Type, followed by "TTF" or "TTR" while in the case of the Result Database the identification prefix will be followed by "RESULT."

When DATAGEN has terminated, all database files will be closed and the cursor will be at the dot prompt. A check of the subdirectory will show that fifteen new files have been created. Of the fifteen, seven are TTR databases, seven are TTF databases, and one is a Result database. The generation of these databases will be discussed in Sections 4.3.3 - 4.3.9.

4.3.1 SFTDELAY Program

SFTDELAY is used to calculate four delay statistics: face delay, total delay (all records), total delay (records with time of occurrence only) and inherent delay. These statistics are calculated for each shift and are input to the shift fields MDELAY, TDELAY, TDEL_BEGIN and IDELAY.

Face delay includes all delays which affect the operation of face equipment during the scheduled production period; these delays include equipment other than that strictly at the face. The scheduled production period begins after the crew has arrived at the section,
finished all production and safety talks, and the fireboss has checked the face. It ends when the crew leaves the face. In practice, face delay includes all delays, scheduled and unscheduled, occurring during production shifts with the exception of "PD," "MT" and "SA" equipment delays, and the Specific Delay Event "FA 255." Face delay is input to the shift database field MDELAY.

The second delay statistic calculated is TDELAY or total delay. TDELAY includes all delays occurring during a production shift. The third statistic, TDEL_BEGIN, is the sum of all delays occurring during a production shift for which a time of occurrence is recorded. Lastly, inherent delay or IDELAY is the difference TDELAY - MDELAY. This difference represents all equipment delays of the "PD," "MT" and "SA" type, and the Specific Delay Event "FA 255."

4.3.2 SFTAVALIL Program

SFTAVALIL is used to calculate face availability (MAVAIL), system availability (TAVAIL) and TTFFFACTOR. Face availability and system availability are based upon MDELAY and TDELAY. TTFFFACTOR is an index which measures the proportion of delays which do not have a recorded beginning time. It is useful for establishing a threshold below which TTF statistics will not be calculated due to the bias introduced through ignoring many unlocated
delays. The computational formulae for these three statistics are given in Sections 5.1.1 and 5.1.4.

4.3.3 TTFPRG Program

TTFPRG is used to calculate TTF statistics; a TTF database is built and filled with these statistics. The program can calculate TTF statistics for any combination of Equipment Type(s) and Delay Type(s). As with all TTF and TTR generating programs in this study, only unscheduled delays are considered.

The TTF database has ten fields; its structure can be seen in Table 7. The first six fields are identical to their namesake fields in the Downtime Database. The remaining four fields are calculated by TTFPRG.

Field seven, ACCUMDOWN, records the accumulation of downtime between successive failures. This downtime is from all sources other than the particular Equipment Type(s) and/or Delay Type(s) under examination. Field eight, TIME_IDLE, registers the amount of idle time accumulated between delays. Idle time delays represent a subset of ACCUMDOWN identified by the notation "NO WORK OR MISSING SHIFT RECORD" in the Downtime Database.

TTFPRG calculates TTF statistics on two bases: an active TTF basis and a total TTF basis. The active TTF basis registers only productive time between delays. The
total TTF basis registers all time between delays except for idle shift time. Field nine, TTFFACT, contains the active TTF; field ten, TTFTOT, contains the total TTF.

TTFPRG is not part of the DATAGEN series. This program may be initiated by typing "DO TTFPRG" at the dot prompt. The program will issue a screen query for the following information: 1) Downtime Database name, 2) Shift Database name, 3) TTF Database name (to be created by program), 4) Equipment Type(s) to be examined, and 5) Delay Type(s) to be examined.

A TTF is not calculated for delays which have been truncated because of delay overlap. Overlapping delays would generate TTF statistics of zero. Overlapping delays were not viewed as spontaneous events (see Section 5.1.1).

4.3.4 AUTOTTF Program

AUTOTTF is a preprogramed series of TTFPRG runs. It is useful for ease of operator use granted that the selection of Equipment Type and Delay Type groupings are acceptable. AUTOTTF is used to calculate TTF statistics for Equipment Types SH, FC, SD, CR, SL, SB, HB, BN, for the Delay Type G, and for the system as a whole. The Equipment Type calculations are made exclusive of geologic delays. Geologic delays are filtered out to reveal equipment performance base solely on equipment design and
condition. TTF calculations of Delay Type G (geologic) are made upon delays of all Equipment Types.

The output of AUTOTTF consists of the following ten TTF Databases: SHTTF, FCTTF, SDTTF, SLTTF, CRTTF, SBTTF, HBTTF, BNTTF, SYTTF and GTTF. The names of these TTF Databases are given the identification prefix entered in response to the third DATAGEN screen query. Each database contains TTF statistics of the Equipment Type or Delay Type identified in its name. SYTTF contains TTF figures for the system as a whole; GTTR contains TTR figures for all delays of Delay Type G.

4.3.5 TTRPRG Program

TTRPRG is used to calculate TTR statistics; a TTR database is constructed and filled with these statistics. The program can calculate TTR statistics for any combination of equipment types and delay types. The statistic TTR is equivalent to delay duration (repair time). The unadjusted repair time, represented by the Downtime Database field DURATION, is used for the TTR statistic. A TTR is not calculated for delays which are overlapped by a prior delay. Such occurrences were not viewed as being purely spontaneous equipment failures (see Section 5.1.1).
TTRPRG is not a part of the DATAGEN sequence and must be initiated by typing "DO TTRPRG" at the dBase dot prompt. The program will issue a screen query for the following information: 1) Downtime Database name, 2) TTR Database name, 3) Equipment Type(s) to be examined, and 4) Delay Type(s) to be examined.

Section 4.3 and Table 8 contain descriptions of the TTR Database fields which are generated by TTRPRG.

4.3.6 AUTOTTR Program

AUTOTTR is a preprogramed series of TTRPRG runs. It is a part of the DATAGEN series; it automatically calculates TTR statistics for equipment types SH, FC, SD, SL, CR, SB, HB, BN, and for delay type G. The output of AUTOTTR is ten TTR Databases: SHTTR, FCTTR, SDTTR, SLTTR, CRTTR, SBTTR, HBTTR, BNTTR, SYTTR and GTTR. These TTR Database names are given the identification prefix entered in response to a DATAGEN screen query for a TTR and Result Database name. Each database will contain TTR statistics of the Equipment Type or Delay Type identified in its name. SYTTR contains TTR figures for the entire system; GTTR contains TTR figures for all delays of the G (geologic) Delay Type.
4.3.7 EQUIP% Program

EQUIP% calculates the percentage of all downtime which is attributable to specific Equipment Types. Unlike AUTOTTF and AUTOTTR, this program does not isolate all delays of a geologic origin. EQUIP% is used to rank equipment types according to the size of their downtime contribution. Calculations are made for the following equipment types: SH, FC, SD, SL, CR, SB, HB and BN.

Two sets of calculations are performed. The first evaluates unscheduled delays only; the second evaluates all delays. The results of these calculations are written to the Result Database created by DATAGEN at the start of the data generation sequence (see Table 9 for the Result Database field structure and content). The calculations performed using unscheduled delays are written to the Result Database fields with the extension "UNS." The calculations based upon all delays are written to the fields with the extension "ALL." Equipment Types in each case are matched by the first two characters of the field names.

4.3.8 TYPE% Program

TYPE% calculates the percentage of the total downtime which is attributable to each Delay Type. Calculations are performed for all of the nine Delay Types: C, E, EH, G, H,
M, P, SA and V (see Table 3 for a description of the Delay Types). Two sets of calculations are performed: the first evaluates unscheduled delays and the second evaluates all delays. The results are written to the Result Database field whose name begins with the given Delay Type. Unscheduled delay calculations go to fields with the "UNS" extension; calculations performed upon all delays go to the fields with the "ALL" extension.

4.3.9 STATS Program

STATS calculates average values of certain production and operational statistics for each section. The following average values are calculated and written to the Result Database (field names are given in parentheses: 1) raw tons per shift (RAW_AVE), 2) clean tons per shift (CLEAN_AVE), 3) percent reject (REJECT), 4) production rate in tons per minute (PROD_RATE), 5) tons per face man shift (TON_MAN), 6) shears per shift (PASS_SFT), 7) face advance per shift (ADVAN_SFT), 8) downtime minutes per ton (DOWNPERTON), 9) production shifts per week (SFT_WEEK), 10) raw tons per week (TON_WEEK), and 11) number of face workers (WORKER_AVE). Production rate and downtime per ton are given on a raw coal basis. If only clean coal figures are available, raw coal production is estimated using a value for reject of 33%.
4.3.10 **SECAVAIL Program**

SECAVAIL calculates average equipment availability figures for each section. Calculations are made for the following Equipment Types: SH, FC, SD, SL, CR, SB, and HB. Equipment Type availabilities are written to Result Database fields beginning with the same Equipment Type code and ending with "AVAIL." Average face availability, system availability and inherent delay are calculated and written to the Result Database fields FACEAVAIL, SYAVAIL and INHERDELAY.

4.3.11 **MEANTIME Program.**

MEANTIME calculates MTTF and MTTR statistics for the eight primary Equipment Types, the G Delay Type, and for the system as a whole. MTTF and MTTR figures are calculated from the TTF and TTR statistics generated by the programs AUTOTTF and AUTOTTR. MTTF and MTTR values are written to the Result Database fields beginning with the same Equipment Type code and ending with "MTTF" or "MTTR". Mean values for the system as a whole are written to SYMTTF and SYMTTR; mean values for geologic delays are written to GTTF and GTTR.
V. STATISTICAL ANALYSIS

The two main phases of the statistical analysis are the analysis of TTF and TTR data, and the comparison of availability figures. TTF statistics reflect the reliability of the longwall system components; TTR statistics reflect the maintainability of those components. Availability figures combine reliability and maintainability and provide one measure of system performance. System performance is further evaluated with the use of statistics which measure production, production rate, productivity, rate of advance and downtime per ton.

5.1 Statistics of Study Defined

5.1.1 Time To Failure (TTF)

In this study, any event which caused the cessation of normal longwall production was classified as a "failure." Such events are commonly referred to as "delays."

Times to failure (TTF's) were measured between the ending of one delay and the start of the following delay. Two types of TTF's were calculated: active TTF's and total TTF's. Active TTF's measured the time between the onset of successive delays minus all nonproductive time during this interval. Total TTF's measured all time between
successive delays excluding idle shifts, when equipment was intentionally idled and no effort was made to initiate coal production. Idle shifts included maintenance shifts, holiday periods, longwall move periods, etc. Shifts for which production records were lost were treated as idle shifts. TTF statistics represent random inter-delay periods; therefore, only unscheduled delays were considered when calculating TTF's.

Occasionally, delays were recorded which began while another delay was in progress. Such occurrences were believed to result from errors in delay recording, or planned equipment maintenance. When overlapping delays occurred, the latter delay was generally truncated in such a way as to adjust its begin time to the ending time of the previous delay. This resulted in a TTF between the two delays equal to zero. It was reasoned that spontaneous failure of longwall components would only occur while equipment was in operation. Delays which were overlapped by prior occurrences were therefore classified as non-spontaneous or secondary delays. Secondary delays were viewed as actions purposely initiated by longwall operators in an attempt to complete adjustments or repairs concurrently with a spontaneous or primary delay. TTF statistics were not calculated for secondary delays because of their dependent nature.
Some TTF calculations were biased due to the presence of delay records with no reported time of occurrence. Such records were ignored in TTF calculations. This led to the exaggeration of some TTF figures. The statistic TTFFACTOR, recorded in the Shift Database, was created to help assess this bias. TTFFACTOR is calculated as follows:

TTFFACTOR =

\[
\frac{\text{LEAV2}_\text{SECT} - \text{ARR}_\text{SECT} - \text{TIME}_\text{RCP} - \text{MDELAY}}{\text{LEAV2}_\text{SECT} + \text{TDELAY} - \text{ARR}_\text{SECT} - \text{TIME}_\text{RCP} - \text{MDELAY} - \text{TDEL}_\text{BEGIN}}
\]

All components of this equation are Shift Database fields. TTFFACTOR is the ratio of face availability with consideration of all face delays to face availability with consideration of only those delays with a time occurrence.

5.1.2 Time To Repair (TTR)

Whenever a longwall delay occurred, production was halted for some period of time. In this study it was assumed that during this period repairs were in effect upon the longwall component responsible for the cessation
of production. Time to repair is defined as the delay duration. TTR statistics were not calculated for secondary delays (described in Section 5.1.1).

5.1.3 Delay Time

Delay time was tabulated on a per-shift basis for the purpose of calculating shift availabilities. Apart from the nine Delay Types described in Section 3.2, delays were tabulated in three fundamental groups: 1) total system delay, 2) face delay, and 3) inherent delay. All delays, both scheduled and unscheduled, were categorized as total system delay and written to the Shift Database field TDELAY. Delays, scheduled and unscheduled, which occurred during a planned production interval were categorized as face delays and recorded in the Shift Database field MDELAY. The term "planned production interval" or PPI refers to the period beginning upon completion of the fireboss's face check and ending with the crew's departure from the face. In terms of the fields recorded in the Shift Database, the PPI can be defined as the interval (ARR_SECT + TIME_RCP, LEAV2_SECT). Scheduled delays which occurred outside of the PPI were categorized as inherent delays and recorded in the Shift Database field IDELAY.
5.1.4 Availability

Two availability figures were calculated for each shift: face availability and system availability.

The calculation of face availability was based upon the concept of "intrinsic availability". Intrinsic availability has been defined as follows (Govll, 1983):

\[A_I = \frac{\text{Operation Time}}{\text{Operation Time} + \text{Active Downtime}} \]

In terms of the units described thus far, this becomes:

\[A_I = \frac{\text{face availability}}{\text{PPI - MDELAY}} \]

System availability was calculated in accordance with the concept of "operational availability." Operational availability has been defined as follows (Govll, 1983):

\[A_O = \frac{\text{Operation Time}}{\text{Operation Time} + \text{Total Downtime}} \]
In terms of the units presented thus far, this becomes:

\[PPI - MDELAY \]
\[Ao = \text{System Availability} = \frac{PP1}{PP1 + IDELAY} \]

5.1.5 **Productivity**

The following six measures of productivity were evaluated for each longwall section: 1) tons per shift, 2) tons per man shift, 3) tons per week, 4) production rate, 5) advance per shift, and 6) passes per shift. Tons-per-shift and tons-per-week statistics were calculated on a raw-coal basis using short tons. Tons-per-man shift figures were calculated on a raw-coal, short-ton basis with only face workers considered. Production rate figures were calculated as raw short tons per minute of operational time. Advance per shift calculations were made in feet. Passes per shift figures were determined as the number of complete shears per shift, irrespective of face width.

5.2 **Probability Density Functions for TTF and TTR**

Statistics

TTF statistics were calculated for all Downtime
Databases which contained a sufficient proportion of delay records including a time of occurrence. A proportion of less than 75% was generally considered insufficient. Several databases had a large number of untimed records for the delay event "breaking rock." Because breaking rock is of short duration and does not specifically target one of the primary Equipment Types, it was assumed that these records did not unduly bias the TTF statistics. TTR statistics were calculated for all Downtime Databases which contained a delay duration for at least 75% of all records.

Probability density functions were fit to the TTF and TTR statistics because it was felt that the mean and variance alone did not sufficiently characterize the samples. A VAX-based statistical software package, UNIFIT, was used to perform the most likely estimator (MLE) of function parameters. The distribution types exponential, gamma, lognormal, and Weibull were investigated in the attempt to find distributions which fit the samples adequately. The goodness-of-fit between probability models and sample sets were assessed with the chi-square, Kolmogorov-Smirnov, and Anderson-Darling goodness-of-fit tests. The chi-square test was given precedent in cases where the other tests gave conflicting results.
The exponential distribution characterizes times between independent component failures. Because successive failures are independent, the failure rate remains constant with the failure occurring according to the postulates of a Poisson process (Law, 1982). Such failures are seen to occur as the result of random shocks and do not occur as a result of wear or deterioration (Mann, 1974). Some longwall equipment components may experience a constant hazard rate due to the renewal effect of preventive maintenance. The exponential distribution represents a special case of the gamma and Weibull distributions.

The gamma distribution is an extension of the exponential distribution. It can be derived by considering the time to the k^{th} successive arrival in a Poisson process or the k^{th} fold convolution of an exponential distribution (Law, 1982). Failures which can be characterized by a gamma distribution are seen as responses to shocks generated according to a Poisson distribution. In the case of the gamma distribution, it is assumed that equipment will only fail after it has received K shocks. The gamma distribution is often used to represent the time to complete some task such as a machine repair or customer service (Mann, 1974).

The Weibull distribution has become widely used in
reliability studies to describe lifetimes of devices (Mann, 1974). The Weibull distribution has also been used to represent the time necessary to complete some task (Law, 1982). The density takes on shapes similar to gamma densities. Whereas the exponential distribution always has a constant hazard rate, the Weibull distribution can be written to include an increasing or decreasing hazard rate. Since many failures encountered in practice, especially those pertaining to non-electronic components, are characterized by an increasing failure rate (due to deterioration or wear), the Weibull distribution is useful for describing failures of this type.

The lognormal distribution is used to represent quantities which are the products of a large number of other quantities, e.g., measurement errors. The lognormal distribution has been also been used to represent the time necessary to accomplish some task (Law, 1982). The density takes on shapes similar to the gamma \((\alpha, \beta)\) densities for \(\alpha > 1\). The hazard rate of the lognormal distribution as a function of time is an increasing function followed by a decreasing function.

5.2.1 TTF Probability Density Functions

TTF statistics were calculated for the following twelve longwall sections: 20, 22, 24, 25, 26, 27, 30, 31,
32, 33, 34, and 35. Mean time to failure (MTTF) for each of the primary Equipment Types is presented in Table 10. This table includes data for the twelve sections mentioned above. Figure 6 shows the average values of MTTF for the primary Equipment Types at the twelve sections. Probability density functions were fit to the TTF statistics of the following six data sets, which contained sufficient data: 20, 22, 25, 26, 27 and 31. For the purpose of fitting probability density functions to TTF and TTR statistics, the following major Equipment Types and Delay Type were considered: 1) shearer (SH), 2) face conveyor (FC), 3) stage loader + crusher + section belt + mains belt (HAUL), 4) shields & hydraulic pumps (SD), 5) geologic delays (G), and 6) whole system (SY). This grouping of Equipment Types was chosen for its compatibility with previously developed simulation models and analytical models. Geologically induced delays were separated from all of the Equipment Types in order that the true character of purely equipment-related failures could be exposed. Geologic delays were effectively treated as a separate Equipment Type. The parameters of the best-fit probability density functions for the TTF statistics are presented in Appendix IV.

The probability density functions which provided the "best fit" to the data came from all of the four
Table 10. Mean time to failure (MTTF) of primary Equipment
Types: values for 12 selected longwall sections.

<table>
<thead>
<tr>
<th>SECT.</th>
<th>SH</th>
<th>FC</th>
<th>SD</th>
<th>SL</th>
<th>CR</th>
<th>SB</th>
<th>HB</th>
<th>BN</th>
<th>SYST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>213</td>
<td>833</td>
<td>1,917</td>
<td>2,304</td>
<td>--</td>
<td>3,387</td>
<td>1,334</td>
<td>663</td>
<td>84</td>
</tr>
<tr>
<td>22</td>
<td>915</td>
<td>2,855</td>
<td>1,418</td>
<td>4,391</td>
<td>--</td>
<td>37,602</td>
<td>1,475</td>
<td>36,128</td>
<td>555</td>
</tr>
<tr>
<td>24</td>
<td>1,068</td>
<td>24,633</td>
<td>7,505</td>
<td>4,252</td>
<td>7,705</td>
<td>1,043</td>
<td>176</td>
<td>15,182</td>
<td>99</td>
</tr>
<tr>
<td>25</td>
<td>1,311</td>
<td>1,311</td>
<td>3,749</td>
<td>3,644</td>
<td>3,950</td>
<td>752</td>
<td>652</td>
<td>6,245</td>
<td>148</td>
</tr>
<tr>
<td>26</td>
<td>164</td>
<td>271</td>
<td>251</td>
<td>2,459</td>
<td>12,968</td>
<td>553</td>
<td>307</td>
<td>9,115</td>
<td>38</td>
</tr>
<tr>
<td>27</td>
<td>127</td>
<td>524</td>
<td>349</td>
<td>1,949</td>
<td>6,300</td>
<td>434</td>
<td>316</td>
<td>10,398</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>1,415</td>
<td>19,501</td>
<td>3,399</td>
<td>491</td>
<td>2,119</td>
<td>2,738</td>
<td>1,247</td>
<td>293</td>
<td>159</td>
</tr>
<tr>
<td>31</td>
<td>767</td>
<td>1,825</td>
<td>2,107</td>
<td>3,440</td>
<td>--</td>
<td>881</td>
<td>1,287</td>
<td>15,947</td>
<td>150</td>
</tr>
<tr>
<td>32</td>
<td>3,615</td>
<td>1,592</td>
<td>3,824</td>
<td>9,932</td>
<td>--</td>
<td>3,711</td>
<td>3,976</td>
<td>1,409</td>
<td>311</td>
</tr>
<tr>
<td>33</td>
<td>1,598</td>
<td>4,830</td>
<td>4,416</td>
<td>2,976</td>
<td>5,827</td>
<td>2,144</td>
<td>3,816</td>
<td>906</td>
<td>242</td>
</tr>
<tr>
<td>34</td>
<td>1,494</td>
<td>2,287</td>
<td>--</td>
<td>3,538</td>
<td>--</td>
<td>3,211</td>
<td>3,568</td>
<td>845</td>
<td>219</td>
</tr>
<tr>
<td>35</td>
<td>895</td>
<td>1,652</td>
<td>19,177</td>
<td>13,534</td>
<td>10,482</td>
<td>3,268</td>
<td>1,592</td>
<td>--</td>
<td>282</td>
</tr>
</tbody>
</table>
Figure 6. Mean time to failure (MTTF) of primary Equipment Types: average values for 12 selected longwall sections.
distribution families examined. The Weibull density function provided the most best-fits to the TTF data, with eighteen fits. Because the Weibull density is the most adequate for representing failure times influenced by wear and deterioration, this seemed reasonable. Lognormal density functions were the second most prevalent density type, with sixteen best-fits. Because longwall equipment failures result from the failure of any one of many assemblies, subassemblies and components, this also seemed reasonable. Eleven best-fit density functions were found of the gamma type, and three were found of the exponential type.

5.2.2 TTR Probability and Density Functions

TTR statistics were calculated for the primary Equipment Types at the twelve longwall sections used for TTF calculations. Mean time to repair (MTTR) of the eight primary Equipment Types are presented in Table 11. This table includes data for the twelve sections. Figure 7 shows the average values of MTTR for the primary Equipment Types at the twelve sections. Probability density functions were fit to the TTR statistics from the following six data sets: 20, 22, 25, 26, 27 and 31. The parameters of the best-fit probability density functions for the TTR statistics are presented in Appendix IV.
Table 11. Mean time to repair (MTTR) of primary Equipment Types: values for 12 selected longwall sections.

<table>
<thead>
<tr>
<th>SECT.</th>
<th>SH</th>
<th>FC</th>
<th>SD</th>
<th>SL</th>
<th>CR</th>
<th>SB</th>
<th>HB</th>
<th>BN</th>
<th>SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>60</td>
<td>49</td>
<td>34</td>
<td>44</td>
<td>--</td>
<td>35</td>
<td>30</td>
<td>31</td>
<td>47</td>
</tr>
<tr>
<td>22</td>
<td>45</td>
<td>52</td>
<td>47</td>
<td>33</td>
<td>--</td>
<td>30</td>
<td>32</td>
<td>37</td>
<td>51</td>
</tr>
<tr>
<td>24</td>
<td>54</td>
<td>93</td>
<td>76</td>
<td>46</td>
<td>90</td>
<td>78</td>
<td>56</td>
<td>264</td>
<td>60</td>
</tr>
<tr>
<td>25</td>
<td>76</td>
<td>92</td>
<td>49</td>
<td>54</td>
<td>70</td>
<td>54</td>
<td>53</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>16</td>
<td>12</td>
<td>50</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>27</td>
<td>9</td>
<td>45</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>20</td>
<td>26</td>
<td>68</td>
<td>56</td>
<td>36</td>
<td>41</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>31</td>
<td>97</td>
<td>57</td>
<td>25</td>
<td>25</td>
<td>--</td>
<td>28</td>
<td>29</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>32</td>
<td>71</td>
<td>83</td>
<td>38</td>
<td>90</td>
<td>--</td>
<td>70</td>
<td>57</td>
<td>57</td>
<td>66</td>
</tr>
<tr>
<td>33</td>
<td>67</td>
<td>73</td>
<td>28</td>
<td>50</td>
<td>29</td>
<td>46</td>
<td>32</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>34</td>
<td>47</td>
<td>68</td>
<td>--</td>
<td>45</td>
<td>--</td>
<td>31</td>
<td>35</td>
<td>32</td>
<td>39</td>
</tr>
<tr>
<td>35</td>
<td>58</td>
<td>48</td>
<td>29</td>
<td>38</td>
<td>53</td>
<td>53</td>
<td>39</td>
<td>--</td>
<td>59</td>
</tr>
</tbody>
</table>
Figure 7. Mean time to repair (MTTR) of primary Equipment Types: average values for twelve selected longwall sections.
Forty-one of the best-fit density functions for TTR statistics were found to be of the lognormal family. This seemed reasonable because lognormal density functions are most commonly used to represent the time to perform some task, e.g., a machine repair. Only four gamma densities were found which provided the best fit to TTR data. No Weibull densities were found which provided the best fit to TTR statistics.

5.3 Availability

Two measures of availability were used: face availability (intrinsic availability) and system availability (operational availability). The method used for calculating these availabilities is described in Section 5.1.

Face availabilities were calculated so that deficiencies in the performance of face equipment and in face organization could be identified. Face availabilities were subdivided with the calculations of the intrinsic availability of the major Equipment Types SH, FC, SD, SL, CR, SB, HB and BN. The relative performance of these major Equipment Types were evaluated with the calculations of the share of overall downtime contributed by each Equipment Type. These calculations
were made on an unscheduled-delays basis, and also on an all-delays basis.

System availabilities were calculated as a measure of comparison of the overall performance of the longwall sections. System availability reflects face-equipment performance, face-organizational efficiency, and overall operational efficiency. The differences between face availability and system availability were the result of inherent system delays. Inherent system delay time was tabulated for each longwall section. Inherent delays constitute such items as travel time, lunch time, face checks, and safety and production talks.

Availability calculations were made for the twelve longwall sections with adequate downtime records. Availabilities could only be calculated if all shift time was accounted for, including production time, production delay time, and inherent delay time.

5.3.1 System Availability

The system availabilities of the twelve sections analyzed ranged from a low of 47.7% at mine #20 to a high of 72.4% at mine #30. The average system availability of the twelve sections analyzed was 59.0%. Figure 8 displays the system availability of each of the twelve sections. Figure 9 presents all system delays ranked by Delay Type.
Figure 8. System availability of 12 selected longwall sections.

Figure 9. Downtime ranked by Delay Type: all delays averaged for 12 selected longwall sections.
5.3.2 Face Availability

Face availability ranged from a low of 51.8% at longwall section #20 to a high of 83.0% at section #30. The average face availability of the twelve sections analyzed was 67.5%. Figure 10 displays the face availabilities of each of the twelve sections. Unscheduled face delays were ranked by Delay Type and are presented in Figure 11.

The availabilities calculated in this study were roughly equivalent to many previously calculated availability figures (Curry, 1976; Pimentel, 1981; Topuz, 1982; Lee, 1983). This occurred despite the fact that longwall equipment has shown much improvement in reliability in recent years (Carr, 1988; Combs, 1988). It is believed that many previous availability figures were inflated. Availability figures are often calculated based solely upon MTTF and MTTR statistics. Often MTTF and MTTR statistics are available for major equipment failures only and are not available for the myriad minor production stoppages which are common on longwall faces. This bias leads to exaggerated availability figures. In other cases, availability calculations may be based upon an incomplete record of production delays. If the production delay record fails to note minor delays (e.g., breaking of draw rock) or fails to note unscheduled delays (e.g., checking
Figure 10. Face availability of 12 selected longwall sections.

Figure 11. Downtime ranked by Delay Type: unscheduled delays averaged for 12 selected longwall sections.
shearer oil levels), availability figures will be exaggerated. Sometimes production delays will be faithfully reported, but the duration of delays are intermittently omitted. This would also lead to an exaggeration of availability figures.

Care was taken in this analysis to calculate availability figures for those sections that appeared to faithfully report production delays which were both scheduled and unscheduled, regardless of the magnitude of the delays. Despite this attention, the quality of the delay data was not uniform. A few sections were thorough to the extent of reporting numerous delays of less than five minutes in duration. A rating factor was established for comparing the quality and thoroughness of the delay reporting. Quality was based upon the fraction of delay incidents with recorded durations and the number of delays reported per shift. The quality of a database was rated between 0 and 100 and recorded in the Result Database field DATAQUAL. DATAQUAL was assessed in the following way:

\[
\text{DATAQUAL} = 100 \times \left(\frac{\text{Factor1}}{2} + \frac{\text{Factor2}}{2} \right)
\]

where:

Factor1 = the fraction of delay records with a
reported duration.

\[
\text{Factor} 2 = \begin{cases}
0.25 & \text{when the average number of delays per shift} < 2 \\
0.50 & \text{when the average number of delays per shift} < 3 \\
0.75 & \text{when the average number of delays per shift} < 4 \\
1.00 & \text{when the average number of delays per shift} \geq 4
\end{cases}
\]

5.3.3 Inherent Delay

The discrepancy between face availability and system availability is due to inherent delays (also referred to as organizational delays.) Inherent delays included were such items as travel time, lunch time, and time spent on safety checks, production meetings and face checks. Inherent delay times ranged from a low of 36 minutes per production shift at mine #20 to a high of 68 minutes per shift at mine #22. The average inherent delay time among the twelve sections analyzed was 53.5 minutes per shift. Figure 12 displays the inherent delay time for the twelve sections.

The range of inherent delay time was due to the practice at certain mines of changing-out production crews
Figure 12. Inherent delay time of 12 selected longwall sections.
at the face. Such "hot change-outs" eliminated most, if not all, of the idle time between shifts as well as contributing to communication between shifts. Communication of equipment behavior and special face conditions can be a factor in reducing production-shift delays. The practice of staggering lunch breaks also reduced inherent delay time at certain mines.

Inherent delay time was a very significant factor in determining system availability. If all inherent delays were eliminated at an average section, system availability would rise from 59% to 70%. In this calculation, only inherent delay time associated directly with production shifts was considered; this ignores idle weekend shifts, a significant source of inherent delay time. None of the sections in this study had regularly scheduled Sunday shifts, and only ten sections had production shifts on Saturdays. Most of the sections with Saturday production shifts worked only sporadically. Regularly scheduled production shifts on Saturdays and Sundays would increase the amount of available time by 26% on average. Assuming the same average system availability on weekends as on weekdays, equipment utilization would increase by 15.5% on average. Table 12 shows the available time which is lost through travel time, lunch time, and idle weekend shifts at four selected longwall sections.
Table 12. Available time lost to inherent delay: values for four selected longwall sections.

