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III. LIST OF SYMBOLS

P cable tension, lb.

PO initial cable tension, lb•
a p cable mass per unit volume, slugs/ftg

A cross—section area of cable, ft2

L cable length, ft•

q(t) dynamic pressure, lb/ing, as function of time

q maximum dynamic pressure, lb/inz

t, ‘ duration of positive phase of blast wave

K shape factor (drag coefficient)

d cable diameter, ft.

t time

tr rise time (time for dynamic pressure tc reach

its maximum)
I impulse, lb·sec
q(x,t) effective force per unit length of cable

E dummy variable

e angle cable makes with horizontal

W bomb yield in kilotons

Xu function of x only

Tn function of t only

Tu function of t only
aix

x" “
¤ EF



„ dTT n“ ati
An, Bn, Cn, Du ordered constants resulting from

solution of differential equations.

Hn, dn, fn, hn ordered constants reeulting from

integration of Duhamel's integral•

mn ordered, dimensionlese parameter

6 elongation of the cable

p(t) overpressure, lb/inz, aa a function of time

pm maximum overpressure, lb/in?
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V. INTRODUCTION

The purpose of this thesis is to find some effects,

such as tension and defleotion, of a guy cable under an air

blast loading resulting from a nuclear explosion. The

document "The Effects of Nuclear Weapons", (ENW)(l) prepared

by the Department of Defense and published by the Atomic

Energy Commission, covers in considerable detail air blast

and ground shock and constitutes a main source of informa-

tion for this thesis.

In 1963, Mr. Donald Arthur Ball who was a graduate

student in Engineering Mechanics, Virginia Polytechnic

Institute, wrote a thesis entitled "Effects of Nuclear

Blasts on Guy Cables"(2) for his master's degree in

Engineering Mechanics. In his thesis, he dealt with the

cables of a TV Tower under a nuclear blast. Due to the fact

that he considered the tension in the cables to be always

constant, the result which he obtained under that assumption

did not appear reasonable. Now, this thesis just follows

all the data which he used, but considers the tension to be

variable. By so doing, the author hopes to obtain a better

and more reasonable result than that obtained by Nr. D. A.

Ball.
In the past few years, increased emphasis has been

placed on the design of structures to resist blast loading.

It would be highly desirable that certain types of structures



1

1 —8·be

able to withstand the effects of a nuclear blast, among

these being guyed television and radio towers. There are

two main destructive phenomena associated with a nuclear

blast; the first being an overpressure, or an increase in

the ambient atmospheric pressure, and the second being a

dynamic pressure, or drag force, caused by the mass flow of

air behind the shock front. Structures such as buildings

with little or no window area would be particularly suscep—

tible to overpressures, since a large pressure differential

would develop between the inside and outside of its walls.

Conversely, guyed cables would hardly be affected by a

moderate overpressure, but would definitely be affected by

the drag force. Hence, only the effects of the dynamic
4

pressure will be considered in this analysis.
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VI. REVIEW OF LITERATURE

All data concerning the blast loading and nuclear blast

effects was extracted from "The Effects of Nuclear Weapons",

published by the United States Atomic Energy Commission(l),

”Blast Loading on Structures", an ASCE paper by H, L.

Murphy(3), and "Blast Phenomena From a Nuclear Burst", an

ASCE paper by Ferd E. Anderson, Jr.(u).

The cable specifications were obtained from the design

drawing of a 1,500 feet tower prepared by the Dresser·Ideco

Company(5). This tower was designed in accordance with

ETA-RS·222 specifications(6).
Some example data considering tension in the cable to

be constant was obtained from "Effects of Nuclear Blasts on

Guy Cab1es” by Donald Arthur Ba1l(2).
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VII. BLAST LOADING

As stated previously in the introduction, the only

blast loading which will be considered in this analysis is

that of the dynamic pressure. The dynamic pressure will

rise almost instantaneously to its maximum value when the

shock front arrives, and then it will decay, as shown in

Figure 1. after the shock front has passed. The empirical

equation used to describe the decay should give fair accu·

racy for dynamic pressures of less than 20 psi.

