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I. INTRODUCTION

This chapter presents historical notes on the

Inccmplete Beta—Function pertaining to both itsimportanceand

methods of evaluating lt. This leads to the desirability

of finding expression: to approximate the function and the

use that could be made of such expressions. „

1.1 5egiew_g; the Lggegaggge1hhg_hgsociated heseargh ·

Methods for evaluating the partlal area, up to the

point 9 , under the skew curvex

g 19*1 q···l »y•y09 (1-9) , OSSSI. (1)

have long been a problem to mathematicians. This area can

_be represented by the ratio of the Incomplete Beta—Function

to the Complete Beta Function, 1.e., ~

fg GP-*1,(l -— 6)q"]‘a6
—I9(p.q)-· 1 l 11 . 0§@$1„ (2) A

1
$‘

GPU (1 • 9)q d9
O

Using Pearson's (1934) notation, I9(p,q) will, for c1ari—

fication, be referred to as the Probability Integral.
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The earliest known need for evaluating I6(p,q) was

realized by Bayes (1763) as a direct result of his famous

theorem in probability. Bayes was able, for small integer

values of p and q , to expand the integrand in (2),

integrate term by term, and thus successfully approximate
A

the integral. Bayes was entirely unsuccessful for large

p and q and little work was done to develop other

methods until Karl Pearson showed that its successful solu-

tion or approximation was an important part of his analysis

of skew frequency.

With the importance of evaluating I6(P,q) having

lncreased, Wishart (1927) found approximations for large

p and q through an extension of Bayes‘ work. His approx-

imations were extreely difficult to use and they required

the tabulation of nuerous coefficients used in his formulas.

Pearson (1924) showed that the sum of the first pw

terms of the binomial expansion (a +
b)n could be found by

a simple transformation to IG(p,q). He also proved that

the sum of n terms of a hypergeometric series could be

approximated by the partial area under the curve (1). This

was done by equating the first four moments of I9(p,q) and

the hypergeometrlc distribution.
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Thus, the importance of finding methods of readily and

accurately evaluating the Probability Integral had been more

than re—doub1ed. This led. Pearson to undertake extensive

investlgations and these, along with earlier werk, were put

forth by Soper (1921). These studies led to other attempts

with Müller (1930) having some degree of success in his

application of continued fractions to the integral. However,

. due to the inaccuracies and/or the laboriousness of all these

methods, Pearson (1934) found it necessary to compute and

publish tables.
‘

Pearson's tables give the values of the Complete Beta-

Function and IG(p,q) in the following increments and

ranges of 6, p and q 2
I

9 ¤= .01, .02, .03, ...., .98, .99, 1.00

for p and
qilll

’ p,q ¤ .5, 1.0, 1.5, ...., 10.0, 10.5, 11.0

and for p and q_}_ 11

p,q = 12, 13, ...., 49, 50

_ with the restrictiony p 2 q . For desired values with

p ( q , use must be made of the relationship
_

1 °° °
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With auch relatlvely large increments in the range of

G (particularly for large p and q) and the difficulty in

handling non-··1nteger values of p and q (other than shown

above), it becomes apparant that a large amount of

inter··polationwould be required. This interpolation ls extremely

tedious since complicated and different methods are needed

over the various ranges to achieve the desired accuracy.

since the work of Pearson, the uses of IS (p,q) have
Z

greatly lncreased. The most noteworthy of these was made by

Snedecor (1934). It is possible by a simple transformation

to calculate percentage points of 8nedecor's P distribution

from 19 (p,q), where F is the F statistic with probability

element:
n

+ 11 -1.

Z “ I
n +:1 d n F ’ F > 0

n n nl ··-l‘-i—··3· 2
(1. ·•······· F)2 2 nz „

with degrees of freedom nl and nz . It can be readily
shown, that

PNP > Fo) ¤ IQ(P.•q)
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where

6 p and

qMrringtonand Thompson (1943) were the first to tabu-

late the F distribution, Their tables, and the numerous

tables that followed, were computed basically by transforming

Pearson's tables. All of these tables were tabulated only

for various percentage points such as Pr(F_> FO) ¤—.50, .25,

.10, .05, etc. Thus, if an experimenter desired the exact

probability, the existing F tables would not normally be

useful since they would only allow him to state whether or

not the calculated statistic was significant. HGWBVEI,

since the simple transformatlon to I6(P,q) can e readily

perfored, this is not crucial. The problem lies in the

before mentioned inadequacies of the increments of the

tables since, more often than not, it would be necessary to

interpolate.

