


Chapter 4

Coupled-Mode Theory for Periodic Structures

In chapter 3 we derived the coupled-mode equations (3.29). Now, these equations
will be used to examine the coupling of power between forward and backward
propagating modes in a slab waveguide with periodic boundary perturbation. First,
relations (3.29) and (3.30) will be adapted for coupling between forward and backward
traveling modes of a cylindrical waveguide. Then, these equations will be applied to a
planar waveguide with a sinusoidal corrugation. Finally, the specific example of coupling
in a symmetric three layer planar waveguide will be examined, and a relation for power
reflection between the forward and backward propagating fundamental TE mode will be
given.
4.1 Coupling Between Forward and Backward Traveling Modes
When considering coupling in a single-mode waveguide, there are actually two modes to
consider, the forward and backward traveling modes. When applied to the coupling of
power between the forward and backward propagating mode of a single-mode waveguide,

(3.29) and (3.30) reduce to

da;:z) = "j{a+(Z)C+,+ + a_(z)e_jZBzC_,+} 4.1)
where

C+,+ = % J]S’ (n’z - nz)e+ . er_dS 4.2)

Cp=3" HS (n”? —n*e_ - elds (43)
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and

L8 = J{ad2)e®Cy-+a-(2)C_} 4.4)
where

Ci-= %‘1 _Ug (n”? —nt)e, - eXds (4.5)

C.-==2 HS (n"? —n?)e- - e*ds (4.6)

In equations (4.1-4.6) A+ and Ad_ are the amplitudes of the forward and backward
propagating fields respectively, 7 and n’ are the indices of refraction of the unperturbed
and perturbed waveguides respectively, and €4+ and €_ are the electric fields of the

forward and backward propagating modes respectively, which depend only on transverse

coordinates.

4.2 The Grating Reflector

Now we will consider a single-mode planar dielectric waveguide with a periodic
perturbation. Because we will only be considering TE modes, we know that the

longitudinal component of the electric field is zero. From this assumption and equation

(3.5a) we conclude that €~ = €4 and all fields are real. The coupling coeflicients are

now expressed as

Cir=C_y= % JL (n'? —n?)|e.|*ds 4.7)

and

C,-=C__= _sto Hs (n"? —n?)|es| ds (4.8)
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Consider the geometry exhibited in Fig 4.1, a three-layer waveguide with a sinusoidal
grating between the core and one of the cladding layers. The perturbed waveguide shown

in Fig. 4.1 can be considered as a superposition of the "ideal" waveguide and a

perturbation. Then C ++ becomes

d 2,
C _ C _ W&o 1 d #COS(A ) 2 2 )
w=Cor =7 ) @ _[.24 ny—ny |les@)|“dx  @9)

Notice that the integral in (4.9) is only made over the perturbed region and over a unit

width in the y direction.

In order to evaluate the integral in (4.9) we assume that the depth of the grating is much
smaller than the width of the core, that is % <<d so that the approximation

e(x) = e(g ) can be made. Using this approximation the above integral becomes

2
Ciy=C_1=C(2)= “’j’&(ng — n‘;‘) e{%) cos (i—nz) (4.10)
= Cycos (zx"z) @11
and
Ci-=C__=-Cycos (%\—“z) (4.12)
where
2 .2 |
Co =%€o(n1 _’12) e+(5) & (4.13)
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Figure 4.1: Geometry and coordinates for a planar waveguide with a
sinusoidal corrugation.



Substituting (4.11) and (4.12) into (4.1) and (4.4) leads to

g’dg; = _j{a+(Z)COCOS (2%2) +a_(z)e7Cycos (ZX“Z)} (4.14)
and

id"zz - +j{a_(z)Cocos (%"zj +a.(2)eCycos (zx"z)} (4.15)

Now, we will make some observations and approximations to simplify the above

equations. Consider attempting to evaluate the integrals

a(z) = —jCoj {a+(z)cos (%"z) +a_(2)e P cos (i—“”) }dz (4.16)

and

a_(z)=+Cy J {a+(z)cos (i—“z) +a.(2)e7*Pcos (_2_1{52) }dz @.17)

The first term in each of the integrals in (4.16) and (4.17) is called the self coupling term
and these terms will be shown to be negligible. Also, part of the second term will drop
out. In order to explain why these terms can be considered negligible we note that when
we integrate periodic functions over a large interval the integral never accumulates,
because with each period as much is subtracted as is added to the integral. The same thing
is nearly true if we are integrating the product of é periodic function and a function that

changes very little within each period. Accordingly, (4.20) and (4.41) become
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day . —jCoa—(z)e7*Pcos (%{—‘z) (4.18)

dz
and
% = +jCoa+(z)e+f'7~Bzcos (%"zj (4.19)
. 2r _ 1 jﬂz —]'2—”2
Using COS| -z |=z|er"+e’A (4.20)
A 2