<table>
<thead>
<tr>
<th>SECT.</th>
<th>Crew Change Out</th>
<th>Lunch</th>
<th>Idle Saturdays</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>14.6 %</td>
<td>2.8 %</td>
<td>14.3 %</td>
<td>31.7 %</td>
</tr>
<tr>
<td>20</td>
<td>6.0 %</td>
<td>0.0 %</td>
<td>14.3 %</td>
<td>20.3 %</td>
</tr>
<tr>
<td>31</td>
<td>8.1 %</td>
<td>0.0 %</td>
<td>10.5 %</td>
<td>18.6 %</td>
</tr>
<tr>
<td>32</td>
<td>14.8 %</td>
<td>0.0 %</td>
<td>14.3 %</td>
<td>29.1 %</td>
</tr>
</tbody>
</table>
5.3.4 Equipment Availability

Availability figures were calculated for the eight primary Equipment Types: SH, FC, SD, SL, CR, SB, HB and BN. Calculations were made for the same twelve longwall sections analyzed in the previous sections describing face availability and system availability.

The components of a longwall system are serially connected. A delay affecting one component in the system causes the entire system to come to a halt. It follows that the availability of a longwall system is equal to the product of the availabilities of its constituent components. The system availability of any longwall section in this study is the product of the availabilities of the twenty-two Equipment Types. Face availability is equal to the product of the availabilities of the nineteen Equipment Types which are directly related to production (Equipment Types PD, MT, SA, and Delay Event FA 225 are not directly involved in production). The eight Equipment Types for which availabilities were calculated represent the major equipment components of the production-equipment group.

Table 13 gives the availability figures for the eight primary Equipment Types for each of the twelve sections. Table 14 gives the low, high and average availability
Table 13. Availability of the primary Equipment Types: for 12 selected longwall sections.

<table>
<thead>
<tr>
<th>SECT.</th>
<th>SH</th>
<th>FC</th>
<th>SD</th>
<th>SL</th>
<th>CR</th>
<th>SB</th>
<th>HB</th>
<th>BN</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>76.7%</td>
<td>94.8%</td>
<td>97.9%</td>
<td>98.6%</td>
<td>100%</td>
<td>99.2%</td>
<td>98.3%</td>
<td>97.1%</td>
</tr>
<tr>
<td>22</td>
<td>95.7%</td>
<td>98.6%</td>
<td>97.8%</td>
<td>99.7%</td>
<td>99.9%</td>
<td>96.9%</td>
<td>98.1%</td>
<td>97.5%</td>
</tr>
<tr>
<td>24</td>
<td>96.4%</td>
<td>99.5%</td>
<td>98.6%</td>
<td>99.3%</td>
<td>99.4%</td>
<td>95.2%</td>
<td>76.7%</td>
<td>99.0%</td>
</tr>
<tr>
<td>25</td>
<td>93.9%</td>
<td>94.6%</td>
<td>98.1%</td>
<td>98.9%</td>
<td>98.9%</td>
<td>94.4%</td>
<td>93.2%</td>
<td>99.3%</td>
</tr>
<tr>
<td>26</td>
<td>83.6%</td>
<td>95.3%</td>
<td>96.2%</td>
<td>98.1%</td>
<td>99.9%</td>
<td>97.9%</td>
<td>96.7%</td>
<td>99.8%</td>
</tr>
<tr>
<td>27</td>
<td>82.9%</td>
<td>95.8%</td>
<td>98.1%</td>
<td>97.5%</td>
<td>99.9%</td>
<td>97.6%</td>
<td>97.6%</td>
<td>99.9%</td>
</tr>
<tr>
<td>30</td>
<td>97.6%</td>
<td>99.9%</td>
<td>99.4%</td>
<td>99.9%</td>
<td>99.9%</td>
<td>98.7%</td>
<td>97.1%</td>
<td>93.0%</td>
</tr>
<tr>
<td>31</td>
<td>89.5%</td>
<td>98.3%</td>
<td>99.1%</td>
<td>99.6%</td>
<td>100%</td>
<td>97.8%</td>
<td>98.5%</td>
<td>99.9%</td>
</tr>
<tr>
<td>32</td>
<td>97.2%</td>
<td>94.0%</td>
<td>99.4%</td>
<td>99.3%</td>
<td>99.8%</td>
<td>97.2%</td>
<td>97.1%</td>
<td>92.2%</td>
</tr>
<tr>
<td>33</td>
<td>99.7%</td>
<td>98.8%</td>
<td>99.5%</td>
<td>99.1%</td>
<td>99.8%</td>
<td>96.8%</td>
<td>99.2%</td>
<td>96.0%</td>
</tr>
<tr>
<td>34</td>
<td>93.5%</td>
<td>97.8%</td>
<td>100%</td>
<td>99.3%</td>
<td>100%</td>
<td>98.5%</td>
<td>97.9%</td>
<td>96.6%</td>
</tr>
<tr>
<td>35</td>
<td>86.4%</td>
<td>96.6%</td>
<td>99.8%</td>
<td>99.7%</td>
<td>99.4%</td>
<td>98.2%</td>
<td>97.4%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 14. Availability of the primary Equipment Types: low, high and average values for 12 selected longwall sections.

<table>
<thead>
<tr>
<th>SH</th>
<th>FC</th>
<th>SD</th>
<th>SL</th>
<th>CR</th>
<th>SB</th>
<th>HB</th>
<th>BN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>76.7%</td>
<td>94.0%</td>
<td>96.2%</td>
<td>97.5%</td>
<td>98.9%</td>
<td>94.4%</td>
<td>76.7%</td>
</tr>
<tr>
<td>HIGH</td>
<td>99.6%</td>
<td>99.9%</td>
<td>99.9%</td>
<td>98.8%</td>
<td>100%</td>
<td>99.2%</td>
<td>99.2%</td>
</tr>
<tr>
<td>AVE.</td>
<td>91.1%</td>
<td>97.0%</td>
<td>98.7%</td>
<td>99.1%</td>
<td>99.7%</td>
<td>95.7%</td>
<td>95.7%</td>
</tr>
</tbody>
</table>
values for each of the eight primary Equipment Types. The same information is shown in the form of a graph in Figure 13. Shearers had the lowest average availability while crushers had the highest. The share of total downtime contributed by each of the eight major Equipment Types is shown graphically in Figure 14. These are average figures for the twelve mines. This figure provides an indication of the relative importance of the primary Equipment Types, secondary Equipment Types (OTHER), and inherent delays as targets for increased availability. Figure 15 shows the share of unscheduled downtime provided by the major Equipment Types and the secondary Equipment Types (OTHER). This figure shows more clearly the relative availability of the primary Equipment Types without taking into account the effect of inherent delays.

The delays of the primary Equipment Types were ranked by Delay Type. Calculations performed on an all-delays basis are presented in Figures 16a through 23a. Calculations performed on an unscheduled delays basis are presented in Figures 16b through 23b. Figures represent average values for the twelve sections included in the availability analysis. Among all delays preparatory delays were the most common, followed by mechanical delays and then electrical delays. Among unscheduled delays, mechanical delays were most frequent, followed by
Figure 13. Availability of the primary Equipment Types: low, high, and average availability of 12 selected longwall sections.
Figure 14. Downtime ranked by Equipment Type: scheduled and unscheduled delays averaged for 12 selected longwall sections.

Figure 15. Downtime ranked by Equipment Type: unscheduled delays averaged for 12 selected longwall sections.
Figure 16. Shearer downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.

Figure 17. Face conveyor downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.
Figure 18. Shield downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.

Figure 19. Stage loader downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.
Figure 20. Crusher downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.

Figure 21. Section-belt downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.
Figure 22. Haulage-belt downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.

Figure 23. Bin downtime ranked by Delay Type: average values for 12 selected longwall sections; a) all delays, b) unscheduled delays.
electrical delays. In both cases ventilation, safety and electrohydraulic delays were generally the rarest. Ventilation and safety delays may have gone unreported because of their short durations. Electrohydraulic failures, particular those involving shield controls, may have gone unreported because they often do not entirely disable the equipment.

The five most time-consuming Delay Events were identified for each of the eight major Equipment Types; these are given in Tables 15 through 22.

5.4 Performance Indicators

The following performance indicators were calculated for the twelve sections included in the availability analysis: 1) tons per shift (raw; short tons), 2) tons per week, 3) production rate (raw; short tons/operative min.), 4) production per face man (raw; short tons), 5) shears per shift, 6) shifts per week, and 7) downtime per ton. Table 23 gives the values for the seven performance indicators at the twelve mines. Table 24 gives the low, high and average values of the seven performance indicators. A complete set of performance indicators was available for only ten out of the twelve sections due to an absence of production data for sections #32 and #34.
Table 15. Major sources of shearer downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL SH DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>004</td>
<td>CABLE CONNECTIONS AND SPLICES</td>
<td>5.0 %</td>
</tr>
<tr>
<td>E</td>
<td>002</td>
<td>CUTTER DRIVE ELECTRICAL PROBLEM</td>
<td>4.2 %</td>
</tr>
<tr>
<td>E</td>
<td>003</td>
<td>WIRE, FUSE, OR CIRCUIT</td>
<td>3.6 %</td>
</tr>
<tr>
<td>H</td>
<td>111</td>
<td>ADD GEAR OIL OR HYD. FLUID</td>
<td>20.3 %</td>
</tr>
<tr>
<td>H</td>
<td>112</td>
<td>ADJUST WATER SPRAYS</td>
<td>3.7 %</td>
</tr>
<tr>
<td>H</td>
<td>100</td>
<td>REPLACE HYD. HOSE OR FITTING</td>
<td>3.3 %</td>
</tr>
<tr>
<td>H</td>
<td>101</td>
<td>REPLACE WATER HOSE OR FITTING</td>
<td>3.3 %</td>
</tr>
<tr>
<td>H</td>
<td>115</td>
<td>PROBLEM WITH HYD. HAULAGE DRIVE</td>
<td>3.1 %</td>
</tr>
<tr>
<td>M</td>
<td>066/067</td>
<td>CHANGE CUTTING BITS</td>
<td>5.1 %</td>
</tr>
<tr>
<td>M</td>
<td>059</td>
<td>BRETTY BROKE OR IN PANLINE</td>
<td>2.5 %</td>
</tr>
<tr>
<td>M</td>
<td>072</td>
<td>HAULAGE SPROCKET OR HAULAGE TRACK</td>
<td>2.4 %</td>
</tr>
<tr>
<td>M</td>
<td>056</td>
<td>COWL OR COWL ARM LOOSE</td>
<td>1.9 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>58.4 %</td>
</tr>
</tbody>
</table>

Table 16. Major sources of face conveyor downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL FC DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>003</td>
<td>GROUND FAULT, WIRE, FUSE, CIRCUIT</td>
<td>8.1 %</td>
</tr>
<tr>
<td>E</td>
<td>004</td>
<td>CABLE CONNECTION AND SPLICES</td>
<td>3.4 %</td>
</tr>
<tr>
<td>E</td>
<td>014</td>
<td>ELECTRICAL PROBLEM WITH DRIVE MOTOR</td>
<td>3.6 %</td>
</tr>
<tr>
<td>G</td>
<td>166</td>
<td>BREAK DRAW ROCK IN PAN</td>
<td>5.7 %</td>
</tr>
<tr>
<td>H</td>
<td>109</td>
<td>TORQUE CONVERTER SOFT PLUGS, SPEED RED.</td>
<td>7.9 %</td>
</tr>
<tr>
<td>M</td>
<td>053</td>
<td>BROKEN OR HUNG CHAIN</td>
<td>29.3 %</td>
</tr>
<tr>
<td>M</td>
<td>074</td>
<td>DOG BONE BROKE, WELD PAN</td>
<td>9.5 %</td>
</tr>
<tr>
<td>M</td>
<td>055</td>
<td>BROKEN OR HUNG FLIGHT</td>
<td>2.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>70.3 %</td>
</tr>
</tbody>
</table>
Table 17. Major sources of shield downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL SD DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>200</td>
<td>WAIT ON SHIELDS, CYCLE TIME SLOW</td>
<td>12.1 %</td>
</tr>
<tr>
<td>EH</td>
<td>450</td>
<td>EH SHIELD CONTROL OR COMPUTER PROBLEM</td>
<td>5.5 %</td>
</tr>
<tr>
<td>G</td>
<td>159</td>
<td>CLEAN DRAW ROCK OFF SHIELDS</td>
<td>19.6 %</td>
</tr>
<tr>
<td>G</td>
<td>153</td>
<td>SOFT BOTTOM, SHIELDS PLOWING</td>
<td>2.1 %</td>
</tr>
<tr>
<td>H</td>
<td>100</td>
<td>REPLACE HYDRAULIC HOSE</td>
<td>16.1 %</td>
</tr>
<tr>
<td>H</td>
<td>102</td>
<td>HYD. PRESSURE LOW</td>
<td>13.2 %</td>
</tr>
<tr>
<td>H</td>
<td>106</td>
<td>HYD. PROBLEM WITH LEG RAM</td>
<td>2.5 %</td>
</tr>
<tr>
<td>H</td>
<td>105</td>
<td>HYD. PROBLEM WITH PUSH RAM</td>
<td>2.0 %</td>
</tr>
<tr>
<td>M</td>
<td>069</td>
<td>MECH. PROB. WITH RAM, CANOPY, GOB SHIELD</td>
<td>9.6 %</td>
</tr>
<tr>
<td>M</td>
<td>068</td>
<td>CLEVIS, RELAY BAR, WELD BASE LIFT JACK</td>
<td>3.4 %</td>
</tr>
</tbody>
</table>

TOTAL 86.1 %

Table 18. Major sources of stage loader downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL SL DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>166</td>
<td>DRAW ROCK CAUGHT IN PAN</td>
<td>12.9 %</td>
</tr>
<tr>
<td>G</td>
<td>151</td>
<td>GOBBED OUT, HUNG WON'T PUSH</td>
<td>5.1 %</td>
</tr>
<tr>
<td>H</td>
<td>109</td>
<td>TORQUE CONVERTER SOFT PLUGS BLOWED</td>
<td>9.9 %</td>
</tr>
<tr>
<td>M</td>
<td>054</td>
<td>CHAIN HUNG</td>
<td>14.4 %</td>
</tr>
<tr>
<td>M</td>
<td>053</td>
<td>CHAIN BROKEN</td>
<td>9.1 %</td>
</tr>
<tr>
<td>M</td>
<td>055</td>
<td>REPLACE BROKEN FLIGHT</td>
<td>6.2 %</td>
</tr>
<tr>
<td>M</td>
<td>052</td>
<td>TENSION CHAIN</td>
<td>5.8 %</td>
</tr>
<tr>
<td>M</td>
<td>058</td>
<td>WELD SPILL TRAY, GUARD OR SCRAPE</td>
<td>5.7 %</td>
</tr>
<tr>
<td>M</td>
<td>061</td>
<td>REPLACE BEARINGS OR BUSHING</td>
<td>4.6 %</td>
</tr>
</tbody>
</table>

TOTAL 73.7 %
Table 19. Major sources of crusher downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL CR DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>014</td>
<td>PROBLEM WITH DRIVE MOTOR</td>
<td>4.5 %</td>
</tr>
<tr>
<td>E</td>
<td>005</td>
<td>REPLACE BREAKER</td>
<td>3.6 %</td>
</tr>
<tr>
<td>E</td>
<td>008</td>
<td>OVERLOAD, RESET BREAKER</td>
<td>3.0 %</td>
</tr>
<tr>
<td>M</td>
<td>076</td>
<td>REPLACE IMPACTOR</td>
<td>24.8 %</td>
</tr>
<tr>
<td>M</td>
<td>050</td>
<td>ADJUST OR REPLACE DRIVE BELT</td>
<td>12.4 %</td>
</tr>
<tr>
<td>M</td>
<td>061</td>
<td>REPLACE BEARINGS OR BUSHING</td>
<td>6.6 %</td>
</tr>
<tr>
<td>M</td>
<td>071</td>
<td>TIGHTEN OR REPLACE BOLTS</td>
<td>5.0 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>59.9 %</td>
</tr>
</tbody>
</table>

Table 20. Major sources of section belt downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL SB DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>202</td>
<td>SPILLAGE</td>
<td>1.1 %</td>
</tr>
<tr>
<td>E</td>
<td>014</td>
<td>PROB. WITH DRIVE MOTOR</td>
<td>2.8 %</td>
</tr>
<tr>
<td>E</td>
<td>003</td>
<td>GROUND FAULT, WIRE, FUSE, CIRCUIT</td>
<td>2.3 %</td>
</tr>
<tr>
<td>G</td>
<td>151</td>
<td>GOBED OUT, HUNG WON'T PUSH</td>
<td>3.3 %</td>
</tr>
<tr>
<td>G</td>
<td>166</td>
<td>ROCK CAUGHT IN TAILPIECE</td>
<td>1.5 %</td>
</tr>
<tr>
<td>M</td>
<td>050</td>
<td>SPLICE BELT</td>
<td>21.7 %</td>
</tr>
<tr>
<td>M</td>
<td>080</td>
<td>MECH. PROB. WITH TAILPIECE</td>
<td>16.2 %</td>
</tr>
<tr>
<td>M</td>
<td>062</td>
<td>ALIGN TAILPIECE</td>
<td>6.3 %</td>
</tr>
<tr>
<td>M</td>
<td>063</td>
<td>REMOVE BELT AND BELT STRUCTURE</td>
<td>4.4 %</td>
</tr>
<tr>
<td>M</td>
<td>082</td>
<td>PROB. WITH FRICTION DRIVE</td>
<td>2.8 %</td>
</tr>
<tr>
<td>M</td>
<td>061</td>
<td>REPLACE BEARINGS OR BUSHING</td>
<td>1.9 %</td>
</tr>
<tr>
<td>M</td>
<td>058</td>
<td>WELD SPILL TRAY, GUARD, SCRAPER</td>
<td>1.6 %</td>
</tr>
<tr>
<td>M</td>
<td>079</td>
<td>REPLACE ROLLERS</td>
<td>1.4 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>67.3 %</td>
</tr>
</tbody>
</table>
Table 21. Major sources of haulage belt downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL HB DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>202</td>
<td>SPILLAGE</td>
<td>2.1 %</td>
</tr>
<tr>
<td>E</td>
<td>005</td>
<td>REPLACE BREAKER</td>
<td>3.4 %</td>
</tr>
<tr>
<td>E</td>
<td>014</td>
<td>PROB. WITH DRIVE MOTOR</td>
<td>1.4 %</td>
</tr>
<tr>
<td>E</td>
<td>003</td>
<td>GROUND FAULT, FUSE, WIRE, CIRCUIT</td>
<td>1.2 %</td>
</tr>
<tr>
<td>G</td>
<td>151</td>
<td>GROBBED OUT</td>
<td>2.3 %</td>
</tr>
<tr>
<td>M</td>
<td>050</td>
<td>SPICE BELT</td>
<td>22.6 %</td>
</tr>
<tr>
<td>M</td>
<td>062</td>
<td>ALIGN TAILPIECE</td>
<td>2.2 %</td>
</tr>
<tr>
<td>M</td>
<td>079</td>
<td>REPLACE ROLLERS</td>
<td>2.0 %</td>
</tr>
<tr>
<td>M</td>
<td>081</td>
<td>REPLACE BEARING OR BUSHING</td>
<td>1.5 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>38.7 %</td>
</tr>
</tbody>
</table>

Table 22. Major sources of bin downtime.

<table>
<thead>
<tr>
<th>DELAY TYPE</th>
<th>DELAY CODE</th>
<th>DELAY DESCRIPTION</th>
<th>% OF TOTAL BN DOWNTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>201</td>
<td>UNDERCAPACITY</td>
<td>39.4 %</td>
</tr>
<tr>
<td>E</td>
<td>014</td>
<td>ELECT. PROB. WITH BIN FEEDER</td>
<td>2.6 %</td>
</tr>
<tr>
<td>M</td>
<td>065</td>
<td>MECH. PROB. WITH BIN FEED, SKIP, TIPPLE</td>
<td>48.7 %</td>
</tr>
<tr>
<td>M</td>
<td>058</td>
<td>WELD SPILL TRAY, GUARD, SCRAPER</td>
<td>1.5 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>92.2 %</td>
</tr>
</tbody>
</table>
Table 23. Performance Indicators: values for 12 selected longwall sections.

<table>
<thead>
<tr>
<th>SECT.</th>
<th>TON/SFT (ST)</th>
<th>TON/WK (ST)</th>
<th>PROD RATE (ST/MIN.)</th>
<th>TON/MAN (ST)</th>
<th>PASS/SFT</th>
<th>SFT/WK (MIN./ST)</th>
<th>DELAY/TON (MIN./ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1,377</td>
<td>19,691</td>
<td>6.37</td>
<td>378</td>
<td>NA</td>
<td>14.3</td>
<td>0.481</td>
</tr>
<tr>
<td>22</td>
<td>2,393</td>
<td>34,452</td>
<td>8.58</td>
<td>328</td>
<td>NA</td>
<td>14.4</td>
<td>0.171</td>
</tr>
<tr>
<td>24</td>
<td>2,060</td>
<td>33,372</td>
<td>9.74</td>
<td>210</td>
<td>4.2</td>
<td>16.2</td>
<td>0.158</td>
</tr>
<tr>
<td>25</td>
<td>2,627</td>
<td>39,668</td>
<td>9.61</td>
<td>284</td>
<td>3.8</td>
<td>15.1</td>
<td>0.117</td>
</tr>
<tr>
<td>26</td>
<td>1,588</td>
<td>25,408</td>
<td>6.91</td>
<td>132</td>
<td>4.7</td>
<td>16.0</td>
<td>0.146</td>
</tr>
<tr>
<td>27</td>
<td>1,797</td>
<td>27,674</td>
<td>6.89</td>
<td>180</td>
<td>5.2</td>
<td>15.4</td>
<td>0.114</td>
</tr>
<tr>
<td>30</td>
<td>4,885</td>
<td>87,442</td>
<td>14.44</td>
<td>556</td>
<td>4.6</td>
<td>17.9</td>
<td>0.024</td>
</tr>
<tr>
<td>31</td>
<td>1,058</td>
<td>16,716</td>
<td>3.35</td>
<td>96</td>
<td>8.3</td>
<td>15.8</td>
<td>0.230</td>
</tr>
<tr>
<td>32</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>5.2</td>
<td>13.8</td>
<td>NA</td>
</tr>
<tr>
<td>33</td>
<td>2,337</td>
<td>35,522</td>
<td>7.31</td>
<td>194</td>
<td>7.1</td>
<td>15.2</td>
<td>0.046</td>
</tr>
<tr>
<td>34</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>8.1</td>
<td>14.9</td>
<td>NA</td>
</tr>
<tr>
<td>35</td>
<td>2,244</td>
<td>33,436</td>
<td>12.79</td>
<td>281</td>
<td>8.2</td>
<td>14.9</td>
<td>0.131</td>
</tr>
</tbody>
</table>

Table 24. Performance Indicators: low, high, and average values for 12 selected longwall sections.

<table>
<thead>
<tr>
<th>TON/SFT (ST)</th>
<th>TON/WK (ST)</th>
<th>PROD RATE (ST/MIN.)</th>
<th>TON/MAN (ST)</th>
<th>PASS/SFT</th>
<th>SFT/WK (MIN./ST)</th>
<th>DELAY/TON (MIN./ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>1,058</td>
<td>16,716</td>
<td>3.35</td>
<td>96</td>
<td>3.8</td>
<td>13.8</td>
</tr>
<tr>
<td>HIGH</td>
<td>4,885</td>
<td>87,442</td>
<td>14.44</td>
<td>556</td>
<td>8.3</td>
<td>17.9</td>
</tr>
<tr>
<td>AVE.</td>
<td>2,237</td>
<td>35,338</td>
<td>8.90</td>
<td>264</td>
<td>5.9</td>
<td>15.3</td>
</tr>
</tbody>
</table>
A strong negative correlation was found between downtime per ton and tons per shift. A strong positive correlation was found between production rate and tons per shift. Figure 24 is a plot of downtime-per-ton rank (ranked from lowest to highest, 1-10) versus tons-per-shift rank (ranked from highest to lowest, 1-10). Figure 25 is a plot of production-rate rank (ranked highest to lowest, 1-10) versus tons-per-shift rank (ranked from highest to lowest, 1-10). Perfect correlation would occur if all points lay on a 45-degree line through the origin.

A previous study found production to be more sensitive to changes in downtime per ton than to changes in production rate (Pimentel, 1981). In this study the reverse was found to be true. Production was found to be three times as sensitive to production rate as it was to downtime per ton. Figure 26 is a plot of downtime-per-ton values versus tons-per-shift values. Figure 27 is a plot of production rate versus tons-per-shift values. From these plots it was determined that a decrease in the average downtime per ton of 50% would lead to an increase of 17.1% in production. Similarly, an increase in the average production rate of 50% would lead to a 52.1% increase in tons per shift. The fact that this value is greater than 50% points out that there are other dependent
Figure 24. Scatter plot showing correlation between tons per shift and downtime per ton.

Figure 25. Scatter plot showing correlation between tons per shift and production rate.
Figure 26. Linear trend of tons per shift vs. downtime per ton.

Figure 27. Linear trend of tons per shift vs. production rate.
factors. The sections which had high production rates tended also to have lower downtime.
VI. CONCLUSIONS AND RECOMMENDATIONS

A large factor in the marginal productivity of many U.S. longwalls is the under-utilization of equipment. This under-utilization results from three sources: 1) delay associated with equipment breakdowns and equipment servicing, 2) inherent delay associated with production shifts, and 3) inherent delay associated with idle shifts.

6.1 Reducing Delay Times Associated with Equipment Breakdowns and Equipment Servicing

Face availability reflects the delay associated with equipment breakdowns and servicing. The average face availability of the twelve longwall sections analyzed in this study was 67.5%. The average available production time for these sections was 420 minutes (480 [total shift minutes] X 0.59 [system availability] / 0.675 [face availability]). It was observed that 32.5% of this time, or 136.5 minutes, was lost to equipment delays; 23% of this lost time was due to the shearer breakdowns and servicing, while 32% of the equipment delay time was due to the section belt + main haulage + bin + skip + tippie, which will collectively be called haulage. Reduction of equipment downtime should focus on these units.
Equipment downtime can be reduced in two general ways: 1) increase the mean time to failure (MTTF), and 2) decrease the mean time to repair (MTTR). The first approach involves increasing the reliability of the equipment; the second approach involves increasing the maintainability of the equipment.

6.1.1 Increasing Mean Time to Failure (MTTF)

This study recommends the following four actions for increasing MTTF:

(1) Design or select equipment for greater reliability.
(2) Perform expected life analyses of key components in order to determine rebuild or replacement schedules.
(3) Use flexible maintenance schedules.
(4) Replace common fault components.

Recent advances in equipment design have made the replacement of old equipment an attractive measure for decreasing MTTF and increasing production. The shearer was targeted in this study as a large source of downtime. New all-electric shearsers have demonstrated much higher reliability levels than older, hydraulically powered
units. Larger-capacity haulage belts and surge bins, combined with remote monitoring of the belts could reduce haulage delays, another area targeted. New face conveyors have cast pans, dual inby chains of up to 34mm in diameter, and power in excess of 1000 hp. Many of the sections in this study were already using new, high-reliability face conveyors. This may explain why face conveyors, which were formerly identified as a large source of delay time (Curry, 1976), were not identified as such by this study.

Expected life analyses can help to eliminate certain long-duration, unscheduled delays. Components such as haulage drives, cowl motors, and cutter motors which fail periodically and are time consuming to install should be changed-out on a scheduled basis. Statistical determination of the expected life of these components allows for scheduled replacement prior to most unscheduled failures. Monitoring of the expected life of a component also enables "out-of-control failures" to be recognized. A pattern of premature failures should lead to a check for disturbing influences or inferior materials.

Flexible maintenance policies can reduce the number of times that the system is idled for equipment servicing. Short-duration, regularly performed maintenance tasks, such as adding oil to the snearer or replacing cutting
bits, can be performed while the system is already down. If a TTR analysis of belt repairs found that 80% of repairs were of 20 minutes in duration or more, and if servicing a shearer took this amount of time, a policy could be put into effect in which the shearer is serviced whenever a haulage belt goes down, where servicing of the shearer had not yet been performed.

Replacement of common fault components can reduce equipment breakdowns by eliminating chains of failure events. All machine parts which may be affected by a particular failure should be inspected and replaced when damaged. The repair procedure should include ancillary services, such as the flushing of a hydraulic circuit when changing that circuit's filter. Such policies stop the propagation of damage from one damaged part to adjacent parts.

6.1.2 Reducing Mean Time to Repair (MTTR)

This study recommends the following four actions for decreasing MTTR:

(1) Perform systematic fault diagnosis.
(2) Standardize repair training.
(3) Optimize parts and tools inventory.
(4) Select or design modularized equipment.
Because of the complexity of longwall equipment, a large percentage of repair time involves isolating a malfunctioning component. This was particularly evident in this study with delays involving electrical malfunctions of the shearer. Long delays for "electrical troubleshooting" would culminate with the location of a single bad connection or damaged relay. An "expert"-type fault-diagnosis system combined with formal training of personnel in fault diagnosis, could reduce the duration of such delays. A fuzzy logic-based fault-diagnosis system has been developed which establishes a probabilistic decision matrix relating common symptoms to failure causes (Kar, 1989). Experienced repair personnel would establish the correlation coefficients between symptoms and causes.

Unnecessarily long repair periods can result when parts or tools are not available at the face. A statistical study of parts utilization is necessary in order to determine the optimum inventory of parts to be maintained at a convenient location.

In addition to being more reliable, much of the new longwall equipment is more modularized than older equipment. Modularized equipment simplifies fault diagnosis and speeds component replacement. In many cases, faulty modules will be immediately replaced and then sent
to the surface to be overhauled.

6.2 Reducing Inherent Delay Times Associated with Production Shifts

Inherent delay was responsible for an average of 53.5 minutes per shift, or 28% of the total production shift downtime. The main sources of inherent delay are travel time, lunch time, safety talks, and face inspection. Of these delays, only time for face inspection (about 10 minutes) cannot be eliminated. Travel and safety talks can be performed prior to relieving the face crew. In order to allow this, shifts should be expanded to nine hours. Idle time associated with meal breaks can be eliminated by staggering eating periods. Elimination of these three inherent delay sources would reduce production shift delay time by 43.5 minutes on average. This reduction would increase the average system availability of the twelve sections evaluated from 59% to 65%.

6.3 Reducing Inherent Delay Times Associated with Idle Shifts

None of the longwall sections in this study had production shifts on Sunday. Only ten of the sections had production shifts on Saturdays, all but one of which were
sporadic. Flexible operating schedules have been cited as a source for increased production at newer installations (Combs, 1990). Three scheduled production shifts on Saturdays would increase the average available production time of the twelve sections evaluated by 12%. Assuming that all major maintenance tasks could be performed on Sundays, this would mean a 12% increase in weekly production.

6.4 Summary of Results

The average longwall section in this study had 283.3 minutes of production time per shift. In light of the large range of shearer availability demonstrated by the twelve sections analyzed (82.9% to 99.6%) and of haulage availability (72.08% to 95.85%), it is the opinion of this study that the recommendations given in Sections 6.1.1 and 6.1.2 could potentially eliminate 50% of shearer delay time and 25% of haulage-delay time. This would lead to an increase in production time of 26.6 minutes per shift, which corresponds to an increase in average face availability from 67.5% to 73.8%. Such an increase would lead to a 9.4% increase in production. The recommendations given in Section 6.2 could potentially eliminate 43.5 minutes of the inherent delay time associated with
production shifts. Given an enhanced average face availability of 73.8%, this corresponds to an increase in production time of 32.1 minutes per shift. Scheduling three production shifts on Saturdays would increase the average production of the longwall sections evaluated by 12%. Sundays could be used to perform preventive maintenance and scheduled replacements.