1.2 §geH§ggQ_ggQ Purpgge_g;.App;gx;mat;on.Fogmulas

If the research worker is able to cmpute the exact

probabilities from several experiments testing the same null

hypothesis, it is possible to pool these experiments. This
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would be done using Pearson's (1933) Pl criterion for ‘

random sampling and therefore make it possible to increase

the usefulness of the experiment:.
(It

would be possible to

combine several experiments conducted hy different methods

but testing the same null hypothesis. This pooling of

experiments would be particularly advantageous in cases

where it is only possible to perform small experiments or

where results existed from previous research. _

Therefore, it can readlly be seen that there are many

cases where it would be necessary to know the value of

x6(p,q). This and the difficulty of interpolation in

Pearson°s tables are the primary reasons for finding

approximation formulas for the Probability Integral. Thse

. formulas would enable the research worker te have a simple

and accurate method of calculating I6(p,q) for given 6,

p, and q regardless of their values. One other important

reason is that Pearson's tables are very often not readily

available to the research works:.

The usefulness of auch expressions for various distri—

butions was shown by Jams P. Ray (1961) in his developent

of approximation formulas to the cumulative normal and
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t distributions. His work has been largely responsible for

this attempt to find approximation expressions to I8(p,q)

in that he showed the feasibility of such a project. As he

points out, if the research worker had readily available such

expressions for the major statistical distributions, then

more accurate evaluation would be available and the reporte

I ing of non·significant results more practical.

These approximation formulas, to be useful, would have

to provide a simple and accurate means of evaluating

p I8(p,q). It is obvious that normally these two requirements

will, in a sense, be acting against each other and for both

to be satisfied will necessitate a certain amount of divi—

sion on the ranges of 8, p and q. This immediately brings

forth another problem in that the greater the number of

expressions, the greater complexity in their use and there—

fore the less their value. Thus, one very quickly sees the

need for simplicity of computation conflicting with the

imperative need for acouracy and both will tend to create

further division of the ranges, which must be kept at a

minimum.
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II. DISCUBSION OF THE PRO¤EDURE FCR DEVELQPING APPRQXIMATIQHS

In this chapter twe methods for developing approximation

formulas are discussed and an outline is presented of the

I procedure to be followed. There is also an explanation cf
' the basic programs used for the IBM 650 digital computer.

2.1 5_e_Ql9_§_ Prggosed Formglag

As pointed out in Chapter I, approximation formulasofIS(p,q)

weuld be very useful to the research worker. In
‘

form, these expmessions would be very similar to those

developed by Hastings (1954), however, it was felt that the

least squares method was more desirable for the original

expression as explained below. hastings defined the best

fit to a set er data to be that form which gives the smallest

maximum deviation between the actual value and its approx1—

mate (predicted) value, 1.e., the best fit is obtained when

Maximum of I(actual value) — (approximate value)!

is mintmized. The least squares method defined the best fit

as that form for which the sum of the deviations squared is
minimized, 1.e., the best fit is obtained when

2[(actual value) ~ (approximate valueäla
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is minimined. It was decided that we should first find an

approximation formula by the least squares method and then,

by weighting observations of maximum deviation, achieve the

desired accuracy of the fit. Thus, in a sense, it was

decided to employ a combination of the two methods (or

properties) described above.

V The method of investigation was to first find a func—

tional fomm of some type of expansion that could give us

some concept of the desired expression. Then by using this

as a guide and by means of the IBM 650 computer and the pro~

grams available devise expressions necessary to fit I8(p,q)
V

as functions of 9, p and q.

