
CONCEPTUAL FRAMEWORKS FOR DISCRETE EVENT SIMULATION MODELING

APPROVED:

by

Emory Joseph Derrick

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirement for the degree of

~TER OF SCIENCE

in

Computer Science and Applications

Osman Balci, Chairman

Richard E. Nance If. James D. Arthur

!,} /
/. J

August, 1988

Blacksburg, Virginia

-k!)
;" '

SloSS
vf(SS
\'i8i

D415
c.~

CONCEPTUAL FRAMEWORKS FOR DISCRETE EVENT SIMULATION MODELING

by

Emory Joseph Derrick

Committee Chairman: Osman Balci
Computer Science

(ABSTRACT)

This thesis examines those aspects of simulation with digital computers which con-

cern the use of conceptual frameworks (CFs) for the design and implementation of a

model. A literature review of CFs which are in common use is conducted. These CFs are

applied to a complex modeling problem, a traffic intersection system. A comparative

review of the CFs is given based upon the lessons learned from the above applications,

and a taxonomy is developed.

The research clarifies the differences that exist among the myriad of CFs in use

today. In particular, the comparative review highlights the significant CF features that

are necessary for successful model representation of discrete-event systems. The taxon-

omy provides a useful and meaningful classification of CFs and produces insights in to the

conceptual relationships that exist among them. The characteristics of CFs that are

desired to enable the development of model specifications that are analyzable, domain

independent, and fully translatable are identified. The roles of CFs are better understood

and specific potential directions for future research are pinpointed.

ACKNO~EDGEMENTS

First, I deeply thank my wife, Ruth, for her unselfish support of this work. My

three children have also contributed significantly with the sacrifice of time with their

father.

lowe special thanks to Dr. Osman Balci for his enthusiasm and technical guidance.

Also, Dr. Richard Nance has provided encouragement and his time to discuss the content

and ideas that are presented. With much appreciation, I thank Dr. Robert Moose who

devoted a great deal of time and energy to help me understand the fine art of using job

control and text formatting languages.

Last, I gratefully acknowledge the support of this research by the United States

Navy through the Systems Research Center of Virginia Tech.

111

Table or Contents

Abstract ... II

Acknowledgements .. :.............................. III

List of Figures VIII

List of Tables ... Xl

List of Acronyms .. XII

Chapter 1: Introduction 1

1.1 The SMDE and the Importance of CF Research 2

1.2 Description of Research .. 4

Chapter 2: Literature Review ... 8

2.1 Time and State Definitions 6

2.2 Time Flow Mechanisms 8

2.3 Event Scheduling (ES) 9

2.3.1 Selection of Next Event .. 11

2.3.2 Typical Components of Event Routines 11

2.4 Activity Scanning (AS) 14

2.4.1 The Time Scan ... 18

2.4.2 The Activity Scan 20

2.5 The Three-Phase Approach (TP A) 21

2.5.1 Variants of AS-based Executives .. 23

2.5.2 The Cellular Approach 25

2.6 Process Interaction (PI) .. 26

2.6.1 The Clock Update Phase 27

2.6.2 The Scan Phase .. 29

2.7 Transaction Flow (TF) ... 29

2.8 The Object-Oriented Paradigm (OOP) 31

2.8.1 Encapsulation... 32

2.8.2 Inheritance 33

2.8.3 Binding 34

2.8.4 Activation and Passivation ... 35

2.9 The Process Graph Method (PGM) 35

2.9.1 Primitive Functions ... 37

2.9.2 Node Execution Parameters 37

2.9.3 Auxiliary Data Storage Entities .. 37

IV

2.10 The Entity-Relationship Model (ER) and ER Approach (ERA) 38

2.10.1 ER Model Development at Level One 39

2.10.2 ER Model Development at Level Two 41

2.10.3 Using the ER Model............. 42

2.10.4 ER Model Classifications .. 42

2.11 The Entity-Attribute-Set (EAS) Approach .. 43

2.12 The Conical Methodology (CM) .. 45

2.12.1 Top-Down Model Definition .. 46

2.12.2 Bottom-Up Specification ... 46

2.13 Structured Modeling (SM) .. 48

2.13.1 Elemental Structure ... 49

2.13.2 Generic Structure 50

2.13.3 Modular Structure .. 50

2.14 Condition Specification (CS) ... 51

2.14.1 The Interface Specification .. 52

2.14.2 The Specification of Model Dynamics 53

2.14.3 The Report Specification ... 54

2.15 System Theoretic Approach (STA) ... 54

2.15.1 Preliminary Concepts for Formal Model Specification 55

2.15.2 The Discrete Event System Specification (DEVS) 57

Chapter 3: Applying the Conceptual Frameworks for Modeling a
Traffic Intersection .. 59

3.1 Modeling the TI by Using the CM .. 61

3.2 The ES CF Application 77

3.2.1 The Pream hIe ... 77

3.2.2 The Event Routines 79

3.2.3 The Simulation Executive or Main 82

3.2.4 The Statistical Output 89

3.3 The AS CF Application .. 89

3.3.1 Activity Cycle Diagrams 92

3.3.2 Identification of Model Components for the AS CF 95

3.3.3 Listing of Possible Activities 95

3.3.4 Specific Activity Cycle Diagrams 97

3.3.5 Activity Descriptions 102

3.3.5.1 Activity Descriptions associated with the Light 102

3.3.5.2 Activity Description of the Arrival Machine 103

3.3.5.3 Special Activity Descriptions 104

v

3.3.5.4 Activity Descriptions associated with Blocks 105

3.3.6 Priority of Activities 108

3.4 The TP A CF Application 108

3.4.1 Activity Designations ... 110

3.4.2 Listing of B-Activities 110

3.4.3 Listing of C-Activities .. 111

3.5 The PI CF Application ... 111

3.5.1 Key SIMULA Primitives ... 112

3.5.2 Processes of the SIMULA TI Model.. 114

3.5.3 The SIMULA Executive 121

3.5.4 The Statistical Output Routine 123

3.6 The TF CF Application 123

3.6.1 Introduction to the GPSSjH Model.. 123

3.6.2 The LIGHT and LANE Submodels 129

3.6.3 The EXPERIMENTAL CONTROL Submodel 132

3.6.4 The CI CONSTRUCTION Submodel 134

3.7 The OOP Application .. 134

3.7.1 Encapsulation... 134

3.7.2 Inheritance ... 141

3.7.3 Activation and Passivation ... 141

3.8 The PGM Application .. 144

3.8.1 A Possible Approach to using PGM .. 144

3.8.2 Lessons Learned ... 150

3.9 The ERA Application ... 159

3.9.1 The Entity-Relationship Diagramming Technique 159

3.9.2 An Entity-Relationship Diagram of the TI 160

3.10 The EAS CF Application .. 166

3.10.1 Entities and Their Attributes ... 168

3.10.2 Set Ownership and Membership 170

3.11 The SM Application ... 171

3.11.1 Description of SML ... 171

3.11.1.1 The Text-Oriented Notation ... 172

3.11.1.2 The Table-Oriented Notation 174

3.11.2 The Genus Graph ... 174

3.11.3 SM Modular Outline and Elemental Detail Tables 178

3.12 The CS Application 185

3.12.1 Syntax Extensions for Object Specification 191

VI

3.12.2 Semantic Extensions for Object Specification 193

3.12.3 Interface and Object Specifications ... 194

3.12.4 The Transition Specification ... 197

3.12.5 The Function and Report Specifications.. 207

3.13 The STA Application ... 207

3.13.1 The Informal Description .. 210

3.13.2 Beyond Informality in Time and State 216

3.13.3 The Formal Specification 218

3.13.4 Summary of the STA Application ... 219

Chapter 4: A Comparative Review 231

4.1 Implementation Comparisons ... 232

4.1.1 Aspects Concerning Sequencing Mode 233

4.1.2 Aspects Concerning Sequencing Method 239

4.1.3 Extending the Comparisons .. 242

4.1.4 Summarizing Implementation Guidance 246

4.2 Design Comparisons 249

4.2.1 Object and Attribute Identification 250

4.2.2 Dynamic Interactions 252

4.2.3 Hierarchical Decomposition and Relationships 254

4.2.4 Explicit Input/Output Specification 260

4.2.5 Summarizing Comparisons Based on Design Guidance 261

Chapter 5: A Taxonomy of CFs ... 263

5.1 Taxonomy Base Categories .. 263

5.2 Support Level Categories ... 265

5.3 Range Capabilities and Resulting Categories 269

5,4 Summary of Taxonomy Categories ... 270

Chapter 6: Conclusions and Summary ... 272

6.1 Characteristics of a Next-Generation CF .. 272

6 .. 2 The Role of CFs ... 274

6.3 Areas of Future Research ... 275

6.4 Summary.... 276

Bibliography ... 277

Vita ... 286

vii

Figure 1.1

Figure 2.1

Figure 2.2
Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

List of Figures

The Architecture of the S1vIDE Research Prototype 3

The Event Scheduling Conceptual Framework 10

A Typical Events List 13

The Activity Scanning Conceptual Framework 17

The Three-Phase Approach Conceptual Framework.... 24

The Process-Interaction Conceptual Framework 28

The Traffic Intersection (TI) System ... 60

Portions of SIMSCRIPT Pream ble from ES CF Application 78

Event TURN.NS.GREEN ... 81

User-defined Routine TEST.ENTRY.678 83

Event ARRIV AL.LANEI 84

Portions of Event DEPARTURE 85

Portions of Event ENTER 86

Event ARRIVAL.BLOCKD ... 87

Portions of SIMSCRIPT Main Routine ... 88

User-defined Routine STATISTICS 90

Output of Three Replications from SIMSCRIPT Model................. 91

The Light Activity Cycle Diagram .. 98

Sample of Block Activity Cycle Diagrams 99

Lane 1 Car Activity Cycle Diagram .. 100

Coordinated Activity Cycle Diagram (Lane 1 Car Path) 101

The LIGHTCTRL Object Process 115

NSDRIVER Process 116

NSDRIVER Process (Continued) ... 117

Figure 3.19 Generic Car Process .. 119

Figure 3.20 The CAR8 Process 120

Figure 3.21 The SIMULA Executive or Main Routine 122

Figure 3.22 The STATISTICS Routine .. 124

Figure 3.23 Output of Three Replications of SIMULA Model................ 125

Figure 3.24 GPSS/H Model Description, Declarations, and Initiation 126

Figure 3.25 Performance Measure Variables and Seed Initializations 128

Figure 3.26 LIGHT Submodel 130

Figure 3.27 LANES Submodel 131

Figure 3.28 EXPERIMENTAL CONTROL Submodel ... 133

Vlll

Figure 3.29

Figure 3.30

Figure 3.31

Figure 3.32

Figure 3.33

Figure 3.34

Figure 3.35

Figure 3.36

Figure 3.37

Figure 3.38

Figure 3.39

Figure 3.40

Figure 3.41

Figure 3.42
Figure 3.43

Figure 3.44

Figure 3.45

Figure 3.46

Figure 3.47

Figure 3.48

Figure 3.49

Figure 3.50

Figure 3.51

Figure 3.52

Figure 3.53

Figure 3.54

Figure 3.55

Figure 3.56

Figure 3.57

Figure 3.58

Figure 3.59

Figure 3.60

Figure 3.61

Figure 3.62

Figure 3.63

Figure 3.64

Figure 3.65

CONFIDENCE INTERVAL CONSTRUCTION Submodel 135

Output of Thirty Replications of the GPSS/H Model.... 136

Class DIRECTION. 138

Class LIGHT ... 139

Class LIGHTCTRL 140

Class BLOCK ... 142

Class BLOCKA ... 143

Initial Vehicle Flow ... 146

Improved Vehicle Flow .. 147

Executive Control Flow .. 149

Description of TIME-SCAN Node 151

Description of NS_GREEN (BA Node) .. 152

Description of ARR-LANE3 (BA Node) .. 153

Description of END_TRANSIT...BLOCKY (BA Node) 154

Description of BEGIN_TRANSIT-BLOCKY (C Node) 155

Description of BEGIN_TRANSIT-BLOCKY (CA Node) 156

Generic Mappings in an Entity-Relationship Diagram 161

A Typical Entity-Relationship Diagram .. 162

Entity-Relationship Diagram of the TI .. 163

The SIMSCRIPT Preamble with EAS CF Features 169

The TI Genus Graph ... 177

Overview of the Modular Structure (to First Sibling Level) 179

Modular Structure of &OBJECTS 180

Modular Structure of &VEILDAT 181

Modular Structure of &LANE-DAT ... 182

Modular Structure of &TRANS-AREA-DAT 183

Modular Structure of &STAT-DAT .. 184

Use of Enumerated Types ... 192

Traffic Intersection Interface Specification ... 195

Traffic Intersection Object Specifications ... 196

Transition Specification (Initialization and Termination) 198

Transition Specification (Light Changes) ... 200

Transition Specification (End Block Transits) 201

Transition Specification (Lane Arrivals and Departure) 202

Transition Specification (Begin Block Transits) 204

Transition Specification (Begin Block Transits Continued) 205

Transition Specification (Split and Turning) 206

lX

Figure 3.66

Figure 3.67

Figure 3.68

Figure 3.69

Figure 3.70

Figure 3.71

Figure 3.72

Figure 3.73

Figure 3.74

Figure 3.75

Figure 3.76

Figure 3.77

Figure 3.78

Figure 3.79

Figure 3.S0

Figure 3.S1

Figure 3.82

Figure 3.83

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 5.1

Figure 5.2

Function Specifications .. 20S

Report Specification .. 209

Informal Description (Components) ... 211

Informal Description (Descriptive Variables, Active) 212

Informal Description (Descriptive Variables, Passive) 213

Parameters (Model Constants and Functions) 214

Functions and String Operations ... 215

Informal Description of Component Interactions 217

Local Transition for LIGHTz .. 220

Local Transition for ARRMACHlNE, ... 222

Local Transition for BLOCK'k (specifically BLOCK '1) 223

Local Transition for BLOCK· y .. 224

Local Transition for BLOCK·g .. 225

Local Transition for BLOCK·,. 226

Local Transition for BLOCK·o 227

Local Transition for TURNERn 228

Local Transition for SPLITTER ... 229

Local Transition for EXIT and TERM .. 230

A Portion of Event TURN.NS.GREEN (ES CF) 235

A Portion of Event ARRIVAL.BLOCKD (ES CF) 236

Excerpts from the CARS Process (PI CF) 244

Excerpts from the LANES Submodel (TF CF) 245

Portion of SIMSCRIPT Preamble with EAS CF Features 256

Portion of STA CF Informal Description 258

Excerpts from the OS Application ... 259

The Taxonomy Tree ... ,..... 266

Low-level versus High-level Guidance .. 26S

x

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table 3.10

Table 4.1

Table 4.2

Table 4.3

Table 5.1

Table 5.2

List of Tables

PGM Variable Attribute Table 157

PGM Queue Attribute Table 158

ERA Entity Sets and Relationship Sets 165

Example Relations from the TI ... 167

Preliminary Elemental Details of Base Objects 186

Elemental Details of Vehicle and Lane Data 187

Elemental Details of Transit Area Data .. 188

Elemental Details of Statistical Data 189

Remaining Elemental Details .. 190

State Transitions for LIGHTs ... 221

Eminent Features of CFs Based on Implementation Guidance 247

Characteristics of Com plex Models ... 248

Com parisons Based on Design Guidance .. 262

Classifications of the CFs Under Review...... 264

Definitions of Categories of the CF Taxonomy.................................. 271

Xl

ACD

ACOS

AS

ASP

BERM

CAP

CF

CM

COL

CS

CSL

DEVS

EAS

ECOS

ECSL

EMSP

ER

ERA
ES

FIFO

FOL

GASP

GC

GERM

GIP

GPSS

GSP

GV

HOCUS

IC

MG

MMS

List of Acronyms

Activity Cycle Diagram

ASP Common Operational Software Support

Activity Scanning

Advanced Signal Processor

Binary Entity-Relationship Model

Condition Action Pair

Conceptual Framework

Conical Methodology

Current Objects List

Condition Specification

Control and Simulation Language

Discrete EVent System Specification

Entity-Attribute-Set

EMSP Common Operational Software Support

Extended Control and Simulation Language

Enhanced Modular Signal Processor

En ti ty-Relationshi p

Entity-Relationship Approach

Event Scheduling

First-In, First-Out

Future Objects List

General Activity Simulation Program

Graph Control

Generalized Entity-Relationship Model

Graph Instantiation Parameter

General Purpose Simulation System

General Sim ulation Program

Graph Variable

Hand Or Computer Universal Simulator

Integrated Circuit

Model Generator

Model Management System

xii

NEP

OOP

PGM

PI

PIP

SM

SMDE

SML

SMSDL

SPGN

SPL

STA

TF

TI

TPA

Node Execution Parameter

Object-Oriented Paradigm

Process Graph Method

Process Interaction

Primitive Interface Procedure

Structured Modeling

Simulation Model Development Environment

Structured Modeling Language

Simulation Model Specification and Documentation Language

Signal Processing Graph Notation

Simulation Programming Language

System Theoretic Approach

Transaction Flow

Traffic Intersection

Three-Phase Approach

xiii

CHAPTER!

INTRODUCTION

Simulation studies are assuming an increasingly important role in our growing tech-

nological society. Experts [Shannon 1975; Emshoff and Sisson 1970; Fishman 1973] agree

that when simulation is appropriate for a given problem, significant advantages are avail-

able to the modeler in his quest for meaningful problem solutions. Shannon (19751 defines

simulation as

"the process of designing a model of a real system and conducting experiments with
this model for the purpose either of understanding the behavior of the system or of
evaluating various strategies (within the limits imposed by a criterion or set of cri­
teria) for the operation of the system."

Simulation may be undertaken using various computational tools, most notably analog,

digital, or hybrid computers [Balci 1986] and it may be applied to problem domains

which are suitably solved by four known techniques. These techniques, described below,

are:

• Monte Carlo methods - A "static, distribution sampling kind of simulation"

which is "traditionally used to estimate probabilities of a model's states through

sample-driven experimentation" [Kreutzer 1986].

• continuous - Simulations of systems in which a model's states change continu-

ously with time, represented by differential and/or difference equations [Balci 1986).

• discrete-event - Simulations of discrete systems where model state changes occur

only at discrete, fixed points in time.

1

2

• combined - Simulations of systems with both continuous and discrete-event com-

ponents.

The ability of a modeler to accurately accomplish the design of the model is one of the

critical concerns which face those who employ or will employ simulation for the determi-

nation of problem solutions. The importance of the model formulation and representa-

tion processes of a simulation study's life cycle [Balci 1986] must not be underestimated.

The accomplishment of these processes which produce the conceptual and communicative

forms of the model takes place under the influence of a conceptual framework [Balci and

Nance 1987b]. We define a conceptual framework (OF) to be:

an underlying structure and organization of ideas which are the outline and basic
frame that guide the modeler in representing a system in the form of a model.

The research described by this thesis focuses on those aspects of simulation with

digital computers which concern the use of OFs for the design and implementation of the

model (or representation of the system of interest). Furthermore, since the research

directly supports the SMDE (Simulation Model Development Environment) [Balci and

Nance 1987a, 1987b], we limit our concerns to the use of OFs as applied to discrete-event

systems only.

1.1 The SMDE and the Importance of OF Research

Balci and Nance [1987a, 1987b] describe the ongoing research at Virginia Tech to

develop a prototype SMDE which aims "to provide an integrated and comprehensive col-

lection of computer-based tools" for automated support in model development of

discrete-event systems. An overview of the architecture of the SMDE is shown in Figure

1.1. Such an automated environment will offer substantial, cost-effective gains for

3

Minimal SMDE SMDEs

Figure 1.1 The Architecture of the SMDE Research Prototype
[Balci and Nance 1987b]

4

simulation studies in model quality, project team efficiency and productivity, and in

reductions to model development time [Balci and Nance 1987b]. The Model Generator

(MG) tool, one of several tools available to the modeler within the SMDE, is that tool

which assists the modeler in the performance of the model formulation and representation

processes discussed above. The MG tool converts the conceptual model into a formal

specification while under the influence of a CF [Balci and Nance 1987b].

Herein lies the importance of the CF research. The SMDE project goal is to achieve

the automation-based paradigm [Balzer et a1. 1983] within the SMDE, via the evolution­

ary development of several prototypes [Balci and Nance 1987b]. The specification which

is created by the modeler under the influence of a CF must be fully translatable into exe­

cutable code for the automation-based paradigm to be realized. In addition, it is essential

that the specification be formally analyzable and domain independent [Balci and Nance

1987b]. Because of the heavy reliance of the MG tool upon a CF, it is vital that a CF or

CFs be utilized that will produce these desired features in the resulting specification.

Research and study are needed to support CF selection.

1.2 Description of Research

An appropriate CF or CFs upon which to base the MG tool is required. This

research explores the realm of CFs in order to support this requirement. In particular,

we seek to gain an understanding of CFs through the study of the current literature,

through the practical experience of applying CFs to a complex study problem, and

through the accomplishment of a comparative review and a taxonomy formulation. Our

goal is to make measurable headway in understanding those features of a CF which sup­

port the development of specifications which are analyzable, domain independent, and

5

more importantly, completely translatable.

Chapter 2 describes the literature review of CFs which are in common use today.

Applications of the CFs to a traffic intersection system are described in detail in Chapter

3. This work produces insights into the capabilities and limitations of the CFs. In some

cases, these applications represent a first-time accomplishment in demonstrating model

representation of a complex system. The comparative review of the CFs, given in Chapter

4, in hand with the experience derived from the applications of Chapter 3, enable the

development of the taxonomy of CFs in Chapter 5. Chapter 6 summarizes those features

which we feel are essential for the CF or CFs which will support the SMDE within the

MG tool. Furthermore, Chapter 6 offers conclusions and potential areas for future

research.

CHAPTER 2

LITERATURE REVIEW

The literature has been extensively reviewed to gain a grasp on the conceptual

frameworks currently being used in model and system design efforts which show promise

in stimulating improvements to discrete event model representation techniques. The

results of this review form the basis for the later sections. First, the terminology of the

discrete event modeling domain is clarified. Due to the wide range of terminology and

interpretations by simulation experts, the importance of a sound definitional base to

introduce such a review cannot be overestimated [Nance 1981b]. A discussion of time

flow mechanisms is next covered and is essential for a clear understanding of the concep­

tual frameworks which are low-level in nature [See Sections 2.3 through 2.7]. Finally,

each conceptual framework of interest which has been identified is described in a tutorial

fashion.

2.1 Time and State Definitions

Nance [1981b] recognized the need for an "integrating general framework" for

approaches to model development in discrete event simulation. He states that the

"independent and concurrent development of several SPLs [simulation programming

languages] during 1960-1963 and shortly thereafter" occurred in a progressive environ­

ment suffering from the lack of a fundamental theoretical basis. One problem which

resulted from these conditions was the infiltration into the simulation literature of wide

and subtle variations in the definitions of terms and concepts which are basic to simula­

tion model development. Differences arose surrounding the terms event, activity, and

6

7

process which are at the very core of understanding time and state relationships. Nance

[1981b] offers a set of basic definitions which seek to resolve this problem. In the

definitions that follow, a system model is made up of objects and the relationships that

exist between them. The concept of the model object, "anything that can be character­

ized by one or more attributes to which values can be assigned" [Nance 1981 b], is used as

the "link" to resolve the definitional differences. The terms object and entity are regarded

as synonomous since both refer to a model component; the term object will be used

hereafter.

Definitions [Nance 1981b] that revolve around the concept of system time, a com­

mon "indexing" attribute among simulation models, include:

• instant - "a value of system time at which the value of at least one attribute of an

object can be assigned"

• interval- "the duration between two successive instants"

• span - "the contiguous succession of one or more intervals"

• object state - "the enumeration of all attribute values of that object at a particular

instant"

Finally, to conclude this section, the definitions for event, activity, and process from

Nance [1981 b] are given:

• event - "a change in object state, occurring at an instant, that initiates an activity

precluded prior to that instant."

• activity - "the state of an object over an interval"

• object activity - "the state of an object between two events describing successive state

changes for that object"

8

• process - " the succession of states of an object over a span (or the contiguous succes­

sion of one or more object activities)."

2.2 Time Flow Mechanisms

Time flow mechanisms are the methods by which the system clock is updated. In

other words, a model's time flow mechanism is the means of time sequencing by which a

model progresses in its execution and in its attempt to mimic the system for which it has

been built. There are two general categories of time flow mechanisms that are used in

discrete event simulation models, the fixed-time increment and the variable-time incre­

ment methods.

The fixed-time increment method (also known as interval-oriented simulation, uni­

form time increment, or synchronous method [Neelamkavil1987]) dictates that model

time is updated at fixed time increments or steps of constant time. As each time incre­

ment passes, model objects are examined to determine what attributes, if any, need to be

updated.

The variable-time increment method (also known as event-oriented simulation, next

event method, and asynchronous method [NeelamkaviI1987]) however, provides an

advantageous means for updating the system clock or global time. The time{s} during

which events are not occurring can be skipped. This dead time can then be removed from

the model without affecting its execution. The variable-time increment method is the

approach which is commonly used in discrete event simulations and can be applied to a

wide range of simulation strategies [NeelamkaviI1987].

In addition to the above methods, Nance [1971] provides a stimulating discussion

describing the important concepts surrounding time flow mechanisms and modifications

9

to these approaches in the context of the patrolling repairman problem.

2.3 Event Scheduling (ES)

When using this particular viewpoint in modeling, the modeler considers the system

of interest to be composed of events which are determined from a detailed study of the

system. Each identifiable event is associated with a series or grouping of actions that

contain all the necessary information to at least infiuence the required state change{s)

which are related to that event. Such a grouping can be called an event routine. Pidd

[19841 defines an event routine to be "a set of actions that may follow from a state change

in the system." Kiviat [1969] describes the approach as one which seeks to execute the

event routine "only when a state change occurs." He further suggests that this approach

specifies that "some event is to take place at a determined time in the future" which he

calls "by predetermined instruction." Therefore, by explicitly scheduling the event rou­

tines at a future determined time in accordance with the observable interactions and rela­

tionships among system components, system behavior can be represented by the model

for any given period of time. The scheduling of event routines is managed during imple­

mentation by the maintenance of a list called the "event list" [Pidd 1984]. The event list

is a list of event notices or records which are ordered by time.

Figure 2.1 is a simple pictorial fiowchart of the basic algorithmic structure of the

Event Scheduling Conceptual Framework (ES CF). After initializations, the next event is

selected. (The system clock is also updated at the same time.) The event routine which

is associated with the next event is then executed. Next, when applicable, the conditions

for termination of the simulation are checked. If these conditions are satisfied, the output

statistics are then calculated and displayed and the sim ulation ends. Otherwise, the next

10

START

INlTlALlZATIONS

SELECT NEXT EVENT (TFM)

m+1 •

EVENT EVENT EVENT EVENT
ROUTINE ROUTINE ROUTINE ROUTINE

1 m m+l n

OUTPUT

END

Figure 2.1 The Event Scheduling Conceptual Framework
[Balci 1988]

11

event is selected and the algorithm repeats itself.

When simulation termination conditions are based on the number of observable jobs

or departures (server/queueing problems), some event routines (e.g., arrivals) do not

affect the terminating conditions. Upon completion of these routines, the terminating

conditions do not need to be checked. Other event routines (e.g., departures) have a

definite impact on the terminating conditions and a check of these conditions becomes

necessary. If time is the basis for the terminating conditions, the execution of a next event

may be bypassed when the terminating time occurs before the scheduled time of the next

event.

The key elements of the algorithm's structure, the selection of the next event and

the event routines and their components, are now discussed in the next two sections.

2.9.1 Selection of Next Event

When discussing the ES CF, it is important to mention how the selection of the next

event is made. Since the event records are ordered in some fashion according to time, the

next event is simply that event on the event list with the earliest time. In cases where

several events are to occur at the same time, precedence rules must be established to

break these ties. The modeler is only concerned with the occurrence of events. This is an

implementation of the variable-time increment time flow mechanism.

2.9.2 TYP1'cal Components of Event Routines

Event routines may contain the following types of actions or items:

• Creation or destruction of event records

12

The event record most often contains the time at which the event is to occur, an

event descriptor or identification label (such as arrival, departure, etc.) which logically

links the record to its corresponding routine, and key attributes and values of the model

or its associated submodels. Figure 2.2 illustrates an event list of typical records. The

number of event records which are maintained on the event list directly affects the imple­

mentation efficiency. Therefore, the creation and destruction of these records must be

carefully considered.

• Scheduling of future events

The occurrence of an event may dictate the scheduling of some other future or con­

current event by placing it on the event list. The scheduling may be deterministic (event

timing determined by trace input) or stochastic (events determined by sampling statisti­

cal distributions) [Kreutzer 1986]. In this way, the ES CF provides bootstrapping tech­

niques which enable the generation/regeneration of events. Such techniques perform the

explicit scheduling of events and allow the model to produce system-like behavior and to

progress toward a successful termination. In other words, since an event occurs at a sin­

gle instant of time, the scheduling of events accomplishes the "passage of time" in the

model [Kreutzer 1986]. For example, in queueing-type models, arrival events often gen­

erate a following arrival or a pending departure when the server can be immediately

engaged. A departure event similarly generates another departure event when a job,

waiting for service, can be assigned to a released server. Fishman's [1973] diagrams very

clearly show how the algorithm of this framework is accomplished. The explicit schedul­

ing of events results in a clean and smooth model execution, improving efficiency. Yet, as

Kreutzer [1986] points out, the model logic becomes fragmented with the scattering of

scheduling commands as the number of event routines and their potential interactions

EVENT
OCCURRENCE TIME

13

EVENT ATTRIBUTE ATTRIBUTE
IDENTIFICATION t 9

Figure 2.2 A Typical Events List
[Balci 1988]

ATTRIBUTE ...
k

14

increase.

• Contingent events

Events may be contingent or determined [Nance 1981b]. A contingent event occurs

at a future time which is unknown and which specifies the time at which some set of

boolean conditions becomes true. A determined event occurs at a known future time.

When possible, a contingent event is included within the event routine of a determined

event [Fishman 1973]. (Fishman [1973] refers to contingent events as conditional.) This

reduces the number of event records which must be processed and improves model

efficiency. With simple models, such as a simple queueing model, conditional events (like

change of server status to busy or idle) are less difficult to incorporate into existing

unconditional event routines. However, when the conditions upon which the event is to

occur become more complex, the difficulty increases dramatically. A good example of this

occurs in the traffic intersection problem which is discussed in a later section. The imple­

mentation also becomes less readable, less understandable, and harder to debug with the

increased complexity of conditions.

2.4 Activity Scanning (AS)

The AS CF was developed in the late 1950's in England and became popular for use

in simulation languages like GSP (the General Simulation Program) and CSL (Control

and Simulation Language) [O'Keefe 1986b]. The AS CF and an extension of it, the

Three-Phase Approach (discussed in a later section), have unfortunately received much

less attention and are not well understood in the United States. Much of the literature

which describes the AS CF is dated by 20 to 25 years and centers on the original versions

of CSL and its forerunners [Kelley and Buxton 1962; Buxton and Laski 1962; Laski 1965;

15

Buxton 1966; Kiviat 1969]. Beyond Pidd [1984] and Kreutzer [1986], there are other good

descriptions among the recent literature [Fishman 1973; Hooper and Reilly 1982; Hooper

1986a, 1986b; Zeigler 1976].

The AS CF requires that the modeler identify the various types of objects in the sys.­

tem to be modeled, the activities which the objects perform, and the conditions under

which these activities take place. In particular, the state transition actions that immedi­

ately follow a state change for an object must be indicated for each activity. The test set

of boolean conditions, or the "testhead" [Pidd 1984] that is associated with these actions,

enables the determination of the state change that will initiate that activity. The test­

heads serve to link the various activities together and to produce the state transitions of

the model objects and the interactions among them. In this way, the model is made up of

modules or segments of testheads and associated actions which await execution at the

appropriate time [Pidd 1984}.

It is extremely important to remember that the activity is a state of an object which

is bound by successive events of interest. In actual practice, the precise definition of the

word "activity" has become somewhat muddled. Traditionally, "activities" are often

created which occur in zero simulated time. Examples of this are arrival activities,

departure activities, and other functional activities needed to accomplish a specific imple­

mentation purpose (such as the SPLIT activity in the AS CF application described in

Chapter 3). In addition, activities which occur over some time duration are split into two

separate "activites", a beginning activity and an ending activity. For example, a service

activity becomes a begin service activity and an end service activity. In this case, the ori­

ginal activity has been transformed (in actuality) into events (not activities) which bound

the true activity.

16

Kreutzer's [1986] discussion of the "activity description" is much less ambiguous

than traditional approaches. Kreutzer suggests that the activity description of a "time­

consuming activity" retain the "notion of causally connected start and finish events." He

further indicates that this could be accomplished by the use of a Pascal-like CASE struc­

ture as the body of the activity. Such a structure would have two entry points, one for

the "start" event and another for "finish". Each would be prefaced by its testhead as dis­

cussed above. Thus, Kreutzer's encapsulation of the bounding events within the single

activity description (rather than splitting them apart) is more straightforward.

In general, the "activity descriptions" (whether encompassing the full essence and

meaning of "activity" as suggested by Kreutzer or split into separate parts in the more

traditional way) form the basis for the AS CF. From the above discussion, one should

realize that the use of the term "activity" is widely accepted to refer to the start and

finish events within an activity-oriented perspective. Thus, for the remainder of this

paper, in discussing activity-oriented conceptual frameworks, the terms "start activity"

and "finish or end activity" will be used. In describing activities of zero duration, others

have adopted the term "event" which is more precise [Davies and O'Keefe 1987] but may

lead to further confusion when used within the context of activity-oriented conceptual

frameworks.

Implementations of the AS CF include a monitor or executive which performs a time

scan to ascertain the time increment or update to the system clock. Following the time

scan, the monitor then conducts an activity scan for the current timing cycle. The

activity scan is a check of all testheads to determine which of the activities are to be next

executed [Pidd 1984]. Figure 2.3, a flowchart of the monitor's algorithm, clearly shows

this two-phase structure (time scan and activity scan). These two scans are discussed in

CONDITION(S)
1

ACTION(S)
1

NO

17

INITlALIZATIONS

TIME SCAN (TFM)

ACTMTYSCAN

CONDITION(S)
2

ACTION(S)
2

OUTPUT

PAtJBe 1

PhtJ,e t

CONDITION(S)
N

ACTION(S)
N

YES

Figure 2.3 The Activity Scanning Conceptual Framework
(Balci 1988]

18

more depth in the next two sections.

The selection of the next event time is commonly accomplished by maintaining a

local clock with each object that changes state. For a simple single server queueing prob­

lem, this would mean maintaining such a clock for the next arriving object and also for

the server object [Fishman 1973]. Pidd [1984] calls these local clocks "time cells" (or t­

cells) and identifies them as attributes of permanent objects which indicate when each

object is to change state. Certain non-existent pseudo-objects often need to be created

which will hold the necessary time-cell values. The time cells can be maintained in a list

(ordered or unordered). The next event time is the minimum time cell value (which is

greater than current system time) among the time cells on the list. Time cell values which

are less than the current system time indicate that the associated object is idle or waiting

to be engaged or committed. Pidd further suggests that the time cell values can be

recorded in absolute system time or as a time interval to the state change. Laski [1965]

and Buxton [1966] provide excellent coverage on the use of time cells.

An alternate method of accomplishing the time scan (rather than attach t-cells to

objects) is to attach the t-cell to the activity itself [Kreutzer 1986]. (Although Kreutzer's

discussion is strictly oriented to the Three-Phase Approach, the idea is nevertheless appli­

cable to the pure AS CF.) In this case, the t-cell is (in some way) attached to end or

finish activities. The update of time is accomplished as discussed above. A close examina­

tion reveals that these methods are, in fact, equivalent. Object t-cells hold time values

which are associated with finish activities.

19

An important distinction should now be clarified. The ES CF associates the next

event time with the next event through the use of an events list. Yet, the AS CF transi­

tions to the next event through the logical checks of testheads as discussed above. O'Keefe

[1986b] puts it another way by stating that there is "no explicit next-event set" in the AS

CF. Therefore, the. time scan determines the time of the next event by scanning t-cells

without attempting to identify which activity is due next or which object is causing the

next state change [Pidd 1984].

Within the context of the simple single server queueing problem, some confusion

exists among Pidd [1984] and Fishman [1973] concerning the description of the time cells

and the time scan. Certainly, some means of identifying an arrival as imminent during

the current timing cycle is required. Fishman indicates than an object (or entity) clock of

the next arriving object needs to be maintained. According to Pidd, a selection of the

minimum time cell will determine the time of the next imminent event. Pidd's description

is unclear in that time cells are defined to be attributes of permanent objects (entities).

The next arriving object is clearly temporary in that it does not exist for the duration of

the simulation. Instead, it may arrive and depart the system before the simulation ter­

minates. Pidd, however, later clarifies this by implying that arrivals can be handled by

permanent pseudo-objects (as discussed above) which are "arrival machines" for each type

of arriving object.

In this case, as explained by Nance [1987], the time scan checks the arrival clock

time for each arrival machine. Once system time has overtaken a local arrival clock time,

this local clock time for a particular object type may be discarded. Thus, this will enable

reassignment of the arrival clock to the next arrival time for a particular arrival machine.

By searching the time cells of all permanent (including pseudo) model objects for the next

20

minimum time value, one can then easily determine the time of the next event and if the

next event is an arrival. Such a characterization of the time scan is consistent to that dis­

cussed by Tocher [1963] in which he suggests that every time variable be associated with

a machine which may be real or imaginary. His example of the single server queueing

problem includes an arrival machine (imaginary) and the server (real). The time attri­

butes for these "machines" would correspond to Fishman's object (entity) clocks and to

Pidd's time cells.

~.4.~ The Activity Scan

Kiviat [1969] describes the activity scan as a "search" method in which the "scanner

examines system state data to determine whether a state change can take place." It is the

activity scan that moves the model from event to event because "no event list is main­

tained" as in the event scheduling world view [Neelamkavil1987]. It is important to note

that the activity scan repeats until no further state change or activity is possible. The

condition blocks shown in Figure 2.3 represent the testheads and are checked in order (1

to N). Pidd [1984] emphasizes that the ordering of the activity descriptions (conditions

and action blocks, 1 to N) by priorities is very important in accurately representing sys­

tem behavior by the model. An example is given [Pidd 1984] to illustrate the effect of

scan priorities on model results. When the conditions of a testhead are satisfied, the

actions associated with it are executed. If a testhead is not satisfied, the next testhead in

turn is checked. Activity testheads may be satisfied when a set of boolean conditions

becomes true. For an end or finish activity, its testhead is satisfied when a check of t-cell

values indicates that the activity is "due". Indeed, Kreutzer [1986] describes the activity

scan as a scan of "temporal and other conditions." Thus, activities are associated with a

21

pure set of conditions that state "when an activity of a given class may start, and [in one

form or another, through object structures or some link to the activity] a time cell that

specifies when it may finish."

At the completion of a single scan, if one or more actions blocks have been executed,

the check of all testheads (beginning at the first) is repeated. The scan continues in this

way until no testheads are satisfied. This means that no more state changes are possible

for the current timing cycle. If termination conditions hold, the simulation ends. Other­

wise, the time and activity scan sequence is repeated.

2.5 The Three-Phase Approach (TP A)

The Three-Phase Approach is a modification of the AS OF which attempts to

improve execution efficiency by recognizing that some activities will occur at known and

determined times in the future. In the case of such activities, there is no need to test for

the satisfaction of certain conditions. The approach is attributed to Tocher [1963] who

categorized activities as B-activities or C-activities. A B-activity is one which is bound to

a certain object or "machine" and its time of execution is known. For example, in the

simple single server queue problem, the next arriving object or the arrival machine is

"committed" to an arrival activity which will occur at a determined time in the future.

In practice, the binding of the activity to an object may be accomplished by assigning an

integer (which identifies the bound activity) to an appropriate object attribute. The

object remains committed and the activity is "engaged" or bound by that object as long

as the system time is less than that object's local time clock. When system time reaches

this local clock time, the object becomes "available." B-activities are due and executed

when the object to which they are bound becomes available. The end or finish activity

22

(discussed in the AS CF) is another example of a B-activity. As alluded to earlier, the

traditional repetitive activity scan and testhead checks do not need to be done on the B­

activities. In a sense, the B-activities are implicitly scheduled, and the TPA could be said

to incorporate a next-event set or the events list approach that characterizes the ES CF

[O'Keefe 1986b]. The C-activities can be described as cooperative activities in that

dependencies with other activities exist. C-activities with testheads must enter the usual,

repetitive activity scan. [Tocher 1963]

In a later paper, Tocher (1965] provides more details on the Three-Phase Approach.

Tocher indicates that a convenient way to determine the pending or imminent bound

activities is to scan a list of "returning" objects (or entities) which is created at each tim­

ing cycle. The bound activities are executed in the order that they are determined from

the object list. Thus emphasis is placed on the object and an ordering of objects is

implied. Such an ordering could be based on priority (or other technique) and will affect

the behavior of the model in the same manner that ordering of the activity scan influences

models under a pure AS CF.

ECSL [Clementson 1966,1978] was an early implementation of the TPA. Pidd

[1984] provides an excellent overall description of the TPA. Other comprehensive

descriptions of the TPA are available in current literature [Crookes 1982; Crookes et al.

1986; O'Keefe 1986a, 1986b; O'Keefe and Davies 1986; Davies and O'Keefe 1987].

Although Tocher [1963J is attributed with the TPA, an earlier description of the approach

exists [Tocher and Owen 1961J.

With activities now categorized as B or C, the executive can be modified to display

the three phases. Figure 2.4 graphically represents the implementation of the three

phases:

23

• Phase A - time scan

• Phase B - execution of B-activities which are now due

• Phase C - activity scan on C-activities

An explanation of Phases A and C is not needed since they follow the time and activity

scans of the activity scanning world view. The execution of Phase B is covered above.

Therefore, in summary, instead of an activity scan of all activities with their testheads,

the B-activities are removed to be executed at their appropriate times. The length of the

pure activity scan (which now deals with only the C-activities) is reduced. Execution

efficiency is improved.

2.5.1 Variants of AS-based Executives

Interestingly, Tocher [1965] sets forth three possible organizations for activity scan­

based executives. First, of course, is the organization which is the pure activity scan and

treats all activities as C-activities. This leads to a great deal of "unnecessary testing."

Secondly, Tocher suggests an organization which consists of only B-activities. An

extreme burden is placed on the modeler using this scheme in that the modeler can no

longer present the conditions for an activity in one set of statements. Instead, the modeler

must "generate for each entity [object} which has reached the end of a previous activity

the appropriate extra conditions, and do this for every participating entity [object]." The

third organization, a combination of both Band C activities, represents the Three-Phase

Approach discussed above.

24

START

INITIALIZATIONS

TIME SCAN (TFM)

EXECUTE B ACTMTIES DUE NOW

CONDITION(S)
1

ACTION(S)
1

NO

SCAN ALL C ACTMTIES

CONDITION(S)
2

ACTION(S)
2

OUTPUT

APhtl.e

C Ph4,e

CONDITION(S)
N

ACTION(S)
N

YES

Figure 2.4 The Three-Phase Approach (TPA) Conceptual Framework
[Balci 1988]

25

12.5.12 The Cellular Approach

Closely related to the Three-Phase Approach is the Cellular Approach [DeCarvalho

et al. 1976]. At any given time, the model activities can be grouped together into a "cell"

with "those entities [objects] which at the current time are already engaged to, or are

waiting to be engaged to, one of the activities in the cell." Objects may belong to

different cells throughout a simulation as they become engaged in different activities. The

grouping of activities in a cell (the basis for the cellular structure) is such that the execu­

tion of activities within a particular cell at an instant in time does not depend on state

conditions or variables that exist in other cells at that same instant. Therefore, each cell

can be considered independent and "non-overlapping" with the other cells of the model.

Furthermore, each cell is a grouping of Band C-activities and is essentially a Three­

Phase simulation in its own right.

Objects become associated with different cells as time progresses. Based upon this

knowledge of an object's process, the model executive is able to discriminately choose

which cell or group of Band C-activities should be scanned for execution (the B-activities

of interest) and tested (the C-activities of interest) for possible execution. In

addition, "there is no point in testing a C-activity within a cell unless that cell has had a

B-activity executed" within the last clock cycle. In other words, no state changes have

occurred which would alter the testhead conditions of subsequent C-activities within that

celL In this way, the cellular structure provides the ability to eliminate the unnecessary

testing of certain C-activities. For large models in which there are many independent

events resulting in a large number of cells, this provides further savings in execution time

beyond that obtained in the Three-Phase Approach.

26

2.6 Process Interaction (PI)

Kiviat [1969], Fishman [1973] , and Pidd [1984] provide an excellent overview of the

PI CF. Instead of the event or activity, PI uses the process as its basic building block.

From the earlier definitions, the process can be considered to be a life-cycle for an object.

It represents a sequence of events and interspersed activities through which the object

moves. As the object moves through its process, it may experience certain delays and be

blocked in its movement. Those delays which are time-based and unconditional (e.g., ser­

vice times, arrival times) must be handled using future event set algorithms [McCormack

and Sargent 1981] and techniques like those used in the ES CF for the determination of

the next event time. Those delays which are state-based (e.g., wait-until situations)

require a scan of conditions to determine the time(s) at which such delays should be

resolved. Therefore, the PI CF combines certain aspects of the AS and the ES CFs while

producing an altogether different approach.

Because an object experiences periods of activity (process statement execution) and

periods of inactivity (conditional or unconditional delay), one can view an object's process

description as being a single set of program statements which act like several different,

individual programs. The PI CF enables the modeler to clearly grasp a model's structure

now that each object or class of object can be represented by a single, coherent process

rather than through multiple event routines. [Kiviat 1969; Fishman 1973]

The PI CF also provides clarity in representing how the various object processes in a

model are interacting. When an object experiences a delay in its process and becomes

"passive", another model object is allowed to become "active" [Franta 1977] and to start

or resume its process. In essence, the object processes within a model behave as corou­

tines, alternating their executing (or active) status wi~h one another in a controlled

27

fashion. Kiviat [1969] calls these locations within an object's process (where such delays

are incurred and execution is shifted to another object) its "interaction points." In addi­

tion, those points at which an object returns to an active state (following such interac­

tion) are named "reactivation points." Another way to view these points are as code loca­

tions in the program description of an object's process where it resumes execution follow­

ing a delay.

Figure 2.5 provides a GPSS-like [Henriksen et al. 1983; Schriber 1974] representation

of the PI CF. Each object has associated with it a record of information which includes

its reactivation time (if known) and its next reactivation point. Such an implementation,

described nicely by Pidd [1984] includes two lists, the current events list and the future

events list. We shall call them the current objects list (COL) and the future objects list

(FOL) since these lists contain the associated record representations of the objects them­

selves. In addition, these lists are maintained and used to perform the selection of the

next object that will become active. The COL contains objects which are due for activa­

tion during the current system time or which are in a wait-until status (waiting for cer­

tain conditions to be satisfied). The FOL contains those objects for which a reactivation

time is known. Furthermore, the objects in the FOL are most likely ordered by time.

E.6.1 The Clock Update Phase

The ordering of the FOL enables the updating of the system clock in the "clock

update phase." The earliest reactivation time from among the objects on the FOL is

selected and the system clock is assigned this time value for system time. Then all

objects on the FOL which have this time as their designated reactivation time are

transferred to the COL, concluding the clock update phase.

