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I. INTRODUCTION

This chapter presents historical notes on the
Incomplete Beta-Function pertaining to both its importance
and methods of evaluating it. This leads to the desirability
of finding expressions to approximate the function and the

use that could be made of such expressions.

1.1 Review of the Literature and Associated Research

Methods for evaluating the partial area, up to the

point € , under the skew curve:

oP"l (1 - o)1

Y =¥, » 06L1 (1)

have long been a problem to mathematicians. This area can

_be represented by the ratio of the Incomplete Beta-Function

to the Complete Beta Function, {.e., .

56 (1 - 6)T g0
1,(p,q) = -2 , 061, (2

1
5 P11 - 6)TLge
0

Using Pearson's (1934) notation, Ie(p,q) will, for clari-

fication, be referred to as the Probability Integral.




The earliest known need for évaluating Ie(p,q) was
realized by Bayes (1763) as a direct result of his famous
theorem in probability. Bayes was able, for small integer
values of p and q , to expand the integrand in (2),
integrate term by term, and thus successfully approximate
the integral. Bayes was entirely unsuccessful for large
p and q and little work was doﬁe to develop other
methods until Karl Pearson showed that its successful solu-
tion or approximation was an important part of his analysis
of skew frequency.

With the importance of evaluating Is(p,q) having
increased, Wishart (1927) found approximations for large
p and q through an extension of Bayes' work., His approx-
imations were extremely difficult to use and they required
the tabulation of numerous coefficients used in his formulas.

Pearson (1924) showed that the sum of the first p
terms of the binomial expansion (a + b)n could be found by
a simple transformation to Ie(p,q). He also proved that
the sum of n terxms of a hypergeometric series could be
approximated by the partial area under the curve (1). This
was done by equating the first four moments of Ie(p,q) and

the hypergeometric distribution.




Thus, the‘importance of finding methods of readily and
accurately evaluating the Probability Integral had been more
than re~doubled. This led Pearson to undertake extensive
investigations and these, along with earlier work, were put
forth by 80pern(1921). These studies led to other attempts
with Miller (1930) having some degree of success in his
application of continued fractions to the integral. However,
due to the inaccuracies and/or the laboriousness of all these
methods, Pearson (1934) found it necessary to compute and
publish tables,.

Pearson's tables give the values of the Complete Beta-
Function and xe(p,q) in the following increments and
ranges of 6, p and q 1

6 = .01, .02, .03, ...., .98, .99, 1.00
for p and q ¢ 11

p,q = .5, 1.0, 1.5, ...., 10.0, 10.5, 11.0
and for p and q» 11

p,q =12, 13, ...., 49, 50
with the restriction p ) q . For desired values with

p € @ , use must be made of the relationship

I.(p,q) =1-1,_(q,p) -




with such relatively large increments in the range of
6 (particularly for large p and ¢) and the difficulty in
handling non-integer values of p and q (other than shown
above), it becomes apparent that a large amount of inter-
polation would be required. This interpolation is extremely
tedious since complicated and different methods are needed
over the various ranges to achieve the desired accuracy.

Since the work of Pearson, the uses of Is(p,q) have
greatly increased. The most noteworthy of these was made by
Snedecor (1934). It is possible by a simple transformation
to calculate percentage points of Snedecor's F distribution
from Ie(p,q), where F is the F statistic with probability
element:

n
ALY,
2
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with degrees of freedom n, and n, . It can be readily

shown, that

Pr(F > Fy) = I.(p,q)
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Merrington and Thompson (1943) were the first to tabu-
late the F distribution. Their tables, and the numerous
tables that followed, were computed basically by transforming
Pearson's tables. All of these tables were tabulated only
for various percentage points such as Pr(F ) Eo) = .50, .25,
.10, .05, etc. Thus, if an experimenter desired the exact
probability, the existing F tables would not normally be
useful since they would only allow him to state whethexr or
not the calculated statistic was significant. However,
since the simple transformation to I (p,q) can be readily
performed, this is not crucial. The problem lies in the
before mentioned inadequacies of the increments of the
tables since, more often than not, it would be necessary to

interpolate.