2- 2 frmaws. ist sie.eieisel‘
The Incomplete Beta Subroutine (Library #6.6.010.1)

evaluates I6(p,q) for given values of
(6,

p, and q within g

the following rangess y
0.000001 _g_ p,q g__
99%.%%%.000000g 0 g_ 0001.0006;:00 .

This program was written at V.P.I. by Dr. Rolf Bergmann and

calculates the Probability Integral to six places.
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The Revised General Multiple Regression System

(Library #6.2.008.l,2,3,4,5) was written at North Carolina,

State College and is divided into five parts. The division

of the program not only greatly increases the size of

problems that can be handled but also provides great

flexibility. This program finds the least squares linear

- relationships of the p dependent variables, yi, (i¤l,...,p)

and the n independent variables, xJ , (j¤•1,..., n) where

yi = bol + blixl + bzixz + ... + bnixh .
Part I unpacks and performs simple transformations on pree

· viously punched data. Part II oomputes the sums and the

uncorrected sums of squares and cross products of the p

dependent and n independent variables. The input is in

single precision and must be scaled so that the output will

have not more than 10 diqits for the sums or more than 20

digits for the sums of squares and cross products. a

Part III corrects for the mean, if desired, and con~

verts the normal equation matrix to single precision floating

point and then inverts this matrix. The solutions (regres—

sion coeffieients) to the equations are ealculated with the

provision that variables may be deleted as desired_ It is
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possible to sum or pool two or more matrices of the same

size for lnversion. Part IV performs the same operations as

Part III for larger matrices, but it is not se1f~restoring
— i.e., it must be re~loaded for each matrix. I

Part V computes the sum of squares due to regression

and error, and their mean squares. It also computes R2,

the variance of each regression coefficient and the related

tz. The above values are computed for each dependent vari-

able. It is also possible to compute predicted values yi

and deviations from the observations (yi ~ gi). After

examining the output of Part V, it is possible to make an

intelligent guess as to which variables can be deleted with

the smallest effect on the fit. These variables can be

deleted by simply returning to Part III.

The Least Squares Polynoial Program (Library #6.0.006.1)

was written at the Oklahoma State University Computing Center.

This program finds equations of polynoials of best fit by

the least squares method. It fits equations of degree one

thru four and for each equation coputes the means, the

total, regression and error sums of squares and their

associated mean square. It also computes R and the sum of

the deviatlons 2(yi — yi) together with the F test for
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qoodness of fit and, if desired, the predicted values.

While the data is entered in single precision, all internal

computations are performed in double precision.

The Buccessive Partial Correlations and Partial Regres—

sion Coefficients Program (Library #6.2.00661) was also

written at North Carolina State College. This program c¤m·

putes the correlation coefficients between each of the

variables and their associated regression coefficients.

Thus it is possible to study the output for simple (1.e. ·
linear) regression and pick the independent variable that

has the highest correlation with the dependent variable.
a Then, including this independent variable as a predictor,

the process is repeated and the correlations again examined.

This method is repeated until the desired number of indepen—

dent variables are included as predictors of the dependent

variable.

The output of Part III (6.2.000.3) can be used for in~

put and it is possible to ppol several matrices prior to the

first cycle of computation. This program is also extremely

helpful in the case that a matrix is near singular due to

high correlation between independent variables. In this case,

it is an easy matter to recognize the variables to delete.
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The Double Precision Matrix·Inversion Subroutine

(Library #5.2.009) was developed by the IBM Corporation and .

by means of the·Gaussian elimination method provides for both

matrix inversion and solutions of simultaneous linear equa—
tions. . I « . . ~· 1 -»

The input matrix is in floating point and can either be

lin single or double precision. Jäegardless of the input,

all computations are performed in double precision and they
output contains the solutions and the inverse matrix. If

necessary, the program can be stopped and punched out at

various stages of computation and reastarted later. “A1though

necessarily slow, this program was found extreme1y.accurate

in its computations. ‘1



III. DEVELORMENT OF APPROXIMATION FORMULAS

In this chapter we show an expansion of IG(p,q) which

is used as a guide in the development of approximation for-

mulas. The second section deals with the investigations and

the approximation expression derived.

