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n dt
An’ Bn’ Cn’ Dn ordered constants resulting from
solution of differential equations.

n® Pn ordered constants resulting from

integration of Duhamel's integral.

ordered, dimensionless parameter
elongation of the cable
overpressure, lb/inz, as a function of time

. * 2
maximum overpressure, 1lb/in
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V., INTRODUCTION

The purpose of this thesis is to find some effects,
such as tension and deflection, of a guy cable under an air
blast loading resulting from a nuclear explosion. The
document "The Effects of Nuclear Weapons", (ENW)(l) prepared
by the Department of Defense and published by the Atomic
Energy Commission, covers in considerable detail air blast
and ground shock and constitutes a main source of informa-
tion for this thesis.

In 1963, Mr. Donald Arthur Ball who was a graduate
student in Engineering Mechanics, Virginia Polytechnic
Institute, wrote a thesis entitled "Effects of Nuclear

"(2)

Blasts on Guy Cables for his master's degree in
Engineering Mechanies. In his thesis, he dealt with the
cables of a TV Tower under a nuclear blast. Due to the fact
that he considered the tension in the cables to be always
constant, the result which he obtained under that assumption
did not appear reasonable. Now, this thesis just follows
all the data which he used, but considers the tension to be
variable. By so doing, the author hopes to obtain a better
and more reasonable result than that obtained by Yr, D. A,
Ball.

In the past few years, increased emphasis has been

placed on the design of structures to resist blast loading.

It would be highly desirable that certain types of structures




be able to withstand the effects of a nuclear blast, among
these being guyed television and radio towers. There are
two main destructive phenomena associated with a nuclear
blast; the first being an overpressure, or an increase in
the ambient atmospheric pressure, and the second being a
dynamic pressure, or drag force, caused by the mass flow of
air behind the shock front. Structures such as buildings
with little or no window area would be particularly suscep-
tible to overpressures, since a large pressure differential
would develop between the inside and outside of its walls,
Conversely, guyed cables would hardly be affected by a
moderate overpressure, but would definitely be affected by
the drag force. Hence, only the effects of the dynamic

pressure will be considered in this analysis,
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VI, REVIEW OF LITERATURE

All data concerning the blast loading and nuclear blast

effects was extracted from "The Effects of Nuclear VWeapons",

published by the United States Atomic Energy Commission(l),

"Blast Loading on Structures", an ASCE paper by i, L.

(3), and "Blast Phenomena From a Nuclear Burst", an

(w)

Murphy
ASCE paper by Ferd E. Anderson, Jr.

The cable specifications were obtained from the design
drawing of a 1,500 feet tower prepared by the Dresser-Ideco

Company(S). This tower was designed in accordance with

ETA-RS-222 specifications(S).
Some example data considering tension in the cable to

be constant was obtained from "Effects of Nuclear Blasts on
(2)

Guy Cables" by Donald Arthur Ball




VIiI, BLAST LCADING

As stated previously in the introduction, the only
blast loading which will be considered in this analysis is
that of the dynamic pressure, The dynamic pressure will
rise almost instantaneously to its maximum value when the
shock front arrives, and then it will decay, as shown in
Figure 1. after the shock front has passed. The empirical
equation used to describe the decay should give fair accu-
racy for dynamic pressures of less than 20 psi.

In order to get a fair representation of the loading
caused by the dynamic pressure, an impulse, I = qtr =
constant as t  + 0, will be superimposed on the function
shown in Figure 1. This impulse is shown in Figure 2. The
feasibility of using this impulse is exemplified by the fact
that for a 1 megaton bomb the rise time, t_, is 30 to 50

(u), while the duration of the positive phase

micro-seconds
of the blast, t_, is 3 to 7 seconds.

The values of q and t_ will depend on many parameters,
such as height of burst, bomb yield, and distance from
ground zero, Values of these quantities are given in

Figures 5. and 6. for a 1 kiloton bomb, These values are

sufficient for any bomb yield since all parameters are

expected to scale as the cube root of the yield.
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NORMALIZED DYNAMIC PRESSURE q(t)/q

NORMALIZED TIME, t/t,

Figure 1. (Pape 126, ENW) Rate of decay of dynamic pressure
with time for various values of the peak over-

pressure.




O

Dynamic Pressure, Psi

I = qt_ = constant as t_ » 0
T r

Figure 2.

Time, seconds

Square impulse used to represent almost

instantaneous rise to maximum dynamic pressure.