The combined effect of decreased equipment downtime, decreased inherent delay time, and Saturday production shifts would be an average increase in weekly production of 35.2% for the twelve sections evaluated. Average available time would be 463.5 minutes per shift (420 + 43.5). Production time would be 342 minutes (0.738 × 463.5), an increase of 20.7% over the 283.3-minute average for the study group. Average shift production would be 120.7% of the original levels. Average weekly production would be 135.2% of original levels with the addition of Saturday production shifts (1.207 × 1.12).

6.5 Further Research

Further research should be undertaken to refine the availability figures provided in this study with the use of time study data. Computer simulation models and analytical models should be used to quantitatively
evaluate the production gains achievable through other delay-reduction strategies.

In Section 5.3.2 it was stated that the availability figures in this study were believed to be more accurate than many previous figures. The improved accuracy was due to the use of high-quality foremans' reports (which detail individual downtime incidents), rather than MTTF and MTTR statistics as a basis for shift availability. Unfortunately, even the highest-quality foreman's report is not as accurate as a time-study report. In a time study report, every delay is accurately recorded regardless of apparent triviality. Time studies also document activities which would not necessarily be categorized as delays despite being non-productive (e.g., tramming of shearer). This cannot be expected from a section foreman whose primary job is to maintain production. The failure to report a delay occurrence will inflate availability calculations; for precise calculations of availability, there is no substitute for time-study reports. Unfortunately, compiling time studies over a lengthy period of time for a large number of mines is an exhausting task which may not be feasible.

Many other delay-reduction strategies are possible for increasing longwall availability and production. In the conclusions of this study the shearer and the haulage
system were targeted as sources of excessive delay time. Computer simulation models and analytical models should be used to evaluate scenarios which involve reducing the delay time of other system components.
References

Balci, O., 1984, "How to use UNIFIT for fitting probability distributions to observed data," Virginia Polytechnic Institute and State University, Dept. of Computer Science, 213 pages.

---, 1988, "Longwall productivity continues upward trend, jumps 30% in year's time," Coal, August, pp.33-34.

---, 1987, "Longwall Productivity Had Its Ups and Downs in '86, but Overall Results Show a 13% Boost," Coal Age, August, pp. 56-57.

APPENDIX I

SPECIFIC MINE DATA

Note: The names of operators, mines and coal seams, as well as mine locations, have been omitted to ensure the confidentiality of the data sources.
MINE No. 1

CODE_NAME 01
INIT_FACE 1980
PRES_FACE 1985
PERIOD 09/15/88 - 02/08/89
SHIFTS 228
INFO_SOURCE PRODUCTION REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 75
MINE_HT 75
PANEL_WIDE 915
PANEL_LEN NA
DEPTH 600
ENTRIES NA
FACE_VOLTS 2300
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH ANDERSON MAJOR ELECTRA 1000, 1200 HP, OERS, RACK EICKHOF
FC WESTFALIA LUNEN, 21B, 34MM, 3*450 HP
SL WESTFALIA
CR BRIDEN
SD DOWTY, 2, 493 T, EH
OTHER_EQUIP SB = 48" CONTINENTAL DRIVE, 2*250 HP
 (*2 STAGES);
 REXNORD/NORDBERG PRODUCTION HOIST
MINE No. 2

<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1979</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1986</td>
</tr>
<tr>
<td>PERIOD</td>
<td>06/20/88 - 02/28/89</td>
</tr>
<tr>
<td>POST</td>
<td>384</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>PRODUCTION REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>96</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>96</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>893</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>NA</td>
</tr>
<tr>
<td>DEPTH</td>
<td>600</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>NA</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>2300</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
</tbody>
</table>

SH: ANDERSON NAVOR AM500, 1200 HP, DERS, RACK EICKHOFF
FC: WESTFALIA LUNEN, 21B, 3*44M, 3*450 HP
SL: WESTFALIA
CR: WESTFALIA
SD: WESTFALIA LUNEN, 2, 450 T, EH
OTHER_EQUIP: PM = HALHINCO 3*150 HP; LW CONTROLLER = SERVICE MACHINE;
 SB = DOWTY-OWENS 48" 2*250 HP; REYNOLDS/NORDBERG PRODUCTION HOIST
MINE NO. 3

CODE_NAME 03
INIT_FACE 1977
PRES_FACE 1986
PERIOD 12/01/87 - 12/30/87
SHIFTS 50
INFO_SOURC MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 66
MINE0_HT 73
PANEL_WIDE 600
PANEL_LEN 7200
DEPTH 600
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA

SH JOY 4LS, 470 HP DERS, Rack HALBACH & BRAUN, 30" CUT,
INSTALL 01/01/87 EICKOFF EDW 150-2L, INSTALL 08/01/87

FC DOWTY, 840MM, 256 FPM, CROSS FRAME, 21B, 30MM, 1*350 1*300
SL DOWTY, 1000MM, 276 FPM
CR DOWTY - OVEN
SD KLOECKNER-BECCOT, 2, 500 T, EH, INSTALL 01/01/87

OTHER_EQUIP
MINE NO. 4

CODE_NAME 04
INIT_FACE 1976
PRES_FACE 1983
PERIOD 12/01/87 - 12/30/87
SHIFTS 50
INFO_SOURC MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 70
MINED_HT 68
PANEL_WIDE 750
PANEL_LEN 7200
DEPTH 650
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH JOY 1LS-4E, 355 HP, DERS, RACK HALBACH & BRAUN
FC HALBACH & BRAUN, 732MM, 256 FPM, 218, 26MM,
 2X300 HP, SIDE DISCHARGE
SL HALBACH & BRAUN, 732MM, 310 FPM,
CR KLOECKNER - BECORIT
SD KLOECKNER-BECORIT, 2 LEG, 500 T, MANUAL,
 INSTALL 02/01/86

OTHER_EQUP
<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1978</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1988</td>
</tr>
<tr>
<td>PERIOD</td>
<td>12/01/87 - 12/30/87</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>50</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>MAINTENANCE REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>68</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>72</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>500</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>7200</td>
</tr>
<tr>
<td>DEPTH</td>
<td>600</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
</tbody>
</table>

SH

EICKOFF-150-2L, 480 HP DERS, RACK HALBBACH & BRAUN

REPLACED WITH JOY 4LS ON 01/01/88

FC

HALBBACH & BRAUN, 21B, 30MM, 2*360 1*225 HP, 832MM, 256 FPM, CROSS FRAME DISCHARGE. REPLACED WITH AMERICAN LONGWALL ON 01/01/88

SL

HALBBACH & BRAUN, 832MM, 320 FPM

REPLACED WITH AMERICAN LONGWALL ON 01/01/88

CR

HALBBACH & BRAUN

SD

KLOECKNER FERPO, MANUAL, INSTALL 09/17/79

REPLACED WITH GULLICK DOBSON, 2, 500T, 01/01/88

OTHER_EQUIP
MINE NO. 6

CODE_NAME 06
INIT_FACE 1982
PRES_FACE 1982
PERIOD 12/01/87 - 12/30/87
SHIFTS 50
INFO_SOURCE MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 60
MINED_HT 60
PANEL_WIDE 600
PANEL_LEN 4500
DEPTH 575
ENTRIES 3
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
CAL_HARD NA
CONDITIONS NA
SH JOY 4LS, 470 HP DERS, E1COTRACK, INSTALL 04/01/87
FC HUWOOD - IRWIN, 21B, 28MM, 2*300 HP, 780MM, 285 FPM, SIDE
 DISCHARGE INSTALL 06/21/82
SL HUWOOD - IRWIN, 330 FPM, INSTALL 06/21/82
CR KLOECKNER - BECORIT
SD KLOECKNER - BECORIT, 2 LEG, 400 T, MANUAL
OTHER_EQUIP
<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>07</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1982</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1982</td>
</tr>
<tr>
<td>PERIOD</td>
<td>12/01/87 - 12/30/87</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>50</td>
</tr>
<tr>
<td>INFO_SOURC</td>
<td>MAINTENANCE REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>63</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>63</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>550</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>6000</td>
</tr>
<tr>
<td>DEPTH</td>
<td>175</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>3</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>JOY 3LS-2E, 570 HP DERS, EICOTRACK</td>
</tr>
<tr>
<td>FC</td>
<td>HALBACH & BRAUN, 21B 28MM, 2*300 HP, 780MM, 284 FPM, SIDE DISCHARGE</td>
</tr>
<tr>
<td>SL</td>
<td>HUWOOD - IRWIN, S32MM, 317 FPM</td>
</tr>
<tr>
<td>CR</td>
<td>KLOECKNER - BECORIT</td>
</tr>
<tr>
<td>SD</td>
<td>DOWTY, 4 LEG, 610 T, MANUAL</td>
</tr>
<tr>
<td>OTHER_EQUP</td>
<td></td>
</tr>
</tbody>
</table>
MINE No. 8

CODE_NAME 08
INIT_FACE 1983
PRES_FACE 1983
PERIOD 12/01/87 - 12/30/87
SHIFTS 50
INFO_Source MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 90
MINED_HT 85
PANEL_WIDE 650
PANEL_LEN 6000
DEPTH 700
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA

SH JOY 1LS-6, 370 HP, ELECTRAC, 30" CJT, INSTALL 02/01/88
FC KLOECKNER - BECORIT, 21B, 26MM, 2*250 HP, 732MM, 238 FPM,
 CROSS FRAME DISHARGE, INSTALL 06/01/83
SL KLOECKNER - BECORIT, 832MM, 305 FPM, INSTALL 06/01/83
CR HALBACH & BRAUN
SD JOY, 2 LEG, 400 T, MANUAL, INSTALL 06/01/83
OTHER_EQUIP
MINE No. 9

CODE_NAME 09
INIT_FACE 1981
PRES_FACE 1981
PERIOD 12/01/87 - 12/01/87
SHIFTS 50
INFO_SOURCE MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 84
MINED_HT 74
PANEL_WIDTH 650
PANEL_LEN 4500
DEPTH 665
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA

SH JOY 1LS-6, 370 HP DERS, EICOTRAK, 30" CUT, INSTALL 11/07/84

FC HALBRACH & BRAUN EXF3, 21B, 28MM, 2*250 HP, 732MM, 238 FPM, CROSS FRAME DISCHARGE, INSTALL 10/19/81

SL KLOECKER - BECORIT, 832MM, 305 FPM

CR MCLANAHAN

SD DOWTY, 4 LEG, 500 T, MANUAL

OTHER_EQUIP
MINE NO. 10

<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1979</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1986</td>
</tr>
<tr>
<td>PERIOD</td>
<td>12/01/87 - 12/30/87</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>50</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>MAINTENANCE REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>84</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>84</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>750</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>4000</td>
</tr>
<tr>
<td>DEPTH</td>
<td>650</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
</tbody>
</table>

SH

Joy 1LS-6, 370 HP DERS, EICOTRAK, 30" CUT, INSTALL 05/01/87

FC

Kloeckner - Becorit, 21B, 26mm, 2*300 HP, 732mm, 238 FPM, Cross Frame Discharge, INSTALL 09/01/83

SL

Kloeckner - Becorit, 832mm, 305 FPM, INSTALL 09/01/83

CR

McClanahan

SD

Dowty, 2 LEG, 500 T, EH

OTHER_EQUIP
<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Mine No. 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE_NAME</td>
<td>11</td>
</tr>
<tr>
<td>INIT_FACE</td>
<td>1979</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1986</td>
</tr>
<tr>
<td>PERIOD</td>
<td>12/01/87 - 12/30/87</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>90</td>
</tr>
<tr>
<td>INFO_SOURC</td>
<td>MAINTENANCE REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>92</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>80</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>750</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>4200</td>
</tr>
<tr>
<td>DEPTH</td>
<td>900</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
</tbody>
</table>

SH:

JOY 1LS-5, 370 HP DERS, EICOTRAK, 30" CUT, INSTALL 02/01/84

FC:
KLOECKNER - BECORIT, 21B, 30MM, 2*300 HP,
732MM, 215 FPM, CROSS FRAME DISCHARGE

SL:
EICKHOFF, 832MM, 287 FPM

CR:
KLOECKNER - BECORIT

SD:
DOWTY, 4 LEG, 500 T, MANUAL, HEMSCHEIDT, 2 LEG,
600 T, EH

OTHER_EQUIP:
<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1981</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1981</td>
</tr>
<tr>
<td>PERIOD</td>
<td>12/01/87 - 12/30/87</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>50</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>MAINTENANCE REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>72</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>72</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>612</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>6500</td>
</tr>
<tr>
<td>DEPTH</td>
<td>700</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>JOY 1LS-6, 370 HP DERS, E1COTRAK, 30" CUT</td>
</tr>
<tr>
<td>FC</td>
<td>HALBRACH & BRAUN EKF3, 21B, 28MM, 2*250, 732MM, 238 FPM, CROSS FRAME DISCHARGE, INSTALL 12/01/85</td>
</tr>
<tr>
<td>SL</td>
<td>KLOECKNER - BECORIT, 832MM, 305 FPM, INSTALL 11/23/81</td>
</tr>
<tr>
<td>CR</td>
<td>MOCLANAHAN</td>
</tr>
<tr>
<td>SD</td>
<td>DOWTY, 4 LEG, 500 T, MANUAL</td>
</tr>
</tbody>
</table>
MINE No. 13

CODE_NAME 13
INIT_FACE 1978
PRES_FACE 1985
PERIOD 12/01/87 - 12/30/87
SHIFTS 50
INFO_SOURC MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 94
MINED_HT 84
PANEL_WIDE 800
PANEL_LEN 6000
DEPTH 1250
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH JOY 3LS, 500 HP DERS, DYNATRAC, 36" CUT
FC HALBRACH & BRAUN EKF4, 21B, 30MM, 2*360 1*225 HP, 832MM, 256 FPM, CROSS FRAME DISCHARGE, INSTALL 04/03/86
SL HALBRACH & BRAUN, 832MM, 320 FPM, 03/01/87
CR HALBRACH & BRAUN
SD DOWTY, 2 LEG, 500 T, EH, INSTALL 04/01/85
OTHER_EQUIP
CODE_NAME	14
INIT_FACE	1981
PRES_FACE	1981
PERIOD	12/01/87 - 12/30/87
SHIFTS	50
INFO_SOURCE	MAINTENANCE REPORT
REP_FORMAT	SPECIFIC INCIDENTS
SEAM_HT	86
MINED_HT	70
PANEL_WIDE	600
PANEL_LEN	5800
DEPTH	750
ENTRIES	4
FACE_VOLTS	NA
RAW_PROD	NA
CLEAN_PROD	NA
REJECT	NA
ROOF	NA
FLOOR	NA
PARTINGS	NA
COAL_HARD	NA
CONDITIONS	NA

SH

JOY 3LS, 570 HP DERS, E1COTRAK, 30" OUT,
INSTALL 06/01/87

FC

HALBRACH & BRAUN EKF4, 21B, 28MM, 2*300 HP, 732MM, 256 FPM, CROSS FRAME DISCHARGE, INSTALL 04/01/84

SL

HALBRACH & BRAUN, 732MM, 321 FPM

CR

HALBRACH & BRAUN

SD

GULLICK DOBSON, 2 LEG, 500 T, MANUAL BATCH, INSTALL 05/01/84

OTHER_EQUIP
MINE No. 15

CODE_NAME 15
INIT_FACE 1987
PRES_FACE 1987
PERIOD 02/87 - 09/88
SHIFTS 600
INFO_SOURC MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 60
MINED_HT 60
PANEL_WIDE 580
PANEL_LEN 4000
DEPTH 2000
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH JOY 4LS, 470 HP DERS, DYNATRACK, 30" CUT,
 INSTALL 06/01/87 AND 01/01/88
FC HALBRACH & BRAUN EKF3, 21B, 30MV, 2*350 HP,
 880MM, 263 FPM, CROSS FRAME DISCHARGE, INSTALL
 06/01/87 THEN 06/01/88
SL HALBRACH & BRAUN, 1032MM, 312 FPM, INSTALL
 06/01/87 THEN 06/01/88
CR HALBRACH & BRAUN
SD DOWTY, 4 LEG, 808 T, EH, INSTALL 02/01/87 THEN
 01/01/88
OTHER_EQUIP
MINE NO. 16

CODE_NAME 16
INIT_FACE 1980
PRES_FACE 1980
PERIOD 12/01/87 - 12/30/87
SHIFTS 50
INFO_SOURC MAINTENANCE REPORT
REP_FORMAT SPECIFIC INCIDENT
SEAM_HT 84
MINED_HT 80
PANEL_WIDE 750
PANEL_LEN 4200
DEPTH 800 - 1150
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH JOY 1LS, 260 HP DERS, E1005AK, 30" CUT,
 INSTALLED 06/17/84
FC HALBACH & BRAUN EKF3, 21B, 26MM, 1*350 HP 1*250
 HP, 732 MM, 215 FPM,
 CROSS FRAME DISCHARGE. INSTALLED 10/15/83
SL LONG AIRDAX INSTALLED 10/15/83
CR KLOECKNER-RECORIT
SD DOWTY, 4 LEG, 500 TON, MANUAL, INSTALLED
 01/02/80 & 03/21/81
OTHER_EQUIP
MINE NO. 17

CODE_NAME 17
INIT_FACE 1978
PRES_FACE 1986
PERIOD 1978 - 1988
SHIFTS 5135
INFO_SOURC PRODUCTION REPORT
REP_FORMAT GROUPED INCIDENTS
SEAM_HT 71
MINED_HT 71
PANEL_WIDE 700
PANEL_LEN 4300
DEPTH 590
ENTRIES 4
FACE_VOLTS 4160
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF 0" - 12" ROOF COAL LEFT ABOVE MUD/ROCK BAND (REMOVED); OCCASIONAL CLAY VEINS (SOMETIMES GASEOUS) AND SLIPS THROUGH-OUT FACE.
FLOOR NA
PARTINGS 10" MUD/ROCK BAND ABOVE 60" BOTTOM COAL (REMOVED)
COAL_HARD NA
CONDITIONS 100'x100' ABUTMENT PILLARS BETWEEN 10'x20'
YIELD PILLARS. CONSIDERABLE SPALLING OF YIELD PILLARS LEADS TO EVENTUAL LOSS OF ON ENTRY.
SH EICKOFF-250-2L, 675 HP DERS, DYNATRAK 30" CUT, 1000 V
FC HALBACH & BRAUN UK6V-1000, 21B 26MM, 1000MM, 220 FPM, HB250/1040 CROSS FRAME, HB UK6V-1000 HB250 TAIL DRIVE, HB 1000 HB2600 PANS
SL AMERICAN LONGWALL MODEL 1064 26MM TL, 1064MM, 2 1B 26MM, 254 FPM 4160 V
CR KLOECKER - BECORIT MODEL SB63 UNVR
SD 142 * KLOECKER - BECORIT, 2 LEG, 500 T, ELECTROHYDRAULIC
OTHER_EQUP HALINDO PUMPS SINGLE CAR 32 GPM, DUAL CAR 64 GPM, TRIPLE CAR 156 GPM; SERVICE MACHINE POWER CENTER 7200/4160 V; ENSIGN 7200/950/600 PC
<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1980</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1986</td>
</tr>
<tr>
<td>PERIOD</td>
<td>01/13/86 - 07/15/86</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>175</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>PRODUCTION REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>GROUPED INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>50</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>46</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>460</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>4950</td>
</tr>
<tr>
<td>DEPTH</td>
<td>875</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>1372</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>WESTFALIA PLOW GLEITHOBEL, 2*125 HP, 4" CUT</td>
</tr>
<tr>
<td>FC</td>
<td>WESTFALIA, 21B, 28MM, 1250 1175 HP, 600MM, 267 FPM, END DISCHARGE</td>
</tr>
<tr>
<td>SL</td>
<td>LONG - AIRDOX, 30", 325 FPM</td>
</tr>
<tr>
<td>CR</td>
<td>INGERSOLL - RAND</td>
</tr>
<tr>
<td>SD</td>
<td>KLOECKNER - BECORIT, 2 LEG, 360 T, MANUAL BATCH</td>
</tr>
<tr>
<td>OTHER_EQUIP</td>
<td></td>
</tr>
<tr>
<td>CODE_NAME</td>
<td>19</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>INIT_FACE</td>
<td>1968</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1978</td>
</tr>
<tr>
<td>PERIOD</td>
<td>12/01/88 - 03/31/89</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>241</td>
</tr>
<tr>
<td>INFO_SOURC</td>
<td>SECTION BOSS REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>68</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>68</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>730</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>5225</td>
</tr>
<tr>
<td>DEPTH</td>
<td>1800</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>2917</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>1780</td>
</tr>
<tr>
<td>REJECT</td>
<td>39.7</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>JOY ILS-6, 370 HP DERS, EICO TRAK, 30" CUT</td>
</tr>
<tr>
<td>FC</td>
<td>KLOECKER - BEBOTIT AND AMERICAN LONGWALL, 21B, 30MM, 2*350 HP, 832/865 MM, 256 FPM, CROSS FRAME DISCHARGE</td>
</tr>
<tr>
<td>SL</td>
<td>AMERICAN LONGWALL, 1060MM, 330 FPM</td>
</tr>
<tr>
<td>CR</td>
<td>McCLANAHAN</td>
</tr>
<tr>
<td>SD</td>
<td>WESTFALI A LUNEN, 4 LEG, 640 T, MANUAL</td>
</tr>
<tr>
<td>OTHER_EQUIP</td>
<td></td>
</tr>
</tbody>
</table>
MINE NO. 20

CODE_NAME 20
INIT_FACE 1974
PRES_FACE 1988
PERIOD 12/01/88 - 03/31/89
SHIFTS 200
INFO_SOURC SECTION BOSS REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 60
MINED_HT 60
PANEL_WIDE 600
PANEL_LEN 5560
DEPTH 2000
ENTRIES 4
FACE_VOLTS 960
RAW_PROD NA
CLEAN_PROD 915
REJECT 30
ROOF MASSIVE SHALEY SANDSTONE.
FLOOR SANDY SHALE.
PARTINGS SANDY SHALE 10" CUT.
COAL_HARD 95 GRIND
CONDITIONS NO WATER, FACE SPALLS WELL
SH ANDERSON MAJOR 500, 500 HP DERS, E1COTRAK, 2
 REBUILDS, 5 YR OLD
 ANDERSON MAJOR 500, 500 HP DERS, E1COTRAK, NEW
FC AMERICAN LONGWALL, 21B, 22MV, 3*175 HP, 732MV,
 265 FPM, SIDE DISCHARGE, 5 YR OLD
SL AMERICAN LONGWALL, NEW
CR MOCLANAHAN, NEW
SD WESTFALIA LUNEN, 4 LEG, 580 T, "PIANO KEY"
 MANUAL CONTROLS, 5 YR OLD; BATCH = 1
OTHER_EQUIP
MINE NO. 21

CODE_NAME 21
INIT_FACE 1972
PRES_FACE 1977
PERIOD 12/01/88 - 03/31/89
SHIFTS 114
INFO_SOURC SECTION BOSS REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 62
MINED_HT 62
PANEL_WIDE 500
PANEL_LEN 5580
DEPTH 2000
ENTRIES 4
FACE_VOLTS 950
RAW_PROD NA
CLEAN_PROD 1343
REJECT 20
ROOF MASSIVE SHALEY SANDSTONE.
FLOOR SANDY SHALE.
PARTINGS 6" - 30" MIDDLE PARTING OF SANDY SHALE.
COAL_HARD 95 GRIND
CONDITIONS NO WATER, FACE SPALLS WELL
SH JOY 1LS-6, 370 HP DERS, EICOTRAK, 27" CUT
FC AMERICAN LONGWALL, 21B, 30MM, 2*300 HP, NEW
SL AMERICAN LONGWALL, NEW
CR MCCLANAHAN, NEW
SO HEMScheidt, 4 LEG, 440 T, MANUAL, 11 YR OLD, BATCH = 1
OTHER_EQUIP
MINE No. 22

CODE_NAME 22
INIT_FACE 1980
PRES_FACE 1980
PERIOD 12/01/88 - 03/31/89
SHIFTS 245
INFO_SOURC SECTION BOSS REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 72
MINED_HT 72
PANEL_WIDE 620
PANEL_LEN 5200
DEPTH 1500
ENTRIES 4
FACE_VOLTS 950
RAW_PROD NA
CLEAN_PROD 1579
REJECT NA
ROOF SHALE WITH 0" - 3" DRAW SLATE (PROBLEMS)
FLOOR FIRM SHALE.
PARTINGS NA
COAL_HARD SOFT
CONDITIONS NO WATER, FACE SPALLS WELL "REALLY ROLLS OFF", HORIZONTAL CLEATS
SH JOY 1LS-6, 370 HP DERS, EIOCTRAK, 36" CUT, REBUILD EVERY PANEL
FC AMERICAN LONGHALL, 21B, 30MM, 2*300 HP, 1986 NO REBUILD
SL AMERICAN LONGHALL, 1060MM, 295 FPM
CR MOCLANAHAN, NEW
SD WESTFAlia LUNEN, 4 LEG, 580 T, PISTON AND BASE
OTHER_EQUIP HEMSCHEIDT CANOPY, MANUAL BATCH = 1
CODE_NAME	23
INIT_FACE	1982
PRES_FACE	1982
PERIOD	12/01/88 - 03/31/89
SHIFTS	238
INFO_SOURCE	SECTION BOSS REPORT
REP_FORMAT	SPECIFIC INCIDENTS
SEAM_HT	72
MINED_HT	72
PANEL_WIDE	730
PANEL_LEN	6800
DEPTH	2050
ENTRIES	4
FACE_VOLTS	NA
RAW_PROD	1909
CLEAN_PROD	1397
REJECT	26.8
ROOF	NA
FLOOR	NA
PARTINGS	NA
COAL_HARD	NA
CONDITIONS	NA
SH	JOY 1LS-6, 370 HP DERS, E1COTRAK, 30" CUT
FC	KLOECKNER - BECRIPT, 21B, 30MM, 2*350 HP, 832MM, 256 FPM, CROSS
	FRAME DISCHARGE
SL	HALBACH & BRAUN, 1032MM, 250 FPM
CR	HALBACH & BRAUN
SD	DOWTY, 4 LEG, 620 T, MANUAL
OTHER_EQUIP	
MINE NO. 24

<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1978</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1984</td>
</tr>
<tr>
<td>PERIOD</td>
<td>05/01/88 – 12/01/88</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>455</td>
</tr>
<tr>
<td>INFO_SOURC</td>
<td>SECTION BOSS REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM HT</td>
<td>108</td>
</tr>
<tr>
<td>MINED HT</td>
<td>108</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>550</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>7040</td>
</tr>
<tr>
<td>DEPTH</td>
<td>400</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>2055</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>1299</td>
</tr>
<tr>
<td>REJECT</td>
<td>36.8</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>EICKHOFF-350 EDW, 402 HP DERS, EICO TRAK, 30" CUT</td>
</tr>
<tr>
<td>FC</td>
<td>KLOECKNER – BECORT, 21B, 30MM, 2*350 HP, 867MM, 224 FPM, CROSS FRAME DISCHARGE</td>
</tr>
<tr>
<td>SL</td>
<td>KLOECKNER – BECORT, 1068MM, 250 FPM</td>
</tr>
<tr>
<td>CR</td>
<td>KLOECKNER – BECORT</td>
</tr>
<tr>
<td>SD</td>
<td>KLOECKNER – BECORT, 2 LEG, 550 T, MANUAL: DOWTY, 4 LEG, 500T</td>
</tr>
</tbody>
</table>

OTHER_EQUIP

-140-
CLOSED

CODE_NAME	25
INIT_FACE	1981
PRES_FACE	1981
PERIOD	12/12/85 - 09/10/86
SHIFTS	1431
INFO_SOURCE	SECTION BOSS REPORT
REP_FORMAT	SPECIFIC INCIDENTS
SEAM_HT	108
MINED_HT	108
PANEL_WIDTH	750
PANEL_LENGTH	4360
DEPTH	375
ENTRIES	3
FACE_VOLTS	NA
RAW_PROD	2677
CLEAN_PROD	1407
REJECT	46.4
ROOF	NA
FLOOR	NA
PARTINGS	NA
COAL_HARD	NA
CONDITIONS	NA
SH	EICKHOFF 300-EDW, 402 HP DERS, Eloquent, 30" CUT
FC	KLOECKNER - BECORIT, 21B, 34MM, 3*350 HP, 867MM, 224 FPM, CROSS FRAME DISCHARGE
SL	KLOECKNER - BECORIT, 1066MM, 250 FPM
CR	KLOECKNER - BECORIT
SD	KB, 2 LEG, 550 T, MANUAL
OTHER_EQUIP	
CODE_NAME 26
INIT_FACE 1978
PRES_FACE 1987
PERIOD 10/01/87 - 12/31/88
SHIFTS 701
INFO_SOURCE SECTION BOSS REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 65
MINED_HT 73
PANEL_WIDE 900
PANEL_LEN 10000
DEPTH 300
ENTRIES 5
FACE_VOLTS 1000
RAW_PROD 1588
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH JOY 4LS, 590 HP DERS, EICOTRAK, 30° CUT, REMOTE CONTROL
FC WESTFALIA LUNEN, 21B, 34mm, 3*400 HP, 855mm, 225 FPM, CROSS FRAME DISCHARGE
SL WESTFALIA LUNEN, 1032mm, 305 FPM, 1*250 HP
CR KB
SD WESTFALIA LUNEN, (121) 2 LEG, 620 T, EH : WESTFALIA LUNEN, (62) 4 LEG640 T, EH
OTHER_EQUIP

OTHER_EQUIP

OTHER_EQUIP

OTHER_EQUIP
<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1981</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1987</td>
</tr>
<tr>
<td>PERIOD</td>
<td>01/05/88 - 02/28/89</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>691</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>SECTION BOSS REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>65</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>73</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>900</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>1000</td>
</tr>
<tr>
<td>DEPTH</td>
<td>300</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>5</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>1000</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>1803</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>JOY 4LS, 590 HP, DERS. 30" CUT, REMOTE CONTROL</td>
</tr>
<tr>
<td>FC</td>
<td>WESTFALIA LUNEN, 21B, 34MM, 3*400 HP, 852MM, 226 FPM, CROSS FRAME DISCHARGE</td>
</tr>
<tr>
<td>SL</td>
<td>WESTFALIA LUNEN, 1032MM, 1*250 HP</td>
</tr>
<tr>
<td>CR</td>
<td>KB</td>
</tr>
<tr>
<td>SD</td>
<td>WESTFALIA LUNEN, 4 LEG, 640 T, EH</td>
</tr>
<tr>
<td>OTHER_EQUIP</td>
<td></td>
</tr>
</tbody>
</table>
MINE No. 28

<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1984</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1984</td>
</tr>
<tr>
<td>PERIOD</td>
<td>09/01/87 - 10/04/88</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>630</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>PRODUCTION & MAINT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>50</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>48</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>580</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>2400</td>
</tr>
<tr>
<td>DEPTH</td>
<td>1150</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>3</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>RCOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>2 ANDERSON MAVOR AB16, 300 HP SDR, 36" CUT, REMOTE CONTROL</td>
</tr>
<tr>
<td>FC</td>
<td>AMERICAN LONGWALL, 21B, 26MM, 2*300 HP</td>
</tr>
<tr>
<td>SL</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>GULLICK DOBSON, 2 LEG, 580 T, EH</td>
</tr>
<tr>
<td>OTHER_EQUIP</td>
<td></td>
</tr>
<tr>
<td>CODE_NAME</td>
<td>29</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>INIT_FACE</td>
<td>1985</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1985</td>
</tr>
<tr>
<td>PERIOD</td>
<td>10/04/87 - 07/23/88</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>570</td>
</tr>
<tr>
<td>INFO_SQLرق</td>
<td>PRODUCTION & MAINT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>78</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>78</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>685</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>6200</td>
</tr>
<tr>
<td>DEPTH</td>
<td>1250</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>3</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>JOY 3LS, 500 HP DERS, DYNATRAC, 36" CUT, REMOTE CONTROL</td>
</tr>
<tr>
<td>FC</td>
<td>AMERICAN LONWALL, 21B, 30MM, 2*300 HP</td>
</tr>
<tr>
<td>SL</td>
<td>AMERICAN LONWALL</td>
</tr>
<tr>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>DOWTY, 2 LEG, 500 T, EH</td>
</tr>
<tr>
<td>OTHER_EQUIP</td>
<td></td>
</tr>
</tbody>
</table>
MINE NO. 30