(4.18) and (4.19) are expressed as
z -J g
da* _]2C a- (z)[ ( 2‘3) +eJ(ZB+A)] 4.21)

and

da_ =J 2C 0a+(2)[ (m 28 )Z + ej[zﬁJrl:‘—’t )2] (4.22)

The second term in each of the above two equations drops out for the same reason

that the self coupling term did. Then, (4.27) and (4.28) become

2n
da* jZC a- (z)e( ZB) (4.23)
and

‘:," Coa+(z)e ( ZB), (4.24)

This coupling can be significant when (ij_n — 2[3) is small.
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Denoting (an - 2[3) =0 |,

(4.23) and (4.24) become
+ .C ;
G =5a-@e
and
da_
—:;7 = J——a (z)e 797

(4.25)

(4.26)

(4.27)

This is the approximate form of the coupled-mode equations for any single-mode

waveguide with a periodic perturbation.

The above coupled first order differential equations can be converted into a simple

second order differential equation as follows.

da(z) -

2 —
a.(z) = J d;z da- ,+/8z

dz

which leads to

2 —{z) da_{z) .C i
L 0 e = 55

fa.  ~da. CP
=405 —-=q_=0.
dz2 dz 4

(4.28)

(4.29)

(4.30)

This is an ordinary differential equation with constant coefficients and has the following

solution.
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[ST13]

a_(z) = {Clcosh (w%) + C,sinh (w%) }e‘fe 4.31)

where W = 1/ C(z) -0 Therefore, from (4.28) and (4.31)

a(z)=

—Clo{(C 10+ Cyw)sinh (w-zz—) +(C,0+ Cw)cosh (w-jj) }e’?z (4.32)

C1 and C> in(4.31) and (4.32) are constant coefficients which are determined from the

initial conditions.

To apply initial conditions, we assume that @_(L) =0 and that a+(0) is

the real amplitude that corresponds to the normalized fields.

ai(0)=2Co-£JC5-02C) (433)
and

a_(L)=0

= e%"L[clsinh (,/Cé -9? -g) +C;cosh (1/(;3 - 02 )g] (4.34)

a,(0)
5] ) 2 L J 2
Etanh (V CO—OZ '2-)—2.5 J CO—BZ

Cy= (4.35)
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Setting Z = 0 in (4.31) to find the coefficient of the backward traveling mode

leaving the grating, we obtain

Coa(0)

MH=0C, =
a-(0)=C 0-7/C3-67 coth( JCT-67 %)

(4.36)

To find the power reflection coeflicient the square of the magnitude of the ratio of

a_(O) to a+(O) denoted r is calculated.

&

62+(C%—92)coth2(1/C3—62 f;)

r= (4.37)

This reflection coefficient is a function of the wavelength of light carried in the waveguide.
In chapter 5 we examine detail at the dependence of the power reflection coefficient on

wavelength for several different gratings.

30



Chapter 5

Spectral Response of Single Gratings

In this chapter we will examine in detail the spectral response of gratings in a
single mode planar waveguide. The effects of changing the length, depth, shape, and the
spatial period of the grating on the spectral response will be investigated.

The spectral dependence of the reflection coefficient for several different gratings
is shown. Each of these graphs shows the reflection coefficient verses the wavelength of
the light in free space The wavelength of the light in free space differs from the
wavelength in the media by a factor of N, where N is the effective index of the waveguide.
All these graphs are similar in that they have the many of the same features. Each graph
has a central peak that corresponds to the spatial frequency of the grating. Each graph
also has several side lobes that diminish in amplitude as the difference between the spatial
period of the grating and the effective wavelength of the light in the waveguide increases.
Between the central peak and each first side lobe and also between each subsequent side
lobe there is a node where the amplitude of the reflection coefficient drops to zero.

