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(ABSTRACT) 

This thesis examines those aspects of simulation with digital computers which con-

cern the use of conceptual frameworks (CFs) for the design and implementation of a 

model. A literature review of CFs which are in common use is conducted. These CFs are 

applied to a complex modeling problem, a traffic intersection system. A comparative 

review of the CFs is given based upon the lessons learned from the above applications, 

and a taxonomy is developed. 

The research clarifies the differences that exist among the myriad of CFs in use 

today. In particular, the comparative review highlights the significant CF features that 

are necessary for successful model representation of discrete-event systems. The taxon-

omy provides a useful and meaningful classification of CFs and produces insights in to the 

conceptual relationships that exist among them. The characteristics of CFs that are 

desired to enable the development of model specifications that are analyzable, domain 

independent, and fully translatable are identified. The roles of CFs are better understood 

and specific potential directions for future research are pinpointed. 



ACKNO~EDGEMENTS 

First, I deeply thank my wife, Ruth, for her unselfish support of this work. My 

three children have also contributed significantly with the sacrifice of time with their 

father. 

lowe special thanks to Dr. Osman Balci for his enthusiasm and technical guidance. 

Also, Dr. Richard Nance has provided encouragement and his time to discuss the content 

and ideas that are presented. With much appreciation, I thank Dr. Robert Moose who 

devoted a great deal of time and energy to help me understand the fine art of using job 

control and text formatting languages. 

Last, I gratefully acknowledge the support of this research by the United States 

Navy through the Systems Research Center of Virginia Tech. 

111 



Table or Contents 

Abstract ................................................................................................................... II 

Acknowledgements .................................................................... :.............................. III 

List of Figures ........ ....... ........................................ ................................... ................ VIII 

List of Tables ........................................................................................................... Xl 

List of Acronyms ...................................................................................................... XII 

Chapter 1: Introduction ............. ......................... ...................... ....................... ... 1 

1.1 The SMDE and the Importance of CF Research ................................. 2 

1.2 Description of Research ...................................................................... 4 

Chapter 2: Literature Review ............................................................................. 8 

2.1 Time and State Definitions ......................................... .............. .......... 6 

2.2 Time Flow Mechanisms ... ................ ...................... ... ......... ....... ....... ... 8 

2.3 Event Scheduling (ES) ... ......................... ..... .... .... ................... ............ 9 

2.3.1 Selection of Next Event ............................................................ 11 

2.3.2 Typical Components of Event Routines .... ............... ..... ............ 11 

2.4 Activity Scanning (AS) ................ ............. .............. ......... ..... ......... ..... 14 

2.4.1 The Time Scan ......................................................................... 18 

2.4.2 The Activity Scan ........................ ........ .......... .......... ................ 20 

2.5 The Three-Phase Approach (TP A) . ...... ...... ........................................ 21 

2.5.1 Variants of AS-based Executives .............................................. 23 

2.5.2 The Cellular Approach ..................... ..... ........ ............... ....... ..... 25 

2.6 Process Interaction (PI) ...................................................................... 26 

2.6.1 The Clock Update Phase .... ........ ....... ........ ............ ........ ........... 27 

2.6.2 The Scan Phase ........................................................................ 29 

2.7 Transaction Flow (TF) ....................................................................... 29 

2.8 The Object-Oriented Paradigm (OOP) ........................................ ....... 31 

2.8.1 Encapsulation... ..................... ..... .......... ....... ........... ......... ......... 32 

2.8.2 Inheritance ..... .............. ...... ....... ........ ........ .......... ......... ........ .... 33 

2.8.3 Binding ...... ....... ............... ....... ....... ....... .......... .......... ...... ......... 34 

2.8.4 Activation and Passivation ....................................................... 35 

2.9 The Process Graph Method (PGM) .... ................ ............ ...... .............. 35 

2.9.1 Primitive Functions ................................................................. 37 

2.9.2 Node Execution Parameters ...................... ............ ......... .......... 37 

2.9.3 Auxiliary Data Storage Entities ................................................ 37 

IV 



2.10 The Entity-Relationship Model (ER) and ER Approach (ERA) ......... 38 

2.10.1 ER Model Development at Level One ..................................... 39 

2.10.2 ER Model Development at Level Two ........... ....... ....... ............ 41 

2.10.3 Using the ER Model............. ......... ...... .......... ....... ........... ........ 42 

2.10.4 ER Model Classifications ........................................................ 42 

2.11 The Entity-Attribute-Set (EAS) Approach ........................................ 43 

2.12 The Conical Methodology (CM) ........................................................ 45 

2.12.1 Top-Down Model Definition .................................................... 46 

2.12.2 Bottom-Up Specification ......................................................... 46 

2.13 Structured Modeling (SM) ................................................................ 48 

2.13.1 Elemental Structure ............................................................... 49 

2.13.2 Generic Structure .... .......... ...... ....... ................. ..... ....... ........ ... 50 

2.13.3 Modular Structure .................................................................. 50 

2.14 Condition Specification (CS) ............................................................. 51 

2.14.1 The Interface Specification ...................................................... 52 

2.14.2 The Specification of Model Dynamics ...................................... 53 

2.14.3 The Report Specification ......................................................... 54 

2.15 System Theoretic Approach (STA) ................................................... 54 

2.15.1 Preliminary Concepts for Formal Model Specification ............ 55 

2.15.2 The Discrete Event System Specification (DEVS) .................... 57 

Chapter 3: Applying the Conceptual Frameworks for Modeling a 
Traffic Intersection .............................................................................................. 59 