1.2 The Need and Purpose of Approximation Formulas
If the research worker is able to compute the exact
probabilities from several experiments testing the same null

hypothesis, it is possible to pool these experiments. This




would be done using Pearson's (1933) PA criterion for
random sampling and therefore maké it possible to increase
the usefulness of the experiments. »It would be possible to
combine several experiments conducted by different methods
but testing the same null hypothesis. This pooling of
experiments would be particularly advantageous in cases
where it is only possible to perform small experiments or
where results existed from previous research.

Therefore, it can readily be seen that there are many
cases where it would be necessary to know the value of
Ie(p,q). This and the difficulty of interpolation in
Pearson's tables are the primary reasons for finding
approximation formulas for the Probability Integral. These
formulas would enable the reseaxch worker to have a simple
and accurate method of calculating xe(p,q) for given 6,
P, and § regardless of their valuea. One other important
reason is that Pearson's tables are very often not readily

available to the research worker,

The usefulness of such expressions for various distri-
butions was shown by James P, Ray (1961} in his development

of approximation formulas to the cumulative normal and



t distributions. His work has been largely responsible for
this attempt to find approximation expressions to Ie(p,q)
in that he showed the feasibility of such a project. As he
points out, if the research worker had readily available such
expressions for the major statistical distributions, then
more accurate evaluation would be available and the report-
ing of non-significant results more practical.

These approximation formulas, to be useful, would have
to provide a simple and accurate means of evaluating
Ie(p,q). It is obvious that normally these two requirements
will, in a sense, be acting against each other and for both
to be satisfied will necessitate a certain amount of divi-
sion on the ranges of &, p and q. This immediately brings
forth another problem in that the greater the number of
expressions, the greater complexity in their use and there-
fore the less their value. Thus, one very quickly sees the
need for simplicity of computation conflicting with the
imperative need for accuracy and both will tend to create
further division of the ranges, which must be kept at a

minimum.




II. DISCUSSION OF THE PROCEDURE FOR DEVELOPING APPROXIMATIONS

In this chapter two methods for developing approximation

formulas are discussed and an outline is presented of the

procedure to be followed. There is also an explanation of

the basic programs used for the IBM 650 digital computer.

2.1 Method Proposed for Developing Approximation Formulas
As pointed out in Chapter I, approximation formulas of

Is(p,q) would be very useful to the research worker. 1In
form, these expressions would be very similar to those
developed by Hastings (1954), however, it was felt that the
least squares method was more desirable for the original
expression as explained below. ﬁaatinge defined the best
fit to a set of data to be that form which gives the sﬁallest
maximum deviation between the actual value and its approxi-
mate (predicted) value, i.e., the best fit is obtained when
Maximum of |(actual value) - (approximate value) |
is minimized. The least squares method defined the best fit

as that form for which the sum of the deviations squared is

minimized, i.e., the best fit is obtained when

Z[ (actual value) ~ (approximate value)]®



- 11 -

is minimiged. It was decided that we should first find an
approximation formula by the least squares method and then,
by weighting cbservations of maximum deviation, achieve the
desired accuracy of the fit. Thus, in a sense, it was
decided to employ a combination of the two methods (or
properties) described above.

The method of investigation was to first find a funce
tional form of some type of expansion that could give us
some concept of the desired expression., Then by using this
as a guide and by means of the IBM 650 computer and the pro-
grams available devise expressions necessary to fit xe(p,q)

as functions of €&, p and q.

2.2 Programs for the IBM 650 Digital Computer
The Incomplete Beta Subroutine (Library #6.6.010.1)
evaluates Ia(p,q) for given values of 6, p, and ¢ within
the following rangess
0.000001 S.p,q $'9999.999999
.000000 { 6 < 0001.000000 .