<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1987</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1987</td>
</tr>
<tr>
<td>PERIOD</td>
<td>01/03/89 - 03/31/89</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>229</td>
</tr>
<tr>
<td>INFO_SOURC</td>
<td>SECTION BOSS REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>90</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>78</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>770</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>5500</td>
</tr>
<tr>
<td>DEPTH</td>
<td>750</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>EICKHOFF 300-L, 470 HP DERS, EICOTRAK, 30" CUT</td>
</tr>
<tr>
<td>FC</td>
<td>DOWTY, 21B, 30MM, 1450 1350 HP, 732MM, 212 FPM, SIDE DISCHARGE</td>
</tr>
<tr>
<td>SL</td>
<td>DOWTY, 1032MM, 256 FPM</td>
</tr>
<tr>
<td>CR</td>
<td>HALBACH & BRAUN</td>
</tr>
<tr>
<td>SD</td>
<td>KLDECKNER-BECO, 2 LEG, 550 T</td>
</tr>
<tr>
<td>OTHER_EQUIP</td>
<td></td>
</tr>
</tbody>
</table>
MINE No. 31

<p>| CODE_NAME | 31 |
| INIT_FACE | 1968 |
| PRES_FACE | 1981 |
| PERIOD | 01/03/89 - 03/31/89 |
| SHIFTS | 171 |
| INFO_SOURC | SECTION BOSS REPORT |
| REP_FORMAT | SPECIFIC INCIDENTS |
| SEAM_HT | 54 |
| MINED_HT | 50 |
| PANEL_WIDE | 520 |
| PANEL_LEN | 5300 |
| DEPTH | 550 |
| ENTRIES | 3 |
| FACE_VOLTS | NA |
| RAW_PROD | 4858 |
| CLEAN_PROD | NA |
| REJECT | NA |
| ROOF | NA |
| FLOOR | NA |
| PARTINGS | NA |
| COAL_HARD | NA |
| CONDITIONS | NA |
| SH | WESTFALIA LUNEN GLEITHOBEL PLOW, 2200 HP, CHAIN HAUL, 3" CUT |
| FC | WESTFALIA LUNEN, 11B, 30MM, 3125 |
| SL | WESTFALIA, 920MM |
| CR | KLOECKNER-BEORIT |
| SD | WESTFALIA LUNEN, 2 LEG, 560 T, MANUAL |
| OTHER_EQUIP | |</p>
<table>
<thead>
<tr>
<th>CODE_NAME</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT_FACE</td>
<td>1986</td>
</tr>
<tr>
<td>PRES_FACE</td>
<td>1986</td>
</tr>
<tr>
<td>PERIOD</td>
<td>01/03/89 - 03/31/89</td>
</tr>
<tr>
<td>SHIFTS</td>
<td>174</td>
</tr>
<tr>
<td>INFO_SOURCE</td>
<td>SECTION BOSS REPORT</td>
</tr>
<tr>
<td>REP_FORMAT</td>
<td>SPECIFIC INCIDENTS</td>
</tr>
<tr>
<td>SEAM_HT</td>
<td>75</td>
</tr>
<tr>
<td>MINED_HT</td>
<td>75</td>
</tr>
<tr>
<td>PANEL_WIDE</td>
<td>700</td>
</tr>
<tr>
<td>PANEL_LEN</td>
<td>4600</td>
</tr>
<tr>
<td>DEPTH</td>
<td>NA</td>
</tr>
<tr>
<td>ENTRIES</td>
<td>3</td>
</tr>
<tr>
<td>FACE_VOLTS</td>
<td>NA</td>
</tr>
<tr>
<td>RAW_PROD</td>
<td>1053</td>
</tr>
<tr>
<td>CLEAN_PROD</td>
<td>NA</td>
</tr>
<tr>
<td>REJECT</td>
<td>NA</td>
</tr>
<tr>
<td>ROOF</td>
<td>NA</td>
</tr>
<tr>
<td>FLOOR</td>
<td>NA</td>
</tr>
<tr>
<td>PARTINGS</td>
<td>NA</td>
</tr>
<tr>
<td>COAL_HARD</td>
<td>NA</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>NA</td>
</tr>
<tr>
<td>SH</td>
<td>ANDERSON MAJOR 500, 500 HP DERS, EICOTRAK, 30" CUT</td>
</tr>
<tr>
<td>FC</td>
<td>HALBACH & BRAUN, 11B, 30MV, 2x250 HP, 555MM, 222 FPM, SIDE DISCHARGE</td>
</tr>
<tr>
<td>SL</td>
<td>HALBACH & BRAUN, 555MM, 256 FPM</td>
</tr>
<tr>
<td>CR</td>
<td>WESTFALIA</td>
</tr>
<tr>
<td>SD</td>
<td>CONTY, 2 LEG, 780 T</td>
</tr>
<tr>
<td>OTHER_EQUIP</td>
<td></td>
</tr>
</tbody>
</table>
MINE No. 33

CODE_NAME 33
INIT_FACE 1968
PRES_FACE 1984
PERIOD 01/03/89 - 03/31/89
SHIFTS 195
INFO_SOURC SECTION BOSS REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 66
MINED_HT 60
PANEL_WIDE 500
PANEL_LEN 5200
DEPTH 700
ENTRIES 4
FACE_VOLTS NA
RAW_PROD 2336
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH EICKHOFF 340-L, 400 HP DERS, EICO TRAK, 30" CUT
FC HALBACK & BRAUN, 11B, 30MM, 2*250, 600MM, 217 FPM
SL HALBACH & BRAUN, 620MM, 256 FPM
CR WESTFALIA
SD WESTFALIA LUNEN, 2 LEG, 500 T, MANUAL
OTHER_EQUIP
MINE NO. 34

CODE_NAME 34
INIT_FACE 1970
PRES_FACE 1983
PERIOD 01/03/89 - 03/31/89
SHIFTS 185
INFO_SOURCE SECTION BOSS REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 60
MINED_HT 60
PANEL_WIDE 600
PANEL_LEN 3500
DEPTH 1250
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD NA
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH EICKHOFF 170-L, 228 HP DEPS, EICOTRACK, 30" CUT
FC HALBACH & BRAUN, 11B, 30MM, 2*250, 600MM, 216 FPM, SIDE DISCHARGE
SL HALBACH & BRAUN, 600MM, 254 FPM
CR DOWTY
SD WESTFALIA LUNEN, 4 LEG, 460 TCN
OTHER_EQUIP
MINE No. 35

CODE_NAME 35
INIT_FACE 1974
PRES_FACE 1985
PERIOD 01/03/89 - 03/31/89
SHIFTS 185
INFO_SOURC SECTION BOSS REPORT
REP_FORMAT SPECIFIC INCIDENTS
SEAM_HT 60-100
MINED_HT 66
PANEL_WIDE 480
PANEL_LEN NA
DEPTH 500 - 1000
ENTRIES 4
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD 1496
REJECT NA
ROOF NA
FLOOR NA
PARTINGS NA
COAL_HARD NA
CONDITIONS NA
SH JOY 4LS, DERS, EICO, 30° CUT
FC HALBACH & BRAUN, 21B, 26MM, 30 IN., 2*300 HP, 256 FPM, SIDE DISCHARGE
SL HALBACH & BRAUN, 40 IN., 312 FPM
CR HALBACH & BRAUN
SD DOMTY, 4 LEG, 760 TON, ELECTROHYDRAULIC CONTROL
OTHER_EQUIP

MINE No. 36

CODE_NAME 36
INIT_FACE 1986
PRES_FACE 1986
PERIOD 1/1/87 - 3/31/87
SHIFTS 104
INFO_SOURC PRODUCTION REPORT
REP_FORMAT GROUPED INCIDENTS
SEAM_HT 44
MINED_HT 44
PANEL_WIDE 600
PANEL_LEN 4000
DEPTH 800
ENTRIES 3
FACE_VOLTS NA
RAW_PROD NA
CLEAN_PROD 664
REJECT NA
ROOF SHALE W/ RIDER 1-3' ABOVE
FLOOR DARK SHALE W/COAL DISCONTINUOUS COAL BANDS FOR
 5-15' BELOW
PARTINGS GENERALLY CLEAN
COAL_HARD NA
CONDITIONS NA
SH WESTFALIA LUNEN GLEITHOBEL PLOW, MODEL
 9-30V/4.5, 2*225 HP, CHAIN HAUL
FC WESTFALIA LUNEN, PANZER PFII-30-S, 21B, 28MM,
 25 IN, 2*200 HP, 150
 FPM, SIDE DISCHARGE
SL WESTFALIA LUNEN, MODEL PFII-30-K, 25 IN.
 SECTION BELT WALKING
 TAILPIECE BY AMERICAN LONGWALL
CR BRIEDEN, MODEL K8.00
SD WESTFALIA LUNEN, 2 LEG, 420 TON, HAUGHING HT70
 PUMPS
OTHER_EQUIP
MINE No. 37

CODE_NAME 37
INIT_FACE 1983
PRES_FACE 1983
PERIOD 01/01/87 - 03/31/87
SHIFTS 72
INFO_SOURCE PRODUCTION REPORT
REP_FORMAT GROUPED INCIDENTS
SEAM_HT 60
MINED_HT 66
PANEL_WIDE 600
PANEL_LEN 3300
DEPTH 475 - 1175
ENTRIES 3
FACE_VOLTS NA
RAW_PROD 932
CLEAN_PROD NA
REJECT NA
ROOF SHALE OR SILTSTONE W/MANY FOSSIL FRAGS. PROBS WITH CHANNEL SOUR SST ALSO THICK FOLLIS BANDED SH/SILT W/FRAC TRENDS PARALLEL TO DEV.
FLOOR DARK SHALE W/ COAL SPARS AND LEADER COAL 0-20" THICK 1-3' BELOW. SST UNDERLIES LEADED. GOOD FLOOR EXCEPT WHEN LEADER WITHIN 2' OF FLOOR.
PARTINGS BONE COAL A FEW INCHES THICK. FAULTS ARE PRESENT.
COAL_HARD NA
CONDITIONS NA
SH EICHOFF EDW 260-230, 200 HP DERS, HB RACK (DYNATRAK), 30" CUT
FC HALBACH & BRAUN, 21B, 28MM, 2" 215 HP, 30 IN., 256 FPM, SIDE DISCHARGE
SL HALBACH & BRAUN, 25 IN., 305 FPM
CR HALBACH & BRAUN
SD THYSSEN, 4 LEG, 700 TON, HAUHINCO EHP3K70 PUMPS
OTHER_EQUIP
MINE NO. 38

CODE_NAME 38
INIT_FACE 1983
PRES_FACE 1983
PERIOD 01/01/87 - 03/31/87
SHIFTS 129
INFO_SOURC PRODUCTION REPORT
REP_FORMAT GROUPED INCIDENTS
SEAM_HT 52
MINED_HT 58
PANEL_WIDE 540
PANEL_LEN 3070
DEPTH 475 - 1175
ENTRIES 3
FACE_VOLTS NA
RAW_PROD 503
CLEAN_PROD NA
REJECT NA

ROOF SHALE OR SILTSTONE W/MANY FOSSIL FRAGS. PROBS
WITH CHANNEL SCOUR SST ALSO THICK FOLLIS
BANDED SH/SILT W/FRAC TRENDS PARALLEL TO DEV.

FLOOR DARK SHALE W/ COAL SPARS AND LEADER COAL 0-20"
THICK 1-3' BELOW. SST UNDERLIES LEADER. GOOD
FLOOR EXCEPT WHEN LEADER WITHIN 2' OF FLOOR

PARTINGS BONE COAL A FEW INCHES THICK. FAULTS ARE
PRESENT

COAL_HARD NA
CONDITIONS NA

SH EICHOFF EDW 260-230, 200 HP DERS, HB RACK
(DYNATRAK), 30" CUT

FC HALBACH & BRAUN, 21B, 26MM, 2*215 HP, 30 IN.,
256 FPM, SIDE DISCHARGE

SL HALBACH & BRAUN, 25 IN., 305 FPM

CR HALBACH & BRAUN

SD THYSSEN, 4 LEG, 700 TON, HAUHINNO EHP3K70
PUMPS

OTHER_EQUIP
MINE No. 39

CODE_NAME 39
INIT_FACE 1983
PRES_FACE 1985
PERIOD 01/01/87 - 03/31/87
SHIFTS 265
INFO_SOURC PRODUCTION REPORT
REP_FORMAT GROUPED INCIDENTS
SEAM_HT 45
MINED_HT 45
PANEL_WIDE 400
PANEL_LEN 1350
DEPTH 500
ENTRIES 3
FACE_VOLTS NA
RAW_PROD 923
CLEAN_PROD NA
REJECT NA
ROOF SANDY SHALE OVERLAIN BY SANDSTONE LAYER OF UP TO 80'.
FLOOR SANDY SHALE OR SHALE TO A LESSER DEGREE.
PARTINGS OCCASIONALLY UP TO 3 PARTINGS. NO KNOWN FAULTS
COAL_HARD NA
CONDITIONS NA
SH WESTFALIA LUNEN, GLEITHOBEL 9-30VE/2.4 PLow, 2x200 HP, CHAIN HAUL, 4" CUT.
FC WESTFALIA LUNEN, MODEL TF2-30.S, 21B, 26MM, 2x360 HP, 732MM, 226
 FPM, CROSS FRAME DISCHARGE.
SL WESTFALIA LUNEN, MODEL PF2.30, 732MM, 307 FPM.
CR HALBACH & BRAUN
SD HEINTZMAN, 2 LEG, 350 TON, MANUAL, HAUCHIND PUMPS
OTHER_EQUIP

APPENDIX II

NOMENCLATURE USED TO DESCRIBE SPECIFIC DELAY EVENTS
1 WAY = CUT ONE WAY (F / G, P, V)
2 A = ARMORED FACE CONVEYOR [ALSO AFC]
3 ADJ = ADJUST (ALL / M, H, EH, E, P)
4 AF = A FRAME [SPA AND SPRAY HELD] (SH / M)
5 AIR = NO AIR (V / V)
6 AL = ALIGN (OB, B, SH / M, G, H)
7 ATP = ALIGN TAILPIECE (OB, B / M, G)
8 B = BELT(S) OTHER THAN SECTION BELT [ALSO BELT] (B / ALL)
9 B OUT TU = TAKE BELT OUT OF STORAGE UNIT (OB / M)
10 BAT = BATTERY
11 BB = BAD BOTTOM (F, A, S / G)
12 BC = BEARING CAP (SH / M)
13 BEARING = BEARING [ALSO BEARING HOT] (SH, A, SL, OB, B / M)
14 BENT = BENT, WORK TO STRAIGHTEN (SH, A / M)
15 BF = BIN FEEDER (BIN / C, M, E)
16 BH = BELT HEAD (OB / M, C)
17 BIN = BIN, BUNKER, SILO [ALSO ROTARY BIN] (BIN / C, M, E)
18 BINO = BINDER (RX, F / G)
19 BIT = REPLACE BITS (SH / M)
20 BLJ = BASE LIFT JACK [ALSO BASE PLATE] (S / H, M)
21 BLO = BLOWN, BURST (H, P, S / H)
22 BO = BOLT (SH, A, SL, CR / M)
23 BOOST = BELT BOOSTER DRIVE (OB, B / M, E)
24 BCT = BOTTOM, FREQ USED WITH REC BOT (F / G, P)
25 BTD = CLEAN BOTTOM [ALSO REC BOT] (F / G, P)
26 BP = BRIDGE PLATE (S / M)
27 BRIT = BRITTANY CHAIN, CABLE HANDLER (SH / M, H)
28 BRIT OFF = RETBY SEPARATED FROM SHEARER (SH / M)
29 BRIT PAN = RETBY IN PAN, OUT OF TRough (SH / M)
30 BRK = BROKE (ALL / M, H, E)
31 BRK RX = BREAKING ROCK (RX, F / G)
32 BRKER = ELECTRICAL BREAKER (A, SH, SL, CR, OB / E)
33 BS = BAD SHIELD, PROBLEM WITH BATCH OPERATION (S / EH, H)
34 BT = BAD TOP (F / G)
35 BUSH = BUSHING (SH / M) RA
36 C = CABLE (A, SH, SL, CR, OB / E)
37 C ANCHOR = CABLE ANCHOR (A, SH, SL, CR, OB / E, M)
38 CA = COWL ARM (SH / M)
39 CAL = CALIBRATE METH MON (METH / E)
40 CAN = SHIELD CANOPY (S / M)
41 CANA = CANABOLIZE, USE PART OFF OTHER EQUIPMENT (ALL / M)
42 CAT = CATHEAD CABLE CONNECTOR (POW / E)
43 CB = COWL BLADE (SH / M)
44 CC = CONCURRENT, OVERLAPPING DOWNTIME (ALL / ALL)
45 CH = CHAIN (A, SL / M)
46 CH WR = CHAIN WRECKED (A, SL / M)
47 CIR = CIRCUIT [SEE OCIR] (ALL / E)
48 CK = CHECK (ALL / ALL)
49 CK FIRE = TESTING FIRE SUPPRESSION EQUIP (SA / SA)
50 CL = CLEAN, CLEAR [ALSO CL S, CS] (S, A, SH / G, M)
CL REL VAL = CROSSLINE RELIEF VALVE (S / H)
CLEAR = CLEARANCE (F, SH, SL / G, M, P)
CLEVIS = CLEVIS (S / M)
CNTL = CONTROL [ALSO CNTL SW] (SL, OB / E)
COMP = AIR COMPRESSOR [FREQ WITH SHOT] (RX, F / G, P)
COMPU = SHIELD CONTROL COMPUTER (S / EH)
CON = CONNECTOR FOR WIRE LEADS (A, SH, SL, OB / E) JB, PB
CONT = DT RECORD CONTINUED [USE IDENTICAL WORDING] (ALL / ALL)
COOL WA = COOLANT WATER SYSTEM (SH / H)
COP = COUPLER [FREQ FLUID COUPLER] (A, SL, OB, B, SH / H, M)
COV = COVER (SH, A, SL / M)
COWL = COWL [ALSO COWL DR] (SH / M, H)
CREW = LINE UP CREW [FREQ GOES ON SFT REP AS RCP] (F / P)
CRIB = CRIB (S) (ROOF, PROP, F / G, P)
CRX = CLEAR FALLEN ROCKS (RX, S, F / G)
CRX S = CLEAR RX OFF CANOPY [ALSO CL S] (ROOF / G)
CS = CLEAN SHIELDS (S, RX / G, P)
CST O/T = ? OVER TEMP (OB / E, C)
CT = CHAIN TENSIONER UNIT (A, SL / M)
CTRX = CUT ROCK WITH SHEARER (F / G)
CURT = VENT CURTAIN (V / V, P)
CUT = CUTTER DRUM [ALSO HUB] (SH / M)
CUT COV = DRUM HUBCAP [ALSO HC] (SH / M)
CUT DR = CUTTER MOTOR (HG OR TG) (SH / E, M)
DATA = DATA COLLECTOR (SH, S / EH)
DB = DOG BONE (A / M)
DC = DRY COMPARTMENT (SH / E)
DIG CIR = DIGITAL CIRCUIT (S / EH)
DN = DOWN [FREQ WITH BELT] (B, OB / ALL)
DR = DRIVE MOTOR (A, OB, B / E, M, H)
DRY BAG = SEAL FOR ELECT COMPARTMENT (SH / E)
DYN CH = DYNATRAC CHAIN (SH / M)
E = EVEN, 1e. FT ADV HEAD = FT ADV TAIL (SFT REPORT)
EF = EMULSION FLUID (H, P, S / H, EH)
EH = ELECTROHYDRAULIC (S / EH)
EICO = EICO TRACK PIN OR (SEGMENT REPL (SH / M)
EICO ROLL = HAUL SPROCKET [ALSO EICO ROLLER] (SH / M)
ELEV = ELEVATOR (PD / S)
EMER SW = EMERGENCY OFF SWITCH (A, SL, CR / E)
END # = END OF PANEL NUMBER #
END PANEL = END OF PANEL
EP = EMULSION PRESSURE (P, H, S / H)
ET = EMULSION TANK (P, H / H, M)
FA = FAULT (F, RX / G)
FALL = ROOF FALL, ROCK FALL (ROOF, RX / G)
FAN = VENTILATION FAN [ALSO FAN CK] (V, SA / V)
FILT = FILTER (SH, P, S / H)
FIT = FITTING (SH, S / M, H)
FL = CONVEYOR FLIGHT (A, SL / M)
FL SEP = FLIGHT BROKE OUT OF CHAIN (A, SL / M)
FLIT = Idle Tram with Shearer (F / P)
FLOODED = Face or Track Flooded (F, T / G)
FORE POLE = Shield Canopy Tip (S / M, H, G)
FRIC DR = Belt Friction Drive (B, OB / E, M)
FULL = Reached Capacity (BIN / C)
FUSE = Fuse (SH, A, SL, CR, OB / E)
FZ = Frozen
GEAR BEARING = Haulage Gear Bearing (SH / M)
GO = Gear Oil Added, Leaked,Flushed[Also GO Case] (A, SL, SH / H)
GOB = Gobbed Out (A, SL, OB, B / G, C)
GOB S = Side Shield, Gob Shield (S / M)
GOOSE = Gooseneck Pan Section (A / M)
GRD = Ground Electrical Wire, Ground Fault (A, SH, SL, CR, OB / E)
GRD MON = Ground Monitor [Usually Only GRD Used]
GT = Groin (F, ROOF / G, P)
GU = Guard (SL, CR / M)
H = Hose (SH, S, OB / H) TP TU
HAUL DR = Haulage Motor, Traction Drive (SH / E, H)
HAUL ROLL = Haulage Sprocket [Also Eico Roller] (SH / M)
HC = Hub Cap [Also Cut Cov] (SH / M)
HD = Headgate Drive [Also HG DR] (A / H, E, M)
HG = Head Gate [Freq Used to Specify SH or A Equip]
HG DR = AFC Headgate Drive [Also HD] (A / E, H, M)
HO = Hydraulic Oil Added, Leaked,Flushed (A, SL, SH / H)
HC HG RA = Flush and CHG Headgate Ranging Arm Fluid (SH / H)
HC TG RA = Flush and Change Oil TG Ranging Arm (SH / H)
HOST = Governor (SH / E)
HR = Haulage Rack [Also Eico] (SH / M)
HS C = High Speed Cable (A, SH / E)
HT = Coal Thickness (SFT Report)
HUB = Hub or Drum [Also Cut] (SH / M)
HUNG = Hung Up (A, SL, CR / G, M)
HV = High Voltage Line (POW / E)
IMP = Impactor of Crusher (CR / M)
INOP = Inoperative, Not Start (A, SL, SH, OB, B / E)
INS = Insert [Freq Bit INS] [Also W Bit] (SH / M)
INSP = Inspect [Also CK] (ALL / ALL)
INS = Inspector (SA / SA)
INST = Install (ALL / ALL)
IR = Incomplete Record (ALL / ALL)
JB = Junction Box [Also PB] (POW, A, SL, OB, SH / E)
LD = Linear Drive (OB, B / E, M)
LEAK = Leak of Fluid [WA H, HYD FIT, EF P] (H, P / H)
LEG = Hydraulic Leg of Shield (S / H, M)
LINKS = Remove Chain Links [Similar To Slack] (A, SL / M)
LMST = Limestone Rock Type (RX, ROOF / G)
LO = Electric Lock Out of Conveyor (A / E)
LO SW = Lockout Switch Failure (A, SL / E)
LOOSE = Loose (ALL / E, M, H) W1, FIT, BO, H
LOW FREQ RET = Low Frequency Return
151 LS = LOW SHIELDS (F,ROOF,S / P,G)
152 LS C = LOW SPEED CABLE (A / E)
153 LUMP = LUMP BREAKER (SH / M)
154 M = MANTRIP (PD,T / E,M,P)
155 MANI = MANIFOLD [FREQ WATER MANIFOLD] (SH / H)
156 MEA = MEASURE [MEA WEB DEPTH] (F / M,P)
157 MEA HT = MEASURE FLOOR TO ROOF DIST (F / P)
158 MEET = MEETING [ALSO MEET OS] (SA, F / P,SA) ALSO PROD
159 MEET IN = MEETING UNDERGROUND (F / P)
160 MF = MID FACE (METH,A,SH / E,G,M)
161 MON = MONITOR [ALSO MON SIG] (METH / E,SA)
162 MON SIG = METHANE WARNING SIGNAL (METH / SA)
163 MONO = HUNG MONORAIL [GENERAL WORK SFT REPORT]
164 MSDT = MISSING SHIFT DOWNTIME [ALSO IR] [FREQ IN SFT REPORT
165 NES = NOT IN STOCK,PART UNAVAILABLE (ALL / ALL)
166 NO POWER = POWER SUP INTERRUPTED [ALSO POW SUP] (ALL / ALL)
167 NOT PUSH = HD OR TD WONT ADVANCE (A / G,M) BB
168 NOZ = SPRAY NOZZLE (SH / H)
169 O = O-RING,GASKET,SEAL (P,SH,A,SL / H)
170 OCR = OPEN CIRCUIT (A,SL,SH,OB,CR / E) JB, PB
171 OIL SAM = OIL SAMPLE TAKEN FOR DIAGNOSTICS (SH,A / H)
172 OL #1, #2 = OVERLOAD HD TC (A / H)
173 OL = OVERLOAD (A,SL,SH,OB,B / E,C)
174 OL BRKER = OVERLOAD BREAKER (SH,A,SL,CR,P / E)
175 OL HG = OVERLOAD HEADGATE DRIVE [OL #1,#2;OL HD] (A / H)
176 OL POW = OVERLOAD,LOST POWER (SH,S / E)
177 OSUMP = OVER SUMP,FACE SLOPED (F / P)
178 P = PUMP [FREQ EF P] (P,S / H)
179 PAN = PAN TIPPING,FELL,WONT PUSH [ALSO BRT PAN] (A / M,G)
180 PAT = PATCH [FREQ PAT C] (A,SH,SL,CR,OB / E)
181 PB = PANEL BOX [ALSO JB] (A,SL,CR,SH,POW / E) PERM
182 PC = POWER CENTER (POW / E)
183 PC OFF = SECTION POWER INTERRUPTED (POW / E)
184 PD = PORTAL DELAY (PD / P) TARDY, M NIS
185 PERM = ELECTRICAL PERMISSIBILITY PROB (SH,A,SL / E) JB, PB
186 PHONE = TELEPHONE (COMM / E)
187 PLUG = JAMMED [FREQ NOZ PLUG] (SH / H)
188 POW SUPP = POWER SUPPLY (POW / E) PC,BH
189 PR OS = PRODUCTION MEETING OUTSIDE (PD / P)
190 PRE START = PRE START SIGNAL FAILURE (A,SL / E)
191 PRESS = PRESSURE (P,H / H)
192 PRI = PRIME (P / H)
193 PROD = PRODUCTION [FREQ PROD MEET] (F / P)
194 PROP = HYDRAULIC LEG JACK, WOODEN PROP (PROP,F,ROOF / G)
195 PS = SHIELDS PLOWING (S / G,M) BB
196 PT = PIG TAIL [ALSO RC; RC C] (SH / E)
197 PUSH SN = PUSH AFC TO CREATE SNAKE IN PANLINE (A / M,P)
198 QD = QUAD DRIVE (OB,B / E)
199 QS = QUILL SHAFT ? (A / M)
200 RA = RANGING ARM [FREQ SPECIFIED WITH HG OR TG] (SH / M,H)
RA RAM = RANGING ARM LIFT JACK (SH / H,M)
RACE = AFC CHAIN RACE, CHAIN OUT OF RACE (A, SL / M)
RAM = PUSH RAM AT SHIELD BASE OR TP TU (S, OB / H,M)
RB = ROOF BOLT (F, ROOF / P, G)
RC = REMOTE CONTROL [ALSO RC C] (SH, SL, OB / E)
RCP = ROOF CONTROL CK & FACE INSPE & SA MESSAGE (F / P)
RD = ROCK DUST (F / P)
REC = RECUT [FREQ REC BOT] (F / G)
REL = RELAY CIRCUIT (ALL / E) OR RELAY BAR (S / M)
REM = REMOVE (ALL / ALL)
REM TIM = REMOVE TIM (HG OR TG) (F / P)
REP = REPAIR (ALL / ALL)
REPL = REPLACE (ALL / ALL)
RES = RESET SWITCH [ALSO RES SW] (A, SL, SH / E)
RET = HYDRAULIC RETURN LINE (H, S / H)
REV SW = REVERSE SWITCH (A / E)
RIB = PILLAR RIB (F, SA / P)
RING MAIN = EMULSION FLUID RING MAIN (H, S / H)
ROLLERS = BELT ROLLERS (OB, B / M)
ROOF = ROOF SUPPORT (ROOF, PROP / G, P)
RUN = RUN SUPPLY IN/OUT ON BELT (F / P)
RX = ROCK [ALSO CTRX, RX FALL, BRK RX, CRX] (RX, ROOF / G)
RX TH = THICK ROCK PARTING OR BINDER (ROOF, RX / G)
S = SHIELD (S / H, EH, C, M)
SA IN = SAFETY MEETING UNDERGROUND (SA / SA)
SA GS = SAFETY MEETING OUTSIDE (SA / SA)
SAND = SANDWICH PLATES (A, SL / M)
SC = SHORT CREW (F, PD / P)
SCH = SCHEDULED DOWNTIME ? (T)RUE OR (F)ALSE (ALL / ALL)
SCR = BELT SCRAPER (B, OB / M)
SEG = SEGMENT [FREQ REPL E!CO SEG] (SH / M)
SEQ = SEQUENCE CABLE [ALSO SR, SS]
SER = SERVICE SHEARER [FREQ Bt SER] (SH / M, H) HO, GO
SER EQUIP = SERVICE ANY/ALL FACE EQUIPMENT (A, SL, CR, SH / H, M)
SET TIPS = PROGRAM SHIELD TIP SETTING (S / EH)
SEV = SEVERAL TIMES [FREQ WITH AVE=IND DUR] (ALL / ALL)
SH = SHEARER (SH / ALL)
SH WR = SHEARER DERAILED (SH / M, T)
SHOT = DRILLED AND SHOT ROCK OR KETTLE BOTTOM (RX, F / G)
SILO = SILO BELT (B / ALL)
SL = STAGE LOADER (SL / ALL)
SLA = SLATE ROCK TYPE (RX / G)
SLA SH = SHEARER STOPPED BY SLATE IN PAN (RX / G)
SMOKE = SMOKE DETECTOR SIGNAL (SA / V)
SN = SNAKE PANLINE (A / M)
SP = SOFT PLUG TORQUE CONVERTER FUSE (A, SL / H)
SPA = SPLITTER ARM (SH / M)
SPEED = SPEED REDUCER (A, SL, OB / M, H)
SPILL = SPILL COAL (OB / C) SPT
SPL = SPLICE BELT [ALSO SPLICE] (OB, B / M)
SPL = SPlice CABLE [ALSO SPLICE] (A, SH, SL, OB / E)
SPL = STRAIGHTEN PANLINE (A / M)
SPOT BIT = SPOT REPLACEMENT OF BITS (SH / M)
SPR = SPROCKET (A, SH / M)
SPRAY = WATER SPRAY ARM (SH / H, M)
SPRAY CUT = DRUM SRAVS (SH / H)
SPT = SPILL TRAY, BOARDS, PLATE, OR FLAP (A, SL, OB / M) TP
SR = SEQUENCE ROLLER [ALSO SS] (OB, B / E)
SS = SEQUENCE SWITCH [ALSO HAWK] (OB, B / E)
SST = SANDSTONE ROLL (RX, ROOF / G)
ST = SLOW TRAMMING OF SHEARER [FREQ ST LS] (F, SH / G, P)
ST PAN LEAN = SLOW TRAMMING PAN LEANING (F / M)
STALL VAL = STALL VALVE? (S, SH / H)
START * = START OF PANEL NUMBER *
START PANEL = BEGIN NEW PANEL
STOP = VENTILATION STOPPING (V / V)
STR = BELT STRUCTURE (OB / M)
STS = STATIC STARTER (OB, B / E, M)
SUP = RUN SUPPLIES OUTBY OR ONTO FACE (F / P)
SW = SWITCH (ALL / E)
SWRT = SHIELDS WONT REACH TOP & ALL SETTING PROB (S, ROOF / G)
SYS = SYSTEM (ALL / ALL)
TARDY = LATE IN (PD / P)
TB = TIGHTEN BOLTS (ALL / ALL)
TC = TORQUE CONVERTER (A, SL / H)
TCP = TORQUE CONVERTER PLATE (A, SL / M)
TD = TAILGATE DRIVE [ALSO TG DR] (A / H, M, E)
TF = TIGHTEN FITTING (SH, S / M, H)
TG = TAILGATE [USED TO SPECIFY EQUIP OR POSITION] (SH / ALL)
TG DR = AFC TAILGATE DRIVE [ALSO TD] (A / H, M, E)
THERM = OL THERMISTER [ALSO OL BRAKE HOT] (SH / E, C)
TI = TIGHTEN (ALL / ALL)
TIM = TIMBERS [FREQ IN SFT REPORT] (PROP, ROOF / G, P)
TIM PAN = REMOVE TIMBER FROM PAN (A, F / P)
TP = TAILPIECE OF BELT (OB, B / M)
TP SPILL = TAILPIECE COAL SPILL (OB, B / M, C) ATP, SPT
TQS = TORQUE SHAFT [FREQ HG TQS, TG TQS] (SH / M)
TRAIN = TRAINING (F / P) A, SH, S, SL, CR
TRANS = TRANSMISSION?
TRANSF = TRANSFORMER (POW / E) PC
TRAVEL IN = TRAVEL TIME IN [SCHEDULED = .T.] (PD / P)
TRAVEL OUT = TRAVEL TIME OUT [SCHEDULED = .F.] (PD / P)
TRIM = TRIM SPLICE (OB, B / M)
TRS = TROUBLESHOOT, OR CK [ALSO TS] (SH, A, SL / E, H) JB, PB
TS = TRAPPING SHOE (SH / M)
TU = BELT TAKEUP (OB / M)
UK = UNKNOWN
V = ADJ VENTILATION [ALSO STOP, VT, VC] (V / V)
VAC BRKER = VACUUM BREAKER (POW / E) PC
VAL = VALVE (S, SH / H)
301 VC = VENTILATION CURTAIN (V / V)
302 VIO = VIOLATION (SA / SA) INSPT, PERM
303 VLP = VERY LITTLE PRODUCTION (SFT REPORT)
304 VSM = VEY SLOW MINING (SFT REPORT)
305 VT = VENTILATION TUBING (V / V)
306 W = WEDGE CUT (SFT REPORT) [ALSO XCUT] (F / P)
307 W = WELD (SH, A, SL, S, CR / M) BIT, PAN, SPT, BLJ, BLP
308 W BIT = WELD BIT INSERTS [ALSO INS] (SH / M)
309 WA = WATER (H, P, SH / H) NO WA, WA PLUG
310 WA HO = WATER IN HYDRAULIC FLUID (SH, A, SL / H)
311 WA TE = WATER TANK EMPTY (H, P / H)
312 WAIT = WAIT ON SHIELDS (S, P / C, H) EF P, XCUT
313 WAP = WATER PLUG (SH / H)
314 WEAR STRIP = REAR STRIP (A, SL / M)
315 WI = WIRE, CONTACT, LEAD (ALL / E)
316 WK = WORK ON (ALL / ALL)
317 WR = WRECKED, FOULED (A, SL, SH / M) CH WR, FL WR, SH WR
318 XCU = EXTRA CUT [ALSO WEDGE] (F / P)
319 [* / *] = [FT ADV HEAD / FT ADV TAIL] (SFT REPORT)
320 [TOT] = COMPOSITE TIME [ALSO SEV] (ALL / ALL)
APPENDIX III