NO

28

START

CLOCK UPDATE PHASE

CURRENT TIME - MOVE-TIME
OF THE FIRST OBJECT ON

THE FUTURE OBJECTS LIST (FOL)

TRANSFER ALL OBJECTS WITH
MOVE-TIMES EQUAL TO CURRENT TIME

FROM THE FOL TO THE
CURRENT OBJECTS LIST (COL)

SCAN PHASE

MOVE THE NEXT OBJECT
ON THE COL THROUGH

AS MANY PROCESSES AS POSSmLE

Figure 2.5 The Process Interaction Conceptual Framework
[Balci 1988]

29

£.6.£ The Scan Phase

The "scan phase" next takes each object on the COL, in turn, and tries a restart of

its process at its reactivation point. Movement may not be possible for those objects in a

wait-until status. If so, such objects remain on the COL. Each such object is moved as

far in its process as possible until it is once again blocked or until it completes process

execution. If blocked, the object is placed on the COL or FOL as appropriate. The scan

phase continues until no further object movement (within its process) is possible. Please

note that the clock update phase is restarted following each conclusion of the scan phase

(as shown in Figure 2.5) until simulation termination conditions are reached.

SIMULA [Birtwistle et al. 1979; Franta 1977], another process-oriented language,

differs greatly from the GPSS implementation approach. Objects are maintained on a

single list called the sequencing set, in contrast to the two-list GPSS approach. Unlike

the GPSS approach, objects which are in a wait-until status are not directly handled via

the single-list implementation. The programmer is responsible to implement the trap

conditions which will reactivate an object and place it in the sequencing set.

2.7 Transaction Flow (TF)

TF handles the time and state relationships of the model in exactly the same

manner as the Process Interaction CF. However, there are three differences which can be

noted.

First, Shannon [1975] used the term Transaction Flow to serve as a categorical

designation for simulation languages rather than as descriptive of a simulation strategy

or world view. A language of this type uses "specialized blocks" which are assembled into

the model's structure. The block diagram which can be easily formed from the language

30

blocks represents a clear description of the logic and flow of the system being modeled.

"Transactions" are created and moved through the blocks, executing specialized actions

that are "associated" with each block. The movement of the transactions causes the

simulated time to advance.

Shub [1980] makes a further distinction by pinpointing the block structure and its

underlying actions that are performed as the key difference. The block structure gen­

erates a rigid structure which limits the "examination and communication" among system

components. In addition, as entities (transactions) pass through these blocks, "predefined

processes" are activated which are hidden to the modeler. Statement languages, on the

other hand, like STh1ULA, provide generality and flexibility to the modeler. Lower level

primitives are available which allow the modeler describe entity communications at any

necessary level of detail. The modeler is not constrained by predetermined blocks and a

finer level of component interaction can be obtained.

Finally, a third distinction can be inferred from the term "transaction" itself.

Tocher [1965], in his review of simulation languages, characterizes the languages as

machine or material oriented. He further defines "transactions" to be the material enti­

ties. Kreutzer [1986] gives excellent definitions of these two orientations. In a machine

oriented view, servers (machines) are the dominating and active influence in the model.

They obtain the material entities (transactions), operate on them, and place them in (or

remove them from) queues. Conversely, the material oriented models hold the transac­

tions as the dominant entities. Servers, now passive, are "acquired, held, and released

again" by the transactions which flow from machine to machine [Kreutzer 1986]. There­

fore, in a transaction flow approach, a material oriented view is held. Processes are

described in terms of the temporary objects or entities (the transactions) which dominate

31

and flow through the model. The permanent entities (machines) become passive [Nance

1987].

From the preceding discussion, "transaction flow" is more appropriately used to

categorize a simulation language. However, the term can be effectively used to accurately

describe a variation of the PI CF.

2.8 The Object-Oriented Paradigm (OOP)

The paradigm has been described as a "programming style" that views "programs as

collections of active components (sometimes called classes or actors) and their patterns of

interaction" [Kreutzer 1986]. These active components are the basis for the term object.

Additionally, the paradigm is viewed as a concept for system design. According to Meyer

[1987], "object-oriented design may be defined as a technique which, unlike classical (func­

tional) design, bases the modular decomposition of a software system on the classes of

objects the system manipulates, not on the functions the system performs." A functional

decomposition is less likely to be resistant to change over time than one which is based

upon an object-oriented decomposition. Functions tend to change in order to adapt to

changing needs whereas objects remain more or less constant [Meyer 1987].

Whether a programming style or a design technique, the paradigm may be viewed

ultimately as a software engineering methodology. A distinction must be made between

method and methodology. (One must also be careful not to confuse the term method in

this context with the operations (methods) which an object (in the paradigm context) per­

forms.) A method is a means of accomplishing a given task and contains the decisions to

be made, how these decisions are made, and the order in which they are made. A metho­

dology, however, is "a collection of complementary methods, and a set of rules for

32

applying them" [Arthur et aL 1986]. Although the paradigm's methods and rules are not

distinctly available, the material in the following paragraphs indicate that the paradigm

does contain component philosophies, approaches, or characteristics. These taken as a

whole suggest that regarding the paradigm as a methodology is an accurate assessment.

The paradigm is a powerful methodology which is characterized by the encapsula­

tion of data and operations, an inheritance mechanism for developing object hierarchies, a

binding approach which allows the dynamic change of data types, and, in some cases, the

ability (activation, passivation) to move objects into and out of various states (active, pas­

sive, etc.). The following subsections will review these principal features which are embo­

died in the paradigm.

2.8.1 Encapsulation

The leading experts seem to agree that encapSUlation is a primary ingredient to the

paradigm. The implementation of an object's actions and "how its internal data is

arranged" are contained within the object [Cox 1986]. Encapsulation has been called the

"foundation" of the object-oriented approach and provides several important implications

[Cox 1986]. First, encapsulation enables a software system to be more "malleable" and

resistant to change. An object can be considered to be "encapsulated", an "armor-plated"

entity. As "private data and a set of operations that can access that data", an object by

nature thus restricts "the effects of change by placing a wall of code around each piece of

data" [Cox 1986]. The use of objects therefore improves the reliability and maintainabil­

ity of system code. Additionally, by inherent abstraction, the object improves the view of

the system by introducing a higher level perspective and promotes reusability of code.

Meyer [1987] states that "object-oriented design is the construction of software systems as

33

structured collections of abstract data-type implementations." In conventional program­

ming styles, the "consumer" of a service must specify the details of how each of the

desired operations is performed. Using the paradigm, however, one only need to specify

what is desired. The "supplier" can then encapsulate how these operations are performed

within the object, hiding the details from the consumer [Cox 1986]. This then allows a

radical approach which Cox [1986] calls the "software-IC [software-Integrated Circuit]"

approach to building systems. The analogy to the use of hardware lOs (which are easily

"plugged" into or removed from an electronic system) is intended. Portions of code then

become "reusable". For Meyer [1987], the paradigm is "the most promising technique

now known for attaining the goals of extend ability and reusability." Related terms are

modularity, abstract data typing, and information hiding [Kafura 1987].

2.8.2 Inheritance

A mechanism for inheritance is another distinguishing characteristic of the para­

digm. Inheritance is the "ability to define new objects by expanding, contracting, or

modifying the functionality of existing objects" [Kafura 1987J. This is considered perhaps

the most powerful characteristic of the paradigm. An object clas8 can define the generic

distinguishing features of a grouping of like objects. Inheritance is a "tool for automati­

cally broadcasting code to classes developed by different members of a team" [Cox 1986].

New instances of an object class can be easily created. These new instances automatically

inherit the attributes of that class definition. Inheritance supports hierarchical structures

that are commonly found in the real world and provides substantial benefit to the user by

improving his understanding and view of the system.

Beyond encapsulation and inheritance, there is less agreement among the authorities

34

of the field as to the features embodied by the paradigm. Inheritance itself does not seem

to have universal approval as a necessary ingredient for the paradigm. (Some languages,

like Ada which have been classified as object-oriented, do not support the concept of

inheritance.) Yet Meyer [1987] states that "the inheritance concept is essential."

2.8.9 Binding

How binding is handled is very important to the power of the paradigm. Binding

relates to the "time at which an object becomes restricted to a fixed collection of types

which it can manipulate" [Kafura 1987]. Early binding is common among most conven­

tionallanguages. Such binding requires that every data type is known before compile

time. "Tightly coupled systems" and "static binding" are related terms [Cox 1986]. With

delayed binding (also known as late or dynamic binding), the data types can dynamically

change during program execution. This kind of binding is "needed in loosely coupled col­

lections where the consumer's code cannot predict the type of data to be operated on until

the code is being run" [Cox 1986]. Dynamic binding thus promotes reusability and flexi­

bility. New "data types can be added over time without impacting working code" [Cox

1986]. These concepts of binding enhance the power of encapsulation and add to the

measure of its benefit. Objects communicate with each other through the sending of mes­

sages. Messaging impacts the concepts of binding. With encapsulation, the object is sent

a message which tells it to perform an operation on itself. When reusing object-oriented

code and implementing dynamic binding, the binding "occurs only at this point [i.e., when

the message is sent]" [Cox 1986].

35

2.8.4 Activation and Passivation

A final and often common feature of the paradigm is that of activation and passiva­

tion, "the ability to save and restore the state of an object independently from the

program's existence" [Kafura 1987]. Activation/passivation "provides an automated way

to convert arbitrary objects to a symbolic representation that can be stored ... , and an

inverse transformation to regenerate objects given the symbolic representation. The sym­

bolic representation can be transmitted between different processes ... " [Cox 1986].

2.9 The Process Graph Method (PGM)

The PGM is derived from the parallel computation model which was suggested by

Karp and Miller [1966] and later improved upon by the U. S. Navy [Kaplan 1987; Stevens

1987; Hillson 1987]. The Navy's development of the PGM grew out of its work at the

Naval Research Laboratory on ECOS/ ACOS (EMSP / ASP Common Operational

Software Support) Methodology. ASP stands for Advanced Signal Processor, the Navy's

current standard signal processor. EMSP, or Enhanced Modular Signal Processor, is the

Navy's follow-on to the ASP. Used primarily for the development of signal processing

models, the PGM is believed to be applicable to domains other than signal processing and

capable of being used as a representation of other model types. The basis for the PGM is

the process graph, a directed graph of nodes and arcs which is classified as a data flow

model. Three of the primary benefits of the process graph are its parallel computation

capabilities for greater throughput, the ease at which modelers can perform top-down

design, and portability of applications.

Each node in the process graph represents a primitive function (some type of compu­

tation or process) or may alternatively represent a 8ubgraph which is itself a process

36

graph. Such a convention allows the modeler to use abstraction and modularity to

represent complex models in a fashion that is more easily understood. A node, when

implemented, contains the following:

• logical ports - to handle data flow,

• resident primitive function procedures, and

• a primitive interface procedure (PIP) - to handle data transfer input and output

between the primitive functions, queues, and auxiliary data storage entities.

The arcs represent queues which contain the input and output data needed by the

nodal primitive functions for execution. The data is ordered on a first-in, first-out basis.

Each queue has a mode type which characterizes the data type that it carries in residence

(integer, real, etc.). A queue may carry trigger pulses for synchronization instead of data

for computational purposes. Queues also provide the necessary connectivity for the

graph.

Nodes execute only when the data necessary for execution are available at the input

queues. Such a node execution scheme allows multiple computations to be performed in

parallel thus generating a greater throughput. Not all graph data is transmitted along a

queue. Node execution parameters (NEPs) and auxiliary data storage entities such as

graph variables, graph controls, and graph instantiation parameters provide additional

graph control information. Process graph execution is guided by a command program

which handles input/output to/from the graph, manipulates the control attributes, and

communicates with the rest of the world, external to the process graph itself.

The following sections further elaborate on the key elements of process graph

representation (primitive functions, NEPs, and auxiliary data storage entities) and

37

summarize the current literature descriptions of Weitzman [1986} and Stevens [1987].

2.9.1 Primitive Functions

The primitive functions that are represented by the nodes of the process graph per­

form a computation on the input data elements and distribute the output along the out­

put queues. The primitive functions may be simple or complex in nature. Fast fourier

transforms, sort routines, and matrix multiplication routines are examples of typical

primitive functions [Kaplan 1987].

e.9.e Node Execution Parameters

Threshold, offset, read, consume, and produce are the NEPs that specify how the

data elements are manipulated on the input and output queues. NEPs may be constant

("fixed") during graph life or they may be recomputed ("variable") for a particular graph

node. The threshold is the parameter which dictates the number of data elements that

must be on each input queue before the node can be executed. Data elements can be

skipped and bypassed when reading in data from an input queue. A number quantifying

this is referred to as the offset. The read and consume NEPs are related. Read refers to

the number of data elements which are to be delivered to a node. Oonsume indicates the

number of elements which are to be removed from an input queue. Finally, produce

specifies the number of data elements that is output or written to the output queue.

e. 9.!J Auxiliary Data Storage Entities

A graph variable (GV) may be internal or dynamic. An internal GV is local to the

graph in which it is declared. All nodes within a specific graph have read/write privilege

38

to local GVs. Internal GVs may be passed to subgraphs as control. As such, nodes

within these subgraphs have only read privilege. A dynamic GV is defined in the com­

mand program and is passed to a graph as a control. In this case, the graph has only

read privilege.

Graph controls (GCs) are GVs which are passed from the command program or

from a graph to subordinate graphs. The originator of the GC may change its value for

subsequent execution sequences. Graphs in receipt of the GC have only read privilege and

read the latest value of the control at each invocation.

Graph instantiation parameters (GIPs) are constants which are passed by value to

the graph at its instantiation or definition. The GIPs are primarily used for establishing

the start time constraints on the graph.

2.10 The Entity-Relationship Model (ER) and ER Approach (ERA)

The ER model [Chen 1976] is a data model which is based upon set and relation

theory. Of the other three major data models listed by Chen [1976] (network, relational,

entity set), he claims that one "may view the entity-relationship model as a generalization

or extension of existing models" and that the ER model "has most of the advantages of

the above three models." Since the ER model represents an encompassing data model, it

is worthy of review as a conceptual framework with potential application to model

representation in discrete event simulation. Chen [1976] represents the definitive work

which introduces the ER model. This brief description attempts to summarize the princi­

pal components and distinguishing features of the ER approach (ERA) to modeling

through the use of the ER model. Claimed advantages [Chen 1976] include:

39

• "adopts the more natural view that the real world consists of entities and relation­

ships"

• achieves "a high degree of data independence"

• "incorporates some of the important semantic information about the real world"

Chen [1976J introduces the ER model through the context of levels of logical views

of data, and develops the ER model for two of these levels which are defined as follows:

• Level One (a conceptual level) - "information concerning entities and relationships

which exist in our minds" and

• Level Two (a representational level) - an information structure or organization of

information in which data represents entities and the relationships which exist among

them.

The next two sections cover Chen's development of the ER model at these two levels.

2.10.1 ER Model Development at Level One

Here we are concerned with the conceptual view (of entities, their relationships, and

their values) as it exists in our minds. To fully develop our understanding of the model

representation at this level and to avoid confusion, the following relevant terms from

Chen [1976] must be defined for the ERA:

• entity - a "thing?' having discriminating features which allow it to be distinguished

among others.

• relationship - an interdependence, bond, or "association" among entities.

An entity may be a "specific" student, professor, or university, for example, whereas

40

student-professor represents a relationship between student and professor entities. The

term role refers to the function that an entity takes within a defined relationship [Chen

1976].

Entities may be grouped into entity sets upon which predicates can act to test for set

membership of an entity. Entity sets such as STUDENT and PROFESSOR have

members which are student and professor entities. The ER model suggests a correlation

to the OOP, especially the inheritance mechanism. If a specific entity is a mem ber of an

entity set, we automatically know that it possesses the traits which are "common" to the

other set members.

Relationships may also specify similar groupings called relationship sets. A relation­

ship set is a "mathematical relation among n entities each taken from an entity set ... " In

other words, the members of the relationship set are relationships that are formed by

tuples of n entities, where each entity is a member of some entity set. The relationship

set, DEPT-PROFESSOR consists of 2-tuples derived from entities which are members of

the DEPT and PROFESSOR entity-sets such as [CS, Miller], [ECON, Kenyon], etc.

Entity and relationship information is maintained within sets which contain values

(called value sets). Value sets such as CREDIT-HOURS, GRADE, and COURSE-ID

might contain the values 3, B+, and 4150. Entities and values are linked to one another

by attributes. Attributes are functions which map from "an entity set or a relationship set

into a value set or a Cartesian product of value sets ... " For example, the entity set

COURSE might have an attribute COURSE-DESCRIP that maps into the value sets of

DEPT-ABBREV, COURSE-ID, and CREDIT-HOURS. In addition to entities, relation­

ships can also have attributes.

41

To organize this conceptual information, Chen [1976] proposes that the entity and

relationship information be separated in order to enable the identification of the "func­

tional dependencies among the data." In addition, a tabular representation or structure is

helpful to relate the ER model to the relational model. In the tabular representation for

entities, all row information relates to a single entity. A particular column holds values

from a particular value set. Attributes are represented as column headings, and one or

more columns may apply to a single attribute. In other words, in keeping with the

definitions above, the attributes map a row identifier (particular entity from an entity

set) into one or more value sets (grouped columnar information). Relationships can also

be organized in a similar fashion [Chen 1976].

2.10.2 ER Model Development at Level Two

At this level, Chen [1976] uses the primary key which is a unique identifier of specific

entities (or relationships). The use of primary keys moves the model representation from

one which is purely conceptual to one where the conceptual objects exist with a "direct

representation of values." The primary key serves as this "direct representation" of an

entity or relationship. Attribute values are used as primary keys if their mapping func­

tion is one-to-one. In many cases, more than one attribute or a group of attributes (an

entity key) is needed to find such a one-to-one mapping for the members of entity sets. In

some cases, it is not possible for an entity to be uniquely represented solely by its own

attribute values. Instead, a usable primary key may be contrived or the primary key of

another entity which participates in a relationship with the entity of concern is used. The

primary key of a relationship is composed from the primary keys of the entities that

make up the relationship.

42

The information at this level can now be organized in a tabular representation, as

before, which identifies the specific entities by their primary keys. Such a table (an entity

relation) is composed of rows of values called entity tuples [Chen 1976]. When a relation­

ship is used to identify an entity, this is called a weak entity relation. Otherwise, it is a

regular entity relation. In a similar manner, tabular representations of relationships (rela­

tionship relations) which are composed of rows of relationship tuples [Chen 1976].

2.10.9 Using the ER Model

Four steps [Chen 1976] to using the ER model (particularly for database design) and

applying the ERA follow:

• "identify the entity sets and the relationship sets of interest"

• "identify semantic information in the relationship sets such as whether a certain rela-

tionship set is a 1:n mapping)'

• "define the value sets and attributes"

• "organize data into entity/relationship relations and decide primary keys"

Therefore, successful application of the ERA relies on the proper identification of set

membership and semantics, definition of value sets and attributes, and organization of

data into relations.

12.10.4 ER Model Classifications

Chen [1983] proposed a framework for classifying ER models which is based on the

"capabilities and limitations" of each model's relationships and attributes. The two

broadest classifications of ER models concern their treatment of relationships. When

relationships can be "defined on more than two entities" the model is classified as

43

Generalized (N-ary) Entity-Relationship Models (GERM). If relationships are only

allowed on two entities, the model is a Binary Entity-Relationship Model (BERM). These

categories can also be further classified by their treatment of attributes. There are three

possibilities:

• attributes allowed for both entities and relationships

• attributes allowed for entities only or

• attributes not allowed.

Chen [1983] believes that ER models under the different classification categories may

be converted from one form into another. This implies:

• ability to model a system by "favorite" model form and then translate it to other

forms for the purpose of "presentation to others."

• ability to implement a system which supports "several types of entity-relationship

models."

• ability to demonstrate equivalence between different ER models.

2.11 The Entity-Attribute-Set (EAS) Approach

Markowitz et al. [1983] claim that the EAS approach is derived from CSL, GASP

and SIMSCRIPT simulation languages which were introduced in the early 1960's. The

terms entity, attribute, and set were central concepts that were consistently defined for

each of these languages as follows [Markowitz et al. 1983]:

• entity "some concrete or abstract 'thing' represented by the simulation."

• attribute - "some property or characteristic of the entity"

44

• set - "an ordered collection of entities."

Markowitz et al. [1984] provide an excellent description of the EAS approach to sys­

tem modeling. In the EAS approach, entities of interest in the system are kept track of by

a database. Within a system such as a naval task force at sea, these entities might include

surface ships, submarines, planes, missiles, and torpedoes. The database also maintains

complete information on a particular entity to include attribute and value data, the

identification of the sets to which the entity belongs or which it owns, and the member­

ship of the sets which it owns. Attributes of a submarine could include course, depth, and

speed with respective values of 090 (degrees), 150 (feet), and 25 (knots).

A key characteristic of the EAS approach is that sets are ordered as noted above.

This ordering may be strictly on a first-in, first-out (FIFO) basis or in some other deter­

mined order. Considering the task force example, this system may contain the set of all

combatants ordered by hull designator and number. The task force model itself would

likely be the owner of such a set. Each com batant may then also own a set of weapons

perhaps ordered by lethality or protection capability to the owning platform. Hierarchical

decompositions and tree-like structures of the system are thus easily defined.

The EAS approach to system description "combines an 'object-influenced' static

view with an 'event causality' dynamic view [Nance and Overstreet 1986]." Set ordering

provides the ability to represent timed events and a system state can be represented in a

database. A function can be determined which transforms the database from state to

state. Yet, such a transformation cannot be clearly depicted apart from the model imple­

mentation. Thus, model dynamics are difficult to represent.

Markowitz et a1. [1983,1984] raise interesting comparisons between the EAS and ER

approaches. The EAS approach is very similar to the ERA in that it allows the modeler

45

to more naturally represent the system of concern. Entities, attributes, and relationships

are the cornerstones of the approaches. The EAS approach is inherently able to contain

more information than the ERA due to the set ordering. Yet it is difficult to describe

many-to-many relationships in the EAS approach.

2.12 The Conical Methodology (CM)

Aimed at assisting the modeler during the model development phases of the model

life cycle [Nance et al. 1984; Balci 1986], the Conical Methodology (CM) is a practical

guide for accomplishing the model development tasks, particularly model definition and

specification. Furthermore, the CM is based on the object-oriented paradigm in that the

world is viewed as being composed of objects (model/submodel components) which are

distinguished by unique features or attributes.

According to Nance [1986], the CM seeks to achieve five primary objectives (model

correctness, testability, adaptability I reusability I and maintainability) through the

effective use of several key principles. Citing from his work, these principles generally

"state how the objectives of the CM are to be achieved and at the same time what is

needed so that the development process can realize those objectives." Top-down

definition and bottom-up specification techniques are at the core of the procedural gui­

dance that is derived from and prescribed by the CM principles. This description

emphasizes these techniques and discusses them in further detail since are they central to

the CM and the guidance which it provides as a conceptual framework to the modeler.

The CM principles which underlie these techniques and which are not covered here are

fully discussed by Nance [1986J. Of interest, the CM has provided the fundamental gui­

dance for the development of three prototypes of the Model Generator tool of the SMDE

46

[Balci and Nance 1987a, 1987b]. Bottom-up specification is, however, only supported by

the third prototype which is described by Barger [1986].

2.12.1 Top-down Model Definition

Top-down model definition under the OM is accomplished through a hierarchical

decomposition of the model into successive submodels. At each level of decomposition,

attributes, including attribute dimensionality and range of values, are assigned (to the

particular submodel associated with that level) and are classified by type in accordance

with Nance's [1986] taxonomy tree. Nance [1981aJ exhaustively defines all elements of

this tree which is a hierarchical decomposition of the OM attribute types. Summarizing

briefly, attributes may provide direct knowledge or information about a submodel (indica­

tive) or they may relate a submodel to other submodels (relationa~. Relational attributes

may be further classified as hierarchical (establishing a "subordination" of one submodel

to another) or as coordinate (establishing a "bond or commonality" between two submo­

dels). Indicative attributes of a submodel have values assigned once (permanent) or more

than once (transitiona~. Transitional attributes are classified as status (value assignments

occur from a limited set of value) or as temporal (values are a function of time). The pro­

duct of the top-down definition stage is a static model representation.

2.12.2 Bottom-up Model Specification

In general, "specification is the process of describing system behavior so as to assist

the system designer in clarifying his conceptual view of the system" [Barger 1986]. Model

specification requires an "indepth recognition of the interactions among attributes, partic­

ularly as these interactions vary with time" [Nance 1981a]. The modeler must "specify"

47

these interactions with expressions which determine the value assignments to the attri­

butes. The specification task, once completed at some level in the decomposition hierar­

chy, is performed at successively higher levels until there are no further levels to be

specified (ie.,the top model level has been reached). In contrast to model definition, the

specification produces a model representation which contains the necessary information

for model dynamics. In addition, the "typing, dimensionality, and value information sup­

plied by the modeler enable subsequent diagnosis for consistency (type) and correspon­

dence (dimensions and value range)" [Nance 1986].

Bottom-up model specification is accomplished by beginning at some base-level sub­

model. The determination of the beginning point for the specification task is an area of

current research. Nance [1981a] suggests that one might select the submodel which has

the most assigned attributes. Research by Barger [1986] promotes two possible

approaches, the "basic method" and the "status attribute approach.". (Barger's work,

while based upon the application of the OM, was focused upon creating a specification

which would result in a condition specification. The conclusions derived from this research

can be applied generally to the application of the eM to derive a useful specification.) The

basic method prescribes the selection of some submodel attribute, the specification of the

condtions and actions that result in changed values for that attribute, and the repetition

of this process for each submodel attribute in the model. The status attribute approach

is an "extension of the basic method ... " [Barger 1986]. It begins with the selection of

some status attribute for specification and leads to the full coverage of all status attri­

butes. Such a method could also be applied to both temporal and permanent attributes.

Barger [1986] suggests that the status attribute approach" ... shows potential for provid­

ing more structure and guidance to model specification ... " than any of the other

48

approaches.

2.13 Structured Modeling (SM)

The Structured Modeling approach [Geoffrion 1987a,1987b,1987c] is a bold attempt

to provide not only a generic framework for model representation but also an environment

to meet total model developmental needs throughout the model's life-cycle. Many simi­

larities exist between the representation characteristics of this approach and the Conical

Methodology. Therefore, SM can be used in a top-down model design strategy which

embodies a similar stepwise refinement approach and which results in a well documented,

easily communicated design. Life-cycle objectives via an interactive environment are also

strongly akin to the primary goals of the SMDE (Simulation Model Development

Environment) research project [Balci and Nance 1987a}. The SMDE is currently being

directed toward the discrete event simulation domain. However, SM aims to cover the

same plus other major modeling areas (mathematical programming, database theory for

data models, conceptual graphs and knowledge representation, graph grammar-based sys­

tems, etc.) [Geoffrion 1987a]. The issues of SM which pertain to model representation will

be reviewed and described due to their applicability to discrete event simulation and to

our notion of conceptual frameworks. Modeling environment considerations will not be

covered.

The SM framework for model representation uses "a hierarchically organized, parti­

tioned, and attributed acyclic graph" for model semantic and mathematical structure.

The framework can be decomposed into elemental, generic, and modular structures.

Each structure serves a determined aim and can be represented in graphical or textual

form. Most of the existing research conducted by Geoffrion has been concerned with tex-

49

tual representations only. The discussion in the following sections highlights the key ele­

ments of each structure and is a summary and paraphrase of Geoffrion's description of

the basics of 8M [Geoffrion 1987a]. Quotations, unless otherwise specified, are from his

work. The reader is encouraged to scan the 8M application in chapter 3 in parallel with

this section. The SM application provides examples of the following concepts.

2.19.1 Elemental Structure

The construction of an elemental structure [Geoffrion 1987a] is intended to com­

pletely capture "the definitional detail of a specific model instance." Within Structured

Modeling, five types of model elements are defined. Primitive entity elements are the

model primitives which "represent things or concepts." Compound entities are similar to

the primitive entity elements but are "defined in terms of other things or concepts."

Primitive entity elements and compound entity elements have no associated value, and

thus differ from the attribute, function, and test elements which have value. The attribute

elements represent the properties of model components and have constant value. When

an attribute element is subjected to the control of a "solver" or executive, the attribute

element may have variable values. The function elements represent the calculable proper­

ties of model components and have a value which is variable and dependent upon the

values of other model elements in accordance with some known rule. Test elements are

similar to function elements but can have only true or false values.

Model elemental structure is generated through the formation of model elements of

these types into a directed graph in which the nodes represent the elements. The graph's

arcs depict a reference "call" for element definition requirements from the calling element

(in the head node of an arc) to the called element (the tail node). Such graphs are acyclic

50

in that circularity of definition is not desired. Finally, the graphs are attributed (node and

arc attributes) to represent element values, calculation rules for test and function ele­

ments, and the ordering of nodal arcs.

Most often, the elemental graph is much too detailed and is therefore difficult to

represent in a manner which is easy for the modeler to understand. Therefore, it is com­

mon to use a table representation of the elemental structure. Such tables are called ele­

mental detail tables. Elemental detail tables contain instance data and low-level model

information which is necessary for a complete model specification.

2.19.2 Generic Structure

The generic structure accomplishes [Geoffrion 19S7a] the grouping of elements

according to "natural familial" boundaries. In effect, such a grouping is a partition in the

mathematical sense where each partition is a "cell" or "genus" of elements which have

"generic similarity." Generic similarity among elements means that "every element in a

genus calls elements in the same foreign genera." The generic structure thus provides the

modeler with a natural view of the system under study. By identifying and naming the

element groupings or genera, the elemental structure graph (elemental graph) can be con­

verted to the generic structure graph (genus graph).

2.19.9 Modular Structure

The modular structure [Geoffrion 19S7a] is a further refinement on the generic struc­

ture. The modular structure is created in order to bring into play the concepts of data

abstraction and information hiding. "Modules" are formed by grouping the genera "into

conceptual units ... according to commonality or semantic relatedness." Modules, them-

51

selves, can then be grouped into higher order modules. In this way, complex models can

be simplified into a representation which will be better understood. The modular struc­

ture is essentially a rooted tree. The leaves of the tree are the genera and the interior

nodes (the modules) represent the "conceptual units comprising their descendent genera."

The entire model is represented by the root node within the modular structure.

Some final requirements must be maintained by the modular structure. It must be

capable of being placed into an indented list, "textual" representation. When such a

representation corresponds to the preorder traversal of the modular structure, it is called

the modular outline. Furthermore, this type of modular structure is called a monotone if

it does not include forward references. This monotone requirement is critical so that a

solver can progressively and effectively update model information on a single pass through

the modular outline. The acyclicity which is maintained via the elemental and generic

structure helps to determine this monotone ordering [Geoffrion 1987cJ.

In summary, the structured model is then an "elemental structure together with a

generic structure satisfying similarity and a monotone-ordered modular structure

[Geoffrion 1987c].

2.14 Condition Specification (CS)

There has been a recognized need for effective tools which will support model

specification and documentation. Nance [1977] suggests a Simulation Model Specification

and Documentation Language (SMSDL). An SMSDL would facilitate the construction of

the model specification, encourage model documentation, assist in bridging the comm uni­

cation gap between modeler and customer, and produce a precise, yet sufficiently general,

model description which is independent of existing simulation programming languages

52

[Barger 1986]. The CS is an SMSDL, suitable for use in a Model Management System

(MMS) [Nance et aL 1981], which produces a model specification that can be analyzed to:

• "detect potential problems with the specification"

• "assist in the construction of an executable representation of the model" and

• "construct useful model documentation." [Overstreet and Nance 1985]

The CS, attributed to Overstreet [1982], formalizes the time and state relationships

of the model by the use of a set of language primitives. The resulting formalism enables

the precise expression of the model's static and dynamic character and the separation of

the specification of the dynamics from that of the data. Furthermore, the CS provides a

representational foundation upon which additional analysis can be conducted for efficient

model implementation [Overstreet and Nance 1985]. The CS does not dictate the time

flow mechanism to be used in building the model. The following sections discuss the prin­

cipal components of the CS: the interface speczjication, the specification of model dynam­

ics, and the report speczjication. See [Overstreet and Nance 1985] for a complete descrip­

tion of the primitives which are used to describe and implement the above components.

Overstreet and Nance (1985] describe a Pascal-like form of the CS which does not

specify a complete syntax. This is not critical in that the CS may take other forms, as

long as these other forms define model behavior without ambiguity.

£.1.1.1 The Interface Specificat£on

The input and output attributes of the model are described within the interface

specification [Overstreet and Nance 1985]. These attributes completely specify the com­

munication or transmission links between the model and its surrounding environment.

53

The input and output attributes are identified in the specification by name and are typed

(input or output, and data type).

2.LI.2 The Specification of Model Dynamics

The specification of model dynamics [Overstreet and Nance 1985] consists of a set of

object specifications and a transition specification.

The object specification represents a complete listing of all objects (by variable

name) and the identification of all attributes for each object. A value range is given for

each attribute. The object specification must contain a "special" object, environment.

The environment object's attribute listing includes system time and any existing model

inputs.

The transition specification contains the description of model dynamics in the form

of condition and action pairs (CAPs). The condition portion of each CAP is simply a

Boolean expression "composed of standard operators, model attributes, and the special

sequencing primitives WHEN ALARM and AFTER ALARM" [Overstreet and Nance

1985]. The WHEN ALARM primitive allows the description of a determz"ned condition

(see Section 2.3). The AFTER ALARM primitive enables the specification of actions that

depend on a combination of time and other attribute conditions, in a compound condition

expression. Overstreet and Nance [1985J call these mixed conditions. Contingent condi­

tions are represented by Boolean expressions which do not utilize the WHEN ALARM and

AFTER ALARM primitives. The action in each CAP can be anyone or a combination of

the following five action types: changing attribute values, sequencing time, creating and

destroying objects, producing output, or terminating an instantiation of a specification.

Initialization and termination pairs must be included in the set of CAPs in the transition

54

specification.

£.L/..9 The Report Specification

The report specification is defined for the data output or results of model execution.

Overstreet and Nance [1985) do not prescribe a form or syntax for the report specification

but suggest that one could use CAPs as in the transition specification.

2.15 System Theoretic Approach (STA)

The STA [Zeigler 1976, 1984a] is an approach to model definition and specification

which contains the ability to identify the static and dynamic structure of the model, uni­

formity and strict hierarchy in the definition of the static structure, and the ability to

define a range set for variables of the model. The ST A is based on set theory and the sys­

tems modeling formalism and provides a comprehensive, yet general, model representa­

tion.

The system is the basis for model description and is "a collection of interacting com­

ponent systems" [Zeigler 1984a]. Since this is a recursive definition, hierarchical decom­

position of the model is possible. The incorporation of the ideas and principles of set

theory also allows abstraction in this approach.

A system model can be informally represented by describing its components, descrip­

tive variables, and component interaction8. Zeigler [1976] defines these as:

• components - "the parts from which the model is constructed"

• descriptive variables - "tools to describe the conditions of the components at points

in time" and

55

• component interactions - "the rules by which components exert influence on each

other, altering their conditions and so determining the evolution of the model's

behavior over time."

The following paragraphs summarize the STA and introduce its key concepts and termi­

nology [Zeigler 1976, 1984a].

2.15.1 Preliminary Concepts for Formal Model Specification

The definitions above can now be used to introduce a formal model representation.

Initially, we consider only models which are autonomous, having no input variables. The

descriptive variables make it possible to fully describe the condition or state of the model

at any given instant in time. A well-described model is one in which the descriptive vari­

ables at time t can determine those at time t' in the future. The state variables, a subset

of the descriptive variables which do not include the input variables, can be used to

accomplish this mapping without having to know the values of all descriptive variables.

Only values of the state variables need to be available at time t for all values of descrip­

tive variables to be computed (using the rules of component interaction) at future time t ' .

The rules of component interaction are represented by the state transition function,

0, and the output function, A. The arguments to 0 are the values of the state variables at

some time t which 0 maps to a corresponding list of values of the state variables at time

t'. The output function, A, then takes the results of 0 as its arguments and produces a list

of values for the output variables which may be the complete set of descriptive variables

or a subset of the same. The values of the output variables which are produced by A

represent the status of these variables at time t'. The output variables are those model

variables (from among the descriptive variables) which the modeler is interested in

56

tracking.

The state of the model at any time instant t can then be defined as a single list of

values, each value being determined (in accordance with the transition function) from the

range set of its corresponding state variable. In set notation, the cross product of these

range sets represents all possible model states. All possible model outputs can be

represented in a similar fashion. A single model output would therefore be a single list or

element of the cross product of the range sets of the output variables.

An ordered sequence of states (generated by model execution) can be mapped to a

corresponding sequence of associated times. This mapping is called the state trajectory.

An output trajectory maps a sequence of outputs to their associated times. The set of the

state trajectories and the set of output trajectories specify the state and output behavior

of the model.

With the consideration of input variables, "variables whose values are determined

externally to the model" [Zeigler 1976], the concepts and notation change slightly to

accomodate the case of nonautonomous models. However, the underlying principles

remain the same. Descriptive variables are now composed of the input and non-input

variables. When the values of the non-input variables at time t and the trajectory of

values of the input variables over some time interval t to t' can be used to derive the

values of the non-input variables at time t', the model is well described. As before, if this

mapping can be performed with only a subset of the non-input variables and their values,

then this subset is the set of state variables. The state transition and output functions are

no longer functions of a single variable. The state transition function, Ohl now maps state

a.nd input values at time t to state values at time t'. The output function, A, likewise

maps the resulting state values and the input values to output values at time t'. Zeigler

57

[1976], in describing these non autonomous functions, considers the time invariant discrete

event model, where the time interval t-t' is equal to h, some time constant. In other

words, time is stepped into the future at constant intervals rather than random intervals.

2.15.2 The Discrete Event System Specification (DEVS)

The formal specification derived thus far must now be changed to allow time to

increment according to the next-event method which is prevalent in discrete event

models. Zeigler [1976J refers to the time of the next event as its "hatching" time. DEVS

incorporates these needed changes.

The Discrete Event System Specification (DEVS) under the STA is a six-tuple made

up of INPUTS, STATES, OUTPUTS, 8, A, and ta when the system is made up of

input variables al,OZ, .. , an

state variables /31,/321' ., f3n

output variables '''Yt,''Y21 ... ,In

countdown clock variables O"h0"21"" O"n ..

Each element of the six-tuple is defined as follows:

• INPUTS a set ,the cross product of the range sets of the input variables

• STATES - a set, the cross product of the range sets of the state variables

• OUTPUTS - a set, the cross product of the range sets of the output variables

• 0 - a two-part state transition function

Oq, - function which maps model state at time t to model state at time t' where

t' is the model's next hatching time and where no external events occur.

58

bex - function which maps model state at time t and model input at time t+e

to the model state at time t+e where e time units from time t occurs before the

next hatching time t' .

•).. - output function to derive outputs

• ta - time advance function which maps a model state (call it 8) at time tj to the

model's next hatching time.

The countdown clock variables are a subset of the state variables and can be

represented at model time ti as a list of values, <71,(72) •.• ,<7n . The time

advance function derives the time interval to the next hatching time which is

simply the minimum value of the set of <7; where <7; is greater than or equal to

zero. Thus, the next hatching time is t;+ta(8).

The DEVS sets provide the static structure of the model. Model dynamic structure

is obtained via its functions. With DEVS, discrete event models can be formally specified.

DEVS is developed from a more general formalism, the Systems Modeling Formalism

[Zeigler 1984a]' which encompasses not only the discrete time base, but also a continuous

time base. Only DEVS is presented here since only the discrete event domain is con­

sidered.

CHAPTER 3

APPLYING THE CONCEPTUAL FRAlVIEWORKS

FOR MODELING

A TRAFFIC INTERSECTION

In this chapter, we apply each CF for modeling the Traffic Intersection (TI), shown

in Figure 3.11 located at the intersection of Price's Fork and Tom's Creek Roads in

Blacksburg, Virginia. A single traffic light with north, south, east, and west directions

controls vehicular traffic in each of the intersection's eleven lanes. The central intersec­

tion space is conceptually divided into thirty-five blocks through which the vehicles

travel. The blocks in a vehicle's path are used as locators for that vehicle as it moves

through the intersection and enable the representation of a smoothly flowing traffic pat­

tern.

Each CF under review has been illustrated in its corresponding section by construct­

ing (to varying levels of detail) a model of the traffic intersection (based on the system of

Figure 3.1) in accordance with the CF's concepts and principles. The CM CF application

is covered first since it provides a clear description and definition of the TI. This coverage

serves as a valuable reference to understanding the TI which is the basis for the subse­

quent CF representations of the model.

The TI was selected because it offers complexity of model component interaction

unlike that found in the usual textbook examples. Reviewing each CF in the context of

the TI exposes these CFs to a real world problem. Care is taken to be circumspect in

drawing conclusions from these CF applications under such a restricted domain. The

59

60

OIUROI

Prices Fork Rc1.

D

K L H I'f· t; <>
<:.1~

o 11(2f3 F I~
UllUIIUVUII/jj/jJlllllmlJ \ "',' ~
C!::~,. \ s R 4 ft, 6 I Q I G I tR)
€ ==> \ T \ U I 7 I 8 I 9 r V ~;lllll!llltlllHffl/tI/III!!t!I/j/Uumm(y alii.

€==¥ ~ I ----------

~ W X Y :--Z _____ ~
~~ces FO~KRd. . J

I ;---...
pel) • 123 I 311 - C.396

P(ZR). 40 / 188 • 0.213

P{5R). 45 / 235 • 0.192

P(llR). 33 / 266 - 0.124

Figure 3.1 Th T e raffic Intersection (TI) System

61

intent, however, is to develop a starting point for discussion by accomplishing a thorough

application under a single application domain. Future work under other domains is

needed.

3.1 Modeling the TI by using the OM

The following text is a definition of a Traffic Intersection Model using the eM out-

line.

Traffic Intersection Model (eM Representation)

I. Statement of Study Objectives

To compare current light timings with two other alternative ones to determine if

average vehicle waiting times can be reduced during "rush hour" traffic conditions

between 4:45 p.m. and 5:15 p.m.

A. Definitions

1.

2.

N

m

= n urn ber of lanes

= number of vehicles departing from lane j (j-l,2, ... ,N)

3. Arrival time = The time at which a vehicle joins the end of the waiting line or

the time at which the vehicle's front end moves across the first white line in the

lane.

4. Departure time = The time at which the vehicle's rear end clears the last white

line in the path of travel.

5. IAT
ij

= Interarrival time of the ith vehicle in lane j (i-l,2, ... ,m;j-l,2, ... ,N).

= Arrival time of the ith vehicle - Arrival time of (i-l)st vehicle in lane i

(i-l,2, ... , m; i-1,2, ... ,N).

62

6. Vehicle waiting time = Vehicle departure time - vehicle arrival time

7. w. j = Waiting time of the ith vehicle in lane i (i-l,2,. .. ,m;i-1,2, ... ,N)

8. WT
J

= Waiting time of all vehicles in lane j (i-1,2, N)

m

= EW
i-I IJ

9. E(W
J

) = Expected waiting time of vehicles in lane i (i-1,2, ... ,N).

m

=.1.. EW. = .1..wT
m i-I IJ m J

B . .Assumptions Regarding Objectives

1. There is no need to consider pedestrians, bicycles, and broken down vehicles

due to their negligible effect on the Tl's performance.

2. Light timing sequence is the root cause of excessive vehicle waiting times.

II. Modeling Environment

A. Modeling Effort

CM outline created to illustrate the CM and to describe the traffic intersection model.

1. Organization creating model, dates, etc.

Created by J. Derrick in December 1987. Revised in April 1988.

2. Scope of the effort in time and money

Completed in two man-weeks.

B. Model Assumptions

1. Boundaries

The system is bounded by the white intersection lines at the traffic intersec-

tion. Vehicles enter the system model by crossing the "entry" white line if

63

there is no queue at the corresponding light or by joining an existing lane

queue. Vehicles exit the system when departing the last block in the lane.

2. Interaction with Environment

a. Input Description

(1). Vehicle Interarrival Times

The vehicle interarrival times (UTi) at each lane follow distributions

which specify the input and which were determined from observation and

data analysis using UNIFIT - a distribution fitting software package­

by CS4150 Modeling and Simulation (Winter Quarter 1987) students.

The fitted distributions (by lane designation) follow.

• Joint (Lanes 1 and 2) - did not fit a known probability distribution.

Inverse transformation technique is used to generate random interar­

rival times from the cumulative distribution function in Appendix A.

• Lane 3 - GAMMA distribution

Location parameter = 0; Scale parameter = 51.248

Shape parameter = 1.25989; Mean = 64.5667

Variance = 3419.5

• Lane 4 - WE/BULL distribution

Location parameter = -0.01282; Scale parameter = 10.6646

Shape parameter = 0.82821; Mean = 11.7417

Variance = 192.766

• Lane 5 - same as Joint

64

• Lane 6 - EXPONENTIAL distribution

Mean = 54.6774 seconds

• Lane 7 WE/BULL distribution

Location parameter = 0; Scale parameter = 34.7083

Shape parameter = 0.86424; Mean = 37.3563

Variance = 1692.63

• Lane 8 WEIBULL distribution

Location parameter = 0; Scale parameter = 56.0592

Shape parameter = 0.63923; Mean 36.8298

Variance = 1756.41

• Lane 9 same as Joint

• Lane 10 same as Joint

• Lane 11 - same as Joint

(2). Lane Travel Times

Vehicle travel times (through the entire lane) were found to be uniformly

distributed for each lane but are held constant to the mean in the modeL

Depending on the number of blocks and their sizes, travel times are

specified by using appropriate ratios to the mean of each travel time dis­

tribution. For the purposes of the model, these travel times are attri­

buted to the blocks as block processing times. Note that right turn on

red is modeled.