This program was written at V.P.I. by Dr. Rolf Bargmann and

calculates the Probability Integral to six places.
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The Revised General Multiple Regression System
(Library #6,2.008.1,2,3,4,5) was written at Noxrth Ca:oliné.
8tate College and is divided into five parts. The division
of the program not only greatly increases the size of
problems that can be handled but also provides great
flexibility. This program finds the least squares linear
relationships of the p dependent variables, Yys (1:1;...,p)
and the n independent variables, Xy (j=1,..., n) where

Y, = bo1 + blixl + b21x2 + ... + bnixh .

Part I unpacks and performs simple transformations on pre-
viously punched data. Part II computes thé sums and the
uncorrected sums of squares and cross products of the p
dependent and n independent variables. The input is in
single precision and must be scaled so that the output will
have not more than 10 digits for the sums or more than 20
digits for the sums of squares and cross products.

Part III corrects for the mean, if desired, and con-
verts the normal equation matrix to single precision floating
point and then inverts this matrix. The solutions (regres-

sion coefficients) to the equations are calculated with the

provision that variables méy be deleted as desired. It is
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possible to sum or pool two or more matrices of the séme
size for inversion. Part IV performs the same operations as
Part III for larger matrices, but it is not self-restoring
- i.e., it must be re-loaded for each matrix.

Part V computes the sum of squares due to regression
and error, and their mean squares. It also computes RZ,
the variance of each regression coefficient and the related
t2. The above values are computed for each dependent vari-
able. It is also possible to compute predicted values §i
and deviations from the observations (yi - §1). Afterx
examining the output of Part V, it is possible to make an
intelligent guess as to which variables can be deleted with
the smallest effect on the fit. These variables can be
deleted by simply returning to Parxt III.

The Least Squares Polynomial Program (Library #6:0.006.1)
was written at the Oklahoma 8tate University Computing Center,
This program finds equations of polynomials of best fit by
the least squares method. It fits equations of degree one
thru four and for each equation computes the means, the
total, regression and error sums of squares and their
associated mean square. It also computes R and the sum of

the deviations Z(yi - § ) together with the F test for

i




goodness of fit and, if desired, the predicted values.
While the data is entered in single precision, all internal
computations are performed in double precision.

The Successive Partial Correlations and Partial Regres-
sion Coefficients Program (Library #6.2.006.1) was also
written at North Carolina 8tate College. This program com-
putes the correlation coefficients between each of the
variables and their associated regression coefficients.

Thus it is possible to study the output for simple (i.e. -
linear) regression and pick the independent variable that
has the highest correlation with the dependent variable.
Then, including this independent variable as a predictor,
the process is repeated and the correlations again examined.
This method is repeated until the desired number of indepen-
dent variables are included as predictors of the dependent
variable.

The output of Part IIXI (6.2.000.3) can be used for in-

put and it is possible to ppol several matrices prior to the

first cycle of computation. This program is also extremely
helpful in the case that a matrix is near singular due to
high correlation between independent variables. 1In this case,

it is an easy matter to recognize the variables to delete.




The Double Precision Matrix Inversion Subroutine
(Library #5.2.009) was developed by the IBM Corporation and
by means of the Gaussian elimination method provides for both
matrix inversion and a9iutionaAo§‘éimu;taneéus;linéa: equa~
tions.

The input mﬁtrix is in flbaﬁing point‘ahd can.eitﬁer be
in single ortdouble praecision. ‘Regardlesé 6f4the input,
all computations are performed in doub;e p;e;isién’éndktheb
output contains the solutions and the inverse matrix., If
necessary, the program can be stopped and punched out at
various stages of computation and re;started iater. "Although
necessarii&,slow, this program was found extremely. accurate

in its computations.




III. DEVELOPMENT OF APPROXIMATION FORMULAS

In this chapter we show an expansion of Ie(p,q) which
is used as a guide in the development of approximation for-
mulas. The second section deals with the investigations and

the approximation expression derived.