Figs. 5.1a-d show the spectral response for gratings of the same length, one
millimeter, but with depth of the grating varying from 1/30 to 1/5 of the width of the
waveguide. Increasing the depth of the grating increases the coupling coefficient and

therefore causes a stronger reflection. The central peak increases as the depth of the
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Figure 5.1a: Variations of reflection coefficient versus wavelength with
grating depth= 1/30 waveguide width and grating length of 1 mm.
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Figure 5.1b: Variations of reflection coefficient versus wavelength with
grating depth= 1/20 waveguide width and grating length of 1 mm.
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Figure 5.1c: Variations of reflection coefficient versus wavelength with
grating depth= 1/10 waveguide width and grating length of 1 mm.
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Figure 5.1d: Variations of reflection coefficient versus wavelength with
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grating increases and eventually reaches unity. As the coupling coefficient increases, the
central peak also broadens at the top eventually approaching a square shape filling the
region between the inner two nodes. The nodes and the anti-nodes for different grating
depths occur at the same points. The side lobe levels increase as the depth of the grating
increases.

Fig. 5.2a-d shows the spectral response of gratings of the same depth, one tenth of
the waveguide width, but with length varying from 0.2mm to 2 mm. As the length of the
grating is increased, the peak amplitude of the central peak increases and eventually
reaches unity. Changing the length of the grating more radically changes the shape of the
spectral response than increasing the coupling coefficient did. When the grating becomes
longer the side lobes not only increase in amplitude, but also increase in number. The
central peak becomes square in shape and narrows at the base.

Now let us take a more detailed look at some of the features of these graphs of

spectral response. The peak reflection occurs when 0 =0 in equation (4.41) so that
¥ peak = tanhz(COIE‘) G.1)

Fig. 5.3a shows the peak reflection magnitude as a function of grating length and Fig. 5.3b
shows peak reflection as a function of grating depth. These graphs illustrate how the
reflection coefficient approaches unity at the center of the spectral response for either a

long or a deep grating.
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Figure 5.2a: Variations of reflection coefficient versus wavelength for a
grating with length 0.2mm and depth 1/10 waveguide width.
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Figure 5.2b: Variations of reflection coefficient versus wavelength for a
grating with length 0.5mm and depth 1/10 waveguide width.
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Figure 5.2¢: Variations of reflection coefficient versus wavelength for a grating
with length 1mm and depth 1/10 waveguide width.
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Another feature of the spectral response that may be of interest is the position of
the side lobes and the nodes. We will find relations that locate these features. After the
argument for the hyperbolic function in Equation (4.41) goes to zero, it then becomes

complex so that the reflection coefficient can be written as

C3
92+(e2—cg)cot( 02-C2 %}

r= (5.2)

with 82 > C}

Therefore, side lobes occur when the cotangent goes to zero, corresponding to

J02-C ; -Lz- = (§ imt) n being an integer. Substituting this value into (4.41) yields,

A= o (53)
2 4 2
2 43 403
and nodes occur when
A= —— (5.4)
Rt S nmy+Cg

Fig 5.4a shows the relation between the length of the grating and the position of the first
node. From this graph we can see that there is roughly an inverse relationship between the
length of the grating and the width of the central peak of the spectral response. Fig. 5.4b

illustrates the height of the first side lobe versus the length of the grating.
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After the first node, the peaks of the side lobes fall along the function

) = —Ci— (5.5)

2
n_dnv
(2]

Notice that (5.5) is independent of the length of the grating, so the spectral response is not
effectively narrowed by increasing the length of the grating. Fig. 5.5 shows the envelope
of the spectral response for two different length gratings. Notice that the peaks of the side

lobes fall along the function (5.5).

Perhaps the most significant feature of these gratings is the fact that the center
frequency of the spectral response of the reflection coefficient is proportional to the spatial
period of the grating. Fig. 5.6 shows the spectral response for three different gratings.
The center peak in Fig.5.6 is from a grating that has a period that corresponds to 1.3
micro meters. The other two peaks are from gratings with spatial periods of one

nanometer more or one nanometer less than the grating of the center peak.
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If the periodic grating has some other shape besides sinusoidal, such as square
wave or saw tooth, two things need to be considered in the spectral response.

First, the magnitude of the fundamental frequency of the grating is different for
each shape of grating. This has the same effect on the coupling coefficient as varying the
depth of a sinusoidal grating, and the spectral response is accordingly affected. Second,
the spectral response of harmonics of the grating can be considered.  The spectral
response for higher orders of a grating is different for gratings of different shape.

Fig. 5.7 is a bar chart showing the magnitude of the first few harmonics of a square
wave and a saw tooth. Note that the square wave has only odd multiple harmonics and
the magnitude of these harmonics drop off slowly. A square grating is often used as a

reflector for frequencies that correspond to its third harmonic rather that its first.
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Chapter 6

Analysis of a Double Grating Structure

In the last chapter, the spectral response of the reflection coefficient for single
grating structure was presented. In this chapter relations for the reflection as well as the
transmission coefficients of a double grating structure will be developed and the spectral
response will be examined.