DATA MAINTENANCE AND DATA GENERATION PROGRAMS

Note: The character ";" (semicolon) is the dBASE line continuation symbol. In order to ensure proper operation of the programs in this section, type a blank character before each semicolon (" ;").
MAINTAIN PROGRAM

TEXT

THIS PROGRAM RUNS THE DATA MAINTENANCE PROGRAMS AS AN AUTOMATED SEQUENCE. THE SEVEN DATA MAINTENANCE PROGRAMS RUN BY THIS PROGRAM ARE: 1) ADDTYPE, 2) FILLSFT, 3) CORRSFT, 4) INTERSFT, 5) ADDSFT, 6) TRAVRCP, 7) OVERLAP.

ENDTEXT

CLEAR ALL
SET EXACT ON
SET DATE TO YMD
CLEAR
DTDATA=SPACE(8)
@ 5,10 SAY "ENTER DOWNTIME DATABASE NAME" GET DTDATA
READ
SFTDATA=SPACE(8)
@ 6,10 SAY "ENTER SHIFT DATABASE NAME" GET SFTDATA
READ
SELE 1
USE &DTDATA
SELE 2
USE &SFTDATA
DO ADDTYPE
DO FILLSFT
DO CORRSFT
DO INTERSFT
DO ADDSFT
DO TRAVRCP
DO OVERLAP
RETURN
ADDTYPE PROGRAM

SET EXACT ON
SELE 1
GOTO TOP
TEXT

THIS PROGRAM IS FOR CONVENIENCE ONLY. IT FILLS THE DOWNTIME DATABASE TYPE FIELD IN ACCORDANCE WITH THE LAST THREE CHARACTERS OF THE EQUIP FIELD.

ENDTEXT

REPLACE TYPE WITH "E" FOR VAL(RIGHT(EQUIP,3)) > 0 .AND.;
VAL(RIGHT(EQUIP,3)) < 50
REPLACE TYPE WITH "M" FOR VAL(RIGHT(EQUIP,3)) > 49 .AND.;
VAL(RIGHT(EQUIP,3)) < 100
REPLACE TYPE WITH "H" FOR VAL(RIGHT(EQUIP,3)) > 99 .AND.;
VAL(RIGHT(EQUIP,3)) < 150 .AND..NOT. TYPE="EH"
REPLACE TYPE WITH "G" FOR VAL(RIGHT(EQUIP,3)) > 149 .AND.;
VAL(RIGHT(EQUIP,3)) < 200
REPLACE TYPE WITH "C" FOR VAL(RIGHT(EQUIP,3)) > 199 .AND.;
VAL(RIGHT(EQUIP,3)) < 250
REPLACE TYPE WITH "P" FOR VAL(RIGHT(EQUIP,3)) > 249 .AND.;
VAL(RIGHT(EQUIP,3)) < 300
REPLACE TYPE WITH "SA" FOR VAL(RIGHT(EQUIP,3)) > 299 .AND.;
VAL(RIGHT(EQUIP,3)) < 350
REPLACE TYPE WITH "V" FOR VAL(RIGHT(EQUIP,3)) > 349 .AND.;
VAL(RIGHT(EQUIP,3)) < 400
REPLACE TYPE WITH "NA" FOR VAL(RIGHT(EQUIP,3)) > 399 .AND.;
VAL(RIGHT(EQUIP,3)) < 450
REPLACE TYPE WITH "EH" FOR VAL(RIGHT(EQUIP,3)) > 449

RETURN
FILLSFT PROGRAM

SET EXACT ON

TEXT

THIS PROGRAM DELETES EMPTY SHIFT AND DOWNTIME DATABASE RECORDS, AND FILLS DUPLICATE DATE AND SHIFT FIELDS OF THE DOWNTIME DATABASE. THIS PORTION OF CODE DELETES EMPTY SHIFT DATABASE RECORDS.

ENDTEXT

SELE 2
GOTO TOP
SET DATE TO YMD
DELETE FOR DATE = CTOD(" / / ")
PACK

TEXT

THIS PORTION OF CODE REPLACES THE FEETADVAN FIELD WITH THE AVERAGE VALUE OF FIELDS FEETHREAD AND FEETTAIL.

ENDTEXT

GOTO TOP
REPLACE FEETADVAN WITH LTRIM STR ((VAL(FEETHREAD) +
VAL(FEET_TAIL))/2)) FOR .NOT. FEETHREAD = " " .AND.;
.NOT. FEET_TAIL = " ".AND. FEETADVAN = " "
REPLACE FEETADVAN WITH FEETHREAD FOR FEET_TAIL = " " ;
.AND. FEETADVAN = " "
REPLACE FEETADVAN WITH FEET_TAIL FOR FEETHREAD = " " ;
.AND. FEETADVAN = " ";

TEXT

THIS PORTION OF CODE FILLS IN BLANK DATE FIELDS OF THE DOWNTIME DATABASE.

ENDTEXT

SELE 1
GOTO TOP
MDATE = CTOD("80/01/01")
DO WHILE .NOT. EOF()
IF DATE = CTOD(" / / ")
REPLACE DATE WITH MDATE
ELSE
MDATE = DATE
ENDIF
IF .NOT. EOF()
SKIP
ELSE
LOOP
ENDIF
ENDDO

TEXT

THIS PORTION OF CODE FILLS IN BLANK SHIFT FIELDS OF THE DOWNTIME DATABASE.

ENDTTEXT

GOTO TOP
STORE "0" TO MSHIFT
DO WHILE .NOT. EOF()
IF SHIFT = "0" OR. SHIFT = " "
REPLACE SHIFT WITH MSHIFT
ELSE
MSHIFT = SHIFT
ENDIF
IF .NOT. EOF()
SKIP
ELSE
LOOP
ENDIF
ENDDO

TEXT

THIS PORTION OF CODE DELETES EMPTY DOWNTIME DATABASE RECORDS.

ENDTTEXT

GOTO TOP
DELETE FOR EQUIP = " "
PACK

RETURN
CORRSFT PROGRAM

SET EXACT ON
CLEAR
SET DATE TO YMD
MBASE = CTOD("85/01/01")

TEXT

THIS PROGRAM CONVERTS THE SHIFT FIELDS OF THE SHIFT DATABASE AND DOWNTIME DATABASE TO A STANDARD CONVENTION; FIELDS WHICH RECORD TIME ARE CONVERTED TO MINUTES AFTER MIDNIGHT 01/01/85. THE FIRST PORTION OF CODE CORRECTS THE SHIFT FIELD OF THE SHIFT DATABASE TO CONFORM TO THE STANDARD SHIFT CONVENTION.

ENDTEXT

SELE 2
REPLACE ALL ARR_SECT WITH MOD(ARR_SECT,1440)
REPLACE ALL START_MINE WITH MOD(START_MINE,1440)
REPLACE ALL END_MINE WITH MOD(END_MINE,1440)
REPLACE ALL LEAVE_SECT WITH MOD(LEAVE_SECT,1440)
GOTO TOP
REPLACE SHIFT WITH "1" FOR ARR_SECT >= 1310 .OR. ARR_SECT < 350
REPLACE SHIFT WITH "2" FOR ARR_SECT >= 350 .AND. ARR_SECT < 830
REPLACE SHIFT WITH "3" FOR ARR_SECT >= 830 .AND. ARR_SECT < 1310

TEXT

THIS PORTION OF CODE CONVERTS THE SHIFT DATABASE FIELDS ARR_SECT, START_MINE, END_MINE, AND LEAVE_SECT TO MINUTES AFTER MIDNIGHT 01/01/85. MIDNIGHT 01/01/85 IS THE BENCHMARK FROM WHICH ALL TIME IS MEASURED FOR PROGRAM CALCULATIONS.

ENDTEXT

GOTO TOP
REPLACE ARR_SECT WITH (((DATE - MBASE) * 1440) + ARR_SECT FOR .NOT.;
SHIFT = "1"
REPLACE ARR_SECT WITH (((DATE - 1) - MBASE) * 1440) + ARR_SECT FOR;
SHIFT = "1" .AND. ARR_SECT >= 1310
REPLACE ARR_SECT WITH (((DATE - MBASE) * 1440) + ARR_SECT FOR SHIFT;
SHIFT = "1" .AND. ARR_SECT < 1310
REPLACE START_MINE WITH (((DATE - MBASE) * 1440) + START_MINE FOR;
SHIFT = "1" .AND. START_MINE >= 1360
REPLACE START_MINE WITH (((DATE - 1) - MBASE) * 1440) + START_MINE;
FOR SHIFT = "1" .AND. START_MINE >= 1360
REPLACE START_MINE WITH (((DATE - MBASE) * 1440) + START_MINE FOR;
SHIFT = "1" .AND. START_MINE < 1360
REPLACE END_MINE WITH (((DATE - MBASE) * 1440) + END_MINE FOR .NOT.;
SHIFT = "3"
REPLACE END_MINE WITH (((DATE + 1) - MBASE) * 1440) + END_MINE FOR;
SHIFT = "3" .AND. END_MINE <= 80
REPLACE END_MINE WITH (((DATE - MBASE) * 1440) + END_MINE FOR SHIFT;
= "3" .AND. END_MINE > 80
REPLACE LEAVE_SECT WITH (((DATE - MBASE) * 1440) + LEAVE_SECT FOR,
.NOT. SHIFT = "3"
REPLACE LEAVE_SECT WITH (((DATE + 1) - MBASE) * 1440) + LEAVE_SECT,
FOR SHIFT = "3" .AND. LEAVE_SECT <= 120
REPLACE LEAVE_SECT WITH (((DATE - MBASE) * 1440) + LEAVE_SECT FOR;
SHIFT = "3" .AND. LEAVE_SECT > 120
TEXT

THIS PORTION OF CODE CORRECTS THE SHIFT FIELD OF THE
DOWNTIME DATABASE TO CONFORM TO THE STANDARD SHIFT CONVENTION.

ENDTEXT

SELE 1
REPLACE ALL BEGIN WITH MOD(BEGIN,1440)
AVERAGE BEGIN TO MSFT1 FOR SHIFT = "1" .AND. BEGIN > 0
AVERAGE BEGIN TO MSFT2 FOR SHIFT = "2" .AND. BEGIN > 0
AVERAGE BEGIN TO WSFT3 FOR SHIFT = "3" .AND. BEGIN > 0
GOTO TOP
IF MSFT1 > 480 .AND. MSFT2 > 960 .AND. MSFT3 < 480
REPLACE SHIFT WITH "1" FOR SHIFT = "3"
REPLACE SHIFT WITH "2" FOR SHIFT = "1"
REPLACE SHIFT WITH "3" FOR SHIFT = "2"
ENDIF
TEXT

THIS PORTION OF CODE AFFECTS DOWNTIME DATABASE RECORDS
 WITH NO RECORDED TIME OF OCCURRENCE. THESE RECORDS ARE
 DISTINGUISHED BY HAVING A BEGIN FIELD VALUE OF 0. AT
THIS TIME THESE RECORDS ARE LABELED WITH THE NOTATION
"*TIME" IN THE COMMENTS FIELD, AND THE TIME FIELD IS
CONVERTED TO MINUTES AFTER MIDNIGHT 01/01/85.

ENDTEXT

SET FILTER TO BEGIN = 0
REPLACE COMM WITH SUBSTR(COMM,6) FOR "*TIME " $ COMM
REPLACE ALL TIME WITH (((DATE - MBASE) * 1440) + ((VAL(SHIFT) - 1);
= 480),COMM WITH "*TIME " + LTRIM(COMM)
SET FILTER TO
THIS PORTION OF CODE AFFECTS DOWNTIME DATABASE RECORDS WITH A RECORDED TIME OF OCCURRENCE; THE TIME FIELD OF THESE RECORDS IS CONVERTED TO MINUTES AFTER MIDNIGHT 01/01/85.

ENDTEXT

CLOSE INDEX
INDEX ON DT0C(DATE) + SHIFT TO DT01
SET FILTER TO BEGIN > 0
GOTO TOP
REPLACE TIME WITH (((DATE - 1) - MBASE) * 1440) + BEGIN FOR SHIFT = "1" .AND. BEGIN > 1360
REPLACE TIME WITH (((DATE - MBASE) * 1440) + BEGIN FOR SHIFT = "1"; .AND. BEGIN <= 1360
REPLACE TIME WITH (((DATE - MBASE) * 1440) + BEGIN FOR SHIFT = "2" REPLACE TIME WITH (((DATE + 1) - MBASE) * 1440) + BEGIN FOR SHIFT; = "3" .AND. BEGIN < 80
REPLACE TIME WITH (((DATE - MBASE) * 1440) + BEGIN FOR SHIFT = "3"; .AND. BEGIN >= 80

TEXT

THIS PORTION OF CODE ADJUSTS THE SHIFT FIELD OF PORTAL DELAYS, MANTRIP DELAYS, AND SAFETY DELAYS. DELAYS WHICH OCCUR MORE THAN 80 MINUTES BEFORE OR AFTER THE NORMAL 480 MINUTE SHIFT SPAN ARE ADJUSTED.

ENDTEXT

GOTO TOP
SET FILTER TO "PD" $ EQUIP .OR. "MT" $ EQUIP .OR. "SA" $ EQUIP
REPLACE SHIFT WITH "1" FOR BEGIN > 80 .AND. BEGIN < 400
REPLACE SHIFT WITH "2" FOR BEGIN > 560 .AND. BEGIN < 900
REPLACE SHIFT WITH "3" FOR BEGIN > 1040 .AND. BEGIN < 1360

TEXT

THIS PORTION OF CODE ADJUSTS THE SHIFT FIELD OF THE DOWNTIME DATABASE FOR DELAYS OTHER THAN PORTAL DELAYS, MANTRIP DELAYS, AND SAFETY DELAYS. DELAYS WHICH BEGIN BEFORE ARRIVAL AT THE FACE OR AFTER DEPARTURE FROM THE FACE ARE ADJUSTED.

ENDTEXT

SELE 2
CLOSE INDEX
INDEX ON DT0C(DATE) + SHIFT TO SFT01 UNIQUE
SELE 1
SET FILTER TO BEGIN > 0 .AND..NOT.("PD" $ EQUIP .OR. "MT" $ EQUIP ; .OR. "SA" $ EQUIP)
GOTO BOTT
MEND = DATE
GOTO TOP
MDATE = DATE
SELE 2
GOTO TOP
DO WHILE DATE < MDATE
SKIP
ENDDO
DO WHILE MDATE <= MEND
SELE 2
MARR1 = 0
MARR2 = 0
*MARR3 = 0
DO WHILE DATE = MDATE
DO CASE

CASE SHIFT = "1"
 MARR1 = ARR_SECT

CASE SHIFT = "2"
 MARR2 = ARR_SECT

CASE SHIFT = "3"
 MARR3 = ARR_SECT

ENDCASE
SKIP
ENDDO
SELE 1
DO WHILE DATE = MDATE
DO CASE

CASE TIME < MARR2
 REPLACE SHIFT WITH "1"

CASE MARR2 = 0 .AND. BEGIN <= 480
 REPLACE SHIFT WITH "1"

CASE TIME >= MARR2 .AND. TIME < MARR3 .AND..NOT. MARR3 = 0
 REPLACE SHIFT WITH "2"

CASE TIME >= MARR2 .AND. MARR3 = 0 .AND..NOT. MARR2 = 0 .AND.;
 BEGIN <= 960
 REPLACE SHIFT WITH "2"

CASE MARR2 = 0 .AND. MARR3 = 0 .AND. BEGIN > 480 .AND. BEGIN <= 960
 REPLACE SHIFT WITH "2"
CASE TIME >= MARR3 .AND. .NOT. MARR3 = 0
REPLACE SHIFT WITH "3"

CASE MARR3 = 0 .AND. BEGIN > 960
REPLACE SHIFT WITH "3"
ENDCASE
SK1P
ENDDO
MDATE = MDATE + 1
ENDDO
SELE 1
CLOSE INDEX
SET FILTER TO
SELE 2
CLOSE INDEX

RETURN
INTERSFT PROGRAM

SET EXACT ON
SET DATE TO YMD
MBASE = CTOD("85/01/01")

SELE 1
CLOSE INDEX
SET INDEX TO DT01
REINDEX
SET FILTER TO .NOT. "*TIME" $ COMM
GOTO TOP

TEXT

THIS PROGRAM ADJUSTS DOWNTIME DATABASE RECORDS WHICH SPAN TWO SHIFTS. THE FIRST PORTION OF CODE CALCULATES AVERAGE VALUES OF STATISTICS NEEDED FOR THE CREATION OF SURROGATE SHIFT RECORDS.

ENDTEXT

SELE 2
CLOSE INDEX
SET INDEX TO SFT01

AVERAGE TIME_IN TO MTRAVIN
AVERAGE TIME_OUT TO MTRAVOUT
AVERAGE TIME_RCP TO MPRCP
REPLACE LEAVE_SECT WITH ARR_SECT + (480 - MTRAVIN - MTRAVOUT) FOR;
LEAVE_SECT = ARR_SECT > 600
REPLACE ALL LEAV2_SECT WITH LEAVE_SECT

TEXT

THIS PORTION OF CODE STORES THE TIMES CORRESPONDING TO THE BEGINNING AND END OF THE SHIFT TO BE EXAMINED; THE BEGINNING TIME OF THE SUBSEQUENT SHIFT IS ALSO STORED. THESE TIMES ARE READ FROM THE SHIFT DATABASE.

ENDTEXT

GOTO TOP
DO WHILE .NOT. EOF()
MDATE = DATE
MSHIFT = SHIFT
MLEAVE = LEAV2_SECT
MARR = ARR_SECT
SKIP 1
NEXTARR = ARR_SECT
THIS PORTION OF CODES LOCATES THE SHIFT UNDER EXAMINATION WITHIN THE DOWNTIME DATABASE; ALL DOWNTIME RECORDS FROM THIS SHIFT ARE THEN COMPARED THE CREWS' TIME ON THE SECTION. A DETERMINATION IS MADE WHETHER ALL, A PORTION OF, OR NONE OF THE REPAIR WAS PERFORMED BY THE CREW UNDER EXAMINATION. DELAYS (REPAIRS) WHICH SPANS TWO SHIFTS ARE SPLIT; THOSE WHICH FALL OUTSIDE THE CREWS' TIME ON SECTION ARE MOVED TO THE PROPER SHIFT. NOTE THAT IF NO SHIFT RECORD EXISTS FOR THE PERIOD WHEN THE DELAY OCCURS A SHIFT RECORD IS CREATED AND MARKED "SURROGATE SHIFT RECORD TYPE #1".

ENDTEXT

SELE 1
LOOK = DTOC(MDATE) + MSHIFT
FIND &LOOK
IF FOUND(
DO WHILE DATE = MDATE .AND. SHIFT = MSHIFT
DO CASE

CASE TIME + DURATION <= MARR .AND. NOT. ("PD" $ EQUIP .OR. "MT" $;
EQUIP .OR. "SA" $ EQUIP)
 NEWLEAVE = TIME + DURATION
 NEWSHIFT = LTRIM(STR(VAL(MSHIFT) - 1))
 NEWDATE = MDATE
 IF VAL(NEWSHIFT) < 1
 NEWSHIFT = "3"
 NEWDATE = MDATE - 1
 ENDIF
 REPLACE DATE WITH NEWDATE,SHIFT WITH NEWSHIFT
SELE 2
MREC = RECN0()
SKIP -1
 IF DATE = NEWDATE .AND. SHIFT = NEWSHIFT
 REPLACE LEAVE_SECT WITH MAX(NEWLEAVE,LEAVE_SECT), LEAV2_SECT WITH;
 LEAVE_SECT
ELSE
 APPEND BLANK
 REPLACE DATE WITH NEWDATE,SHIFT WITH NEWSHIFT, ARR_SECT WITH;
 (((NEWDATE - MBASE)*1440)+((VAL(NEWSHIFT)-1)*480) +;
 MTRAVIN), LEAVE_SECT WITH MAX(NEWLEAVE, ARR_SECT + 480 - MTRAVIN -;
 MTRAVOUT), LEAV2_SECT WITH LEAVE_SECT, TIME_IN WITH;
 MTRAVIN, TIME_OUT WITH MTRAVOUT, TIME_RCP WITH MRCP, COMMENTS WITH;
"SURROGATE SHIFT RECORD TYPE #1"
ENDIF
GOTO MREC
SELE 1

CASE TIME + DURATION > MARR .AND. TIME < MARR .AND. .NOT. ("PD" $ EQUIP .OR. "MT" $ EQUIP .OR. "SA" $ EQUIP)
ADJDUR = (TIME + DURATION) - MARR
NEWSHIFT = LTRIM(STR(VAL(MSHIFT) - 1))
NEWDATE = MDATE
IF VAL (NEWSHIFT) < 1
 NEWSHIFT = "3"
 NEWDATE = DATE - 1
ENDIF
MEQUIP = EQUIP
MTIME = TIME
NEWBEGIN = BEGIN
NEWDUR = DURATION - ADJDUR
MTYPE = TYPE
MSCHEDULED = SCHEDULED
MCMM = COMM
REPLACE TIME WITH MARR,BEGIN WITH MCO(MARR,1440),DURATION WITH;
 ADJDUR,COMM WITH " CON'T " + LTRIM(COMM)
MREC = RECCD()
APPEND BLANK
REPLACE DATE WITH NEWDATE,SHIFT WITH NEWSHIFT,EQUIP WITH MEQUIP,;
 TIME WITH MTIME,BEGIN WITH NEWBEGIN,DURATION WITH NEWDUR,TYPE;
 WITH MTYPE,SCHEDULED WITH MSCHEDULED,COMM WITH MCMM
GOTO MREC
SELE 2
MREC = RECCD()
SKIP -1
IF DATE = NEWDATE .AND. SHIFT = NEWSHIFT
REPLACE LEAVE_SECT WITH MARR,LEAV2_SECT WITH MARR
ELSE
APPEND BLANK
REPLACE DATE WITH NEWDATE,SHIFT WITH NEWSHIFT,ARR_SECT WITH;
 ((NEWDATE - MBASE)*1440)+((VAL(NEWSHIFT)-1); *480)+MTRAVIN),LEAVE_SECT WITH MARR,LEAV2_SECT WITH MARR,TIME_IN;
 WITH MTRAVIN,TIME_OUT WITH MTRAVOUT,TIME_RCP WITH MRCP,COMMENTS;
 WITH "SURROGATE SHIFT RECORD TYPE #1"
ENDIF
GOTO MREC
SELE 1

CASE TIME + DURATION > MLEAVE .AND. TIME + DURATION < NEXTARR .AND. .
 .NOT. ("PD" $ EQUIP .OR. "MT" $ EQUIP)
 IF NEXTARR - MLEAVE < 420
 ADJLEAVE = TIME + DURATION
 SELE 2
 REPLACE LEAVE_SECT WITH ADJLEAVE,LEAV2_SECT WITH ADJLEAVE
 SELE 1
ELSE
MGAP = NEXTARR - MLEAVE
IF MLEAVE > TIME
ADJUR = MLEAVE - TIME
REMDUR = DURATION - ADJUR
REPLACE DURATION WITH ADJUR
XNEWDUR = MIN(REMDUR, MGAP)
NEWDUR = MIN(XNEWDUR, 800)
NEWSHIFT = LTRIM(STR(VAL(MSHIFT) + 1))
NEWDATE = MDATE
IF VAL(NEWSHIFT) > 3
NEWSHIFT = "1"
NEWDATE = MDATE + 1
ENDIF
MEQUIP = EQUIP
MTYPE = TYPE
MSCHEDULED = SCHEDULED
MCOMV = "COV'T " + LTRIM(COMM)
MREC = RECON()
APPEND BLANK
REPLACE DATE WITH NEWDATE, SHIFT WITH NEWSHIFT, EQUIP WITH MEQUIP,;
TIME WITH MLEAVE, BEGIN WITH MOD(TIME, 1440), DURATION WITH;
NEWDUR, TYPE WITH MTYPE, SCHEDULED WITH MSCHEDULED, COMM WITH MCOMV
GOTO MREC
SEELE 2
MREC = RECON()
APPEND BLANK
REPLACE DATE WITH NEWDATE, SHIFT WITH NEWSHIFT, ARR_SECT WITH;
MLEAVE, LEAVE_SECT WITH MAX(ARR_SECT + 480 - MTRAVIN, NEWDUR);
,LEAV2_SECT WITH LEAVE_SECT, TIME_IN WITH MTRAVIN, TIME_OUT WITH;
MTRAVOUT, TIME_RCP WITH O, COMMENTS WITH " SURROGATE SHIFT RECORD;
TYPE #1"
ELSE
NEWSHIFT = LTRIM(STR(VAL(MSHIFT) + 1))
NEWDATE = MDATE
MTIME = TIME
IF VAL(NEWSHIFT) > 3
NEWSHIFT = "1"
NEWDATE = MDATE + 1
ENDIF
REPLACE DATE WITH NEWDATE, SHIFT WITH NEWSHIFT
SEELE 2
MREC = RECON()
APPEND BLANK
REPLACE DATE WITH NEWDATE, SHIFT WITH NEWSHIFT, ARR_SECT WITH;
MIN(MTIME, MLEAVE + MTRAVIN), LEAVE_SECT WITH;
MIN(NEXTARR, ARR_SECT + 480 - MTRAVIN - MTRAVOUT), LEAV2_SECT WITH;
LEAVE_SECT, TIME_IN WITH MTRAVIN, TIME_OUT WITH MTRAVOUT, TIME_RCP;
WITH MRCP, COMMENTS WITH " SURROGATE SHIFT RECORD TYPE #1"
GOTO MREC
SEL E 1
ENDIF
ENDIF

CASE TIME + DURATION > NEXTARR .AND. TIME < NEXTARR
 ADJ DUR = NEXTARR - TIME
 NEWSHIFT = LTRIM(STR(VAL(MSHIFT) + 1))
 NEWDATE = MDATE
 IF VAL(NEWSHIFT) > 3
 NEWSHIFT = "1"
 NEWDATE = MDATE + 1
 ENDIF
 MEQUIP = EQUIP
 MTIME = NEXTARR
 NEWBEGIN = MOD(NEXTARR, 1440)
 NEWMOUR = DURATION - ADJ DUR
 MTYPE = TYPE
 MSCHEDULED = SCHEDULED
 MCOMM = " CON'T " + LTRIM(COM M)
 REPLACE DURATION WITH ADJ DUR
 MREC = RECNO()
 APPEND BLANK
 REPLACE DATE WITH NEWDATE, SHIFT WITH NEWSHIFT, EQUIP WITH MEQUIP,
 TIME WITH MTIME, BEGIN WITH NEWBEGIN, DURATION WITH NEWMOUR, TYPE;
 WITH MTYPE, SCHEDULED WITH MSCHEDULED, COMM WITH MCOMM
GOTO MREC
SEL E 2
REPLACE LEAVE_SECT WITH NEXTARR, LEAVE2_SECT WITH NEXTARR
SEL E 1
CASE TIME > NEXTARR .AND. NEXTARR > 0
 NEWSHIFT = LTRIM(STR(VAL(MSHIFT) + 1))
 NEWDATE = MDATE
 IF VAL(NEWSHIFT) > 3
 NEWSHIFT = "1"
 NEWDATE = MDATE + 1
 ENDIF
 REPLACE DATE WITH NEWDATE, SHIFT WITH NEWSHIFT
ENDCASE
SKIP
ENDDO
ENDIF
SEL E 2
SKIP
ENDDO
SEL E 1
SET FILTER TO
RETURN
APPOSFT PROGRAM

SET EXACT ON
SET DATE TO YMD
M BASE = CTOD("85/01/01")

TEXT

THIS PROGRAM CREATES A SURROGATE SHIFT DATABASE RECORD WHENEVER A SHIFT IS REPRESENTED IN THE DOWNTIME DATABASE AND ABSENT FROM THE SHIFT DATABASE; THESE RECORDS ARE IDENTIFIED BY THE NOTATION "SURROGATE SHIFT RECORD TYPE * 2" IN THE COMMENTS FIELD. THE PROGRAM ALSO CREATES A SURROGATE DOWNTIME RECORD FOR IDLE SHIFTS; THESE RECORDS ARE IDENTIFIED BY THE NOTATION "NO WORK OR MISSING SHIFT RECORD" IN THE COMM FIELD. THE FIRST PORTION OF CODE SKIPS PAST ANY SURROGATE DOWNTIME DATABASE RECORDS.