3.1 Derivation of an Expansion of I8(P»q)

After an extensive review of the literature, as out- '

lined in Chapter I, it was decided that, owing to the

coplexity ef existing methods of evaluation, ne available

form was applicable as a guide to find approximation formu—

las. Therefore several methods of integration of I5(p,q)

were considered in order to obtain seme idea of a satisfac—

tory functional form. The best that was found for our

purposes ls the following method.

we expanded (1 ~
9)q°1 in a Maclaurin series, which

gives:_
<1··l„ _ __ e(1 9) 1 (q 1)6 + ZI 6 (4)

"°
••• + {Ü + ••• •

Wkenonefrom Franklin (1940) that this series converges for

1 to Substituting (4)

inteintegratingand dividing by B(p,q) we have



I(pq),,.............,@p -13 ·- SaG ’ B(P,q) p (p+l)2l(P+2>°'
••• +

‘ 9 +•••} •

A series expansion of this type has the convenlence of con-

verglng fairly rapidly fer 9 small (say $_ä) and use could

be made of the relationship

1:6,(P,¤1> ·· 1 —- 11__6<<1,P>
for larger 6 .

3.2 Investigatlgn„gg'Var1ous Expressions and Results 2

Since the numerical analysis had suggested that we try

to fit an equation of the general farm of (5), it was

decided to first break this down into three parts. If pes—

slble, approxlmations could be found for ep and‘
}

in various ranges, then cobine these with the third part,

i.e.,

1 2""·· G G ·• „„• •(P (P+l) + 2I(P
2)Flnally,by means of the multiple regression program, delete

all unnecessary terms to produce the desired expression.
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It was found possible to fit dp over various xanges

of p‘ and. 9 in polynomials of dä; . Althßugh the ranges

of p and .6~ were as small as considered practical so es to

not resu1t.in too many formulas, no expressions could be

found by which it was possible to fit Exé?E? Lover similar
rangesr This attempt lead to two immediate results: le

” 1) it.was extremely difficult to fit the reciprocal of the

Complete Beta—Function even for small ranges and 2) it

appeared that this method, if feasible, would necessitate a

prohibitive number of formulas. L L . · ¤

Therefore it was decided to return to (5) and, again

using it as a guide, iuvestigate the entire function. Using

the Incomplete Beta—Function Subroutine to generate the
various observations on I8(p,q) and examining the lower

ranges on G, it was found possible to fit I€(p,q) for

.00 ige S .25. This was done by holding
pi

and q fixed

and using the multiple regression program for s 6th degree

polynomial of 6 , i.e.,
l

Y ¤ b + b 6 + b .62 + b 63 i
01 li 21 31 . {
b4iG4 + b5i65 + bßieé i (5)

G = .01, .02, ..., .24, .25
L
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where
Ywlmq

is the ith observation on I9(p,q) varying

0 within the range and holding p and q fixed. With the

g restriction of p 2 q and fitting I9(p,q)' for all values

2 .0004, we found that p and q were never greater than

20 and we imposed the lcwer limit of p,q 2 2. For all pos-

sible integer values of p and q, with the above restric-·

tions, it was found that (6) was a good fit and that the

deviations, l.e., (Yi ·— lf,) were less than ___"_j .00003.

We now attempted to fit the regression coefficients

obtained from (6) as functions of p (or q) holding q (or p)

fixed, 1.e.

bjwplq q fixed

or bjwqlp ¤ f2(q) .... p fixed
l

_1¤0,l,2,3,4,5,6.

Various functional forms were attempted by means of the

0.8.0. Polyncmial Program but no relatienships were found

with the deaired accuracy.
I

It was decided that the inability to perform the above

was mainly due to the rapid changes that occurred to

IG(p,q) in the lower ranges of 0 . 'rhus it was felt that

if the above procedure was repeated in a smoother area of
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the surface, it might be possible to determine the necessary

functional relationships and, after fitting the curve in

that area, return to the lower ranges of 9.
f

Changing the range on 8 to .30 $_6 $_.40 , it was

, seen that a 6th degree polynomial would again give the

V desired accuracy. Repeating the procedure given above, (6)
A

was fltted by the multiple regression program for all

integer values of p and q within the range 10 S pp,

20. Note that the reetriction p 2 q has been dropped.

It was found possible to fit the regression coefficients in

a 4th degree polynomial in ·%· holding q fixed. That ls,

’for 10Sp, q_g_2o
bjiöplq°0ij

¤ 0, 1, 2, 3, 4, 5, 6

G = .30, .31, ..., .40 q fixed

p ¤ 10, ll, ..., 20 .