Starting with the basic solutions for the differential equation given in (4.30),
boundary conditions will be applied to provide for the effect of including a separation
between two consecutive gratings which causes a phase shift between the reflected signals
of the gratings. A relation for the power reflection coefficient of the double grating will

then be developed, and plots of the reflection and transmission coefficients will be given.

6.1 Solutions of the Amplitude Equations for a Double Grating

Referring to Fig. 6.1, the solutions for equation (4.30) for each of the gratings can

be written as follows.

w w 0
a-(z)= [C;eiz + Cze_fz]e—%z 6.1)

1 . -”iz . —EZ ﬁz
a+(z) = a[Cl(—jw —0)e?” + Cr(jw—0)e 2 ]e 2 (6.2)
al(Z) = [C'leg’zl + C;e"fvzj]e'%z' (6.3)

w w 8y
af,(z’ )= CLO[C § (—w — 9)652/ + Cg(jw - G)e_izl ]e?z (6.4)
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Where z/ =z — (L + 0(). Note that C'1 and C'y are different than those in chapter 4.

The first boundary condition is arrived at by assuming that no power is entering the

grating from the left in Fig. 6.1. Thus,
»y/ _wpry By
al(l") = [C’lezL +Che3t :Ie 2 = (6.5)

Two more boundary conditions are needed to develop relations for transmission and
reflection coefficients. For these boundary conditions, the phase dependence of the fields
on z must also be considered as well as the phase shift caused by the separation between
the gratings. Taking into account these considerations, the other two boundary conditions

are written as

ai(0)) = a,(L)e7PleBo (6.6)

a_(L)eBL = a’ (0He P 6.7)

Once again the power reflection coefficient will be the square of the absolute value

of the ratio of @—(0) and a+(0). Thatis,

a_(0y|2
a+(0)

R=

(6.8)

1+x
T (—jw—8)+(jw—0)x

where
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Q e wL__(__ iw—0) e
T w00

and

[ (/w-0)—(w—)e*" Je
B 1-e*

and

v=[§—B)L-jﬁa.

6.2 Spectral Response for Double Gratings

A double grating vields a spectral response that has similar features to those of a
single grating. The reflection coefficient tends to be largest toward the center frequency
and there are several side lobes that diminish in amplitude as distance from the center

frequency increases. Fig.6.2 shows the reflection coefficient of a double grating with

each grating having a length of 0.5 mm and OL = (. This graph is identical to the spectral

response of a single grating of 1 mm and is presented here as a check of the validity of the
double grating formulation.

If the separation between the gratings is increased slightly from 0, the effect of
interference between the reflections from the two gratings is seen in the spectral response.
Fig.6.3 shows the spectral response for two Imm gratings with a 1/8 wavelength
separation between them. Notice that there is a transition spike that moves towards the

center frequency as the separation increases.
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Figure 6.2: Reflection coefficient of a double grating with each grating 0.5mm
and separation between the gratings is zero.
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The most interesting phenomenon occurs when the separation between the two
gratings is equal to 1/4 wavelength of the light in the medium. When this occurs there is a
transmission spike right at the center frequency. Fig. 6.4 shows the reflection coefficient
for a double grating with each grating 0.5mm and separation equal to 1/4 wavelength of
the center frequency. In Figs. 6.3 and 6.4 the gratings are of the same length. Fig. 6.5
shows the spectral response for two gratings of different lengths. The central transmission
spike is not as deep as in Fig. 6.4 making this kind of double grating less interesting for
use as a filter.

Fig. 6.6 shows the transmission coefficient over a limited range for the same
double grating as in Fig.6.4. Fig.6.6 illustrates the fact that a double grating could be used
as a transmission filter. Fig.6.7 is the reflection coefficient for a double grating each
grating being 1mm and separation being 1/4 wavelength, while Fig. 6.8 is the transmission
coefficient for the same grating at the center of the range. Fig. 6.8 illustrates that
extremely narrowband filters can be achieved with double gratings. This type of filter is

useful in dense wavelength division multiplexing applications.
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Chapter 7

Conclusions

7.1 Conclusions

The coupled-mode approach to calculating reflection and transmission coefficients
of periodic gratings has been reviewed. Relations for reflection and transmission
coefficients have been derived for both single and double grating structures. The effects
of varying the grating parameters on the spectral response have been studied, and the
application of these structures as spectral filters has been addressed.