3.1 Modeling the TI by Using the CM ...................................................... 61 

3.2 The ES CF Application ....... ...................... ............ ..... ......... ......... ...... 77 

3.2.1 The Pream hIe ........................................................................... 77 

3.2.2 The Event Routines ................................ .................................. 79 

3.2.3 The Simulation Executive or Main .... ............ .................. ......... 82 

3.2.4 The Statistical Output . ......... ..... ......... ......... ....... .......... ........... 89 

3.3 The AS CF Application ...................................................................... 89 

3.3.1 Activity Cycle Diagrams ........... ................ ........... ....... ............. 92 

3.3.2 Identification of Model Components for the AS CF ................... 95 

3.3.3 Listing of Possible Activities ..... ......... ........... ....... ........ ............. 95 

3.3.4 Specific Activity Cycle Diagrams .............. ...... ....... ..... .............. 97 

3.3.5 Activity Descriptions ........ ....... ........ ........ .......... ...... .... ........ ..... 102 

3.3.5.1 Activity Descriptions associated with the Light .............. 102 

3.3.5.2 Activity Description of the Arrival Machine .. ........... ...... 103 

3.3.5.3 Special Activity Descriptions ............... ......... ........... ....... 104 

v 



3.3.5.4 Activity Descriptions associated with Blocks .. ......... ....... 105 

3.3.6 Priority of Activities .... ...... ............... ............................... ........ 108 

3.4 The TP A CF Application ....... ...... .................................. .......... .......... 108 

3.4.1 Activity Designations ............................................................... 110 

3.4.2 Listing of B-Activities ......................... ............... .............. ........ 110 

3.4.3 Listing of C-Activities .............................................................. 111 

3.5 The PI CF Application ....................................................................... 111 

3.5.1 Key SIMULA Primitives ........................................................... 112 

3.5.2 Processes of the SIMULA TI Model.......................................... 114 

3.5.3 The SIMULA Executive ........ ....... ....... ...................... ......... ....... 121 

3.5.4 The Statistical Output Routine ................. ......... ...................... 123 

3.6 The TF CF Application ............................ ......................................... 123 

3.6.1 Introduction to the GPSSjH Model.......................................... 123 

3.6.2 The LIGHT and LANE Submodels ...... ...... ................... ............ 129 

3.6.3 The EXPERIMENTAL CONTROL Submodel ......................... 132 

3.6.4 The CI CONSTRUCTION Submodel ....................................... 134 

3.7 The OOP Application ........................................................................ 134 

3.7.1 Encapsulation........................................................................... 134 

3.7.2 Inheritance ............................................................................... 141 

3.7.3 Activation and Passivation ....................................................... 141 

3.8 The PGM Application ........................................................................ 144 

3.8.1 A Possible Approach to using PGM .......................................... 144 

3.8.2 Lessons Learned ....................................................................... 150 

3.9 The ERA Application ......................................................................... 159 

3.9.1 The Entity-Relationship Diagramming Technique .................... 159 

3.9.2 An Entity-Relationship Diagram of the TI ............................... 160 

3.10 The EAS CF Application .................................................................. 166 

3.10.1 Entities and Their Attributes ................................................. 168 

3.10.2 Set Ownership and Membership ............... ........... ............... ..... 170 

3.11 The SM Application ......................................................................... 171 

3.11.1 Description of SML ................................................................. 171 

3.11.1.1 The Text-Oriented Notation ......................................... 172 

3.11.1.2 The Table-Oriented Notation ....................................... 174 

3.11.2 The Genus Graph ................................................................... 174 

3.11.3 SM Modular Outline and Elemental Detail Tables .................. 178 

3.12 The CS Application ............... ........ ................ ........... ....... .......... ....... 185 

3.12.1 Syntax Extensions for Object Specification ............................. 191 

VI 



3.12.2 Semantic Extensions for Object Specification .......................... 193 

3.12.3 Interface and Object Specifications ......................................... 194 

3.12.4 The Transition Specification ................................................... 197 

3.12.5 The Function and Report Specifications.. .......... ....... ........ ....... 207 

3.13 The STA Application ....................................................................... 207 

3.13.1 The Informal Description ........................................................ 210 

3.13.2 Beyond Informality in Time and State .................................... 216 

3.13.3 The Formal Specification ....... ......... ..... ........ ............ ..... .......... 218 

3.13.4 Summary of the STA Application ........................................... 219 

Chapter 4: A Comparative Review ... ....................... ...... ................. ................... 231 