In order to get a fair representation of the loading

caused by the dynamic pressure, an impulse, I = qtr =

constant as tr + 0, will be superimposed on the function

shown in Figure l. This impulse is shown in Figure 2. The

feasibility of using this impulse is exemplified by the fact

that for a 1 megaton bomb the rise time, tr, is 30 to 50

micro—seconds(u), while the duration of the positive phase

of the blast, t+, is 3.to 7 seconds.
The values of q and t+ will depend on many parameters,

such as height of burst, bomb yield, and distance from

ground zero. Values of these quantities are given in

Figures 5. and 6. for a l kiloton bomb. These values are

sufficient for any bomb yield since all parameters are

expected to scale as the cube root of the yield.
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Consider a parabolic cable of length L, making an angle

a with the horizontal, and attached to a tower as shown in

Figure 3. The dynamic pressure, q(t), approaching from the

left is travelling at about the speed of sound, hence it

will be assumed that it reaches the entire length of the

cable simultaneously. Y

Choosing axes as shown in Figure 3., and considering

an elemental length as shown in Figure M., the differential

equation for motion in the transverse direction is obtained

as follows.
Assumptions:

l. constant density, p

2. constant cross-section, A

3. cable weight small compared to initial tension PO

M. perfectly flexible

XFX = 0 i

P Cosö · (P + dP)Cos(6 + dB) = 0

or
gg (P Cosü) = 0 ··—··•—·—·····•-·—-——-····•——— (1)

Since
P = P(x,y,t)

so
P Cosß = f(y,t) + C

= F(y,t) ···-—····—·—-——-—·—--—-—·——-— (2)
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ZFY = may
2

(P+dP)Sin(a+da) - P Sina + q(t)Kd Sina dx = pA 2-%-ds
at

where K is an aerodynamic shape factor, or

8 . 82 dsE; (P Sina) + q(x,t) = pA —-¥·H§
at

or
3 32y ds

*5*;:* Cosa tana) + q(x,t) 2 •••-••.•••at

substituting eq. (2) into eq. (3), results in the following,
32 82 dsoA (M)
ax at

But
P-PO

dö = ds - dx = —ÄE— dx

or
(

dsP = AE(H§ - l) + PO --—--—-------—------------ (5)

substituting eq. (5) into eq. (2), the following results,

_ dx dxF(y,t) - AE(l - ag) + PO E; ------------------ (6)

substituting eq. (6) into eq. (M),

2 2 2. 3 dx 2 3 dx _ 3(PU - AL)*'%(Eé') + [AE -§- + q(x,t)](a-fg) - pA —-bg
ax ax at

"‘*""°‘*'°'°""°""""""""""‘°"""'writing

in the series form,
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Q; = L1
1<Q;>2

= :1 + <Q;>2J’l

= 1 - <Q;>2 + cQ;>‘* - <-Q;->6 + —----—-----——-
Since (ä§)2 is small, substituting the first and second

terms of gg and (§§)2 back into eq. (7), the following is

obtained,
22Bx

3x

¤ pA 23% ——·•---—-------—---------------- (8)
at

Equation (8) is the governing equation for this problem,

but this non—linear partial differential equation is very

difficult to solve.
Comparing the above equation with that obtained by

n. A. Balliz), 1.e.,

P gg- + q(x,t) = pA ·-——--·——~——————~-——-· (10)
ax at

it is seen that equation (10) is the result of &SSUmiHg
(dy/dx)2 in equation (8) to be negligible.

Equation (10) can only be used directly to detect cable

deflections for small dynamic effects. Equation (8) could

be used for large dynamic effects including a variable cable



tension• However, the solution of this equation is not

directly available. In this work, equation (10) will be

used with a step Variation in cable tension, examining the

cable movement for small time increments. It will be assumed

that the angle a between the cable and Velocity vector

remains unchanged•
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IX. SOLUTION TO DIFFERENTIAL EQUATION (10)

A. General Solution

Assume:

y(x t) = { X (x) T (t),
n=l B H

q(x,t) = [ xn(x> Tn<·c>n=I
Substituting above into equation (10) and dividing by

pATnXn

+ — TH = 0 .FK YZ P „ E
and since the variables are separated, the equation can

be written as
N

“

PXr1=Tn__Tn :_P2FA YZ TS ¤Ä’U‘„ ¤
where Fn is an ordered constant. The resulting two

ordinary differential equations are:

PA 2 -..-...........-.-...
and

"* P2 T ='·
Tn •••••-••-~-••-•···-••-•--•--•••·• (12)n n n FK

The solution to equation (ID is
mn . mn

xn ä An Cos I:-*X + Bu Sl!} TX ···-•·--··•·-•••·····••--··-··· (13)

where
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2pi P2 = mnF””°n E7
The solution to equation (12) can be obtained by

the use of Laplace transforms or by the use of step

functions. The complete solution of TB is

Tn = CH Sin Put + Dn Cos Pnt

[0 lll n T ·- E Tn { ÖE -·-·—·-—· 11+)+ 1 t s· 1>< > c > <
The third term in equation (lk) is known as

Duhamel's integral•

The function Tn is obtained from the theory of
Fourier expansion, hence, for normal modes,

L
[ q(x,t) X¤(x) dx

•••••••-•••••·••••••«••-••«•~•

Ex (x)]2 dxG n

B. Particular Solution I

This solution will be obtained by assuming that

the cable is simply supported at both ends• This gives

rise to the following boundary conditions,
y(0,t) = y(L,t) = 0

which implies
0
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I
I

Applying the first condition to equation (13) I
X¤(Ü) = An = 0

and from the second condition

X (L) = B Sin m = 0Il N N

which giV8S 1*1.58 to the fI*8qU8NCy €C]_l1Ei'CiO1’1

IH = NIN

The eigenfunctions will be

from equation (15),

L . NIX
f q(x,t) Sin —E· dx

T : 0OH

[ sinz -E-“"‘ dx B“
O

=
•

rl = 1
·

3 , Ö Ö Ö
N

The overpressure, p(t), behind the wave front at

any time, t, can be expressed by the simple empirical

equation in terms of the peak overpressure pw and the
‘ time duration of the positive phase t+, i•e„,

t ·t/t+
P pm t+ e

A similar empirical expression for the Variation

of the dynamic pressure with time behind the shock

front is
-2t/t

q(t) = q(l ·
%—J2 e + —-·~—·-—·-·————— (17)

+
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where q(t) is the value of the dynamic pressure at any

time, t, after the arrival of the shock front, and q is

the peak dynamic pressure.

Equations (16) and (17) are plotted on non-dimen-

sional axes in Figure 5.

An important blast damage parameter is the impulse

which takes into account the duration of the positive

phase and the variation of the dynamic pressure during

that time. Impulse may be defined as the total area

under the dynamic pressure—time curve, such as that

shown in Figure 5. at a given location. The positive

phase dynamic pressure impulse, I, (per unit area) may

then be represented mathematically by
t+

_ I = [ q(t) dt
0
t+ t 2 -2t/t+= [0 q(1 e l dt

The positive phase overpressure impulse can be defined

by a similar expression in which p(t) replaces q(t).

The function Tn will be the sum of Duhamel‘s
integral from the impulse, Tg, and Duhamel's integral

from the exponential function, Tg.
Tg = Cu Sin Pnt + Du Cos Pnt

. „. tr
ct ; 0)

n n r 0
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Integrating the expression for Tg it results,

¤qtPKdSin¤I„~’Tn ° CnSlRPnt+DnC°SPnt + EnpÄn¤F¤ SinPnt (t g 0)

When T'(O) = T'(O) = 0 the ccnstants C and Dn n n n
are zero, and only the third term which is left ccntrib-

utes something in the first time interval• In the

example used later, the value of this term is very small,

so it is neg1ected• The most impcrtant effect is Tä,
i•€•;

Tg = Cn Sin Pnä + Dn Cos Png

„ ~ E I r+t• -2(r+t-)/t
+ ggäägiäg [ (1 - —¥-i)2e 1 + SinPn(§·1)dr

n n 0 +
(t+ > ti + g > 0)

Integrating the expression for T; results,

u xasinaHäH,
'

„‘
·l Tn

2 säti 2•
*•

•*'*'•*"*'**"'
*3** •{Q Pnthn tlgH+tlfH E( N + In Ztifn)

+ £2f ] - P Coe P £[h -t.g +t?f ]n n n n isn 1 n

‘ + 3inP ata ·P2t <Pät+
+ 2-)]} (t > t +e > 0)n n n i Ö t+ + i

where
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tRn 2 P2
t+ n
4 2 Put+ + 1n Ä E T:
M 2

gn 4 + n
H 2

f S P¤t+ + Pn + 2n Ä ¥:” ;F
+

Putz P2_ n + n 2
t+

i = 0,1-,2,3 ll!