• Lane 1

65

Observed Average Travel Time = 5.933 seconds

Designated Travel Path - I Y 8 4 0

Block Size Factor (13.1) - 3.3 3.4 1.4 2.5 2.5

Block Travel Time (ms) - 1495 1540 634 1132 1132

• Lane 2 (Straight)

Observed Average Travel Time = 4.873 seconds

Designated Travel Path - J Z 9 6 3 N D

Block Size Factor (14.6) - 2.8 2.8 1.4 1.9 1.4 2.1 2.2

Block Travel Time (ms) - 935 935 467 634 467 701 734

• Lane 2 (Right)

Observed Average Travel Time = 2.600 seconds

Designated Travel Path - J M

Block Size Factor (5.6) - 2.8 2.8

Block Travel Time (ms) - 1300 1300

• Lane 3

Observed Average Travel Time = 5.036 seconds

Designated Travel Path - G Q 6 8 X

Block Size Factor (12.8) - 2.9 2.9 1.4 2 3.6

Block Travel Time (ms) - 1141 1141 551 787 1416

• Lane 4

Observed Average Travel Time = 4.594 seconds

66

Designated Travel Path - F P 3 2 1 0

Block Size Factor (12.4) - 2.9 2.8 1.4 1.4 1.4 2.5

Block Travel Time (rns) - 1074 1037 519 519 519 926

• Lane 5 (Straight)

Observed Average Travel Time = 3.700 seconds

Designated Travel Path - E N H L K

Block Size Factor (11.5) - 2.9 2.9 1.4 1.4 2.9

Block Travel Time (rns) - 933 933 450 450 933

• Lane 5 (Right)

Observed Average Travel Time = 3.155 seconds

Designated Travel Path - E D

Block Size Factor (6) - 3 3

Block Travel Time (ms) - 1578 1577

• Lane 6

Observed Average Travel Time = 6.386 seconds

Designated Travel Path - C H 2 5 9 V

Block Size Factor (14.1) - 3.3 3 1.4 1.9 1.6 2.9

Block Travel Time (ms) - 1495 1359 634 860 725 1313

• Lane 7

Observed Average Travel Time = 4.852 seconds

Designated Travel Path - B L 1 4 7 X

67

Block Size Factor (14.5) - 3.2 3 1.4 1.9 1.4 3.6

Block Travel Time (ms) - 1071 1004 468 636 468 1205

• Lane 8

Observed Average Travel Time = 3.660 seconds

Designated Travel Path - A K

Block Size Factor (5.1) - 3 2.1

Block Travel Time (ms) - 2153 1507

• Lane 9

Observed Average Travel Time = 5.433 seconds

Designated Travel Path - S R 4 5 3 N D

Block Size Factor (13.8) - 2.7 2 1.4 1.7 1.7 2.1 2.2

Block Travel Time (ms) - 1063 788 551 669 669 827 866

• Lane 10

Observed Average Travel Time = 3.567 seconds

Designated Travel Path - T U 7 8 9 V

Block Size Factor (11.6) - 2.7 1.7 1.5 l.4 1.4 2.9

Block Travel Time (ms) - 830 523 461 431 431 891

• Lane 11 (Straight)

Observed Average Travel Time = 3.967 seconds

Designated Travel Path - W X Y Z M

Block Size Factor (10.5) - 3.2 1.5 1.4 1.4 3

Block Travel Time (ms)

• Lane 11 (Right)

68

1209 567 529 529 1133

Observed Average Travel Time = 2.733 seconds

Designated Travel Path

Block Size Factor (5.4)

Block Travel Time (ms)

(3). Selection Probabilitie8

W X

3.4 2

1721 1012

With a probability of 0.396 (123/311), a vehicle goes into lane 1.

With a probability of 0.604 (188/311), a vehicle goes into lane 2.

With a probability of 0.213 (40/188), a vehicle in lane 2 turns right.

With a probability of 0.787 (148/188), a vehicle in lane 2 goes straight.

With a probability of 0.191 (45/235), a vehicle in lane 5 turns right.

With a probability of 0.809 (190/235), a vehicle in lane 5 goes straight.

With a probability of 0.124 (33/266), a vehicle in lane 11 turns right.

With a probability of 0.876 (233/266), a vehicle in lane 11 goes straight.

69

(4). Current Light Timing Sequences

The following light timing sequence is determined from observed data.

Direction: North to South and South to North

green red red

[---------------] [=j [========================]

20 1 29

Direction: East to West

red red red green

[============] (] 1===:======1[--------------]

20 1 13 16

Direction: West to East -..::; ftp~J

red red green

================1 [=] [---------------,.~---------]

20 1 29 /

(5). Lane Capacity Requirements

Only 5 vehicles can wait in Lane 1 and only 5 vehicles can wait in lane 2.

This means that vehicles (which have arrived in the joint lane) must wait

at the head of the joint lane for available lane space in lane 1 or 2 as

appropriate.

(6). Intersection Clearance Checks

The model simulates an intersection clearance check for all vehicles turn­

ing left into oncoming traffic (lanes I, 3, 6, and 9). In addition, an inter­

section clearance check is made prior to entering the intersection. This

70

check is made beyond the normal checks for vehicles waiting to enter the

intersection (i.e., light green [or red if turning right], and first block free).

Vpon a change of light from green to red, this intersection check is only

made by the first vehicle in lanes 1, 2, 6,7,8,9, 10, or 11 that enters the

intersection at that time. Vehicles in lanes 3, 4, and 5 do not make this

intersection clearance check on a light change to green since west to east

traffic (with a leading green) has already checked the intersection clear.

All vehicles turning right on red must check the intersection clear before

proceeding. The following clearance check requirements were followed:

(a). Left Turn Clearances

A vehicle in lane 1 (upon reaching block 8) must check that blocks 4,

1, L, and B are empty before turning left.

A vehicle in lane 3 (upon reaching block 6) must check that blocks

T, V, 7, 8, W, X, and Yare empty before turning left.

A vehicle in lane 6 (upon reaching block 5) must check that blocks 9

and Z are empty and that block J cannot be occupied by a lane 2 vehicle

going straight before turning left.

A vehicle in lane 9 (upon reaching block 5) must check that blocks 2,

3, P, F, N, and E are empty before turning left.

(b). Intersection Entry Clearances

The first vehicle to enter the intersection from lanes 1, 2, 6, 7, or 8

after the light has just turned green must check that blocks L, H, N, 1, 2,

3, P, F, S, R, 4, 5,6, Q, G, T, V, 7, 8,9, Y, and Z are empty AND block

71

E is not occupied by a lane 5 vehicle before entering the intersection.

The first vehicle to enter the intersection from lanes 9, 10, or 11

after the light has just turned green must check that blocks B, L, 1, 4, 7,

C, H, 2, 5, 8, Y, I, 6, 9, and Z are empty AND that block J is not occupied

by a lane 2 vehicle going straight.

(c). Right Turn Clearances

A lane 2 vehicle wishing to turn right on red must check that blocks

J, Z, and Yare empty AND that blocks X and Ware not occupied by a

lane 11 vehicle going straight.

A lane 5 vehicle wishing to turn right on red must check that blocks

E, N, 3, 6, and Z are empty and that blocks 9 and J are not occupied by a

lane 2 vehicle going straight.

A lane 8 vehicle wishing to turn right on red must check that blocks

A, K, L, H, and N are empty and that block E is not occupied by a lane 5

vehicle going straight.

A lane 11 vehicle wishing to turn righ t on red must check that

blocks W, B, L, 1, and 7 are empty and that block 4 is not occupied by a

lane 7 vehicle going straight.

b. .Assumptions on Model/Environment Feedback or Effects

(1) The system boundary does not include adjacent intersections. Cross

effects may be observed in the model due to potential interaction during

the "rush-hour" period.

72

(2) Random number generator seeds are strictly controlled during each repli­

cation to ensure that comparison of results using alternative light

sequences will be valid.

c. Output and Format Decisions

The performance measures (Average Waiting Time in Lane j) with desig­

nating titles are given as output. In addition, the model constructs

confidence intervals (of these performance measures) which are also pro­

vided.

3. Initial State Definition

The initial state definition includes:

No vehicles in system.

Light colors are north-south (green), east (red), and west (red).

4. Simulation Termination Conditions

The simulation is effectively terminated for each run based on the number of

replications desired and the number of vehicles to be processed. For a given

light sequence, the model conducts a certain number (say x) of replications.

Each replication warms up the system by processing a certain number of vehi­

cles (say y) which specifies a transient period. Following the transient period,

the steady state period for each replication is based on the processing of an

additional number of vehicles (say z). The values of x, y, and z are prescribed

by the input.

III. Model Definition

A. Model

73

1. Sets: None

2. Indicative Attributes

System time: temporal transitional indicative

Units: 1/1000 seconds

Maximum number of departures from system in transient period: permanent

indicative, with value assigned at system time = zero.

Maximum number of departures from system in steady-state: permanent indica­

tive, with value assigned at system time = zero.

Number of departures from system in transient period: temporal transitional

indicative

Number of departures from system in steady-state: temporal transitional indica­

tive

Units (all departures): Integer, Number of vehicles

Number of model replications: permanent indicative, with value assigned at sys­

tem time = zero.

Number of Lanes: permanent indicative, with value assigned at system time =

zero.

Units: Integer

3. Relational Attributes: None

B. Submodels.

1. Vehicle Submodel

a. Sets

Set of vehicles (dset) served in lane j (i-1,2, ... ,N)

74

h. Indicative Attributes

Waiting tz'me of vehicles in lane j, WT; (i-1,2, ... ,N): temporal transitional

indicative

Units: seconds

Total waiting h'me of vehicles in lane j (i-1,2, ... ,N): permanent indicative,

with value = WT. assigned when number of departures from system in
J

steady-state = Maximum number of departures from system in steady-

state.

Units: seconds

Number of vehicles departing from lane j, m (i-1,2 ,N): temporal transi-

tional indicative

Total number of vehicles departing from lane j (i-1,2, ... ,N): permanent indi-

cative, with value = m assigned when number of departures from system in

steady-state = Maximum number of departures from system in steady-

state.

Expected waiting time of vehicles in lane j, E(Wi) (i-1,2, ... ,N): permanent

indicative, with value assigned when number of departures from system in

steady-state = Maximum number of departures from system in steady-

state.

Units: seconds

c. Relational Attributes: A reference mechanism is necessary for the set of

vehicles served in lane i (i-1,2,. .. ,N).

(1). Base level of vehicle submodel: Each vehicle is an object.

75

(a). Sets: members of the set of vehicles served in lane i (i-1,2, ... ,N).

(b). Indicative Attributes

Waiting time: permanent indicative, with value assigned at

time of vehicle's departure from system.

Arrival time: permanent indicative, with value assigned at time

of vehicle's arrival to system.

Direction of movement (right or straight): permanent indica­

tive, with value assigned at vehicle's arrival to system.

Lane identifier (Lane number): permanent indicative, with

value assigned at vehicle's arrival to system.

(c). Relational Attributes: Each vehicle has membership in the set

of vehicles served in lane i (i-1,2, ...• N).

2. Light Submodel (Base Level): The light is an object.

a. Sets: None

b. Indicative Attributes

Sequence duration (for a particular color): permanent indicative, with

value assigned at system time = zero.

Units: seconds

Direction (North-south, West, East): permanent indicative, with value

assigned at system time = zero.

Direction color (red, green): status transitional indicative

c. Relational Attributes: None

3. Intersection Submodel

76

a. Sets: A reference mechanism is necessary for the set of blocks which form

a path through the intersection for the vehicle in lane j (i-1,2, ... ,N).

b. Indicative Attributes

Clear for left turn: status transitional indicative

Clear for entry: status transitional indicative

Clear for rt"ght turn: status transitional indicative

Number of Blocks: permanent indicative, with value assigned at system

time = zero.

c. Relational Attributes: None

(3). Block (Base Level): The block is an object.

(a). Sets

Set of blocks (dset) which define a vehicle path from lane j

(i-1,2, ... ,N)

(b). Indicative Attributes

Processing time for vehicles which transit the block: permanent

indicative, with value assigned at system time = zero.

Units: seconds

Identifier: permanent indicative, with value assigned at system

time = zero.

Statu8 (busy 1 idle): status transitional indicative

In use by (Transiting Vehicle identifier): status transitional

indicative

(c). Relational Attributes

77

Each block is a member in the set of blocks which define a vehi­

cle path from lane j (i-1,2, ... ,N)

3.2 The ES CF Application

The SIMSCRIPT [Kiviat et al. 1983; CAOI 1983] Simulation Programming

Language (SPL) is used to demonstrate the ES CF. Although the later versions of SIM­

SCRIPT allow the development of models based on the PI CF, such features are not

included and thus a pure ES CF model is obtained. Since SIMSCRIPT is an SPL, it pro­

vides ease of event manipulation of the events list, (including stochastic scheduling by

common probability distributions) and built-in statistical collection methods. This sec­

tion includes a detailed discussion of

• the SIMSCRIPT preamble in which the appropriate declarations of model program

variables and components are given,

• the Event Routines, the most singularly distinguishing features of an ES CF,

and a brief discussion of

• the SIMSCRIPT main routine, the controlling executive of this ES CF model, and

• the statistics output of the model.

9.2.1 The Preamble

The preamble, portions of which are shown in Figure 3.2, gives a clear indication of

some of these above mentioned features. The event notices (for those event routines which

are provided as coded procedures in the body of the program) are declared in the pream­

ble. Event notice declarations may include the specification of any arguments that will be

78

preamble
1 event notices include
2 turn.ns.red and turn.ns.green and turn.west.green
3 and turn.east.green "Event arguments include:
4 every departure has a out.vehicle " outgoing car
5 every arrival.blockd has a moving.car.d II incoming car to block
6 every arrival.blockh has a moving.car.h
7
8 every arrival.blockz has a moving.car.z
9 every arrival.blockl has a moving.car.l
10
11
12
13
14
15
16
17

every arrival.block9 has a moving.car.9
every turning. left has a left.moving.car
every enter has a in. vehicle

"Car making turn
"Car entering intersection
"Car arriving lane every arrival. joint has a incoming.carl2

every arrival.lanel has a incoming.carl

every arrival.lanell has a incoming.carll

18 normally, mode is integer
19 permanent entities
20 every light has a ns.color, a west.color and a east.color
21 every block has a status, a laneuser, a turner and owns a block.queue
22 every lane owns a lane.queue
23
24 temporary entities
25 every car has an arrtime, a laneid,an id and a to. right

and may belong to a block.queue
and may belong to a lane.queue
and may belong to a turn. queue

26 define arrtime as a real variable

27 The system has a deps.in.ss, "departures in steady state
28 a length.of.tp, a length.of.s8, "lengths: transient, S8 pds.
29 a deps.fm.l, a deps.fm.2, a deps.fm.2r, ' 'departure variables/lane
30
31 a wait.in.l, a wait.in.2, a wait.in.2r,"waiting times/lane
32
33
34
35
36
37
38
39
40
41
42

a numrng , a numruns ,
a clearedns , a clearedwe,
a counter, a debug, an if
a gen.1.2 random linear variable,
a gen.5 random linear variable,

define wait.in.1 as a real variable
define wait.in.2 as a real variable
define wait.in.2r as a real variable

43 define expon as real fortran function
44

"num of rn generators, runs
"boolean, intersection clear
"utility variables
"variables for inverse
II transformation variate gen

"type definitions
" and various index assign­
II ments.

45 tally mean.wait.in.1 as the mean of wait.in.1
46 tally mean.wait.in.2 as the mean of wait.in.2
47
48 end

Figure 3.2 Portions of SIMSCRIPT Preamble from ES CF Application

79

required for the event routines (e.g., out.vehicle as an argument to event departure in

line 4). Notice declarations are included for event routines, for example, that represent

the changing of the color of the light (e.g., turn.ns.red), departures from the intersection

(departure), arrivals to the intersection blocks (e.g., arrival.blockd), entrance to the

intersection transit area (enter), and arrivals to the lanes (e.g., arrivaI.lanel). The

preamble identifies the permanent entities of the model (e.g., the light, the blocks, and

the lanes, in lines 19-22) and the temporary entities (the vehicles or cars, line 25). Use­

ful attributes are also declared for these model entities or objects. External functions are

identified in the preamble. An example of this, shown in line 43, is expon, an external

Fortran function. The tally key words (lines 45,46) provide the ease of calculating the

mean waiting times of vehicles in each lane for this model.

9.2.2 The Event Routines

In this section, we discuss the principal event routines which are included in the ES

OF application to the TI,

• Light color changes,

• Lane arrivals,

• Vehicle departure,

• Vehicle entrance to the intersection, and

• Block arrivals.

In accordance with the discussion in Section 2.3, the events associated with the changing

of -the light color (as well as the lane arrival and departure events) are determined events.

The events which consider vehicle entrance to the transit area and arrival to the indivi-

80

dual blocks are contingent events in that they depend on conditions of light color (in the

case of the "enter" event), etc., and on the availability of the block for an arrival (Le., Is

there a vehicle already in that particular block?).

Figure 3.3 shows the turn.ns.green event routine which represents the state change

of the north-south direction of the light to the green color. As mentioned, this is a deter­

mined event in that the timing of the light color changes can be predetermined. Note

that on line 12 this event also includes the bootstrapping of the next color change, accom­

plished by the use of the SIMSCRIPT schedule primitive. Use of the "schedule" primi­

tive places an event notice on the event list at its appropriate ordered position. Here, the

state change of the north-south direction of the light to red (by the "turn.ns.red" event

routine) is scheduled in 20 seconds.

In general, the "turn.ns.green" routine includes statements which demonstrate how

vehicle movement into the intersection transit area is managed, but more importantly, it

clearly shows the complexity of interaction among event routines that is discussed in Sec­

tion 2.3. Pidd [1984] states that the event routine must identify all possible actions that

can occur as a result of the state change associated with the event. The identification of

contingent events which result from the state change makes the programming task

difficult for the modeler, especially when the system being modeled is as com plex as the

TI.

The state change of the "turn.ns.green" event is accomplished by the assignment

statements in lines 1,2 and 3. Note also that line 4 sets a control variable, clearedwe, to

false. This indicates that the intersection must be re-cleared for vehicles to enter the

intersection from east-west directions. (See Section 3.1 for a full description of the condi­

tions that are necessary for determining entrance to the intersection.) Lines 5 through 11

81

"**
I 'DESCRIPTION: Event TURN.NS.GREEN; Sets nSf east, and west light , ,
I I

I ,

, ,

direction colors; schedules turn.ns.red during run, otherwise
sets ns color red blocking intersection with all red. This
will clear intersection, prevent further entries, and end run.
Also sets west-east clearance flag to false.

, I

"ATTRIBUTES: None , ,
"INPUT(S) : None
, I

"OUTPUT(S): Light attributes of color are set. , ,
"CALLS test.entry for all north-south lanes, and east-west right
II right turning lanes.
"CALLED BY: None, scheduled by turn.east.green.
"***;
event turn.ns.green
1 let ns.color(1) - green "Set color attributes
2 let west.color(l) = red
3 let east.color(l) = red
4 let clearedwe - false "Set clearance flag to False
5 call test.entry.9.to.l1(11,lanell,block.w)
6 call test.entry.34S(S,laneS,block.e)
7 call test.entry.12(1,lane1,block.i) "Test various entries
8 call test.entry.12(2,lane2,block.j)
9 call test.entry.678(6,lane6,block.c)
10 call test.entry.678(7,lane7,block.b)
11 call test.entry.678(8,lane8,block.a)
12 if deps.in.ss (= length.of.ss "Schedule next light change

schedule a turn.ns.red in 20 seconds
13 else

let ns.color(l) - red "Block intersection
14 always
15 end

Figure 3.3 Event TURN.NS.GREEN

82

are calls to user-defined routines (test.entry) that identify the possible actions that

might follow from the state change. Figure 3.4 is one such "test.entry" routine that

determines if vehicles can enter from lanes 6, 7, or 8. If conditions for entry are met, then

the "enter" event routine, a contingent event, is immediately scheduled. Checking all

actions that can occur following a state change can, therefore, be a quite tedious and

error-prone task.

Figures 3.5 and 3.6 give examples of other determined event routines, a lane arrival

routine and the departure routine. The arrival.lanel event routine of Figure 3.5 demon­

strates the scheduling of future arrivals and the prevalent complexity of interactions

among events. Conditions may permit an entrance to the intersection immediately after

arrival to lane 1. In any case, a new arrival can be scheduled. The departure event rou­

tine, Figure 3.6, includes the calculation of important statistical information (e.g., lane

waiting times) and frees the last block that was transited by the departing vehicle with

the user .. defined releese routine (e.g., lines 25, 28, or 30 of Figure 3.6).

Contingent events enter and a block arrival routine, arrival.blockd, are shown in

Figures 3.7 and 3.8. These events in turn may result in other instances of contingent or

determined events. The issue of complexity in interaction is again demonstrated.

9.2.9 The Simulation Executive or Main

Figure 3.9, the SIMSCRIPT main routine, is the executive that controls the execu ..

tion of the simulation. The initialization of variables, seed values and associated matrices,

and the input of variate generation data and the creation model objects are accomplished.

The method of replications is performed using a looping construct (line 12), looping on

the number of desired runs or replications. The initial vehicle arrivals are generated

83

"**
"DESCRIPTION: Routine TEST.ENTRY.678; Checks conditions for entry from
" Lanes 6,7,and 8.
I ,

"ATTRIBUTES: None
I I

"INPUT(S) Lane and queue id's of waiting cars,
II and first block into intersection from their lane

are passed as arguments.
, I

, 'OUTPUT,S) When conditions are right, entry is scheduled. , ,
I I CALLS None , ,
"CALLED BY Turn.ns.red, turn.ns.green, various arrival.block routines.
,,** ******************i
routine test.entry.678(lane.num,queue.id,first.block)
1 select case lane.num
2 case 6,7
3 if lane.queue(queue.id) is not empty then

"There are cars waiting to enter from lane.num
4 if «ns.color(tfclight) - green) and (status(first.block) = idle)

and «intersection(ns) = idle) or (clearedns = true»)
"Conditions satisfied, remove car at head of waiting queue
Iland schedule that car for an enter event.

S remove the first waiting.car from lane.queue(queue.id)
6 schedule an enter given waiting.car now
7 always
8 case 8
9 if lane.queue(queue.id) is not empty then

"There are cars waiting to enter from lane 8 that may enter
"a green light or on a red (right turn) if conditions are right.

10 if «(ns.color(tfclight) - green) and (status(first.block) - idle)
and «intersection(ns) = idle) or (clearedns = true») or
«ns.color(tfclight) = red) and
(to.right(f.lane.queue(queue.id» = true) and
(status(first.block) - idle) and (right.ok(queue.id) = true»)
"Conditions satisfied, remove car at head of lane 8 queue
"and schedule that car for an enter event.

11 remove first waiting.car from lane.queue(queue.id)
12 schedule an enter given waiting.car now
13 always
14 default
15 endselect
16 return
17 end

Figure 3.4 User-defined Routine TEST.ENTRY.678

84

"**
"DESCRIPTION: Event ARRIVAL.LANE1; Car is moved as far as it can go ...
" into lane1 or on into intersection. Also a check is included
II for cars waiting in the joint lane to see if any of these cars
" can be moved into lane1 or 2 (within capacity of 5 limitations). , ,
"INPUT(S) Incoming car, arriving to lane 1 , ,
"OUTPUT(S): Car is appropriately transferred to next destination.
1 1

, 1 CALLS None , ,
"CALLED BY: Test.entry.12 and self
"** *****************;
event arrival.lane1 given carl
1 if lane.queue(lane1) is not empty
2 file carl in lane.queue(lane1)
3 else
4 if «ns.color(tfcllght) = red) or

«intersection(ns) = busy) and
file carl in lane.queue(lane1)

else

1 'Must stop in lane 1

"Check for entry to inters.
(status(block.i) = busy) or
(clearedns = false»)

1 'Entry not possible 5
6

7 schedule an enter given carl now "OK, enter intersection
8 always
9 always
10 if lane.queue(joint) is not empty "Check for cars in joint
11 if «laneid(f.lane.queue(joint» = 1) and "Find lane1 car

(n.lane.queue(lane1) < 5»
12 remove first joint.car from lane.queue(joint)
13 schedule an arrival.lane1 given joint.car now
14 else
15 if «laneid(f.lane.queue(joint» 2) and "Find lane2 car

(n.lane.queue(lane2) < 5»
16 remove first jOint. car from lane.queue(joint)
17 schedule an arrival.lane2 given joint.car now
18 always
19 always
20 always
21 end

Figure 3.5 Event ARRIV AL.LANEI

85

"** ******************
I 'DESCRIPTION: Event DEPARTUREi Depending on the transient and steady-
" state durations, and on the laneid of the departing car,
" the waiting time of the car is determined and accumulated into
" the overall waiting time for that lane. Also in some cases , the
" last block in the departing car's path is released.
, I

"INPUT(S) : The departing car is passed to the event.
I ,

I'OUTPUT(S): Performance measure variables are updated, some blocks are
" released.
I I CALLS releese
I I

I 'CALLED BY: None, scheduled by arrival.block events (end path blocks).
"** *****************;
event departure given a.car
1 if length.of.tp > 1
2 length.of.tp - length.of.tp - 1
3
4
5
6

7
8

9

else
if length.of.tp 1

length.of.tp = 0
else

deps.in.ss - deps.in.ss + 1
if deps.in.ss (= length.of.ss

select case laneid(a.car)
10 case 1

"Decrement transient pd
" counter, nothing else

"Decrement tp once more

"Now into steady-state pd.
"Keep track of deps in ss
"Calculate waiting times if
II during steady-state pd.

11 wait.in.l = time.v - arrtime{a.car)
12 case 2
13 if to.right(a.car) = true
14 wait.in.2r = time.v - arrtime(a.car)
15 else
16 wait.in.2 time.v - arrtime(a.car)
17 always

18 default
19 endselect
20 always
21 always
22 always
23 select case laneid(a.car)
24 case 1
25 call releese(block.o)
26 case 2
27 if to.right(a.car) = true
28 call releese(block.m)
29 else
30 call releese(block.d)
31 always

32 default
33 endselect
34 destroy the car called a.car
35 end

Figure 3.6 Portions of Event DEPARTURE

86

,'**
"DESCRIPTION: Event ENTER; Depending upon where the intersection is
II entered, the first block is setbusy and an appropriate arrival
" to the next block 1s scheduled. , ,
"INPUT(S) : The entering car is passed to the event. , ,
"OUTPUT(S): The car is moved into the first block of the intersection
" and the next block arrival for the car is scheduled.
"CALLS
, I

setbusy

"CALLED BY: various test.entry routines, various arrival.joint/lane
1 , events.
"** *****************;
event enter given a.car
1 select case laneid(a.car)
2 case 1
3 call setbusy(block.i, a.car)
4 schedule an arrival.blocky given a.car in 1.495 seconds
5 case 2
6 call setbusy(block.j, a.car)
7 if to.right(a.car) = true
8 schedule an arrival.blockm given a.car in 1.300 seconds
9 else
10 schedule an arrival.blockz given a.car in 0.935 seconds
11 always
12 case 3
13 call setbusy(block.g, a.car)
14 schedule an arrival.blockq given a.car in 1.141 seconds
15
16 case 8
17 call setbusy(block.a , a.car)
18 schedule an arrival.blockk given a.car in 2.153 seconds
19 case 9
20 call setbusy(block.s l a.car)
21 schedule an arrival.blockr given a.car in 1.063 seconds
22 case 10
23 call setbusy(block.t, a.car)
24 schedule an arrival.blocku given a.car in 0.830 seconds
25 case 11
26 call setbusy(block.w, a.car)
27 if to.right(a.car) = true
28 schedule an arrival.blockx given a.car in 1.721 seconds
29 else
30 schedule an arrival.blockx given a.car in 1.209 seconds
31 always
32 default
33 endselect·
34 end

Figure 3.7 Portions of Event ENTER

87

"** ******************
"DESCRIPTION: Event ARRIVAL.BLOCKD; Checks block for availability;
" If not available, put car in block queue, else ...
" set block busy, release appropriate blocks or setidle;
" If event is for arrival to first block in path, do appropriate
II test.entry check; if last block, schedule departure;
" If block impacts any clearance check (intersection entry, right
" turn, or left turn) do appropriate test.entry or test.left.
I I

"INPUT(S) : Arriving car is passed to event.
I ,

I'OUTPUT(S): As indicated in above description.
I ,

, I CALLS Various test.entry, test.left, turning. left routines
, I (as applicable), as well as setbusy, setidle, releese.
, 'CALLED BY: For first blocks, sched. by enter event; If block after
, I

I ,

a turn, sched. by turning. left event; Typically scheduled by
the arrival.block event for the block preceding it in the path

"** *****************;
event arrival.blockd given a.car
1 if status(block.d) = busy
2 file a.car in block.queue(block.d)
3 else
4 call setbusy(block.d,a.car)
5 select case laneid(a.car)
6 case 2
7 call releese(block.n)

"Block is busy, queue up

"Block available so
" set block busy

1 'Lane 2 car
" free block n, test.entry,
" and sched departure.

8
9

call test.entry.345(S,laneS,block.e)
schedule a departure given a.car in 0.734 seconds

10
11

case 5
call setidle(block.e)

"Lane 5 car
" free block e, test.left
" for lane9, test. entry, and
" sched a departure

12 call test.left(from.9 , lane9, block.3)
13 call test.entry.345(5,lane5,block.e)
14 schedule a departure given a.car in 1.577 seconds
15 case 9 "Lane 9 car
16 call releese(block.n) " free block n, test.left

II for lane9, test.entry, and
II sched a departure

17 call test.left(from.9,lane9,block.3)
18 call test.entry.12(1,lane1,block.i)
19 call test.entry.12(2,lane2,block.j)
20 call test.entry.678(6,lane6,block.c)
21 call test.entry.678(7,lane7,block.b)
22 call test.entry.678(8,lane8,block.a)
23 schedule a departure given a.car in 0.866 seconds
24 default
25 endselect
26 always
27 end

Figure 3.8 Event ARRIV AL.BLOCKD

88

"**
"DESCRIPTION: Main; Performs initializations, schedules initial
" arrivals, starts the simulation, tallies statistics. , ,
"ATTRIBUTES: None
, I

"INPUT(S) : Cumulative distribution data, lanes 1,2,5,9,10,11. , ,
"OUTPUT(S): Statistical data, average waiting times per lane.
I ,

"CALLS buildseeds, load.seeds, make.objects, statistics,
" init.run, setup.next.run, load.stats
"CALLED BY: None
"***;
main
1 call init.run
2 call build.seeds(numrng,numruns) yielding seed.matrix(*,*)
3 release seed.v(*) "Setup seeds for use
4 call load.seeds(numrng,l) yielding seed.v(*)
5 reserve lane1.matrix(*), lane2.matrix(*), lane2r.matrix(*),
6 lane3.matrix(*), lane4.matrix(*), laneS.matrix(*),
7
8
9
10
11
12

read gen.1.2

call make.objects
call set.output
for i = 1 to numruns

"Read input data

"Loop for replications
13 do
14
15
16
17

18
19
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
3S
36
37

create a car called car12
create a car called car3

"Create initial car for ea
" lane.

end

schedule a turn.ns.green now "Start light sequence
"Sched initial arrivals

arrival. joint given car12 in gen.1.2 seconds schedule
schedule
schedule
~chedule

schedule
schedule
schedule
schedule
schedule

an
an
an
an
an
an
an
an
an

arrival.lane3 given car3 in gamma.f(64.5667,1.25989,S) seconds
arrival.lane4 given car4 in weibull.f{0.82821,10.6646,6) seconds
arrival. laneS given car5 in gen.S seconds
arrival.lane6 given car6 in expon(54.6774,seed.v{9» seconds
arrival.lane7 given car7 in weibull.f(0.86424,34.7083,10) seconds
arrival.lane8 given car8 in weibull.f(0.63923,56.0592,11) seconds
arrival.lane9 given car9 in gen.9 seconds
arrival.lane10 given carlO in gen.10 seconds

schedule an arrival.lane11 given carll in gen.11 seconds
start simulation
call load.stats(i) "Load perf. measure arrays
call setup. next. run
if i < numruns "Load seeds for next run

release seed.v(*)
call load.seeds(numrng, i+1) yielding seed.v(*)

always
loop
call statistics(numruns) "Output data

Figure 3.9 Portions of SIMSCRIPT Main Routine

89

using the SIMSCRIPT defined distribution functions or the user-defined functions in lines

18-27. Statistical information is included in the output of the model following the comple­

tion of all replications. The start simulation statement at line 28 begins the execution

of event routines for which there are notices on the event list. The processing of the

event list is automatically performed and continues until there are no further notices on

the event list.

9.2.4 The Statistical Output

The statistical output, Figure 3.10, is called at the end of the simulation. The mean

waiting time of all vehicles that have departed a particular lane have been recorded in

matrices where the name of the matrix indicates the lane of interest. In this way, the

performance measures of the simulation study are produced. Figure 3.11 shows an exam­

ple of the output(s) from a model execution of three replications.

3.3 The AS CF Application

Activity Cycle Diagrams (ACDs) which are discussed below are used to introduce the

application of the AS CF to the TI. Due to the complexity of the TI with its large number

of cooperating entities (transiting cars and intersection blocks, in particular), a single

ACD which incorporates all these interrelations could not practically fit within the space

limitations of this thesis. Therefore, selected portions of the ACD for the TI are provided

which should lead one to an understanding of the complete ACD and to an appreciation

of its complexity.

Following the selected ACDs, the activity descriptions which are suggested by these

ACDs are given in a Pascal-like pseudocode. The scope of coverage is restricted once

90

,,**
"DESCRIPTION: Routine STATISTICS; Displays the performance measures,
" the average waiting times for the cars in each lane ... and
" displays the confidence interval calculations.
, I

"INPUT(S) number of replications is passed in to routine. , ,
"OUTPUT(S): Performance measures of study
, I

, 'CALLS None
I I

"CALLED BY: main
1'***;
routine statistics(numruns)
1 define i as an integer variable
2 use 7 for output
3 for i 1 to numruns
4
5

do
print 1 line with lane1.matrix(i), lane2.matrix(i),

lane2r.matrix(i), 1ane3.matrix(i), lane4.matrix(1), and
lane5.matrix(i) thus

.* ***.**** ***.**** ***.**** ***.**** ***.****
6 loop
7 use 8 for output
8 for i 1 to numruns
9 do
10 print 1 line with lane5r.matr1x(i), lane6.matrix(i),

lane7.matrix(i), lane8.matrix(1), lane9.matrix(i), and
lane10.matrix(i) thus

.* ***.**** ***.**** ***.**** ***.**** ***.****
11 loop
12 use 9 for output
13 for i-I to numruns
14 do
15 print 1 line with lanel1.matrix(i) and lanellr.matrix(i) thus

*** **** ***.****
16 loop
17 use 6 for output
18 return
19 end

Figure 3.10 User-defined Routine STATISTICS

91

6
Average waiting time in lane 1
Average waiting time in lane 2 (str)
Average waiting time in lane 2 (rt)
Average waiting time in lane 3
Average waiting time in lane 4
Average waiting time in lane 5 (str)

20.1405 17.6129 11.5898 20.2876 18.2098 18.2914
20.2678 17.2750 10.9285 20.1956 18.6365 18.0423
20.4581 17.6032 11.3787 19.8717 18.3187 18.4496

6
Average waiting time in lane 5 (rt)
Average waiting time in lane 6
Average waiting time in lane 7
Average waiting time in lane 8
Average waiting time in lane 9
Average waiting time in lane 10

14.2450 19.8322 16.3817 5.8213 13.0041 10.0023
13.1426 20.3903 16.2367 5.7599 13.1836 9.7661
13.1975 19.7866 16.6054 5.8273 13.3474 10.0401

2
Average waiting time in lane 11 (str)
Average waiting time in lane 11 (rt)

11.6745 8.3365
11.8405 8.4285
11.6309 8.3136

Figure 3.11 Output of Three Replications from SrMSCRIPT Model

92

again due to the large number of activity descriptions which would be necessary in a com­

plete representation of the AS CF for the TI. Therefore, only a representative sampling

of activity descriptions (as described below) are given. A more comprehensive listing

(names only) of the possible activity descriptions in a complete representation is shown,

however, to indicate this complexity. The activity descriptions which correspond to the

"given" ACDs and which deal with Lane 1 car entities and their associated model com­

ponents are covered to provide the necessary link in comprehension from the ACD to a

possible implementation. The limited coverage of activity descriptions is sufficient for the

purposes of this thesis.

The selected ACDs, their associated activity descriptions, and the previous discus­

sion of the AS CF combine to demonstrate the essential concepts of the AS CF.

9.8.1 Activity Cycle Diagram8

The Activity Cycle Diagram (or ACD) has been proclaimed to be a useful tool in the

representation of simulation models in a way which is understandable to managers and

programmers alike. The ACD is most often associated with the AS CF. However, it has

been claimed to be more generally applicable [Pidd 1984]. This brief description of the

ACD is a concise summary of the discussions of Pidd [19841, Hutchinson [1975], and

Mathewson [1974}. ACDs are attributed to Tocher [1966]. Related terms include entity­

cycle diagrams, wheel chart8 or wheel-cycle diagram8, entity- activity diagram8, and

HOCUS diagrams. O'Keefe and Davies [1987] suggest a slight variation called an activity

flow diagram. Tocher [1963] illustrates some general simulation problems with the

diagrams but the diagrams and their usage were apparently not popularized until a few

years later.

93

According to Pidd [1984], the ACD can graphically represent the interactions of the

entities of a model at a high level. When using the ACD, one must identify the entities of

the model, the activities in which each participates, and how the entities and their activi­

ties relate to one another. In a sense, a graphical life history of each entity and their

interactions as a whole are provided. A precise specification of the details of these

interactions is often not shown, however. The diagram serves as a starting point in the

design process which can be further refined (into other forms) as necessary. Hutchinson

[1975] states that a "completed" ACD includes activity durations in time units, queue dis­

ciplines to be followed (FIFO, etc.), and the starting conditions of the model. In practice

it seems, however, that such details of ACD representation vary from modeler to

modeler. This review covers only the most widely used and basic components of the

ACD.

The principal components of an ACD are the active and dead state symbols. The

active and dead states could be conveniently referred to as busy and idle states and are

represented by squares and circles, respectively.

An active state describes an activity of an entity in which there is cooperation with

another model entity or entities. In addition, the active state may only require one entity

[Hutchinson 1975]. The duration of the active state can be determined in some way,

perhaps from a suitable probability distribution. A dead state is a period of unknown

duration during which the entity is waiting for some condition(s) to hold. Before an

entity can proceed into an active state from a dead state, all necessary cooperating enti­

ties for the upcoming active state must be available. Dead states are most often

represented as queues. No activity occurs in the dead state since the entity does not

experience any changes of state in this waiting condition. Mathewson [1974] discusses two

94

particular dead states (beyond those already mentioned) which have additional symbols.

The infinity queue represents an infinite source or sink from which entities may be taken

for entrance to the system or to which they may be returned upon exit from the system.

A flag indicates a queue of entitities for which the queue discipline is of no interest. Thus,

the ordering of entities is not maintained by a flag. Instead, the flag is simply a counter

which registers the total number of entities which occupy the queue. Two dead states,

touching side-by-side, so as to form the familiar infinity symbol, are used to represent the

infinity queue. The flag is simply a dead state with a diagonal line inscribed within it.

By convention, the progression or flow of an entity's activities (as shown by the

ACD) is an alternating sequence of dead and active states. "Dummy" queues or dead

states [Hutchinson 1975] are often used in the ACD preceding an active state which

requires only one entity. The dummy queue serves to maintain the convention of alter­

nating dead and active states, but no time is spent in them by the entities which are pass­

ing through.

The ACD is able to clearly depict a system's entities and the activities in which each

entity is engaged. The cooperating activities are easily identified. The ACD focuses

entirely on a system's entities and is independent of system materials, the number of enti­

ties in the system, and the time requirements of the individual entity activities. The

ACD provides a "sound basis for a discussion of the logic" of a system and represents a

suitable foundation upon which a simulation can be built [Hutchinson 1975].

95

9.9.£ Identification of Model Components for the AS CF

To build the ACDs which will be used to demonstrate the AS CF application of the

TI, the entities that are involved must first be identified. The following classes of model

entities (quantities in parentheses) can be specified:

Imaginary, permanent entities

Arrival machines for the Joint Lane and Lanes 3 to 11 (10)

Real, permanent entities

Light (1)

Blocks A to Z (26)

Blocks 1 to 9 (9)

Real, temporary entities

Cars (numerous)

Resources

Lane 1 space (5 cars or less)

Lane 2 space (5 cars or less)

9.9.9 Listing of Possible Activities

Arrival Activities

Activity Name Identifier

Arrival to Joint Lane (ARRJ)

Arrival to Lane 3 (ARR3)

Arrival to Lane 11 (ARRl1)

Participating entities/resources

Lane 1/2 Car, Joint Arrival Machine

Lane 3 Car, Lane 3 Arrival Machine

Lane 11 Car, Lane 11 Arrival Machine

Light Activities

Activity Name

Light, NS green

Light, NS red

Light, West green

Light, East green

Finish Activities

Activity Name

End Transit Block A

End Transit Block B

III III" III .. ,. '"

End Transit Block Z

End Transit Block 1

End Transit Block 2

.. .. III ~ •

End Transit Block 9

Start Activities

Activity Name

Identifier

(L1)

(L2)

(L3)

(L4)

Identifier

(ETRANSA)

(ETRANSB)

(ETRANSZ)

(ETRANSl)

(ETRANS2)

(ETRANS9)

Identifier

Begin Transit Block A (BTRANSA)

Begin Transit Block B (BTRANSB)

Begin Transit Block Z (BTRANSZ)

Begin Transit Block 1 (BTRANSl)

96

Participating entities/resources

Light only

Light only

Light only

Light only

Participating entities/resources

Block A, Lane 8 Car

Block B, Lane 7 Car

........... "

Block Z, Lane 2 or 11 Car

Block 1, Lane 4 or 7 Car

Block 2, Lane 4 or 6 Car

.

Block 9; Lane 2,6, or 10 Car

Participating entities/resources

Block A, Lane 8 Car

Block B, Lane 7 Car

Block Z, Lane 2 or 11 Car

Block 1, Lane 4 or 7 Car

Begin Transit Block 2 (BTRANS2)

Begin Transit Block 9 (BTRANS9)

Special Activities

Activity Name Identifier

Split to Lane 1 or 2 (SPLIT)

97

Block 2, Lane 4 or 6 Car

Block 9; Lane 2,6, or 10 Car

Participating entities/resources

Lane1/2 Car, Lane 1/2 Space Resource

Turn Left in Lane 1 (TURN.LEFT.!) Lane 1 Car only

Turn Left in Lane 3 (TURN.LEFT.3) Lane 3 Car only

Turn Left in Lane 6 (TURN.LEFT.6) Lane 6 Car only

Turn Left in Lane 9 (TURN.LEFT.9) Lane 9 Car only

9.9.4 Specific Activity Cycle Diagrams

The above identification of model entities and associated activities suggests the fol­

lowing limited set of ACDs. Single ACDs are given which associate with the primary

entities that interact with Lane 1 Cars during its arrival, entry, and transit of the traffic

intersection. Figure 3.12 shows the Light's ACD with active states in different colors.

Figure 3.13 is a representative sample of Block ACDs for those blocks in a Lane 1 Car's

path. Figure 3.14 depicts the ACD for a Lane 1 Car showing the various active and dead

states through which the car proceeds. Finally, a coordinated ACD is given in Figure 3.15

which attempts to demonstrate the complex interactions that occur as a Lane 1 car trav­

els through the intersection.

NORTH·SOUTH
RED

98

NORTH-SOUTH
GREEN

WEST
GREEN

Figure 3.12 The Light Activity Cycle Diagram

t Dummy queues; No time is spent in them.

EAST
GREEN

BLOCK I

TRANSIT
LANE 1 CAR

TRANSIT
LANE 1 CAR

BLOCK 4

99

BLOCKY

TRANSIT
LANE 11 CAR

TRANSIT
LANE 1 CAR

TRANSIT
LANE 7 CAR

TRANSIT
LANE 1 CAR

BLOCKS

Figure 3.13 Sample of Block Activity Cycle Diagrams

BLOCK 0

TRANSIT
LANE 4 CAR

TRANSIT
LANE 1 CAR

TRANSIT
LANE 3 CAR

ARRIVAL
JOINT

SPLIT

TRANSIT
BLOCK I

TRANSIT
BLOCKY

100

SOURCE

TRANSIT
BLOCK 0

TRANSIT
BLOCK 4

TURN.LEFTl

TRANSIT
BLOCK 8

Figure 3.14 Lane 1 Car Activity Cycle Diagram

101

Figure 3.15 Coordinated Activity Cycle Diagram
(Lane 1 Car Path)

JOINT, LANEl, BLOCKY, BLOCK8, WAlT, BLOCK4, and BLOCKO queues are FIFO.
AV AU,ABLE is a LANE 1 space resource.

LANE 4 CAR

102

8.8.5 Activity Descriptions

To aid the understanding of the following activity descriptions, certain implementa-

tion dependent assumptions are listed which underlie these descriptions.

(1) Each of the permanent entities has an associated record in which t-cell values and

other necessary information may be stored. For example, the light entity record

may allow, in addition to its t-cell value, an indicator of the next light activity.

Similarly, the intersection block record may contain fields for the t-cell and a

pointer to the car entity (if any) that is transiting the block.

(2) The temporary entities (cars) may also have associated records to store lane

identifier, turn, or similar information.

(3) Assume absolute system time is used in t-cells.

(4) The "dueness" of activities (such as activities Ll - L4 or any ETRANS activity dis-

cussed below) is determined by a check on the associated entity's t-cell and record

information. For example, if the current time equals the t-cell value of the light

AND the next light activity is an L1, then activity L1 is due. If the current simula-

tion time equals the t-cell value of the Block I entity, then activity ETRANSI is due.

3.3.5.1 Activity Descriptions associated with the Light

Activity Ll (the North-south green activity)
IF L1 is due then begin

north-south color = green;
east color = red;

ELSE

west color = red;
intersection previously cleared for west-east traffic = false;
increment t-cell of the light by 20 seconds;
identify L2 as light activity which is next due;
end

103

return control to executive;

Activity L2 (the North-south red activity)
IF L2 is due then begin

north-south color = red;

ELSE

intersection previously cleared for north-south traffic = false;
increment t-cell of the light by 1 second;
identify L3 as light activity which is next due;
end

return control to executive;

Activity La (the West green activity)
IF L3 is due then begin

west color = green;

ELSE

increment t-cell of the light by 13 seconds;
identify L4 as light activity which is next due
end

return control to executive;

Activity L4 (the East green activity)
IF L4 is due then begin

east color = green;

ELSE

increment t-cell of the light by 16 seconds;
identify Ll as light activity which is next due
end

return control to executive;

3.3.5.2 Activity Description associated with the Arrival Machine

Activity ARRJ (Arrival to Joint Lane)
IF ARRJ is due then begin

create car (record) for attribute assignment;
arrival time = current clock time
select car attribute, Lane 1 or Lane 2;
IF Lane 2 is selected then

select additional car attribute, right turn or straight;
file car in joint lane queue;
generate time of next ARRJ;
set t-cell of ARRJ arrival machine to this time;

ELSE
return control to executive;

104

3.3.5.3 Special Activity Descriptions

Activity SPLIT (Moving car from Joint Lane to Lane 1 or 2, splitting)

Note that this activity is a dummy activity which is included solely for the purpose

of controlling the decision point in a car proceeding into lane 1 or 2. SPLIT consumes

zero simulated time. Implementations for this action may vary considerably. The con-

cept of a resource which is covered by O'Keefe and Davies [1987] is utilized. Lane 1 space

and Lane 2 space are resources which provide space for 5 (or less) cars in lanel and in lane

2 respectively. This resource must be available for the SPLIT activity to occur.

IF (Joint Lane is not empty and
«(head car in Joint is Lane 1) and (a Lane 1 space is available» or
«head car in Joint is Lane 2) and (a Lane 2 space is available))
then begin

release car from Joint Lane;
CASE car lane identifier
Lane 1: begin

decrement Lane 1 space counter by 1;
file car in Lane 1 queue
end;

Lane 2: begin
decrement Lane 2 space counter by 1;
file car in Lane 2 queue
end;

end; (* CASE *)
end (* IF *)

ELSE
return control to executive;

Activity TURN.LEFT.l (Turn Left in Intersection, Lane 1 Cars)

This activity is also a dummy activity to aid in the decision to turn left. The

activity may not be performed if clearance to turn left (explained in the CM application

to the TI) is not available.