In the application of coupled-mode theory many approximations were made. It is
important to understand the nature of and keep track of these approximations. The first
approximation was made when only guided modes were considered in the expansion of
fields. An exact formulation of coupled-mode theory, should include both guided and
radiation modes. The second approximation occurs in calculating the coupling
coefficients, where the electric field is locally approximated by a constant in the grating
region. Without this approximation, the coupled-mode equations can only be solved using
numerical methods or by expansion into an infinite set of terms. Finally, discussion was
presented to justify dropping other terms from the coupled equations which contributed
negligibly to the coupling coefficients. Nevertheless, the approximate coupled-mode

analysis of a grating yields sufficiently accurate results.
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The most important observation on the spectral response of grating structures is
that the reflection coefficient approaches unity over a broadband around the center
wavelength provided the grating is sufficiently deep and long. A single grating is therefore
useful as a broadband reflection filter.

It is noted that a square grating makes a good third order grating because of the
large size of the third spatial harmonic. This fact might be useful in making grating
fabrication easier because large periods can be used.

For a double grating structure, if a separation equal to one half the grating period
(equal to one quarter of the optical wavelength) is used, the spectral response of the
reflection coefficient still looks similar to that of a single grating except that there is a very
narrow transmission spike at the center frequency. This transmission spike makes the
double grating structure with quarter wavelength separation very useful as a narrow-band
transmission filter. This type of filter finds useful applications in dense wavelength
division multiplexing.

7.2 Suggestions for Future Work

The analysis of cascaded gratings, might be expanded to find a general solution
for n cascaded gratings. The spectral response of multiple gratings might reveal
interesting and useful features.

For broadband reflection filters it would be useful to suppress the side lobes. It
would be useful to see if this side lobe suppression could be obtained by modulating the

frequency of the grating or by cascading gratings of different periods.

64



{1

(2]

[3]

(4]

[3]

(6]

References

J. R. Pierce, "Coupling Modes of Propagation”, Journal of Applied Physics, Vol.

25 pp.179-183, Febuary 1954.

H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback

Lasers", Journal of Applied Physics, Vol. 43, No. 5, pp. 2327-2335, May 1972.

D. Marcuse, "Hollow Dielectric Waveguide for Distributed Feedback Lasers",

IEEE Journal of Quantum Electronics, Vol. QE-8, No. 7, pp. 661-669, July 1972.

S. Wang, "Proposal of Periodic Layered Waveguide Structures for Distributed

Lasers", Journal of Applied Physics, Vol. 44, No. 2, pp. 767-780, Febuary 1973.

K. Sakuda and A. Yariv, "Analysis of Optical Propagation in a Corrugated

Dielectric Waveguide", Optics Communications, Vol. 8, No. 1, pp. 1-4, May 1973.

H. Stoll and A. Yariv, "Coupled-Mode Analysis of Periodic Dielectric

Waveguides", Optics Communications, Vol. 8, No. 1, pp. 5-8, May 1973.

65



[7]

(8]

[9]

[10]

[11]

K. Handa, S. T. Peng, and T. Tamir, "Improved Perturbation Analysis of Dielectric

Gratings", Applied Physics, Vol. 5, pp. 325-328, 1975.

C. S. Yeh, N. Urimindi, J. K. Butler, P. Stabile, and A. Rosen, "Theoretical and
Experimental Investigation of Periodic Corrugated Dielectric Waveguides", SPIE,

Vol. 1634 Laser Diode Technology and Applications IV, pp. 50-60, 1992.

G. Hadjicostas, J. K. Butler, G. A. Evens, N. W. Carlson, and R. Amantea, "A
Numerical Investigation in Dielectric Waveguides with Periodic Surface
Corrugations", IEEE Journal of Quantum Electronics, Vol. 26, No. S, pp.

893-902, May 1990.

W. Lee and W. Streifer, "Radiation Loss Calculations for Corrugated Dielectric
Waveguides", Journal of the Optical Society of America, Vol. 68, No. 12, pp.

1701-1707, December 1978.

S. Wang, "Principles of Distributed Feedback and Distributed Bragg-Reflector

Lasers", IEEE Journal of Quantum Electronics, Vol. QE-10, No. 4, pp. 413-427,

April 1974.

66



[12]

(13]

[14]

[15]

[16]

[17]

A. Yariv and A. Grover, "Equivalence of the Coupled-Mode and Floquet-Bloch
Formalisms in Periodic Waveguides", Applied Physics Letters, Vol. 26, No. 9, pp.

