A GIS-Based Optical Viewshed Optimization Algorithm

Benjamin Peter Turko

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
in
Geography

Dr. Laurence W. Carstensen Jr., Chair
Dr. James B. Campbell
Dr. Randel L. Dymond

Virginia Polytechnic Institute and State University
May 31, 2007
Blacksburg, Virginia

Keywords: GIS, Viewshed, Line of Sight, Virginia Tech

Copyright 2007, Benjamin Peter Turko
A GIS-Based Optical Viewshed Optimization Algorithm
Benjamin Peter Turko

Abstract

Traditional viewshed analyses distinguish between those areas which can be seen from a given observation point and those which cannot be seen. Given a surface digital elevation model (DEM) and observer properties (location and height), the algorithm computes whether or not each target cell is within the observer’s line-of-sight. Just as significant and robust (although yet not commercially available) would be a tool that could search local neighborhoods of the observer to determine if different tower placements could achieve significantly improved viewsheds. This thesis customizes the popular ArcGIS software to demonstrate the implementation of such a tool.

The use of different sampling methods specifies locations to site observation points throughout the Virginia Tech central campus, characterized by having large open areas in an otherwise urban environment. Analysis of the viewsheds calculated both before and after applying the optimization tool determined the amount of coverage gained by moving the observer short distances across the ground. In large open areas (Drillfield, parking lots), optimization achieved minimal gain, however in areas near buildings, significant increases in visible area were possible by moving the observer to the top of a nearby building. This research rejects the common belief that the best location for an observer or transmitter in open areas is always at the highest elevation point. However, in settings with tremendous vertical differences over small horizontal distances (ground to roof), the belief is justified.
Acknowledgements

First and foremost, I would like to personally thank my committee members, Dr. Bill Carstensen, Dr. Randy Dymond, and Dr. Jim Campbell for their efforts to make me a better student and to make this paper a better document. I couldn’t have done it without their hard work, enthusiasm, patience, and thoughtfulness. Their unwavering dedication is the reason I chose to pursue graduate studies at Virginia Tech. I additionally thank Matt Germroth, former graduate student in Geography at Virginia Tech, whose related thesis provided much data, information, and overall guidance along the way.

The Virginia Tech Department of Geography and Lockheed Martin have sponsored graduate assistantships for me during the past two years, for which I am very grateful. I really enjoyed being a TA for GIS and working on this project in collaboration with Lockheed Martin.

To my family and friends: your unconditional support throughout the years is much appreciated. From teaching me how to tie my shoes to helping me buy my first car to playing football on the Drillfield, I’ll never forget the time we spent together. I thank each of you.

I also owe my friends who are fellow graduate students a special round of thanks as well. You’ve each helped me in some way, whether it was understanding a statistic or motivation to finish a project. We were all in it together, and I couldn’t have asked for a better group of people for encouragement. You are the reason I don’t want to leave Virginia Tech.
Table of Contents

Front Matter
- Title Page i
- Abstract ii
- Acknowledgements iii
- Table of Contents iv
- List of Figures vi
- List of Tables vii
- List of Appendices viii

Chapter 1: Introduction 1-1
1.1 – Geographic Information Systems 1-1
1.2 – Line of Sight Analysis 1-2
1.3 – Viewshed Analysis 1-2
1.4 – Description of Study Area 1-3
1.5 – Research Purpose, Goals, and Sampling 1-4

Chapter 2: Literature Review 2-1
2.1 – Different Types of Viewsheds 2-1
2.2 – Error in Viewshed Analysis 2-4
2.3 – Additional Relevant Literature 2-5

Chapter 3: The Viewshed Optimization Algorithm 3-1
3.1 – Algorithm Information 3-1
3.2 – Algorithm Input 3-1
3.3 – Algorithm Process 3-2
3.4 – Sample Code 3-4

Chapter 4: Methodology 4-1
4.1 – Data Preparation 4-1
4.2 – Input Parameter Values 4-2
4.3 – Resampling Process 4-3
4.4 – Data Gathering 4-5
4.5 – Assumptions 4-8