In the equation for Tg, ti represents the time from

t = 0 to the actual time at the beginning of any interval•

The interval time is taken from zero to any arbitrary

value of E. Thus the equation is actually written for

a new time origin for each interva1• The use of ti as
time from the beginning of the action is necessary to

define the dynamic pressure variation during the

arbitrary intervals•

The time interval t is divided into many small

segments of value £, Starting from zero to ä, Cu and
Dn both are zero for the initial interval• The values



·25a— '

of Tg and Tg at the end of first time interval and the
beginning of the second time interval should be equal.

By equating the two expressions the values of Cu and DH

at the beginning of second time interval are found. Then

for the second step, the origin is shifted to the

tl = £. From this new origin and with the values of

Cn and Dn at this point the same method as applied in

the first time interval is followed step by step, and

the successive values of Cn and Dn at each time interval
will be found. In other words, for each special time

interval, a new equation for Tx is also obtained.

I Combining Ta with Xn will result in the following
equation for the particular solution.

y(x,ti+£) = E BnSin £%§[CnSinPn£+DnCosPn;
n=l,3...

. H3 —2t./t -2E/t

2 Päti 2 2+ tifn — £(—-E- + Pn — Ztifn) + 5 fn]

-P case sth —:.g +t?f ]+s1¤e sie -P2t.n n n 1 n 1 n n n n 1
Pät+ 2.(~—7— + ¥:J]} (t, > ti + 5 > 0)

In the first interval, the initial tension PO is
used in the above expression and a center displacement
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yl is obtained. The length of cable, L, required to

fit the deflection curve for the first mode is fcund•
Using

dä = ds — dx
and

6 = [L {[1 + cäähzll/2 - l}dx0 x
Putting the integrand in series form,

6 = [L ]dx0 7 x F x °°°

Substituting ää = A1 Cos ää into the above
equation, the change in length, 61 is obtained• (Al is

the value of amplitude of the first mode.)
T Now, by substituting the change in length into the

equation 6 = äää, there is found one additional new

tension in the cable, say APl, and then the cable is .

acted on by the total tension PO + AP1,
Using this value of tension instead of PG in the

next interval tl to t2, y2 and AP2 are obtained, Using
PO + AP2 the third displacement, y3, is found•

The procedure is repeated for successive time

'intervals in order to obtain an approximate solution for

the displacement—time and tension-time relations. The



E

approximation gives I‘8S\1l'tS OD thü COI1S€%I‘VätiV8 Sidé

of the correct result•
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X. ILLUSTRATIVE EXAMPLE

The following will serve to illustrate the numerical

use of the solution.

Consider a tower located 14,000 feet from a surface
burst of 1 megaton. The scaling factor will be wl/3 =
(l,000)1/3 = 10. From Figure 6., multiplying the values on

abscissa by scaling factor 10, the point 14,000 feet above

the ground zero is obtained, from that point draw a vertical

line to peak dynamic pressure line then goes horizontally,
z

as shown by dotted line, the peak dynamic pressure is found

to be 0.7 lb/in2 or 101 lb/ftz. From Figure 7., in the same

way, the positive phase duration on the ground of dynamic

pressure for 1-kiloton burst is found to be 3.9 seconds,

i.e., t+ = 3.9 seconds. tr = 40 m. sec(u).

The tower under consideration is a 1,500 feet TV tower

located in Springfield, Missouri. The guy cables used on

this tower range from a l 3/8" x 1963' cable attached to the

top of the tower (guy #6) to 1 3/16" x 1963' cable attached

to a point 23l' from the ground (guy #1).

The pertinent data on guy #6, which will be used in

this example, is

d = 0.115 ft.
p = 15.6 slugs/ft3

A = 0.00762 frz
0z=53°
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L = 1,960 ft.

PO = 29,000 lb.

E = 2M x 106 lb/inz

The shape factor will be l.25(6).

Using the above data, all constant coefficients are

obtained using the time t, as 3.9 seconds. By applying the

procedures stated previously, displacements and cable

tensions are obtained for every value of t, as listed in

Table 1.
Examination of the values in Table 1. show that for

x = ä, the maximum displacement resulting from the first

{ two modes (n = 1 and n = 3) will be 20.95M ft, and the

corresponding maximum tension in the cable is M3,855 lb.