IF Waitl queue is not empty and
clearance to turn is available then begin

remove car from Waitl queue;
add car to Block 4 queue

105

end (* IF *)
ELSE

return control to executive;

3.3.5.4 Activity Descriptions associated with Blocks (in Lane 1 Car Path)

Activity BTRANSI (Begin Transit Block I or Enter Intersection at Lane 1)
IF «north-south color = green) and (block I is free)
and (Lane 1 queue is not empty) and «intersection is clear
for north-south traffic) or (intersection previously cleared)))
then begin

ELSE

IF (intersection not previously cleared) then
north-south previously cleared = true;

release car from Lane 1 queue;
increment Lane 1 space by one;
block I = busy;
identify that Block I is being used by this lane 1 car
increment t-cell of block I by 1.495 seconds
end

return control to executive;

Activity ETRANSI (End of Transit Block I)
IF ETRANSI is due now for Block I then

add car to Block Y queue
ELSE

return control to executive;

Activity BTRANSY (Begin Transit Block Y)
IF Block Y queue is not empty and Block Y is free then begin

remove car from Block Y queue;
Block Y = busy;
IF car is lane 1 car then begin

identify that Block Y is being used by this lane 1 car;
Block I = free;
increment t-cell of Block Y by 1.540 seconds
end

ELSE begin (* Car is lane 11 car *)
Block W = free;
identify that Block Y is being used by this lane 11 car
increment t-cell of Block Y by 0.529 seconds
end;

end (* IF *)
ELSE

return control to executive;

Activity ETRANSY (End Transit Block Y)

106

IF ETRANSY is due now for Block Y then begin
IF car in block Y is lane 1 car then

add car to Block S queue
ELSE (*car is lane 11 car *)

add car to Block Z queue
end (* IF *)

ELSE
return control to executive;

Activity BTRANS8 (Begin Transit Block S)
IF Block S queue is not empty and Block S is free then begin

remove car from Block 8 queue;
Block S = busy;
IF car is lane 1 car then begin

identify that Block 8 is being used by this lane 1 car;
increment t-cell of Block 8 by .634 seconds
end

ELSE IF car is lane 3 car then

ELSE (* car is lane 10 car *)
......... ,

end (* IF *)
ELSE

return control to executive;

Activity ETRANS8 (End Transit Block 8)
IF ETRANS8 is due now for Block 8 then begin

IF car in Block S is lane 1 car then
add car to Waitl (to turn left) queue

ELSE if car is lane 3 car then

ELSE (* car is lane 10 car *)

end (* IF *)
ELSE

return control to executive;

Activity BTRANS4 (Begin Transit Block 4)
IF Block 4 is not empty and Block 4 is free then begin

remove car from Block 4 queue;
Block 4 = busy;
IF car is lane 1 car then begin

identify that Block 4 is being used by this lane 1 car;
Block Y = free;
increment t-cell of Block 4 by 1.132 seconds
end

ELSE IF car is lane 7 car then

107

ELSE (* car is lane 9 car *)
......... ,

end (* IF *)
ELSE

return control to executive;

Activity ETRANS4 (End Transit Block 4)
IF ETRANS4 is due now for Block 4 then begin

IF car in Block 4 is lane 1 car then
add car to Block 0 queue

ELSE IF car is lane 7 car then

ELSE (* car is lane 9 car *)

end (* IF *)
ELSE

return control to executive;

Activity BTRANSO (Begin Transit Block 0)
IF Block 0 queue is not empty and Block 0 is free then begin

remove car from block 0 queue;
Block 0 = busy;
IF car is lane 1 car then begin

identify that Block 0 is being used by this lane 1 car;
Block 8 = free;
Block 4 = free;
increment t-cell of Block 0 by 1.132 seconds
end

ELSE (* car is lane 4 car *)
........ "

end (* IF *)
ELSE

return control to executive;

Activity ETRANSO (End Transit Block 0)
IF ETRANSO is due now for Block 0 then begin

IF car in Block 0 is lane 1 then begin
Block 0 = free;
waiting time for car = current time - arrival time;
increment counter of departures from lane 1 by 1;
total waiting time in lane 1 = waiting time for car

+ previous total waiting time in lane 1;
end

ELSE (* car is lane 4 car *)

end (* IF *)
ELSE

return control to executive;

108

9.9.6 Pr'iority of Activities

Activities are prioritized during the activity scan to ensure that model behavior is

accurate. The color of the traffic light is the most critical state condition in the model in

that it directly influences traffic flow at the intersection. Therefore, the light activities

receive top priority among all activities. To ensure that a car may proceed smoothly

along its path, end transit activities (e.g. ETRANS8, etc.) are next checked to free as

many blocks as possible for cars waiting, delayed in their transit. The processing of

arrivals (e.g. ARRJ, etc.) is now performed since the system is free of departing cars and

transiting cars have been moved on to their next block. The SPLIT activity follows the

Arrival Activities to enable a car that has just arrived to the Joint Lane to be moved on

into Lane 1 or 2 if possible. Begin service activities (e.g. BTRANS4, etc.) are now checked

to move cars into the intersection or along their way. Finally, TURN.LEFT activities are

checked to attempt the further progression of cars in the intersection.

3.4 The TP A CF Application

The discussion of the previous section covering the AS CF application is wholly

relevant to the TPA CF application to the TI. We must now simply identify the activities

in the AS CF application as B-activities or C-activities. Having done this, the TPA CF

executive (described in Section 2.5) may proceed as follows and as suggested by Pidd

[1984]. The A Phase, or Time Scan, may be a scan of entity records which include t-cell

and a pointer to the next activity for that entity. A once-through scan of these records

retrieves the min.imum t-cell value of all entities which are due to perform a B-activity

next. The simulated clock time is then updated to this minimum value. Along the way,

an ordered list of all the B-activities which are due at this time can be constructed. The

109

executive then executes these activities in order in the B-Phase and proceeds into the C­

phase. The type of list used and the specification of the link between the items (B­

activity designations) in this ordered list to the B-activity descriptions is strictly an

implementation issue that can be handled in a variety of ways. After conducting the C­

phase as discussed in Section 2.4, the executive returns to the A-phase and repeats this

cycle until simulation termination conditions are reached. Pidd [1984] presents a particu­

larly straightforward implementation of the TPA CF using BASIM, a Three Phase execu­

tive written in BASIC.

Several comments to distinguish the TPA CF implementation from that of the AS

CF (beyond the clear differences in the executive) can be made. First of all, the testheads

can be removed from those activities which are identified as B-activities. It is also impor­

tant to note that the importance of priorities among activities remains a key issue. The

activities on the execution list of B-activities should be ordered by priority. The tradi­

tional scan in the C-phase should likewise scan by priority among the C-activities, as

before.

Therefore, to complete the description of the AS CF implementation, we need only

identify the activities of the AS CF as B-activities or C-activities. Implementing the exe­

cutive as described above and in Section 2.5 would complete the TP A CF application to

the TL The algorithm for the TPA CF executive has already been given, and examples

which illustrate the executive, like BASIM (above), are available in the literature. There­

fore, the implementation of the executive will not be covered.

110

9.4.1 Activity Designations in the TPA OF Application

Activities are specified (below) as B (Bound) or C (Conditional) activities. In

addition, they are listed in a prioritized order. The activity name identifications which are

used are the same as those used in the AS CF application.

9 . ./.2 Listing of B-Activities

Identifier

Ll

L2

L3

L4

ETRANSA

ETRANSZ

ETRANSI

ETRANS9

ARRJ

ARR3

ARRII

Description

Light, NS green

Ligh t, NS red

Light, West green

Light, East green

End Transit, Block A

End Transit, Block Z

End Transit, Block 1

End Transit, Block 9

Arrival, Joint Lane

Arrival, Lane 3

Arrival, Lane 11

111

9.4.9 Listing of C-Activities

Identifier

SPLIT

BTRANSA

BTRANSZ

BTRANS1

BTRANS9

TURN.LEFT.1

TURN.LEFT.3

TURN.LEFT.6

TURN.LEFT.9

Description

Split car into Lane 1 or 2

Begin Transit, Block A

Begin Transit, Block Z

Begin Transit, Block 1

Begin Transit, Block 9

Turn left in Lane 1

Turn left in Lane 3

Turn left in Lane 6

Turn left in Lane 9

3.5 The PI OF Application

The PI OF application is demonstrated in this section by a detailed examination of

selected portions of a SIMULA [Birtwistle et al. 1979; Franta 1977] model of the TI.

SIMULA, like SIMSCRIPT, is an SPL and contains many features which make the pro­

gramming task of a model (built under the PI OF) a much simpler undertaking. Besides

making available the standard statistical packages which include random variate genera­

tion from common probability distributions, etc., SIMULA also offers language primitives

which enable process development and their coordinated interaction as coroutines. This

section discusses these primitives and the essential processes underlying the SIMULA

model of the TI. In addition, the SIMULA executive and statistical output routines are

112

described in order to complement the discussion and add to its completeness.

8.5.1 Key SIMULA Primitives

From the discussion in Section 2.6, the whole of the PI CF is dominated by the con­

cept of the process: its meaning, its construction, and its interactions with other

processes. SIMULA offers several language primitives or constructs that directly appeal

to these aspects with creative processor control. This discussion is not intended to pro­

vide in-depth coverage of SIMULA and will be limited to a description of SIMULA object

behavior, in particular, objects of the class PROCESS (For further details, see Section

3.10 or [Franta 1977]). For the purposes of this discussion, objects of the class PROCESS

may be considered to be processes that are associated with the objects contained in the

modeL We shall refer to these processes as object processes.

When the new construct is used, an object process data record is created and pro­

cessor control passes immediately to the action statements or code of that newly created

object process [Franta 1977]. Therefore, "new" is somewhat like a typical procedural call.

An object process, once generated with "new" construct, may find itself in one of several

states (active, passive, suspended, terminated) and may exist as a coroutine which can be

executed in a piecemeal fashion. These state categories are defined [Franta 1977] as fol­

lows:

• active - executing; only one object process may be active at anyone time.

• suspended - owning a notice which is in the sequencing set and scheduled for

activation or reactivation; active but delayed in performing its actions.

• passive - not active, suspended, or terminated; action statements are not

exhausted or completed but there is no scheduled activation or reactivation time;

113

delay duration is an unknown quantity; idle; may be activated or reactivated by

another object process .

• terminated - action statements have been exhausted; will exist as long as it is

referenced; cannot be activated.

Object processes may therefore be passivated or activated. The passivate statement

changes the state of an active object process to a passive state and destroys its notice in

the sequencing set. A passivated object process experiences a period of conditional delay,

awaiting the satisfaction of some "wait-until" condition, if any. The activate statement

generates a new notice and places that notice in the sequencing set. Reactivate cancels

an active object process and then activates it. The activation or reactivation of an object

process may be dictated when the period of delay is known and unconditional. A pas­

sivated object process, when later activated or reactivated, begins the execution of its

actions statements following that point at which it was passivated. This "piecemeal" exe­

cution continues in this fashion until all action statements are completed.

Therefore, the language primitives, "passivate", "activate", and "reactivate", form

the basis for process interaction and behavior within SIMULA. The next section, which

covers the primary processes that cooperate within the SIMULA TI model, provides

examples of how these primitives are effectively used within process descriptions. Please

note that there are lower level primitives (resume and detach) that are provided by

SIMULA. Coverage of these is beyond the scope of this discussion. Franta [1977] pro­

vides excellent coverage of process communication using the "resume" and "detach" prim­

itives.

114

9.S.t Processes of the SIMULA TI Model

The processes of interest in the SIMULA TI model include a "lightctrl" process

which represents the light controller that manages the light timing sequences of the inter­

section light, a driver process for each vehicle, and the vehicle (or car) processes.

The light controller process is shown in Figure 3.16. The entire process is clearly

described within this code. Colors of the north and south directions are initially set to

green whereas the east and west directions are red. The process reactivates itself with a

20 second delay being specified. At this time, the north and south directions become red.

The prior key word ensures that the notice for this process is placed on the sequencing

set before all other notices which are to be active at that time. This gives the highest

priority to the light controller process. Following another 1 second delay, the west direc­

tion becomes green. This state of color is maintained until another reactivation changes

the east direction to green, 13 seconds later. A final reactivation after 16 seconds repeats

the process cycle since the process is built around the "while true do" looping construct at

line 4.

The driver process for each car controls the car's entrance into the transit area of

the intersection in the same manner as any real driver does. The driver process for cars

that travel into the intersection from the north or south lanes is shown in Figures 3.17

and 3.18. Notice that the driver process checks the appropriate conditions that will allow

his car to enter the intersection. These conditions (which depend on light color, block

availability, and intersection clearance) are fully described in the CM definition in Section

3.1. If anyone condition is not satisfied, the driver will reactivate himself on the sequenc­

ing set in the appropriate location. For example, if the light has not permitted entry, the

driver places himself after the next light controller activation (line 12). If another

115

**
* DESCRIPTION: Class definition of the LIGHTCTRL (Light Controller)
* OBJECT's process.

* * ATTRIBUTES: lite, the referenced LIGHT OBJECT being controlled.

*
* INPUT(S): lite, the LIGHT OBJECT

* * OUTPUT(S): "red" or "green" status is output to the directions of
* the LIGHT OBJECT to simulate the light timing sequences.
* CALLS No procedural calls, but remote access of the LIGHT
* OBJECT is performed.
* CALLED BY: Referenced by GENOBJECTS upon creation.
***;
1 process class LIGHTCTRL(lite)i
2 ref(light)lite;
3 begin
4 while true do
5 begin
6

7
8
9

10
11
12
13
14
15
16
17
18
19

lite. north. setgreen;
lite.south.setgreen;
lite.east.setred;
lite.west.setred;
reactivate this lightctrl
lite.north.setred;
lite.south.setred;
reactivate this lightctrl
lite.west.setgreen;
reactivate this lightctrl
lite.east.setgreen;
reactivate this lightctrl

end;
end CLASS LIGHTCTRL;

ISet north and south green

!Set east and west red

delay 20 prior;
set north and south to red;
for 1 sec clearance.

delay 1 prior;
, Set West to green

delay 13 prior;
I Now East set to green

delay 16 prior;
Now restart the cycle

Figure 3.16 The LIGHTCTRL Object Process

116

.***********
• DESCRIPTION: Class Definition of a NS DRIVER OBJECT (North, South)
•
* ATTRIBUTES: The traffic light (mylight), the driver's car(mycar),
• the first block to enter (myblock), and the intersection (road).
*
* INPUT(S) The above refereced attributes are input on driver creation.

* * OUTPUT(S): The driver activates his car at the appropriate times
* after successful checks for entrance to the intersection OR after
* successful check for a left turn (if applicable). Otherwise, the
* driver picks an appropriate place to reactivate himself to check
* for the right conditions to put his car in motion. The driver
* effectively provides a "wait-until" capability.

*
* CALLS

*
The appropriate intersection (road) clearance routine.

." CALLED BY: The driver is activated by his car to enter the inter-
* section or to turn left once in the intersection.
***;
driver class NSDRIVER(mylight, myblock, road, mycar);
1 ref(light)mylight; ref(block)myblock; ref(intersection)roadj
2 ref(car)mycari
3 begin
4 inspect mycar do begin
5 if not entered then begin
6 start: if mylight.north.red then begin
7 road.clearedns :- false;
8 if (lane- 2 and right) or lane
9 goto block;
10 end
11 else begin

Check
First

Set
- 8 then

! Right

for entry to inters.;
check light
road not clear for ns;
begin
turner may continue i

12 reactivate this nsdriver after controller;
13 goto start; Restart the check at light;
14 end;
15 end;
16 block: if myblock.busy then begin Next check the first block;
17 place(this nsdriver);
18 goto start;
19 end;
20 if mylight.north.red and lane eq 2 and right then begin
21 if not road.r2clear then begin This check for a turner
22 place(this nsdriver); from lane 2
23 goto start;
24 end;
25 end
26 else if mylight.north.red and lane 8 then begin
27 if not road.r8clear then begin This check for a turner
28 place(this nsdriver); from lane 8
29 goto start;
30 end;
31 end
32 else if «not road.clearedns) and (not road.nsc1ear»
33 then begin !Now check intersection clear;
34 place(this nsdriver);
35 goto start;
36 end;
37 activate mycar after current;
38 passivate;

Figure 3.17 NSDRIVER Process

117

39 if lane = 1 then begin
40 while not road.leftlok do begin
41 place(this nsdriver); end;
42 end
43 else begin
44 while not road.left6ok do begin
45 place(this nsdriver)i end;
46 end;
47 activate mycar after current;
48 passivate;
49 end
50 else begin
51 if lane 1 then begin
52 while not road.leftlok do begin
53 place(this nsdriver); end;
54 end
55 else begin
56 while not road.left6ok do begin
57 place(this nsdriver); end;
58 end;
59 activate mycar after current;
60 passivate;
61 end;
62 end;
63 end CLASS NSDRIVER;

!These checks for left turns

!Left turn checks, for cars
that immediately entered
without initial need of
driver.

Figure 3.18 NSDRlVER Process (continued)

118

condition has denied entry, then the user-defined place procedure (lines 17, 22, 28, and

34) inserts the driver process in the sequencing set after the next non-driver process (the

next possible process that might change state conditions). Following such placement, go

to is used to restart the check of conditions at the start label, line 6. Once the entrance

conditions are satisfied, the driver will immediately activate his car process and will pas­

sivate himself. In most cases, his job has been completed. Cars travelling in lanes 1 and

6, however, have their drivers reactivated to check for left turn clearance of oncoming

traffic. See lines 39-63 which cover these instances.

A car process describes the complete movement of the car including arrival to the

intersection, transit of the intersection, and subsequent departure. Figure 3.19 describes

the basic actions of all car processes. There are arriving actions such as recording the

arrival time (lines 14-16), then specific lane functions which are accomodated by the

inner key word (line 17), and finally departure actions (lines 19-39) to record data for

later statistical and performance measure calculations. Additional code, determined by

the lane association of the car, is essentially inserted at the "inner" construct and

represents the specific lane functions of the car. Figure 3.20 represents an example of this

"additional" code which, in this case, is the specific lane function for a car in lane 8. Here

in lines 3-19, a user-defined procedure transitfm8 gives the specific details of the actions

that are performed by a car transiting the intersection from lane 8. The setbusy and

setfree procedures update the busy or free status of the blocks that are crossed during

the car's transit. Therefore, it is clear that blocks "a" and "k" provide the path for a lane

8 car. Notice that if block "k" is busy (line 8), the object process is placed on a queue and

passivated (lines 9 and 10) until the block becomes free and the object process is at the

head of the queue ("blockqk") of processes waiting for that block. Also, once a car has

119

**
* DESCRIPTION: Class definition for a CAR OBJECT
* ATTRIBUTES: Arrive and depart procedures.
* arrtime arrival time
* lane - resident lane of car.
* id - car id number for trace purposes.
* right - boolean indicating if car is right turner.
* entered - boolean indicating if car is "in" intersection.
* INPUT(S) : None
* OUTPUT(S): Statistics information on departure to waiting time and
* departure variables.
* CALLS procedure update upon departure to enter statistics.
* CALLED BY: Referenced by GENOBJECTS upon creation.
***;
process class CARi
1 begin
2 real arrtime;
3 integer lane;
4 integer id;
5 boolean right;
6 boolean entered;
7 procedure update(waittime, departures);!
8 name waittime, departures;
9 real waittime; integer departures;
10 begin

Car arrival time
Resident lane of car

Right turn boolean
In or out of intersection
Update lane waiting time

and departures in lane

11 waittime: waittime + time - arrtime;
12 departures := departures + 1;
13 end PROCEDURE UPDATE;
14 id:= ctr + 1;
15 ctr:= ctr + 1;
16 arrtime'= time;
17 inner;
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

if lotp > 1 then
lotp := lotp - 1

else begin
if lotp = 1 then

lotp .= 0
else begin

ndiss: ndiss + 1;
if lane = 1 then

update(twt1, deps1)
else if lane = 2 then begin

if right then
update(twt2r, deps2r)

else
update(twt2, deps2)

else if lane = 11 then begin
if right then

update(twt11r, depsl1r)
else

update(twt11, deps11)
end

else;
if ndiss == loss then begin

end
end

activate main;
passivate;
end

end CLASS CAR;

Arriving actions
Set id and next id counter.;
Set arrival time of car.
Do specific lane functions
Now do terminating actions

OR

OR

When in transient pd.

When entering s. s.

When in s. s.
count departures and
update waiting time
and t departures
based on lane that car;
was in.

Now departures indicate
replication is over so

activate the main program.;

Figure 3.19 Generic Car Process

120

********************"'**"'*"''''*'''*'''*''''''*******''''''*'''**'''******"'*"''''*****''''''**'''''''''''''''
'" DESCRIPTION:
'"

Class description for a CARS OBJECT, ie a car in
See description for CARl_2 OBJECT since very similar.
Inline code comments from CARl_2 also pertain.
Procedure transitfmS gives process description for cars
from lane S.

* * ATTRIBUTES:
* transiting

* mydriver - the driver process for the car
* INPUT(S)
*

Transit procedure is given the intersection object

'" OUTPUT(S) No direct output.

'"
'" CALLS

'"
Attribute setting procedures of each block transited.
(setbusy, setfree)

'" CALLED BY Referenced by main simUlation routine upon creation.
*****"'**"'***"'****"''''**'''*''''''**********'''''''''*''''''''''''*'''**'''**'''**'''*****"'*"'*"'*"'''''''''''''''';
car class CARS;
1 begin
2 ref(nsdriver) mydriver;
3 procedure transitfmS(road)i
4 ref(intersection)road;
5 begin
6 square_a.setbusy(this carS); lEnter and transit A
7 reactivate this carS delay(square_a.findtransit(this carS»;
8 if square_k.busy then begin !Check K, queue up if busy;
9 into(blokqk);
10 passivate;
11 out;
12 end;
13 square_k.setbusy(this carS); !Transit K
14 square_a.setfree; IRelease A
15 reactivate this carS delay(square_k.findtransit(this carS»;
16 square_k.setfreei !Release K
17 if not blokqk.empty then
18 activate blokqk.first after current; !Enable cars waiting for Ki
19 end TRANSITFMS;

20

21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
3S
39
40
41
42

comment;
activate new carB delay (weibl(56.0592, 0.63923, seed8»;

!Generate next arrival
mydriver :- new nsdriver(tfclight,

this carS);
lane :- S;
right :- true;
if not lane8.empty then begin

into(lane8);
passivate;
activate mydriver after current;
passivate;
out;
end

square_a, pforkandtcreek,
lCreate driver
!Set attributes

!Enter laneS queue when
cars are already in lane;

!Wait in line for turn
!At head of line, turn on
I driver.

else if «(tfclight.south.red) or (square_a.busy) or
«not pforkandtcreek.nsclear) and
(not pforkandtcreek.clearedns») and
«not right) or (tfclight.south.green) or (square_a.busy) or
(not pforkandtcreek.rSclear») then begin
into (1 aneB) ; ! Can't immedi a tely enter
activate mydriver after current; so first in queue,
passivate; and turn on driver.
out;
end;

if not laneS.empty then
activate laneS. first after current;

entered :- true;
transitfmS(pforkandtcreek)i

end CLASS CAR8;

!Ready to enter, so turn
! on any car waiting in

lane8 queue.
!Enter and transit

Figure 3.20 The CARS Process

121

entered a block (such as the case in lines 13-15), the block is set to "busy" and an uncon­

ditional delay, corresponding to the transit time across the block, is set with a reactiva­

tion statement. The bootstrapping of future arrivals to lane 8 (line 20), the creation of the

car's associated driver process (line 21), and the setting of the lane identification and turn

indication attributes (lines 23,24) is included in Figure 3.20. This figure also shows that if

conditions are right, that is if the conditional traps at lines 25 and 32 are passed, the car

may immediately proceed into the intersection. Otherwise, the car is queued up in the

appropriate lane queue, its driver is activated, and the process is passivated (until later

activated by its driver).

An important aspect of the above discussion of the processes in the SIMULA model

is that the modeler is required to maintain control of process activation and passivation.

This adds to the complexity and difficulty of the modeling task.

9.5.9 The SIMULA Executive

The executive, Figure 3.21, is itself a process which first performs initializations

within the setup routine (line 13), creates the necessary object processes via the genob­

jects routine (line 14), schedules the initial arrivals to each lane in lines 15-25, and then

passivates itself. The last car to depart the intersection (satisfying simulation termination

conditions, see Figure 3.19, lines 41-43) activates the executive which then performs the

statistical output actions. The entire executive process is surrounded by a looping con­

struct (line 4) that indexes on the number of replications, thereby accomplishing the

method of replications to achieve the desired results of the simulation study objectives.

122

**
* DESCRIPTION: Traffic intersection simulation using process view.
* Demonstrates the use of the process interaction world view with
* an example simulation containing sufficient complexity to show
* the characteristics which are embodied in the view. The model
* is a simulation of the intersection of Prices Fork Rd. and Toms
* Creek Road near the campus of Virginia Tech, Blacksburg, Va.

*
* ATTRIBUTES: Not applicable

*
* INPUT(S) : Random variates from external FORTRAN routines,
* WEIBL, GAMA, EXPON, and proper random numbers from RANDM.
* OUTPUT(S): Performance measures for average waiting times for cars in
* in each of the eleven lanes and also in lanes 2, 5, and 11 when
* right turns are being made. The performance measures are output
* after each replication.

*
* CALLS Within the simulation block- Procedures SETUP,
* GENOBJECTS, and STATISTICS.
* CALLED BY: User upon execution of the model.
***;

1 integer numruns;
2 integer numrng;

3 comment

Number of simulation runs ;
Number of random generators;

******** BEGIN SIMULATION MODEL AND LOOPING FOR REPLICATIONS **********;
4 for i := 1 step 1 until numruns do
S simulation begin

6 real twt1, twt2, twt2r, twt3, twt4, twtS; Total waiting time per lane;

7 integer deps1, deps2, deps2r,deps3, deps4;! Departures in s.s. per lane;

12

13 setup(i); Setup for replication
14 genobjects; Create all model objects
15 activate controller after current; Generate first arrivals
16 activate new car12 delay (linear(m1_2a, m1_2b, seed1_2»;
17 car3 delay (gama(Sl.248, 1.260, seed3»; activate new
18 car4 delay (weibl(10.6646, 0.82821, seed4»; activate new
19 carS delay (linear(mSa, mSb, seedS»; activate new
20 car6 delay (expon(S4.6774, seed6»; activate new
21 car7 delay (weibl(34.7083, 0.86424, seed7»; activate new
22 car8 delay (weibl(S6.0S92, 0.63923, seed8»; activate new
23 car9 delay (linear(m9a, m9b, seed9»; activate new
24 carlO delay (linear(m10a, m10b, seed10»; activate new
25 carll delay (linear(ml1a, mllb, seed11»; activate new
26 passivate;
27 statistics; !Output statistics
28 outtext("***************END RUN****************"); outimage;
29 end SIMULATION RUN;

30 end MODEL;
Figure 3.21 The SIMULA Executive or Main Routine

123

8.5.4 The Statistical Output Routine

The Statistical output routine, Figure 3.22, initializes the performance measure vari­

ables (average or mean waiting times of cars, by lane) and then calculates their value by

dividing the total waiting time of all cars in a particular lane by the number of depar­

tures of cars in that lane. Output is sent to three separate files. An example of the out­

put for a model execution of three replications is shown in Figure 3.23.

3.6 The TF CF Application

In this section, the discussion centers on the block structure of a GPSSjH [Henriksen

and Crain 1983] model of the TI and the organization of its block structure to formulate

the model processes. After a short introduction to the model, the central model segments

or submodels that make up the model processes are reviewed. This part of the discussion

includes a description of the light submodel and an example lane submodel, in this case,

from lane 8. Using lane 8 as the example will enable the reader to compare this portion

of the GPSSjH model with the SIMULA model's corresponding code (Figure 3.20).

Finally, the overall model executive and its statistical output are covered.

8.6.1 Introduction to the GPSS/H Model

GPSSjH is a widely used SPL which is based on the TF CF. The GPSSjH model

used in this section was developed by Osman Balci, and is a useful example for informa­

tively demonstrating the TF CF with its block-oriented nature and its use of transactions

which "flow" through the model segments. The GPSSjH model conforms to the descrip­

tion of the eM definition given in Section 3.1 of the TI and supports the listed objectives.

A general description of the model is displayed in Figure 3.24. Model background,

124

**
* DESCRIPTION: STATISTICS procedure wraps up all statistical infor
* for output at the end of each simulation run.

* * ATTRIBUTES: None

*
* INPUT(S) : None
* OUTPUT(S): Performance measures, average waiting times per lane.

* * CALLS

*
None

* CALLED BY: Replication within main simulation program.
** *****************i
procedure STATISTICS;
1 begin
2 ref(car)temp;
3 real awtl, awt2, awt2r, awt3, awt4;
4 real awt5, awt5r, awt6, awt7, awt6;
5 real awt9, awt10, awt11, awt11r;
6 awtl·= OJ awt2 .= OJ awt3 0;
7 awt4 := O} awt5 := 0; awt6 .- 0;
8 awt7:= 0; awt6 := OJ awt9 0;
9 awt10 := 0; awt11: 0;
10 awt2r:= 0; awt5r := 0; awt11r := 0;
11 if depsl ne 0 then
12 awtl := twtl/depsli
13 if deps2 ne 0 then
14 awt2 := twt2/deps2;
15 if deps2r ne 0 then
16 awt2r := twt2r/deps2r;

17 if deps11 ne 0 then
18 awt11 := twt11/depsll;
19 if depsllr ne 0 then

!Ave. waiting times for each;
! lane.

!Calculate perf measures when;
there have been departures

! from a lane.

20 awt11r := twt11r/deps11ri !Output stats to files
21 one.outfix(awtl,4,10); one.outflx(awt2,4,10)i one.outflx(awt2r,4,10);
22 one.outfix(awt3,4,10)i one.outfix(awt4,4,10); one.outfix(awt5,4,10);
23 one.outimagei
24 two.outfix(awt5r,4,10); two.outfix(awt6,4,10); two.outfix(awt7,4,10);
25 two.outfix(awt8,4,10)i two.outfix(awt9,4,10); two.outfix(awt10,4,10)i
26 two.outimagei
27 three.outfix(awt11,4,10); three.outflx(awt11r,4,10);
28 three.outimage;

29 end STATISTICS;

Figure 3.22 The STATISTICS Routine

125

6
Average waiting time in lane 1
Average waiting time in lane 2 (str)
Average waiting time in lane 2 (rt)
Average waiting time in lane 3
Average waiting time in lane 4
Average waiting time in lane S(str)

19.3898 17.2164 10.9081 19.7511
19.6043 16.9220 11.0476 19.3447
19.7130 17.1718 10.6509 19.5991

6
Average waiting time in lane 5(rt)
Average waiting time in lane 6
Average waiting time in lane 7
Average waiting time in lane 8
Average waiting time in lane 9
Average waiting time in lane 10

13.2123 19.4683 16.4761 5.3249
13.1906 20.3019 15.4443 4.6897
12.9573 19.8090 15.4271 5.4018

2

Average waiting time in lane 11
Average waiting time in lane 11(rt)

11.6123 8.3418
11.5982 8.7260
11.6678 8.1801

17.3328 18.0267
17.7640 17.9730
17.8314 17.7925

13.1209 9.5287
12.7754 9.8429
12.7706 9.8029

Figure 3.23 Output of Three Replications of SIMULA Model

126

**
*
*
*
*
*

A GPSS/H SIMULATION MODEL OF THE
TRAFFIC INTERSECTION AT

PRICES FORK AND TOMS CREEK ROADS

* DESCRIPTION:
*

A study was initiated as a term project in CS 4150
during winter 1987 quarter. The objective of the study
was to compare the current light timing with two other
alternative ones to see if the average waiting times
of vehicles can be reduced to an acceptable level .

* ...
...

*
*
*
*
* HISTORY

The whole class participated in data collection and
UNIFIT package program was used to analyze the data.
This is a GPSS/H model of the traffic intersection.

*
*

Created By
Date Created

Osman Balci
3 June 1987

* Revised By
* Date Revised
* Revision Notes:
*
* INPUTS:
*

none

* OUTPUTS:
*

GPSS/H standard output for replications I, 2,
&NRUNS-1, and &NRUNS.

*
*
*
* CALLS:
*
*
*
*
*
*
*
*

FILE FT09FOOl Al file containing the confidence
intervals for the 14 performance measures

CISUB

- GAMA
- WEIBL

EXPON

[Note

Confidence Interval construction
SUBroutine (FORTRAN)
Gamma random variate generator (FORTRAN)
Weibull random variate generator (FORTRAN)
Exponential random variate generator (FORTRAN)

GAMA, WEIBL, and EXPON call RAND random
number generator (FORTRAN)]

* ACTIVATION: gpssh tomscpf size-c
*
**
*
*
*

*

*
*
* ...

...

*

Time Unit - Milliseconds

SIMULATE

OPERCOL 30

EXTERNAL &CISUB
EXTERNAL &GAMA
EXTERNAL &WEIBL
EXTERNAL &EXPON

INTEGER &I,&J
INTEGER &NRUNS

Compile, Link, Load, and Run

OPERand start COLumn <- 30

CI
RVG

Confidence Interval
Random Variate Generator

CI construction SUBroutine in FORTRAN
Gamma RVG in FORTRAN
Weibull RVG in FORTRAN
Exponential RVG in FORTRAN

Index Variables Used in DO Loops
No. of Simulation Runs (Replications)

Figure 3.24 GPSS/H Model Description, Declarations, and Initiation

127

objectives, initial declarations, and the GPSS initiation sequence are all included in this

figure. Figure 3.25 records the declaration of the performance measure variables. Four­

teen arrays, distinguished in name by the lane which they represent, hold the average

waiting times of all cars in that lane. The initialization of sets of random seed values,

used to recreate the exactly same seed streams and experimental conditions during test

runs, is also included. Figure 3.25 concludes with a description of the assignments of

these seed sets, stored in a two-dimensional array MX$SEED, to appropriate random

number generators. Taken as a whole, Figures 3.24 and 3.25 provide a summary of the

basis of the GPSSjH model of the TI with insight into some of its implementation details.

The primary interest in this GPSSjH model is to use it to illustrate the distinguish­

ing features of the TF CF. The model is composed of various submodels or groupings of

code by function, in particular it includes

• the LIGHT submodel,

• an example LANE submodel (LANE 8),

• the EXPERIMENTAL CONTROL submodel, and

• the CI (Confidence Interval) CONSTRUCTION sub modeL

The LIGHT and LANE submodels are model segments which are derived from the

GPSSjH block statements. Since GPSSjH is an extension of the PI CF, these two submo­

dels are actually process descriptions with a material-oriented perspective, and are clearly

the most illustrative of the TF CF features. The EXPERIMENTAL CONTROL submo­

del and the CI CONSTRUCTION submodels are both formed from GPSSjH control

statements. The EXPERIMENTAL CONTROL submodel serves as the executive of the

modeL CALL control statements to an external FORTRAN routine CISUB delivers the

128

*---------------------~------=---------------------------------------~-~ * There are 14 performance measures (response variables) as defined
* below. The Ith element of the array contains the Average waiting
* Time Of Vehicles (AWTOV) in a path of traveling and is obtained from
* the Ith replication of the simulation model.

-------------------------------~-----------------------------------~---
REAL &AWTOVIL(30) AWTOV Turning Left from Lane 1
REAL &AWTOV2S(30) AWTOV Traveling Straight from Lane 2
REAL &AWTOV2R(30) AWTOV Turning Right from Lane 2
REAL &AWTOV3L(30) AWTOV Turning Left from Lane 3

REAL &AWTOVI0S(30) AWTOV Traveling straight from Lane 10
REAL &AWTOVllS(30) AWTOV Traveling Straight from Lane 11
REAL &AWTOVI1R(30) AWTOV Turning Right from Lane 11

*
CHAR*80 &TITLE Title of a performance measure

*
LET &NRUNS-30 Number of Runs (Replications) - 30

*
SEED MATRIX MX,&NRUNS,l4 Two-dimensional array containing
* seeds for random number streams
*
*---
* Initialization of MX$SEED with random seed values

*---
*

DO &J-l,14
DO &I-l,&NRUNS

INITIAL MX$SEED(&I,&J),(13519*RNl)
ENDDO

ENDDO
* *---* Since this is a study of comparing different light timings for the
* traffic intersection, exactly the same experimental conditions must
* be used for all alternative light timings corresponding to a repli­
* cation of the simulation run. (RNG - Random Number Generator)
* RNj's are the GPSS/H internal RNGs. RAND is the FORTRAN RNG.

-------~-------------------------~------------------------------------- RNG
* ----
* RNI
* RN2

* RN3
* RN4
* RAND
* RAND

* RN5

* RN6
'II' RAND
* RAND

* RAND
* RN1
* RN8
* RN9

* RNlO

Seed Value

default
MX$SEED(&I,l)
MX$SEED(&I,2)
MX$SEED(&I,3)
MX$SEED(&I,4)
MX$SEED(&I,5)
MX$SEED(&I,6)
MX$SEED(&I,1)
MX$SEED(&I,8)
MX$SEED(&I,9)
MX$SEED(&I,lO)
MX$SEED(&I,ll)
MX$SEED(&I,12)
MX$SEED(&I,13)
MX$SEED(&I,14)

Used For

Generating seed values for MX$SEED
Generating vehicle arrivals to Lanes 1 & 2
Probabilistic branching to Lane 1 or 2
Probabilistic right turn or straight from 2
Generating vehicle arrivals to Lane 3 (GAMA)
Generating vehicle arrivals to Lane 4 (WEIBL)
Generating vehicle arrivals to Lane 5
Probabilistic right turn or straight from 5
Generating vehicle arrivals to Lane 6 (EXPON)
Generating vehicle arrivals to Lane 7 (WEIBL)
Generating vehicle arrivals to Lane 8 (WEIBL)
Generating vehicle arrivals to Lane 9
Generating vehicle arrivals to Lane 10
Generating vehicle arrivals to Lane 11
Probabilistic right turn or straight from 11

*--------------------------~--

Figure 3.25 Performance Measure Variables and Seed Initializations

129

final output of the model, 95 per cent confidence intervals, calculated from the data set

stored in the performance measure arrays.

9.6.2 The LIGHT and LANE Submodels

The LIGHT submodel, Figure 3.26, creates (with the GENERATE statement) a

single transaction to represent the light controller. As this transaction flows through the

model segment, block statements are used to easily describe its process. ADVANCE

statements enable the strict timing control of color (state) changes for the light. These

state changes are accomplished with the LOGIC switches in which boolean Rand S (red

and green) values are associated with each light direction (L YTESN - North, South

and South, North; LYTEEW - East, West; and LYTEWE - West, East). A

diagram shows the timing sequence of color changes by direction. The process is placed

in a cycle with the unconditional TRANSFER to the REPEAT label.

The LANE submodel, Figure 3.27, perhaps most closely demonstrates the use of

blocks and the flow of transactions. Representative of the other LANE submodels (Note

that there are eleven others, including LANE!, LANE2, etc.), the LANES sub model "gen­

erates" a transaction representing a vehicle arriving to Lane 8 at timed intervals deter­

mined by the Weibull distribution as shown. The single GENERATE statement accom­

plishes the bootstrapping of future arrivals. Each transaction, once created, will then

"flow" through the block statements of this model segment, effectively simulating the

behavior of a Lane 8 vehicle in transit. A boolean variable, ENTER8R, is used to

specify the conditions necessary for entering the intersection from Lane 8; it is tested with

the TEST statement to check for proper conditions. The SEIZE and RELEASE state­

ments are effectively used to the modeler's advantage to move the transaction from the

130

-----------------------~--------------------~----------------------~~~-
* L I G H T TIM I N G SUB MOD E L * *---*
*
*

LIGHT TIMING AT PRICES FORK AND TOMS CREEK TRAFFIC INTERSECTION
(Time values are in seconds)

*

*
'If 'If

'If Direction: North to South and South to North
*
* Lanes green red red

* 1,2,6,7,8 1--------------------1-1-----------------------------1
'If 20 1 29
*
* Direction: East to west
*
*
*
*
*

Lanes
3,4,5

red red red green

1--------------------1-1------------1----------------1 20 1 13 16

* Direction: West to East
*
*
*
*
*

Lanes
9,10,11

red red green
1--------------------1-1-----------------------------1

20 1 29

* Assumption:
*
*
*

(1) Yellow light is included in green.

-~-----~---~---
GENERATE , , ,1,1 Generate one transaction representing

'If light controller with a priority of 1
* higher than the priorities of vehicles
REPEAT LOGIC S LYTENSN Light for NS & SN directions is green

LOGIC R LYTEEW Light for EW direction is red
LOGIC R LYTEWE Light for WE direction is red
LOGIC R CLEARNSN Intersection clearance has been checked

* for NS & SN traffic when light LYTENSN
'If just turns green

ADVANCE 20000 Lights stay in this status for 20 sees
*

LOGIC R LYTENSN Light for NS & SN directions is red
*

ADVANCE 1000 One-second intersection clearance
*

LOGIC S LYTEWE Light for WE direction is green
LOGIC R CLEARWE Intersection clearance is not checked

* for West to East traffic when light

* LYTEWE just turns green
ADVANCE 13000 Lights stay in this status for 13 sees

*
LOGIC S LYTEEW Light for EW direction is green

'If

ADVANCE 16000 Lights stay in this status for 16 secs

*
TRANSFER ,REPEAT Start a new cycle of light timing

*

Figure 3.26 LIGHT Submodel

131

*-------------------~--~--
'* LAN E 8 SUB MOD E L

~----~----------------~--~ * Using UNIFIT package program, interarrival times of vehicles to
'* Lane 8 have been found to fit to a WEIBULL probability distribution
* with the following parameter values:

'* Location Parameter - O.
56.0592
0.63923

Mean
Variance

36.8298
1756.41 '* Scale

* Shape
Parameter -
Parameter ""

'*

------~---~-----~---~-------~~-----------------------------------~----- For the vehicle at the front end of Lane 8 to turn right:

'* If LYTENSN is green, then [block A must be empty
'* AND (if LYTENSN has just turned green, then the intersection
'* should first be cleared for the NS & SN traffic)
* else [blocks A, K, L, H, and N must be empty AND block E must
* not be captured by a straight moving vehicle)]

*---
ENTER8R BVARIABLE (LS$LYTENSN*FNU$BLOKA*(LS$CLEARNSN+BV$CLEARNSN»+_

(LR$LYTENSN*FNU$BLOKA*FNU$BLOKK*FNU$BLOKL*_
FNU$BLOKH'*FNU$BLOKN'*LR$EBUBYSS)

*---
'* L A N E 8 T R A V E L T I M E S
'* Observed Average Travel Time - 3.660 seconds
'* Designated Travel Path - A K
'* Block Size Factor (5.1) - 3 2.1
* Travel Time Per Block (ms) - 2153 1507

*---

'*

'*
SKIP8R

GENERATE

QUEUE
SEIZE
TEST E

TEST E

LOGIC S

SEIZE
RELEASE
ADVANCE
SEIZE
RELEASE
ADVANCE
RELEASE
DEPART
TERMINATE

1000*&WEIBL(56.0592,O.63923,MX$SEED(&I,10»
A vehicle arrives in Lane a
collect statistics for 8R vehicles STAT8R

FRONT8 capture front end of Lane 8
BV$ENTER8R,1 wait until the vehicle can enter the

intersection from Lane 8 to turn right
LS$LYTENSN,l,SKIP8R If LYTENSN is red, skip

the next LOGIC Block
CLEARNSN

BLOKA
FRONTa
2153
BLOKK
BLOKA
1507
BLOKK
STAT8R
1

Intersection clearance was checked for
NS & SN traffic when light LYTENSN
just turned green
Capture block A
Free front end of Lane 8
Travel on block A
Capture block K
Free block A
Travel on block K
Free block K
Record collected statistics
Exit the intersection

Figure 3.27 LANES Subrnodel

132

front of Lane 8 (FRONT8) to block K (BLOKK) to block A (BLOKA). If anyone of

these "facilities" is not available when requested with a SEIZE by the transaction,

GPSSjH handles this "wait-until" condition at a low-level, hidden from the modeler. The

modeler need not concern himself with determining "when" the facility becomes available.

GPSSjH automatically makes the facility available to the transaction at the proper time.

Execution of the RELEASE makes the facility available to the next waiting transaction,

if any.

9.B.9 The EXPERIMENTAL CONTROL Submodel

Figure 3.28 gives the EXPERIMENTAL CONTROL submodel which resides

between the DO-ENDDO looping construct, replicating the desired number of model

execution runs, NRUNS. Each run includes a warmup (transient) period for the first

5000 transactions. After warmup, the RESET statement resets the statistical data, and

model execution continues for 30000 additional transactions. The GPSSjH standard

attribute QT (in conjunction with the designated statistics collection queues STATIL,

STAT2S, etc.) is specified for use to easily calculate the average waiting time per unit or

transaction. Indexed on the run number, the performance measure arrays are loaded with

these values at the GPSSjH LET assignment statements. The RMULT statement then

specifies the starting seed values for the GPSSjH family of random number generators

using the }JX$SEED array. At the conclusion of each replication, the CLEAR statement

zeroes the system clock, statistical counts, and other variables (except the MX$SEED

array) in setting up for the next replication.

133

*===~==-===---=-=--=====-======-====-=~=~====-===~-=-==--=-====-========

* E X PER I MEN T CON T R 0 L SUB MOD E L
*===

*

*

*

*

*

*

*

*

*

*

DO

START
RESET

&I=l,&NRUNS

SOOO,NP

Replicate the sima run &NRUNS times

Warm up the model, produce No Print
Wipe out all statistics collected

IF (&I(=2)OR(&I>=(&NRUNS-l»

ELSE

ENDIF

LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET

START 30000 Run for 30,000 vehicles in steady
state, produce standard GPSS/H output

START 30000,NP Run for 30,000 vehicles in steady
state, produce no standard output

&AWTOYIL(&I)=QT$STATIL/IOOO.
&AWTOY2S(&I)-QT$STAT2S/1000.
&AWTOY2R(&I}=QT$STAT2R/IOOO.
&AWTOY3L(&I)=QT$STAT3L/IOOO.
&AWTOY4S(&I)=QT$STAT4S/1000.
&AWTOYSS(&I)=QT$STATSS/IOOO.
&AWTOYSR(&I)=QT$STATSR/IOOO.
&AWTOY6L(&I)=QT$STAT6L/IOOO.
&AWTOY7S(&I)=QT$STAT7S/1000.
&AWTOY8R(&I)=QT$STAT8R/IOOO.
&AWTOY9L(&I)=QT$STAT9L/IOOO.
&AWTOYIOS(&I)=QT$STATIOS/IOOO.
&AWTOYllS(&I)=QT$STATllS/lOOO.
&AWTOYIIR(&I)=QT$STATIIR/IOOO.

IF &I(&NRUNS
RMULT ,MX$SEED(&I+l,1),MX$SEED(&I+l,2),MX$SEED(&I+l,3),_

MX$SEED(&I+l,6),MX$SEED(&I+l,7),MX$SEEO(&I+l,11),_
MX$SEEO(&I+l,12),MX$SEEO(&I+l,13),MX$SEED(&I+l,14)

ENOIF

CLEAR MX$SEEO Clear for the next replication

ENOOO

Figure 3.28 EXPERrMENTAL CONTROL Submodel

134

8.6'4 The CI CONSTRUCTION Submodel

Following completion of all model replications, the CI CONSTRUCTION submodel

in Figure 3.29 outputs the confidence interval calculations on the average waiting time

data at each lane using the external FORTRAN routine CISUB. A typical output from

the GPSS/H model is shown in Figure 3.30 is based on 30 replications of the GPSS/H

model based on a transien t period of 5000 transactions and a steady state period of 30000

transactions.