Since this area was considered too small to be useful, the

range was extended on p and q to 4 p,q 48.

Themultipleregresslon for equation (6) was run for all integer

cembinations of p
and)

q that were multiples of 4. This

again produced a satisfactory fit for 6, but upon
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attempting to fit these regression coefficients as a polye

nomial in ‘é· holding q constant, we found that the

coefficients changed too rapidly and erratically to be fit.

Upon investigating it was found that the earlier restriction

on p and. q , namely 10 $_p,q_$_20 , had enabled us to

fit gp. Consequently we were forced to re—evaluate our

attempts.

The difficulty was found to lie in the multiple regres—

sion program or, more precisely, in the normal equation

matrix inversion routine. Although our fit was good, i.e.,

(Y1 ~ §i) $_j;.00003, there existed near singularity in the

matrix due to the high correlation between the independent

variables. Since the inversion routine, which performs all

computation in single precision, was very inaccurate for

these models, it was not possible to fit the regression

coefficients because their variations were extremely large

and erratic.

Further examination, using the 0.8.U. Polynomial Program ‘

(which performs computations in double precision), showed

that this was our problem. continuing the investigation

with this program, it was seen that for various ranges of
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p and q it was possible to f1t I9(p,q) as a polynomial

in p (or q) holding 9 and q (or p) fixed. Thus for the

range l$_p£5, 5_§__q_§_10 and.0lS_9$.35 (using V
similar notation to (6)) L

·

Y = d + d q + d qz + d q3 + d q4
iqldp 01 li 21 31 41 (7)

7 q ¤ 5, 6, ..., 10 8 and p fixed

was found to be an accurate approximation. For 6 2_.35

and over the same ranges of p and q, it was found that a

satiefactory fit could be obtained by
h

Y ¤ e + e p + e p2 + e pa + er p4
ipldq 01 li 21 31 41 (8}
p • 1, 1.5, 2.0, ..., 5.0 9 and q fixed .

Within these ranges on p and q it was indicated by

the 0.8.0. Polyncmial Program that (6) was an adequate

approximation holding p and q fixed. wa now proceeded

by trying to fit the product of (6) times (7) and (6) times

(8). In the first case, for G between .00 and .35, we

were able to fit the product of the two functions. Recog—
(

nizing the previously mentioned inaccuracies of the multiple

regression inversion routine, the matrix was first examined

by means of the Successive Partial correlation Program and
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the more highly correlated independent variables were

deleted. Again using this program, we were able to "build

up" the expression, by successively including the 1ndepen~

dent variables as predictors of the dependent variable, to

e model of 10 variables.

Examining this formula by means cf the Multiple Regres~

ßiüh Prcgram, it was found that we had an excellent fit.

Thus, for p fixed, we had that

Y , ¤ f + f 8 + f gd + f gez + f qzdz
idqfp Ol li 21 31 41

+ fsiqzöz + föiqaéz + f7iq393

+ f8iq?94 + f9iq484 + floiq465 (9)

9 ¤ .05, .10, ..., .35

q ¤ 5, 6, ..., 10

produced deviations (Yi ·• Yi) Q ,3; .00002 .

This process was unsuccessfully repeated on the product

cf (6) and (8). It was felt that this was caused hy the

larger values of 6 which resulted in less change in the

magnitude of the powers of 6. This increased the corre1a—

tion cf the independent variables which pushed the matrix

beyond the accuracy of the programs we were using.
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Investigating the region that we had used for (9), it

was found possible to approximate IG(p,g), holding 6 and
q constant, in a polynomial of the reciprocal powers ef p.

