Nonlinear Dynamic Analysis of Structures with Hyperelastic Devices

by

Richard A. Saunders

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

CIVIL ENGINEERING

APPROVED:

Dr. Finley A. Charney, Chairman

Dr. Raymond H. Plaut

Dr. Carin L. Roberts-Wollmann

May 13, 2004
Blacksburg, VA

Keywords: Earthquake Engineering, Inelastic Behavior, Nonlinear Analysis, Hyperelastic Bracing
Nonlinear Dynamic Analysis of Structures with Hyperelastic Devices

by

Richard A. Saunders

Committee Chairman: Dr. Finley A. Charney

(ABSTRACT)

This thesis presents the results of an investigation of a multiple degree of freedom (MDOF) structure with hyperelastic bracing using nonlinear and incremental dynamic analysis. New analytical software is implemented in the investigation of the structure, and the study seeks to investigate the effectiveness of hyperelastic bracing as a seismic protection device. Hyperelastic braces incorporate a new idea of a nonlinear elastic material that gains stiffness as the brace deforms. Structural behaviors of particular concern for an MDOF frame are stability, residual displacement, base shear, and dispersion. The structure is analyzed under two ground motion records of varying content, and for two separate P-Delta cases of varying severity. Two sets of hyperelastic braces are investigated for their influence under the two ground motions and two P-Delta cases. Each scenario is analyzed using nonlinear dynamic analyses to investigate the response histories, and Incremental Dynamic Analysis (IDA) to investigate dispersion and the behavior of specific response measures as ground motion intensity increases. IDA curves are created for interstory drift and base shear for comparison between the two response measures. The research shows that the inclusion of hyperelastic braces in the MDOF frame improves the overall stability of the structure and reduces the amount of dispersion and residual displacement. The hyperelastic braces are shown to give positive performance characteristics while not detrimentally increasing system forces under regular service loads. The results highlight the benefit of the unique stiffening properties of hyperelastic braces as a seismic protection device.
Table of Contents

Chapter 1 - Introduction to the project ... 1
 1.1 Statement of Problem ... 1
 1.2 Objective of Project .. 2
 1.3 Scope of Project ... 3
 1.4 Thesis Overview .. 4

Chapter 2 - Background Information .. 6
 2.1 Incremental Dynamic Analysis ... 6
 2.2 Analysis Considerations for IDA .. 7
 2.3 IDA Versus Other Analysis Methods.. 8
 2.4 Seismic Risk; Applying IDA .. 9
 2.5 Damage Measures – Quantifying Nonlinear Behavior 11
 2.6 Dispersion and Uncertainty in Dynamic Results 13
 2.7 Sensitivity of Dynamic Structural Response .. 15
 2.8 Initial Study of Hyperelastic Behavior .. 16
 2.9 Other Types of Structural Devices... 19
 2.10 Scaling of Earthquake Records ... 20
 2.11 Dynamic Behavioral Uncertainty .. 22

Chapter 3 - Hyperelastic Chapter ... 24
 3.1 Introduction to Hyperelastic Behavior ... 24
 3.2 Constitutive Properties of Hyperelastic Materials 24
 3.3 Benefits of Hyperelastic Devices ... 25
 3.4 Formation of Hyperelastic Equations ... 26
 3.5 Programming Hyperelastic Behavior into OpenSees 28
 3.6 Verification of Hyperelastic Programming .. 29
 3.7 Hyperelastic Relations Used for Research ... 30

Chapter 4 - Proposed Modeling ... 32
 4.1 Introduction to the Modeling .. 32
 4.2 Description of the Structure .. 32
 4.3 Modeling of the Structure .. 35
 4.4 Model Verification .. 40
 4.5 Important Structural Parameters ... 41
 4.6 Hyperelastic Braces ... 43
 4.7 Analytical Procedures ... 46