VIII. DERIVATION OF GOVERNINC EQUATION

Consider a parabolic cable of length L, making an angle
o with the horizontal, and attached to a tower as shown in
Figure 3. The dynamic pressure, q(t), approaching from the
left is travelling at about the speed of sound, hence it
will be assumed that it reaches the entire length of the
cable simultaneously.

Choosing axes as shown in Figure 3., and considering
an elemental length as shown in Figure 4,, the differential
equation for motion in the transverse direction is obtained
as follows.

Assumptions:

1. constant density, p

2., constant cross-section, A

3. cable weight small compared to initial tension P0

4, perfectly flexible

P Cose® - (P + dP)Cos(e + d68) = O

or

'%;z (P COSB) =0 - - D T A > S P G WS H e D > B W S W S VS S W W - B (l)
Since

P = P(x,y,t)
SO

P Cosb = f(y,t) + C

F(y,t) —=mcccceccemceeccmmmemmmeeaeae (2)




Figure 3. Sketch showing tower, cable, and approaching

dynamic pressure,
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Fipure 4. Llemental cable length showing forces acting

in the transverse direction.
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ZFy = may
a2
(P+dP)Sin(e+de) -« P 3ine + q(t)Kd Sina dx = pA —% ds
ot
where K is an aerodynamic shape factor, or
[ : 32y ds
55 (P Sine) + q(x,t) = pA —~ =
ot
or
2. (P Cose tane) + q(x,t) = pA azy R (3)
F: 10x,t) = oA g gy o

substituting eq. (2) into eq. (3), results in the following,

2 2
F(y,t) 2—% + q(x,t) = pA 3—%-%% .............. (4)
Ix at
But
P-P0
dé = ds - dx = - dx
or

1 R D I e (5)

substituting eq. (5) into eq. (2), the following results,

F(y’t) = AE(l - %?ss') + PO %"S,'(‘ ----------------- - (6)

substituting eq. (6) into eq., (4),

(P AE)32 8%)2 + [aE 2%y , (x,£)1¢3%) = oA 22
o - ABYH(T xS 7
axX ax ot
e ————————— )

writing in the series form,




dx _ [1 + (%}%)2]’1/2

1 - (G FE - R _—

dx,2 _ dyy24~1
() =1+ (]

o

=1 - (§§>2 + (%%)“ B -

Since (g%)z is small, substituting the first and second

dx dx)z
S

terms of 1= and (H" back into eq. (7), the following is

obtained,

2 2
) 1 2 1 3y 2
Py - [y - 7&E);;¥ + a0, 1ED° + qlx,t)

X

2
9 %
: pA - D W WA WS WA GRS D TR W WS G G SR SRS WD YIS G NNk W . R P S G S S . ( 8)
ot
Equation (8) is the governing equation for this problem,
but this non-linear partial differential equation is very

difficult to solve.

Comparing the above equation with that obtained by

D. A. Ball(Z)’ iOQQ’
2 2
) 3 %
P * q(x ,t) 3 pA _________ Y TR P S D WD A W W G . S (10)
X at

it is seen that equation (10) is the result of assuming
(dy/dx)2 in equation (8) to be negligible.
Equation (10) can only be used directly to detect cable

deflections for small dynamic effects. Equation (8) could

be used for large dynamic effects including a variable cable




tension. However, the solution of this equation is not

directly available. In this work, equation (10) will be

used with a step variation in cable tension, examining the

cable movement for small time increments. It will be assumed
that the angle o between the cable and velocity vector

remains unchanged.
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IX. SOLUTION TO DIFFERENTIAL EQUATION (10)

A. General Solution
Assume:

y(x,t) = ngl X (x) T (1)

q(x,t) = nzl Xn(x) Tn(t)

Substituting above into equation (10) and dividing by

pATan
P XR Tn §n
ry.y Y;’* SKT; - T; =0

and since the variables are separated, the equation can

be written as

"..
e e N VR
22 AR Ak

where Pn is an ordered constant. The resulting two
ordinary differential equations are:

2

" pA W AR GUP GED IR GID WD TER I WS GRP TEW G SR NN WEb G W G W - - -
X"+ 5= Pl X =0 (11)
and
Tn + Pn Tn = m - T > - T W Y - - - -~ - ( 12 )

The solution to equation (1D is

m m
n . n
Xn = An COS r‘x + Bn Sln t—x ————— - - - (13)

where




2

m
ph Pi - _n
L

The solution to equation (12) can be obtained by
the use of Laplace transforms or by the use of step

functions, The complete solution of Tn is

Tn = Cn Sin Pnt + Dn Cos Pnt

t
1 .
*pr J ) Sin Pyt - ©T,(6)dE ——oov (14)