537-539, May 1975.

C. Elachi and C.Yeh, "Mode Conversion in Periodically Distributed Thin-Film

Waveguides", Journal of Applied Physics, Vol. 45, No. 8, pp. 3494-3499, August

1974.

A. Yariv, "Coupled-Mode Theory for Waveguide Optics", IEEE Journal of

Quantum Electronics, Vol. QE-9, No. 9, pp. 919-933, September 1973.

H. F. Taylor and A. Yariv, "Guided Wave Optics", Proceedings of the IEEE, Vol.

62, No. 8, pp. 1044-1060, August 1974.

D. Marcuse, "Coupled-Mode Theory of Optical Resonant Cavities", IEEE Journal

of Quantum Electronics, Vol. QE-21, No. 11, pp. 1819-1826, November 1985.

D. Marcuse, "Coupling Coefficients of Coupled Laser Cavities", IEEE Journal of

Quantum Electronics, Vol. QE-22, No. 2, pp. 223-226 February 1986.

67



[18]

(1]

[20]

(21]

[22]

(23]

R.J. Lang and A. Yariv, "An Exact Formulation of Coupled -Mode Theory for
Coupled-Cavity Lasers", IEEE Journal of Quantum Electronics, Vol. QE-24, No.

1, pp. 66-72, January 1988.

H. A. Haus, "Coupled-Mode Theory Revisited", SPIE, Vol. 704 Integrated

Optical Circuit Engineering IV, 1986.

C. C. Ghizoni, J. M. Ballantyne, and C. L. Tang, "Theory of Optical-Waveguide
Distributed Feedback Lasers: A Green's Function Approach", IEEE Journal of

Quantum Electronics", Vol. QE-13, No. 10, pp. 843-848, October 1977.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, "A Theoretical
Analysis of Etched Grating Couplers for Integrated Optics", IEEE Journal of

Quantum Electronics, Vol. QE-9, No. 1, pp. 29-42, January 1973.

A. I. Gudzenko, "Bragg Reflection in Planar Dielectric Waveguides with Periodic
Thickness Modulation", Radio Engineering and Electronic Physics, Vol. 21, No.8,

pp. 19-25, August 1976.

V. A. Kiselev and A. M. Prokhorov, "Optical Processes in Thin-Film Lasers and
Waveguides with Arbitrary Distributions of the Refractive Index", Soviet Journal

of Quantum Electronics, Vol. 7, No. 3, pp. 302-308, March 1977.

68



[24]

[25]

[26]

[27]

[28]

[29]

M. Miyagi and S. Nishida, "Bending Losses of Dielectric Rectangular Waveguides
for Integrated Optics", Journal of the Optical Society of America, Vol. 68, No. 3,

pp. 316-319, March 1978.

S. R. Seshadri, "Symmetric First-Order Bragg Interactions in an Active Dielectric

Waveguide", Applied Physics, Vol. 15, pp. 377-384, 1978.

S. R. Seshadni, "Asymmetric First-Order Bragg Interactions in an Active Dielectric

Waveguide", Applied Physics, Vol. 17, pp. 141-149, 1978.

S. R. Seshadri, "Three-Mode Coupling in a Passive Dielectric Waveguide with

Index Modulation", Applied Physics, Vol. 23, pp. 311-318, 1980.

N. S. Chang and Y. Matsuo, "Analysis of Optical Guided Waves in a Periodically
Corrugated Dielectric Film Waveguide by Perturbation Method", The Transactions

of the IECE of Japan, Vol. E 66, No. 10, pp. 585-590, October 1983.

K. Yasumoto, "Three-Mode Coupling in a Dielectric Slab Waveguide with Doubly

Periodic Surface Corrugations", Journal of Applied Physics, Vol. 57, No. 3, pp.

755-759, February 1985.

69



[30]

[31]

[32]

[33]

[34]

[35]

J. J. Degnan, "The Waveguide Laser: A Review", Applied Physics, Vol. 11, pp.

1-33, 1976.

L. A Coldren and T. L. Koch, "Analysis and Design of Coupled-Cavity
Lasers--Part I: Threshold Gain Analysis and Design Guidelines", IEEE Journal of

Quantum Electronics, Vol. QE-20, No. 6, pp. 659-682, June 1984,

C. H. Henry and R. F. Kazarinov, "Stabilization of Single Frequency Operation of
Coupled-Cavity Lasers", IEEE Journal of Quantum Electronics, Vol. QE-20, No.