ENDTEXT

SELE 1
CLOSE INDEX
DELETE FOR "MISSING SHIFT RECORD" $ COMM .OR. "NO PRODUCTION RECORD" $;
COMM
PACK
SET INDEX TO DT01
REINDEX
GOTO TOP
MDATE = DATE
MSHIFT = SHIFT

TEXT

THIS PORTION OF CODE DELETES ANY PREVIOUSLY CREATED TYPE * 2 SURROGATE SHIFT DATABASE RECORDS; AVERAGE VALUES NECESSARY FOR THE CREATION OF NEW SURROGATE SHIFT RECORDS ARE ALSO CALCULATED.

ENDTEXT

SELE 2
DELETE FOR "SURROGATE SHIFT RECORD TYPE *2" $ COMMENTS
PACK
CLOSE INDEX
SET INDEX TO SFT01
REINDEX
AVERAGE TIME_IN TO MTRAVIN FOR TIME_IN > 0
AVERAGE TIME_OUT TO MTRAVOUT FOR TIME_OUT > 0
AVERAGE TIME_RCP TO MRCP
TEXT

THIS PORTION OF CODE CREATES TYPE #2 SURROGATE SHIFT RECORDS.

ENDTEXT

GOTO TOP
DO WHILE .NOT. EOF()
LOOK = DTOC(MDATE) + MSHIFT
FIND &LOOK
IF .NOT. FOUND()
APPEND BLANK
REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, ARR_SECT WITH (((MDATE- MBASE)*1440)+((VAL(MSHIFT)-1)*480)+MTRAVIN), TIME_IN WITH MTRAVIN, ; TIME_OUT WITH MTRAVOUT, TIME_RCP WITH MRCP, COMMENTS WITH " SURROGATE; SHIFT RECORD TYPE #2 ", LEAVE_SECT WITH (ARR_SECT +; (480-MTRAVIN-MTRAVOUT)), LEAV2_SECT WITH LEAVE_SECT
GOTO TOP
ENDIF

SELE 1
DO WHILE (DATE = MDATE .AND. SHIFT = MSHIFT) .AND. .NOT. EOF()
SKIP
ENDDO

IF .NOT. EOF()
MDATE = DATE
MSHIFT = SHIFT
ELSE
LOOP
ENDIF

SELE 2
ENDDO

TEXT

THIS PORTION OF CODE DELETES DUPLICATE SHIFT RECORDS

ENDTEXT

SELE 2
CLOSE INDEX
DELETE ALL
SET INDEX TO SFT01
REINDEX
RECALL ALL
PACK
CLOSE INDEX
TEXT
THIS PORTION OF CODE Sorts THE SHIFT DATABASE BY DATE, SHIFT.
ENDTEXT

SFTDATA = RIGHT(DBF(), LEN(DBF()) - 2)
USE
RENAME &SFTDATA TO ZZ.DBF
USE ZZ
SORT ON DATE, SHIFT TO &SFTDATA
USE &SFTDATA

TEXT
THIS PORTION OF CODE INITIALIZES THE PROCESS OF CREATING DOWNTIME RECORDS WHICH IDENTIFY IDLE SHIFTS.
ENDTEXT

SELE 1
GOTO TOP
MDATE = DATE
MSHIFT = SHIFT
GOTO BOTT
MEND = DTOC(DATE) + SHIFT
SELE 2
CLOSE INDEX
SET INDEX TO SFT01
REINDEX
GOTO TOP
DO WHILE DTOC(MDATE) + MSHIFT < MEND

TEXT
THIS PORTION OF CODE IDENTIFIES IDLE SHIFTS AND CREATES SURROGATE DOWNTIME DATABASE RECORDS WITH THE NOTATION "NO WORK OR MISSING SHIFT RECORD" IN THE COMMENT FIELD TO IDENTIFY IDLE SHIFTS.
ENDTEXT

LOOK = DTOC(MDATE) + MSHIFT
FIND &LOOK
IF .NOT. FOUND()
SELE 1
ENDIF
FIND &LOOK
IF .NOT. FOUND()
APPEND BLANK
REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, EQUIP WITH C0OW(MDATE), TIME;
WITH (((MDATE - MBASE)*1440) + ((VAL(MSHIFT) - 1)*480)), BEGIN WITH;
MOD(TIME, 1440), DURATION WITH 480, TYPE WITH "NA", SCHEDULED WITH .T.,;
COMM WITH " NO WORK OR MISSING SHIFT RECORD "
 IF BEGIN = 0
REPLACE BEGIN WITH 1
ENDIF
ENDIF
MSHIFT = LTRIM(STR(VAL(MSHIFT) + 1))
 IF VAL(MSHIFT) > 3
MSHIFT = "1"
MDATE = MDATE + 1
ENDIF
SELE 2
ENDCC
RETURN
TRAVRCP_PROGRAM

SET EXACT ON
CLEAR

TEXT

THIS PROGRAM CREATES DOWNTIME DATABASE RECORDS FOR ALL TRAVEL DELAYS AND FACE CHECK DELAYS (RCP DELAYS). THE FIRST PORTION OF CODE DELETES ANY PREVIOUSLY CREATED RECORDS OF THIS TYPE. AVERAGE TRAVEL TIME VALUES ARE USED WHEN TRAVEL TIME DATA IS OMITTED.

ENDTEXT

SELE 1
DELETE FOR "TRAVEL IN" $ COMM .OR. "TRAVEL OUT" $ COMM .OR. "RCP " $;
COMM
PACK
SELE 2
AVERAGE TIME_IN TO MTRAVIN FOR TIME_IN > 0
AVERAGE TIME_OUT TO MTRAVOUT FOR TIME_OUT > 0

TEXT

THIS PORTION OF CODE STORES TRAVEL DELAY VALUES AND FACE CHECK DELAY VALUES (RCP).

ENDTEXT

GOTO TOP
DO WHILE ,NOT. EOF()
MDATE = DATE
MSHIFT = SHIFT
MIN = TIME_IN
MOUT = TIME_OUT
MRCP = TIME_RCP
MARR = ARR_SECT
MLEAVE = LEAV2_SECT

TEXT

THIS PORTION OF CODE CREATES A DOWNTIME DATABASE RECORD OF TRAVEL IN TIME FOR EACH SHIFT.

ENDTEXT

SELE 1
APPEND BLANK
REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, TIME WITH (MARR -;
MIN), BEGIN WITH MQD(TIME, 1440), EQUIP WITH "PD 260", DURATION WITH;
MIN, TYPE WITH "P", SCHEDULED WITH .T., COMM WITH "TRAVEL IN"
IF DURATION = 0
REPLACE DURATION WITH MTRAVIN
ENDIF
IF BEGIN = 0
REPLACE BEGIN WITH 1
ENDIF

TEXT

THIS PORTION OF CODE CREATES A DOWNTIME DATABASE RECORD
OF TRAVEL OUT TIME FOR EACH SHIFT.

ENDTEXT

APPEND BLANK
REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, TIME WITH MLEAVE,BEGIN WITH;
MOD(MLEAVE, 1440), EQUIP WITH "PD 260", DURATION WITH MOUT, TYPE WITH;
"P", SCHEDULED WITH .T., COMM WITH "TRAVEL OUT"
IF DURATION = 0
REPLACE DURATION WITH MTRAVOUT
ENDIF
IF BEGIN = 0
REPLACE BEGIN WITH 1
ENDIF

TEXT

THIS PORTION OF CODE CREATES A DOWNTIME DATABASE RECORD
OF FACE CHECK TIME FOR EACH SHIFT.

ENDTEXT

IF .NOT. MRCP = 0
APPEND BLANK
REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, TIME WITH MARR, BEGIN WITH;
MOD(MARR, 1440), EQUIP WITH "FA 255", DURATION WITH MRCP, TYPE WITH "P"
, SCHEDULED WITH .T., COMM WITH "RCP"
IF BEGIN = 0
REPLACE BEGIN WITH 1
ENDIF
ENDIF
SELE 2
SKIP
ENDDO

RETURN
OVERLAP_PROGRAM

TEXT

THIS PROGRAM TRUNCATES OVERLAPPING PORTIONS OF DELAY INCIDENTS. THE FIRST PORTION OF CODE Sorts THE DOWNTIME DATABASE BY TIME AND SHIFT.

ENDTEXT

SET EXACT ON
SET DATE TO YMD
MBASE = CTOD("85/01/01")

SELE 1
CLOSE INDEX
DDTDATA = RIGHT(DF(),LEN(DF())-2)
USE
RENAME &DDTDATA TO ZZZ.DBF
USE ZZZ.DBF
SORT ON TIME,SHIFT TO &DDTDATA
USE &DDTDATA

REPLACE ALL BEGIN2 WITH BEGIN,DURATION2 WITH DURATION
REPLACE COMM WITH SUBSTR(COMM,5) FOR "*FCO " $ COMM

SET FILTER TO .NOT. (DURATION2 = 0 .OR. "*TIME " $ COMM)
MHOVL = .F.

TEXT

THIS PORTION OF CODE LOCATES OVERLAPPING DELAYS AND TRUNCATES THE OVERLAPPING PORTION. The NEW BEGIN TIME FOR THE TRUNCATED RECORD IS RECORDED IN THE BEGIN2 FIELD, THE NEW DURATION IS RECORDED IN THE DURATION2 FIELD.

ENDTEXT

GOTO TOP
DO WHILE .NOT. EOF()

IF .NOT. MHOVL
MTRAV = .F.
MPORT = .F.
MRCP = .F.
NOWORK = .F.

MTIME = TIME
MEND = MTIME + DURATION2

DO CASE

CASE " TRAVEL " $ COMM
MTRAV = .T.

CASE " RCP " $ COMM
MRCP = .T.

CASE .NOT. " TRAVEL " $ COMM .AND. ("PD" $ EQUIP .OR. "MT" $ EQUIP)
MPORT = .T.

CASE "MISSING SHIFT RECORD" $ COMM
NOWORK = .T.

ENDCASE

SKIP

IF EOF()
 LOOP
ENDIF

ENDIF

MHOLD = .F.

DO CASE

CASE MEND < TIME .OR. MEND = TIME
 LOOP

CASE MEND > TIME .AND. (MEND - TIME) < DURATION2

 DO CASE

 CASE "MISSING SHIFT RECORD" $ COMM
 REPLACE DURATION2 WITH DURATION - (MEND-TIME),BEGIN2 WITH;
 MOD(MEND,1440),TIME WITH MEND

 CASE NOWORK = .T.
 OVERLAP = MEND - TIME
 SKIP -1
 REPLACE DURATION2 WITH DURATION - OVERLAP
 SKIP

 CASE " TRAVEL " $ COMM .AND. MTRAV
 REPLACE COMM WITH "*F00 "+LTRIM(COMM),DURATION2 WITH 0
 SKIP -1
 REPLACE COMM WITH "*F00 "+LTRIM(COMM),DURATION2 WITH 0
 SKIP
CASE " TRAVEL " $ COMM .AND. MPORT
REPLACE DURATION2 WITH DURATION - (MEND - TIME), BEGIN2 WITH;
MOD(MEND, 1440), TIME WITH MEND

CASE " TRAVEL " $ COMM .AND.. NOT. (MTRAV . OR. MIMPORT)
REPLACE COMM WITH "^FOO ^ + LTRIM(COMM), DURATION2 WITH 0
MHOLD = .T.
SKIP -1
SKIP

CASE .NOT. " TRAVEL " $ COMM .AND.. NOT. (MTRAV . OR. MIMPORT)
REPLACE DURATION2 WITH DURATION - (MEND - TIME), BEGIN2 WITH;
MOD(MEND, 1440), TIME WITH MEND

CASE .NOT. " TRAVEL " $ COMM .AND. ("PD" $ EQUIP .OR. "MT" $ EQUIP);
AND. MTRAV
MOVERLAP = MEND - TIME
SKIP -1
REPLACE DURATION2 WITH DURATION - MOVERLAP
SKIP

CASE .NOT. " TRAVEL " $ COMM .AND.. NOT.;
("PD" $ EQUIP . OR. "MT" $ EQUIP). AND. MTRAV
SKIP -1
REPLACE COMM WITH "^FOO ^ + LTRIM(COMM), DURATION2 WITH 0
SKIP

CASE .NOT. " TRAVEL " $ COMM .AND. MIMPORT
MOVERLAP = MEND - TIME
SKIP -1
REPLACE DURATION2 WITH DURATION - MOVERLAP
SKIP

ENDCASE

CASE MEND > TIME . AND. (MEND - TIME) => DURATION2

DO CASE

CASE "MISSING SHIFT" $ COMM
REPLACE DURATION2 WITH 0
MHOLD = .T.
SKIP -1
SKIP

CASE NWORK = .T.
OVERLAP = MEND - TIME
SKIP -1
REPLACE DURATION2 WITH DURATION - OVERLAP
SKIP
CASE " TRAVEL " $ COMM .AND. MTRAV
REPLACE COMM WITH "*FOO " + LTRIM(COMM), DURATION2 WITH 0
SKIP -1
REPLACE COMM WITH "*FOO " + LTRIM(COMM), DURATION2 WITH 0
SKIP

CASE " TRAVEL " $ COMM .AND. MPORT
MOVERLAP = MEND - TIME
SKIP -1
REPLACE DURATION2 WITH DURATION - MOVERLAP
SKIP

CASE " TRAVEL " $ COMM .AND..NOT. (MTRAV .OR. MPORT)
REPLACE COMM WITH "*FOO " + LTRIM(COMM), DURATION2 WITH 0
MHOLD = .T.
SKIP -1
SKIP

CASE .NOT. " TRAVEL " $ COMM .AND..NOT. MTRAV .AND..NOT. MRCOP
REPLACE DURATION2 WITH 0
MHOLD = .T.
SKIP -1
SKIP

CASE .NOT. " TRAVEL " $ COMM .AND. ("PD" $ EQUIP .OR. "MT" $ EQUIP); .AND. MTRAV
MMOVE = MEND - (TIME + DURATION)
REPLACE TIME WITH TIME + MMOVE, BEGIN2 WITH BEGIN + MMOVE
MDUR = DURATION
SKIP -1
REPLACE DURATION2 WITH DURATION - MDUR
SKIP

CASE .NOT. " TRAVEL " $ COMM .AND..NOT. ("PD" $ EQUIP .OR. "MT" $; EQUIP) .AND. MTRAV
SKIP -1
REPLACE COMM WITH "*FOO " + LTRIM(COMM), DURATION2 WITH 0
SKIP

CASE .NOT. " TRAVEL " $ COMM .AND. MRCOP
MOVERLAP = MEND - TIME
SKIP -1
REPLACE DURATION2 WITH DURATION - MOVERLAP
SKIP

ENDCASE
ENDCASE

ENDDO
SET FILTER TO TEXT

THIS PORTION OF CODE LOCATES SHIFT CHANGES WHERE THE RELIEF CREW TRAVELS TO THE FACE PRIOR TO THE DEPARTURE OF THE RETIRING CREW. IN SUCH CASES THE TWO TRAVEL TIMES ARE SET TO ZERO (i.e. FACE CHANGE-OUT). THE NEW DURATION ZERO IS RECORDED IN THE DURATION2 FIELD, AND THE CHARACTERS "*FCO" ARE ADDED TO THE COMM FIELD TO INDICATE THAT A FACE CHANGE-OUT HAS OCCURED.

ENDTEXT

GOTO TOP
DO WHILE .NOT. EOF()

DO WHILE .NOT. " TRAVEL IN " $ COMM .AND..NOT. EOF()
 SKIP
 ENDDO

MSHIFT = SHIFT
MDATE = DATE

IF .NOT. EOF()
 SKIP
ELSE
 LOOP
 ENDIF

DO WHILE .NOT. " TRAVEL " $ COMM .AND..NOT. EOF()
 SKIP
 ENDDO

IF " TRAVEL IN " $ COMM
IF .NOT. "*FCO " $ COMM
 REPLACE COMM WITH "*FCO " + LTRIM(COMM), DURATION2 WITH 0
 ENDIF
IF .NOT. EOF()
 SKIP
ENDIF
DO WHILE .NOT. " TRAVEL " $ COMM .AND..NOT. EOF()
 SKIP
 ENDDO
IF " TRAVEL OUT " $ COMM .AND. SHIFT = MSHIFT .AND. DATE = MDATE;
 .AND..NOT. "*FCO " $ COMM
 REPLACE COMM WITH "*FCO " + LTRIM(COMM), DURATION2 WITH 0
 ENDIF
ENDIF
ENDDO

CLEAR ALL
RUN ERASE *.NDX
RUN ERASE ZZ.DBF
RUN ERASE ZZZ.DBF
RETURN
DATAGEN PROGRAM

TEXT

THIS PROGRAM RUNS AND CONTROLS THE DATA GENERATION PROGRAMS AS A SEQUENCE. THE DATA GENERATION SEQUENCE INCLUDES THE FOLLOWING PROGRAMS: SFTDELAY, SFTAVAIL, AUTOTTF, AUTOTTTR, EQUIP%, TYPE%, STATS, SECAVAIL, AND MEANTIME.

ENDTEXT

SET EXACT ON
SET DATE TO YMD
CLEAR
DTDATA=SPACE(8)
@ 5,10 SAY "ENTER DOWNTIME DATABASE NAME" GET DTDATA
READ
SFTDATA=SPACE(8)
@ 7,10 SAY "ENTER SHIFT DATABASE NAME" GET SFTDATA
READ
PREFIX=SPACE(4)
@ 9,10 SAY "ENTER TWO DIGIT PREFIX FOR IDENTIFYING"
@ 10,10 SAY "THE TTF, TTR, AND RESULT DATABASES TO BE"
@ 11,10 SAY "GENERATED DURING THIS RUN, USE QUOTATION"
@ 12,10 SAY "MARKS" GET PREFIX
READ
MRESULT = &PREFIX + "RESULT"
SELE 1
USE &DTDATA
SELE 2
USE &SFTDATA
SELE 4
USE RESULT
COPY STRU TO &MRESULT
USE &MRESULT
APPEND BLANK
REPLACE MINE WITH &PREFIX
DO SFTDELAY
DO SFTAVAIL
DO AUTOTTF
DO AUTOTTTR
DO EQUIP%
DO TYPE%
DO STATS
DO SECAVAIL
DO MEANTIME

RETURN
SFTDELAY PROGRAM

TEXT

THIS PROGRAM CALCULATES FOUR DELAY FIGURES: 1) FACE DELAY, 2) TOTAL SYSTEM DELAY, 3) SYSTEM DELAY (DELAYS WITH TIME OF OCCURRENCE ONLY), 4) INHERENT DELAYS. THESE FOUR DELAY FIGURES ARE TRANSFERRED TO THE SHIFT DATABASE FIELDS MDELAY, TDELAY, TDEL_BEGIN, AND TIDELAY. THE FIRST PORTION OF CODE INDEXES THE SHIFT AND DOWNTIME DATABASES, AND ESTABLISHES THE RANGE OF DATES OVER WHICH TO MAKE DELAY CALCULATIONS.

ENDTEXT

SET EXACT ON
SET DATE TO YMD
SELE 2
CLOSE INDEX
INDEX ON DTOC(DATE) + SHIFT TO SFT11 UNIQUE
SELE 1
CLOSE INDEX
INDEX ON DTOC(DATE) + SHIFT TO DT11
SET FILTER TO .NOT. "MISSING SHIFT RECORD" $ COMM
GOTO TOP
MDATE = DATE
MSHIFT = SHIFT
TOTDELAY = 0
MSTART = DTOC(DATE) + SHIFT
GOTO BOTT
MEND = DTOC(DATE) + SHIFT
GOTO TOP

TEXT

THIS PORTION OF CODE CALCULATES THE MINUTES OF FACE DELAY TIME (MDELAY) FOR EACH SHIFT, AND WRITES THE FIGURE TO THE MDELAY FIELD OF THE SHIFT DATABASE.

ENDTEXT

DO WHILE .NOT. EOF()
DO CASE

CASE .NOT. ("MT" $ EQUIP .OR. "PD" $ EQUIP .OR. EQUIP = "FA 255" .OR.: ("SA"$ EQUIP .AND. SCHEDULED)) .AND. DATE = MDATE .AND. SHIFT = MSHIFT
TOTDELAY = TOTDELAY + DURATION2

CASE .NOT. ("MT" $ EQUIP .OR. "PD" $ EQUIP .OR. EQUIP = "FA 255" .OR.;

("SA"$ EQUIP .AND. SCHEDULED)) .AND. (.NOT. DATE = MDATE .OR. .NOT.;
SHIFT = MSHIFT)
SELE 2
LOOK = DTOC(MDATE) + MSHIFT
FIND &LOOK
IF FOUND()
REPLACE MDELAY WITH TOTDELAY
ENDIF
SELE 1
MDATE = DATE
MSHIFT = SHIFT
TOTDELAY = DURATION2
CASE ("MT" $ EQUIP .OR. "PD" $ EQUIP .OR. EQUIP = "FA 255" .OR.;
("SA"$EQUIP .AND. SCHEDULED)) .AND. DATE = MDATE .AND. SHIFT = MSHIFT
CASE ("MT" $ EQUIP .OR. "PD" $ EQUIP .OR. EQUIP = "FA 255" .OR.;
("SA"$EQUIP .AND. SCHEDULED)) .AND. (.NOT. DATE = MDATE .OR. .NOT.;
SHIFT = MSHIFT)
SELE 2
LOOK = DTOC(MDATE) + MSHIFT
FIND &LOOK
IF FOUND()
REPLACE MDELAY WITH TOTDELAY
ENDIF
SELE 1
MDATE = DATE
MSHIFT = SHIFT
TOTDELAY = 0
ENDCASE

SKIP
ENDDO

SELE 2
LOOK = DTOC(MDATE) + MSHIFT
FIND &LOOK
IF FOUND()
REPLACE MDELAY WITH TOTDELAY
ENDIF

GOTO TOP
REPLACE MDELAY WITH 0 FOR MDELAY = 0 .AND. DTOC(DATE)+SHIFT >= MSTART;
AND. DTOC(DATE)+SHIFT <= MEND

TEXT

THIS PORTION OF CODE CALCULATES THE MINUTES OF TOTAL SYSTEM
DELAY TIME (TDELAY) FOR EACH SHIFT, AND WRITES THE FIGURE TO
THE TDELAY FIELD OF THE SHIFT DATABASE.

ENDTEXT

SELE 1
GOTO TOP
MDATE = DATE
MSHIFT = SHIFT
TOTDELAY = 0
DO WHILE .NOT. EOF()
 DO CASE
 CASE DATE = MDATE .AND. SHIFT = MSHIFT
 TOTDELAY = TOTDELAY + DURATION2
 CASE(.NOT.DATE=MDATE.OR..NOT.SHIFT=MSHIFT)
 SELE 2
 LOOK = DTCC(MDATE) + MSHIFT
 FIND &LOOK
 IF FOUND()
 REPLACE TDELAY WITH TOTDELAY
 ENDIF
 SELE 1
 MDATE = DATE
 MSHIFT = SHIFT
 TOTDELAY = DURATION2
 ENDCASE
 SKIP
 ENDDO
 ENDCASE
GOTO TOP
REPLACE TDELAY WITH 0 FOR TDELAY = 0 .AND. DTCC(DATE)+SHIFT >= MSTART ;
 .AND. DTCC(DATE)+SHIFT <= MEND

TEXT

THIS PORTION OF CODE CALCULATES THE MINUTES OF SYSTEM DELAY TIME
FOR DELAYS WITH A TIME OF OCCURRENCE RECORDED. THIS CALCULATION IS
PERFORMED FOR EACH SHIFT AND THE RESULTS ARE WRITTEN TO THE
TDEL_BEGIN FIELD OF THE SHIFT DATABASE.
ENDTEXT

SELE 1
SET FILTER TO .NOT. ("MISSING SHIFT RECORD" $ COMM .OR. "TIME" $ COMM)
GOTO TOP
MDATE = DATE
MSHIFT = SHIFT
TOTDELAY = 0

DO WHILE .NOT. EOF()
DO CASE

CASE DATE = MDATE .AND. SHIFT = MSHIFT
 TOTDELAY = TOTDELAY + DURATION2

CASE (.NOT.DATE=MDATE.OR..NOT.SHIFT=MSHIFT)
 SELE 2
 LOCK = DTOC(MDATE) + MSHIFT
 FIND &LOCK
 IF FOUND()
 REPLACE TDEL_BEGIN WITH TOTDELAY
 ENDIF
 SELE 1
 MDATE = DATE
 MSHIFT = SHIFT
 TOTDELAY = DURATION2
ENDCASE

SKIP
ENDDO

SET FILTER TO

SELE 2
LOCK = DTOC(MDATE) + MSHIFT
FIND &LOCK
IF FOUND()
 REPLACE TDEL_BEGIN WITH TOTDELAY
ENDIF

GOTO TOP
REPLACE TDEL_BEGIN WITH 0 FOR TDEL_BEGIN = 0 .AND. DTOC(DATE)+SHIFT;
 >= MSTART .AND. DTOC(DATE)+SHIFT <= MEND

TEXT

THIS PORTION OF CODE CALCULATES THE MINUTES OF INHERENT DELAY TIME FOR EACH SHIFT AND WRITES THE RESULT TO THE SHIFT FIELD TDELAY.
GOTO TOP
REPLACE ALL IDELAY WITH TDELAY - MDELAY

SELE 1
SET INDEX TO
SET FILTER TO
SELE 2
SET INDEX TO
SET FILTER TO
RETURN
SET TAVAIL PROGRAM

TEXT

THIS PROGRAM CALCULATES FACE AVAILABILITY (MAVAIL), TOTAL SYSTEM AVAILABILITY (TAVAIL), AND TTFFACTOR. THE FIRST PORTION OF CODE CALCULATES A FACE AVAILABILITY FOR EACH SHIFT AND WRITES THE FIGURE TO THE MAVAIL FIELD OF THE SHIFT DATABASE.

ENDTEXT

SET EXACT ON
SELE 2
GOTO TOP
REPLACE ALL MAVAIL WITH (((LEAV2_SECT - (ARR_SECT + TIME_RCP) - MDELAY);
/(LEAV2_SECT - (ARR_SECT + TIME_RCP))) * 100
REPLACE MAVAIL WITH 0 FOR MAVAIL < 0

TEXT

THIS PORTION OF CODE CALCULATES THE TOTAL SYSTEM AVAILABILITY FOR EACH SHIFT AND WRITES THE FIGURE TO THE TAVAIL FIELD OF THE SHIFT DATABASE.

ENDTEXT

GOTO TOP
REPLACE ALL TAVAIL WITH (((LEAV2_SECT - (ARR_SECT + TIME_RCP) - MDELAY);
/(LEAV2_SECT - (ARR_SECT + TIME_RCP) + TDELAY)) * 100
REPLACE TAVAIL WITH 0 FOR TAVAIL < 0

TEXT

THIS PORTION OF CODE CALCULATES A VALUE FOR TTFFACTOR FOR EACH SHIFT AND WRITES THE FIGURE TO THE TTFFACTOR FIELD OF THE SHIFT DATABASE.

ENDTEXT

GOTO TOP
REPLACE ALL TTFFACTOR WITH (LEAV2_SECT - (ARR_SECT + TIME_RCP) -;
MDELAY)/(LEAV2_SECT - (ARR_SECT + TIME_RCP) - MDELAY + (TDELAY -;
TDEL_BEGIN))
REPLACE TTFFACTOR WITH 0 FOR TTFFACTOR < 0
REPLACE TTFFACTOR WITH 1 FOR .NOT. TTFFACTOR >= 0

RETURN
TTFPRG PROGRAM

TEXT

THIS PROGRAM CALCULATES TTF STATISTICS FOR ANY COMBINATION
OF EQUIPMENT TYPES OR DELAY TYPES. THE FIRST PORTION OF CODE
QUERIES THE OPERATOR FOR THE FOLLOWING INFORMATION: DOWNTIME
DATABASE NAME, SHIFT DATABASE NAME, TTF DATABASE NAME,
equipment types, delay types.

ENDTEXT

CLEAR
CLEAR ALL
SET EXACT ON
SET DATE TO YMD
DTDATA=SPACE(8)
@ 3,4 SAY "ENTER DT DATABASE NAME" GET DTDATA
READ
SFSDATA=SPACE(8)
@ 4,4 SAY "ENTER SFT DATABASE NAME" GET SFSDATA
READ
TTFDBF=SPACE(8)
@ 5,4 SAY "ENTER TTF DATABASE NAME" GET TTFDBF
READ
USE TTF
COPY STRU TO &TTFDBF
USE
MEQUIP1=SPACE(8)
@ 6,4 SAY "ENTER EQUIP TYPE #1, USE QUOTATION MARKS, ONE BLANK FOR ALL; EQUIP" GET MEQUIP1
READ
MEQUIP2=SPACE(8)
@ 7,4 SAY "ENTER EQUIP TYPE #2, USE QUOTATION MARKS, SIX BLANKS FOR; NONE" GET MEQUIP2
READ
MEQUIP3=SPACE(8)
@ 8,4 SAY "ENTER EQUIP TYPE #3, USE QUOTATION MARKS, SIX BLANKS FOR; NONE" GET MEQUIP3
READ
MEQUIP4=SPACE(8)
@ 9,4 SAY "ENTER EQUIP TYPE #4, USE QUOTATION MARKS, SIX BLANKS FOR; NONE" GET MEQUIP4
READ
MTYPE1=SPACE(4)
@ 10,4 SAY "ENTER DELAY TYPE #1, USE QUOTATION MARKS, ONE BLANK FOR ALL";
GET MTYPE1
READ
IF MTYPE1 = " "
MTYPE2=" "
MTYPE3=" "
MTYPE4=" "
MTYPE5=" "
MTYPE6=" "
MTYPE7=" "
MTYPE8=" "
ELSE
MTYPE2=SPACE(4)
@ 11,4 SAY "ENTER DELAY TYPE #2, USE QUOTATION MARKS, XX FOR NONE" GET;
MTYPE2
READ
MTYPE3=SPACE(4)
@ 12,4 SAY "ENTER DELAY TYPE #3, USE QUOTATION MARKS, XX FOR NONE" GET;
MTYPE3
READ
MTYPE4=SPACE(4)
@ 13,4 SAY "ENTER DELAY TYPE #4, USE QUOTATION MARKS, XX FOR NONE" GET;
MTYPE4
READ
MTYPE5=SPACE(4)
@ 14,4 SAY "ENTER DELAY TYPE #5, USE QUOTATION MARKS, XX FOR NONE" GET;
MTYPE5
READ
MTYPE6=SPACE(4)
@ 15,4 SAY "ENTER DELAY TYPE #6, USE QUOTATION MARKS, XX FOR NONE" GET;
MTYPE6
READ
MTYPE7=SPACE(4)
@ 16,4 SAY "ENTER DELAY TYPE #7, USE QUOTATION MARKS, XX FOR NONE" GET;
MTYPE7
READ
MTYPE8=SPACE(4)
@ 17,4 SAY "ENTER DELAY TYPE #8, USE QUOTATION MARKS, XX FOR NONE" GET;
MTYPE8
READ
SELE 2
CLOSE INDEX
INDEX ON DTTC(DATE) + SHIFT TO SFT11
SELE 3
USE &TTFDBF
SELE 1
CLOSE INDEX

TEXT

THIS FILTER EXCLUDES RECORDS WITHOUT A TIME OF OCCURRENCE,
AND THOSE WHICH ARE COMPLETELY OVERLAPPED BY ANOTHER DELAY,
FROM TTF CALCULATIONS.
SET FILTER TO .NOT.(*TIME" $ COMM .OR. DURATION2 = 0)
GOTO TOP

TEXT

THIS PORTION OF CODE INITIALIZES THE PROCESS OF CALCULATING
THE TTF STATISTICS BY LOCATING THE FIRST UNSCHEDULED DELAY
EVENT OF THE SPECIFIED EQUIPMENT TYPE AND DELAY TYPE.