3.1 Derivation of an Expansion of Ie(p,q)

————— w— ousenam

After an extensive review of the literature, as out-
lined in Chapter I, it was decided that, owing to the
complexity of existing methods of evaluation, no available
form was applicable as a guide to find approximation formu-
las. Therefore several methods of integration of IH(P,q)
were considered in order to obtain some idea of a satisfac-
tory functional form. The best that was found for our
purposes is the following method.

We expanded (1 = G)q-l in a Maclaurin series, which

gives:

(1-6)9"L =1 - (g-1)6 + -(3'-'-%{9-‘-?—)- o2 @)

- e + (-l)k l k' i k bk+ LI

3

We note from Franklin (1940) that this series converges for

161 <1 to (1-0)%' . substituting (4) into B,(p,q) ,

integrating and dividing by B(p,q) we have




6P 1l (g-1) fg-1)(g-2) .o
L) =gy G~ © * 2l(pe2) © 5

!g- !!g— t"'!g— !
LY + ("l)k l pik k ek +o'

-

A series expansion of this type has the convenience of con-
verging fairly rapidly for 6 small (sayys %) and use could

be made of the relationship

I,(p,q) =1 -1, ,(q,p)

for larger 6 .

3.2 Investigation of Various Expressions and Results
8ince the numerical analysis had suggested that we try
to fit an equation of the general form of (5), it was

decided to first break this down into three parts. If pos-

1
B(p,q)

in various ranges, then combine these with the third part,

sible, approximations could be found for P and

i.e.,

(!-___..(.9::.3;).9.,,.‘.9.‘.'.3.-).15:.&).62,

p (p+l) 21(p 2) AL

Finally, by means of the multiple regression program, delete

all unnecessary terms to produce the desired expression.

).




It was found possible to fit P over various ranges
of p and © 4in polynomials of %5 . Although the ranges
of p and 6 were as small as considered practical so as to
not result in too many formulas, no expressions could be
found by which it was possible to fit'gigjgy,.over similaxr
ranges, This attempt lead to two immediate results:

1) it was extremely difficult to £it the reciprocal of the
Complete Beta~Function even for small ranges and 2) it
appeared that this method, if feasible, would necessitate a
prohibitive number of formulas,

Therefore it was decided to return to (5) and, again
using it as a guide, investigate the entire function. Using
the Incomplete BetauFunction Subroﬁtine to generate the
various observations on I, (p,q) and exémining the lower
ranges on 6, it was found possible to £fit I (p,q) for

.00 <V 6 { .25. This was done by holding p and g fixed
and using the multiple regrensiOn program for a Gth degree
polynamial of ¢, i.e.,

Y =b  +b 6+b 62 +b_6°
19{p’q o1 11 21 3i

4 5 6
+b,,6 +Db,6° +b. v (6)

6 = .01, .02, ..., .24, .25




where Y is the ith observation on I _(p,q) varying
181p,q 6

€ within the range and holding p and q fixed. With the

restriction of p > q and fitting Ie(p,q) for all values

> .0004, we found that p and ¢ were never greater than

20 and we imposed the lowexr limit of p,q > 2. For all pos-

sible integer values of p and q, with the above restric-

tions, it was found that (6) was a good fit and that the

deviations, {i.e., (Yi - Yi) were less than * ,00003.

We now attempted to fit the regression coefficients
obtained from (6) as functions of p (or g) holding gq (or p)
fixed, i.e.

bjieplq - fl(p) oo g fixed

or = fz(q) ees. p fixed

P110q|p
y=0,1, 2,3, 4, 5, 6 .
Various functional forms were attempted by means of the
0.8.U, Polynomial Program but no relationships were found
with the desired accuracy.

It was decided that the inability to perform the above
was mainly due to the rapid changes that occurred to
ze(p,q) in the lower ranges of 6. Thus it was felt that

if the above procedure was repeated in a smoother area of




the surface, it might be possible to determine the necessary
functional relationships and, after fittin§ the curve in
that area, return to the lower ranges of 6.