Chapter 5 – Results and Discussion ... 51
 5.1 Introduction and Overview of Results ... 51
 5.2 Baseline Dynamic Results .. 52
 5.3 Incremental Dynamic Analysis Results – El Centro 61
 5.4 Incremental Dynamic Analysis Results – Northridge 69
 5.5 Summary of Analyses Performed .. 73
D.9 Base Shear IDA Curves for P-Delta Case 2, El Centro 134
D.10 Max. Displacement IDA Curves for P-Delta Case 2, Elcentro 135
D.11 Interstory Drift Ratio IDA Curves P-Delta 2, Plain Frame, Northridge 136
D.12 Interstory Drift Ratio IDA Curves for P-Delta 2, Hyper 1, Northridge 137
D.13 Interstory Drift Ratio IDA Curves for P-Delta 2, Hyper 2, Northridge 138
D.14 Max. Displacement IDA Curves for P-Delta Case 2, Northridge 139

Appendix E – References ... 140
List of Figures

Figure 2.1 - Theoretical Hyperelastic Material Stress-Strain Behavior……………..17
Figure 3.1: Boundary Conditions for Hyperelastic Polynomial Relationships…….27
Figure 3.2: Hyperelastic Element Response versus the Polynomial Expression…..29
Figure 4.1: Plan View of Structural System…………………………………………... 33
Figure 4.2: Elevation View of Structural System……………………………………….34
Figure 4.3: Typical Compound Node………………………………………………….. 37
Figure 4.4: Typical Girder and Column Assembly…………………………………… 37
Figure 4.5: Moment Resisting Frame with Ghost Frame…………………………….. 39
Figure 4.6: Displacement Response History from Drain/OpenSees …………………… 41
Figure 4.7: Pushover Curve for First Case P-Delta Effects………………………… 42
Figure 4.8: Pushover Curve for Second Case P-Delta Effects……………………… 42
Figure 4.9: Pushover Curves for P-Delta Case 1 with Hyperelastic Braces………. 45
Figure 4.10: Pushover Curve for P-Delta Case 2 with Hyperelastic Braces………. 45
Figure 4.11: El Centro Ground Motion Accelerogram……………………………… 47
Figure 4.12: Northridge Ground Motion Accelerogram…………………………… 48
Figure 4.13: El Centro Ground Motion Acceleration Spectrum…………………….. 48
Figure 4.14: Northridge Ground Motion Acceleration Spectrum…………………… 49
Figure 5.1: Interstory Drift Ratio Response History El Centro, P-Delta Case 1…….. 54
Figure 5.2: Interstory Drift Ratio Response History Northridge, P-Delta Case 1….. 55
Figure 5.3: Base Shear Response History for Elcentro P-Delta Case 1……………. 55
Figure 5.4: Base Shear Response History for Northridge P-Delta Case 1……….. 56
Figure 5.5: Interstory Drift Ratio Response History El Centro, P-Delta Case 2….. 57
Figure 5.6: Interstory Drift Ratio Response History Northridge, P-Delta Case 2….. 58
Figure 5.7: Base Shear Response History for El Centro P-Delta Case 2………….. 60
Figure 5.8: Base Shear Response History for Northridge P-Delta Case 2………… 60
Figure 5.9: Story Drift Ratio IDA Curves El Centro, PD 1, Plain Frame…………… 62
Figure 5.10: Story Drift Ratio IDA Curves El Centro, PD 1, Hyper………………… 63
Figure 5.11: Story Drift Ratio IDA Curves El Centro, PD 1, Hyper………………… 63
Figure 5.12: Base Shear IDA Curves for P-Delta Case 1 El Centro………………… 65
Figure 5.13: Interstory Drift Ratio IDA Curves El Centro, PD 2, Plain Frame……. 67
Figure 5.14: Story Drift Ratio IDA Curve El Centro, PD 2, Hyper 2.............. 67
Figure 5.15: Story Drift Ratio IDA Curves El Centro, PD 2, Hyper 1............ 68
Figure 5.16: Base Shear IDA Curves for P-Delta Case 2, El Centro............. 68
Figure 5.17: Interstory Drift IDA Curves for P-Delta Case 1, Northridge...... 70
Figure 5.18: Base Shear IDA Curves for P-Delta Case 1, Northridge........... 71
Figure 5.19: Interstory Drift IDA Curves for P-Delta Case 2, Northridge...... 72
Figure 5.20: Base Shear IDA Curves for P-Delta Case 2, Northridge........... 73
Figure 6.1: Looped Cable Element for Hyperelastic Bracing.................. 82
Figure 6.2: Tire Brace Design for Hyperelastic Behavior......................... 82
Figure B.1: SDOF Portal Frame for First Model Set Verification.............. 98
Figure B.2: Displacement Response History for Model Set 1.................. 98
Figure B.3: SDOF Portal Frame for Second Model Set Verification........... 99
Figure B.4: Displacement Response History for Model Set 2.................. 100
Figure B.5: Portal Frame for Third Model Set Verification..................... 101
Figure B.6: Displacement Response History for Third Model Set............ 101
Figure B.7: Steel01 Hysteretic Behavior................................... 103
Figure B.8: Acceleration Response History for Hyperelastic Verification.... 109
Figure B.9: IDA Curves for Max. Displacement with Hyperelastic Devices.... 110
Figure B.10: Base Shear Response History Verification.......................... 112
Figure D.1: Interstory Drift IDA Curve Summary P-Delta Case 1, El Centro... 126
Figure D.2: Base Shear IDA Curves for P-Delta Case 1, El Centro........... 127
Figure D.3: Max Displacement IDA Curves for P-Delta Case 1, Elcentro.... 128
Figure D.4: Interstory Drift Ratio IDA Curves P-Delta 1,Plain Frame, NorthRidge... 129
Figure D.5: Interstory Drift Ratio IDA Curves for P-Delta 1,Hyper 1, Northridge...... 130
Figure D.6: Interstory Drift Ratio IDA Curves for P-Delta 1,Hyper 2, Northridge...... 131
Figure D.7: Max Displacement IDA Curves for P-Delta Case 1, Northridge.... 132
Figure D.8: Interstory Drift IDA Curve Summary P-Delta Case 2, El Centro... 133
Figure D.9: Base Shear IDA Curves for P-Delta Case 2, El Centro........... 134
Figure D.10: Max Displacement IDA Curves for P-Delta Case 2, Elcentro.... 135
Figure D.11: Interstory Drift Ratio IDA Curves P-Delta 2,Plain Frame, NorthRidge... 136
Figure D.12: Interstory Drift Ratio IDA Curves for P-Delta 2, Hyper 1, Northridge..... 137
Figure D.13: Interstory Drift Ratio IDA Curves for P-Delta 2, Hyper 2, Northridge.....138
Figure D.14: Max Displacement IDA Curves for P-Delta Case 2, Northridge..........139
List of Tables