ENDTEXT

LOCATE FOR ($MEQ1 $ EQUIP .OR. $MEQ2 $ EQUIP .OR. $MEQ3 $
EQUIP .OR. $MEQ4 $ EQUIP) .AND. (MTYPE1 = " " .OR. TYPE=$MTYPE1;
. OR. TYPE=$MTYPE2 .OR. TYPE=$MTYPE3 .OR. TYPE=$MTYPE4 .OR.;
TYPE=$MTYPE5 .OR. TYPE=$MTYPE6 .OR. TYPE=$MTYPE7 .OR. TYPE;
=$MTYPE8) .AND..SCHEDULED
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = ' ' + EQUIP + ' '
SKIP
ENDIF

TEXT

IN THIS PORTION OF CODE A CHECK IS MADE WHETHER THE
CURRENT RECORD REPRESENTS A CONTINUATION OF THE PREVIOUS
DELAY. DELAY RECORDS WHICH ARE PARTIALLY OVERLAPPED BY
ANOTHER DELAY ARE EXCLUDED FROM TTF CALCULATIONS HERE.

ENDTEXT

DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR..NOT. DURATION = DURATION2 .OR. (EQUIP =;
&MEQUIP .AND. "CON'T" $ COMM)).AND..NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO

IF EOF()
LOOP
ENDIF
IN THIS PORTION OF CODE DELAYS OF THE SPECIFIED EQUIPMENT TYPE(S) AND DELAY TYPE(S) ARE DISTINGUISHED FROM THOSE WHICH ARE NOT. IF A DELAY IS OF THE TYPE SPECIFIED AN ACTIVE TTF AND A TOTAL TTF ARE CALCULATED AND WRITTEN TO THE TTF DATABASE FIELDS TTFACT AND TTFTOT RESPECTIVELY. IF A DELAY IS NOT OF THE TYPE SPECIFIED ITS DURATION IS ADDED TO TOTDELAY.

ENDTEXT

IF (&MEQUIP1 $ EQUIP .OR. &MEQUIP2 $ EQUIP .OR. &MEQUIP3 $ EQUIP .OR.; &MEQUIP4 $ EQUIP) .AND. (MTYPE1 = "" .OR. TYPE=&MTYPE1 .OR.; TYPE=&MTYPE2 .OR. TYPE=&MTYPE3 .OR. TYPE=&MTYPE4 .OR. TYPE=&MTYPE5; .OR. TYPE=&MTYPE6 .OR. TYPE=&MTYPE7 .OR. TYPE=&MTYPE8) TIMEPAST = TIME - MTIME MTTF = TIMEPAST - TOTDELAY MTIME = TIME MDATE = DATE MSHEFT = SHIFT MBEGIN = BEGIN2 MDUR = DURATION2 MEQUIP = ''' + EQUIP + ''' MMEQUIP = EQUIP
SELE 3 APPE BLANK REPLACE DATE WITH MDATE,SHIFT WITH MSHEFT,EQUIP WITH MMEQUIP,TIME WITH; MTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,ACCUMDOWN; WITH TOTDELAY - MIDLE,TIME_IDLE WITH MIDLE,TTFTOT WITH TIMEPAST - MIDLE SELE 1 TOTDELAY = DURATION2 MIDLE = 0 ELSE TOTDELAY = TOTDELAY + DURATION2 MEQUIP = ''' + EQUIP + ''' ENDIF SKIP ENDOO

SET FILTER TO

TEXT

IN THIS PORTION OF CODE ALL TTF VALUES ARE AUGMENTED BY ONE. THIS ELIMINATES ANY TTF VALUES OF 0 THEREBY FACILITATING THE FITTING OF PROBABILITY DENSITY FUNCTIONS TO THESE STATISTICS.
ENDTEXT

SELE 3
REPLACE ALL TTFACT WITH TTFACT + 1, TTFTOT WITH TTFTOT + 1

RETURN
AUTOTTF PROGRAM

TEXT

ENDTEXT

SET EXACT ON
SET DATE TO YMD
TTFNAME = &PREFIX + "SHTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
CLOSE !INDEX
SET FILTER TO .NOT.("*TIME" $ COMM .OR. DURATION2 = 0)
GOTO TOP
LOCATE FOR "SH" $ EQUIP .AND. .NOT. (SCHEDULED .OR. TYPE = "G")
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = "" + EQUIP + ""
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. TYPE = "G" .OR. .NOT. DURATION = DURATION2;
. OR. (EQUIP = &MEQUIP .AND. "DON'T" $ COMM)).AND..NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
IF "SH" $ EQUIP
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = ' " ' + EQUIP + ' " '
MMEQUIP = EQUIP
SELE 3
APPE BLANK
REPLACE DATE WITH MDATE,SHIFT WITH MSHIFT,EQUIP WITH MMEQUIP,TIME;
WITH NTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,
ACCUMDOWN WITH TOTDELAY = MIDLE,TIME_IDLE WITH MIDLE,TTFTOT WITH :
TIMEPAST = MIDLE
SELE 1
TOTDELAY = DURATION2
MIDLE = 0
ELSE
TOTDELAY = TOTDELAY + DURATION2
MEQUIP = ' " ' + EQUIP + ' " '
ENDIF
SKIP
ENDDO
SELE 3
REPLACE ALL TTFACT WITH TTFACT + 1,TTFTOT WITH TTFTOT + 1

TEXT

THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE FACE CONVEYOR (FC).

ENDTEXT

TTFNAME = &PREFIX + "FCTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR "FC" $ EQUIP .AND..NOT. (SCHEDULED .OR. TYPE = "G")
IF .NOT. EOF()
NTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = ' " ' + EQUIP + ' " '
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. TYPE = "G" .OR..NOT. DURATION = DURATION2;
.OR. (EQUIP = &MEQUIP .AND. "CONT" $ COMM)).AND..NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISS!NG SHIFT RECORD" $ COM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
IF "FC" $ EQUIP
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = '"' + EQUIP + '"'
MMEQUIP = EQUIP
SELE 3
APPE BLANK
REPLACE DATE WITH MDATE,SHIFT WITH MSHIFT,EQUIP WITH MMEQUIP,TIME;
WITH MTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,;
ACCUMDOWN WITH TOTDELAY - MIDLE,TIME_IDLE WITH MIDLE,TTFTOT WITH;
TIMEPAST - MIDLE
SELE 1
TOTDELAY = DURATION2
MIDLE = 0
ELSE
TOTDELAY = TOTDELAY + DURATION2
MEQUIP = '"' + EQUIP + '"'
ENDIF
SKIP
ENDDO
SELE 3
REPLACE ALL TTFACT WITH TTFACT + 1,TTFTOT WITH TTFTOT + 1

TEXT

THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE SHIELDS (SD).

ENDTEXT

TTFNAME = &PREF\X + "SDTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR ("SD" $ EQUIP .OR. "HO 100" $ EQUIP .OR. "PM 102" $ EQUIP);
 .AND. .NOT. (SCHEDULED .OR. TYPE = "G")
IF .NOT. EOF()
 MTIME = TIME
 TOTDELAY = DURATION2
 MIDL = 0
 MEQUIP = '"' + EQUIP + '"'
 SKIP
 ENDF
 DO WHILE .NOT. EOF()
 DO WHILE (SCHEDULED .OR. TYPE = "G" .OR. .NOT. DURATION = DURATION2;
 .OR. (EQUIP = &MEQUIP .AND. "CON'T" $ COMM)).AND. .NOT. EOF()
 TOTDELAY = TOTDELAY + DURATION2
 IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
 MIDL = MIDL + DURATION2
 ENDF
 SKIP
 ENDDO
 IF EOF()
 LOOP
 ENDF
 IF ("SD" $ EQUIP .OR. "HO 100" $ EQUIP .OR. "PM 102" $ EQUIP)
 TIMEPAST = TIME - MTIME
 MTTF = TIMEPAST - TOTDELAY
 MTIME = TIME
 MDATE = DATE
 MSHIFT = SHIFT
 MBEGIN = BEGIN2
 MDUR = DURATION2
 MEQUIP = '"' + EQUIP + '"'
 MMMEQUIP = EQUIP
 SELE 3
 APP/' BLANK
 REPLACE DATE WITH MDATE,SHIFT WITH MSHIFT,EQUIP WITH MMMEQUIP,TIME WITH;
 MTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,ACCUMDOWN;
 WITH TOTDELAY - MIDL,TIME_IDLE WITH MIDL,TTFTOT WITH TIMEPAST - MIDL
 SELE 1
 TOTDELAY = DURATION2
 MIDL = 0
 ELSE
 TOTDELAY = TOTDELAY + DURATION2
 MEQUIP = '"' + EQUIP + '"'
 ENDIF
 SKIP
 ENDDO
 SELE 3
 REPLACE ALL TTFACT WITH TTFACT + 1,TTFTOT WITH TTFTOT + 1
 TEXT
THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE STAGELoader (SL)

ENDTEXT

TTFNAME = &PREFIX + "SLTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR "SL" $ EQUIP .AND..NOT. (SCHEDULED .OR. TYPE = "G")
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = '"' + EQUIP + '"'
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. TYPE = "G" .OR..NOT. DURATION = DURATION2;
. OR. (EQUIP = &MEQUIP . AND. "CON'T" $ COMM)). AND..NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
IF "SL" $ EQUIP
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = '"' + EQUIP + '"'
MMEQUIP = EQUIP
SELE 3
APPE BLANK
REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, EQUIP WITH MMEQUIP, TIME;
WITH MTIME, BEGIN WITH MBEGIN, DURATION WITH MDUR, TTFACT WITH MTTF,
ACCDOWN WITH TOTDELAY + MIDLE, TIME_IDLE WITH MIDLE, TTFTOT WITH;
TIMEPAST = MIDLE
SELE 1
TOTDELAY = DURATION2
MIDLE = 0
ELSE
TOTDELAY = TOTDELAY + DURATION2
MEQUIP = '"' + EQUIP + '"'
ENDIF
SKIP
ENDDO
SELE 3
REPLACE ALL TTFCT WITH TTFCT + 1, TTFTOT WITH TTFTOT + 1

TEXT

THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE CRUSHER (CR).

ENDTEXT

TTFNAME = &PREFIX + "CRTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR "CR" $ EQUIP .AND..NOT. (SCHEDULED .OR. TYPE = "G")
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = '"' + EQUIP + '"
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. TYPE = "G" .OR..NOT. DURATION = DURATION2; .OR. (EQUIP = &MEQUIP .AND. "CON'T" $ COMM)).AND..NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
IF "CR" $ EQUIP
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
\[
\text{MBEGIN = BEGIN2} \\
\text{MDUR = DURATION2} \\
\text{MEQIP = ' ' + EQUIP + ' '} \\
\text{MMEQIP = EQUIP} \\
\text{SELE 3} \\
\text{APPE BLANK} \\
\text{REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, EQUIP WITH MMEQIP, TIME WITH; MTIME, BEGIN WITH MBEGIN, DURATION WITH MDUR, TTFACT WITH MTTF, ACCUMDOWN; WITH TOTDELAY = MIDLE, TIME_IDLE WITH MIDLE, TTFTOT WITH TIMEPAST - MIDLE} \\
\text{SELE 1} \\
\text{TOTDELAY = DURATION2} \\
\text{MIDLE = 0} \\
\text{ELSE} \\
\text{TOTDELAY = TOTDELAY + DURATION2} \\
\text{MEQIP = ' ' + EQUIP + ' '} \\
\text{ENDIF} \\
\text{SKIP} \\
\text{ENDDO} \\
\text{SELE 3} \\
\text{REPLACE TTFACT WITH TTFACT + 1, TTFTOT WITH TTFTOT + 1} \\
\text{TEXT} \\
\text{THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE SECTION BELT (SB).} \\
\text{ENDDTEXT} \\
\text{TTFNAME = &PREFIX + "SBTTF"} \\
\text{SELE 3} \\
\text{USE TTF} \\
\text{COPY STRU TO &TTFNAME} \\
\text{USE &TTFNAME} \\
\text{SELE 1} \\
\text{GOTO TOP} \\
\text{LOCATE FOR "SB" $ EQUIP .AND..NOT. (SCHEDULED .OR. TYPE = "G")} \\
\text{IF .NOT. EOF()} \\
\text{MTIME = TIME} \\
\text{TOTDELAY = DURATION2} \\
\text{MIDLE = 0} \\
\text{MEQIP = ' ' + EQUIP + ' '} \\
\text{SKIP} \\
\text{ENDIF} \\
\text{DO WHILE .NOT. EOF()} \\
\text{DO WHILE (SCHEDULED .OR. TYPE = "G" .OR..NOT. DURATION = DURATION2; .OR. (EQUIP = &MEQIP .AND. "CON'T" $ COMM)) .AND..NOT. EOF()} \\
\text{TOTDELAY = TOTDELAY + DURATION2} \\
\text{IF "NO WORK OR MISSING SHIFT RECORD" $ COMM} \\
\text{MIDLE = MIDLE + DURATION2} \\
\text{ENDIF}
SK1P
ENDDO
IF EOF()
LOOP
ENDIF
IF "$SB" $ EQUIP
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = "'" + EQUIP + "'
MEQUIP = EQUIP
SELE 3
APPEND BLANK
REPLACE DATE WITH MDATE,SHIFT WITH MSHIFT,EQUIP WITH MEQUIP,TIME;
WITH MTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,;
ACCUMDOWN WITH TOTDELAY - MIDLE,TIME_IDLE WITH MIDLE,TTFTOT WITH;
TIMEPAST - MIDLE
SELE 1
TOTDELAY = DURATION2
MIDLE = 0
ELSE
TOTDELAY = TOTDELAY + DURATION2
MEQUIP = "'" + EQUIP + "'
ENDIF
SK1P
ENDDO
SELE 3
REPLACE ALL TTFACT WITH TTFACT + 1,TTFTOT WITH TTFTOT + 1

TEXT

THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE
MAIN HAULAGE BELT(S) (HB).

ENDTEXT

TTFNAME = &PREFIX + "HBTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR "$HB" $ EQUIP .AND..NOT. (SCHEDULED .OR. TYPE = "G")
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = '"' + EQUIP + '"'
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. TYPE = "G" .OR..NOT. DURATION = DURATION2;
. OR. (EQUIP = &MEQUIP . AND. "CON'T" $ COMM)). AND.. NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
IF "HB" $ EQUIP
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = '"' + EQUIP + '"'
MMEQUIP = EQUIP
SELE 3
APPEN BLANK
REPLACE DATE WITH MDATE,SHIFT WITH MSHIFT,EQUIP WITH MMEQUIP,TIME;
WITH MTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,;
ACUMDOWN WITH TOTDELAY - MIDLE,TIME_IDLE WITH MIDLE,TTFTOT WITH;
TIMEPAST - MIDLE
SELE 1
TOTDELAY = DURATION2
MIDLE = 0
ELSE
TOTDELAY = TOTDELAY + DURATION2
MEQUIP = '"' + EQUIP + '"'
ENDIF
SKIP
ENDDO
SELE 3
REPLACE ALL TTFACX WITH TTFACT + 1,TTFTOT WITH TTFTOT + 1

TEXT

THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE
BIN/SKIP/TIPPLE (BN).
ENDEXT

TTFNAME = &PREFIX + "BNTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR "BN" $ EQUIP .AND..NOT. SCHEDULED
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = '"' + EQUIP + '"'
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. TYPE = "G" .OR..NOT. DURATION=DURATION2 .OR.;
(EQUIP = &MEQUIP .AND. "CON'T " $ COMM)).AND..NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
IF "BN" $ EQUIP
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = '"' + EQUIP + '"'
MMEQUIP = EQUIP
SELE 3
APPE BLANK
REPLACE DATE WITH MDATE,SHIFT WITH MSHIFT,EQUIP WITH MMQUIP,TIME WITH;
MTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,ACCLMDOWN;
WITH TOTDELAY - MIDLE,TIME_IDLE WITH MIDLE,TTFTOT WITH TIMEPAST - MIDLE
SELE 1
TOTDELAY = DURATION2
MIDLE = 0
ELSE
TOTDELAY = TOTDELAY + DURATION2
MEQUIP = '"' + EQUIP + '"'
ENDIF
ENDIF
SKIP
ENDDO
SELE 3
REPLACE ALL TTFACT WITH TTFACT + 1, TTFTOT WITH TTFTOT + 1

TEXT

THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR THE SYSTEM AS A WHOLE (SY).

ENDTEXT

TTFNAME = &PREFIX + "SYTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR .NOT. SCHEDULED
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDLE = 0
MEQUIP = "" + EQUIP + ""
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. .NOT. DURATION = DURATION2 .OR. (EQUIP =;
&MEQUIP .AND. "CON’T" $ COMM)).AND..NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDLE = MIDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = "" + EQUIP + ""
MMEQUIP = EQUIP
SELE 3
APPE BLANK
REPLACE DATE WITH MDATE, SHIFT WITH MSHIFT, EQUIP WITH MMEQUIP, TIME;
WITH MTIME, BEGIN WITH MBEGIN, DURATION WITH MDUR, TTFACT WITH MTTF,;
ACCDOWN WITH TOTDELAY - MIDDLE, TIME_IDLE WITH MIDDLE, TTFTOT WITH;
TIMEPAST - MIDDLE
SELE 1
TOTDELAY = DURATION2
MIDDLE = 0
SKIP
ENDDO
SELE 3
REPLACE ALL TTFACT WITH TTFACT + 1, TTFTOT WITH TTFTOT + 1

TEXT
THIS PORTION OF CODE CALCULATES TTF STATISTICS FOR ALL
GEOL O GIC DELAYS (G).
ENDTEXT
TTFNAME = &PREFIX + "GTTF"
SELE 3
USE TTF
COPY STRU TO &TTFNAME
USE &TTFNAME
SELE 1
GOTO TOP
LOCATE FOR TYPE = "G" .AND. NOT. SCHEDULED
IF .NOT. EOF()
MTIME = TIME
TOTDELAY = DURATION2
MIDDLE = 0
MMEQUIP = "' ' + EQUIP + ' '"
SKIP
ENDIF
DO WHILE .NOT. EOF()
DO WHILE (SCHEDULED .OR. .NOT. DURATION = DURATION2 .OR. (EQUIP =;
&MEQUIP .AND. "CON'T" $ COMM)).AND. .NOT. EOF()
TOTDELAY = TOTDELAY + DURATION2
IF "NO WORK OR MISSING SHIFT RECORD" $ COMM
MIDDLE = MIDDLE + DURATION2
ENDIF
SKIP
ENDDO
IF EOF()
LOOP
ENDIF
IF TYPE = "G"
TIMEPAST = TIME - MTIME
MTTF = TIMEPAST - TOTDELAY
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN2
MDUR = DURATION2
MEQUIP = '"' + EQUIP + '"'
MMEQUIP = EQUIP
SELE 3
APPE BLANK
REPLACE DATE WITH MDATE,SHIFT WITH MSHIFT,EQUIP WITH MMEQUIP,TIME;
WITH MTIME,BEGIN WITH MBEGIN,DURATION WITH MDUR,TTFACT WITH MTTF,;
ACCUMDOWN WITH TOTDELAY = MIDLE,TIME_IDLE WITH MIDLE,TTFTOT WITH;
TIMEPAST = MIDLE
SELE 1
TOTDELAY = DURATION2
MIDLE = 0
ELSE
TOTDELAY = TOTDELAY + DURATION2
MEQUIP = '"' + EQUIP + '"'
ENDIF
SKIP
ENDDO

TEXT

THIS PORTION OF CODE INCREASES ALL TTF STATISTICS BY ONE. THIS
ELIMINATES TTF STATISTICS EQUAL TO ZERO MAKING DISTRIBUTION
FITTING EASIER WHILE NEGIGABLE ALTERING THE AVERAGE MAGNITUDE
OF THE STATISTICS.

ENDTEXT

SELE 3
REPLACE ALL TTFACT WITH TTFACT + 1,TTFTOT WITH TTFTOT + 1
RETURN
TTRPRG PROGRAM

TEXT

THIS PROGRAM CALCULATES TTR STATISTICS FOR ANY COMBINATION
OF EQUIPMENT TYPES OR DELAY TYPES. THE FIRST PORTION OF CODE
QUERIES THE OPERATOR FOR THE FOLLOWING INFORMATION: DOWNTIME
DATABASE NAME, SHIFT DATABASE NAME, TTR DATABASE NAME,
EQUIPMENT TYPES, DELAY TYPES.

ENDTEXT

CLEAR
CLEAR ALL
SET EXACT ON
SET DATE TO YMD
DTDATA=SPACE(8)
@ 3,4 SAY "ENTER DT DATABASE NAME" GET DTDATA
READ
SFTDATA=SPACE(8)
@ 4,4 SAY "ENTER SFT DATABASE NAME" GET SFTDATA
READ
TTRDBF=SPACE(8)
@ 5,4 SAY "ENTER TTR DATABASE NAME" GET TTRDBF
READ
USE TTR
COPY STRU TO &TTRDBF
USE
MEQUIP1=SPACE(8)
@ 6,4 SAY "ENTER EQUIP TYPE #1, USE QUOTATION MARKS, ONE BLANK FOR ALL;
EQUIP" GET MEQUIP1
READ
MEQUIP2=SPACE(8)
@ 7,4 SAY "ENTER EQUIP TYPE #2, USE QUOTATION MARKS, SIX BLANKS FOR;
NONE" GET MEQUIP2
READ
MEQUIP3=SPACE(8)
@ 8,4 SAY "ENTER EQUIP TYPE #3, USE QUOTATION MARKS, SIX BLANKS FOR;
NONE" GET MEQUIP3
READ
MEQUIP4=SPACE(8)
@ 9,4 SAY "ENTER EQUIP TYPE #4, USE QUOTATION MARKS, SIX BLANKS FOR;
NONE" GET MEQUIP4
READ
MTYPE1=SPACE(4)
@ 10,4 SAY "ENTER DELAY TYPE #1, USE QUOTATION MARKS, ONE BLANK FOR;
ALL" GET MTYPE1
READ
IF MTYPE1 = " "
MTYPE2=" "
MTYPE3=" "
MTYPE4=" "
MTYPE5=" "
MTYPE6=" "
MTYPE7=" "
MTYPE8=" "
ELSE
 MTYPE2=SPACE(4)
 @ 11,4 SAY "ENTER DELAY TYPE #2, USE QUOTATION MARKS, XX FOR NONE";
 GET MTYPE2
 READ
 MTYPE3=SPACE(4)
 @ 12,4 SAY "ENTER DELAY TYPE #3, USE QUOTATION MARKS, XX FOR NONE";
 GET MTYPE3
 READ
 MTYPE4=SPACE(4)
 @ 13,4 SAY "ENTER DELAY TYPE #4, USE QUOTATION MARKS, XX FOR NONE";
 GET MTYPE4
 READ
 MTYPE5=SPACE(4)
 @ 14,4 SAY "ENTER DELAY TYPE #5, USE QUOTATION MARKS, XX FOR NONE";
 GET MTYPE5
 READ
 MTYPE6=SPACE(4)
 @ 15,4 SAY "ENTER DELAY TYPE #6, USE QUOTATION MARKS, XX FOR NONE";
 GET MTYPE6
 READ
 MTYPE7=SPACE(4)
 @ 16,4 SAY "ENTER DELAY TYPE #7, USE QUOTATION MARKS, XX FOR NONE";
 GET MTYPE7
 READ
 MTYPE8=SPACE(4)
 @ 17,4 SAY "ENTER DELAY TYPE #8, USE QUOTATION MARKS, XX FOR NONE";
 GET MTYPE8
 READ
SELE 3
USE &TRDBF
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. DURATION = 0) .AND. (.&MEQUIP1;
$ EQUIP .OR. &MEQUIP2 $ EQUIP .OR. &MEQUIP3 $ EQUIP .OR. &MEQUIP4;
$ EQUIP .OR. &MEQUIP5 $ EQUIP) .AND. (MTYPE1=" " .OR. TYPE=&MTYPE1;
.OR. TYPE=&MTYPE2 .OR. TYPE=&MTYPE3 .OR. TYPE=&MTYPE4 .OR.;
TYPE=&MTYPE5 .OR. TYPE=&MTYPE6 .OR. TYPE=&MTYPE7 .OR. ;
TYPE=&MTYPE8) .AND. DURATION = DURATION2
GOTO TOP

TEXT
THIS PORTION OF CODE ESTABLISHES THE TTR OF EACH DELAY AS THE DURATION OF THE DELAY PLUS THE DURATION OF ANY CONTINUATIONS OF THAT DELAY. THE TTR IS THEN WRITTEN TO THE TTR FIELD OF THE TTR DATABASE.

ENDTEXT

DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = ' ' + EQUIP + ' '
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
SKIP
ENDDO
SELE 3
APPE BLANK
REPLACE TTR WITH MTTR,EQUIP WITH MMEQUIP,TIME WITH MTIME,SHIFT WITH; MSHIFT,DATE WITH MDATE,BEGIN WITH MBEGIN
SELE 1
ENDDO
SET FILTER TO RETURN
AUTOTTR PROGRAM

TEXT

THIS PROGRAM CALCULATES TTR STATISTICS FOR THE EQUIPMENT TYPES SH, FC, SD, SL, CR, SB, HB, AND BN. THESE CALCULATIONS ARE MADE EXCLUSIVE OF GEOLOGIC DELAYS (G). TTF CALCULATIONS ARE ALSO MADE FOR ALL DELAYS OF GEOLOGIC DELAY TYPE (G), AND FOR THE SYSTEM AS A WHOLE (SY). THE FIRST PORTION OF CODE CALCULATES TTR STATISTICS FOR THE SHEARER.

ENDTEXT

SET EXACT ON
TTRNAME = &PREFIX + "SHTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
AND. "SH" $ EQUIP .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = "" + EQUIP + ""
MEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
SKIP
ENDDO
SELE 3
APPE BLANK
REPLACE TTR WITH MTTR, EQUIP WITH MEQUIP, TIME WITH MTIME, SPLIT WITH;
MSHIFT, DATE WITH MDATE, BEGIN WITH MBEGIN
SELE 1
ENDDO

TEXT

THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE FACE CONVEYOR (FC).
TTRNAME = &PREFIX + "FCTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
. .AND. "FC" $ EQUIP .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
 MTTR = DURATION
 MEQUIP = ' ' + EQUIP + ' '
 MMEQUIP = EQUIP
 MTIME = TIME
 MDATE = DATE
 MSHIFT = SHIFT
 MBEGIN = BEGIN
 SKIP
 DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
 MTTR = MTTR + DURATION
 SKIP
 ENDDO
 SELE 3
 APER BLANK
 REPLACE TTR WITH MTTR,EQUIP WITH MMEQUIP,TIME WITH MTIME,SHIFT WITH;
 MSHIFT,DATE WITH MDATE,BEGIN WITH MBEGIN
 SELE 1
 ENDDO

TEXT

THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE
SHIELDS (SD).

ENDTEXT

TTRNAME = &PREFIX + "SDTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
. .AND. "SD" $ EQUIP .OR. "HO 100" $ EQUIP .OR. "PM 102" $ EQUIP).AND.;
DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
 MTTR = DURATION
MEQUIP = '"' + EQUIP + '"'
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
SKIP
ENDDO
SELE 3
APPE BLANK
REPLACE TTR WITH MTTR,EQUIP WITH MMEQUIP,TIME WITH MTIME,SHIFT WITH;
MSHIFT,DATE WITH MDATE,BEGIN WITH MBEGIN
SELE 1
ENDDO

TEXT

THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE
STAGELOADER (SL).

ENDTEXT

TTRNAME = &PREFIX + "SLTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
.SEQ. "SL" $ EQUIP .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = '"' + EQUIP + '"'
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
SKIP
ENDDO
SELE 3
APPE BLANK
REPLACE TTR WITH MTTR,EQUIP WITH MMEQUIP,TIME WITH MTIME,SHIFT WITH;
 THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE CRUSHER (CR).

ENDTEXT

TTRNAME = &PREFIX + "CRTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. .AND. DURATION > 0;
.AND. "CR" $ EQUIP .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTRR = DURATION
MEQUIP = MMM + EQUIP + ""
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTRR = MTRR + DURATION
SKIP
ENDDO
SELE 3
APP BLANK
REPLACE TTR WITH MTTR, EQUIP WITH MMEQUIP, TIME WITH MTIME, SHIFT WITH;
MSHIFT, DATE WITH MDATE, BEGIN WITH MBEGIN
SELE 1
ENDDO

TEXT

 THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE SECTION BELT (SB).

ENDTEXT

TTRNAME = &PREFIX + "SBTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
...CONT" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
... unseren Hauptrichtungen.
ENDTEXT

TTRNAME = &PREFIX + "HBTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
...CONT" $ COMM .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = "" + EQUIP + ""
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CONT" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
... unseren Hauptrichtungen.
ENDTEXT

TTRNAME = &PREFIX + "HBTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
...CONT" $ COMM .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = "" + EQUIP + ""
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
... unseren Hauptrichtungen.

TEXT

THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE
MAIN HAULAGE BELT(S).

ENDTEXT

TTRNAME = &PREFIX + "HBTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
...CONT" $ COMM .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = "" + EQUIP + ""
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
... unseren Hauptrichtungen.

TEXT

THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE
MAIN HAULAGE BELT(S).

ENDTEXT
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
SKIP
ENDDO
SELE 3
APPE BLANK
REPLACE TTR WITH MTTR,EQUIP WITH MMEQUIP,TIME WITH MTIME,SHIFT WITH;
MSHIFT,DATE WITH MDATE,BEGIN WITH MBEGIN
SELE 1
ENDDO

TEXT

THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE BIN/SKIP/TIPPLE (BN).
ENDTEXT

TTRNAME = &PREFIX + "BNTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. (SCHEDULED .OR. TYPE = "G") .AND. DURATION > 0;
...
THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR THE SYSTEM AS A WHOLE (SY).