Changing the range on 6 to .30 6 S_ .40, it was
seen that a 6th degree polynomial would again give the
desired accuracy. Repeating the procedure given above, (6)
was fitted by the multiple regression program for all
integer values of p and ¢q within the range 10 S_ P,

q £ 20. Note that the restriction p 2 4 has been dropped.
It was found possible to fit the regression coefficients in
a 4th degree polynomial in -:';' holding q fixed. That is,
" for 1o_<_p, q< 20

c (-1"2

)4
21i'p

L3, . (&
) + ¢ +c3i(p) *c4i(p

jieplq = o1 * "11%
j=0,1, 2,3, 4,5, 6
6 = .30, .31, ..., .40 q fixed
p =10, 11, ..., 20 .
S8ince this area was considered too small tb be useful, the
range was extended on p and q to 4 p,q S 48. The
multiple regression for equation (6) was run for all integer

combinations of p and q that were multiples of 4. This

again produced a satisfactory fit for 6, but upon




attempting to fit these regression coefficients as a poly-
nomial in ﬁ' holding q constant, we found that the
coefficients changed too rapidly and erratically to be fit.
Upon investigating it was found that the earlier restriction
on p and ¢, namely 10 < p,g< 20, had enabled us to
fit p. Consequently we were forced to re-evaluate our
attempts.

The difficulty was found to lie in the multiple regres-
sion program or, more precisely, in the normal equation
matrix inversion routine. Although our fit was good, i.e.,
(Yi - Qi) S.j;.00003, there existed near singularity in the
matrix due to the high corrxelation between the independent
variables. Since the inversion routine, which performs all
computation in single precision, was very inaccurate for
these models, it was not possible to fit the regression
coefficients because their variations were extremely large
and erratic.

Further examination, using the 0.8.U. Polynomial Program
(which performs computations in double precision), showed

that this was our problem. Continuing the investigation

with this program, it was seen that for various ranges of




p and g it was poasible to fit Ig(p,q) as a polynomial

in p (or q) holding 6 and q (or p) £ixed. Thus for the

range 1_<_p§5, 5{q< 10 and . 6< .35 (using

similar notation to (6))

2

3 4
+ d3iq + d4iq

Yiglop = Y01 ¥ 4149 * 95,9 -
q=95, 6, ..., 10 € and p fixed

was found to be an accurate approximation, For 6 > .35

and over the same ranges of p and g, it was found that a

satisfactory fit could be obtained by

2 3 4
Yiplog ™ ®o1 * ©14P * e4P t e3P teyp

(8)
p=1, 1.5, 2.0, ..., 5.0 6 and q fixed .
Within these ranges on p and g it was indicated by
the 0.8.U. Polynomial Program that (6) was an adequate
approximation holding p and q fixed. We now proceeded
by trying to fit the product of (6) times (7) and (6) times
(8). 1In the first case, for 6 between .00 and .35, we
were able to fit the product of the two functions. Recog-
nizing the previously mentioned inaccuracies of the multiple

regression inversion routine, the matrix was first examined

by means of the Successive Partial Correlation Program and
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the more highly correlated independent variables were
deleted. Again using this program, we were able to "build
up" the expression, by successively including the indepen=
dent variables as predictors of the dependent variable, to
a model of 10 variables.

Bxamining this formula by means of the Multiple Regres-
sion Program, it was found that we had an excellent fit.

Thus, for p fixed, we had that

2 ; 2.2
Yieq‘p = foi + flie + f21q9 + f3iq9 + £4iq e

2.2 3.2 3.3
6 f f7iq ]

+ f51q g + fsiq

3.4 4 4
+ £5,9°07 + £,,9°6° + £

4.5

1019 ¢ (9)

6 = ,05, .10, ..., .35
g=35, 6, ..., 10

produced deviations (Yi - ?1) gﬂ: .00002 .

This process was unsuccessfully repeated on the product
of (6) and (8). It was felt that this was caused by the
larger values of 6 which resulted in less change in the
magnitude of the powers of 6, This increased the correla-

tion of the independent variables which pushed the matrix

beyond the accuracy of the programs we were using.