4.1 Implementation Comparisons ............................................................. 232 

4.1.1 Aspects Concerning Sequencing Mode ....................................... 233 

4.1.2 Aspects Concerning Sequencing Method ................................... 239 

4.1.3 Extending the Comparisons ...................................................... 242 

4.1.4 Summarizing Implementation Guidance ................................... 246 

4.2 Design Comparisons . ...... ....... ................ .................................. ........... 249 

4.2.1 Object and Attribute Identification .. ........... ................. ....... ..... 250 

4.2.2 Dynamic Interactions ....... ..... ........ .......... ........ ......... ........ ........ 252 

4.2.3 Hierarchical Decomposition and Relationships ...................... .... 254 

4.2.4 Explicit Input/Output Specification .... ........................ ....... ....... 260 

4.2.5 Summarizing Comparisons Based on Design Guidance .............. 261 

Chapter 5: A Taxonomy of CFs ......................................................................... 263 

5.1 Taxonomy Base Categories ................................................................ 263 

5.2 Support Level Categories ................................................................... 265 

5.3 Range Capabilities and Resulting Categories ...................................... 269 

5,4 Summary of Taxonomy Categories ..................................................... 270 

Chapter 6: Conclusions and Summary ............................................................. 272 

6.1 Characteristics of a Next-Generation CF ............................................ 272 

6 .. 2 The Role of CFs ................................................................................. 274 

6.3 Areas of Future Research ................................................................... 275 

6.4 Summary.... ............... ...... ..................... ..... ........ ............ ....... ............. 276 

Bibliography ......................................................................................................... 277 

Vita ......................................................................................................................... 286 

vii 



Figure 1.1 

Figure 2.1 

Figure 2.2 
Figure 2.3 

Figure 2.4 

Figure 2.5 

Figure 3.1 

Figure 3.2 

Figure 3.3 

Figure 3.4 

Figure 3.5 

Figure 3.6 

Figure 3.7 

Figure 3.8 

Figure 3.9 

Figure 3.10 

Figure 3.11 

Figure 3.12 

Figure 3.13 

Figure 3.14 

Figure 3.15 

Figure 3.16 

Figure 3.17 

Figure 3.18 

List of Figures 

The Architecture of the S1vIDE Research Prototype ... ................ ....... 3 

The Event Scheduling Conceptual Framework .................................. 10 

A Typical Events List ..... .............. ......... ....... ......... ......... ........... ....... 13 

The Activity Scanning Conceptual Framework . ............ .............. ...... 17 

The Three-Phase Approach Conceptual Framework.... ..... ....... .......... 24 

The Process-Interaction Conceptual Framework ............................... 28 

The Traffic Intersection (TI) System ................................................. 60 

Portions of SIMSCRIPT Pream ble from ES CF Application ............. 78 

Event TURN.NS.GREEN ................................................................. 81 

User-defined Routine TEST.ENTRY.678 ....................................... .... 83 

Event ARRIV AL.LANEI ................. ................ .......................... ....... 84 

Portions of Event DEPARTURE ............ ............................. ............. 85 

Portions of Event ENTER ........... ............................................. ........ 86 

Event ARRIVAL.BLOCKD ............................................................... 87 

Portions of SIMSCRIPT Main Routine ............................................. 88 

User-defined Routine STATISTICS ..... ... .... ....................... ......... ....... 90 

Output of Three Replications from SIMSCRIPT Model................. .... 91 

The Light Activity Cycle Diagram .................................................... 98 

Sample of Block Activity Cycle Diagrams ........ .................. ............... 99 

Lane 1 Car Activity Cycle Diagram .................................................. 100 

Coordinated Activity Cycle Diagram (Lane 1 Car Path) ................... 101 

The LIGHTCTRL Object Process ............ ......... .................... ............ 115 

NSDRIVER Process . ...... ....... ............... ........ ............ ......... ........... ..... 116 

NSDRIVER Process (Continued) ....................................................... 117 

Figure 3.19 Generic Car Process .......................................................................... 119 

Figure 3.20 The CAR8 Process .................................... ....... ........... ................. ..... 120 

Figure 3.21 The SIMULA Executive or Main Routine .. ............... ........... .............. 122 

Figure 3.22 The STATISTICS Routine ................................................................ 124 

Figure 3.23 Output of Three Replications of SIMULA Model................ ........ ....... 125 

Figure 3.24 GPSS/H Model Description, Declarations, and Initiation ................... 126 

Figure 3.25 Performance Measure Variables and Seed Initializations ....... .... ........ 128 

Figure 3.26 LIGHT Submodel ......................................................... ..................... 130 

Figure 3.27 LANES Submodel ............................. ................... ....................... ...... 131 

Figure 3.28 EXPERIMENTAL CONTROL Submodel ......................................... 133 