These occur at t = 2.1 seconds. The solution appears to

converge rapidly enough so that the addition of the third

mode (n = 5) would at most change the third significant

figure of the cable deflection by one integer. Therefore

the effect of the third mode, and all successive modes, is

neglected in this example.
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TABLE 1

Values of the displacement and cable tensicn for n = 1 and

n = 3 mode with each indicated time

L ¤ 1,950 ft. 0 = 15.6 slugs/fta

q = 0.7 psi d = 0.114 ft.

Time Displacement Tension
t (sec) y (ft) p (lb)

0.0 0.000 29,000

0.5 9.260 31,835

1.0 17.450 37,930

1.5 22.470 43,580

2.0 25.358 47,950

2.4 26.545 49,700

2.5 26.585 49,800

2.6 26.575 49,770

3.0 25.574 48,800

3.5 22.617 45,700

3.9 19.450 41,580
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I
TABLE 2

(Reference (2), Page 24) Values of the coefficient of

Sin gää, fer n = 1 and n = 3, and displacement at ä.

L = 1,960 ft. p = 15.6 slugs/ftg

q = 0.7 psi d = 0.114 ft.

Ccem . o oe) . o‘ I1sp‘acement
Time Sin ää Sin éää at §

(sec) (ft) (ft) (ft),
0.5 3.80 4.91 -1.11

1.0 30.50 13.20 17.30

1.5 64.10 19.00 45.10

2.0 95.00 18.70 76.30

2.5 115.00 11.40 103.60

2.7 119.00 7.10 111.90

2.8 120.00 4.80 115.20

2.9 120.00 2.30 117.70

3.0 118.00 -0.60 118.60

3.1 118.00 -2.40 120.40

3.2 116.00 -4.60 120.60

3.3 113.00 -6.90 119.90

3.4 110.00 -9.30 119.30

3.5 107.00 -10.80 117.80

3.6 101.00 -12.70 113.70 «
3.9 84.50 -16.20 100.70

I

I
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Figure 8, Deflection curves at L/2 for constant tension
and variable tensicn with respect to time.



-34-

XI. DISCUSSION OF RESULTS

Comparing Table 1. with Table 2. from the thesis by

Mr, D. A. Ball(2), it is found that there are significant

differences between them. The curves of displacement at the

center of cable with respect to time are plotted in Figure 8.

It has been shown that the maximum deflection in this anal-
ysis is 26.585 ft. and the maximum tension is 49,800 lb.

But the maximum deflection and tension found in reference

(2) are 120.6 ft. and 283,000 lb. which are about between

five and six times these new values. Therefore, analysis
of this problem using a constant tension assumption is not

a valid approach.

The angle a between the cable and velocity vector was

assumed constant in this thesis. But actually, during the

action of blast loading, the cable deformed and did not stay

at original position. From the previous investigation, the

maximum deflection at the center of cable was found to be

26.585 ft. Since

tana = ää = A~%CosSince
a is small, then tana es e, and at the center

iof cable

e = A %·= Ääi§§§l = 0.0429 radius = 2.46° i

Sin 55.46in- Sin53°1

1

1
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From equation (18), it shows the change of angle a will

affect the solution by 3,13 per—cent. This effect is very

small and can net contribute a great change in the result.

So it can be neglected•

X
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XII. CONCLUSIONS

From the comparison of the results of this thesis with

those in reference (2), the variable tension is found to

have a great influence on this analysis, It reduces the

maximum cable tension to less than one sixth of that

obtained under the constant tension assumption. So the

variable tension plays a very important role in this problem

and can not be neglected. From Figure 9., the relation

between the variable tension and time can be seen.

In the above investigation the maximum tension reaches

values less than twice the value of the initial tension. In

reference (2), the initial tension assumed in the example

problem was one·eighth the cable breaking strength,

Doubling or tripling the tension should not cause failure as

long as the tower and cable anchors could stand
it.”

So no

dangerous situation will occur. If the time intervals are

taken much smaller, then a more exact result can be obtained,

since the stiffening effect of the cable is not considered

as continuous, but as varying in steps.

The analysis assumed that the cable supports are fixed

in space. The same general approach might be applied to

other situations by adjusting boundary or continuity and

initial conditions to suit the particular case. In this way,

the analysis might be applied to telephone and transmission

lines.

______________________________________________________________..............b
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Figure 9. Relation between the variable tension and ·

time.
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