The third term in equation (14) is known as
Duhamel's integral.
The function T, is obtained from the theory of

Fourier expansion. Hence, for normal modes,

L
| alx,t) X (x) ax
0 n
S I — mmmmmmem= (15)
[ X (x1? ax
0 n

B. Particular Solution
This solution will be obtained by assuming that
the cable is simply supported at both ends. This gives
rise to the following boundary conditions,
y(0,t) = y(L,t) = 0
which implies

Xn(ﬂ) = Xn(L) =0




Applying the first condition to equation (13)

Xn(O) = An =0

and from the second condition

X (L) =B_Sinm_ =10
n n n

which gives rise to the frequency equation

m_ = nw
n

The eigenfunctions will be

X, = B, Sin Lt nz 1,2,3 euo

from equation (1§5),

L
. nEx

ID q(x,t) Sin —= dx .

Tn ] IL Sin2 Efi dx ﬁ;
0
l&(xt).l
S M0uE) L ns 13,5 .

n

The overpressure, p(t), behind the wave front at
any time, t, can be expressed by the simple empirical

equation in terms of the peak overpressure p = and the

time duration of the positive phase t_, i.e.,
-t/t,

p(t) = pm(l - ?_)e e Gl T G WS W A W W D WS G .

+

A similar empirical expression for the variation

of the dynamic pressure with time Lehind the shock

front is

9 -21:/1:+

q(t) = q(l - ?—) e - o = G - - - . -

+
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where q(t) is the value of the dynamic pressure at any
time, t, after the arrival of the shock front, and ¢ is
the peak dynamic pressure.

Equations (16) and (17) are plotted on non-dimen-
sional axes in Figure 5,

An important blast damage parameter is the impulse
which takes into account the duration of the positive
phase and the variation of the dynamic pressure during
that time. Impulse may be defined as the total area
under the dynamic pressure-~time curve, such as that
shown in Figure 5, at a given location. The positive
phase dynamic pressure impulse, I, (per unit area) may

then be represented mathematically by
t

.‘.
I=/f q(t)dt
0
!t+ . g -2t/
= q(l - )¢ e dt
0 T, |

The positive phase overpressure impulse.can be defined
by a similar expression in which p(t) replaces q(t).
The function Tn will be the sum of Duhamel's
integral from the impulse, TA, and Duhamel's integral
from the exponential function, Tg.
Té = C, Sin Pt + D Cos Pt
t

r
J SinP_(t-g)dg (t > 0)
0 n -

lim 4IKd Sina
t5+o BnpAPnnttr
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Integrating the expression for Tﬁ it results,

uqtrKdSina
BnpAann SlnPnt (t > 0)

ft - gl 3
’I'n = Cn81nPnt+DnCosPnt +

When TA(O) z %A(O) = 0 the constants C and D
are zero, and only the third term which is left contrib-
utes something in the first time interval. In the
example used later, the value of this term is very small,
so it is neglected. The most important effect is T;,

i.eey

—_— .
Tn = Cn Sin Pnz + Dn Cos Pnz

T+t

1)2 -2(1+ti)/t+

bqKdSina -
Eim-ﬂ- I e SlnPn( g-1)dr

+

(t, > ti + £ > 0)

Integrating the expression for Tg results,

3

. . H -2t./t
" - . 4gKdSina 'n 1T+
Tn = Cn81nPnE+DnCosPn€ + BnpAw Pnn e
v 2
-2g/t, 2 P t+ 2
- jo L
{e P lh -t g +tif - (D — t P2t f)

+ Ezfn] - Pn Cos Pns[hn-tign+t§fn]
2

, Prt,
t, (—-—2-+---)]} (t, > t;+g > 0)

+ SinP €[d -P

n n




i = 0,1’2,3 L IR 4

t0=0,t1=E,t2=25 es e

In the equation for Tg, t; represents the time from

t = 0 to the actual time at the beginning of any interval.
The interval time is taken from zero to any arbitrary
value of &, Thus the equation is actually written for
a new time origin for each interval., The use of t; as
time from the beginning of the action is necessary to
define the dynamic pressure variation during the
arbitrary intervals.