7, pp. 733-744, July 1984.

R.J. Lang and A. Yariv, "Semiclassical Theory of Noise in Multielement
Semiconductor Lasers", IEEE Journal of Quantum Electronics, Vol. QE-22, No.

3, pp. 439-449, March 1986.

M. H. Rahnavard, O. R. Moheimany, and H. Abiri, "Tunability of Cascaded
Gratings which is Used in Distributed Feedback Laser", SPIE, Vol. 1367 Fiber

Optic and Laser Sensors VIII, pp. 374-381, 1990.

D. C. Flanders, H. Kogelnic, R. V. Schmidt, and C. V. Shank, "Grating Filters for
Thin-Film Optical Waveguides", Applied Physics Letters, Vol 24, No. 4, pp.

194-196, February 1974.

70



[36]

[37]

[38]

[39]

[40]

[41]

H.J. Lee, C. H. Henry, R. F. Kazarinov, and K. J. Orlowsky, "Low Loss Bragg
Reflectors on Si(0> — Si3Ng — Si0)  Rib Waveguides", Applied Optics,

Vol. 26, No. 13, pp. 2618-2620, July 1987.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl,
"Narrowband Grating Resonator Filters in InGaAsP/InP Waveguides", Applied

Physics Letters, Vol. 49, No. 3, pp. 125-127, July 1986.

W. P. Huang and J. Hong, "A Coupled-Waveguide Grating Resonator Filter",

IEEE Photonics Technology Letters, Vol. 4, No. 8, pp. 884-886, August 1992.

H. A. Haus and Y. Lai, "Narrow-Band Optical Channel-Dropping Filter",Journal

of Lightwave Technology, Vol.10, No. 1, pp. 57-62, January 1992.

M. Levy, L. Eldada, R. Scarmozzino, R. M. Osgood, P. S. D. Lin, and F. Tong,
"Fabrication of Narrow-Band Channel-Dropping Filters", IEEE Photonics

Tecnology Letters, Vol. 4, No. 12, pp. 1378-1381, December 1992.

J. H. Harris, R. K. Winn, and D. G. Dalgoutte, "Theory and Design of Periodic

Couplers", Applied Optics, Vol. 11, No. 10, pp. 2234-2241, October 1972.

71



[42]

[43]

[44]

[45]

[46]

[47]

T. Tamir and S. T. Peng, "Analysis and Design of Grating Couplers", Applied

Physics, Vol. 14, pp. 235-254, 1977.

S. P. Bandettini, "Optical Filters for Wavelength Divition Multiplexing",

Proceedings of SPIE, Vol. 417, pp. 67-75, 1983.

N. K. Cheung, K. Nosu, and G. Winzer, "Guest Editorial Dense Wavelength
Division Multiplexing Techniques for High Capacity and Multiple Access
Communication Systems", IEEE Journal on Selected Areas in Communications,

Vol. 8, No. 6, pp. 945-947, August 1990.

C. A. Brackett, "Dense Wavelength Division Multiplexing Networks: Principles
and Applications", IEEE Journal on Selected Areas in Communications, Vol. 8,

No. 6, pp. 948-964, August 1990.

H. Toba, K. Oda, K. Nosu, and N. Takato, "Factors Affecting the Design of
Optical FDM Information Distribution Systems", IEEE Journal on Selected Areas

in Communications, Vol. 8, No. 6, pp. 965-972, August 1990.

L. G. Kazovsky, "Optical Signal Processing for Lightwave Communications
Networks", IEEE Journal on Selected Areas in Communications, Vol. 8, No. 6,

pp. 973-982, August 1990.

72



[48]

[49]

[50]

[51]

[52]

N. R. Dono, P. E. Green, K. Liu, R. Ramaswami, and F. F. Tong, "A Wavelength
Division Multiple Access Network for Computer Communication”, [EEE Journal

on Selected Areas in Communications, Vol. 8, No. 6, pp. 983-994, August 1990.

M. S. Goodman, H. Kobrinski, M. P. Vecchi, R. M, Bulley, and J. L. Gimlett,
"The LAMBDANET Multiwavelength Network: Architecture, Applications, and
Demonstrations", IEEE Journal on Selected Areas in Communications, Vol. 8, No.

6, pp. 995-1004, August 1990.

1. P. Kaminow, "FSK with Direct Detection in Optical Multiple-Access FDM
Networks", IEEE Journal on Selected Areas in Communications, Vol. 8, No. 6,

pp. 1005-1014, August 1990.