Vlll 



Figure 3.29 

Figure 3.30 

Figure 3.31 

Figure 3.32 

Figure 3.33 

Figure 3.34 

Figure 3.35 

Figure 3.36 

Figure 3.37 

Figure 3.38 

Figure 3.39 

Figure 3.40 

Figure 3.41 

Figure 3.42 
Figure 3.43 

Figure 3.44 

Figure 3.45 

Figure 3.46 

Figure 3.47 

Figure 3.48 

Figure 3.49 

Figure 3.50 

Figure 3.51 

Figure 3.52 

Figure 3.53 

Figure 3.54 

Figure 3.55 

Figure 3.56 

Figure 3.57 

Figure 3.58 

Figure 3.59 

Figure 3.60 

Figure 3.61 

Figure 3.62 

Figure 3.63 

Figure 3.64 

Figure 3.65 

CONFIDENCE INTERVAL CONSTRUCTION Submodel ............... 135 

Output of Thirty Replications of the GPSS/H Model.... .................... 136 

Class DIRECTION. ......................... ..... ....... ......... .................. ...... ..... 138 

Class LIGHT ..................................................................................... 139 

Class LIGHTCTRL ........................................................................ ... 140 

Class BLOCK ................................................................................... 142 

Class BLOCKA ................................................................................. 143 

Initial Vehicle Flow ........................................................................... 146 

Improved Vehicle Flow ...................................................................... 147 

Executive Control Flow .................................................................... 149 

Description of TIME-SCAN Node ...................................... ............... 151 

Description of NS_GREEN (BA Node) .............................................. 152 

Description of ARR-LANE3 (BA Node) ............................................ 153 

Description of END_TRANSIT...BLOCKY (BA Node) ....................... 154 

Description of BEGIN_TRANSIT-BLOCKY (C Node) ...................... 155 

Description of BEGIN_TRANSIT-BLOCKY (CA Node) ................... 156 

Generic Mappings in an Entity-Relationship Diagram ....................... 161 

A Typical Entity-Relationship Diagram ............................................ 162 

Entity-Relationship Diagram of the TI .............................................. 163 

The SIMSCRIPT Preamble with EAS CF Features ........................... 169 

The TI Genus Graph ......................................................................... 177 

Overview of the Modular Structure (to First Sibling Level) ............... 179 

Modular Structure of &OBJECTS .... .................. .............................. 180 

Modular Structure of &VEILDAT ... ............................ ..... .... ............ 181 

Modular Structure of &LANE-DAT ................................................. 182 

Modular Structure of &TRANS-AREA-DAT ................................... 183 

Modular Structure of &STAT-DAT .................................................. 184 

Use of Enumerated Types ................................................................. 192 

Traffic Intersection Interface Specification ......................................... 195 

Traffic Intersection Object Specifications ........................................... 196 

Transition Specification (Initialization and Termination) .................. 198 

Transition Specification (Light Changes) ........................................... 200 

Transition Specification (End Block Transits) ................................... 201 

Transition Specification (Lane Arrivals and Departure) ..................... 202 

Transition Specification (Begin Block Transits) ................................. 204 

Transition Specification (Begin Block Transits Continued) . ............... 205 

Transition Specification (Split and Turning) ...................................... 206 

lX 



Figure 3.66 

Figure 3.67 

Figure 3.68 

Figure 3.69 

Figure 3.70 

Figure 3.71 

Figure 3.72 

Figure 3.73 

Figure 3.74 

Figure 3.75 

Figure 3.76 

Figure 3.77 

Figure 3.78 

Figure 3.79 

Figure 3.S0 

Figure 3.S1 

Figure 3.82 

Figure 3.83 

Figure 4.1 

Figure 4.2 

Figure 4.3 

Figure 4.4 

Figure 4.5 

Figure 4.6 

Figure 4.7 

Figure 5.1 

Figure 5.2 

Function Specifications ...................................................................... 20S 

Report Specification .......................................................................... 209 

Informal Description (Components) ................................................... 211 

Informal Description (Descriptive Variables, Active) ......................... 212 

Informal Description (Descriptive Variables, Passive) ........... ............. 213 

Parameters (Model Constants and Functions) ................................... 214 

Functions and String Operations ....................................................... 215 

Informal Description of Component Interactions ............................... 217 

Local Transition for LIGHTz ............................................................ 220 

Local Transition for ARRMACHlNE, ............................................... 222 

Local Transition for BLOCK'k (specifically BLOCK '1) ... .......... ......... 223 

Local Transition for BLOCK· y .......................................................... 224 

Local Transition for BLOCK·g .......................................................... 225 

Local Transition for BLOCK·,. ....... ............... ............................ ........ 226 

Local Transition for BLOCK·o ......... ..... ..................... ...................... 227 

Local Transition for TURNERn .................................................. ...... 228 

Local Transition for SPLITTER ....................................................... 229 

Local Transition for EXIT and TERM .............................................. 230 

A Portion of Event TURN.NS.GREEN (ES CF) ............................... 235 

A Portion of Event ARRIVAL.BLOCKD (ES CF) ............................. 236 

Excerpts from the CARS Process (PI CF) .... ............................ ......... 244 

Excerpts from the LANES Submodel (TF CF) .................................. 245 

Portion of SIMSCRIPT Preamble with EAS CF Features ................. 256 

Portion of STA CF Informal Description ........... ............................... 258 

Excerpts from the OS Application ..................................................... 259 

The Taxonomy Tree ................................................................... ,..... 266 