The time interval t is divided into many small
segments of value §, Starting from zero to &, Cn and

Dn both are zero for the initial interval. The values
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of Tg and %; at the end of first time interval and the
beginning of the second time interval should be eqgual.
By equating the two expressions the values of Cn and Dn
at the beginning of second time interval are found, Then
for the second step, the origin is shifted to the

tl = g, From this new origin and with the values of

Cn and D_ at this point the same method as applied in
the first time interval is followed step by step, and
the successive values of C, and D_ at each time interval
will be found., In other words, for each special time
interval, a new equation for T; is also obtained,

Combining T; with Xn will result in the following

equation for the particular solution.

[
nex
y(x,t +8) = ) ) B Sin —E-[C SinP_g£+D CosP &
n-l’s‘ 0
sqkdSina P Iyt T2E
* Boohw Pn © € Pn[hn"tig
n n
pitl

2 2 2
MIRTE I E(——¢~ P -2 ) v e £,

2 - 2
-PnCosPni[hn—tign+tifn]+81nxﬁg[dn-Pnti

ple,
(g ¢ ¥:)]} (t, >t; +£>0)

In the first interval, the initial tension P, is

used in the above expression and a center displacerent




¥q is obtained, The length of cable, L, required tec
fit the deflection curve for the first mode is found,
Using

dé§ = ds - dx

ds = dx /1 + (%%)2

L
5 = IO {f1 + (35212 - 1pax

Putting the integrand in series form,

L
6 = [0 [%‘(%)2 - %’(%)xc‘)u + ,..1dx

Substituting %% =z A1 % Cos %5 into the above
equation, the change in length, 81 is obtained. (Al is
the value of amplitude of the first mode.)

Now, by substituting the change in length into the
equation § = %gk, there is found one additional new
tension in the cable, say AP,, and then the cable is
acted on by the total tension PO + API‘

Using this value of tension instead of P, in the
next interval t; to t,, y, and AP, are obtained, Using
P

+ AP, the third displacement, ) is found,

0 2

The procedure is repeated for successive time
intervals in order to obtain an approximate solution for

the displacement-time and tension-time relations. The
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approximation gives results on the conservative side

of the correct result,




X., ILLUSTRATIVE EXAMPLE

The following will serve to illustrate the numerical
use of the solution.
Consider a tower located 14,000 feet from a surface

burst of 1 megaton., The scaling factor will be wl/3 =

(1,000)1/3

= 10, From Figure 6,, multiplying the values on
abscissa by scaling factor 10, the point 14,000 feet above
the ground zero is obtained, from that point draw a vertical
line to peak dynamic pressure line then goes horizontally,

as shown by dotted line, the peak dynamic pressure is found

to be 0,7 lb/in2 or 101 lb/ftz. From Figure 7., in the same

way, the positive phase duration on the ground of dynamic
pressure for l-kiloton burst is found to be 3.3 seconds,
i.e.y, t, = 3.9 seconds. t, = 40 m, sec(u).

The tower under consideration is a 1,500 feet TV tower
located in Springfield, Missouri. The guy cables used on
this tower range from a 1 3/8" x 1963' cable attached to the
top of the tower (guy #6) to 1 3/16" x 1963' cable attached
to a point 231' from the ground (guy #1).

The pertinent data on guy #6, which will be used in

example, is

d = 0,115 ft.

p 15.6 slugs/ft3

= 0,00792 ft?

53¢
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L = 1,960 ft.
P, = 29,000 1b,
6 . 2
E = 24 x 10" 1b/in

The shape factor will be 1.25(6).

Using the above data, all constant coefficients are

obtained using the time t, as 3.9 seconds. By applying the

procedures stated previously, displacements and cable
tensions are obtained for every value of t, as listed in
Table 1.

Examination of the values in Table 1, show that for
X = %, the maximum displacement resulting from the first
two modes (n = 1 and n = 3) will be 20.954 ft, and the
corresponding maximum tension in the cable is 43,855 1b.
These occur at t = 2.1 seconds. The solution appears to
converge rapidly enough so that the addition of the third
mode (n = 5) would at most change the third significant

figure of the cable deflection by one integer. Therefore

the effect of the third mode, and all successive modes, is

neglected in this example.
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TABLE 1

Values of the displacement and cable tension for n = 1 and

n z 3 mode with each indicated time

L = 1,960 ft.

p = 15,6 slugs/ft3

q = 0,7 psi d = 0,114 ft,
Time Displacement Tension
t (sec) y (£ft) p (1b)
0.0 0.000 29,000
0.5 9.260 31,835
1.0 17,450 37,930
1.5 22,470 43,580
2.0 25,358 47,950
2.4 26,545 49,700
2.5 26,585 49,800
2.6 26.575 49,770
3.0 25,574 48,800
3.5 22,617 45,700
3.9 18,450 41,580
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TABLE 2

(Reference (2), Page 24) Values of the coefficient of

Sin T forn =1 and n = 3, and displacement at %.