Using this as a guide we were able to approximate the

Probability Integral, after decreasing the range on 0 , by

combining (9) with a 6th degree polynomial of ·é . After

deleting terms and weighting the observations of maximum

deviation, we obtained the following approximation formula:

c + c 0 + e q62 + c q203 + c q3@4 + c q4G5

1.0 + c7p + cap + agp + clop + clip
.025 S 0 S .200
1.0 S p S 6.0
6.0 S q S 10.0

where cl = .000443 c7 ¤ -1.905371
cz -· .038396 ::8 - 1.012196( c3 ¤ -.020517 cg =¤ -· .142526
04 = .028508 clO·· .038866 «
es ¤ -.016338 eil- — .003146
c6 = .003310 .
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differences between the appxoximate values and the

actual values used for fitting do not exceed_i_.O0O098, and
the value when reunded to four decimal places does net diffe:

by maxe than one unit in the fourth decimal place.

See Appendix A fo: a tabulation of the actual values

minus the appzoximate values.
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IV. COMPUTATIGNAL PROCEDURES AND EXAMPLES

In this chapter we will illustrate the procedure, using

a desk calculator, to cmpute I6(p,q) fre the approxima—

tion derived (10) and, through the use of an example,

compute the Prdbability Integral. An example is also given

showing a method of pooling several experlments by Pearson's

(1933) Pl criterion.

4.1 Qgtline_g§ Computational Prcedures

To approximate I6(p,q) for any values of p, q and 6

within the ranges

.025 _g_ 6 g_ .200
1.0 g p g 6.0
6.0 g q g 10.0 ,

and following the expression developed in (10), the steps

involved using a desk ealculator are as followss

(1) Enter (~ .003146)

(2) uuuiply (1) by p _
(3) Add (.038,866) to (2)

(4) Multiply (3) by p

(5) Subtract (.142526) fra (4)

(6) Multiply (5) by p
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(7) Mu1tiPlY (6) by p
(8) Add (1.012196) to (7)

(9) Muluply (8) by p
(10) Subtract (1.905371) frdm (9) .

(11) Mnltiply (10) by p
V

(12) Add 1.0 to (11) and retain this value

(13) Enter q

(14) Multiply (13) by 9 and retain

(15) Multiply (14) UY (.003310)

(16) Subtract (.016338) frdm (15)

(17) Multiply (16) bY (14)

(18) Add (.028508) to (17)

(19) Multiply (18) bY (14)

(20) Subtract (.020517) fra (19) ~
(21) Multiply (20) UY (14)

(22) Add (.038396) to (21)

(23) Multiply (22) by 0

(24) Add (.000443) to (23)

(25) Divide (24) by (12) to give the desirednapproxlmate

value of I5(p,q) .

Sufficient accuracy will be maintained by carrying p, q,

6 and all ceputations te six decimals.
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4.2 Example gg Cggputgng Prggedure

Suppose laboratory A had performed a 0ne—Way Classifi-

cation Analysis to test the mean of 6 treatments with unequal

obeervations in each block. The following Analysis of

Variance table was computed:

ANOVA TABLE — LABOg;TORY A

Source d.£. $.8. M.S. F

Treatment 5 432.00 86.40 2.01
EIIQI 15 644.85 42.99
Total 20 1,076.85

The calculated F statistic is reported cnly as ncn·significant

at the 5% level. Thus, the only conclusion that can be drawn

is that the treatments are similar. Since there were e

relatively small number of observations, the research wcrker

might be interested in learning the exact slgnificance level

to ascertain whether or not continued research was necessary.

Therefore, if the research wcrker desired the exact

_ probability, it could be computed, using the transformations

described in Chapter II, as followsz



1 1
- gg -

p¤¤·äf¤2.5 q¤·1·§·¤7.5 1

g 9 .142,248

(1) (-.003,146)

}
(2) (-.003,146) x (2.5) ¤ -.007,865

(3) (-.007,865) + (.038,866) ¤ .031,001

(4) (.031,001) X (2.5) • .077,503

(5) (.077,503) — (.142,526) ¤ —.165,023

(6) (-.065,023) x (2.5) • -.162,558

(7) (-.162,558) x (2.5) ¤ -.406,395

(8) (-.406,395) + (1.012,196) ¤ .605,801

(9) (.605,801) x (2.5) ¤ 1.514,503

(10) (1.514,503) - (1.905,371) ¤ -.390,868

q(11) (-.390,868) x (2.5) ¤ -.977,170

(12) (-.977,170) + (1.0) ¤ .022,830

(13) (7.5)