Low-level versus High-level Guidance ................................................ 26S 

x 



Table 3.1 

Table 3.2 

Table 3.3 

Table 3.4 

Table 3.5 

Table 3.6 

Table 3.7 

Table 3.8 

Table 3.9 

Table 3.10 

Table 4.1 

Table 4.2 

Table 4.3 

Table 5.1 

Table 5.2 

List of Tables 

PGM Variable Attribute Table ........... ..................... ......................... 157 

PGM Queue Attribute Table ................... ........ ....................... ........... 158 

ERA Entity Sets and Relationship Sets .................................. .... ....... 165 

Example Relations from the TI ......................................................... 167 

Preliminary Elemental Details of Base Objects ..... ............ ..... ........... 186 

Elemental Details of Vehicle and Lane Data ...................................... 187 

Elemental Details of Transit Area Data ............................................ 188 

Elemental Details of Statistical Data ...... ..... ............ .............. ............ 189 

Remaining Elemental Details ............................................................ 190 

State Transitions for LIGHTs ........................................................... 221 

Eminent Features of CFs Based on Implementation Guidance ...... ..... 247 

Characteristics of Com plex Models ................................................... 248 

Com parisons Based on Design Guidance ............................................ 262 

Classifications of the CFs Under Review...... ........................... .......... 264 

Definitions of Categories of the CF Taxonomy.................................. 271 

Xl 



ACD 

ACOS 

AS 

ASP 

BERM 

CAP 

CF 

CM 

COL 

CS 

CSL 

DEVS 

EAS 

ECOS 

ECSL 

EMSP 

ER 

ERA 
ES 

FIFO 

FOL 

GASP 

GC 

GERM 

GIP 

GPSS 

GSP 

GV 

HOCUS 

IC 

MG 

MMS 

List of Acronyms 

Activity Cycle Diagram 

ASP Common Operational Software Support 

Activity Scanning 

Advanced Signal Processor 

Binary Entity-Relationship Model 

Condition Action Pair 

Conceptual Framework 

Conical Methodology 

Current Objects List 

Condition Specification 

Control and Simulation Language 

Discrete EVent System Specification 

Entity-Attribute-Set 

EMSP Common Operational Software Support 

Extended Control and Simulation Language 

Enhanced Modular Signal Processor 

En ti ty-Relationshi p 

Entity-Relationship Approach 

Event Scheduling 

First-In, First-Out 

Future Objects List 

General Activity Simulation Program 

Graph Control 

Generalized Entity-Relationship Model 

Graph Instantiation Parameter 

General Purpose Simulation System 

General Sim ulation Program 

Graph Variable 

Hand Or Computer Universal Simulator 

Integrated Circuit 

Model Generator 

Model Management System 

xii 



NEP 

OOP 

PGM 

PI 

PIP 

SM 

SMDE 

SML 

SMSDL 

SPGN 

SPL 

STA 

TF 

TI 

TPA 

Node Execution Parameter 

Object-Oriented Paradigm 

Process Graph Method 

Process Interaction 

Primitive Interface Procedure 

Structured Modeling 

Simulation Model Development Environment 

Structured Modeling Language 

Simulation Model Specification and Documentation Language 

Signal Processing Graph Notation 

Simulation Programming Language 

System Theoretic Approach 

Transaction Flow 

Traffic Intersection 

Three-Phase Approach 

xiii 



CHAPTER! 

INTRODUCTION 

Simulation studies are assuming an increasingly important role in our growing tech-

nological society. Experts [Shannon 1975; Emshoff and Sisson 1970; Fishman 1973] agree 

that when simulation is appropriate for a given problem, significant advantages are avail-

able to the modeler in his quest for meaningful problem solutions. Shannon (19751 defines 

simulation as 

"the process of designing a model of a real system and conducting experiments with 
this model for the purpose either of understanding the behavior of the system or of 
evaluating various strategies (within the limits imposed by a criterion or set of cri­
teria) for the operation of the system." 

Simulation may be undertaken using various computational tools, most notably analog, 

digital, or hybrid computers [Balci 1986] and it may be applied to problem domains 

which are suitably solved by four known techniques. These techniques, described below, 

are: 

• Monte Carlo methods - A "static, distribution sampling kind of simulation" 

which is "traditionally used to estimate probabilities of a model's states through 

sample-driven experimentation" [Kreutzer 1986]. 

• continuous - Simulations of systems in which a model's states change continu-

ously with time, represented by differential and/or difference equations [Balci 1986). 

• discrete-event - Simulations of discrete systems where model state changes occur 

only at discrete, fixed points in time. 
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• combined - Simulations of systems with both continuous and discrete-event com-

ponents. 

The ability of a modeler to accurately accomplish the design of the model is one of the 

critical concerns which face those who employ or will employ simulation for the determi-

nation of problem solutions. The importance of the model formulation and representa-

tion processes of a simulation study's life cycle [Balci 1986] must not be underestimated. 

The accomplishment of these processes which produce the conceptual and communicative 

forms of the model takes place under the influence of a conceptual framework [Balci and 

Nance 1987b]. We define a conceptual framework (OF) to be: 

an underlying structure and organization of ideas which are the outline and basic 
frame that guide the modeler in representing a system in the form of a model. 