Chapter 5: Results 5-1
5.1 – Random Sample Results 5-1
5.2 – Transect Sample Results 5-4
5.3 – Stratified Sample Results 5-6

Chapter 6: Analysis and Discussion 6-1
6.1 – The Random Sample 6-1
6.2 – The Transect Sample 6-3
6.3 – The Stratified Sample 6-7
6.4 – Additional Analysis 6-10
| Table of Contents (Continued) |
|-----------------------------|---|
| **Chapter 7: Conclusion** | 7-1 |
| 7.1 – Considerations for Further Research | 7-1 |
| 7.2 – Application to Designing a Network | 7-2 |
| 7.3 – Summary | 7-4 |

<table>
<thead>
<tr>
<th>Back Matter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Cited</td>
<td>8-1</td>
</tr>
<tr>
<td>Appendix A</td>
<td>8-3</td>
</tr>
<tr>
<td>Appendix B</td>
<td>8-4</td>
</tr>
<tr>
<td>Appendix C</td>
<td>8-5</td>
</tr>
<tr>
<td>Appendix D</td>
<td>8-6</td>
</tr>
<tr>
<td>Key for Appendix D</td>
<td>8-7</td>
</tr>
<tr>
<td>Vita</td>
<td>8-8</td>
</tr>
</tbody>
</table>
List of Figures

Chapter 1
- 1.1 – Sample DEM for Montgomery County, Virginia 1-1
- 1.2 – Sample LoS 1-2
- 1.3 – Sample Viewshed Analysis 1-3
- 1.4 – Campus DEM and Distinct Sections Thereof 1-4

Chapter 2
- 2.1 – Iterative LoS to Produce Boolean Viewshed 2-2

Chapter 3
- 3.1 – Screen Capture of Viewshed Optimization Algorithm 3-1
- 3.2 – Illustration of Neighborhood 3-2
- 3.3 – Illustration of Bresenham Algorithm 3-3
- 3.4 – Illustration of LoS and Surface Elevations 3-3

Chapter 4
- 4.1 – Campus DEM used in the Experiment 4-1
- 4.2 – 5x5 Neighborhood Filter 4-2
- 4.3 – Locations of Random Sample Points 4-5
- 4.4 – Locations of Transect Sample Points 4-6
- 4.5 – Locations of Stratified Sample Points 4-7

Chapter 6
- 6.1 (a) – Viewshed Prior to Optimization for Sample Point R29 6-1
- 6.1 (b) – Viewshed After Optimization for Sample Point R29 6-1
- 6.2 – Location of Transect 1 6-4
- 6.3 – Profile Analysis for Transect 1 6-4
- 6.4 – Location of Transect 2 6-6
- 6.5 – Profile Analysis for Transect 2 6-6

Chapter 7
- 7.1 (a) – Sample of Network Prior to Optimization 7-3
- 7.1 (b) – Sample of Network After Optimization 7-3
List of Tables

Chapter 4
4.1 – Strata on Campus 4-7

Chapter 5
5.1 – Results of Random Sample Optimization 5-3
5.2 – Results of Transect Sample Optimization 5-4
5.3 – Results of Stratified Sample Optimization 5-7

Chapter 6
6.1 – Correlation and Significance: Change in Elevation, Percent Gain 6-2
6.2 – Correlation and Significance: Distance to Building, Percent Gain 6-3
6.3 – Spatial Autocorrelation 6-8
6.4 – 2 Sample t-test 6-9
6.5 – Correlation and Significance: Spatial Autocorrelation, Percent Gain 6-9
6.6 – Viewshed Results and Processing Time for Each DEM 6-10
6.7 – Effect of Number of Random Points on Optimal Viewsheds 6-11
List of Appendices

Appendix A – Raw Data for Random Sample 8-3
Appendix B – Raw Data for Transect Sample 8-4
Appendix C – Raw Data for Stratified Sample 8-5
Appendix D – Virginia Tech Campus Map 8-6