L = 1,960 ft. p = 15.6 slups/ftS
q = 0.7 psi da = 0,114 ft.
Coeff. of Coeff. of Displacement
Time Sin %5 Sin 3%5 at %
t (sec) (ft) (ft) y (ft)
0.5 3.80 4,391 -1.11
1.0 30.50 13.20 17.30
1.5 64.10 19.00 45,10
2,0 95,00 18,70 76,30
2.5 115.00 11.40 103.60
2,7 119.00 7.10 111.90
2.8 120,00 4,80 115.20
2.9 120,00 2,30 117.7¢6
3.0 118.00 -0.60 118,60
3.1 118.00 «2,40 120,40
3.2 116,00 -4,60 120.690
3.3 113.00 -64.30 11%.990
3.4 110,00 -9,30 119.30
3.5 107.00 -10.80 117.80
3.6 101.00 -12,70 113.70
3.9 84,50 -16,20 100.70
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Figure 8, Deflection curves at L/2 for constant tension
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XI. DISCUSSION OF RESULTS

Comparing Table 1. with Table 2, from the thesis by

Mr, D. A. Ba11¢?’

» 1t is found that there are significant
differences between them. The curves of displacement at the
center of cable with respect to time are plotted in FPigure 8.
It has been shown that the maximum deflection in this anal-
ysis is 26,585 ft. and the maximum tension is 49,800 1b.

But the maximum deflection and tension found in reference

(2) are 120.6 ft, and 283,000 1b, which are about between
five and six times these new values, Therefore, analysis

of this problem using a constant tension assumption is not

a valid approach.

The angle o between the cable and velocity vector was
assumed constant in this thesis, But actually, during the
action of blast loading, the cable deformed and did not stay
at original position, From the previous investigation, the
maximum deflection at the center of cable was found to be
26,585 ft. Since

X

. da w
tana = H% = A'f Cos -1
Since a is small, then tane ~ ¢, and at the center
of cable

¥ . 26.585% _ 4 G429 padius = 2.46°

GzAt

Sin 55.,46° - Sin 53° 100

= %
3in 53° x o7 = 3.13




affect the solution by 3,13 per-cent. This effect is very
small and can not contribute a great change in the result,

So it can be neglected.

|
\
From equation (18), it shows the change of angle a will
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XII. CONCLUSIONS

From the comparison of the results of this thesis with
those in reference (2), the variable tension is found to
have a great influence on this analysis. It reduces the
maximum cable tension to less than one sixth of that
obtained under the constant tension assumption. So the
variable tension plays a very important role in this problem
and can not be neglected. From Figure 3., the relation
between the variable tension and time can be seen,

In the above investigation the maximum tension reaches
values less than twice the value of the initial tension., In
reference (2), the initial tension assumed in the example
problem was one-eighth the cable breaking strength,

Doubling or tripling the tension should not cause failure as
long as the tower and cable anchors could stand it. So no
dangerous situation will occur. If the time intervals are
taken much smaller, then a more exact result can be obtained,
since the stiffening effect of the cable is not considered

as continuous, but as varying in steps.

The analysis assumed that the cable supports are fixed
in space. The same general approach might be applied to
other situations by adjusting boundary or continuity and
initial conditions to suit the particular case. In this way,
the analysis might be applied to telephone and transmission

lines.
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THE EFFECT OF BLAST LOADING ON A GUY CABLE
by
Tzu-Ti Kuo

ABSTRACT

The blast loading on a structure is a function of the
incident blast wave characteristics, that is, overpressure
and dynamic pressure. But the most damaging effects to the
guy cable from a nuclear explosion would be the dynamic
pressure caused by the high winds which follow the shock
front, This dynamic pressure reaches its maximum value very
rapidly, almost zero time after the passage of the shock
front, and then decays exponentially as shown by equation
(17).

The work of this thesis has been the investigation of
a guy cable under blast loading by correcting the tension
during each small time interval. The results from this pro-
cedure are considerably smaller than those in the analytical
work of Mr. D. A, Ball. From this point of view, we know
that the tension of the cable in such a problem can not be

considered as constant,