The research described by this thesis focuses on those aspects of simulation with 

digital computers which concern the use of OFs for the design and implementation of the 

model (or representation of the system of interest). Furthermore, since the research 

directly supports the SMDE (Simulation Model Development Environment) [Balci and 

Nance 1987a, 1987b], we limit our concerns to the use of OFs as applied to discrete-event 

systems only. 

1.1 The SMDE and the Importance of OF Research 

Balci and Nance [1987a, 1987b] describe the ongoing research at Virginia Tech to 

develop a prototype SMDE which aims "to provide an integrated and comprehensive col-

lection of computer-based tools" for automated support in model development of 

discrete-event systems. An overview of the architecture of the SMDE is shown in Figure 

1.1. Such an automated environment will offer substantial, cost-effective gains for 
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Minimal SMDE SMDEs 

Figure 1.1 The Architecture of the SMDE Research Prototype 
[Balci and Nance 1987b] 
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simulation studies in model quality, project team efficiency and productivity, and in 

reductions to model development time [Balci and Nance 1987b]. The Model Generator 

(MG) tool, one of several tools available to the modeler within the SMDE, is that tool 

which assists the modeler in the performance of the model formulation and representation 

processes discussed above. The MG tool converts the conceptual model into a formal 

specification while under the influence of a CF [Balci and Nance 1987b]. 

Herein lies the importance of the CF research. The SMDE project goal is to achieve 

the automation-based paradigm [Balzer et a1. 1983] within the SMDE, via the evolution­

ary development of several prototypes [Balci and Nance 1987b]. The specification which 

is created by the modeler under the influence of a CF must be fully translatable into exe­

cutable code for the automation-based paradigm to be realized. In addition, it is essential 

that the specification be formally analyzable and domain independent [Balci and Nance 

1987b]. Because of the heavy reliance of the MG tool upon a CF, it is vital that a CF or 

CFs be utilized that will produce these desired features in the resulting specification. 

Research and study are needed to support CF selection. 

1.2 Description of Research 

An appropriate CF or CFs upon which to base the MG tool is required. This 

research explores the realm of CFs in order to support this requirement. In particular, 

we seek to gain an understanding of CFs through the study of the current literature, 

through the practical experience of applying CFs to a complex study problem, and 

through the accomplishment of a comparative review and a taxonomy formulation. Our 

goal is to make measurable headway in understanding those features of a CF which sup­

port the development of specifications which are analyzable, domain independent, and 
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more importantly, completely translatable. 

Chapter 2 describes the literature review of CFs which are in common use today. 

Applications of the CFs to a traffic intersection system are described in detail in Chapter 

3. This work produces insights into the capabilities and limitations of the CFs. In some 

cases, these applications represent a first-time accomplishment in demonstrating model 

representation of a complex system. The comparative review of the CFs, given in Chapter 

4, in hand with the experience derived from the applications of Chapter 3, enable the 

development of the taxonomy of CFs in Chapter 5. Chapter 6 summarizes those features 

which we feel are essential for the CF or CFs which will support the SMDE within the 

MG tool. Furthermore, Chapter 6 offers conclusions and potential areas for future 

research. 



CHAPTER 2 

LITERATURE REVIEW 

The literature has been extensively reviewed to gain a grasp on the conceptual 

frameworks currently being used in model and system design efforts which show promise 

in stimulating improvements to discrete event model representation techniques. The 

results of this review form the basis for the later sections. First, the terminology of the 

discrete event modeling domain is clarified. Due to the wide range of terminology and 

interpretations by simulation experts, the importance of a sound definitional base to 

introduce such a review cannot be overestimated [Nance 1981b]. A discussion of time 

flow mechanisms is next covered and is essential for a clear understanding of the concep­

tual frameworks which are low-level in nature [See Sections 2.3 through 2.7]. Finally, 

each conceptual framework of interest which has been identified is described in a tutorial 

fashion. 

2.1 Time and State Definitions 

Nance [1981b] recognized the need for an "integrating general framework" for 

approaches to model development in discrete event simulation. He states that the 

"independent and concurrent development of several SPLs [simulation programming 

languages] during 1960-1963 and shortly thereafter" occurred in a progressive environ­

ment suffering from the lack of a fundamental theoretical basis. One problem which 

resulted from these conditions was the infiltration into the simulation literature of wide 

and subtle variations in the definitions of terms and concepts which are basic to simula­

tion model development. Differences arose surrounding the terms event, activity, and 

6 
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process which are at the very core of understanding time and state relationships. Nance 

[1981b] offers a set of basic definitions which seek to resolve this problem. In the 

definitions that follow, a system model is made up of objects and the relationships that 

exist between them. The concept of the model object, "anything that can be character­

ized by one or more attributes to which values can be assigned" [Nance 1981 b], is used as 

the "link" to resolve the definitional differences. The terms object and entity are regarded 

as synonomous since both refer to a model component; the term object will be used 

hereafter. 