Investigating the region that we had used for (9), it
was found possible to approximate Ia(p,d), holding 6 and
g constant, in a polynomial of the reciprocal powers of p.
Using this as a guide we were able to approximate the
Probability Integral, after decreasing the range on ¢ , by
combining (9) with a 6th degree polynomial of -é . Afte¥
deleting terms and weighting the observations of maximum
deviation, we obtained the following approximation formula:

c, +¢.6 + ¢ qez + c4q263 + c§q364 + c6q46

1.0 + c7p + csp + cgp + clcp + cllp

5

(10)

.025 { 6  .200

1.0{pg5.0
5.0 { g 10.0
where e, = .000443 c, = -1.905371
c, = .038396 Cg = 1.012196
C, = -.020517 Cq = = .142526
Cq = .028508 0™ .038866
cg = ~.016338 c = = -003146

c, = .003310 .




The differences between the approximate values and the
actual values used for fitting do not exceed + .000098, and
the value when rounded to four decimal places does not differ
by more than one unit in the fourth decimal place.

See Appendix A for a tabulation of the actual values

minus the approximate values.
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IV. COMPUTATIONAL PROCEDURES AND EXAMPLES

In this chapter we will illustrate the procedure, using
a desk calculator, to compute Ie(p,q) from the approxima-
tion derived (10) and, through the use of an example,
compute the Probability Integral. An example is also given
showing a method of pooling several experiments by Pearson's

(1933) PA criterion.

4.1 Outline of Computational Procedures

To approximate Is(p,q) for any values of p, q and ¢
within the ranges
.025 { 6 < .200
1.0{ p<5.0
5.0 g 10.0 ,
and following the expression developed in (10), the steps
involved using a desk calculator are as follows:
(1) Enter (- .003146)
(2) Multiply (1) by p
(3) Add (.038,866) to (2)
(4) Multiply (3) by p

(5) Subtract (.142526) from (4)

(6) Multiply (5) by p




Multiply (6) by p

(8) Add (1.012196) to (7)

(9) Multiply (8) by p

(10) Subtract (1.905371) from (9)

(11) Multiply (10) by p

(12) Add 1.0 to (11) and retain this value
(13) Enter g

(14) Multiply (13) by €6 and retain

(15) Multiply (14) by (.003310)

(16) Subtract (.016338) from (15)

(17) Multiply (16) by (14)

(18) Aadd (.028508) to (17)

(19) Multiply (18) by (14)

(20) Subtract (.020517) from (19)

(21) Multiply (20) by (14)

(22) Aadd (.038396) to (21)

(23) Multiply (22) by 6

(24) Add (.000443) to (23)

(25) Divide (24) by (12) to give the desired approximate

value of Ig(p,q) .

Sufficient accuracy will be maintained by carrying p, 4,

¢ and all computations to six decimals.




4.2 Example of Computing Procedure

Suppose laboratory A had performed a One-~-Way Classifi-
cation Analysis to test the mean of 6 treatments with unequal
observations in each block. The following Analysis of

Variance table was computeds

Source d.£. S.8. M.S. F
Treatment 5 432.00 86.40 2.01
Errox 15 644.85 42.99

Total 20 1,076.85

The calculated F statistic is reported only as non-significant
at the 5% level. Thus, the only conclusion that can be drawn
is that the treatments are similar. 8ince there were a
relatively small number of observations, the research worker
might be interested in learning the exact significance level
to ascertain whether or not continued research was necessary.
Therefore, if the research worker desired the exact
probability, it could be computed, using the transformations

described in Chapter IXI, as follows:




(1)
(2)
(3)
(4)
(5)
()
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

(18)

- 29 -

p -~§ = 2.5 q =2 =7
6 2.3 = .142,248

= 2.5 + 7.5(2.01)