3.7 The OOP Application

SIMULA has traditionally been accepted as "the father of all object oriented

languages" [Meyer 1987] and is therefore particulary suitable to demonstrate the OOP

features discussed in Section 2.8. The SIMULA model which was covered in section 3.5

with respect to the PI CF will again be considered. Now, however, the model will be

examined to determine how the OOP is utilized to assist the modeler in representing the

model. We consider this SIMULA implementation for its use of encapsulation, inheri­

tance, and activation/passivation, the principal features of the OOP. Each feature, as

found in the SIMULA model, is discussed, in turn.

9. 7.1 Encapsulation

The SIMULA class concept enables one to package data and its operations in a single

coded structure. Thus, this package (the object) provides a means of data abstraction for

a modeler. The SIMULA class has "had great influence on programming language design.

Languages supporting the idea of data encapsulation (CLU, ALP HARD , MESA, CON­

CURRENT PASCAL) and so-called actor languages used by the artificial-intelligence

135

*-~-----------~~----~~-~------------------------------~-----------------
* C.!. CON S T R U C T ION SUB MOD E L

*-----~-----------~=--~--~-~~~~----------~----------------------------~-
*

LET &TITLE-'Average Waiting Time of vehi_
cles Turning Left from Lane I'

CALL &CISUB{&AWTOVIL{l),&NRUNS,&TITLE)

*
LET &TITLE~'Average Waiting Time of Vehi_

cles Traveling straight from Lane 2'
CALL &CISUB(&AWTOV2S(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average waiting Time of Vehi_

cles Turning Right from Lane 2'
CALL &CISUB(&AWTOV2R(1),&NRUNS,&TITLE)

LET &TITLE-'Average Waiting Time of Vehi_
cles Turning Left from Lane 3'

CALL &CISUB(&AWTOV3L(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average Waiting Time of Vehi_

cles Traveling Straight from Lane 4'
CALL &CISUB(&AWTOV4S(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average Waiting Time of Vehi_

cles Traveling Straight from Lane 5'
CALL &CISUB(&AWTOVSS(l),&NRUNS,&TITLE)

LET &TITLE-'Average Waiting Time of Vehi_
cles Turning Right from Lane 5'

CALL &CISUB(&AWTOVSR(l),&NRUNS,&TITLE)
*

LET &TITLE-'Average waiting Time of Vehi_
cles Turning Left from Lane 6'

CALL &CISUB(&AWTOV6L(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average Waiting Time of Vehi_

cles Traveling Straight from Lane 7'
CALL &CISUB(&AWTOV7S(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average waiting Time of vehi_

cles Turning Right from Lane 8'
CALL &CISUB(&AWTOV8R(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average Waiting Time of Vehi_

cles Turning Left from Lane 9'
CALL &CISUB(&AWTOV9L(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average Waiting Time of Vehi_

cles Traveling Straight from Lane 10'
CALL &CISUB(&AWTOV10S(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average waiting Time of Vehi_

cles Traveling Straight from Lane II'
CALL &CISUB(&AWTOVllS(1),&NRUNS,&TITLE)

*
LET &TITLE-'Average Waiting Time of Vehi_

cles Turning Right from Lane 11'
CALL &CISUB(&AWTOVllR(l),&NRUNS,&TITLE)

*
END Return control to Operating System

Figure 3.29 CONFIDENCE INTERVAL CONSTRUCTION Submodel

136

Average Waiting Time of Vehicles Turning Left from Lane 1

NUMBER OF INDEPENDENT OBSERVATIONS 30
SAMPLE MEAN 19.637207
SAMPLE VARIANCE 0.294181
LIST OF INDEPENDENT OBSERVATIONS

20.086243 19.345398
19.473602 19.900879
19.548157 19.550400
19.564423 19.775482
18.973450 20.215836
19.033157 19.168320

CONFIDENCE INTERVALS:

ALFA LEVEL

LOWER LIMIT
UPPER LIMIT

0.10

19.507
19.767

19.440018
19.548843
19.424332
19.371231
21.908401
19.629761

0.05 0.025

19.469
19.805

19.435
19.840

19.385025
20.199387
19.573624
19.022324
19.974747
19.548096

0.01

19.393
19.881

Average Waiting Time of Vehicles Turning Right from Lane 8

NUMBER OF INDEPENDENT OBSERVATIONS
SAMPLE MEAN
SAMPLE VARIANCE
LIST OF INDEPENDENT OBSERVATIONS

4.843784 5.297090
5.011253 5.157214
5.252214 5.116699
5.504000 4.757237
5.345797 5.316929
5.039577 6.331944

CONFIDENCE INTERVALS:

ALFA LEVEL

LOWER LIMIT
UPPER LIMIT

0.10

4.940
5.165

0.05

4.907
5.199

30
5.052768
0.221621

4.691488
4.238483
5.320203
4.790546
5.435464
5.893851

0.025

4.877
5.229

4.426093
4.414792
5.480015
5.261300
4.735308
5.068257

0.01

4.841
5.264

19.111282
19.696686
19.523773
19.338715
19.882477
19.904144

0.005

19.364
19.910

4.497105
4.243101
5.349500
5.224722
4.651183
4.888050

0.005

4.816
5.290

Figure 3.30 Output of Thirty Replications of the GPSS/H Model

137

community (PLASMA, ACT, SMALLTALK) are ultimately rooted in SIMULA "

[Kreutzer 1986]. SIMULA has been a forerunner and model for the encapsulation feature

found in languages supporting the OOP.

"The class concept is the central concept in the SIMULA programming language"

[Palme 1976]. This is a strategic statement. The SIMULA class is "a block of data and of

procedures operating on that data" [Palme 1976]. By partitioning a program and its data

in such a way, the class provides structure, modularity, and more. "Processes comprised

of like sets of activities are considered to belong to the same cl.a:3s... At any point in time, a

number of such processes may exist in a system model, in varying stages of execution.

Each is an instance or a.b.j,.e.cL of its class, uniquely identified among members of that class

by certain attributes The behavior of processes of the same class may be described by a

single set of rules describing the activities of all processes from that class together with a

set of attribute(s) values for each of the existing processes of that class" [Franta 1977].

Figure 3.31 provides an example of as class declaration and describes a light "direction".

Figure 3.32 gives the class declaration of the light itself. Notice that within this object

description that four "directions" are created with "new". Encapsulated within each

direction are the procedural actions set red and setgreen which detail the actions that

occur in accomplishing the transitions on light color between "red" and "green". The

light controller's class declaration is shown in Figure 3.33. From the light controller per­

spective, the color transitions are simple to achieve. Taking advantage of the encapsula­

tion of the color transitions, the light controller sends a communication "message" to the

referenced light object which in turn executes the appropriate direction's "setred" or "set­

green" procedural actions. This is aptly demonstrated in the body of Figure 3.33 where

the encapsulation feature is clearly utilized.

138

**
* DESCRIPTION: Class definition for light DIRECTION.

* * ATTRIBUTES: Color of red or green and procedures to set color to red
* or green.
* INPUT(S) None
* OUTPUT(S): Change in color attribute when called.

*
* CALLS

*
None

* CALLED BY: LIGHTCTRL process
***;

class direction;
1 begin
2 boolean red, green;

3
4
5
6
7

8
9

procedure setred;
begin

red := true;
green: false;

end SETRED;

procedure setgreen;
begin

10 green := true;
11 red := false;
12 end SETGREEN;

13 end CLASS DIRECTION;

!Sets light red

lSets light green

Figure 3.31 Class DIRECTION

139

**
* DESCRIPTION: Class definition for the LIGHT OBJECT.

* * ATTRIBUTES: north, south, east, and west. Represent the directions
* of the light. Each direction may hold "red" or "green".
* INPUT(S) None
* OUTPUT(S): None

*
* CALLS None

*
* CALLED BY: The referenced light object is called by the LIGHTCTRL
* Process
***;

class LIGHT;
1 begin
2 ref(direction) north, south,
3 north new direction;
4 south new direction;
5 east new direction;
6 west new direction;
7 end CLASS LIGHT;

east, west;
!Set directions

Figure 3.32 Class LIGHT

140

**
* DESCRIPTION: Class definition of the LIGHTCTRL (Light Controller)

* * ATTRIBUTES: lite, the referenced LIGHT OBJECT being controlled.

* * INPUT(S): lite, the LIGHT OBJECT
* OUTPUT(S): "red" or "green" status is output to the directions of
* the LIGHT OBJECT to simulate the light timing sequences.
* CALLS No procedural calls, but remote access of the LIGHT
* OBJECT is performed.
* CALLED BY: Referenced by GENOBJECTS upon creation.
***i

process class LIGHTCTRL(lite);
1 ref(light)lite;
2 begin
3 while true do
4 begin
5 lite.north.setgreen;
6 lite. south. setgreen;
7 11te.east.setred;
8 lite.west.setred;
9 reactivate this lightctrl
10 lite.north.setred;
11 lite.south.setred;
12 reactivate this lightctrl
13 lite.west.setgreeni
14 reactivate this lightctrl
15 lite.east.setgreen;
16 reactivate this lightctrl
17 end;
18 end CLASS LIGHTCTRLi

delay

delay

delay

delay

!Set north and south green

ISet east and west red

20 prior;
Set north and south to red;
for 1 sec clearance.

1 prior;
Set West to green

13 prior;
Now East set to green

16 prior;
Now restart the cycle

Figure 3.33 Class LIGHTCTRL

141

9. 7.!2 Inheritance

Concatenation is a binary operation on two SIMULA class declarations. The result

of this operation is a new class, formed by "merging the attributes of both components

(classes), and then combining their action (executable) statements" [Franta 1977]. For

example, the class declaration of a model block object is shown in Figure 3.34. Now, Fig­

ure 3.35 illustrates the concatenation of the classes BLOCK and BLOCKA. As shown,

"BLOCKA" is now called a subclass of "BLOCK". A class BLOCKA object is called a

compound object. The result of this concatenation operation is that the instantiation of

the BLOCKA object fully acquires (inherits) the attributes of the class BLOCK object as

well as the additional attributes found in the class BLOCKA declaration. Hierarchical

decomposition is then very easily done by the concatenation operation. Figures 3.19 and

3.20 in Section 3.5 also represent a clear example of the inheritance characteristic of the

OOP. The attributes of the generic car (arrival and departure actions) were inherited by

the individual cars which incorporated their own specific lane actions in their class

declarations.

9.7.9 Activation and Passivation

A complete discussion of the activation and passivation features of the SIMULA

model was provided in Section 3.5. Figure 3.20 in Section 3.5 (referred to above) includes

the SIMULA "activate" and "passivate" primitives which enable the saving and restora­

tion of an object's state between its periods of activity.

142

**
* DESCRIPTION: Class Definition of generic intersection BLOCK OBJECT

*
* ATTRIBUTES: busy - boolean, occupied by transiting car
* laneuser - lane identification of transiting car
* turner - boolean, car is a right turner
* setbusy/free - set user variables and value of busy
* free checks status of block attribute "busy"

*
* INPUT(S) : procedure setbusy is given pointer to transiting car
* OUTPUT(S): procedure free returns status of "busy" attribute

*
* CALLS

*
None

* CALLED BY: Transiting car during transit routine (transitfm2, etc.)
***;

class BLOCK;
1 begin
2 boolean busy;
3 integer laneuser;
4 boolean turner;

S
6
7
8
9
10
11

procedure setbusy(user)}
ref(car) user;
begin

laneuser := user. lane;
turner user.right;
busy .= true;

end;

12 procedure setfree;
13 begin
14
lS
16
17

18
19
20

21
22
23
24

laneuser := OJ
turner := false;
busy .= false;

end;

boolean procedure free;
begin

if not busy then
free .= true

else
free .= false

end FREE;

25 end CLASS BLOCK;

!Identify the user

!Set busy = true

!Reset user to nil values

!Set busy = false

!Check status of busy

Figure 3.34 Class BLOCK

143

**
* DESCRIPTION: Class Definition for BLOCK A OBJECT.

*
* ATTRIBUTES: procedure findtransit - determines transit time of car.

*
* INPUT(S) :
* OUTPUT(S):

procedure findtransit is passed pointer to car object.
procedure findtransit returns the transit time

*
* CALLS

*
None

* CALLED BY:

*
Transiting car from transit procedure (transitfm2,etc).
Also referenced by GENOBJECTS upon creation.

***;

BLOCK class BLOCKA;
1 begin
2 real procedure findtransit(vehicle);
3 ref(car)vehicle;
4 begin
5 inspect vehicle do
6 if lane = 8 then !Return transit time based on;
7
8
9

findtransit
end FINDTRANSITi

end CLASS BLOCKA;

2.153; ! lane id of car.

Figure 3.35 Class BLOCKA

144

3.8 The PGM Application

Applying the PGM to the TI was an extremely difficult task. No precedent exists for

using the PGM in the domain of discrete event simulation. The examples in the litera­

ture all relate to the field of signal processing and provide little, if any, utility in guiding

the modeling task since the domains of application are so totally different.

This section presents a discussion of the difficulties that were found in using the

PGM and also the results of efforts to accomplish the construction of a representation of

the TI with the PGM. Note that the application which resulted is not meant to be a

complete specification of the TI. Only portions of the specification were completed, those

portions that could provide sufficient detail to enable a rough evaluation of the PGM.

9.B.l A Possible Approach to using PGM

The PGM is very effective in the context of signal processing applications, a compu­

tationally intensive domain. The reason for this is evident from the principal concepts

around which the PGM is based. As discussed in Section 2.9, a connected network of

nodes (the process graph) can be easily described by the PGM to represent a directed

graph through which data flows from node to node. Each node represents a primitive

function or computational instance. The necessary input for executing the function or

computation enters the node from its input "queues" of data flow. The result of the node

execution is placed on the output queue(s). The time of node execution is determined by

the availability of the node input data at the input queue(s). Once this "scheduling cri­

terion" is met, the node is executed. The number of data elements that are required at an

input node (to enable the "firing" of the node) is determined by that input queue's thres­

hold setting. This "firing" of the node is reminiscent of that found among nodes in Petri

145

nets [Peterson 1977J.

At first glance, it would be reasonable to assume that such representational scheme

would be perfect for the representation of object flow in a material-oriented manner,

much like that discussed for the TF CF. As you remember, the activity-cycle diagrams

(ACDs) in Section 3.3 also present a very similar viewpoint in depicting the direction of

"entity" movement throughout a model instance as it moves from activity to activity.

Therefore, a first-look (in a top-down fashion) at the TI might produce a graph instance,

not unlike that in Figure 3.36 (showing vehicle flow from the Joint Lane and through the

intersection from Lane 1 only). Vehicles are thought to queue up along the arcs of the

nodes (the queues) and proceed through the intersection as each node executes, essentially

pumping the vehicles along. Each node would represent a lane or block or special position

within the intersection. However, the flow along the graph is determined by the timing of

the node executions. These in turn are determined by more complex interactions than

simply the presence of a vehicle at the input queue to a particular node. In addition,

ECOS [Weitzman 1986] implementation of the PGM does not provide any effective timing

mechanisms which might enable the delay of a node's output.

Figure 3.37 represents a more reasonable view to support object interactions within

the realm of the PGM. Here the nodes (from Figure 3.36) are each transformed into sets

of nodes as shown by the boxes, now labelled with the identifiers of the previous nodes.

For example, Block I now becomes a "begin transit" node and an "end transit" node. The

begin transit node can be fired by signal (CA-SIGNAL) when the conditions are met for

that node execution. That is, the node will execute when the CA-SIGNAL is present, and

when vehicles are present at the input of the Lane 1 Queue. When executing, also notice

that a T-DELAY is output indicating the time delay or transit delay across Block I.

146

Figure 3.36 Initial Vehicle Flow

NOTES:
1. Queues a,b,c, and d place competing vehicles in FIFO order for next block.
2. /mi = from lane,
3. At queue b, cars from lanes 3 and 10 compete for access

to block 8.

147

B_SIGNAL

JOINT

A-DELAY

CA-SIGNAL
SPLIT

LANE-2(Queue)

CA-SIGNAL

BA-SIGNAL

Figure 3.37 Improved Vehicle Flow

148

Similarly, the end transit node execution will occur when the firing signal (BA-SIGNAL)

and vehicles in VEILOBJ (Vehicle Object) Queue are present. Thus, we have each node

representing an event, with firing signals controlling their execution, and the vehicle

objects being pushed along their path. With this discussion as background, we can now

classify nodes as B, BA, C, and CA nodes (taking the approach of the TPA) and fit this

concept to the PGM. Band BA nodes are related to their "bound" activity counterparts.

The B-nodes are used to determine if a B-activity is due. If due, the associated BA-node

(the B-node's Action equivalent) is executed. Similarly, the C-nodes represent the test­

heads for the C-activities. If the C-node determines that its condition is satisfied, it sig­

nals its associated CA-node for execution.

Consider now the diagram of Figure 3.38. An additional graph structure can be

attached to the Band C-nodes. Its data flow offers the executive control flow to manage

the simulation. A time scan node receives the delays from nodes that schedule the

"bound" activities. These delay times are scanned to determine their minimum value.

This minimum is used to update the clock and to build a list of all the B-activities that

are due. (Note that the delay times are initialized to enable the initial arrivals to the

lanes or to O. Each queue which contains a delay time has its threshold set at O.

Although the threshold setting remains constant for the life of the graph, other NEPs

(Node Execution Parameters, like read, consume, and produce) may be variable, if so

declared. The time scan node takes advantage of this variable NEP property to enable

its selectivity of which delay time queues it will read and consume data on.) Once the

time scan node execution is complete, the execution signal is passed to the B-nodes.

These nodes use the list of B-activities that was com piled by the time scan node to deter­

mine if their associated BA-node should be activated. After each B-node is activated, a

149

L-DELAY

AI-DELAY

A2-DELAY

START_SIGNAL

T-DELAY

T-DELAY

B_SIGNAL

: NEXT

M-SIGNAL

: NEXT

Figure 3.38 Executive Control Flow

150

similar scheme is followed by passing the execution signal to the C-nodes. The C-nodes,

unlike the B-nodes, pass firing signals to their partner CA-nodes only upon satisfaction of

their testing condition.

Following the format of the EOOS tutorial [Weitzman 1986], a sampling of the node

descriptions is given for the TI. Figure 3.39 describes the Time Scan Node. Figures 3.40

through 3.42 show selected BA-nodes that represent the B- Activities. Figure 3.43 gives

the C-node (testhead) for the OA-node "Begin Transit of Block Y" whose description is in

Figure 3.44. Finally, Tables 3.1 and 3.2 provide the overall attribute declarations and

queue descriptions, complete with NEP values.

8.8.2 Lessons Learned

The PGM can be effectively used to represent interactions among model components

much like the ACD. However, no guidance is available to the modeler for model

definition or specification. The modeler is strictly on his own in specifying the model

dynamics and, in fact, must place his descriptions of the graph representation in the

SPGN (Signal Processing Graph Notation) [Weitzman 1986], which is one, if not the only,

available developmental notation for graph design. (The formats followed for the exam­

ples given in the preceding figures are strictly informal representations of the more com­

plicated notation in the SPGN.) The conceptual representation is aided within the PGM

by its ability to offer abstraction and modularity in that any node may be representing an

underlying subgraph. In addition, PGM supports inheritance features in that nodes

and/or families of nodes can be defined which can be used as templates for the creation of

additional nodes. Thus, the newly created nodes inherit the features of their parent nodes

or family.

151

PRIl\1ITIVE NAME: TlME-SCAN

DESCRIPTION: The TIME-SCAN Node handles the update of system time by
selecting the minimum time from all delay times. The node then schedules all B-Nodes
which are due based upon the new system time. The TIME-SCAN Node implements the
sequencing found in the TP A CF.

ALGORITHM:
Using the EVT-ARRAY, determine which delays among the DELAY ports to
read/consume (Setting appropriate values for variable NEPs).
Load delay times into a temporary array.
Scan these times for the minimum time; set 6 = minimum delay time.
CLOCK - CLOCK + 8

Load BLIST with the due B-nodes for output.

PARAMETER LIST:
PRIMITIVE = TIME-SCAN
PRThLIN= START-SIGNAL, CLOCK, EVT-ARRAY
PRThLOUT= CLOCK, BLIST

INPUT TABLE
Identifier Description Mode

START_SIGNAL Firing Signal INT

CLOCK System Time FLOAT
EVT-ARRAY Contains Scheduled INT ARRAY

B-nodes

OUTPUT TABLE
Identifier Description Mode

CLOCK System Time FLOAT

Range
{I}

R+

{O(Not Sched),l(Sched)}

Range

R+

BLIST List of due INT ARRAY Each Element
B-nodes {O,l}

Figure 3.39 Description of TIME-SCAN Node

152

PRIMITIVE NAME: NS_GREEN (BA-Node)

DESCRIPTION: The NS_GREEN Node performs the Action routine to change the
North-South light to Green. In addition, the West and East lights are set to Red. The
node is executed only when this routine becomes bound and scheduled in the
EVT-ARRA Y and when signalled by the BA-SIGNAL.

ALGORITIDd:
NS-COLOR - 0 /* Set Green * /
W_COLOR -1 /* Set Red * /
E-COLOR -1

EVT-ARRAY [NS-GREEN 1- 1 j* Schedule the Next Action Routine * /
LDELAY - 20.0 /* Set Delay Time Signal * /

PARAMETER LIST:
PRIMITIVE = NS_GREEN
PRIM-lN= NS_COLOR, W_COLOR, E_COLOR, EVT-ARRAY, BA...SIGNAL
PRIM-OUT= NS_COLOR, W _COLOR, E_COLOR, EVT -ARRAY, L-DELA Y

INPUT TABLE
Identifier Description Mode Range

NS_COLOR North-South Color !NT {O(Green).l(Red)}
W_COLOR West Color INT {O(Greenj,l(Red)}
E_COLOR East Color !NT {O(Green) l(RedH
EVT-ARRAY Scheduled !NT ARRAY {O(Not Sched),l(Sched)}

B-nodes
BA-SIGNAL Firing Signal INT {I}

OUTPUT TABLE
Identifier Description Mode Range

NS_COLOR North-South Color !NT {O(Green).l(Red)}

W_COLOR West Color !NT {O(Green),l(Red)}

E-COLOR East Color !NT {O(Green),l(Red)}

EVT-ARRAY Scheduled INT ARRAY {O(Not Sched),l(Sched)}
B-nodes

L-DELAY Timing Delay FLOAT R+

Figure 3.40 Description of NS_GREEN (BA Node)

153

PRIMITIVE NAME: ARILLANE3 (BA-Node)

DESCRIPTION: The ARILLANE3 Node performs the Action routine to accomplish a
vehicle arrival to Lane 3. Bootstrapping the next arrival to Lane 3 is also accomplished.
The node is executed only when this routine becomes bound and scheduled in the
EVT-ARRA Y and when signalled by the BA-SIGNAL.

ALGORITHM:
VElLOBJ.LANE-ID - 3 /* Set Vehicle Attributes in Record * /
VElLOBJ.MOTION - N

VElLOBJ.ARR_TIME =- CLOCK

A-DELAY - GAMA ! GSCALE, GSHAPE 1 /* Set Delay Time to Next * /
EVT-ARRAY I ARR-LANE3j- 1 /* Arrival; Schedule B-Node * /
LANE-3 - VElLOBJ /* Output Vehicle to Lane Queue * /

PARAMETER LIST:

PRIMITIVE = ARILLANE3
PRIMJ:N= CLOCK, GSHAPE, GSCALE, BA-SIGNAL, EVT-ARRAY
PRIM-OUT=LANE_3, A-DELAY, EVT-ARRAY

INPUT TABLE
Identifier Description Mode Range

CLOCK System Time FLOAT R+

GSHAPE Gamma Shaj>e FLOAT R+

GSCALE Gamma Scale FLOAT R+

BA-SIGNAL Firing Signal INT {l}

EVT-ARRAY Scheduled INT ARRAY {O(Not Sched),l(Sched)}
B-Nodes

OUTPUT TABLE
Identifier Description Mode Ranjle

LANE_3 New Vehicle RECORD LANE_ID={1,2, ... ,11}
MOTION={N(Normal),R(Right)}
ARR-TIME=R+

A-DELAY Next Arriva.l FLOAT R+

Time
EVT-ARRAY Scheduled INT ARRAY {O(Not Sched),l(Sched)}

B-Nodes

Figure 3.41 Description of ARILLANE3 (BA Node)

154

PRIMITIVE NAME: END_TRANSIT-BLOCKY (BA-Node)

DESCRIPTION: The END_TRANSIT-BLOCKY Node performs the Action routine to
complete the transit of a vehicle through Block 3. First, NEP Produce value is set for
correct output queue; then the exiting vehicle is placed in that queue. The node is exe­
cuted only when this routine becomes bound and scheduled in the EVT-ARRAY and
when signalled by the BA-SIGNAL.

ALGORITHM:
NEP Calculation:
If VEILOBJ.LANE-ID = 1 then

PRODUCE for BLOCK-Z = 0 /* Set output for BLOCK-8 * /
PRODUCE for BLOCK-8 = 1

Else
PRODUCE for BLOCK-8 = 0 /* Set output for BLOCILZ * /
PRODUCE for BLOCILZ = 1

Actions:
If VEH_OBJ.LANE-ID = 1 then

BLOCK-8 = VEH_OBJ
Else

BLOCILZ = VEH_OBJ

PARAMETER LIST:

PRIMITIVE = END_TRANSIT-BLOCKY
PRIM-IN= VEILOBJ, BA-SIGNAL
PRIM-OUT= BLOCK-8, BLOCK-Z

INPUT TABLE
Identifier Description Mode Range

VEILOBJ Transit Vehicle RECORD LANE_ID={ 1,2, ... ,II}
MOTION={N(Normal) ,R(Right)}
ARR-TIME=R+

B.A.-SIGNAL Firin~ Signal INT {l}

OUTPUT TABLE
Identifier Description Mode Ran~e

BLOCIL8 Exiting Vehicle RECORD LANE_ID={l,2, ... ,11}
MOTION={N(Normal),R(Right)}
ARR-TIME=R+

BLOCILZ Exiting Vehicle RECORD LANE-ID={1,2, ... ,11}
MOTION={N(Normal),R(Right)}
ARR-TIME=R+

Figure 3.42 Description of END_TRANSIT-BLOCKY (BA Node)

155

PRIMITIVE NAME: BEGIN_TRANSIT-BLOCKY (C-Node)

DESCRIPTION: The BEGIN_TRANSIT-BLOCKY Node performs the test (testhead)
for beginning transit of Block Y. First, NEP Produce value is set for correct output sig­
nal (Le., whether CA-SIGNAL is turned on or off); then the testhead is performed.

ALGORITHM::
NEP CALCULATION:
If BLOCI<-ARRAY [Yj.QUEUECOUNT > 0 and BLOCI<-ARRAY [Y].STATUS =
IDLE then

PRODUCE for CA-SIGNAL = 1 /* Output turned on * /
Else

PRODUCE FOR CA-SIGNAL = 0 /* Output turned off * /
Aetions:
If BLOCI<-ARRAY {Y].QUEUECOUNT > 0 and BLOCI<-ARRAY [Y].STATUS =
IDLE then

CA-SIGNAL = 1
NEXT = 1

PARAMETER LIST:
PRIMITIVE = BEGIN_TRANSIT-BLOCKY (C)
PRThUN= C-SIGNAL, BLOCK-ARRA Y
PRllvLOUT= CA-SIGNAL, NEXT

INPUT TABLE
Identifier Description Mode

C_SIGNAL Firing Signal INT
BLOCILARRAY Block Status RECORD ARRAY

Array

OUTPUT TABLE

Range
{l}

Each Record
QUEUECOUNT=z+o
STATUS={Idle ,Busy}
OCCLANE={1,2, ... ,11}
OCCMOTION={N(NormaI), R(Right n

Identifier Description Mode Range
CA-SIGNAL Firing Signal INT {I}

NEXT Firing Signal INT {I}

Figure 3.43 Description of BEGIN_TRANSIT-BLOCKY (C Node)

156

PRIMITIVE NAME: BEGIN_TRANSIT-BLOCKY (CA-Node)

DESCRIPTION: The BEGIN_TRANSIT-BLOCKY Node performs the Action routine
for beginning transit of Block Y. The node is executed only when this routine is signalled
by the CA-SIGNAL.

ALGORITHM:
VEILOBJ = BLOCK-Y j* Acquire the waiting vehicle * /
BLOCK-ARRAY {Y].QUEUECOUNT = BLOCILARRAY [Y].QUEUECOUNT - 1
BLOCK-ARRAY [Y].STATUS = busy j* Set Block Y attributes * /
BLOCK-ARRAY [Y].OCCLANE = VEILOBJ.LANE-ID j* Set resident id * /
BLOCILARRAY [Y].OCCMOTION =VEH_OBJ.MOTION /* and motion */
If VEILOBJ.LANE-ID = 1 then

BLOCILARRAY [I].STATUS = idle /*Free Block I */
T-DELAY = SVCTIME (Y, 1, N)

Else j* Vehicle is Lane 11 Car * /

PARAMETER LIST:
PRIMITIVE = BEGIN_TRANSIT-BLOCKY (CA)
PRIMJ:N= CA-SIGNAL, BLOCK-ARRAY, EVT-ARRAY, BLOCK-Y
PRIM-OUT= T -DELA Y, EVT -ARRAY, VEILOBJ

INPUT TABLE
Identifier Description Mode Range

CA.-SIGNAL Firing Signal INT {I}

BLOCILARRAY Block Status RECORD ARRAY Each Record
Array QUEUECOUNT=zo+

STATUS={Idle,Busy}
EVT-ARRAY Sched Array INT ARRAY {O(Not Sched).l(SchedJ}
BLOCICY Waiting Vehicle RECORD LANE-ID={1,2, ... 11}

MOTION={N(Normal) ,R(Right)}
ARR-TIME=R+

OUTPUT TABLE
Identifier Description Mode Range

EVT-ARRAY Sched Array !NT ARRAY {O(Not Sched),l(Sched)}
VEILOBJ Transit Vehicle RECORD LANE_ID={1,2, ... 11}

MOTION={N(Normal),R(Right)}
ARR-TIME=R+

T-DELAY Transit Delay FLOAT R+

Figure 3.44 Description of BEGIN_TRANSIT -BLOCKY (CA Node)

157

Table 3.1 PGM Variable Attribute Table

TYPE NAME MODE DESCRIPTION
GV NS_COLOR INT [INIT to 11 North-South Color
GV W_COLOR INT rINIT to 11 West Color
GV E COLOR INT fINIT to 11 East Color
GV EVT-ARRAY INT ARRA Y(50)§ B-Node Scheduling

fINIT to (OO,O, ... ,O}l Array
GV BLIST INT ARRAY(50)§ Current B-Node

[INIT to fO ° 0 ... 011 Arrav (Due)
GV CLOCK FLOAT fINIT to 0.01 System Time
GIP GSHAPEt FLOAT G.AM:MA Shape

Parameter
GIP GSCALEt FLOAT G.AM:MA Scale

Parameter
GV BLOCK-ARRAY RECORD-ARRA Y(35)* Block Status Array
GV BSCAN INT {O,l} Begin Scan

Boolean
GV NDISS INT Departures in

Steady State
GV LOTP INT Transient Period

Counter
GIP LOSS INT Length of Steady

State Period

§ Size of array depends on number of B-Nodes.
t Shown for example purposes; other distribution constant information

would be present.
+ Size of array depends on number of Blocks.

158

Table 3.2 PGM Queue Attribute Table

Type Queue Name Mode T§ R§ C§ O§ P§ Description
LOCAL START_SIGNAL INT 1 1 1 0 V Start-up

fINIT to 11 Signal
LOCAL L-D E LAYs FIXED 0 V V V V Light

fINIT to O.oU Delay
LOCAL A-DELAYs FIXED 0 V V V V In terarri val

fINIT to 0.011 Delay
LOCAL T-DELAYs FIXED 0 V V V V Block Transit

fINIT to 0.011 Delav
LOCAL B_SIGNAL INT 1 1 1 0 1 Start B-node

Executions
LOCAL BA-SIGNALs INT 1 1 1 0 V Start BA-node

Execution
LOCAL C_SIGNAL INT 1 1 1 0 1 Start Condition

Scan Execution
LOCAL CA-SIGNALs INT 1 1 1 0 V Start CA-node

Execution
LOCAL NEXT !NT 1 1 1 0 1 Firing Signal

to Next Node
LOCAL M-SIGNAL !NT 1 1 1 0 V Control for

[INIT to 01 Control Scan
LOCAL N'M-SIGNAL INT 1 V V V V Control for

More Scan
LOCAL E_SIGNAL INT 1 V V V V Control for

End Simulation

LOCAL VEILOBJ RECORD 1 1 1 0 1 Vehicle Object
Record

LOCAL LANE-xs RECORD 1 1 1 0 1 Lane Queues
of Vehicle Records

LOCAL BLOCK--Xs RECORD 1 1 1 0 1 Block Queues
of Vehicle Records

§ Code for Table:
T: Threshold
R: Read
C: Consume
0: Offset
P: Produce
V: Variable

159

The PGM provides some useful tools during the design process, however provides lit­

tle guidance in a "framework" sense. It is likely t too, that implementations of discrete

event models using the data flow concepts of the PGM would be highly inefficient.

3.9 The ERA Application

One of the important contributions of the ER model [Chen 19761 was the introduc­

tion of a diagramming technique called the entity-relationship diagram which is

extremely useful in designing databases. The ERA CF application to the TI is demon­

strated using such an entity-relationship diagram. First, using the terminology which

was introduced in Section 2.10, we describe the diagramming technique and its notational

conventions which were developed by Chen [1976]. The TI is then described in terms of

an entity-relationship diagram.

9.9,1 The Entity-Relationship Diagramming Technique

The three primitive concepts which form the basis of the ERA CF are the concepts

of the ent£ty, the relationship, and value [Dos Santos et al. 1980]. The entity-relationship

diagram is used to depict the entities which are realized in a model, the relationships

which exist between them, and the values of attributes which are associated with the enti­

ties or their determined relationships. The symbolic notation for an entity set is a box.

Relationship sets are indicated by a diamond shape. Finally, value sets are notationally

specified as circles. Normally, the attribute name that is attached to an entity is placed

within the value set sym bol [Hartson 1987]. Lines are used to interconnect the sym boIs in

such a way as to display the existing role or attribute mappings between entity, relation­

ship, and value sets. Figure 3.45 shows these symbols and their composition in a generic

160

diagram. Following these conventions, the symbols may take on the instance described by

the diagram of Figure 3.46 in which an student entity set (with attributes of "student­

id", "name", and "age") is related to the course entity set (with the attribute "course­

name"). The relationship set student_course also includes an attribute, "grade". For

simplification, all attribute names for a particular entity are enclosed within a single cir­

cle with the assumption that the domain of the value sets (from which the attribute

values are derived) is logically implied from the associated attribute name. Also note that

primary keys for a particular entity set are identified by underlining them [Hartson 1987].

Chen [1976] points out that a typical diagram may contain "several important

characteristics about relationships in general". The diagram clarifies which entities enter

into relationships. For example, a single relationship set may exist on one or more entity

sets, or more than one relationship set can be defined on a group of entity sets. Also, the

diagram distinguishes between one-to-one (1:1), one-to-many (l:n), and many-to-many

(m:n) relationships. Normally, 1:1 relationships refer to the 1:1 mapping between an

entity and its attributes, and 1: n relationships denote a hierarchical structure [Hartson

1987]. Figure 3.46 shows a many-to-many relationship since a single student may take

many different courses and a single course may be taken by many different students.

8.9.2 An Entity-Relationship Diagram of the TI

In building an appropriate entity-relationship diagram for the TI, the four step pro­

cedure described in Section 2.10 was used. By following this procedure, the diagram struc­

ture of Figure 3.47 was determined .

• Step One - Identify entity and relationship sets of interest

Entity
Set

161

Figure 3.45 Generic Mappings in an Entity-Relationship Diagram
[Dos Santos et al. 1980]

Student

Student-idf
name
age

t Primary Key

M

Figure 3.46

162

N

A Typical Entity-Relationship Diagram

Course

Course-numberf
Course-name

location
credit-hrs

VEHICLE

t Primary Key

163

LIGHT­
DffiECTION

BLOCK

LANE

LANE-CAT

Figure 3.47 Entity-Relationship Diagram of the TI

164

Entity sets necessary to represent the TI were identified as VEIDCLE,

LIGHT-DmECTION, BLOCK, LANE, and LANE_CAT (Lane Category). In

addition, an entity set to represent the entire model, INTERSECTION (which is com­

posed of the above entity sets), was determined. At this point in the design process, two

particularly important relationship sets were recognized. First, a LANE-LANE_CAT

relationship set is needed to define the various paths a vehicle might travel dependent

upon the lane and direction of movement. This relationship set is very important and

serves as the basis for determining the desired performance measures. Secondly, block

service times are related to the lane and to the lane category. The resulting relationship

set, BLOCK-LANE-LANE_CAT, is determined from among these three indicated

en tity sets .

• Step Two - Identify semantic information

There is a l:m mapping between the INTERSECTION entity set and each of the

entity sets, VEHICLE, LIGHT-DIRECTION, BLOCK, and LANE. The LANE­

LANE_CAT relationship is a m:n mapping. The BLOCK-LANE-LANE_CAT relationship

is also a composed of many-to-many mappings. If not clear at this point, the semantic

designations of the mappings as l:m or m:n is clarified with the description of the attri­

butes and their associated value sets in the next step .

• Step Three Define value sets and attributes

Attributes for e~ch entity set and the value sets of their attributes are shown in

Table 3.3. Since each lane may be associated with two or fewer lane categories and each

lane category may be related to any of eleven different lanes, the m:n relationship of the

LANE-LANE_CAT relationship set is verified. Also notice that similar logic shows the

165

Table 3.3 ERA Entity Sets and Relationship Sets

Entity Set Attribute Value Set
INTERSECTION ModeLname character string

Reps positive integers
Mru,-deps.-SS positive integers
Max_deps_tp positive integers

VEHICLE Vehiclejd positive integers
Lanejd integer from 1..11
Motion R (right) or N (normal, straight)
Arrtime positive reals
Deptime positive reals
Waittime positive reals

LIGHT.-DffiECTION Dir-Dame NS, E, orW
Color Red or Green

LANE Lane name integer from 1..11

LANE_CAT Cat name R (right) or N (normal, straight)
BLOCK Block-Dame character from A .. Z or 1..9

Status idle or busy

Relationship Set Attribute Value Set
LANE-LANE_CAT Deps.-SS positive integers

Deps_tp positive integers
TotaL waittime positive reals
Exp_waittime positive reals

BLOCK-LANE-LANE CAT Svc time positive reals

166

validity of the many-to-many mappings for the BLOCK-LANE-LANE_CAT relationship

set.

• Step Four Organize data into relations, decide primary keys

The primary keys which uniquely specify the entity instances are indicated in Figure

3.47. The translation of the diagram into a relational data model [Date 1986] and the

associated construction of relational tables is discussed by Chen [1976]. Hartson [1987]

provides a good summary of the process. Essentially, simple entity relations are derived

from the entity sets and their attributes. The one-to-many relationships do not become a

relation. Instead, the primary key from the "one" entity becomes an attribute or part of

the key of the "many" entity. The many-to-many relationships become a linking relation

[Hartson 1987]. The primary key of this linking relation is derived from the keys of each

of the "many" entities and remaining attributes are taken from the attributes of the rela­

tionship set, if any. Table 3.4 gives examples of such relations which are derived from the

entity-relationship diagram of the TI model. The LIGHT-DIRECTION relation shows

how the primary key of the INTERSECTION entity (with name TOMSCPF, for Toms

Creek and Prices Fork Road) becomes part of LIGHT-DIRECTION's key in a l:m

derivation. BLOOK-LANE-LANE_OAT is a linking relation where the primary key is

determined from the collaborating entities.

3.10 The EAS OF Application

Due to the claim stated in Section 2.11 that the EAS OF was derived, in part, from

SIMSORIPT, the SIMSORIPT model (also used extensively in the ES OF application of

the TI) is considered as a suitable example to illustrate the prominent features of the EAS

OF. As a point of quick review, the EAS OF is primarily an approach which can be used

167

Table 3.4 Example Relations from the TI

LIGHTJ)IRECTION
Mod namet Dir namet Color
TOMSCPF NS Red
TOMSCPF E Red
TOMSCPF W Red

BLOCK-LANE-LANE CAT
Block_namet Lan e-fi amet Cat-fiamet Svc_time 1 ms)

A 8 R 2153
B 7 N 1071
C 6 N 1495
D 5 R 1577
E 5 N 933
E 5 R 1578

"

t Columns represent primary key

168

to represent the model "static" definition. Its central concepts include those of the entity,

entity attr'ibutes, and collections of entities called sets. The SIM:SCRIPT model of the TI

includes such an approach for providing its static definition. This definition is realized in

the formulation of the model preamble, portions of which are shown in Figure 3.48.

Recall, however, that model "dynamics" are not easily represented but due to the "order­

ing" imposed on the sets, time and state relationships can be, in a limited sense.

9.10.1 Entities and Their Attributes

Every entity which is a component of the model is defined in the preamble following

the key words permanent entities or temporary entities, whichever is more

appropriate. Permanent entities in the TI, shown in lines 19-22 of Figure 3.48, include

• the light,

• the blocks, and

• the lanes.

The SIMSCRIPT standard convention for defining the entities is straightforward

and includes an equally simple means of identifying the attributes of these entities. The

light entity has the defined attributes of color for each specified direction. A block entity

has the attibutes of status, laneuser, and turner. In the context of the SIMSCRIPT

model, the status attribute indicates whether a block is "idle" (i.e., there is no transiting

car occupying its physical space) or "busy" (a car is in the block). Laneuser and turner

attributes both refer to characteristics of a car that is in the block, identifying the lane

the car has come from and the car's direction of movement ("straighe' or "right" turn­

ing). The turner attribute is actually a boolean that, when true, indicates the car is a

right turner. The SIMSCRIPT representation does clearly show the associated attributes

169

preamble
1 event notices include
2 turn.ns.red and turn.ns.green and turn.west.green
3 and turn.east.green "Event arguments include:
4 every departure has a out.vehicle " outgoing car
5 every arrival.blockd has a moving.car.d " incoming car to block
6 every arrival.blockh has a moving.car.h
7
8 every arrival.blockz has a moving.car.z
9 every arrival.blockl has a moving.car.1
10
11
12
13
14
15
16

every arrival.block9 has a moving.car.9
every turning. left has a left.moving.car
every enter has a in. vehicle
every arrival. joint has a incoming.car12
every arrival.lane1 has a incoming.car1

17 every arrival.lanel1 has a incoming.carl1

18 normally, mode is integer
19 permanent entities

"Car making turn
"Car entering intersection
"Car arriving lane

20 every light has a ns.color, a west.color and a east. color
21 every block has a status, a laneuser, a turner and owns a block.queue
22 every lane owns a lane.queue
23
24 temporary entities
25 every car has an arrtime, a laneid,an id and a to.right

and may belong to a block.queue
and may belong to a lane.queue

26 define arrtime as a real variable
30
31 end

Figure 3.48 The SIMSCRIPT PreaInble with EAS CF Features

170

of these entities. Notice that there are no designated attributes for a lane entity.

For the TI, only the cars or vehicles are temporary and their definition is shown in

lines 24-26 of the modified preamble of Figure 3.48. Each car is defined with attributes

arrtime, laneid, id, and to. right. The arrtime attribute is the arrival time of the car.

Laneid and to. right directly correspond to the block attributes of laneuser and turner.

Laneid is the car's lane of origin and to. right is a boolean which logically indicates the

car's direction of movement. The attribute id is a unique, sequential identification

number given to each car arriving to the intersection.

Values held by all the attributes are of type integer with one exception. The "nor­

mally, mode is integer" statement in line 18 specifies this "normal" condition of value

types. The exception, attribute arrtime, is defined in line 26, apart from the other attri­

bu tes, to be of type real.

9.10.2 Set Ownership and Membership

The set definitions and designations of hierarchical structure for the EAS OF in the

SIMSORIPT model are included in the entity definitions discussed above. The key word

owns following the specification of attributes, if any, describes those components which

may be attached to or associated with specific entities. In Figure 3.48, queues are associ­

ated each block and each lane. Thus, a one-to-one relationship is indicated between these

entities and their associated queues. Ownership of components or sets (as described

above) is a way of showing hierarchical relationships in SIMSCRIPT. Membership in

sets, like the queues mentioned above, is declared using the key words may belong to

within an entity description. For example, in line 25, cars are defined as members of

block and lane queues. Therefore, using set ownership and membership definitions,

171

relationships among model components is simplified.

3.11 The 8M Application

Geoffrion [1988] provides a Structured Modeling Language (SML) which is a

language for model definition. It is used to develop "text-oriented" and "table-oriented"

model representations which are based on SM concepts. In this chapter, the SML is used

to demonstrate the application of the SM CF for modeling the TI system. Following a

brief description of the SML, a typical modular outline with a collection of elemental

detail tables and an associated genus graph for a model of the TI are given. These three

core aspects of a structured model representation support the earlier description of SM

given in Section 2.13 and enable one to grasp the essential details of this CF. During the

development of the SM application to the TI, there were difficulties with the representa­

tion of the dynamic relationships between model objects. The application is primarily

geared toward a static representation and is, therefore, incomplete in that the model

dynamics are not included.

9.11.1 Descn'ption 0/ SML

As described above, the SML contains the necessary components which allow the

construction of an indented list, text-oriented representation and also a table-oriented

representation. The text-oriented form is described by the language through the use of a

detailed notation which facilitates the development of a modular outline from which one

can derive modular and generic information. The detailed data of the elemental structure

is represented within the guidelines of SML's table-oriented notation, producing a set of

elemental detail tables.

172

3.11.1.1 The Text-Oriented Notation

Central to the use of the text-oriented notation is the development of module and

genus paragraphs for use as nodes in the indented list, rooted, textual tree. Each para­

graph description (whether module or genus) is concluded with the reserved word ":.".

The syntax for the module paragraph [Geoffrion 1988] is

&MODULE-NAME :1 interpretation :.

The ampersand denotes a node as a module paragraph and the "d" is a reserved word

which denotes the "end of the formal part" of the paragraph. In addition, the interpreta­

tion is an informal English description which introduces key words that amplify the

meaning of the module name. The interpretation may reference other key words that

have been previously introduced. Key words, when first introduced in an interpretation,

are preceded and followed by the reserved word ":/" .

Genus paragraphs follow a similar but much more detailed notational syntax. The

general form of the genus paragraph [Geoffrion 1988] is

GNAME [new index] [(generic calling sequence)J jtypej [index set statementJ [::

domain statement] [: range statement] [; generic rule] d [interpretation] :.

Square brackets indicate optional arguments. Specific forms for genus paragraphs differ

according to the specified genus "type". Depending on the type, the number and applica­

bility of options will vary. The type declaration is specified by one of the following

reserved words:

Ipel primitive entity

Icel compound entity

lal attribute

Ivai variable attribute

If I function

It I test

173

Each component of the genus paragraph fulfills a unique role. Each can be infor-

mally described as follows:

• The new index allows the specification of the individual elements within the genus

GNAME by designating a sym bolic index for each GNAME set member.

• The generic calling sequence indicates those genera (if any) which take part in the

definition of GNAME.

• The index set statement "gives information about the population of the genus"

GNAME.

• The domain statement, if used, specifies the "data type for the identifiers (names)

used for the individual elements" of a genus using the new index option [Geoffrion

1988].

• The range statement gives the range set of allowable values for attribute genera.

• The generic rule indicates the rule of computation which determines the returned

value of a function or test genus.