Definitions [Nance 1981b] that revolve around the concept of system time, a com­

mon "indexing" attribute among simulation models, include: 

• instant - "a value of system time at which the value of at least one attribute of an 

object can be assigned" 

• interval- "the duration between two successive instants" 

• span - "the contiguous succession of one or more intervals" 

• object state - "the enumeration of all attribute values of that object at a particular 

instant" 

Finally, to conclude this section, the definitions for event, activity, and process from 

Nance [1981 b] are given: 

• event - "a change in object state, occurring at an instant, that initiates an activity 

precluded prior to that instant." 

• activity - "the state of an object over an interval" 

• object activity - "the state of an object between two events describing successive state 

changes for that object" 
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• process - " the succession of states of an object over a span (or the contiguous succes­

sion of one or more object activities)." 

2.2 Time Flow Mechanisms 

Time flow mechanisms are the methods by which the system clock is updated. In 

other words, a model's time flow mechanism is the means of time sequencing by which a 

model progresses in its execution and in its attempt to mimic the system for which it has 

been built. There are two general categories of time flow mechanisms that are used in 

discrete event simulation models, the fixed-time increment and the variable-time incre­

ment methods. 

The fixed-time increment method (also known as interval-oriented simulation, uni­

form time increment, or synchronous method [Neelamkavil1987]) dictates that model 

time is updated at fixed time increments or steps of constant time. As each time incre­

ment passes, model objects are examined to determine what attributes, if any, need to be 

updated. 

The variable-time increment method (also known as event-oriented simulation, next 

event method, and asynchronous method [NeelamkaviI1987]) however, provides an 

advantageous means for updating the system clock or global time. The time{s} during 

which events are not occurring can be skipped. This dead time can then be removed from 

the model without affecting its execution. The variable-time increment method is the 

approach which is commonly used in discrete event simulations and can be applied to a 

wide range of simulation strategies [NeelamkaviI1987]. 

In addition to the above methods, Nance [1971] provides a stimulating discussion 

describing the important concepts surrounding time flow mechanisms and modifications 



9 

to these approaches in the context of the patrolling repairman problem. 

2.3 Event Scheduling (ES) 

When using this particular viewpoint in modeling, the modeler considers the system 

of interest to be composed of events which are determined from a detailed study of the 

system. Each identifiable event is associated with a series or grouping of actions that 

contain all the necessary information to at least infiuence the required state change{s) 

which are related to that event. Such a grouping can be called an event routine. Pidd 

[19841 defines an event routine to be "a set of actions that may follow from a state change 

in the system." Kiviat [1969 ] describes the approach as one which seeks to execute the 

event routine "only when a state change occurs." He further suggests that this approach 

specifies that "some event is to take place at a determined time in the future" which he 

calls "by predetermined instruction." Therefore, by explicitly scheduling the event rou­

tines at a future determined time in accordance with the observable interactions and rela­

tionships among system components, system behavior can be represented by the model 

for any given period of time. The scheduling of event routines is managed during imple­

mentation by the maintenance of a list called the "event list" [Pidd 1984]. The event list 

is a list of event notices or records which are ordered by time. 

Figure 2.1 is a simple pictorial fiowchart of the basic algorithmic structure of the 

Event Scheduling Conceptual Framework (ES CF). After initializations, the next event is 

selected. (The system clock is also updated at the same time.) The event routine which 

is associated with the next event is then executed. Next, when applicable, the conditions 

for termination of the simulation are checked. If these conditions are satisfied, the output 

statistics are then calculated and displayed and the sim ulation ends. Otherwise, the next 
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event is selected and the algorithm repeats itself. 

When simulation termination conditions are based on the number of observable jobs 

or departures (server/queueing problems), some event routines (e.g., arrivals) do not 

affect the terminating conditions. Upon completion of these routines, the terminating 

conditions do not need to be checked. Other event routines (e.g., departures) have a 

definite impact on the terminating conditions and a check of these conditions becomes 

necessary. If time is the basis for the terminating conditions, the execution of a next event 

may be bypassed when the terminating time occurs before the scheduled time of the next 

event. 

The key elements of the algorithm's structure, the selection of the next event and 

the event routines and their components, are now discussed in the next two sections. 

2.9.1 Selection of Next Event 

When discussing the ES CF, it is important to mention how the selection of the next 

event is made. Since the event records are ordered in some fashion according to time, the 

next event is simply that event on the event list with the earliest time. In cases where 

several events are to occur at the same time, precedence rules must be established to 

break these ties. The modeler is only concerned with the occurrence of events. This is an 

implementation of the variable-time increment time flow mechanism. 

2.9.2 TYP1'cal Components of Event Routines 

Event routines may contain the following types of actions or items: 

• Creation or destruction of event records 
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The event record most often contains the time at which the event is to occur, an 

event descriptor or identification label (such as arrival, departure, etc.) which logically 

links the record to its corresponding routine, and key attributes and values of the model 

or its associated submodels. Figure 2.2 illustrates an event list of typical records. The 

number of event records which are maintained on the event list directly affects the imple­

mentation efficiency. Therefore, the creation and destruction of these records must be 

carefully considered. 