Table 2.1 Hyperelastic Functions, Ductility Demand = 2.5 18
Table 4.1: Selection of Members for the N-S Moment Frame 35
Table 4.2: Modal Periods of Vibration for the Moment Resisting Frame 40
Table 4.3: Hyper1 Brace Equations ... 44
Table 4.4: Hyper2 Brace Equations ... 44
Acknowledgements

I would like to acknowledge and thank everyone who has helped me during the course of my research. First I would like to thank Dr. Charney as my advisor and committee chair for challenging and guiding me through the research process. I appreciate all of the help and knowledge he has contributed to my research. I would also like to thank my other committee members, Dr. Raymond Plaut and Dr. Carin Roberts-Wollmann, for their contributions and insights as committee members.

I would like to express my deep appreciation to the Via family whose generous contribution to the Virginia Tech Department of Civil and Environmental Engineering has made the funding for my research possible. The Via Fellowship, along with the Aspires research grant through the College of Engineering, has allowed me to be fully funded and supported through my time at Virginia Tech.

I would especially like to thank my family and friends for their encouragement during my time at Virginia Tech. It is their support that has motivated and focused me through the whole process. Special thanks go to my parents, Bob and Linda Saunders, for the help and confidence they have given me. I couldn’t ask for more loving parents, and I can only hope to gain some of the wisdom in life that they’ve shown me. Everyone has taught me that how you work is important, and who you’re privileged to work with is invaluable.