• The interpretation is exactly as described for the module paragraph.

Geoffrion [1988] gives an informal coverage (narrative in nature) that details the

complete syntax requirements of each option in a set of informative appendices. Formal

174

coverage is also provided in an additional appendix which introduces a context-free gram­

mar that describes the syntactic and lexical structure of the notation.

3.11.1.2 The Table-Oriented Notation

Proper use of the text-oriented notation will generate the "general structure" of a

model representation. The SML also provides "a notation that is primarily table-based

because tables can be an effective way to organize masses of element-level data ... effective

both for people to grasp and for machines to process [Geoffrion 1988). As noted previ­

ously, these tables are called the elemental detail tables.

The elements of each genus are usually put into the tables in a format that depends

on genus type. Informally, the tables hold the naming conventions for genus elements,

interpretations of the elements, and values, if appropriate. Normally, primitive and com­

pound entity elements which are singletons are not represented in the tables since the

genus paragraph contains all the necessary information. Other singleton elements (like

attribute, function, and test singleton elements) become a single value cell. The specific

details of how the tables are structured, loaded, and edited are given by Geoffrion [1988].

8.11. e The Genus Graph

In developing the text and table-oriented representations for modeling the TI sys­

tem, the basic element types were first identified. The TI system contains a number of

lanes, blocks, vehicles, and a light as described in the CM definition in Section 3.1. Each

collection of vehicles, lanes, and blocks were grouped into a primitive entity genus called

VEHICLE, LANE, and BLOCK respectively. The light genus, LIGHT, is a singleton.

Each of these primitive entity genera was further specified as follows:

175

• VEHICLE - Attribute genera (with value) and a function genus were defined for

each vehicle. These include

(1) LANE-ID (attribute), the lane number of the lane in which the vehicle is

traveling,

(2) ARR-TlME (attribute), a vehicle's arrival time to the intersection,

(3) MOTION (attribute), a vehicle's direction of movement in its lane, whether

straight or right turning,

(4) DEP _TIME (attribute), a vehicle's departure time from the intersection,

and

(5) WAIT_TIME (function), the waiting time of a vehicle in the intersection .

• LANE - Additional compound entity genera were derived from the lane ele­

ments. Attribute genera are also defined on the LANE genus and its related com­

pound entity genera.

(1) JOINTLANE (compound entity) describes the relationship between lanes 1

and 2. Lanes 1 and 2 taken together are called the Joint Lane.

(2) VIRT-LANE (compound entity), a set of conceptual lanes, was defined

which represents the possible paths which vehicles may take, i.e., in lane 1

going straight, in lane 2 turning right, in lane 5 going straight, etc. An addi­

tional primitive entity genus, LANE_CAT (with categories denoting straight or

right turning) was created to enable the definition of the virtual lanes.

(3) CAPACITY (attribute) was defined for lanes 1 and 2 to hold the maximum

vehicle capacity in these two lanes.

176

(4) DEPS-SS (attribute) and DEPS_TP (attribute) represent values which are

maintained by the solver and are counters of the current numbers of vehicle

departures in steady state or during the transient period. These current values

can be compared against the maximum allowed values to fix the termination of

execution .

• BLOCK - Each block has the following attribute genera:

(1) STATUS (attribute), which indicates if the block is idle or busy (occupied

by a vehicle), and

(2) SVC_TIME (attribute), the vehicle transit time across a block which

depends on the associated virtual lane of the transiting vehicle .

• LIGHT - The light determines a compound entity genus and its attribute genus.

(1) DIRECTION (compound entity) represents the four directions (north,

south, east, and west) of the light.

(2) COLOR (attribute) is defined for each direction and may have red or green

value. The color of each direction is updated by the solver and is used to con­

trol the flow of vehicles through the intersection.

The genus graph of Figure 3.49 shows the relationships which exist among these

primitive entity genus types and their associated compound entity, attribute, and func­

tion genera. The genus graph also includes other function and attribute genera which are

used by the solver to control model execution and to output useful statistical data. Attri­

butes MAX-DEPS-SS, MAX-DEPS_TP, and REPS are used by the solver and represent

the maximum number of departures (of vehicles) in steady state or during the transient

period and also the number of replications that are desired. These values indicate the

177

EXP _ W AIT_ TIME

1
TOT_WAlT_TIME

1 DEPS-SS DEPS_TP

VL_ W AlT _TIME

W AlT_ TIME VlRT -LANE

ARR-TIME MOTION

JOINT-LANE BLOCK COLOR
VEmCLE

t
DIRECTION

REPS LANE LANE-CAT LIGHT

Figure 3.49 The TI Genus Graph

178

model execution termination conditions. Figure 3.49 also includes the statistical data

that are derived from the above mentioned genera. The waiting time of each vehicle is

associated with the vehicle's virtual lane by the function VL_ WAIT_TIME, the virtual

lane waiting time. The sum or total of all virtual lane waiting times in each virtual lane

is calculated by the function TOT_WAlT_TIME. The function EXP_WAlT_TIME

defines the expected waiting time for all transiting vehicles in a particular virtual lane.

8.11.8 SM Modular Outline and Elemental Detail Tables

The 8M modular structure (conceptual in nature) is considered to be the collection

of the basic primitive entity elements (&OBJECT8), the collective grouping of data and

information about the vehicles (&VEILDAT), the lanes (&LANE-DAT), the transit area

(&TRANS-AREA-DAT, which includes block and light data), and statistics

(&STAT-DAT). In addition, the modular structure includes overall model attributes (as

shown in the genus graph) such as number of replications (REPS), etc., that assist in

solver or executive control. Figure 3.50 shows a typical modular structure to the first

sibling level. Figures 3.51 through 3.55 complete the modular structure by further

developing the interior nodes (modules) of Figure 3.50 (Le., &OBJECTS, &VEILDAT,

&LANE-DAT, &TRANS-AREA-DAT, and &STAT-DAT) to their descendant genera

(leaf nodes).

The elemental detail tables provide the additional low-level information that cannot

be represented by the genus and module paragraphs. The tables must be loaded with ini­

tial elemental information and are updated by the solver. The tables are structured and

ordered so that the monotone property of the modular structure with no forward refer­

ences is maintained. This eases the update operation or "editing" as Geoffrion [1988] calls

179

&TRAFFIC-INTERSECTION :\ There is a traffic :/INTERSECTION:/. :.

&OBJECTS :\ The INTERSECTION is composed of key :/OBJECTS:/ :.

&VEILDAT :1 There is ./VEHICLE DATA:/ :.

&LANE-DAT :1 There £s :/LANE DATA:/ :.

&TRANS-AREA-DAT :I There is :/TRANSIT AREA DATA:/ ..

MAX..J)EPS_SS lall : Int+ :I There are a :/MAXIMUM NUMBER OF
DEPARTURES IN STEADY STATE:/. :.

MAX..J)EPS_TP lall : Int+ :1 There are a :/MAXIMUM NUMBER OF
DEPARTURES IN TRANSIENT PERIOD:/. :.

REPS la/I: Int+ :I There are a designated number of :/REPLICATIONS:/ :.

&STAT-DAT :I There are :/STATISTICS:/ :.:.

Figure 3.50 Overview of the Modular Structure (to First Sibling Level)

180

&OBJECTS :\ The INTERSECTION is composed of key, base :/OBJECTS:/ :.

VEffiCLEi /pe/ :: Int+ :1 There are :/VEHICLES:/ that ~ransit the INTERSEC­
TION. :.

LANE j /pe/ Size {LANE} = 11 :: Int+ :\ There are :/LANES.·j £n the INTER­
SECTION. Each :/LANE./ serves as an entry point to the INTERSECTION. :.

BLOCKk /pe/ Size {BLOCK} = 35 :: Int+ :\ There are :/BLOCKS:/ which serve
as conceptual locations for VEHICLES in the£r transit of the INTERSECTION. :.

LIGHT /pe/ Size {LIGHT} = 1 :\ There is a :/LIGHT:/ that controls the move­
ment of the VEHICLES. :.

Figure 3.51 Modular Structure of &OBJECTS

181

&VEH-DAT :1 :/VEHICLE DATA:/ :.

LANE-ID (VEHICLE i) /a/ {VEHICLE} :Range {LANE} :1 Each VEHICLE
arrives to the INTERSECTION in a certain LANE; Each VEHICLE has a :/LANE
IDENTIFIER:/ :.

ARILTIME (VEHICLE i) /a/ {VEHICLE} :R+ :1 Each VEHICLE has an
:/ARRIVAL TIME:/ to the INTERSECTION. :.

MOTION (VEHICLE i) /a/ {VEHICLE}: nrighttt,ttnormal" :1 Each VEHICLE has
an identifiable :/lY/OTION:/, and will either turn right on red (1,) possible) or will fol­
low the normal flow of traffic in z'ts LANE. :.

DEP_TIME (VEHICLE i) /al {VEHICLE} :R+ :I
Each VEHICLE has a :/DEPARTURE TIME:/ from the INTERSECTION . ..

WAIT_TIME (VEHICLE i) If/ {VEHICLE} ; DEP _TIMEi - ARR-TIMEi:1 Each
VEHICLE has a :/WAITING TIME:;' :.

Figure 3.52 Modular Structure of &VEH-DAT

182

&LANE-DAT :1 :/LANE DATA:/ :.

JOINTLANE (LANE<l>, LANE<2» Icel Size {JOINT} = 1 :\ There £s a
:/JOINTLANE:/ which is a composite LANE formed from LANES 1 and 2. :.

LANE_CATl Ipel Size = 2 :: String :\ There are :/LANE CATEGORIES:/
which conceptually label a LANE as normal (straight) or as right turning. :.

VIRT-LANE (LANEj, LANE_CAT/) Icel Select {TRANS-LANE} X
{LANE_CAT} where j covers {LANE}, I covers {LANE_CAT} :1 There are :/VIR­
TUAL LANES:/ which are conceptual in nature and which coincide with the LANES
but are additionally distinguished by a LANE GA TEGOR Y. :.

CAPACITY (LANE < 1:2» / al : In t+ :\ LANES 1 and e have an associated
:/CAPACITY:/ :.

DEPS-SS (VIRT-LANEjl) IvaI {VIRT-LANE} : Int+ :\ There is a dynamically
changing number of :/DEPARTURES IN STEADY STATE:/ which the solver main­
tains and corresponds to the number of VEHICLE departures in steady state from
each VIRTUAL LANE, :.

DEPS_TP (VIRT-LANEjl) Ivai {VIRT-LANE} : Int+ :\ There is a dynamically
changing number of :/DEPARTURES IN THE TRANSIENT PERIOD:/ which the
solver maa'ntains and corresponds to the number of VEHICLE departures in the tran­
sient period from each VIR TUAL LANE, :,

Figure 3.53 Modular Structure of &LANE-DAT

183

&TRANS....AREA-DAT :1 :/TRANSIT AREA DATA:/ :.

&LIGHT-DAT :I :/LIGHT DATA:/ :.
DmECTIONm (LIGHT) Ice/ Size {DIRECTION} = 4 :: Char 1 :1 Associ­
ated with the LIGHT are its ./DIRECTIONS.·/ corresponding to the major
points on the compass. :.

COLOR (DIRECTIONm) Iva/ {DIRECTION} : red, green :1 Each DIREC­
TION dynamically changes its :/COLOR:/ ..

&BLOCILDAT :1 :/BLOCK DATA:/ :.

STATUS (BLOCKk) Ivai {BLOCK} : busy, idle:1 Each BLOCK has a
:/STATUS./ which is dependent on the presence of a transiting VEHICLE . ..

SVC_TIME (BLOCKk,VIRT-LANEjo) jaj Select {BLOCK} X
{VIRT-LANE} : R+ :1 There is a :/SERVICE TIME:/ (Transit time) for each
BLOCK which depends on the VIRTUAL LANE source of VEHICLES that may
use the BLOCK. :.

Figure 3.54 Modular Structure of &TRANS-AREA-DAT

184

&;STAT-DAT :/ :/STATISTICAL DATA:/

VL_WAIT_TIME (VIRT-LANEjlm WAIT_TIME i) If I Select {VIRT-LANE} X
{WAIT_TIME} : R+ ; WAIT_TIME; :1 The modeler selects the index set such that
each VIRTUAL LANE (first term of the Cartesian product) is paired with a WAIT­
ING TIME of any VEHICLE that is transiting that particular VIRTUAL LANE.
The :/VIRTUAL LANE WAITliVG TIMES:/ are essentially a redesignation of the
WAITING TIMES. That is, we have now associated each VEHICLE's WAITING
TIME with a VIRTUAL LANE. :.

TOT_WAlT_TIME (VL_WAIT_TIMEju) If I {VIRT-LANE} : R+; SUM;
VL_WAIT_TlMEili :1 The ./TOTAL WAITING TIME:/ for a particular VIRTUAL
LANE is computed by summing over all VIRTUAL LANE WAITING TIMES associ­
ated with that VIRTUAL LANE. That is, we have now provided for the calculation of
the sum of all WAITING TIMES for VEHICLES transiting a particular VIRTUAL
LANE. :.

EXP_WAlT_TIME (TOT_WAIT_TIMEjl, DEPS-SSjl) If I {VIRT-LANE}
R+; TOT_WAIT_TIMEjl / DEPS-SSjl :1 There is an :/EXPECTED WAITING
TIME:/ for a VIRTUAL LANE which is calculated by dividing the TOTAL WAIT­
ING TIME for a given VIRTUAL LANE by the number of VEHICLES departing that
VIR TUAL LANE during the steady state period. :.

Figure 3.55 Modular Structure of &STAT-DAT

185

it. Tables 3.5 through 3.9 provide the complete elemental detail tables for the genera

that are defined in this TI model. Table 3.5 shows a preliminary set of elemental detail

tables for the primitive entities in the &OBJECTS module. The VEHICLE elemental

detail table is further developed in Table 3.6 to include all vehicle attribute information.

The BLOCK elemental detail table is also extended in Table 3.7 with the listing of the

STATUS attribute. The TOT_WAIT_TIME and EXP_WAIT_TIME elemental detail

(shown in Table 3.8) could be joined into a single table since both are indexed by virtual

lanes. Finally, Table 3.9 shows the simple, single value elemental detail tables of the top

level model attributes (e.g., REPS) that guide the solver.

3.12 The CS Application

This section describes the application of the CS to the TI. The figures of this section

provide the complete specification of the TI and list the interface, object, transition, func­

t£on, and report specification components of the CS. The syntax of the CS [Overstreet

1982; Overstreet and Nance 1985] is closely followed with some minor extensions which

were necessary due to the complexity of the TI. These extensions deal with the means of

object referencing and the creation of set objects. Overstreet and Nance [1985] recognized

that complex models may require extensions in these areas beyond the original "abbrevi­

ated" treatment. In the subsections that follow, we discuss these extensions and explain,

in detail, the components of this CS application and the corresponding figures.

186

Table 3.5 Preliminary Elemental Details of Base Objects

VEHICLE Elemental Detail
VEHICLE INTERP

1 Vehicle Number 1
2 Vehicle Number 2
3 Vehicle Number 3
... . ..

LANE Elemental Detail
LANE INTERP

1 Lane 1
2 Lane 2
3 Lane 3
.,
11 Lane 11

BLOCK Elemental Detail
BLOCK INTERP

1 Block A
2 Block B
3 Block C

..
26 Block Z
27 Block 1
28 Block 2
29 Block 3
... . ..
35 Block 9

187

Table 3.6 Elemental Details of Vehicle and Lane Data

VEHICLE Elemental Detall
VEmCLE INTERP LANE_IDt ARILTIMEt MOTIONt DEP_TIMEt WAIT_TIMEt

1 Vehicle Number 1 2 1.5 normal 5.6 4.1
2 Vehicle Number 2 5 1.6 right 7.0 5.4
3 Vehicle Number 3 7 1.7 normal 8.1 6.4

..

LANE_CAT Elemental Detail
LANE_CAT INTERP

N Normal, straight
R Right turning

VIRT-LANE Elemental Detail
LANE LANE_CAT INTERP DEPS_SSt DEPS_TPf

1 N Virtual Lane IN 1505 133
2 N Virtual Lane 2N 1739 245
2 R Virtual Lane 2R 648 71
3 N Virtual Lane 3N 1321 211
4 N Virtual Lane 4N 1276 309
5 N Virtual Lane 5N 1894 266
5 R Virtual Lane 5R 766 123
6 N Virtual Lane 6N 962 117
7 N Virtual Lane 7N 1278 225
8 R Virtual Lane 8R 532 110
9 N Virtual Lane 9N 1066 312
10 N Virtual Lane ION 1143 219
11 N Virtual Lane lIN 1369 287
11 R Virtual Lane 11R 592 107

CAPACITY Elemental Detail
LANE CAPACITY

1 5
2 5

t Data values in this column are shown for completeness, yet would be blank in the initial
table and inserted by solver during execution.

188

Table 3.7 Elemental Details of Transit Area Data

DffiECTION Elemental Detail
DIRECTION INTERP COLORt

N North red
S South red
E East red
W West red

BLOCK Elemental Detail
BLOCK INTERP STATUSf

1 Block A idle
2 Block B busy
3 Block C idle
4 Block D idle
... "

SVC_ TIME Elemental Detail
BLOCK LANE LANE_CAT SVC_TIME(ms)

1 8 R 2153
2 7 N 1071
3 6 N 1495
4 5 R 1577
5 5 N 933
5 5 R 1578
...

t Data values in this column are shown for completeness, yet would be blank in the initial
table and inserted by solver during execution.

189

Table 3.8 Elemental Details of Statistical Data

VL_WAIT_TIME Elemental Detail
LANE LANE_CAT WAIT_TIMEt VL_WAIT_TIMEt

1 N 4.5 4.5
1 N 4.7 4.7
1 N 4.9 4.9
2 N 6.5 6.5
2 N 6.4 6.4
2 R 3.5 3.5
2 R 3.7 3.7
3 N 4.8 4.8
3 N 5.1 5.1
3 N 5.3 5.3
... "

TOT_WAIT_TIME Elemental Detail Table
LANE LANE_CAT TOT_ WAIT_TIMEt

1 N 14.1
2 N 12.9
2 R 7.2
3 N 15.2
...

EXP_WAIT_TIME Elemental Detail Table
LANE LANE_CAT EXP_WAIT_TIMEt

1 N 4.7
2 N 6.45
2 R 3.6
3 N 5.07
..

t Data values in this column are shown for completeness, yet would be blank in the initial
table and inserted by solver during execution.

190

Table 3.9 Remaining Elemental Details

30000

MAX-DEPS_TP

5000

M
~

191

9.12.1 Syntax Extensions for Object Specification

The examples that have been given by Overstreet and Nance [1985] rely heavily on a

Pascal-like syntax to represent the CS. One of the extensions developed for this applica­

tion is the incorporation of the Pascal concept of enumerated types. Use of enumerated

types enables the creation of and later identification of model objects with natural and

more meaningful identifiers. As pointed out by Overstreet and Nance [1985]' if "multiple

instances of an object type can exist simultaneously, some mechanism must exist to

uniquely identify individual instances of objects and object attributes when necessary."

An object identifier which takes its values from an enumerated type definition is used to

accomplish this. Figure 3.56 shows the definition of those enumerated types that are used

in this application. Block identifiers may take values from within the range A to B9. This

supports the block naming conventions that were specified in the CM definition of Section

3.1. Similarly, the range for identifiers of lane objects covers the values L1 (for lane 1) to

JOINT. The range dir-.lane-range defines the allowable identifier values of the special

model object type, dir-Iane (described in the next subsection). The implied meanings of

these range values are, for example, normal or straight in lane 1 (Nl) or right turning in

lane 11 (Rl1).

Although Overstreet and Nance [1985] utilize a bracket index to reference object

attributes where there are multiple instances of a single object type, Overstreet [1982]

suggests that the dot notation like that used in SIMULA is appropriate. For example, to

reference the attribute status of an instance of the block object type, the dot notation

specifies that

block [i : A .. B9}. status

192

{ Type Name Definition

block _range (A, B, C, D, I Z, BI, B2, I B9) ;

lane_range (LI, L2, ••• I LII, JOINT) ;

dir - lane _range (NI, N2, R2, N3, N4, NS, RS, N6,
N7, N8 f N9, NIO, NIl, RII);

Figure 3.56 Use of Enumerated Types

193

is sufficient to pinpoint the "status" attribute. In contrast, the bracket index notation

status [i : A .. B9J

accomplishes the same result. The dot notation, rather than the bracket notation, is used

in this application and is preferred. The object to which the referenced attribute is

attached is more clearly indicated.

9.12.2 Semantic Extensions Jor Object Specification

Overstreet and Nance [1985] state that for "complex models it may be necessary to

regard some model objects as composed of both attributes and other model objects." The

notion of a set, a model object that contains other model objects and which has attributes

of its own, is another extension that is followed here. The object types of block, lane,

and dir-Iane are considered to be sets which contain an ordered collection of vehicle

objects, like a queue. These sets are implicitly defined to have standard attributes and

processing primitives (closely akin to those found in SThfSCRIPT) which include attri­

butes of

• card (for cardinality) - in the standard sense, representing the number of objects

in the set (nonnegative integer),

• first - which indicates the first object in the ordered collection (vehicle object),

• empty - indicating the empty condition of the set (Boolean),

and the primitives

• put - for inserting an object into the set in FIFO order, and

• remove - which removes a model object from the set.

194

Each of these sets qualifies as a defined-set in the CM terminology [Nance 1981a].

Briefly, the defined-set is a set object which contains objects and whose membership is

determined dynamically by existing relationships among objects. On the other hand, the

primitive-set contains objects with identical attributes and has a static membership. Use

of the set objects enhances the specification process. For example, the set object

dir-Iane represents the collection of all vehicles which reside in a particular lane and

which have the same direction of movement. (The SM application in Section 3.7 defined

the virtual lane which corresponds in concept to this set object.) The attributes of the set

members of a dir.Jane object can be analyzed during the report phase of the specification

to determine the desired performance measures. Nance [1988] notes that while perfectly

reasonable in the specification of a model, the use of such a set during implementation

would be impractical. Set member objects (vehicles) are temporary and would normally

be destroyed on departure from the intersection. Yet, existence of the set object would

require the necessary overhead to maintain and update its member objects for the entire

duration of a single model execution.

9.12.9 Interface and Object Specafications

The interface and object specifications of the CS application to the TI are shown in

Figures 3.57 and 3.58. The interface specification defines the input and output data. The

input represents that information required to control the length of the simulation and the

necessary probability distribution data. The output describes the performance measure

requirements. The object specification includes the complete definition of all model

objects and their attributes. Model object types in this application are environment,

light, vehicle, and the set object types block, lane, and dir_lane.

Input:

loss
lotp
gscale
gshape
wscale
wshape
mean
yvalues

xvalues

Output:

195

Length of steady state period)
Length of transient period J
Gamma scale parameter]
Gamma shape parameter]
Weibull scale parameter]
Weibull shape parameter]
Negative Exponential mean]
Y-axis values, 0 .. 1, for use]
in building a cumulative distribu-]
tion function for random variate]
generation by inverse transformation]
X-axis values to associate with]
above yvalues)
Block service or transit times array]
which is 2-dim, Block X Lane_Dir]

(Expected or average waiting times for the set of
{ vehicles in each distinguishable lane path

positive integer;
positive integer;
positive real;
positive real;
positive real;
positive real;
positive real;

array of real;

array of real;

2-dim array of real;

: nonnegative real

Figure 3.57 Traffic Intersection Interface Specification

{ Object

environment ..

light

vehicle

(Sets holding vehicle objects)

196

Attribute

system_time
loss
lotp
gscale
gshape
wscale
wshape
mean
yvalues
xvalues
cleared_ns
cleared_we
ndiss
svc_times
1

ns_color
west_color
east_color
ns_green
ns_red
west_green
east_green
cleared_ns
cleared_we

1
arr_time
wait_time
lane_id
wait_left
departed
id
arr_lane
end_trans
departure
delay

block .. status

lane

occupant
end_trans
departure

tot_wait_time
deps
exp_wait_time

Type

positive real;
positive integer;
nonnegative integer;
positive real;
positive real;
positive real;
positive real;
positive real;
array of real;
array of real;
Boolean;
Boolean;
nonnegative integer;
2-dim array of real;
nonnegative integer;

(red, green);
(red, green);
(red, green);
time-based signal;
time-based signal;
time-based signal;
time-based signal;
Boolean;
Boolean;

nonnegative integer;
positive real;
positive real;
dir_lane_range;
Boolean;
Boolean;
positive integer;
time-based signal;
time-based signal;
time-based signal;
nonnegative real;

(busy, idle);
positive integer;
time-based signal;
time-based signal;

time-based signal;

nonnegative real;
nonnegative integer;
nonnegative real;

Figure 3.58 Traffic Intersection Object Specifications

197

8.1£.4 The Tran8ition Specification

The transition specification provides the necessary details of the dynamic features,

the time and state relationships, of the model and its objects. Included in the transition

specification are the condition action pairs (CAPs) for initialization and termination, light

changes, and for vehicle end block transits, lane arrivals, departures, and begin block

transits. In addition, the specification of the special actions required by vehicles during

branching in the joint lane (to lanes 1 or 2) and when making left turns before oncoming

traffic are included. The transition specification is tailored to those actions of a lane 1

vehicle as it transits the intersection. For purposes of simplification, the specification of

the condition action pairs (CAPs) for vehicles of other lanes is not included. However, a

complete specification would be readily derivable from the given information.

A read operation retrieves the input data and the permanent model objects (light,

blocks, lanes, and dir_Ianes) are created during the jnjtjaJjza,tjon actions as shown in Fig­

ure 3.59. Model object attributes are also given initial values, including the environment

object attributes of "cleared-ns", "cleared_we", "ndiss", and "1". "Cleared-ns" and

"cleared_we" represent the Boolean condition of whether or not the intersection has been

cleared for entry for the north-to-south traffic (or the south-to-north traffic) and for the

west-to-east traffic, respectively. The first vehicle to enter the intersection for these direc­

tions must check the intersection clear (as specified in the CM definition of Section 3.1).

Following vehicles do not have to make this check. "Ndiss" indicates the number of

departures in steady state and "I" is an integer counter that indexes each vehicle object as

it is created. Note that initialization also includes the "setting" of the initial light change

and the initial arrivals to all lanes. Termination conditions are reached when the number

Initialization }
INITIALIZATION:

VAR i block_range;
j : lane_range;
k : dir_lane_range;

198

READ (loss, lotp, gscale, gshape, wscale, wshape, mean, yvalues, xvalues);
READ (svc_times);
CREATE (light);
ns_color := red;
west_color red;
east_calor red;

FOR i := A TO B9 DO
CREATE (block[l]);
block [i].status := idle;
block [i] .occupant 0;
END FOR;

cleared_ns
cleared_ns
ndiss :== 0;
1 : = 0;

false;
false;

FOR j: Ll TO JOINT DO
CREATE (lane [j]);
END FOR;

FOR k := Nl TO R11 DO
CREATE (dir_lane [k]);
dir~lane [k).tot_wait_time .= 0;
dir_lane [kJ.exp_wait_time 0;
dir_lane [k].deps := 0;
END FOR

SET ALARM ens_green, 0);
SET ALARM (arr_lane [JOINT], inv_trans (yvalues, xvalues»;
SET ALARM (arr_lane [L3], gamma (gscale, gshape»;
SET ALARM carr_lane [L4], weibull (wscale, wshape»;
SET ALARM (arr_lane [LS], inv_trans (yvalues, xvalues»;
SET ALARM (arr_lane [L6], neg_exp (mean»;
SET ALARM Carr_lane [L7], weibull (wscale, wshape»i
SET ALARM (arr_lane [La], weibull (wscale, wshape»;
SET ALARM (arr_lane [L9], inv_trans (yvalues, xvalues»;
SET ALARM (arr_lane [L10], inv_trans (yvalues, xvalues»;
SET ALARM Carr lane [Lll), inv_trans (yvalues, xvalues»i

Termination)
ndiss)= loss

STOP

Figure 3.59 Traffic Intersection Transition Specification
(Initialization and Termination)

199

of departures in steady state equals the defined length of the steady state period.

The l.ight. change CAPs (Figure 3.60) dictate the light timing sequences of the vari­

ous color changes for the light object. Each CAP includes within it the determination of

the next light action with the SET ALARM primitive. Timing delays are in seconds.

CAPs which describe the actions to be taken by vehicles upon completion of a block

transit, fIl.d .b.lad transit, are shown in Figure 3.61. Since only the actions for lane 1 vehi­

cles are specified, only blocks I, 0, Y, B4, and B8 are covered. These represent all the

blocks in a lane 1 vehicle's path through the intersection. The scheduling of concurrent

events is handled by the addition of the "NOT (ns-green ...)" portion of the condition

expression for this action cluster. In effect, end block transit actions will be taken only

when the alarm is due and there is no light change action due at the same time. This

gives priority to the light change actions. A scan of the remainder of the transition

specification shows how this feature, noted by Overstreet and Nance [1985), is accom­

plished within the es. For simplification, some of the later concurrent scheduling and

prioritizing conditions are not included (at the "NOT " statements, e.g., at Figure

3.64). Although the complete specification of priorities is not included, sufficient detail to

describe the concept has been provided. The actions taken upon an end of transit of

block 0 are essentially departure actions since block 0 is the last block in a lane 1

vehicle's transit path. The vehicle's waiting time is calculated, and a general departure

action is scheduled immediately with the SET ALARM primitive.

Lane arrivals and departnre actions are shown in Figure 3.62. Arrival to the JOINT

lane results in actions which create the vehicle for the arrival, set the vehicle's initial

attributes (including arrival time), and determine which lane (1 or 2) it will join. If the

lane is to be 2, the direction of the vehicle (if to the right) is also determined

Light Changes }
North-south to green
WHEN ALARM (ns_green)

ns_color := green;
west_color red;
east_color := red;
cleared_we: false;

200

SET ALARM (ns_red, system_time + 20)

North-south to red }
WHEN ALRAM (ns_red) :

ns_color := red;
cleared_ns := false;
SET ALARM (west_green, system_time + 1)

West to green }
WHEN ALARM (west_green)

west_color := green;
SET ALARM (east_green, system_time + 13)

East to green J
WHEN ALARM (east_green)

east_color := green;
SET ALARM ens_green, system_time + 16)

Figure 3.60 Transition Specification
(Ligh t Changes)

201

End Block Transit }
WHEN ALARM (end_trans [i : block_range] &

NOT (ns_green OR ns_red OR west_green OR east_green»
VAR veh_id : integer;
veh_id := block [iJ.occupant;
CASE i of

A begin end;

I begin
put vehicle [veh_id] in block [Y];

end;

o begin
CASE vehicle [veh_id].lane_id of

1 begin
block [O).occupant := 0;
block [0] .status := idle;
vehicle [veh_id].wait_time

system_time - vehicle [veh_iq].arr_time;
vehicle [veh_id] .departed .= true;

y

end;
4 begin .. end;

SET ALARM (departure, 0);
end;

begin
CASE vehicle [veh_id] . lane_

1 put vehicle [veh_id]
11 : put vehicle [veh_id]

end;

id of
in block [B8] ;
in block [Z] ;

B4 begin
CASE vehicle [veh_id].lane_id of

1 put vehicle [veh_id] in block [0];
7 begin end;
9 begin .. end;

end;

B8 begin
CASE vehicle [veh_id].lane_id of

1 vehicle [veh_id].wait_Ieft .= true;
3 begin end;

10 begin .. end;
end;

B9 : begin .. end;

Figure 3.61 Transition Specification
(End Block Transits)

202

Lane Arrivals }
WHEN ALARM Carr_lane [j : lane_range] &

NOT (ns_green OR ns_red OR west_green OR east_green OR end_trans»):
VAR delay, draw_lane, draw_turn : positive real;
CASE j of

Ll, L2 : i

L3 : begin end;

Lll
JOINT

begin .. end;
begin

CREATE (vehicle [1]);
vehicle [1] .arr_time := system_time;
vehicle [1] . wait_left := false;
vehicle [l).departed .~ false;
vehicle [l].id := 1;
draw_lane := randm;
if draw_lane (= .396 then

put vehicle [1] in dir_lane [NI]
else begin

draw_turn := randm;
if draw_turn (= .213 then

put vehicle [1] in dir_lane [R2]
else

put vehicle [1] in dir_lane [N2];
end;

put vehicle [1] in lane [JOINT];
delay := inv_trans (yvalues, xvalues);

end;
SET ALARM carr_lane [j], system_time + delay;
1 := 1 + 1

Departure J
WHEN ALARM (departure &

NOT (ns_green OR ns_red OR west_green OR east_green»
IF lotp > 1 THEN

lotp .= lotp - 1
ELSE begin

IF lotp = 1 THEN begin
lotp: 0;
CLEAR dir_lane of vehicles where departed true;
end;

ELSE
ndiss

end;
ndiss + 1;

Figure 3.62 Transition Specification
(Lane Arrivals and Departure)

203

probabilistically. The newly created vehicle is placed in the JOINT lane and the delay

(inter-arrival time) to the next arrival to the JOINT lane is calculated. Arrival actions

conclude with the setting of the alarm for the next arrival and incrementing the vehicle

counter "I". Departure actions provide control over the duration of the simulation by

managing the length of transient period ("Iotp") and number of departures in steady state

("ndiss") attributes. Once the end of the transient period is reached, all vehicle objects

that departed during the transient period are removed from the dir-Iane sets, essentially

resetting the model for purposes of statistical collection. F rom then on, the departure

actions will update "ndiss" until termination conditions are reached.

Figures 3.63 and 3.64 include the CAP for vehicles to .b.e.gin hlo.c.k. transit Each of

the begin block transit CAPs represent contingent conditions. Upon entering the inter­

section at the first block (block I for lane 1 vehicles), the cleared-Ils attribute (for the

environment) is set to true for following vehicles. The vehicle is removed from its lane

and the entered block is set to busy. Also, the block occupant attribute is set to the

incoming vehicle. As a vehicle enters other blocks during its transit of the intersection, it

is removed from the entered block's set and assigned to that block's space. This assign­

ment results in that block's status being set to busy and the updating of the occupant

attribute. When possible, the status and occupant attributes of blocks that have been

"crossed" are reset (to idle and 0, respectively), "freeing" that block for occupancy by

another vehicle object. End transit actions for the block being transited are determined

and set at the conclusion of its begin transit action.

Figure 3.65 provides a description of the CAPs for the branching or splittjng of a

vehicle in the JOINT lane to lane 1 or to lane 2 and a description of the CAPs for accom·

plishing l.ef1.t.w:.na.. Note that these also contain contingent conditions.

204

{ Begin Block Transits

Block 1]
«ns_color = green) & (block [11.status = idle) &

(NOT lane [LI].empty) & (int_nsclear OR cleared_ns» &
NOT (ns_green OR ns_red OR west_green OR east_green OR

end_trans OR arr_Iane)
VAR tmpvehicle : vehicle;
IF NOT cleared_ns THEN

cleared_ns: true;
tmpvehicle := lane [LI] .first;
remove tmpvehicle from lane [LI];
block [I).status := busy;
block [I] . occupant := tmpvehicle.id
SET ALARM (end_trans [I],

system_time + trans_time (I,tmpvehicle.lane_id})i

Block 0)
NOT block [O).empty & block [O).status idle & NOT

VAR tmpvehicle : vehicle;
tmpvehicle := block [0] .first;
remove tmpvehicle from block [0];
block (O).status := busy;
block [O).occupant := tmpvehicle.id
CASE tmpvehicle.lane_id of

NI :begin
block [Ba].occupant := 0;
block [Ba].status := idle;
block [B4].occupant := OJ

block [B4).status := idle;
SET ALARM (end_trans [a],

system_time + trans_time (0, tmpvehicle.lane_id»;
end;

N4 :begin .. end;

Block Y
NOT block [Y].empty & block [YJ.status idle & NOT

VAR tmpvehicle : vehicle;
tmpvehicle := block [Yl.firstj
remove tmpvehicle from block [Y]i
block [Yl.status := busy;
block [Y].occupant := tmpvehicle.id
CASE tmpvehicle.lane_id of

Nl :begin
block [1] . occupant := OJ

block [1] . status := idle;
SET ALARM (end_trans [Y],

system_time + trans_time (Y, tmpvehicle.lane_id»;
end;

NIl :begin .. end;

Figure 3.63 Transition Specification
(Begin Block Transits)

205

Begin Block Transits
Block B4]
NOT block {B4].empty & block [B4].status idle & NOT

YAR tmpvehicle : vehicle;
tmpvehicle := block [B4] .first;
remove tmpvehicle from block [B4];
block [B4] .status := busy;
block [B4] .occupant := tmpvehicle.id
CASE tmpvehicle.lane_id of

Nl :begin
block [YJ . occupant := 0;
block [YJ . status : idle;
SET ALARM (end_trans [B4],

system_time + trans_time (B4, tmpvehicle.lane_id»;
end;

N7 :begin end;
N9 :begin end;

Block B8
NOT block (B8].empty & block [B8].status idle & NOT

YAR tmpvehicle : vehicle;
tmpvehicle := block [B8].first;
remove tmpvehicle from block [B8];
block [B8] .status := busy;
block [B8].occupant := tmpvehicle.id
CASE tmpvehicle.lane_id of

Nl :begin
SET ALARM (end_trans [B8],

system_time + trans_time (B8, tmpvehicle.lane_id»i
end;

N3 :begin end;
NlO :begln end;

Figure 3.64 Transition Specification
(Begin Block Transits)

206

Splitting from Joint to Lanes 1 or 2 }
(NOT lane [JOINT] . empty) &

«(lane [JOINT].first.lane_id = Nl) & (lane [Ll].card <= 4» OR
«(lane [JOINTJ.first.lane_id = N2) OR (lane [JOINT] .first.lane_id R2»
& (lane [L2] .card (= 4») & NOT

VAR tmpvehicle : vehicle;
tmpvehicle: lane [JOINT].first;
remove tmpvehicle from lane [JOINT]
CASE tmpvehicle.lane_id of

1 put tmpvehicle in lane [Ll];
2,2R put tmpvehicle in lane [L2];

Turning Left from Lane 1 J
vehicle [block [B8].occupant].waiting true & leftl ok & NOT

vehicle [block [B8].occupant].waiting = false;
put vehicle [block [B8].occupant) in block [B4];

Turning Left from Lane 3 }

(Turning Left from Lane 6 }

{ Turning Left from Lane 9 J

figure 3.65 Transition Specification
(Split and Turning)

207

9.12.5 The Function and Report Specifications

The final components of the es are the function and report specifications, Figures

3.66 and 3.67. The function specification includes a brief description of the functions used

by the es. These functions are not fully defined for the sake of simplicity and include

functions for the determination of the stochastic delays (inter-arrival times) for the initial

and subsequent arrivals to the lanes. The function trans_time returns the transit or ser­

vice time delay of a particular block based on the block's identifier and the identifier of its

transiting vehicle. Also included are Boolean functions for checking clearance for making

left turns and for entering the intersection. The report specification takes advantage of

the utility of the dir-Iane set. It specifies the performance measures as the summation of

all wait_times of departed vehicles in a particular dir-Iane object divided by the number

of departed vehicles in that object.

3.13 The STA Application

The STA application develops both a static and dynamic specification of the TI

using an AS approach. Figures 3.68 through 3.73 provide informal coverage in the

manner suggested by Zeigler [1976J for an informative but non-technical description. Fig­

ures 3.74 through 3.83 complete the specification by recording its formal portions, in

accordance with the DEVS (Discrete Event System Specification) formalism [Zeigler 1976,

1984a, 1984b, 1987; Concepcion and Zeigler 1988]. This section presents and discusses the

use of the STA. A close review of the examples provided by the figures enables a deeper

grasp of the technical details.

The examples in Zeigler's work [1976] do not clearly establish the means whereby

temporary objects are created and destroyed. This application attempts to produce a

(Function

weibull

begin · . end;

gamma

begin · . end;

neg_exp
begin · . end;

inv_ trans

begin · . end;

randm
begin · . end;

trans time -

leftl_ok
begin .. end;

left3_ok
begin .. end;

left6_ok
begin .. end;

left9_ok
begin

int_nsclear

end;

begin .. end;

int_westclear
begin .. end;

208

Arguments

(wscale
wshape

(gscale
gshape

(mean

(yvalues
xvalues

(blockname
lanename

real,
real)

real,
real)

real)

array of real,
array of real)

block_range,
lane_dir_range)

Type }

positive real;

positive real;

positive real;

positive real;

positive real;

positive real;

Boolean;

Boolean;

Boolean;

Boolean;

Boolean;

Boolean;

Figure 3.66 Traffic Intersection Function Specifications

Report Actions }
WHEN end of simulation

VAR i : dir_lane_range;
FOR 1 := Nl TO Rll DO

209

FOR every vehiclel in dir_lane [1] where departed = true DO
dir_lane [i].tot_wait_time :=

END FORi

dir_lane [i] .tot_wait_time + vehicle I.wait_time;
dir_lane [iJ.deps: lane_dir [iJ.deps + Ii
dir_lane [i] .exp_wait_time :=

dir_lane [iJ.tot_wa1t_time / lane_dir [iJ.deps;
END FORi

FOR i := Nl TO Rll DO
WRITE ("For Vehicles in Lane ", i,": H);
WRITELN C' Expected Waiting Time is ", dir_lane [i]. exp_wai t_time) ;
END FOR;

Figure 3.67 Traffic Intersection Report Specification

210

similar effect by assuming that the initial vehicle is available (created on initialization)

with lane, direction 1 and arrival time descriptive variables set to null values. An arrival

machine (one for each lane) operates on the vehicle counter, which is initialized to 1. The

first machine to perform an arrival increments the vehicle counter to set up for the next

vehicle. At each increment of the vehicle counter, a vehicle creation is implicitly under­

stood to occur. Also note that the specification only includes transition descriptions of

the blocks in a lane 1 vehicle path and that the specification is intended to support one

replication.

9.19.1 The Informal Description

Following the general format that Zeigler [1976] suggests, an informal description is

first presented of the model components (Figure 3.68), descriptive variables (Figures 3.69

and 3.70), and parameters (Figures 3.71 and 3.72). Model components are listed in Figure

3.68 as being active or passive. The active components are responsible for state changes

among model components and thus "act on" other components and their descriptive vari­

ables. The passive components are not capable of this type of action and will change

state only when "influenced" by an active component [Zeigler 1976].

The descriptive variables provide the state information of the model components.

Each active component has at least two descriptive variables of the form "STATE OF"

and "TIME LEFT IN STATE". The first is extremely important in specifying how a par­

ticular component "interacts" with the others. The latter corresponds to a countdown

clock variable as mentioned in the overview of Section 2.15. Constants and functions

which further help to define the model are called "parameters". The parameters of the TI

application are listed and briefly described. For purposes of simplicity, the details of the

211

Components

Active:
LIGHTNS, LIGHTW, LIGHTE
ARRMACHINE·3, ARRMACHINE-4, ___ , ARRMACHINE'll, ARRMACHINE·JNT
BLOCK·A, BLOCK-B, _ . _, BLOCK-Z
BLOCK'!, BLOCK'2, _ .. , BLOCK'9
TURNER-!, TURNER-3, TURNER-6, TURNER-9
SPLITTER, EXIT, TERM

Passive:
VEHICLE-!, VEHICLE-2, - _.
INTERSECTION, MODEL
LANE· QUEUE-1, LANE-QUEUE-2, . __ ,LANE-QUEUE-11, LANE· QUEUE-JNT
WAIT'QUEUE-1, WAIT-QUEUE-3, WAIT-QUEUE-6, WAIT-QUEUE·9
STATISTICS-1, STATISTICS'2, .. _) STATISTICS-1IR

Figure 3.68 Informal Description (Components)

212

Descriptive Variables

Describing LIGHTx (x = NS (north-south), W (west), E (east)
STATE-OF-LIGHTx -+ with range {O(green), l(redH, (ss)
X· TIME·LEFT·IN·STATE-+ with range Rt, «7s)
DELA Y -+ time delay determined by LIGHTx and its state

Describing ARRMACHINE'y (y = 1, ... , II,JNT)
STATE· OF·ARRMACHINE·y -+ with range {O(wait), 1(createvehicle H, (SMy)
My· TIME·LEFT·IN·STATE -+ with range Rt, «7My)
INTERARRIVAL· TIME -+ rv determined by machine id, y

Describing BLOCK·k (k =A, .. _ ,Z, 1, _ .. ,9)
STATE-OF'BLOCK'k -+ with range {O(id/e, begin), l(busy, end)}, (sBk)
Bk· TIME-LEFT'IN'STATE -+ with range R600 (O"Bk)
OCCUPANT·OF·BLOCK·k -+ with range {I,:., VEH·COUNTER}, (OCCBk)
sve- TIME -+ transit time delay determined by Block type, k,
and ly(DccBI;)' and d y(DeeSI;) of VEHICLE description

Describing TURNER'n (n = 1,3,6,9)
STATE· OF· TURNER'n -+ with range {O(wait), l(turn)}, (sTn)
Tn' TIME'LEFT1N-STATE -+ with range Roo, «7Tn)

Describing SPLITTER
STATE-OF-SPLITTER -+ with range {O(wait), I (split)}, (ssp)
SP· TIME·LEFT·IN·STATE -+ with range Roo, «7sp)

Describing EXIT
STATE· OF· EXIT -+ with range {O(wait), l(depart)}, (sEX)
EXIT· TIME·LEFT·IN·STATE -+ with range Roo, «7EX)

Describing TERM
STA TE· OF· TERM -+ with range {O(wait), l(terminate)}, (sTERM)
TERM· TIME·LEFT·IN·STATE -+ with range Roo I «7TERM)

Figure 3.69 Informal Description (Descriptive Variables, Active)

213

Descriptive Variables

Describing VEHICLE· j (j = I, ... , VEH·COUNTER)
(implying that VEHICLE· j exists for all j < VEH·COUNTER)

DIRECTION· OF· V j -+ with range {N(normal), R(right)}, (dvj)
LANE· OF· V j -+ with range {I, ... ,II}, (Lvj)
ARR·TIME·OF· Vj -+ with range Rt , (Avj)

Describing MODEL
MODEL -+ with range {O (transient), 1 (transition), 2 {steady state},

3 (terminate)} (s MOD)
VEH· COUNTER --+ with range zt , (sve)
NDISS --+ with range zt , (sNDISS)
LOTP --+ with range zt , (sLOTP)

Describing INTERSECTION
CLEARANCE --+ with range {O(clearedns), 1(clearedwe)}, (SOL)

Describing LANE-QUEUE'" (i = 1, .. ') Il,JNT)
LANE-QUEUE·; --+ with range {1,2, ... , VEH·COUNTER} *, (SLQi)

(A sequence of vehicle components)

DescribingBLOCK·QUEUE·k (k =A, ... ,Z,l, ... ,9)
BLOCK· QUEUE'k --+ with range {1,2, ... , VEH·COUNTER}*, (SBQk)

(A sequence of vehicle components)

Describing WAIT'QUEUE'n (n = 1,3,6,9)
WAIT'QUEUE'n --+ with range {1,2, .. _ , VEH·COUNTER} *, (SWQn)

(A sequence of vehicle components)

Describing STATISTICS'o (0 = 1,2,2R,3,4,5,5R,6,7,8,9,lO,11,11R)
WAIT· TIME· 0 --+ with range Rt , (sWTo)

Figure 3.70 Informal Description (Descriptive Variables, Passive)

214

PARAMETER

LOSS -+ a constant indicating length of steady state period

INTERARRIVAL· TIME -+ a function that determines the
time delay until the next vehicle arrival (using standard
probability distributions and inverse transformation), based on
arrival machine identifier and its inter arrival seed;

returns value in range R+

DELA Y -+ a function that determines the time delay until the
next color change, based on light identifier and its state;
returns value in range Z+

SVC· TIME -+ a function that determines the transit time
delay of vehicles transiting a particular block, based on
the block and the transiting vehicle's lane and direction;
returns value in range R+

Figure 3.71 Parameters (Model Constants and Functions)

215

INTERARRIVAL· TIME (V, TIl) where y is ARRMACHINE identifier
and rv is INTERARRIVAL·SEED

probability distributions for function with respect to V defined for:

3 --+ Gamma
4 --+ Weibull
6 --+ Neg_exp

V - 7 --+ Weibull

8 --+ Weibull

else --+ Inverse Transform

DELAY (X, sz) where x is LIGHT identifier and s:: is state
and for the folIoing arguments returns these values (in seconds):
NS, 0 --+ 30
NS,1 --+ 20
W, 0 --+ 21
W,1-+29
E, 0 --+ 34
E, 1 --+ 16

SVC- TIME (k, ly(occ
Bk

)' dy(OCC
Bk

))

where k is a BLOCK identifier

STRING OPERATIONS:
top defined by top (al a2 - - . an) = a l [Zeigler 1976]
rest defined by rest (al a2 ... an) = (a2 . - - an) [Zeigler 1976]
num defined by num (al a2 . .. an) = n

Figure 3.72 Functions and String Operations

216

functions are not given. Only the essentials are listed. Note that the string operations

shown in Figure 3.72 are extremely useful in the manipulation of the sets, a characteristic

feature of the STA.