(-.003,146)
(~.003,146) x (2.5) = ~.007,865
(-.007,865) + (.038,866) = .031,001
(.031,001) x (2.5) = .077,503
(.077,503) - (.142,526) = -.165,023
(-.065,023) x (2.5) = -.162,558
(-.162,558) x (2.5) = -.406,395
(~.406,395) + (1.012,196) = .605,801
(.605,801) x (2.5) = 1.514,503
(1.514,503) - (1.905,371) = =.390,868
(~.390,868) x (2.5) = ~.977,170
(=.977,170) + (1.0) = .022,830

(7.5)

(7.5) x (.142,248) = 1.066,860 = q 0
(1.066,860) x (.003,310) = .003,531
(.003,531) ~ (.016,338) = -.012,807

(1.066,860) x (~.012,807) = -.013,663

(-.013,663) + (.028,508) = .014,845




(.014,845) x (1.066,860) = .015,838
(.015,838) -~ (.020,517) = -.,004,679
(~.004,679) x (1.066,860) = -.004,992
(~-.004,679) + (.038,396) = ,033,404

(.033,404) x (.142,248) = .004,752

(.004,752) + (.000,443) = .005,195

.005,195 <~ .022,830 = .227,551

I.l42,248(2'5' 7.5) = ,227,551

Actual value of I (2.5, 7.5) = ,227,618

.142,248

Difference = ,000,067 .

Therefore the experimenter would know that the calculated
F statistic was significant at the 22.75% level. He might
feel that this warranted further research, which could be
performed by pooling the above results with those of other
experiments testing the same hypothesis.

It should also be noted in the above example, that we
calculated the exact probability from the F statistic, which
is normally the method of presenting such results, However,

if we knew beforehand that we desired the exact level of




significance, this could be computed from the Treatment and

Erroxr sums of squares, i.e.,

Treatment S8
Treatment S8 + Error 85 +° distributed as I,(p,q) .

This procedure eliminates the calculation of the mean

squares and the F statistic.

4.3 Example of Pooling Several Experiments

Suppose the research worker had available the following
Analysis of Variance tables testing the same hypothesis

as tested in the previous example (4.2).

ANOVA TABLE -~ LABORATORY B

Source a.f. 8.8, M.S. F
Treatments 5 44.80 8.96 3.18
Brror 20 56.40 2.82
Total 25 101.20

ANOVA TABLE - LABORATORY C

Source d.£. 8.8. M.S. F
Treatments 5 591.65 118.33 2.92
Exror , 12 486.24 40,52

Total 17 1,077.89




The F statistics calculated from both analyses were found
to be non-significant at the 5% level, as was the case in

the results from laboratory A. Following the same procedure

outlined in 4,2, we computed the probabilities, which, along

with the probability from laboratory A are:

Laboratory Px(F > F,)

.228
.106

. 294

Combining these results by means of Pearson's P\ criterion,

we haves
3

-2 3 log, P

=1 1

[where P, = Pr(F > FO) ; 1=1, 2, 3]

i
3

-2 loge 10 1§11091° Pi

~2(2.3026)(Y;35693 + T.02653 + T1.24229)

-4.6052(~6.3742)

29.35 .
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PA is distributed as a X® with 2 x 3 degrees of
freedom. 8Since a X2 equal to 29.35 with 6 degrees of
freedom is8 significant at the 5% level, we reject the null

hypothesis. Thus, on the basis of combined results, we con-

clude that the treatments are not all the same.
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V. CONCLUSIONS AND SUGGESTIONS FOR

ADDITYIONAL RESEARCH

The desirability of finding approximation formulas for
Ie(p,q) is obviously not decreased by the author's diffi-
culty in fitting the function over a larger area. This
thesis, other than the area fitted, has pointed out some of
the problems that must be solved before adequate approxima-
tions over a large range can be developed.

It is very strongly felt that the method of first fit-
ting Is(p,q) as a function of one variable, then fitting
these regression coefficients for a second variable and
£inally f£itting the éecond set of regression coeffjicients as
a function of the third variable is not feasible, with the
equipment available, for two reasons. These are 1) this
method would require a matrix inversion routine of such
accuracy that the time involved would be prohibitive and
2) the resulting approximating expressions would be too
large and tedious to compute. The eth degree polynomial in
6 was found adequate for all ranges investigated and, using

an inversion routine of higher precision, it is felt that

attempts should be made to fit these regression coefficients




as expressions in p and q together. As pointed out
above it is not considered practiéal to fit these coeffi-
cients as functions of one variable alone.