(14) (7.5) X (.142,248) ¤ 1.066,860 ¤ q 9

(15) (1.066,860) x (.003,310) ¤ .003,531

(16) (.003,531) - (.016,338) * -.012,807

(17) (1.066,860) x (-.012,807) ¤ -.013,663

(18) (-.013,663) + (.028,508) ¤ .014,845
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(19) (.014,845) x (1.066,860) ¤ .015,838

(20) (.015,838) · (.020,517) ¤ —.004,679

(21) (~.004,679) x (1.066,860) ¤ ~.004,992

(22) (~.OO4,679) + (.038,396) • .033,404

(23) (.033,404) x (.142,248) 8 .004,752

(24) (.004,752) + (.000,443) ~ .005,195

(25) .005,195·+ .022,830 • .227,551

I l42,248(2.5, 7.5) ä .227,551 (

Actual value of I l42’248(2.5, 7.5) ¤ .227,618
Difference ¤ .000,067 .

Therefore the experimenter would know that the calculated

F statistic was significant at the 22.75% level. HB might

feel that this warranted further research, which could be

performed by pooling the above results with those of other

experiments testing the same hypothesis.

It should also be noted in the above example, that we

calculated the exact probability from the F statistic, which

is normally the method of presenting such results. However,

if we knew beforehand that we desired the exact level of



significance, this could be computed from the Treatment and

Error sums of squares, 1.e.,

N greatment S8 N N N NTreatment ss + sms: ss *“ ‘““""“°“"°"
°°

‘s‘P·‘*’
·

This procedure eliminates the calculation of the mean

squares and the F statistic.

4.3 Exggle_gg Pooligg Seygral gäggggggggg

Suppose the research worker had available the following

Analysis of Variance tables testing the same hypothesis

as tested in the previous example (4.2).

ANOVATreatments5 44.80 8.96 3.18
Error 20 56.40 2.82
Total 25 101.20

—· @Q&............T¤¤Y‘¤
Source d.f. 8.8. M.s. F

Treatments 5 591.65 118.33 2.92
Error N 12 486.24 40.52
Total 17 1,077.89
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The F statistics calculated from both aualyses were found

to be hmvsighificant at the 5% level, as was the case in

the results from laboratory A. Following the same procedure

outlined in 4.2, we computed the probabilities, which,. along

with the probability from laboratory A are: '

LaboratoryPr(P‘A

.228

B .106
V

C .294 _
2

Combining these results by means of Pearsorvs PA criterion,

we have:
3Ph • -2 iälloga Pi

[where Pi ¤ Pr(F > Fo) 7 i ¤•= 1, 2, 3]

7 3=¤ ·-2 lege 10 iälloglo Pi

¤ -·2(2.so261 (*-1.. 35698 + ,1-.02653 + *1:.24229)
¤ ···4.6052(•—6.3'742)
¤ 29.35 .
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P?. is distributed as e xa with 2 x 3 degrees of

freedom. Since a xa equal to 29.35 with 6 degrees of

freedom is signiflcant at the 5% level, we reject the null

hypothesis. Thus, on the basis of combined results, we‘cou•·

clude that the treatments are not all the same.



- 34 -

. V. CONCLUSIONB AND SUGGESTIONS FGR
ß

ADDITIONAL RESARCH

The desirability of finding approximation formulas for

I8(P,q) is obvlouely not decreased by the author's diffie

oulty in fitting the function over a larger area. This

thesis, other than the area fitted, has pointed out some of

the problems that must be solved before adequate approxima—

tions over a large range can be developed.