The model dynamics and "component interaction" are clarified with a plain English

explanation in Figure 3.73. Model dynamics dictate that each component will transition

from state to state as described. These transitions are translated into the formal transi­

tion functions which represent the bulk of the formal specification.

9.19.2 Beyond Informality in Time and State

The formalism of the STA makes it extremely difficult to use in practical applica­

tions like the TI example. Yet, where other CFs have failed (notably in their failure to

adequately describe time and state relationships), the STA is effective. The time advance

function is applied to the model state set to determine the next event time. This function

essentially selects the minimum value found among the countdown variables. By associa­

tion, one or more components which are due to change state are determined. [Note that

if there is more than one component due to change state at the same instant, a prioritiz­

ing function (Zeigler [1976] uses SELECT) is used to break ties. Such tie-breaking rules

are informally given in Figure 3.73.] Once "selected", an active component "executes" its

formal transition function, and thereby produces the model state changes. The state

changes are produced through the manipulation of descriptive variable values. The

countdown clock variables must be accurately updated in order to maintain the proper

time and state relationships.

Oomponent Interaction
LIGHTx

217

O. Green for DELA y. PERIOD, then to state 1
1. Red for DELAY·PERIOD, returns to state 0

ARRMAOHINE·y
O. Waits for INTERARRIVAL·DELAY
1. Creates vehicle, returns to state 0

BLOOK·k
O. Idle condition, waits for right conditions,

(vehicle waiting to occupy and transit BLOOK·y)
and then begins transit event

1. Busy condition, waits SVO· TIME and does end transit event
and returns to state 0

TURNER'n
O. Waits for right conditions (oncoming traffic and blocks

are clear) to do the turn
1. Does the turn, returns to state 0

SPLITTER
O. Waits for right conditions (vehicle is at the head of the

Joint Lane and must branch to Lanes 1 or 2, and there is
room in lanes 1 or 2(capacity of 5)) to do the split or branch

1. Does the split and returns to state 0

EXIT
O. Waits for right conditions (vehicle departure) to update

departure information
1. Updates departure information, maintains model state, and returns

to state 0

TERM
O. Waits for the model to enter state 3
1. Terminates model execution

TIE-BREAKING RULES
TERM in state 1 first, then any LIGHT, then EXIT in state 1, then
BLOCKs in state 1, then ARRMACHlNEs in state 1, then SPLITTER in
state 1, then BLOCK in state 0, and finally, TURNERs in state 1.

Figure 3.73 Informal Description of Component Interactions

218

S.lS.S The Formal Specification

The structured formal specification [Zeigler 1976] is produced with a set description

of the tie-breaking rules, and a clear indication of the "influencees" within the model.

Informal coverage of the tie-breaking rules is sufficient for this discussion. The

influencees are clearly distinguishable in the local transition functions, the principal com­

ponents of the specification.

The local transition functions are given for each active com ponent. As discussed in

Zeigler [1976], these may be developed under the ES, AS, or PI CFs. The approach taken

here closely follows the AS and the combined models approach described in Zeigler [1976].

For each component's transition function, we define a "condition routine" and an

"activity routine". The condition routines are specified in such a manner that the

occurrence of a state change for a particular component can be identified. When the con­

dition is .tl:JJ..e and the component is selected (on the basis of analysis of the next imminent

event data from the time advance function), the activity routine is executed. The use of

negative-valued countdown variables enables the incorporation of the AS technique.

When the condition is determined, the countdown variables can be exactly set so that

they will reach zero at the precise instant at which the state change is to occur. For con­

tingent conditions, however, the countdown variables are allowed to go negative so that

when the condition routine becomes true, the component is an immediate candidate for

selection.

Finally, all the condition routines can be incorporated into a list and "scanned".

During each clock cycle, those component's condition routines which become true have

their associated activity routines executed. The components whose condition routines are

false during that same cycle have their countdown clock variables updated.

219

Figure 3.74 gives a simple example of the approach. The condition routine checks

the state of the light, 'f:' Therefore, whenever the state of any light is 0 or 1 (and the

countdown variable produces that light component's selection), the activity routine is exe­

cuted. The activity routine changes the state and resets the countdown variables. Table

3.10 shows one cycle of the state progressions of the lights. The local transitions which

complete the specification are given in Figures 3.75 through 3.83. These are not discussed

but follow the same concepts showed in Figure 3.74 (albeit at a more complex level).

9.11.4 Summary of the STA Applicah'on

Zeigler [1976] gives excellent and wide coverage of the DEVS in the context of the

ES, AS, and PI CFs, with a few examples. The examples shed light on the practical

aspects of the DEVS formalism, However, since many of these examples are incomplete

(their completion is left as an "exercise" to the reader), the intricate details of the formal­

ism are cloudy and a solid understanding of the approach is difficult to achieve. More

recent work surrounding the development of a PC-based environment (PC-Scheme)

should help to improve the modeler's ability to build model specifications based upon

DEVS and the STA [Zeigler 1987J.

220

STATE VARIABLES

For each LIGHTx, the following are state variables:
STATE·OF·LIGHTx,(s;e)
x' TIME·LEFT1N·STATE,(u;e)

CONDITION ROUTINE FOR LIGHTx

G;e (8;e) =
1. (8z =0) OR
2. (8z =l)

ACTIVITY ROUTINE FOR LIGHTx

8' z = (8z + 1) mod 2

Figure 3.74 Local Transition for LIGHTx

221

Table 3.10 State Transitions for LIGHT;!:

Descrip Variable Value (at indicated times)

Variable t=O t=20 t=21 t=34 t=50

8NS
0 1 1 1 0

(INS 20 30 29 16 20

8W 1 1 0 0 1

(lw 21 1 29 16 21

BE 1 1 1 0 1

(IE 34 14 13 16 34

222

STATE VARIABLES:
For each ARRMAGHINE'Y, the following are state variables:

STATE·OF·ARRMAGHINE·y(SMy)
My·TIME·LEFT1N·STATE(O"My)
INTERARRIVAL·TIME·SEED(rMy)

CONDITION ROUTINE FOR ARRMAGHINE·y:
CMy (SMy) =

1. (s My = 0) OR
2. (SMu = 1)

ACTIVITY ROUTINE FOR ARRMA CHINE· y:

fMu (sMu' O"Mu ' rMy, sLQu ' Sye, ly('Yo)' dy('Yo)' Ay(8 yO }) =
(S'Mu ' u'My , r'MII ' s'LQu ' s' ye , I' Y(8yO) , d' Y(8 yO) , A' Y(8 yO))

S'MII = (SMy + 1) mod 2

{
o if sM1I =0

u'My = INTERARRIVAL· TIME (y, rMy) otherwise

{
rM1I if sMII = 0

r' -My - r (rMy) otherwise

{
SLQY if SMy = 0

s' -LQy - sLQII Sye otherws'se

{
sYe if SMy = 0

s' ye = Sye + 1 otherwise

!
IV(8yO} if SMy = 0

I'Y(8
yO

) = Y otherwise if y = 3, ...) 11
1,2 otherwise (probalistic assign)

!
dV(8 yO) if SMy = 0

d'v(8
yO

) = N otherwise if y = 3,4,6,7,8,9,10
R otherwise (probalistic assign)

{
AV(8yO) if SMy = 0

A' -V(8 yO) - CLOCK otherwise

Figure 3.75 Local Transition for ARRMACHINEy

223

STATE VARIABLES:
STATE·OF·BLOCK·k(SBI:)

Bk· TIME·LEFT·IN·STATE(UBI:)

OCCUPANT·OF·BLOCK·k(OCCBk)

CONDITION ROUTINE FOR BLOCK·I:
CBI (sNS, sLQI' SBI, SCL , SBL , SBH, sBN, sBl , SB2,

~'~'~'~'~'~'~'~'~'~G'
SBT, SBU, SB7 , SBS, SB9 J SBg , sBZ, OCCBE) =

1. ((SNS =0 AND sBI =0) AND
(SLQ1 # A AND ((sBk for all k monitored = 0 AND lv(oee

SE
) # 5 OR

sCL = 0)), OR
2. sBI = 1

ACTIVITY ROUTINE FOR BLOCK·I:
fBI (SBI, UBI, OCCBI, SCL , SLQl , SBQY) =

(s'BI , UBI, Occ'BI, 8' CL , S'LQl , 8' BQY)

SIBI = 1

{
SVC'TIME (I, Iv(aee), dv(oce)) if s - 0

SI Sf BI-
UBI = h . 00 at erw.se

- {top (SLQl) if sBI = 0
occ' -

BI - occBl otherwise

{
o if sBI = 0 and sCL = 1

s'CL -- sCL otherwise

, _ {rest (SLQl) if sBI = 0
s LQl - sLQl otherwise

{

SBQY if sBl = 0
8' -

BQY - sBQY occBl otherwise

Figure 3.76 Local Transition for BLOCKk, with BLOCK·I

224

CONDITION ROUTINE FOR BLOCK· Y:
CBy (sBQY, sBY) =

1. (SBQY~ A AND sBY= 0), OR
2. sBY= 1

ACTIVITY ROUTINE FOR BLOCK· Y:
fBY (SBY 1 O"BY, OCCBY, SBI, O"BI' OCCBI, SBW, O"BW, OCCBW, SB'lY' SB'lZ, SB'l8)

(' 0' I , 0' I I 0' I I I I S BY , BY, OCC BY , 8 BI , BI , OCC BI , S BW , BW, OCC BW , 8 B'lY , S B'lZ , 8 BQ8)

S'BY = 1

{
BVC' TIME (Y, lv(oecSY) ' dv(oecSY ») if sBY = 0

0' BY = 00 otherwise

{

top (SBQY) if sBY = 0
occ' -

BY - occBY otherwise

\

0 if sBY 0 AND Iv(lop ('SQY» = 1
s' -

B/,BW - sBI,BW otherwise

\

0 if sBY = 0 AND lv(lop ('SQY») = 1

0' BI,BW = (fBI BW otherwise ,

\

0 if sBY= 0 AND
occ' -

BI,BW - occB/,BW otherwise

{

rest (SBQY) if sBY = 0
s' -

BQY - sBQY otherwise

{

SBQZ if sBY = 0
s' -

BQZ - sBQZ occBY otherwise

{

SBQ8 if sBY = 0
s' -

BQ8 - sBQ8 0ccBY otherwise

Figure 3.77 Local Transition for BLOCK· Y

225

CONDITION ROUTINE FOR BLOCK·8:

CBS (8BQS , 8BS) =
1. sBQS =F A AND sBS = 0), OR
2. SBS"= 1

ACTMTY ROUTINE FOR BLOCK·8:

fBS (sBS, (1BS , oeeBS I 8WQl , 8BQS , ...) =
(' -I I I I) S BS' O"BS, oee BS, 8 WQl , 8 BQS " ..

S'BS = 1

88 88 B8
{
SVC.TIME (8, lv(occ), dv(occ)) if s = 0

alBS = h . 00 ot erwlse

{

top (SBQS) if SBS = 0
oee' -

B8 - oeeB8 otherwise

if 8BS = 0
{

SWQ l
S' -

WQl - sWQl oeeBS otherwise

{

rest (SBQ8) if sBS = 0
s' -

BQS - sBQ8 otherwise

Figure 3.78 Local Transition for BLOCK·8

226

CONDITION ROUTINE FOR BLOCK'4:

CB4 (sBQ4 , SB4) =
1. sBQ4 ~ A AND sB4 = 0), OR
2. sB4 = 1

IB4 (sB4 , O"B4 , occB4 , sBY, O"BY, oecBY, sBQO , sBQ4 , ...) =
(' -I I I.-J I I I) S B4 , U' B4 1 OCC B4 , S BY , U' BY, occ BY , S BQO 1 s BQ4 , ...

S'B4 = 1

{
SVC' TIME (4, ly(top(8

SQ4
)) , dv(lop(8

8Q4
») if sB4 = 0

U B4 = 00 otherwise

{

top (SB(4) if sB4 = 0
occ' -

B4 - occB4 otherwise

1
0 if sB4 = 0 AND I - 1 Y(lop('SQ4)) -

s' -
BY - sBY otherwise

1
0 if sB4 = 0 AND ly(top('8Q4» = 1

rlBy = h' SBY at erwlse

1
0 if SB4 = 0 AND

occ' -
BY - occBY otherwise

, {SBQO if sB4 = 0
S BQO = sBQO oecB4 otherwise

{

rest (SB(4) if sB4 = 0
s' -

BQ4 - sBQ4 otherwise

1-1 Y(tope 'SQ4)) -

Figure 3.79 Local Transition for BLOCK'4

227

CONDITION ROUTINE FOR BLOCK· 0:
CBO (SBQO , sBO) =

1. SBQO :;i; A AND sBO = 0), OR
2. sBO = 1

ACTMTY ROUTINE FOR BLOCK'O:

f Bo (sBO ,(jBO , OCCBO , SB4 , (jB4, occB4' sB8' (jB8' oeeB8, SEX, (jEX, sWTl , sBQO , ...) =
(

' -I I 1-1 , , -1 I , 0' I ,) S BO ,U' 0, occ BO , S B4 , UB4' oec B4 , S B8, U'B8' occ B8, SEX, EX, S WTl , S BQO , ...

1 if sBO = 0 ,
S BO - 0 otherw£se

SVC- TIME (0, lv(top(B
890

») , dv(top(B
890

)) if sBO = 0

0' BO = 0 otherwise

otherwise

top (SBQO) if sBO = 0
oec'BO = 0

S' -B4,B8 -

o if sBO = 0 AND lv(tope '8(0)) = 1

sB4,B8 otherwise

o if sBO = 0 AND lv(lop(B
890

» = 1

(jB4,B8 otherwise

/

0 if SBO = 0 AND lv(tope '8QO) = 1
oce' -

B4,B8 - oecB4,B8 otherwise

S'EX =
o if sBO = 0

1 otherwise

00 if sBO = 0

0' EX = 0 otherwise

rest (SBQO) if SBO = 0

s' BQO = sBQO otherwise

SWTl if sBO = 0 ,
S WTl - SWTl + (CLOCK - Av(DCC

80
») otherwise

Figure 3.80 Local Transition for BLOCK· a

228

STATE VARIABLES:

For each TURNERn, the following are state variables:
STA TE· OF· TURNERn (sTn)

Tn' TIME· LEFT· IN· STATE (O'Tn)

CONDITION ROUTINE FOR Tl:

0TI (sB47 sBIl sBL, sBB, sTV SWQI) = where activating conditions are
1. (sWQI;afA AND sTI =0 AND
(sB4 =0 AND sBI =0 AND sBL =0 AND sBB =0)) OR
2. sTI = 1

ACTMTY ROUTINE FOR Tl:

S'TI = (STI + 1) mod 2

{
sWQI if sTl =0

s' -
WQI - rest(SWQI) otherwise

{
sBQ4 if sTI = 0

s' -
BQ4 - sBQ4 top(SWQl) otherwise

Figure 3.81 Local Transition for TURNERn

STATE VARIABLES:
STATE·OF·SPLITTER(ssp)

Sp·TIME·LEFT·IN·STATE(asp)

229

CONDITION ROUTINE FOR SPLITTER:
Csp (sLQINT , sLQl , sLQ2 , ssp) =

1. (SLQINT:f= A AND ssp = 0 AND
« num(sLQl) < 4 AND lv(tope BLQINT») = 1) OR

(num(SL(2) < 4 AND Iv(top(BLQ1NT)) = 2)), OR
2. ssP = 1

ACTIVITY ROUTINE FOR SPLITTER:
fsp (ssp, asp, sLQINT, sLQ1 , SL(2) =

(s'sP , lisp, S'LQINT, stLQ1 , S'L(2)

s'sP = (ssp + 1) mod 2

lisp = 0

{
SLQINT if ssp = 0

s' -
LQINT - rest (SLQINT) otherwise

(

SLQ1 top (SLQINT) if ssp = 1 and Iv(tope BLQ1NT» = 1
s' -

LQl - sLQl otherwise

(

t () if sS'P = 1 and Iv(I ()) = 2 sLQ2 op sLQINT .op BLQ1NT

8' -
LQ2 - sLQ2 otherwise

Figure 3.82 Local Transition for SPLITTER

230

STATE VARIABLES:
STATE·OF·EXIT(sEX)

EXIT·TIME-LEFT-IN·STATE((jEX)

STATE-OF·TERM(STERM)

TERM- TIME·LEFT·IN·STATE(O'TERM)

CONDITION ROUTINE FOR EXIT:
CEX (sEX' SMOD) =

1. (sEX = 1) AND sMOD # 3

ACTMTY ROUTINE FOR EXIT:
fEX (sEX' O'EX, SLOTP' SNDISS, sMOD) =

(S'EX, 0' EX' s'LOTP , s' NDISS , s'MOD)

S'EX 0

o'EX = 00

{
SLOTP

s' -
LOTP - sLOTP

1 if sMOD < 1

otherwise

{

SNDISS + 1 if sMOD = 2
s' -

NDISS - S NDISS otherwise

S ' -MOD -

o if sLOTP > 1

1 if sLOTP = 0

2 if sLOTP = 0

3 if 8NDISS > LOSS

{
o (for all 0) if SMOD = 1

s' -
WTo - sWTo otherwise

CONDITION ROUTINE FOR TERM:
CTERM (sMOD) =

1. (SMOD = 3)

ACTMTY ROUTINE FOR TERM:
f TERM (sHALT) = (s'HALT)

Figure 3.83 Local Transitions for EXIT and TERM

CHAPTER 4

ACOMPARAT~REvmW

The literature review and CF applications, discussed in Chapters 2 and 3, indicate

that two basic types of guidance are provided by the commonly used CFs in constructing

model representations.

First is implementation guidance (algorithmic, managerial, supervisory) which

directly impacts the subsequent executable form of any model representation. Such gui­

dance centers on two aspects of the model representation: a model's mode of sequencing

(whether in the form of events, activities, processes, etc.) and its method of sequenc­

ing (e.g., whether by explicit scheduling of events, scanning of conditions, or by the

concurrent control of component interactions utilizing a combination of scheduling and

scanning techniques). This type of guidance is fundamental to achieving the translation of

the representation into executable code.

Secondly, CFs can provide design (structural, existential, skeletal) guidance. Here,

the modeler is aided in his definition of the model's s1a.tk structure as he identifies the

objects (components, entities) and their attributes which comprise the model. Within

design guidance, the modeler is further assisted in the expression of the dynamic relation­

ships and the rules of interaction that must exist among model objects during the pro­

gression of the model through time and state (i.e., the model's dynamic structure). The

common provision of enabling the representation of relationships (or sets) which exist

among model objects may be provided.

Since the boundaries among CFs are not well-defined, it is difficult to objectively

231

232

compare them. However, we strive to consider the CFs in their purest form and inten­

tion, with regard to their explicit (rather than implicit) features. We caution the reader

from attempting to generalize the comparisons to all problem domains. Instead, com­

parative comments are made on the bMis of our experience in the problem domain

(Traffic Intersection) in which we performed the CF applications. In addition, since the

ES, PI, and TF applications were performed under the influence of an SPL (Simulation

Programming Language), we restrict our comparison to the features of the CFs which are

independent of their surrounding language implementation. Therefore, in this chapter we

explore the comparisons of the CFs with regards to the types of guidance that each expli­

citly makes available to the modeler. Grouping our comparisons by guidance type

improves the clarity and meaningfulness of our review. Consequently we draw comparis­

ons among those CFs (and only among those) which display implementation guidance,

etc. The groupings of CFs by the type of guidance permitting comparisons are shown

later in Figure 5.1. By means of this comparative discussion, the roles of the CFs are

clarified with respect to their guidance. Thus, the bMis for the development of a taxon­

omy in Chapter 5 is realized.

4.1 Implementation Comparisons

A discussion of the comparison among CFs that deliver implementation guidance

includes an analysis of the characteristics of the ES, AS, TP A, PI, and TF CFs. These

CFs, because of their very nature, form the basis for the boundaries of this comparison.

We first consider the relative merits of ES, AS, and PI and then extend the comparison to

include TPA and TF. Comments pertinent to other CFs are also offered.

From the introduction to this chapter, we realize that implementation guidance

233

influences the mode of sequencing of the model representation and the algorithmic stra­

tegyor method of sequencing that is to be employed. These constituents of implementa­

tion guidance, due to their low-level nature, have a definite impact upon the modeler.

Both take part in determining efficiency in terms of building the model representation,

the subsequent programming task, and its later computer execution. The mode of

sequencing reflects the world view or Weltansicht [Lackner 1962] that is promoted by the

CF in use by the modeler and the view that will be taken to effect model transformation

from state to state. Viewing the model as being composed of events, activities, or

processes (characteristic of the ES, AS, and PI CFs respectively) influences the

programmer's task and determines the coding format and structure (e.g., whether in the

form of event routines, testheads and activity routines, or process descriptions) of the

programmed model. The method of sequencing found in the implementation guidance

determines the data structures and list processing techniques (if any) that are necessary.

4.1.1 Aspects Concerning the Sequencing Mode

Since the ES CF dictates that the modeler use events as the principal unit for com­

ponent interaction, a programmed model based on the ES CF is distinguished by event

routines. The turn.ns.green, arriv al.lane 1 , departure, enter, and the

arrival.blockd event routines from the ES CF application in Chapter 3 are examples.

The burden is placed upon the modeler to include all conditional testing (based upon con­

ditions other than time) within these routines [Fishman 1973; Hooper 1986b]. The

modeler must explicitly state, through means of this conditional testing, all consequences

that will follow the occurrence of a particular event, as contained within its event routine

[NeelamkavilI987]. The events which change the light colors in the ES CF application of

234

Chapter 3 (Section 3.2) also include various conditional tests for controlling vehicle entry

to the intersection. Figure 4.1 (taken from the turn.ns.green event routine) shows that

after a north-south light change to green the modeler tests the entry conditions for vehi­

cles to enter from lanes 1,2,5,6,7,8, and 11 with the "call test.entry" statements. Since

the consequences of this light change to green may influence a right turn on red for lanes

5 and 11 or direct movement into the intersection from lanes 1,2,6,7, or 8, the modeler is

forced to consider and check all possibilities. Also notice a similar problem for the

modeler in Figure 4.2 taken from the arrival.blockd event routine. For vehicles that

have come from lane 9, the modeler must release block N and then check several entry

conditions. The simple consequence of releasing block N may satisfy the entry conditions

for vehicles from any of several lanes. The burden to recognize which conditions to test

lies squarely on the modeler's shoulders. Experts [Pidd 1984; Birtwistle et al. 1985;

Kreutzer 1986] agree that as model complexity increases, it becomes increasingly difficult

for the modeler to accurately handle these determinations and maintain consistency.

With an increase in complexity, the programmed model tends to be error-prone.

Also, modifications and enhancements to the code are not easily made and debugging can

be a frustrating task. Furthermore, the scheduling commands of future events are scat­

tered throughout the code resulting in a programmed model that has fragmented logic

and is difficult to read and understand [Kreutzer 1986]. All of these problems characterize

the development of the ES CF application. The lack of key conditional tests early in

development causes the traffic intersection to become clogged during testing. Debugging

to locate such problems is extremely difficult and tedious. Once a problem is solved and

corrected, it is not uncommon to find that the same correction is required in multiple

locations within the code due to the fragmentation of the logic.

event
1
2

3
4
5
6

7
8
9
10
11

235

turn.ns.green
let ns.color(l) green "Set color attributes
let west.color(l) red
let east.colorel) = red
let clearedwe false "Set clearance flag to False
call test.entry.9.to.ll(11,lanell,block.w)
call test.entry.34S(S,laneS,block.e)
call test.entry.12(1,lanel,block.i) "Test various entries
call test.entry.12(2,lane2,block.j)
call test.entry.678(6,lane6,block.c)
call test.entry.678(7,lane7,block.b)
call test.entry.678(8,lane8,block.a)

Figure 4.1 A Portion of Event TURN.NS.GREEN (ES OF)

15
16

17
18
19
20
21
22
23

236

case 9 "Lane 9 car
call releese(block.n) " free block n, test.left

" for lane9, test.entry, and
" sched a departure

call test.left(from.9,lane9,block.3)
call test.entry.12(1,lane1,block.i)
call test.entry.12(2,lane2,block.j)
call test.entry.678(6,lane6,block.c}
call test.entry.67S(7,lane7,block.b}
call test.entry.678(S,laneS,block.a)
schedule a departure given a.car in 0.S66 seconds

Figure 4.2 A Portion of Event ARRIV AL.BLOCKD (ES CF)

237

On the other hand, when the number of objects that compose a model is manageable

and the interactions among them are few, the modeler enjoys precise control over the

model's execution [Kiviat 1969]. Because of the complexity of the TI, this advantage is

not realized during the ES CF application.

The AS CF with its activity-orientation promotes a dramatic improvement in the

modeler's ease during the programming task. The duo of testheads and activity routines

frees the modeler from having to explicitly specify the interactions and relations among

events [Kreutzer 1986; Laski 1965}. Therefore, the removal of this modeler responsibility

for complex applications produces substantial gains in programming efficiency. The

result is a model representation that is "readable, easy to design, modify, and extend"

[Kreutzer 1986]. Easier top-down design with a uniform style can be achieved [Pidd 1984;

Birtwistle et al. 1985]. The readability and simplification of the model derived from the

AS CF primarily result from the clarity achieved through the grouping of the conditional

tests [Kiviat 1969; Kreutzer 1986J. The benefits of such an approach are evident from

inspection of the AS CF application pseudo-code in Chapter 3 (Section 3.3). The test­

heads for each of the activity routines are clear and relatively easily stated. The modeler

is not entangled with the details of the consequences of state changes. This is in stark con­

trast to the ES OF application where such details are a major encumbrance to the

modeler.

The process descriptions of the PI CF introduce a totally different approach. Shan­

non [1975] describes this approach as permitting conceptual "articulation". Others con­

sider that the PI CF allows a model representation that is more natural, intuitive, under­

standable, and conceptually simpler [Pidd 1984; Fishman 1973; Neelamkavill987; Hooper

and Reilly 1982; Birtwistle et al. 1985]. The modeler is able to confine all information

238

pertinent to a single process within its description, including the time flow data [Neelam­

kavill987J.

Most often, the PI CF is used in conjunction with the OOP in performing this

encapsulation of information into object modules [Kreutzer 1986]. Each module charac­

terizes the process dynamics of a single process class. Therefore, modularization becomes

an achievable feature; the model is not as fragmented as in comparable ES and AS models

[Birtwistle et al. 1985]. Model logic is concentrated in a single location resulting in

improved readability and understanding of model logic flow, reduced complexity, and

shorter model descriptions [Kiviat 1969; Banks and Carson 1985; Kreutzer 1986]. Modu­

larization naturally enhances maintainability and helps reduce problems in debugging the

programmed model. Fishman [1973] also adds that statistics collection statements are

easier to implement since they can be localized in modules rather than spread out as in an

ES CF model.

The construction of the PI CF application in Chapter 3 (Section 3.5) appears to pro­

gress faster than the ES CF. The task of converting the conceptual notions of the model

into the process descriptions is accomplished in a smooth fashion. The findings in the

literature that characterize such an approach as "natural", "intuitive", "understandable",

etc. are confirmed. Issues of modularity come to bear heavily in speeding the develop­

ment of the application. Each process description clearly shows all the interactions of the

vehicle and its points of conditional and unconditional delay. Corrections to the code are

easily made during the accomplishment of the application. The descriptions, in some

respects self-documenting, enable the modeler to maintain an effective grasp on and

understanding of the finer details of the model. Even with the lapse of several months

since the completion of the PI CF application, maintaining excellent comprehension on

239

returning to the code is experienced.

Overstreet and Nance [1986] provide an interesting conceptual summary of the ES,

AS, and PI CFs on the basis of locality, or that property which is distinguished by the

grouping of common information into one location. The ES CF can be considered to

display locality of .tim.e in that event routines contain the related actions that are to take

place in one instant. The events list then groups all simultaneous events into one location.

The AS CF provides locality of aiaJ&.. The testheads offer a grouping of model state condi­

tions under which associated actions are to occur. Finally, locality of ~ is evident in

models based on the PI CF. Each process description describes the life-cycle actions of a

particular class of model object.

Each perspective of locality offers a unique advantage. Clearly, the modeler must

choose that locality which most benefits his cause and promotes the attainment of model

objectives.

4.1.2 Aspects Concerning Sequencing Method

The sequencing methods of the ES, AS, and PI CFs primarily influence the execution

efficiency of models which are constructed in accordance with their implementation gui­

dance. This aspect of implementation guidance is hidden in most respects to the modeler

when an SPL is used: the SPL largely assumes responsibility for the algorithmic strategy.

Such is the case for our applications of the ES, PI, and TF CFs, which are accomplished

using SIMSCRIPT, SIMULA, and GPSS/H respectively. The modeler often needs to

understand the SPL's use of its sequencing method, even though it is hidden to him. The

effects of this "hidden" component remain significant. Comments concerning execution

efficiency in this section follow the majority view that is found in the literature and are

240

not based on studies performed as a result of this research. We choose not to perform

such studies since applications of the CFs to the TI require extensive programming in the

absence of an SPL. SPLs are not readily available for the AS and TP A CFs; their algo­

rithmic strategies are not implemented in our applications.

As noted earlier, the sequencing guidance of the ES CF stipulates that an events list

holds (ordered by time) a succession of unconditional events [Hooper 1986b]. This exact

determination of event routine execution produces an efficient execution when the model

is composed of less interactive, more independent components [Kiviat 1969; Shannon

1975; Birtwistle et al. 1985; Hooper 1986b}. Unlike within the AS CF, "repeated scanning

is not required to determine when they [the independent events] can be done" [Kiviat

1969]. The algorithm is streamlined because the modeler assumes the burden of represent­

ing the component interactions as discussed earlier. From experience with the ES CF

application, once appropriate conditional tests are inserted and consistency among them

is achieved (albeit after many labor-intensive hours of work), the modeler is able to con­

centrate on other aspects of the model. He is able to completely divorce himself from

concerns of the sequencing method. Although selection of the next event is easily done,

the algorithm still handles the filing, searching, selection, creation, and destruction of

event records in the events list [Fishman 1973].

Under these same circumstances (i.e., independent components), the AS CF produces

an inefficient representation for execution. As you recall, all testheads are scanned during

a single scanning phase. Obviously, as the number of independent components increase,

the number of repetitive, redundant, and unnecessary scans also increases [Laski 1965;

Kreutzer 1986; Pidd 1984; O'Keefe 1986b]. According to Kreutzer [1986], this is the "price

to be paid for the convenience of declarative (conditional) scanning". However, when the

241

model is characterized by a large number of primarily dependent and interactive com­

ponents, the AS CF demonstrates improved execution efficiency [Kiviat 1969; Hooper

1986b]. A corresponding ES CF model which has highly interactive components could

spend a great deal of execution time in list processing chores. Since there is no such

analogous "list", the AS CF escapes this type of work [NeelamkavilI987] and is more

attractive than the ES CF under these circumstances. The scanning and logical checks

become "less time consuming" than the overhead requirements of record management and

list processing [Fishman 19731. The AS CF algorithm, unlike the ES CF, is considered to

provide much more useful work for the modeler since it handles the component interac­

tions with the scan and removes this responsibility from the modeler (Kreutzer 1986; Pidd

1984; Birtwistle et aL 1985]. Indeed, this becomes quite clear when an application, like

that given in Chapter 3 (Section 3.3) is undertaken under the AS CF.

Much like the AS CF, the PI CF is able to simplify the specification of a model since

the use of reactivation points enables a conditional wait capability. The interactions

among components remain implicit and the modeler is eased of the burden of explicitly

representing these dependencies [Blunden and Krasnow 1967]. However, the PI CF

demands a much more complicated implementation due to its concurrency requirements

and need to combine activity scanning and event scheduling techniques [Kreutzer 1986;

Pidd 1984]. This problem can be overcome, however, when an SPL is used that imple­

ments the PI CF. It follows that we do not experience this drawback during our applica­

tion of the PI CF. However, this would be readily apparent in the performance of a com­

parable model using some high-level language, (e.g., standard Pascal) which in its stan­

dard form has no capability for concurrency.

242

The PI CF is preferred when the model is composed of a "balance" of independent

and dependent components [Hooper 1986b]. However, the PI CF becomes less efficient

when competition for resources is dominant [O'Keefe 1986b]. We see in the next section

that the competition for resources also places added requirements on the modeler.

,/.. 1. 9 Extending the Comparisons

Laski [1965] recognizes that during the update of the clock for the AS CF that the

information is lost which would link the new time with associated Bound-activities. The

TPA CF does not lose this information. Instead, the pending Bound-activities are clearly

identified with the updated clock time. Their execution during the B-phase reduces the

length of the C-phase and eliminates unnecessary scans for Bound-activities that are not

pending. The application of the TP A CF in Chapter 3 (Section 3.4) demonstrates these

points. The list of B-activities due for execution is derived by examining the t-cells of the

B-activities shown in Section 3.4.2. The AS CF requires 89 testheads to be scanned.

Elimination of the testheads of the B-activities (while using the TPA CF) reduces the

number of scanned testheads to 40, a fifty-five percent reduction.

By separating the "things that must happen" (the due B-activities) from the "things

that might happen" if the conditions are right (the C-activities) [Crookes et aL 1986], the

TPA CF removes most of the inefficiencies of the AS CF [Tocher 1979; O'Keefe 1986b].

This proves helpful in making the model "easier to analyze, comprehend, and extend",

especially when there is complex interaction and competition for resources [Crookes et al.

1986]. The TPA CF thereby retains the advantages of the AS CF while improving upon

a model's execution efficiency. The incorporation of a next-event set approach (in the B­

phase) and the retention of a reduced length C-phase enables the TPA CF to be efficient

243

for both models with relatively independent and highly dependent components [O'Keefe

1986b].

The TF CF improves upon the PI CF by automatically accomplishing "many of the

tasks which fall upon the programmer" who uses a PI-based SPL like SIMULA [Birtwistle

et al. 1985]. For instance, the PI CF application to the Traffic Intersection (Chapter 3,

Section 3.5) demonstrates that the modeler is responsible for signaling an object's passiva­

tion and reactivation. Furthermore, it is necessary for the modeler to explicitly control

the queueing up and competition for resources. This is illustrated in lines 25-40 of Figure

4.3, a portion of the process for cars from lane 8. If a vehicle cannot enter the intersec­

tion, the modeler explicitly provides for that vehicle to enter the lane queue, awaiting

entry to the intersection. Once in the queue, the vehicle's process is passivated. Also,

notice that when a vehicle is removed from the lane queue (line 30 or 36) and enters the

intersection (line 38-40), the modeler is required to activate the first car (if any) remain­

ing in the lane queue. Although the advantages to describing the movement of a single

vehicle within a process description are significant, these details of an object's movement

are difficult to specify. Indeed, the difficulties described here rival (to a lesser exten t)

those discussed concerning the conditional testing requirements placed on the modeler

when under the ES OF. Such problems also contribute to the added length in application

code over that for the ES CF.

The TF CF performs these tasks within the block structures that are provided (e.g.,

the block statements of GPSS). Figure 4.4 (taken from the lane 8 submodel in Chapter 3,

Section 3.6) demonstrates the advantage of the TF CF in accomplishing object activation,

passivation, and competition for resources for the modeler. The block statements

(specifically SEIZE and RELEASE), as discussed in Section 3.6.2, automatically do

244

20 activate new car8 delay (weibl{S6.0S92, 0.63923, seed8»;
!Generate next arrival

21 mydriver:- new nsdriver(tfclight, square_a, pforkandtcreek,
22 this car8)} !Create driver
23 lane: = 8; ! Set attributes
24 right:= true;
2S if not lane8.empty then begin !Enter lane8 queue when
26 into(lane8); ! cars are already in lane;
27 passivate; !Wait in line for turn
28 activate mydriver after current; !At head of line, turn on
29 passivate; , driver.
30 out;
31 end
32 else if «(tfclight.south.red) or (square_a. busy) or

«not pforkandtcreek.nsclear) and
(not pforkandtcreek.clearedns») and
«not right) or (tfclight.south.green) or (square_a. busy) or
(not pforkandtcreek.r8clear») then begin

33 into(lane8); 'Can't immediately enter
34 activate mydriver after current; so first in queue,
3S passivate; ! and turn on driver.
36
37
38
39
40
41

out;
end;

if not lane8.empty then
activate lane8.first after current;

entered: true;
transitfm8(pforkandtcreek);

!Ready to enter, so turn
, on any car waiting in
, lane8 queue.
!Enter and transit

Figure 4.3 Excerpts from the CARS Process (PI CF)

*

*

*

*
*
SKIP8R

GENERATE

QUEUE
SEIZE
TEST E

TEST E

LOGIC S

SEIZE
RELEASE
ADVANCE
SEIZE
RELEASE
ADVANCE
RELEASE
DEPART
TERMINATE

245

1000*&WEIBL(56.0592,O.63923,MX$SEED(&I,10»
A vehicle arrives in Lane 8

STAT8R Collect statistics for 8R vehicles
FRONT8
BV$ENTER8R,1

Capture front end of Lane 8
Wait until the vehicle can enter the
intersection from Lane 8 to turn right

LS$LYTENSN,1,SKIPSR If LYTENSN is red, skip
the next LOGIC Block

CLEARNSN

BLOKA
FRONTS
2153
BLOKK
BLOKA
1507
BLOKK
STATSR
1

Intersection clearance was checked for
NS & SN traffic when light LYTENSN
just turned green
Capture block A
Free front end of Lane S
Travel on block A
Capture block: K
Free block A
Travel on block K
Free block K
Record collected statistics
Exit the intersection

Figure 4.4 Excerpts from the LANES Submodel (TF OF)

246

these operations. This feature significantly improves the speed in accomplishing the TF

CF application over that achieved for the PI CF. However, ease in developing the process

descriptions is comparable. Perhaps the singlemost distinguishing feature of the TF CF

application is the tremendous reduction in the amount of code compared with the ES and

PI CFs.

A block structure or chart of transaction flow is also a very natural way to represent

many systems. The textual form of the block structure provides a clear and straightfor~

ward means of documenting the model [Gordon 1979]. Debugging is simplified in that

errors can be isolated to a particular block. With the "block isolating" error-reporting

features of GPSS/H, the time spent in debugging is reduced for the TF CF application.

In some cases, the modeler is limited, however, to using the defined block structures and

flexibility is lost. This limitation may also inhibit the modeler's ability to specify details

of communication among components. No such problems are experienced during the TF

CF application to the TI.

4.1.4 Summarizing Compara'sons Based on Implementation Guidance

Tables 4.1 and 4.2 review the comparative features just discussed. Table 4.1 covers

the eminent features of the CFs relative to implementation guidance. Table 4.2 gives a

panorama of the key, related characteristics for complex models (i.e, models like that of

the TI with many components and component interactions).

The ES, AS, TPA, PI, and TF CFs provide a wide range of implementation gui~

dance characteristics, compared and discussed above. Although other CFs under review

may be used in the context of some identifiable implementation guidance like that found

in the aforementioned CFs, none contains guidance that specifies the mode and method of

247

Table 4.1 Eminent Features of CFs Based on Implementation Guidance

CONCEPTUAL MODE OF METHOD OF LOCALITY
FRAMEWORK SEQUENCING SEQUENCING

ES event Explicit time scheduling of events; time
update to next-event time on events list

AS activity Conditional scanning of state conditions; state
update to minimum t-cell time

TPA event, activity Explicit time scheduling of B-activities; time, state
conditional scanning or state conditions
for C-activities; update to minimum
t-cell time

PI process Explicit time scheduling or object object
move-times on FOL with transrer to COL and
conditional scan or objects on COL;
update to next object move-time on FOL

TF process Explicit time scheduling or object object
move-times on FOL with transfer to COL and (transaction)
conditional scan of objects on COL;
update to next object move-time on FOL

248

Table 4.2 Characteristics of Complex Models

CONCEPTUAL ES AS TPA PI
FRAMEWORK

CONDITIONS Independent Dependent Independent or Balance of
FOR Objects Objects Dependent Independent and

MAXIMUM Objects with Dependent Objects
EFFICIENCY resource with low resource

competition competition

BURDEN ON High Low Low Moderate.
MODELER

BURDEN ON Low High High High
EXECUTIVE

Fragmented Conditional logic Conditional logic Concentrated in
throughout concentrated at concentrated at modules of

MODEL LOGIC event routines testheads testheads and process
DESCRIPTION determined logic descriptions

concentrated at
B-activities

MAINTAINABILITY Low Hight Hight High§

NATURAL
REPRESENTATION Minimal Good Good Excellent

CAPABILITY

DEVELOPMENTAL
TIME, EFFORT Very high Low Low High

REQUIRED

APPLICATION
LINES OF 1312 . . 1778

CODEt

t Due to localization of state with grouping of conditional testing
§ Due to localization of object and modularization of process descriptions
* Due to modeler responsibilities in activation, passivation,

and queueing for resources
t Lines of code for event routine or process descriptions;

applicable to Chapter 3 applications only;
does not include code for initialization or statistics collection

TF

Balance of
Independent and
Dependent Objects
with low resource
competition

Low

High

Concentrated in
modules of
block
segments

High§

Excellent

Low

443

249

sequencing that is characteristic of pure implementation guidance. For example, one

point has been made regarding the OOP in its association with the PI CF: the OOP

enhances modularization of the process descriptions. In addition, a common feature of

the OOP is the ability to save and restore an object's state, similar to the use of reactiva­

tion points in the PI CF. Indeed, some [Kreutzer 1986] feel that the OOP is an extension

of the PI CF. However, the OOP does not explicitly possess the mode and method of

sequencing in its guidance. Therefore, we do not consider it to contain implementation

guidance.

While the impact of implementation guidance primarily centers on the program

design and execution efficiency, the remaining sections of the comparative review deal

with the conceptual and communicative [Balci 1986J design issues of model representa­

tion.

4.2 Design Comparisons

This section deals with comparing the CFs relative to their ability to effectively

assist the modeler in his design of the static and dynamic structure of the model. More

specifically, we seek to investigate how well each CF aids in the designation of model

objects and their associated attributes and in the specification of the dynamic rules of

interaction. Additionally, the identification of relationships (how the objects are "bound"

or related to one another) and the description of the input/output exchange of the model

with its environment are also of concern. The bonding and interfacing requirements may

be of a static or dynamic nature.

250

-/.2.1 Object and Attribute Identification

With the exception of the ES, AS, TP A, PI and TF CFs, all the CFs under review

provide limited guidance for the identification of objects and their attributes. The

modeler must use his understanding of the system being modeled to identify the objects

and their attributes. The CFs discussed below coerce the modeler to perform this task .

• OOP - The OOP is clearly based upon the decomposition of a model into its

component objects. Additionally, the OOP conceptually stipulates that all informa­

tion for a given object is encapsulated within that object's description. This

includes the provision, enhanced by inheritance mechanisms, for attribute

identification which is required to describe an object. Modularity of an object and its

attributes is important to the modeler due to conceptual clarity and maintainability

issues. Inheritance eases attribute association for a modeler and is an important

benefit of the OOP concerning object and attribute identification, eliminating redun­

dancies which might otherwise be required. The class BLOCK and class

BLOCKA declarations of the OOP application in Chapter 3 (Section 3.7) demon­

strate the power of this feature. With 35 block descriptions to declare (blocks A-Z,

blocks 1-9), the attributes of a generic block (the class BLOCK) are inherited by

each individual block; the redeclaration of the generic attributes within each of the

35 blocks is not required .

• PGM - Object and attribute data are contained in the Variable Attribute and

Queue Attribute Tables which are presented in the PGM application of Chapter 3

(Section 3.8) .

• ERA and EAS Both the ERA and EAS CFs derive their conceptual basis from

251

the objects (entities) and attributes that make up a given model. The squares

(objects) and circles (value sets for attributes) demonstrate the ease in which objects

and attributes are designated under the ERA CF with the aid of the entity­

relationship diagram (Chapter 3, Section 3.9). Within the SIMSCRIPT preamble

(Chapter 3, Section 3.10), the objects and attributes of the EAS CF application

(within 8IM8CRIPT) are evident.

• CM - The CM is an extension of the OOP and therefore provides for model

object and attribute identification. The CM outline in Chapter 3 (Section 3.1) very

clearly guides the modeler in a top-down definition of model objects and attributes,

through the various submodels down to the base level (Le., from the top-level Model

to the Vehicle, Light, and Block submodels at the base level).

• SM - The elemental and generic structures of the SM enable a full designation of

objects and their attributes. The genus graph (Chapter 3, Section 3.11) highlights

the basic model objects of the 8M CF application and also shows attribute informa­

tion. Applying the SM CF for this level of design guidance is straightforward.

• CS - The object specification includes provision for object and attribute

iden tification and establishes the static structure of the model of the TI for the CS

application (Chapter 3, Section 3.12).

• STA - Model components and descriptive variables relate object and attribute

information for the STA. The informal descriptions (Chapter 3, Section 3.13) are

evidence of how the STA prompts the modeler for this data.

252

.4. fJ. fJ Dynamic Interach'ons

The relationships and rules of dynamic design guidance, once specified, provide the

motive force for effecting the state changes among the model objects. Therefore, this

aspect of guidance is critical to producing an accurate model representation. By means of

constituent components or methodological guidance aimed directly at the specification of

model dynamics, the CS, STAt and CM CFs provide explicit support, albeit limited, for

accomplishing this task. We note that the dynamic design guidance provided by these

CFs is independent of world view.

The transition specification of the CS guides a modeler for this purpose. CAPs

(using Boolean expressions or sequencing primitives to generate time-based signals) con­

tribute to the effectiveness of the transition specification. The transition specification,

however, only provides limited guidance in format and syntax to the modeler. The

modeler in using this guidance must depend upon his own knowledge and experience with

the system under study to accurately develop the dynamic relationships. With the transi­

tion specification, the as coerces the modeler to specify the model dynamics.