The author feels that the degree of success obtained in
fitting the areas that he did was due to the method of fit-
ting a ratio of expressions., This means that if two of the
variables can be fitted, it is very possible that an expres-
sion can be found for the third variable and a final formula
developed as the ratio of the two forms.

A third method to attempt would be to fit two of the
variables as a polynomial of their quotient or product. For
1{pg5 5<£q£10 and 6 ) .20, it was found possible
to adequately fit I (p,q) 4in a 10th degree polynomial of
g~. A polynomial of this form had been attempted at various
ranges, but was not successful until the Double Precision
Matrix Inversion Program was used. Other combinations could
be tried over various ranges such as g ¢ and 'I% . Then the
remaining variable could be fitted either as a function of
the regression coefficients or as a ratio of expressions,

Therefore, it can be summed up that there are several

definite approaches to be tried within this general method.




Two things would be of prime importance, with the first
necessitating the second, which are 1) a high precision
matrix inversion routine and 2) the availability of a

high speed digital computer.
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APPENDIX A

Table of [actual value - approximate value] x {106]

q
6 p
5 6 7 8 9 10
1 19 -07 00 04 ~-11 -16
2 20 18 11 -02 02 -28
.025 3 18 42 -08 19 -01 -25
4 13 16 02 14 07 14
5 32 21 00 ~04 is -07
1 46 ~-05 «09 -06 -17 -25
2 36 12 -08 -09 -35 -57
.050 3 27 38 - 04 -13 -45 -54
4 37 36 -12 -0l -26 =31
5 41 16 -00 02 -18 -4l
1 -01 -16 ~29 ~56 -25 -44
2 11 -14 ~-08 -34 -54 -17
.078 3 08 -33 -02 -32 -42 -53
4 25 -46 -30 -52 -52 -48
5 -22 ~05 -08 -56 -49 -32
1 07 ~16 -48 -10 -26 -13
2 -15 -32 -61 -43 -30 -02
.100 3 -16 -42 -59 -51 ~11 ~-01
4 -08 -55 -09 -27 -39 -45
5 -21 -23 ~86 -43 -20 -11
1 -26 -28 -01 19 32 02
2 -24 -38 -09 -15 -14 13
.125 3 -32 -20 12 -24 -01 13
4 -22 -21 -0l -32 21 ~-21
5 -24 -39 -15 -46 06 11




Appendix A - Table (continued)

q
o P

5 6 7 8 9 10
1 01 -27 28 32 46 i8
2 -31 01 -08 -03 06 -12
. 150 3 ~-44 00 07 33 25 29
4 ~44 -38 17 10 00 -21
S -48 -09 10 18 07 -01
1 -10 12 38 40 ~06 -17
2 -27 12 43 16 -14 -22
.175 3 15 35 21 44 05 24
4 -24 04 30 02 03 -15
5 -~19 32 20 -10 14 -03
1 25 41 40 16 15 70
2 22 25 17 138 -14 44
. 200 3 19 26 29 22 28 96
4 30 05 13 27 -36 83

5 ~-04 58 17 1

00

98




'ABSTRACT

The Incomplete Beta-Function is one of the most widely
used statistical distributions, either directly or by means
of simple transformations to other distributions. It is
very often useful to calculate its value and this can be
done by Pearson's (1934) tables. However, Pearson's tables
have rather large increments in the three variables and
interpolation is often required, which is at best tedious
and time consuming.

It.was felt that this problem could best be solved by
approximation formulas. Using an IBM 650 digital computer
and various programs available, attempts were made to fit
the Incomplete Beta-Function. An adequate expression was
derived for limited ranges on the three variables and some
of the problems exposed that must be solved before similar

formulas can be developed for a larger area.