K. Cheung, "Acoustooptic Tunable Filters in Narrowband WDM Netwoorks:
System Issues and Network Applications",IEEE Journal on Selected Areas in

Communications, Vol. 8, No. 6, pp. 1015-1025, August 1990.

K. Y. Eng, M. A. Santoro, T. L. Koch, J. Stone, and W. W. Snell,
"Star-Coupler-Based Optical Cross-Connect Switch Experiments with Tunable
Receivers", IEEE Journal on Selected Areas in Communications, Vol. 8, No. 6,

pp- 1026-1031, August 1990.

73



[53]

[54]

[551

[56]

[57]

K. W. Fussgaenger and R. H. Rossberg, "Uni- and Bidirectional 4\ X 560 Mb/s

Transmition Systems Using WDM Devices Based on Wavelength- Selective Fused
Single-Mode Fiber Couplers", IEEE Journal on Selected Areas in

Communications, Vol. 8, No. 6, pp. 1032-1042, August 1990.

B. S. Glance and O. Scaramucci, "High-Performance Dense FDM Coherent
Optical Network", IEEE Journal on Selected Areas in Communications, Vol. 8,

No. 6, pp. 1043-1047, August 1990.

M. Chen, N. R. Dono, and R. Ramaswami, "A Media-Access Protocol For
Packet-Switched Wavelength Division Multiaccess Metropolitan Area Networks",
IEEE Journal on Selected Areas in Communications, Vol. 8, No. 6, pp.

1048-1057, August 1990.

W. 1. Way, S. S. Wagner, M. M. Choy, C. Lin, R. C. Menendez, H. Tohme, A.
Yi-Yan, A. Von Lehman, R. E. Spicer, M. Andrejco, M. A. Saifi, and H. L.
Lemberg, "Simultaneous Distribution of Multichannel Analog and Digital Video
Channels to Multiple Terminals Using High-Density WDM and a Broad-Band
In-Line Erbium-Doped Fiber Amplifier", IEEE Photonics Technology Letters, Vol.

2, No. 9, pp. 665-668, September 1990.

C. E. Zah, F. J. Favire, B. Pathak, R. Bhat, C. Caneau, P. S. D. Lin, A. S. Gozdz,
N. C. Andreadakis, M. A. Koka, and T. P. Lee, "Monolithic Integration of

74



(58]

[59]

[60]

[61]

[62]

Multiwavelength Compressive-Strained Multiquantum-Well Distributed-Feedback
Laser Array with Star Coupler and Optical Amplifiers", Electronics Letters, Vol.

28, No. 25, pp. 2361-2362, December 1992.

C. A Brackett, A. S. Acampora, J. Sweitzer, G. Tangonan, M. T. Smith, W.
Lennon, K. Wang, and R. H. Hobbs, "A Scalable Multiwavelength Multihop
Optical Network: A Proposal for Research on All-Optical Networks", Journal of

Lightwave Technology, Vol. 11, No. 5/6, pp. 736-753, May/June 1993.
K. Nosu, H. Toba, K. Inoue, and K. Oda,"100 Channel Optical FDM Technology
and its Applications to Optical FDM Channel-Based Networks", Journal of

Lightwave Technology, Vol. 11, No. 5/6, pp. 764-776, May/June 1993,

D. Marcuse, "Theory of Dielectric Optical Waveguides", Academic Press, Inc.,

Harcourt Brace Jovanovich, Boston, 1994, Ch. 3 and 4.

M. J. Adams, "An Introduction to Optical Waveguides", John Wiley & Sons, New

York. 1981

A. W. Snyder and J. D. Love, "Optical Wavguide Theory", Chapman and Hall,

New York 1983.

75



[63]

[64]

H. Nishihara, M. Haruna, and T. Suhara, "Optical Integrated Circuits",

McGraw-Hill Optical and Electro-Optical Engineering Series, New York, 1985.

D. L. Lee, "Electromagnetic Principles of Inegrated Optics", John Wiley and Sons,

New York, 1986 Chapter 8.

76



Vita

Robert Chester Lawson was born to Edgar H. and Margaret L. Lawson on
December 21, 1961 in Omaha, Nebraska. He attended Millersville University in
Miilersville Pennsylvania where he received a Bachelor of Science degree in Physics in
December 1989. In August 1991 Mr. Lawson was accepted into the graduate program at
Virginia Polytechnic Institute and State University where he received a Master of Science

degree in Electrical Engineering in December 1994.

AL S