ENDTEXT

TTRNAME = &PREFIX + "SYTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. SCHEDULED .AND. DURATION > 0 .AND. DURATION =;
DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = ' ' + EQUIP + ' '
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
SKIP
ENDDO
SELE 3
APPEND BLANK
REPLACE TTR WITH MTTR, EQUIP WITH MMEQUIP, TIME WITH MTIME, SHIFT WITH;
MSHIFT, DATE WITH MDATE, BEGIN WITH MBEGIN
SELE 1
ENDDO

TEXT

THIS PORTION OF CODE CALCULATES TTR STATISTICS FOR ALL DELAYS OF GEOLOGIC DELAY TYPE (G).

ENDTEXT

TTRNAME = &PREFIX + "GTTR"
SELE 3
USE TTR
COPY STRU TO &TTRNAME
USE &TTRNAME
SELE 1
SET FILTER TO .NOT. SCHEDULED .AND. DURATION > 0 .AND. TYPE = "G";
. .AND. DURATION = DURATION2
GOTO TOP
DO WHILE .NOT. EOF()
MTTR = DURATION
MEQUIP = '' + EQUIP + ''
MMEQUIP = EQUIP
MTIME = TIME
MDATE = DATE
MSHIFT = SHIFT
MBEGIN = BEGIN
SKIP
DO WHILE "CON'T" $ COMM .AND. EQUIP = &MEQUIP
MTTR = MTTR + DURATION
SKIP
ENDDO
SELE 3
APPE BLANK
REPLACE TTR WITH MTTR,EQUIP WITH MMEQUIP,TIME WITH MTIME,SHIFT WITH;
MSHIFT,DATE WITH MDATE,BEGIN WITH MBEGIN
SELE 1
ENDDO
SELE 3
SET FILTER TO
RETURN
EQUIP% PROGRAM

TEXT

THIS PROGRAM CALCULATES THE RELATIVE PERCENTAGE OF DOWNTIME CONTRIBUTED BY EACH OF THE PRIMARY EQUIPMENT TYPES. CALCULATIONS ARE MADE FIRST ON AN UNSCHEDULED DELAYS BASIS, AND THEN ON AN ALL DELAYS BASIS. THE FIRST PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE SHEARER (SH) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

SET EXACT ON

OTDELAY = 0
MDELAY = 0
SELE 1
SET FILTER TO .NOT. ("MISSING SHIFT" $ COMM .OR. SCHEDULED .OR. "NA"; $ EQUIP)
GOTO TOP
DO WHILE .NOT. EOF()
 IF "SH" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE SH_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE FACE CONVEYOR (FC) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "FC" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
OTDELAY = OTDELAY + DURATION2
ENDIF
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE FC_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE SHIELDS (SD) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
IF ("SD" $ EQUIP .OR. "HO 100" $ EQUIP .OR. "PM 102" $ EQUIP)
MDELAY = MDELAY + DURATION2
ELSE
OTDELAY = OTDELAY + DURATION2
ENDIF
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE SD_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE STAGELOADER (SL) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
IF "SL" $ EQUIP
MDELAY = MDELAY + DURATION2
ELSE
OTDELAY = OTDELAY + DURATION2
ENDIF
IF .NOT. EOF()
 SKIP
ENDIF
ENDDO
SELE 4
REPLACE SL_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

 THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE
 CRUSHER (CR) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "CR" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE CR_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

 THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE
 SECTION BELT (SB) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "SB" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDIF
ENDDO
SELE 4
REPLACE SB_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE MAIN HAULAGE BELT (HB) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "HB" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE HB_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE BIN/SKIP/TIPPLE (BN) TOWARDS UNSCHEDULED DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "BN" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE BN_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE SHEARER (SH) TOWARDS SCHEDULED AND UNSCHEDULED DOWNTIME (TOTAL DOWNTIME).

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
SET FILTER TO .NOT. ("MISSING SHIFT" $ COMM OR. "NA" $ EQUIP)
GOTO TOP
DO WHILE .NOT. EOF()
 IF "SH" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE SH_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE FACE CONVEYOR (FC) TOWARDS TOTAL DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "FC" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE FC_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE SHIELDS (SD) TOWARDS TOTAL DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF (*SD" $ EQUIP .OR. "HO 100" $ EQUIP .OR. "PM 102" $ EQUIP)
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE SD_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE STAGELOADER (SL) TOWARDS TOTAL DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "SL" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE SL_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))
TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE CRUSHER (CR) TOWARDS THE TOTAL DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "CR" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE CR_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE SECTION BELT (SB) TOWARDS TOTAL DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF "SB" $ EQUIP
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE SB_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT
THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE
MAIN HAULAGE BELT(S) (HB) TO TOTAL DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
IF "HB" $ EQUIP
MDELAY = MDELAY + DURATION2
ELSE
OTDELAY = OTDELAY + DURATION2
ENDIF
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE HB_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

TEXT

THIS PORTION OF CODE CALCULATES THE CONTRIBUTION OF THE
BIN/SKIP/TIPPLE (BN) TO TOTAL DOWNTIME.

ENDTEXT

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
IF "BN" $ EQUIP
MDELAY = MDELAY + DURATION2
ELSE
OTDELAY = OTDELAY + DURATION2
ENDIF
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE BN_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

SELE 1
SET FILTER TO
RETURN
TYPE% PROGRAM

TEXT

THIS PROGRAM CALCULATES THE SHARE OF DOWNTIME ATTRIBUTABLE TO EACH OF THE NINE DELAY TYPES. CALCULATIONS ARE PERFORMED FIRST ON AN UNSCHEDULED DELAYS BASIS, AND THEN ON AN ALL DELAYS BASIS.

ENDTEXT

SET EXACT ON
SET DATE TO YMD

OTDELAY = 0
MDELAY = 0
SELE 1
SET FILTER TO .NOT. ("MISSING SHIFT" $ COMM .OR. SCHEDULED .OR.; TYPE = "NA")
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "E"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE E_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "M"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE M_LNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "H"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE H_LNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "EH"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE EH_LNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "G"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE G_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
IF TYPE = "C"
MDELAY = MDELAY + DURATION2
ELSE
OTDELAY = OTDELAY + DURATION2
ENDIF
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE C_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
IF TYPE = "P"
MDELAY = MDELAY + DURATION2
ELSE
OTDELAY = OTDELAY + DURATION2
ENDIF
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE P_UNS WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
IF TYPE = "SA"
MDelay = MDelay + duration2
else
otdelay = otdelay + duration2
endif
if .not. eof()
skip
endif
enddo
sele 4
replace sa_uns with 100*(mdelay/(otdelay+mdelay))

otdelay = 0
mdelay = 0
sele 1
goto top
do while .not. eof()
if type = "v"
mdelay = mdelay + duration2
else
otdelay = otdelay + duration2
endif
if .not. eof()
skip
endif
enddo
sele 4
replace v_uns with 100*(mdelay/(otdelay+mdelay))

otdelay = 0
mdelay = 0
sele 1
set filter to .not. ("missing shift" $ comm .or. type = "na")
goto top
do while .not. eof()
if type = "e"
mdelay = mdelay + duration2
else
otdelay = otdelay + duration2
endif
if .not. eof()
skip
endif
enddo
sele 4
replace e_all with 100*(mdelay/(otdelay+mdelay))

otdelay = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "M"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE M_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "H"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE H_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "EH"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE EH_ALL WITH 100*(MDelay/(OTDelay+MDelay))

OTDelay = 0
MDelay = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "G"
 MDelay = MDelay + DURATION2
 ELSE
 OTDelay = OTDelay + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDCO
SELE 4
REPLACE G_ALL WITH 100*(MDelay/(OTDelay+MDelay))

OTDelay = 0
MDelay = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "C"
 MDelay = MDelay + DURATION2
 ELSE
 OTDelay = OTDelay + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDCO
SELE 4
REPLACE C_ALL WITH 100*(MDelay/(OTDelay+MDelay))

OTDelay = 0
MDelay = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "P"
 MDelay = MDelay + DURATION2
 ELSE
 OTDelay = OTDelay + DURATION2
 ENDIF
 IF .NOT. EOF()
SKIP
ENDIF
ENDDO
SELE 4
REPLACE P_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "SA"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE SA_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

OTDELAY = 0
MDELAY = 0
SELE 1
GOTO TOP
DO WHILE .NOT. EOF()
 IF TYPE = "V"
 MDELAY = MDELAY + DURATION2
 ELSE
 OTDELAY = OTDELAY + DURATION2
 ENDIF
 IF .NOT. EOF()
 SKIP
 ENDIF
ENDDO
SELE 4
REPLACE V_ALL WITH 100*(MDELAY/(OTDELAY+MDELAY))

SELE 1
SET FILTER TO
RETURN
STATS PROGRAM

TEXT

THIS PROGRAM CALCULATES OPERATIONAL STATISTICS INCLUDING
THE SEVEN PERFORMANCE INDICATORS MENTIONED IN THE TEXT.
THESE OPERATIONAL STATISTICS ARE RECORDED IN FIELDS (2)
THROUGH (12) OF THE RESULT DATABASE AND FIELD (76).

ENDTEXT

SET EXACT ON

TEXT

THIS PORTION OF CODE CALCULATES DATAQUAL.

ENDTEXT

SELE 1
COUNT FOR "TIME" $ COMM .AND..NOT. SCHEDULED TO NUMTIME
COUNT FOR .NOT. SCHEDULED TO NUMTOT
FACTOR1 = (NUMTOT-NUMTIME)/NUMTOT
SELE 2
COUNT TO NUMSFTS
SELE 1
COUNT FOR .NOT. SCHEDULED TO NUMDELYAS
DELPERSFT = NUMDELYAS/NUMSFTS
DO CASE
 CASE DELPERSFT >= 4
 FACTOR2 = 1.00
 CASE DELPERSFT >= 3
 FACTOR2 = 0.75
 CASE DELPERSFT >= 2
 FACTOR2 = 0.50
 CASE DELPERSFT < 2
 FACTOR2 = 0.25
ENDCASE
MQUAL = ((0.5*FACTOR1)+(0.5*FACTOR2))*100

TEXT

THIS PORTION OF CODE CALCULATES SFT_WEEK.

ENDTEXT

SELE 2
INDEX ON DATE TO SFT12 UNIQUE
SET FILTER TO .NOT. (CDOW(DATE)="Saturday" .OR. CDOW(DATE)="Sunday")
COUNT TO WKDAYS
SET INDEX TO
COUNT TO WKSFTS
SET FILTER TO CDOW(DATE)="Saturday" .OR. CDOW(DATE)="Sunday"
COUNT TO ENDSFTS
SFTPERWK = 5*((WKSFTS+ENDSFTS)/WKDAYS)
SET FILTER TO

TEXT

THIS PORTION OF CODE CALCULATES WORKER_AVE, RAW_AVE, CLEAN_AVE, PASS_SFT, AND ADVAN_SFT.

ENDTEXT

GOTO TOP
AVERAGE WORKERS TO MWORK FOR WORKERS > 0
AVERAGE VAL(RAW_TONS) TO MRAW FOR VAL(RAW_TONS) > 0
AVERAGE VAL(CLEAN_TONS) TO MCLEAN FOR VAL(CLEAN_TONS) > 0
AVERAGE VAL(PASSES) TO MPASS FOR VAL(PASSES) > 0
AVERAGE VAL(FEET_ADVAN) TO MADVAN FOR VAL(FEET_ADVAN) > 0

TEXT

THIS PORTION OF CODE CALCULATES PROD_RATE AND DOWNPERTON.

ENDTEXT

COUNT FOR VAL(RAW_TONS) > 0 .OR. VAL(CLEAN_TONS) > 0 TO MNUM
IF MNUM > 5
GOTO TOP
MCOUNT = 0
SUMRATE = 0
SUMDOWN = 0
DO WHILE .NOT. EOF()
 IF VAL(RAW_TONS) > 0 .AND. MAVAIL > 0
 SUMRATE = SUMRATE + (((1/(MAVAIL/100)) * VAL(RAW_TONS))/(LEAV2_SECT - ; ARR_SECT - TIME_RCP))
 SUMDOWN = SUMDOWN + (MDELAY/VAL(RAW_TONS))
 MCOUNT = MCOUNT + 1
 ELSE
 IF VAL(CLEAN_TONS) > 0 .AND. MAVAIL > 0
 SUMRATE = SUMRATE + (((1/(MAVAIL/100)) * VAL(CLEAN_TONS))/(LEAV2_SECT - ARR_SECT - TIME_RCP)) * 1.5)
 SUMDOWN = SUMDOWN + ((MDELAY/VAL(CLEAN_TONS)) * 1.5)
 MCOUNT = MCOUNT + 1
ENDIF
ENDIF
SKIP
ENDDO
AVERATE = SUMRATE/MCOUNT
AVEDOWN = SUMDOWN/MCOUNT
ELSE
AVERATE = 0
AVEDOWN = 0
ENDIF

TEXT

THIS PORTION OF CODE CALCULATES REJECT.

ENDTEXT

COUNT FOR VAL(RAW_TONS) > 0 .AND. VAL(CLEAN_TONS) > 0 TO MNUM
IF MNUM > 5
GOTO TOP
MCOUNT = 0
SUMREJ = 0
DO WHILE .NOT. EOF()
IF VAL(RAW_TONS) > 0 .AND. VAL(CLEAN_TONS) > 0
SUMREJ = SUMREJ + (VAL(RAW_TONS) - VAL(CLEAN_TONS))/VAL(RAW_TONS))
MCOUNT = MCOUNT + 1
ENDIF
SKIP
ENDDO
AVEREJ = (SUMREJ/MCOUNT) * 100
ELSE
AVEREJ = 0
ENDIF

TEXT

THIS PORTION OF CODE CALCULATES TON_MAN.

ENDTEXT

IF MRAW > 0
TONMAN = MRAW/MMORK
ELSE
IF MCLEAN > 0
TONMAN = (MCLEAN*1.5)/MWORK
ELSE
TONMAN = 0
ENDIF
ENDIF

SELE 4
REPLACE WORKER_AVE WITH MWORK, RAW_AVE WITH MRAW, CLEAN_AVE WITH MCLEAN,
TON_MAN WITH TONMAN, PASS_SFT WITH MPASS, ADVAN_SFT WITH MADVAN, SFT_WEEK;
WITH SFTPERMK, PROD_RATE WITH AVERATE, DOWNPERTON WITH AVEDOWN, REJECT;
WITH AVERAGEJ, DATAQUAL WITH MQUAL

TEXT

THIS PORTION OF CODE CALCULATES TON_WEEK.

ENDTEXT

IF RAW_AVE > 0
TONPERWEEK = RAW_AVE * SFT_WEEK
ELSE
IF CLEAN_AVE > 0
TONPERWEEK = CLEAN_AVE * SFT_WEEK * 1.5
ELSE
TONPERWEEK = 0
ENDIF
ENDIF
REPLACE TON_WEEK WITH TONPERWEEK
RETURN
SEC A V A I L P R O G R A M

TEXT

THIS PROGRAM CALCULATES THE AVERAGE SYSTEM, FACE, AND
EQUIPMENT AVAILABILITIES FOR EACH LONGWALL SECTION.
EQUIPMENT AVAILABILITIES ARE CALCULATED FOR THE EIGHT
PRIMARY EQUIPMENT COMPONENTS. THE FIRST PORTION OF TEXT
CALCULATES AVERAGE SYSTEM AVAILABILITY, FACE AVAILABILITY,
AND INHERENT DELAY TIME.

ENDTEXT

SET EXACT ON
SET DATE TO YMD

SELE 2
CLOSE INDEX
AVERAGE MAVAIL TO MACHAVE
AVERAGE TAVAIL TO SYSTAVE
AVERAGE IDELAY TO INHAVE
SET INDEX TO SFT11

TEXT

THIS PORTION OF CODE CALCULATES EQUIPMENT AVAILABILITIES.

ENDTEXT

SELE 1
CLOSE INDEX
SET INDEX TO DT11
SET FILTER TO .NOT. "MISSING SHIFT" $ COMM
GOTO TOP
MDATE = DATE
MSHIFT = SHIFT
SHDELAY = 0
FCDELAY = 0
SDDELAY = 0
SLDELAY = 0
CRDELAY = 0
SBDelay = 0
HSDELAY = 0
BNDELAY = 0
SHSUM = 0
FCSUM = 0
SDSUM = 0
SLSUM = 0
CRSLUM = 0
SSBLUM = 0
HSBLUM = 0
BSLUM = 0
MOUNT = 0

DO WHILE .NOT. EOF()
 DO CASE

 CASE DATE = DATE .AND. SHIFT = MSHIFT
 DO CASE

 CASE "SH" $ EQUIP
 SHDELAY = SHDELAY + DURATION2

 CASE "FC" $ EQUIP
 FDELAY = FDELAY + DURATION2

 CASE ("SD" $ EQUIP .OR. "HO 100" $ EQUIP .OR. "PM 102" $ EQUIP)
 SDDELAY = SDDELAY + DURATION2

 CASE "SL" $ EQUIP
 SLDELAY = SLDELAY + DURATION2

 CASE "CR" $ EQUIP
 CRDELAY = CRDELAY + DURATION2

 CASE "SB" $ EQUIP
 BDDELAY = BDDELAY + DURATION2

 CASE "HB" $ EQUIP
 BDDELAY = BDDELAY + DURATION2

 CASE "BN" $ EQUIP
 BDDELAY = BDDELAY + DURATION2

 ENDCASE

 CASE .NOT. (DATE = MDATE .AND. SHIFT = MSHIFT)
 MDATE = DATE
 MSHIFT = SHIFT

 SELE 2
 DO WHILE DTC(DATE) + SHIFT < DTC(MDATE) + MSHIFT
 SKIP
 ENDDO

 MOUNT = MOUNT + 1
SHAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - SHDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100
FCAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - FCDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100
SDAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - SDDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100
SLAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - SLDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100
CRAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - CRDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100
SBAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - SBDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100
HBAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - HBDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100
BNAVA1 = ((LEAV2_SECT - (ARR_SECT + TIME_RCP) - BNDELAY))/;
(LEAV2_SECT - (ARR_SECT + TIME_RCP)) * 100

SHSUM = SHSUM + SHAVA1
FCSUM = FCSUM + FCAVA1
SDSUM = SDSUM + SDAVA1
SLSUM = SLSUM + SLAVA1
CRSUM = CRSUM + CRAVA1
SBSUM = SBSUM + SBAVA1
HBSUM = HBSUM + HBAVA1
BNSUM = BNSUM + BNAVA1

SELE 1
SHDELAY = 0
FCDELAY = 0
SDDELAY = 0
SLDELAY = 0
CRDELAY = 0
SBDELAY = 0
HBDELAY = 0
BNDELAY = 0

ENDCASE
SKIP
ENDDO

SHAVE = SHSUM/MCOUNT
FCAVE = FCSUM/MCOUNT
SDAVE = SDSUM/MCOUNT
SLAVE = SLSUM/MCOUNT
CRAVE = CRSUM/MCOUNT
SBAVE = SBSUM/MCOUNT
HBAVE = HBSUM/MCOUNT
BNAVE = BNSUM/MCOUNT

SELE 4
REPLACE SHAVAIL WITH SHAVE, FCAVAIL WITH FCAVE, SDAVAIL WITH SDAVE, SLAVAIL WITH SLAVE, CRAVAIL WITH CRAVE, SBAVAIL WITH SBAVE, HBAVAIL WITH HBAVE, BNAVAIL WITH BNAVE, FACEAVAIL WITH MACHAVE, SYSTAVAIL WITH SYSTAVE, INHERDELAY WITH INHAVE
SELE 1
SET INDEX TO
SET FILTER TO
SELE 2
SET INDEX TO
SET FILTER TO
RETURN
MEANTIME PROGRAM

TEXT

THIS PROGRAM CALCULATES THE AVERAGE VALUE OF TTF AND TTR OF THE EIGHT PRIMARY EQUIPMENT TYPES. THESE AVERAGES ARE CALCULATED FROM THE TTF AND TTR STATISTICS GENERATED BY AUTOTTF PROGRAM AND AUTOTTR PROGRAM.

ENDTEXT

SET EXACT ON

SELE 3
TTRNAME = &PREFIX + "SHTTR"
USE &TTRNAME
AVERAGE TTR TO RSHAVE FOR TTR > 0
TTRNAME = &PREFIX + "FCTTR"
USE &TTRNAME
AVERAGE TTR TO RFCAVE FOR TTR > 0
TTRNAME = &PREFIX + "SDTTR"
USE &TTRNAME
AVERAGE TTR TO RSDAVE FOR TTR > 0
TTRNAME = &PREFIX + "SLTTR"
USE &TTRNAME
AVERAGE TTR TO RSLAVE FOR TTR > 0
TTRNAME = &PREFIX + "CRTTR"
USE &TTRNAME
AVERAGE TTR TO RCRAVE FOR TTR > 0
TTRNAME = &PREFIX + "SBTTR"
USE &TTRNAME
AVERAGE TTR TO RSBAVE FOR TTR > 0
TTRNAME = &PREFIX + "HBTTR"
USE &TTRNAME
AVERAGE TTR TO RHBAVE FOR TTR > 0
TTRNAME = &PREFIX + "BNTR"
USE &TTRNAME
AVERAGE TTR TO RBNAVE FOR TTR > 0
TTRNAME = &PREFIX + "SYTTR"
USE &TTRNAME
AVERAGE TTR TO RSYAVE FOR TTR > 0
TTFNAME = &PREFIX + "SHTTF"
USE &TTFNAME
AVERAGE TTFACT TO FSHAVE FOR TTFACT > 0
TTFNAME = &PREFIX + "FCTTF"
USE &TTFNAME
AVERAGE TTFACT TO FFCAVE FOR TTFACT > 0
 TTFNAME = &PREFIX + "SDTTF"
USE &TTFNAME
AVERAGE TTFACT TO FSDAVE FOR TTFACT > 0
 TTFNAME = &PREFIX + "SLTTF"
USE &TTFNAME
AVERAGE TTFACT TO FSLAVE FOR TTFACT > 0
 TTFNAME = &PREFIX + "CRTTF"
USE &TTFNAME
AVERAGE TTFACT TO FCRAVE FOR TTFACT > 0
 TTFNAME = &PREFIX + "SBTTF"
USE &TTFNAME
AVERAGE TTFACT TO FSBAVE FOR TTFACT > 0
 TTFNAME = &PREFIX + "SHTTF"
USE &TTFNAME
AVERAGE TTFACT TO FHBAVE FOR TTFACT > 0
 TTFNAME = &PREFIX + "BNTTF"
USE &TTFNAME
AVERAGE TTFACT TO FBNAVE FOR TTFACT > 0
 TTFNAME = &PREFIX + "SYTTF"
USE &TTFNAME
AVERAGE TTFACT TO FSYAVE FOR TTFACT > 0

SELE 4
REPLACE SHMTTR WITH RSHA VE, FM TTR WITH RFCAVE, SM TTR WITH RSDAVE,;
 SLMTTR WITH RSLAVE, CRM TTR WITH RCRAVE, SM TTR WITH RSBAVE, HM TTR WITH;
 RHBAVE, BM TTR WITH RBNAVE, SYMTTR WITH RSYAVE, SHMTTF WITH FSHA VE,;
 FM TTF WITH FFCAVE, SDMTTF WITH FSDAVE, SLMTTF WITH FSLAVE, CRM TTF WITH;
 FCRAVE, SM TTF WITH FSBAVE, HM TTF WITH FHBAVE, BM TTF WITH FBNAVE, SYMTTF;
WITH FSYAVE
CLEAR ALL
RUN ERASE *.NDX
RUN ERASE *.DBO
RETURN
APPENDIX IV

TTF AND TTR PROBABILITY DENSITY FUNCTIONS
<table>
<thead>
<tr>
<th>Category</th>
<th>type</th>
<th>Distribution</th>
<th>Scale</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>TTF</td>
<td>Weibull</td>
<td>659.800</td>
<td>.728</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.405</td>
<td>.981</td>
</tr>
<tr>
<td>HAUL</td>
<td>TTF</td>
<td>Gamma</td>
<td>859.934</td>
<td>.744</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.144</td>
<td>.814</td>
</tr>
<tr>
<td>SD</td>
<td>TTF</td>
<td>Gamma</td>
<td>2615.200</td>
<td>.743</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.139</td>
<td>.850</td>
</tr>
<tr>
<td>SH</td>
<td>TTF</td>
<td>Gamma</td>
<td>206.862</td>
<td>1.035</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.609</td>
<td>.888</td>
</tr>
<tr>
<td>G</td>
<td>TTF</td>
<td>Gamma</td>
<td>612.046</td>
<td>.797</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Gamma</td>
<td>17.389</td>
<td>2.540</td>
</tr>
<tr>
<td>SY</td>
<td>TTF</td>
<td>Gamma</td>
<td>80.187</td>
<td>1.122</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.418</td>
<td>.869</td>
</tr>
</tbody>
</table>

* The category "HAUL" is composed of the primary Equipment Types SL, CR, SB, HB.
<table>
<thead>
<tr>
<th>Category</th>
<th>type</th>
<th>Distribution</th>
<th>Scale</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>TTF</td>
<td>Lognormal</td>
<td>6.451</td>
<td>2.251</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.283</td>
<td>1.170</td>
</tr>
<tr>
<td>HAUL</td>
<td>TTF</td>
<td>Weibull</td>
<td>569.936</td>
<td>.826</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.025</td>
<td>.777</td>
</tr>
<tr>
<td>SD</td>
<td>TTF</td>
<td>Lognormal</td>
<td>6.613</td>
<td>1.123</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.494</td>
<td>.839</td>
</tr>
<tr>
<td>SH</td>
<td>TTF</td>
<td>Lognormal</td>
<td>5.936</td>
<td>1.535</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.396</td>
<td>.859</td>
</tr>
<tr>
<td>G</td>
<td>TTF</td>
<td>Gamma</td>
<td>3629.180</td>
<td>.553</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Gamma</td>
<td>18.952</td>
<td>1.677</td>
</tr>
<tr>
<td>SY</td>
<td>TTF</td>
<td>Weibull</td>
<td>155.825</td>
<td>.835</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.439</td>
<td>.963</td>
</tr>
</tbody>
</table>
Mine 25

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Distribution</th>
<th>Scale</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TTF</td>
<td>Weibull</td>
<td>1174.620</td>
<td>.787</td>
</tr>
<tr>
<td>FC</td>
<td>TTR</td>
<td>Lognormal</td>
<td>4.072</td>
<td>.936</td>
</tr>
<tr>
<td></td>
<td>TTF</td>
<td>Gamma</td>
<td>340.816</td>
<td>.897</td>
</tr>
<tr>
<td>HAUL</td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.600</td>
<td>.837</td>
</tr>
<tr>
<td></td>
<td>TTF</td>
<td>Gamma</td>
<td>4622.860</td>
<td>.768</td>
</tr>
<tr>
<td>SD</td>
<td>TTR</td>
<td>Exponential</td>
<td>49.374</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTF</td>
<td>Weibull</td>
<td>1219.780</td>
<td>.862</td>
</tr>
<tr>
<td>SH</td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.917</td>
<td>.861</td>
</tr>
<tr>
<td></td>
<td>TTF</td>
<td>Gamma</td>
<td>2438.880</td>
<td>.557</td>
</tr>
<tr>
<td>G</td>
<td>TTR</td>
<td>Gamma</td>
<td>3.860</td>
<td>.940</td>
</tr>
<tr>
<td></td>
<td>TTF</td>
<td>Exponential</td>
<td>162.108</td>
<td></td>
</tr>
<tr>
<td>SY</td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.698</td>
<td>.886</td>
</tr>
</tbody>
</table>
Mine 26

<table>
<thead>
<tr>
<th>Category</th>
<th>type</th>
<th>Distribution</th>
<th>Scale</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>TTF</td>
<td>Lognormal</td>
<td>4.472</td>
<td>1.637</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>1.910</td>
<td>1.127</td>
</tr>
<tr>
<td>HAUL</td>
<td>TTF</td>
<td>Weibull</td>
<td>162.328</td>
<td>.740</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>2.149</td>
<td>1.067</td>
</tr>
<tr>
<td>SD</td>
<td>TTF</td>
<td>Lognormal</td>
<td>4.612</td>
<td>1.484</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>2.169</td>
<td>.786</td>
</tr>
<tr>
<td>SH</td>
<td>TTF</td>
<td>Lognormal</td>
<td>4.366</td>
<td>1.327</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>2.550</td>
<td>1.125</td>
</tr>
<tr>
<td>G</td>
<td>TTF</td>
<td>Lognormal</td>
<td>4.165</td>
<td>1.465</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>2.309</td>
<td>.912</td>
</tr>
<tr>
<td>SY</td>
<td>TTF</td>
<td>Lognormal</td>
<td>3.052</td>
<td>1.096</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>2.286</td>
<td>1.036</td>
</tr>
</tbody>
</table>
Mine 27

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Distribution</th>
<th>Scale</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>TTF</td>
<td>Lognormal</td>
<td>4.832</td>
<td>1.942</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>2.080</td>
<td>1.348</td>
</tr>
<tr>
<td>HAUL</td>
<td>TTF</td>
<td>Weibull</td>
<td>142.964</td>
<td>.572</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>1.849</td>
<td>1.087</td>
</tr>
<tr>
<td>SD</td>
<td>TTF</td>
<td>Weibull</td>
<td>317.948</td>
<td>.572</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>1.905</td>
<td>.715</td>
</tr>
<tr>
<td>SH</td>
<td>TTF</td>
<td>Weibull</td>
<td>109.116</td>
<td>.778</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>2.050</td>
<td>1.188</td>
</tr>
<tr>
<td>G</td>
<td>TTF</td>
<td>Lognormal</td>
<td>3.590</td>
<td>1.417</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Gamma</td>
<td>3.601</td>
<td>1.674</td>
</tr>
<tr>
<td>SY</td>
<td>TTF</td>
<td>Lognormal</td>
<td>2.899</td>
<td>1.042</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>1.814</td>
<td>.991</td>
</tr>
<tr>
<td>Category</td>
<td>type</td>
<td>Distribution</td>
<td>Scale</td>
<td>Shape</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>FC</td>
<td>TTF</td>
<td>Gamma</td>
<td>2997.47</td>
<td>.609</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.587</td>
<td>.969</td>
</tr>
<tr>
<td>HAUL</td>
<td>TTF</td>
<td>Weibull</td>
<td>429.399</td>
<td>.794</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.021</td>
<td>.726</td>
</tr>
<tr>
<td>SD</td>
<td>TTF</td>
<td>Weibull</td>
<td>2045.278</td>
<td>.879</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Gamma</td>
<td>6.875</td>
<td>3.569</td>
</tr>
<tr>
<td>SH</td>
<td>TTF</td>
<td>Weibull</td>
<td>654.421</td>
<td>.765</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Exponential</td>
<td>96.797</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>TTF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SY</td>
<td>TTF</td>
<td>Weibull</td>
<td>161.675</td>
<td>1.034</td>
</tr>
<tr>
<td></td>
<td>TTR</td>
<td>Lognormal</td>
<td>3.516</td>
<td>.954</td>
</tr>
</tbody>
</table>
VITA

James Dunlap was born in 1963 in Washington, D.C. He was educated in Arlington, Virginia, and abroad in Ecuador, Chile, and Pakistan. He received the Bachelor of Science degree in Mining and Minerals Engineering at V.P.I. & S.U, Blacksburg, Virginia in 1987 and undertook graduate studies leading to the Master of Science degree in Mining and Minerals Engineering at that University in 1990.

James J. Dunlap