The STA via the DEVS formalism also provides dynamic design guidance. The

"necessary equipment" to specify model dynamics is available to the modeler in the form

of the time advance and transition functions The time advance feature is implicitly pro­

vided; the modeler provides information for the transition function. However, similar to

the OS, the STA provides only limited guidance in format and syntax (notation). In addi­

tion, set theoretic notation and the intricate details of the DEVS formalism makes "using

the equipment" a difficult task for the modeler. Yet, the STA "equipment", when prop­

erly specified, accomplishes the following:

253

• The time advance function enables the selection of the clock phase time and the

update of the countdown variables .

• The transition functions (acting like event or activity routines, or process descrip­

tions) are selected for execution, producing the state changes of the model. Tie­

breaking rules are also accomodated for function selection.

Although the formal approach of DEVS makes it more unwieldy than the CS, the STA

also coerces the modeler into the specification of model dynamics.

Bottom-up specification of the CM enables the specification of model dynamics.

Bottom-up specification is not accomplished with the CM application. But as noted in

Chapter 2, Barger [1986} conducted related research and supported bottom-up

specification under the CM in her version of the Model Generator tool of the SMDE.

Barger [1986] suggests possible ways to explicitly guide the modeler in the specification

process using the information included in the CM top-down definition. The specification

of model dynamics under the CM is less structured than that for the CS and ST A.

It has been conjectured [Geoffrion 1987a; Patrick 1987] that SM can accommodate

the dynamic relationships of discrete-event models. The SM application does not contain

model dynamics. However, since the 8M is not specifically oriented towards discrete­

event models, dynamic design guidance is not explicit and applicability is yet to be shown.

No other CFs provide an explicit capability for dynamic design guidance except as

provided by the modeler.

254

4.2.9 Hierarchical, Top-down Decomposition and Relationships

Balmer [1987] discusses hierarchical modeling based on "structures centered around

activity modules." But within the context of this review, the hierarchical, top-down

decomposition which is discussed is based on a system object viewpoint instead. A

hierarchical decomposition capability supports the definition of 1:1 or 1:m relationships.

Hierarchical decompositions (from an object or entity viewpoint) are possible when the

model is influenced by OOP, PGM, ERA, EAS, CM, SM, or STA CFs.

Wasserman [1984] defines a hierarchy as "a group of objects that exist in some par­

tially ordered state such that a sub-group of objects that are all subservient to another

object form a logical class." A hierarchical structure may demonstrate different forms of

subservience or fundamental relations that are dependent "on the information that the

hierarchy is attempting to capture" [Wasserman 1984]. Wasserman [1984] gives several

common examples of these fundamental relations:

• IS-A, in which subordinate objects are instances of their parent object(s),

• PART-OF, where subordinate objects are components of their parent object(s),

and

• REPORTS-TO, a useful relation for showing chain-of-command structures.

The inheritance features of the OOP and PGM described in their applications allow

hierarchical decompositions. As discussed earlier, the class BLOCK and class

BLOCKA declarations (Chapter 3, Section 3.7) demonstrate an IS-A hierarchy. The

class DIRECTION and class LIGHT declarations show the creative use of the inheri­

tance feature to generate a PART-OF hierarchy (Le., the Light consists of four directions

or parts: north, south, east, and west).

255

The use of entity and relationship sets enable the ERA to easily handle hierarchical

decompositions. For example, the use of the entity-relationship diagram in Section 3.9 of

Chapter 3 makes it easy to define the l:m relationship that exists between the intersec­

tion and its component blocks, a PART-OF hierarchy. An IS-A hierarchy is also implicit

in that each of the "many" blocks takes on the attributes of the indicated value set for

the BLOCK object. In a similar manner, the use of sets in the EAS CF makes such

decomposition possible. In Figure 4.5 taken from the SIMSCRIPT preamble, lines 20-22

and 25 show how the EAS CF is comparable. Line 20 represents aPART-OF hierarchy;

the light has component colors. Since lane.queue is a set in line 22, a l:m relationship

(PART-OF) is established between a lane and the cars in its queue.

Both CM (with its OOP orientation) and SM (with its hierarchically organized

structures) provide the flexibility of hierarchical decompositions and tout their top-down

design capabilities. Under the CM, relational attributes and the concept of set allow a

natural breakdown into hierarchies other than IS-A. The top-down definition of the inter­

section submodel in Chapter 3 is a PART-OF hierarchy. The modular structure of the

SM makes it extremely flexible to form hierarchies according to any conceptual grouping

or relation. The overview modular structure of the SM CF application in demonstrates

this flexibility with its &OBJECTS, &VEILDAT, &LANE-DAT,

&TRANS-AREA-DAT, etc., conceptual modules.

The set orientation of the ST A allows the establishment of object hierarchies.

Experience from the STA application shows that the representation of sets of objects are

easily shown. The LANE.QUEUE, BLOCK.QUEUE, and WAIT.QUEUE sequences

(Chapter 3, Section 3.13) are examples. Hierarchical relationships can be conceptualized

in the informal description portions for clarification. A stronger means for representing

256

19 permanent entities
20 every light has a ns.color, a west.color and a east.color
21 every block has a status, a laneuser, a turner and owns a block.queue
22 every lane owns a lane.queue
23
24 temporary entities
25 every car has an arrtime, a laneid,an id and a to.right

and may belong to a block.queue
and may belong to a lane.queue

26 define arrtime as a real variable
30

Figure 4.5 A Portion of the SIMSCRIPT Preamble with EAS CF Features

257

the hierarchical relationships between objects and attributes seems to be lacking. The CS

application extends the CS in Chapter 3 (Section 3.12) to include sets with the block,

lane, and dir-Iane set objects in the object specification. Such extensions should allow

hierarchical decom posi tions.

The ERA includes a clear representation of m:n relationships. Such a relationship

exists between the lanes (1 through 11) and lane categories (Normal or Right). It has been

noted from the literature that the EAS can accommodate m:n relationships but with

difficulty. The EAS CF application of Chapter 3 does not directly show m:n relationships

(e.g., the lane-to-lane category relationship). The need for declaring this relationship is

overcome by in-line coding rather than use of explicit EAS CF features. Although we do

not pursue m:n relationships with the eM application, the concepts of set objects and of

relational attributes should make this possible. Within the SM application, the definition

of the lane-to-Iane category relationship is accomplished with limited success with the

VIRT-LANE object. The definition of m:n relationships under the SM is not particu­

larly straightforward due to the complicated rules of the SML.

Similar to the EAS application, we do not define m:n relationships under the ST A.

Instead, relationships like the lane-to-Iane category relationship are accomodated through

the definitions of the descriptive variables. For example, the use of this relationship to

recover statistics data is accomplished by indexing the statistics component by the index

variable, 0 (see Figure 4.6), which in turn ranges over values associated with the lane-to­

lane category relationship. The set object dir-Iane (see Figure 4.7) under the CS appli­

cation is used to convey this same lane-to-Iane category relationship information. Note

that dir-Iane objects are identified by indices in the range dir-Iane-range, reflecting a

similar technique to that used under the ST A.

258

Descriptive Variables

Describing
STATISTICS'o (0 = 1,2,2R,3,4,5,5R,6,7,8,9,lO,11,11R)

WAIT· TIME· 0 -+ with range
Rt, (SWTo)

Figure 4.6 A Portion of the STA OF Informal Description

259

(From Enumerated Type Description)
(Type Name Definition

(NI, N2, R2, N3, N4, NS, RS, N6,
N7, NS, N9, NlO, Nll, Rll);

(From Object Specification)
{Object.. Attribute

tot_walt_time
deps
exp_wait_tirne

(From Initialization Transition Specification)
FOR k := Nl TO Rll DO

CREATE (dir_lane [k1);
dir_lane [kJ.tot_wait_time 0;
dir_lane [k].exp_wait_time 0;
dir_lane [kJ.deps := 0;
END FOR

Type }

nonnegative real;
nonnegative integer;
nonnegative real;

Figure 4.7 Excerpts from OS Application

260

Since an object may represent a set of objects and a process graph node may

represent an underlying network of process graph nodes, we believe that the OOP and

PGM also allow definition of m:n relationships. However, the OOP and PGM applica­

tions in Chapter 3 do not demonstrate this.

Although our experience from applications to the TI system is limited concerning

abilities of the CFs for m:n relationships, we offer the following perceptions:

• ERA offers the most straightforward approach for m:n relationships when assisted

by the entity-relationship diagram.

• CM and SM suggest excellent capabilities for m:n relationships based on the

experience gained from the literature review and in performance of Chapter 3 appli­

cations. Ease in use of the SM within the SML is limited.

• EAS, STA, and CS allow definition of m:n relationships but without the direct,

natural clarity of the above approaches.

• OOP and PGM should permit designation of m:n relationships.

,f.2.,f Explicit Input/Output SpecificaUon

The CS and STA both contain explicit requirements for input and output

specification. For the CS, the input, output, and report specification serve this require­

ment. The INPUT, OUTPUT, and output function components of the DEVS formalism

provide this facility for the STA. Model parameters (e.g., LOSS, DELAY in the STA

application of Chapter 3, Section 3.13) contribute to the input/output specification under

the STA. The CM outline includes a section for interaction with the environment which

also serves this function. Section II of the CM outline (see Section 3.1 in Chapter 3), enti-

261

tIed Modeling Environment, covers model boundaries, input description, and output deci­

sions. Other CFs, through the use of object and attribute facilities, may provide a simi­

lar result; however, the requirement is not explicit.

4.2.S Summarizing Comparisons Based on Desz'gn Guidance

Table 4.3 outlines the comparisons of CFs based on design guidance. Each CF that

has been considered in this section provides a level of design guidance that is sufficient to

adequately define model structure. Depending on the aspect, certain CFs maintain a clear

advantage for the modeler.

262

Table 4.3 Comparisons Based on Design Guidance

CONCEPTUAL OOP ERA EAS CM§ SM§ CS§ STA§ PGM§
FRAMEWORK

OBJECT Yes Yes Yes Yes Yes Yes Yes Yes
NAMING

ATTRIBUTE Yes Yes Yes Yes Yes Yes Yes Yes
NAMING

CAP ABILITY FOR
DYNAMIC DESIGN No No No Limited No Limited Limited No
SPECIFICATIONS

TOP·DOWN
HIERARCHICAL Yes Yes Yes Yes Yes Yes* Yes Yes

DECOMPOSITION

CAP ABILITY FOR
MANY-MANY Yest Excellent Yest Excellent Good Limited Limited Yest

RELATIONSHIPS

EXPLICIT
INPUT/OUTPUT No No No Yes No Yes Yes No
SPECIFICATION

t Not observed
* With set extension
§ Includes documenting features

CHAPTERS

A TAXONOMY OF CFs

Based upon the comparative review of Chapter 4 we consolidate the results into a

single table, Table 5.1, which places each CF according to the type of guidance that it

provides. From this vantage point, we are able to step back from the details of the com­

parison and to grasp a broader appreciation and perspective of the CFs under review. In

first considering the capabilities of the CFs with regard to the type of guidance provided,

we notice varying levels of modeler support. Furthermore, we see that CFs may be

categorized by the range of guidance provided. The development of a taxonomy of CFs is

naturally focused on guidance types, perceived levels of modeling support, and the range

of guidance.

5.1 Taxonomy Base Categories

The foundation for the categories of the taxonomy is derived from the types of gui­

dance that a CF provides. CFs may be classified, therefore, as implementatz'on or design

CFs.

An implementation CF is defined as one providing guidance that determines the

mode and method of model sequencing. The mode and method of sequencing within

implementation guidance suggest that CFs may also be distinguished as:

• event-oriented - having the event as the mode of sequencing and explicit

scheduling of events within its method of sequencing,

• activity-oriented - having the activity as the mode of sequencing and condi-

263

264

Table 5.1 Classifications of the CFs Under Review

IMPLEMENTATION DESIGN DESIGN
(STATIC) (DYNAMIC)

ES EAS CM
AS ERA OS

TPA CM STA
PI SM
TF OOP

PGM
OS

STA

265

tiona} scanning of state conditions within its method of sequencing, or

• process-oriented - having the process as the mode of sequencing and schedul­

ing or scanning of objects within its method of sequencing.

The design CF contains guidance that assists the modeler in defining and specifying

the model static and dynamic structure. Based upon the comparative discussion in

Chapter 4, it follows that design guidance also contains two sub-categories, static and

dynamic.

• static - providing guidance which aids the definition of model static structure.

• dynamic - providing guidance that guides the modeler in specifying model

dynamics.

Notice in Table 5.1 that the ES CF is an implementation CF while CS is both a

static design CF and a dynamic design CF. Figure 5.1 shows the resulting taxonomy

tree.

We noted earlier that the boundaries among CFs (based upon these categories alone)

are not well defined. A taxonomy must necessarily include additional categorizations to

allow further clarification where overlaps occur. These additional categorizations are now

introduced to the taxonomy.

5.2 Support Level Categories

Implementation guidance, as discussed in Chapter 4, includes guidance that directly

relates to the programmed execution of the model. As such, the modeling routine formats

(as derived from the sequencing mode) and the model executive or monitor structure (the

method of sequencing or the algorithmic strategy) represent the lowest level aspects of the

266

TAXONOMY

IMPLEMENTATION DESIGN

EVENT ACTIVITY PROCESS STATIC DYNAMIC

ORIENTED ORIENTED ORIENTED

Figure 5.1 The Taxonomy Tree

267

model. Low-level guidance requires more intimate involvement by and retrieval of details

from the modeler. Issues of syntax, etc., are also at a low-level. In general, we seek to

shield the modeler from such low-level participation in order that he or she may devote

full attention to the model at a higher level, free from the entanglement of details.

The CFs that provide dynamic design guidance tend to be characterized by both

low-level and high-level directions. For example, CS offers high-level guidance for the

specification of model dynamics as imposed by the transition specification requirements.

However, the transition specification also forces the modeler to a low-level with its syntax

requirements for the construction of the Condition Action Pairs, CAPs (use of sequencing

primitives, etc.). A similar argument can be made concerning the STA. In this regard,

the CM's flexibility helps to keep the modeler at a higher level. Dynamic design guidance,

therefore, typically occurs with both low and high-level components and represents a con­

ceptual bridge between low and high-level requirements that are placed on the modeler.

In general, the highest level of guidance for the modeler is that found within avail­

able static design guidance, applied to representing the model's static structure. At this

level, the modeler is completely unencumbered with implementation details and focuses

strictly on the model's static representation.

Figure 5.2 summarizes the notions of variations in support level. On the basis of

this perspective, CFs may be classified as low-level or high-level CFs. When a CF con­

tains guidance with both low and high-level components of support, such a CF is referred

to as being a mid-level CF.

268

J1dPLEMENTATION DYNAMIC (DESIGN) STATIC (DESIGN)

Lowest

[execution, program design)
implementation

+-

Highest

[definition and specification]
model design
-+

Figure 5.2 Low-level versus High-level Guidance

269

5.3 Range Capabilities and Resulting Categories

We speculate that a model representation must include the data derived from some

form of implementation, and static design and dynamic design guidance if it is to be fully

translatable into executable code. A OF which provides all three guidance types is con­

sidered to be a full-range OF in that it makes the "full-range" of guidance capability

available to the modeler. Such a OF I if it were to exist, would provide significant advan­

tages to the modeler. There are, however, no known full-range OFs.

The capabilities of a full-range OF are instead provided by comp08z'te OFs. Over­

street and Nance [1986] and Zeigler [1976] discuss at length how the OS and STA OFs

may be adapted into implementation OFs (ES, AS, or PI). By transforming these OFs

(the OS and STA, both of which are static design and dynamic design) to include imple­

mentation details, a composite CF is formed. Therefore, a composite CF is by definition

one constructed from the combination of two or more CFs that provide distinct types of

guidance. The use of an SPL, for example, by the modeler can be considered to be the

implicit use of a composite OF. The SPL provides some type of implementation guidance

(e.g., SIMULA provides the PI CF) and the data necessary for the static structural

definition and the dynamic structural specification is modeler-defined through his use of

the available primitives of the SPL.

The preceding discussion infers that a composite CF may be derived from the base

guidance types and may not contain full-range capabilities. Because such a CF does not

contain the full-range of guidance and contains only parts of the whole, it'is considered to

be fragmentary, Note that every CF is fragmentary.

270

5.4 Summary of Taxonomy Categories

CFs may be categorized on the basis of their guidance, i.e., as implementation

(event-oriented, activity-oriented, or process-oriented), static design, or dynamic design.

Level of support to the modeler determines whether a CF is classified as low, mid, or

high-level. CFs may also be labeled as composite, fragmentary or full-range, depending

on the range of guidance that they provide. Table 5.2 summarizes the terminology which

has been developed for the taxonomy.

271

Table 5.2 Definitions of Categories of the CF Taxonomy

CATEGORY DEFINITION
Implementation Provides guidance that determines the mode

and method of sequencing the model.
Event-oriented Having the event as the mode of sequencing

and explicit scheduling of events
within the method of sequencing.

Activity-oriented Having the activity as the mode of sequencing
and conditional scanning of state conditions
within the method of sequencing.

Process-oriented Having the process as the mode of sequencing
and scheduling or scanning of objects
within the method of seouencimz:.

Design Provides guidance that assists the modeler in
defining and specifying model static or dynamic structure.

Static Provides guidance which aids the definition of model
static structure.

Dynamic Provides guidance that guides the modeler in specifying
the model dynamics.

Low-level Provides low-level support to the modeler with
particular emphasis on implementation details.

High-level Provides high-level support to the modeler with
particular emphasis on model design.

Mid-level Provides both low and high level components of
modelinlr suPPort.

Full-range Provides a minimum of implementation, static design,
and dynamic design guidance.

Composite Constructed from the combination of two or more CFs
that provide distinct base types of guidance.

Fragmentary Provides guidance support that is less than full-range
in capability.

CHAPTER 6

CONCLUSIONS AND SIDv.[MARY

This research contributes a comprehensive comparative review of CFs which is

based on their individual application to a complex modeling problem 1 modeling the

Traffic Intersection. Several represent a first-time application to this type of problem. In

addition 1 a taxonomy of CFs is developed. The significant benefits of this research

include determination of those features that are desired in a CF, improved knowledge of

the types of guidance available to the modeler 1 insights into the information which is

required from the modeler during the model design process, and implications for future

research in CF development.

6.1 Characteristics of a Next-Generation CF

In Chapter 1 we noted that the CF or CFs for the SMDE MG tool must permit

development of representations that will enable the subsequent development of model

specifications which are analyzable, domain-independent, and fully translatable. The fol­

lowing features are desirable in any CF which is to accomplish these objectives for the

realization of the automation-based paradigm [Balzer et al. 1983]. We discuss these

features and offer comment on the current status of their availability among today's CFs .

• High-level - This feature supports the ease of use which will undoubtedly charac­

terize CFs of the future. With a high-level CF, the use of simulation for discrete­

event systems will be available to a larger audience. Certainly, we must provide

CFs which can be used by modeler's who are not programmers or simulation

experts. For example, the low-level features of the SM, CS, and STA CFs make

272

273

their direct use by the modeler an extremely difficult task. CFs which support

high-level features are often relegated to static design guidance only.

• Independent of Domain - This feature will support domain independence require­

ments of resulting specifications. The modeler will be able to remain at a higher

level, removed from world view considerations. Success in studying a particular

problem domain is closely tied to the choice of implementation guidance for the

modeL The implementation guidance rather than static design or dynamic design

guidance determines the world view. Currently, we see from the literature and from

our experience that the CS, STA, and CM CFs are apparently free of ties to world

view and can be transformed to suit a particular view, suggesting a tendency toward

domain independence. However, the low-level features of the CS and STA are again

highlighted with concern.

• Natural for Model Representation - Here, we consider that such a CF will pro­

duce a representation which will enable (from both static and dynamc information)

the realization of a usable specification. The OOP, although limited in naturally

representing other than IS-A hierarchies, brings substantial utility to the modeler

through inheritance and encapsulation. Given current trends, future CFs will most

likely be based upon the OOP. The OOP, although well suited to a PI- and TF­

based representation, is not easily adaptable to other implementation CFs for the

accomodation of different world view orientations. This issue is necessarily a prob­

lem which must be dealt with if a singular (OOP-based) CF must be relied on for

general application to any problem domain.

• Broad Range of Guidance Support - In order to permit translation into execut­

able code, the CF or CFs must guide in both the model static and dynamic design,

274

and in the implementation as well. This range of guidance is currently not available

from a single CF. This is not necessarily a problem since composite CFs which offer

static and dynamic design and implementation guidance are easily derived.

6.2 The Role of CFs

The role of CFs can be characterized as being two-fold: providing guidance to the

modeler and information retrieval for the express purpose of developing a usable model

specification. Both of these areas are considered strongly linked to the base guidance

categories (implementation, static design, and dynamic design) of the taxonomy which

has been developed. In the case of the first role, this link is obvious; the provision of gui­

dance has been typed and classified by the taxonomy. In the latter case, as the modeler is

guided in the model representation, the guidance must be sufficient to match the

modeler's level of expertise and to enable the retrieval of information sufficient for the

development of a model specification. Therefore, it is not surprising that the two roles

work hand-in-hand with the success of the second role depending heavily upon the capa­

bility of the first. The interface (like the MG tool) between the modeler and the CF

becomes critical in appropriating the capabilities of the CF and in transporting the infor­

mation from the mind of the modeler to the final specification.

The applications of Chapter 3 and the comparative review of Chapter 4 leads to the

following conclusions concerning the observed roles of the CFs under review.

• The implementation CFs (namely the ES, AS, TPA, PI, and TF CFs) were

shown to deliver excellent guidance to the modeler.

• For best performance, the implementation guidance which is chosen by the

modeler should be matched to the problem domain and level of model component

275

interaction. This matching could possibly be delayed until after some type of

analysis of the model design.

• To keep the modeler free of the low-level details of the implementation CF, the

interface and knowledge-based "participating assistant" [Balzer et al. 1983J must be

heavily utilized to create the implementation level details that can be transformed

into formatted code (event routines, process descriptions, etc.) and efficient algo­

rithmic strategies.

• The issues of locality indicate that a CF must effectively retrieve information

pertinent to time, state, and object localities.

• Improvements are required for static design and dynamic design guidance.

Current approaches are manual-based and require heavy low-level modeler involve­

ment. With regard to dynamic design guidance, only CS, CM, and STA CFs pro­

vide limited support in this area.

6.3 Areas of Future Research

This work suggests future areas of research aimed at the eventual development of a

new CF philosophy (applicable for the SMDE MG tool), namely:

• the study of inheritance mechanisms - especially directed at improvements in

representing m:n relationships and the various hierarchical relationships,

• investigation into the requirements for specification analysis - a review of existing

analysis techniques and their distinguishing features,

• a review of the domains of applicability - determining the required range of gen­

ericity may suggest other features necessary in CFs,

276

• the study of the issues of the knowledge-based assistant - particularly in the

areas of matching the domain to world view, transforming the the representation to

a specific world view, and aiding the modeler in static design and dynamic design

represen tation,

• the development of an integrating CF or CFs which will contain the desirable

characteristics, and

• the development of the interface requirements for the new CF or CFs.

6.4 Summary

The research reported in this thesis has clarified the differences that exist among the

myriad of CFs that are in use today. In particular, the comparative review highlights the

significant CF features that are necessary for successful model representation of discrete­

event systems. The taxonomy provides a useful and meaningful classification of CFs and

produces insights into the conceptual relationships that exist among them. The charac­

teristics of a CF or CFs that will effectively support the SMDE MG tool are identified.

The roles of CFs are better understood and specific potential directions for future

research are pinpointed.

211

BffiLIOGRAPHY

Arthur, J.D., R.E. Nance, and S.M. Henry (1986), "A Procedural Approach to Evaluating
Software Development Methodologies: The Foundation," Technical Report SRC-
86-008, Department of Computer Science, Virginia Tech, Blacksburg, Va., Sept.

Bagrodia, R.L, K.M. Chandy, and J. Misra (1981), "A Message-Based Approach to
Discrete-Event Simulation," IEEE Transactions on Software Engineering SE-18, 6
(June), 654-665.

Balci, O. (1986), "Guidelines for Successful Simulation Studies: Part I and II", Technical
Report TR-85-2, Department of Computer Science, Virginia Tech, Blacksburg, Va.,
Sept.

Balci, O. (1988), "The Implementation of Four Conceptual Frameworks for Simulation
Modeling in High-Level Languages," In Proceedings of the 1988 Winter Simulation
Conference (San Diego, Calif., Dec. 12-14). To appear.

Balci, O. and R.E. Nance (1985), "Formulated Problem Verification as an Explicit
Requirement of Model Credibility," Simulation 45, 2(Aug.), 76-86.

Balci, O. and R.E. Nance (1987a), "Simulation Model Development Environments: A
Research Prototype," Journal of the Operational Research Society 98, 8 (Aug.),
753-763.

Balci, O. and R.E. Nance (1987b), "Simulation Support: Prototyping the Automation­
Based Paradigm," In Proceedings of the 1987 Winter Simulation Conference
(Atlanta, Ga., Dec. 14-16). IEEE, Piscataway, N.J., pp. 495-502.

Balmer, D.W. (1981), "Software Support For Hierarchical Modelling," Technical Report,
Department of Statistical and Mathematical Sciences, London School of Economics
and Political Science, London, England.

Balzer, R., Cheatham, T.E., and Green, C. (1983), "Software Technology in the 1990's:
Using a New Paradigm," Computer 16, 11 (Nov.), 39-45.

Banks, J. and J. S. Carson,II (1985), "Process-interaction Simulation Languages,"
Simulation 4.4, 5 (May), 225-235.

Barger, L.F. (1986), "The Model Generator: A Tool for Simulation Model Definition,
Specification, and Documentation," Master's Thesis, Department of Computer
Science, Virginia Tech, Blacksburg, Va., Aug.

Barger, L.F. and R.E. Nance (1986), "Simulation Model Development: System
Specification Techniques," Technical Report SRC-86-005, Department of Computer
Science, Virginia Tech, Blacksburg, Va.

Bauman, R. and T.A. Turano (1986), "Production Based Language Simulation of Petri
Nets," Simulation 47, 5 (Nov.), 191-198.

Birtwistle, G., G. Lomow, B. Unger, and P. Luker (1984), "Process Style Packages for
Discrete Event Modeling: Data Structures and Packages in SIMULA," Transact£ons
of the Society for Computer Simulation 1, 1 (May), 61-82.

278

Birtwistle, G., G. Lomow, B. Unger, and P. Luker (1985), "Process Style Packages for
Discrete Event Modeling: Experience from the Transaction, Activity, and Event
Approaches,» Transactions of the Society for Computer Simulation £, 1 (May), 27-
56.

Birtwistle, G.M., O.J. Dahl, B. Myhrhaug, and K. Nygaard (1979), Simula Begin, (2nd
ed.), Van Nostrand Reinhold, New York.

Blunden, G.P. (1968), "Implicit Interaction in Process Models," In Simulatz'on
Programming Languages: Proceedings of the IFIP Working Conference on
Simulation Programming Languages (Oslo,Norway, May, 1967). North-Holland,
Amsterdam, pp. 283-287.

Blunden, G.P. and H.S. Krasnow (1967), "The Process Concept as a Basis for Simulation
Modeling," Simulation 9, 2 (Aug.), 89-93.

Buxton, J.N. (1966), "Writing Simulations in CSL," The Computer Journal 9, 2 (Aug.),
137-143.

Buxton, J.N. and J.G. Laski (1962), "Control and Simulation Language/' The Computer
Journal 5, (Apr. 1962-Jan. 1963), 194-199.

Chen, P.P. (1976), "The Entity-Relationship Model- Toward a Unified View of Data,"
ACM Transactions on Database Systems 1, 1 (Mar.), 9-36.

Chen, P.P. (1983), "A Preliminary Framework for Entity-Relationship Models," In
Entity-Relationship Approach to Information Modeling and Analysis: Proceedings of
the Second International Conference on Entity-Relationship Approach (Washington,
D.C., Oct. 12-14, 1981). North-Holland, Amsterdam, pp. 19-23.

Clementson, A.T. (1966), "Extended Control and Simulation Language," The Computer
Journal 9, 3 (Nov.), 215-220.

Clementson, A.T. (1978), "Extended Control and Simulation Language," In Proceedings
of the 1978 UKSC Conference on Computer Simulation (Chester, England, Apr. 4-
6). IPC Science and Technology Press, Guildford, England, pp. 174-180.

Concepcion, A.I. and B.P. Zeigler (1988), "DEVS Formalism: A Framework for
Hierarchical Model Development," IEEE Transactions on Software Engineering L/.,
2 (Feb.), 228-241.

Cox, B.J. (1986), Object-Oriented Programming: An Evolutionary Approach, Addison­
Wesley, Reading, Mass.

Crookes, J.G. (1982), "Simulation in 1981," European Journal of Operational Research 9,
1, 1-7.

Crookes, J.G., D.W. Balmer, S.T. Chew, and R.J. Paul (1986), "A Three-Phase
Simulation System Written in Pascal," Journal of Operational Research Society 97,
6 (June), 603-618.

CACI, Inc. (1983), SIMSCRIPT 11.5 Reference Handbook, J.E. Braun, Ed. CACI, Inc.­
Federal, Los Angeles, Calif.

279

Date, C.J. (1986), An Introduction to Database Systems (Volume I), Addison-Wesley,
Reading, Mass.

Davies, R. and R. O'Keefe (1987), Simulation Modelling with Pascal, Draft manuscript,
forthcoming.

DeCarvalho, R.S. and J.G. Crookes (1976), "Cellular Simulation," Operational Research
Quarterly £1, 1, 31-40.

Dos Santos, C.S., E.J. Neuhold, and A.L. Furtado (1980), "A Data Type Approach to the
Entity-Relationship Model," In Entity-Relationship Approach to Systems Analysys
and Design: Proceedings of the International Conference on Entity-Relationship
Approach to Systems Analysz's and Design (Los Angeles, Calif., Dec. 10-12, 1979).
North Holland, Amsterdam, pp. 103-119.

Emshoff, J.R. and R.L. Sisson (1970), Design and Use of Computer Simulation Models,
Macmillan Publishing Co., New York.

Fishman, G.S. (1973), Concepts and Methods in Discrete Event DS'gital Simulation, John
Wiley and Sons, New York.

Frankowski, E.L. and W.R. Franta (1980), "A Process Oriented Simulation Model
Specification and Documentation Language," Software -- Practice and Experience
10, 9 (Sept.), 721-742.

Franta, W.R. (1977), The Process View of Simulation, North Holland Publishing,
Amsterdam.

Franta, W.R. (1978), "SIMULA Language Summary," ACM SIGPLAN Notices 19,8
(Aug.), 243-244.

Geoffrion, A.M. (1987a), "An Introduction to Structured Modeling," Working Paper
Number 338, Western Management Science Institute, University of California, Los
Angeles, Calif., Feb.

Geoffrion, A.M. (1987b), "Modeling Approaches and Systems Related to Structured
Modeling," Working Paper Number 339, Western Management Science Institute,
University of California, Los Angeles, Calif., Feb.

Geoffrion, A.M. (1987c), "The Theory of Structured Modeling," Working Paper Number
346, Western Management Science Institute, University of California, Los Angeles,
Calif., May.

Geoffrion, A.M. (1988), "SML: A Language for Structured Modeling," Draft Working
Paper, Western Management Science Institute, University of California, Los
Angeles, Calif., Jan.

Golden, D.G. (1986), "Software Engineering Considerations for the Design of Simulation
Languages," Simulation 45, 4 (Oct.), 169-178.

Gordon, G. (1975), The Application of GPSS V to Discrete System Simulation, Prentice­
Hall, Englewood Cliffs, N. J.

280

Gordon, G. (1979), "The Design of the GPSS Language," In Current Issues in Computer
Simulation, N.R. Adam and A. Dogramaci, Eds., Academic Press, New York, pp.
15-25.

Hartson, H. Rex (1987), "Introduction to Relational Database Management Systems,"
Course notes for CS5361 (Winter 1988), Department of Computer Science, Virginia
Tech, Blacksburg, Va., Nov.

Henriksen, J.O. and R.C. Crain (1983), General Purpose Simulation System/H (GPSS/H)
User's Manual, (2nd ed.), Wolverine Software Corporation, Annandale, Va., Feb.

Hillson, R. (1987), "Processing Graph Architectures," In Proceedings of the 1987 Summer
Computer Simulation Conference (Montreal, Quebec, July 27-30). The Society for
Computer Simulation, San Diego, Calif.

Hooper, J. W. (1986a), "Activity Scanning and the Three-Phase Approach," Simulation
-17, 5 (Nov.), 210-211.

Hooper, J.W. (1986b), "Strategy-related Characteristics of Discrete-event Languages and
Models," Simulation -16, 4 (Apr.), 153-159.

Hooper, J.W. and K.D. Reilly (1982), "An Algorithmic Analysis of Simulation Strategies,"
International Journal of Computer and Information Sciences 11, 2, 101-122.

Hutchinson, G.K. (1975), "Introduction to the Use of Activity Cycles as a Basis for
System's Decomposition and Simulation," ACM SIGSIM Simu/etter 7, 1 (Oct.), 15-
20.

Kafura, D. (1987), "Object-Oriented Programming," Class Notes, CS5980 (Spring, 1987),
Department of Computer Science, Virginia Tech, Blacksburg, Va.

Kaplan, D.J. (1987), "The Process Graph Method, An Iconic Method of Controlling
Networks of Processors," In Proceedings of the 1987 Summer Computer Simulation
Conference (Montreal, Quebec, July 27-30). The Society for Computer Simulation,
San Diego, Calif.

Karp, R.M. and R.E. Miller (1966), "Properties of a Model for Parallel Computations:
Determinacy, Termination, Queueing," SIAM Journal on Applied Mathematics 14,
6(Nov.), 1390-1411.

Kelley, D.H. and J.N. Buxton (1962), "Montecode - An Interpretive Program for Monte
Carlo Simulations," The Computer Journal 5, (Apr. 1962-Jan. 1963), 88-93.

Kiviat, P.J. (1967), "Digital Computer Simulation: Modeling Concepts," Memorandum
RM-5378-PR, The Rand Corporation, Santa Monica, Calif., Aug.

Kiviat, P.J. (1969), "Digital Computer Simulation: Computer Programming Languages,"
Memorandum RM-5883-PR, The Rand Corporation, Santa Monica, Calif., Jan.

Kiviat, P .J., H. Markowitz, and R. Villanueva (1983), SIMSCRIPT II. 5 ProgrammJ'ng
Language (Revised), E. C. Russell, Ed. CACI, Inc.-Federal, Los Angeles, Calif.

281

Kreutzer, W. (1986), System S£mulation: Programming Styles and Languages, Addison­
Wesley, Reading, Mass.

Lackner, M.R. (1962), "Toward a General Simulation Capability," In Proceedings of the
AFIPS 19612 Spring Joint Computer Conference 121 (San Francisco, Calif., May 1-3).
National Press, Palo Alto, Calif., pp. 1-14.

Lackner, M.R. (1965), "A Process Oriented Scheme for Digital Simulation Modeling," In
Proceedings of the 1965 IFIP Conference 12, (New York City, May 24-29). Spartan
Books, Washington, D.C., pp.413-414.

Laski, J.G. (1965), "On Time Structure in (Monte Carlo) Simulations," Operational
Research Quarterly 16, 3(Sept.), 329-339.

Lavender, G. (1987), "Different Inheritance Mechanisms," Presentation for CS5980,
Department of Computer Science, Virginia Tech, Blacksburg, Va., May.

Malhotra, A., H.M. Markowitz, and D.P. Pazel (1982), "The EAS-E Programming
Language," Research Report RC 8935 (39133), Computer Science, IBM Thomas J.
Watson Research Center, Yorktown Heights, N.Y., Aug.

Markowitz, H.M., A. Malhotra, and D.P. Pazel (1983), "The ER and EAS Formalisms for
System Modeling and the EAS-E Language," In Entity-Relationsha'p Approach to
Information Modeling and Analysis: Proceedings of the Second International
Conference on Entity-Relationship Approach (Washington, D.C., Oct. 12-14, 1981).
North-Holland, Amsterdam, pp. 29-48.

Markowitz, H.M., A. Malhotra, and D.P. Pazel (1984), "The EAS-E Application
Development System: Principles and Language Summary," Communications of the
ACM 127,8 (Aug.), 785-799.

Mathewson, S.C. (1974), "Simulation Program Generators," Simulation 128, 6 (Dec.), 181-
189.

McCormack, W.M. and R.C. Sargent (1981), "Analysis of Future Event Set Algorithms
for Discrete Event Simulation," Communications of the ACM 124, 12 (Dec.), 801-812.

McFarland, G. (1986), "The Benefits of Bottom-up Design," ACM SIGSOFT Software
Engineering Notes 11, 5 (Oct.), 43-51.

Meyer, B. (1987), "Reusability: The Case for Object-Oriented Design," IEEE Software,
(Mar.), 50-64.

Nance, R.E. (1971), "On Time Flow Mechanisms for Discrete System Simulation,"
Management Science 18, 1 (Sept.), 59-73.

Nance, R.E. (1977), "The Feasibility of and Methodology for Developing Federal
Documentation Standards for Simulation Models," Final Report prepared for
National Bureau of Standards, Department of Computer Science, Virginia Tech,
Blacksburg, Va., Dec.

Nance, R.E. (1979), "Model Representation in Discrete Event Simulation: Prospects for
Developing Documentation Standards," In Current Issues in Computer Simulation,
N.R. Adam and A. Dogramaci, Eds., Academic Press, New York, pp. 83-96.

282

Nance, R.E. (1981a), "Model Representation in Discrete Event Simulation: The Conical
Methodology," Technical Report CS81003-R, Department of Computer Science,
Virginia Tech, Blacksburg, Va., Mar.

Nance, R.E. (1981b), "The Time and State Relationships in Simulation Modeling,"
Communications of the ACM 24,4 (Apr.), 173-179.

Nance, R.E. (1986), "The Conical Methodology: A Framework for Simulation Model
Development," In Proceedings of the Conference on Methodology and Validation
(1987 Eastern Simulation Conference, Orlando, Fla., April 6-9). The Society for
Computer Simulation, San Diego, Calif., pp. 38-43.

Nance, R.E. (1987), Personal Communication, Department of Computer Science, Virginia
Tech, Blacksburg, Va., Sept.

Nance, R.E. (1988), Personal Communication, Department of Computer Science, Virginia
Tech, Blacksburg, Va., May.

Nance, R.E. and C.M. Overstreet (1986), "Diagnostic Assistance Using Digraph
Representations of Discrete Event Simulation Model Specifications," Technical
Report SRC-86-001, Department of Computer Science, Virginia Tech, Blacksburg,
Va., Mar.

Nance, R.E., A.L. Mezaache, and C.M. Overstreet (1981), "Simulation Model
Management: Resolving the Technological Gaps," In Proceedings of the 1981 Winter
Simulation Conference (Atlanta, Ga., Dec. 9-11). IEEE, Piscataway, N.J., pp. 173-
179.

Nance, R.E., O. Balci, and R.L. Moose, Jr. (1984), "Evaluation of the UNIX Host for a
Model Development Environment," In Proceedings of the 1984 Winter Simlation
Conference (Dallas, Tex., Nov. 28-30). IEEE, Piscataway, N.J., pp. 577-584.

Neelamkavil, F. (1987), Computer Simulation and Modelling, John Wiley and Sons, New
York.

Nygaard, K. and O. Dahl (1978), "The Development of the SIMULA Languages," ACM
SIGPLAN Notices 19, 8 (Aug.), 245-272.

O'Keefe, R. and R. Davies (1986), "A Microcomputer System for Simulation Modelling,"
European Journal of Operational Research 24, 1,23-29.

O'Keefe, R.M. (1986a), "Simulation and Expert Systems - A Taxonomy and Some
Examples," Simulation 46, I(Jan.), 10-16.

O'Keefe, R.M. (1986b), "The Three-Phase Approach: A Comment on Models',"
Simulation 47, 5 (Nov.), 208-210.

Oldfather, P.M., A.S. Ginsberg, and H.M. Markowitz (1966), "Programming by
Questionnaire: How to Construct a Program Generator," Memorandum RM-5129-
PR, The Rand Corporation, Santa Monica, Calif., Nov.

Oren, T.!. and B.P. Zeigler (1979), "Concepts for Advanced Simulation Studies,"
Simulation 92, 3 (Mar.), 69-82.

283

Overstreet, C.M. (1982), "Model Specification and Analysis for Discrete Event
Simulation," PhD Dissertation, Department of Computer Science, Virginia Tech,
Blacksburg, Va., Dec.

Overstreet, C.M. and R.E. Nance (1985), "A Specification Language to Assist in Analysis
of Discrete Event Simulation Models," Communications of the ACM £8, 2 (Feb.),
190-201.

Overstreet, C.M. and R.E. Nance (1986), "World View Based Discrete Event Model
Simplification," In Modelling and Sa'mulation Methodology in the Artificial
Intelligence Era, M.S. Elzas, T.I. Oren, and B.P. Zeigler, Eds. North Holland,
Amsterdam, pp. 165-179.

Overstreet, C.M., R.E. Nance, O. Balci, and L.F. Barger (1986) "Specification Languages:
Understanding Their Role in Simulation Model Development," Technical Report
SRC-87-001, Department of Computer Science, Virginia Tech, Blacksburg, Va.,
Dec.

Palme, J. (1976), "The Class Concept in the Simula Programming Language," FOA
Report C l0052-M3(E5), National Defense Research Institute, Stockholm, Sweden,
Aug,

Patrick, D.J. (1987), "The Applicability of Structured Modeling to Discrete Event
Simulation Systems," Master's Thesis, Naval Postgraduate School, Monterey,
Calif.,(Mar.).

Peterson, J.L. (1977), "Petri Nets," Oomputing Surveys 9,3 (Sept.), 223-252,

Pidd, M. (1984), Oomputer Simulation in Management Science, John Wiley and Sons, New
York.

Roberts, N., D.F. Andersen, R.M. Deal, M.S. Garet, and W.A. Shaffer (1983),
Introduction to Computer Simulation: A Systems Dynamics Modeling Approach,
Addison-Wesley, Reading, Mass.

Saydam, T. (1985), "Process--Oriented Simulation Languages," Simuletter 16,2 (Apr.), 8-
13.

Schriber, T.J. (1974), Simulation Using GPSS, John Wiley and Sons, New York.

Schruben, L. (1983), "Simulation Modeling with Event Graphs," Communications of the
AOM £6, 11 (Nov.), 957-963.

Shannon, R.E. (1975), Systems Simulation, The Art and Science, Prentice-Hall,
Englewood Cliffs, N.J.

Shub, C.M. (1978), "On the Relative Merits of Two Major Methodologies for Simulation
Model Construction," In Proceedings of the 1978 Winter Simulation Oonference
(Miami Beach, Fla., Dec. 4-6). IEEE, Pisacataway, N.J., pp. 257-264.

Shub, C. M. (1980), "Discrete Event Simulation Languages," In Proceedings of the 1980
Winter Ss'mulation Oonference £ (Orlando, Fla., Dec. 3-5). IEEE, Piscataway, N.J.,
pp. 107-124.

284

Stevens, R.S. (1987), "A Tutorial on the Processing Graph Method," In Proceedings of the
1987 Summer Computer Simulation Conference (Montreal, Quebec, July 27-30).
The Society for Computer Simulation, San Diego, Calif.

Teichroew, D. and J.F. Lubin (1966), «Computer Simulation- Discussion of the Technique
and Comparison of Languages," Communications of the ACM 9, 10 (Oct.), 723-741.

Teichroew, D., F. Germano, and L. Silva (1983), "Applications of the Entity-Relationship
Approach," In Entity-Relationship Approach to Information Modeling and Analysis:
Proceedings of the Second International Conference on Entity-Relationship
Approach (Washington, D.C., Oct. 12-14, 1981). North-Holland, Amsterdam, pp. 1-
17.

Teichroew, D., P. Macasovic, E.A. Hershey III, and Y. Yamamoto (1980), "Application of
the Entity-Relationship Approach to Information Processing Systems Modeling," In
Entity-Relationship Approach to Systems Analysis and Design: Proceedings of the
International Conference on Entity-Retlationship Approach to Systems Analysis and
Design (Los Angeles, Calif., Dec. 10-12, 1979). North Holland, Amsterdam, pp. 15-
38.

Tocher, K.D. (1963), The Art of Simulation, English Universities Press, London.

Tocher, K.D. (1965), "Review of Simulation Languages," Operational Research Quarterly
16,2 (June), 189-217.

Tocher, K.D. (1966), "Some Techniques of Model Building," In Proceedings of the IBM
Scientific Computing Symposium on Simulation Models and Gaming (Thomas J.
Watson Research Center, N.Y., Dec. 7-9, 1964). IBM Data Processing Division,
White Plains, N.Y., pp. 119-155.

Tocher, K.D. (1979), "Keynote Address," In Proceedings of the 1979 Winter Simulation
Conference (San Diego, Calif., Dec. 3-5). IEEE, Piscataway, N.J., pp. 640-654.

Tocher, K.D. and D.G. Owen (1961), "The Automatic Programming of Simulations," In
Proceedings of the Second International Conference on Operational Research
(University of Aix-Marseille, Aix-en-Province, France, Sept. 5-9, 1960). John Wiley
and Sons, New York, pp. 50-68.

Torn, A. A. (1981), "Simulation Graphs: A General Tool for Modeling Simulation
Designs," Simulation 97, 6 (Dec.), 187-194.

Unger, Brian W. (1986), "Object Oriented Simulation - Ada, C++, Simula," In
Proceedings of the 1986 Winter Simulation Conference (Washington, D.C., Dec. 8-
10). IEEE, Piscataway, N.J., pp. 123-124.

Wasserman, K. (1984), "Understanding Hierarchically Structured Objects," Technical
Report CUCS-124-85, Department of Computer Science, Columbia University, New
York, N.Y., May.

Weitzman, E. (1986), "ECOS Tutorial (Draft)," Analytic Disciplines, Inc., Washington,
D.C., May.

285

Zeigler, B.P. (1976), Theory of Modelling and Simu.lation, John Wiley and Sons, New
York.

Zeigler, B.P. (1984a), "System-Theoretic Representation of Sim ulation Models," lIE
Transactions 16, 1 (Mar.), 19-34.

Zeigler, B.P. (1984b), Multifacetted Modelling and Discrete Event Simu.lation, Academic
Press, New York.

Zeigler, B.P. (1987), "Hierarchical, Modular Discrete-Event Modelling in an Object­
Oriented Environment," Simulation 49, 5 (Nov.), 219-229.

Name: Emory Joseph Derrick

Address: 2719 Newton Court
Blacksburg, Va. 24060

Phone: 703-953-2000

Birthdate: 17 January 1952

Marital Status: Married, three children

Education: M. S.- (candidate)

286

VITA

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

B.S. -

1988

Electrical Engineering
United States Naval Academy
Annapolis, Mary land
1974

From 1974 to 1980, Mr. Derrick served as an officer in the Submarine Service of the

United States Navy. During the period 1981 to 1985, Mr. Derrick was employed by the

U.S. Navy as a civilian General Engineer with the Naval Sea Systems Command. He is

currently a Commander (Select) in the United States Naval Reserve. Mr. Derrick has

been employed as a teaching and research assistant by the Computer Science Department

and the Systems Research Center of Virginia Tech since 1985. Mr. Derrick is a student

member of the Association for Computing Machinery and The Society for Computer

Simulation.