It is very strongly felt that the method of first fit-

ting I8(p,q) as a function of one variable, then fitting

these regression coefficients for a second variable and

finally fitting the second set of regression coefficients as

a function of the third variable is not feasible, with the

equipment available, for two reasons. These are 1) this

method would require a matrix inversion routine of auch

accuracy that the time involved would be prohibitive and

2) the resulting approxhmating expressions would be too

large and tedious to compute. The 6th degree polynomial in

6 was found adequate for all ranges investigated and, using

an inversion routine of higher precislon, it is felt that

attempts should be made to fit these regreesion coefficients
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as expressions in p and q together. As pointed out

above it is not considered practical to fit these coeffi—

cients as functions es one variable alone.

The author feels that the degree of success obtained in

fitting the areas that he did was due to the method of fit•

ting a.ratio of expressions. This means that if two of the

variables can be fitted, it is very possible that an expres~

sion can be found for the third variable and a final formula

developed as the ratio of the twoforms.A

third method to attempt would be to fit two of the

variables as a polynomial of their quotient or product. For

l S p S 5, 5 Sg S 1.0 and 9 2 .20, it was found possible

to adequately fit I6(p,q) in a 10th degree polynomial of

g·. A polynomial of this form had been attempted at various

ranges, but was not successful until the Double Precision

Matrix Inversion Program.was used. Other combinations could

be tried over various ranges such as q 9 and . Then the

remaining variable could he fitted either es a function of

the regression coefficients or as a ratio of expressions.

Therefore, it can be summed up that there are several

definite approaches to be tried within this general method.



Two things would be of prima importance, with the first

necessitating the second, which are 1) a high precision

matrix inversion routine and 2) the availability of a

high speed digital ccmputer.



I
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APPENDIX A
Table of [actual value - appxoximate value] x [106]

0
} 1 19 -07 00 04 -11 *16

2 20 18 11 -02 02 -28
3 18 42 -08 19 -01 -25
4 13 16 02 14 07 14
5 32 21 00 -04 15 -07

1 46 -05 -09 -06 -17 -25
2 36 12 -08 -09 -35 -57

.050 3 27 38 · 04 -13 -45 -54
4 37 36 -12 -01 -26 · -31
5 41 16 -00 02 -18 -41
1 -01 -16 -29 -56 -25 -44
2 11 -14 -08 -34 -54 -17

.075 3 08 -33 -02 -32 -42 -53
4 25 -46 -30 -52 -52 -48
5 -22 -05 -08 -56 -49 -32

1 07 -16 -48 -10 -26 -13
2 -15 -32 -61 -43 -30 *02

.100 3 -16 -42 -59 -51 -11 -01
4 -05 -55 -09 -27 -39 -45
5 -21 -23 -56 -43 -20 -11

1 -26 -28 -01 19 32 02
2 *24 -38 -09 -15 -14 13

.125 3 -32 -20 12 -240 -01 13
4 -22 -21 -01 -32 21 -21
5 -24 -39 -15 -46 06 11
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Appendix A - Table (continued)

,5
6 7 8 9 10

1 01 -27 28 32 46 18
2 -31 Ol -08 *03 06 -12

.150 3 -44 00 07 33 25 29
4 -44 -38 17 10 00 -21
S -48 -09 10 18 07 -01

1 -10 12 38 40 -06 -17
2 -27 12 43 16 -14 -22

.175 3 15 35 21 44 05 24
4 -24 04 30 02 03 -15
5 -19 32 20 -10 14 -03

1 25 41 40 16 15 70
2 22 25 17 01 -14 44
3 19 26 29 22 28 96
4 30 05 13 27 -36 83
5 -04 58 17 11 00 98
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'ABSTRACT

The Incomplete Beta·Function is one of the most widely '

used statistical distributions, either directly or by means

of simple transformations to other distributions. It is

very often useful to calculate its value and this can be

done by Pearson's (1934) tables. However, Pearson's tables

have rather large increments in the three variables and

interpolation is often required, which is at best tedious

and time consuming.

It was felt that this problem could best be solved by

approximation formulas. Using an IBM 650 digital computer

and various programs available, attempts were made to fit

the Incomplete Beta—Function. An adequate expression was

derived for limited ranges on the three variables and some

of the problems exposed that must be solved before similar

formulas can be developed for a larger area.