• Scheduling of future events 

The occurrence of an event may dictate the scheduling of some other future or con­

current event by placing it on the event list. The scheduling may be deterministic (event 

timing determined by trace input) or stochastic (events determined by sampling statisti­

cal distributions) [Kreutzer 1986]. In this way, the ES CF provides bootstrapping tech­

niques which enable the generation/regeneration of events. Such techniques perform the 

explicit scheduling of events and allow the model to produce system-like behavior and to 

progress toward a successful termination. In other words, since an event occurs at a sin­

gle instant of time, the scheduling of events accomplishes the "passage of time" in the 

model [Kreutzer 1986]. For example, in queueing-type models, arrival events often gen­

erate a following arrival or a pending departure when the server can be immediately 

engaged. A departure event similarly generates another departure event when a job, 

waiting for service, can be assigned to a released server. Fishman's [1973] diagrams very 

clearly show how the algorithm of this framework is accomplished. The explicit schedul­

ing of events results in a clean and smooth model execution, improving efficiency. Yet, as 

Kreutzer [1986] points out, the model logic becomes fragmented with the scattering of 

scheduling commands as the number of event routines and their potential interactions 



EVENT 
OCCURRENCE TIME 

13 

EVENT ATTRIBUTE ATTRIBUTE 
IDENTIFICATION t 9 

Figure 2.2 A Typical Events List 
[Balci 1988] 

ATTRIBUTE ... 
k 



14 

increase. 

• Contingent events 

Events may be contingent or determined [Nance 1981b]. A contingent event occurs 

at a future time which is unknown and which specifies the time at which some set of 

boolean conditions becomes true. A determined event occurs at a known future time. 

When possible, a contingent event is included within the event routine of a determined 

event [Fishman 1973]. (Fishman [1973] refers to contingent events as conditional.) This 

reduces the number of event records which must be processed and improves model 

efficiency. With simple models, such as a simple queueing model, conditional events (like 

change of server status to busy or idle) are less difficult to incorporate into existing 

unconditional event routines. However, when the conditions upon which the event is to 

occur become more complex, the difficulty increases dramatically. A good example of this 

occurs in the traffic intersection problem which is discussed in a later section. The imple­

mentation also becomes less readable, less understandable, and harder to debug with the 

increased complexity of conditions. 

2.4 Activity Scanning (AS) 

The AS CF was developed in the late 1950's in England and became popular for use 

in simulation languages like GSP (the General Simulation Program) and CSL (Control 

and Simulation Language) [O'Keefe 1986b]. The AS CF and an extension of it, the 

Three-Phase Approach (discussed in a later section), have unfortunately received much 

less attention and are not well understood in the United States. Much of the literature 

which describes the AS CF is dated by 20 to 25 years and centers on the original versions 

of CSL and its forerunners [Kelley and Buxton 1962; Buxton and Laski 1962; Laski 1965; 
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Buxton 1966; Kiviat 1969]. Beyond Pidd [1984] and Kreutzer [1986], there are other good 

descriptions among the recent literature [Fishman 1973; Hooper and Reilly 1982; Hooper 

1986a, 1986b; Zeigler 1976]. 

The AS CF requires that the modeler identify the various types of objects in the sys.­

tem to be modeled, the activities which the objects perform, and the conditions under 

which these activities take place. In particular, the state transition actions that immedi­

ately follow a state change for an object must be indicated for each activity. The test set 

of boolean conditions, or the "testhead" [Pidd 1984] that is associated with these actions, 

enables the determination of the state change that will initiate that activity. The test­

heads serve to link the various activities together and to produce the state transitions of 

the model objects and the interactions among them. In this way, the model is made up of 

modules or segments of testheads and associated actions which await execution at the 

appropriate time [Pidd 1984}. 

It is extremely important to remember that the activity is a state of an object which 

is bound by successive events of interest. In actual practice, the precise definition of the 

word "activity" has become somewhat muddled. Traditionally, "activities" are often 

created which occur in zero simulated time. Examples of this are arrival activities, 

departure activities, and other functional activities needed to accomplish a specific imple­

mentation purpose (such as the SPLIT activity in the AS CF application described in 

Chapter 3). In addition, activities which occur over some time duration are split into two 

separate "activites", a beginning activity and an ending activity. For example, a service 

activity becomes a begin service activity and an end service activity. In this case, the ori­

ginal activity has been transformed (in actuality) into events (not activities) which bound 

the true activity. 
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Kreutzer's [1986] discussion of the "activity description" is much less ambiguous 

than traditional approaches. Kreutzer suggests that the activity description of a "time­

consuming activity" retain the "notion of causally connected start and finish events." He 

further indicates that this could be accomplished by the use of a Pascal-like CASE struc­

ture as the body of the activity. Such a structure would have two entry points, one for 

the "start" event and another for "finish". Each would be prefaced by its testhead as dis­

cussed above. Thus, Kreutzer's encapsulation of the bounding events within the single 

activity description (rather than splitting them apart) is more straightforward. 

In general, the "activity descriptions" (whether encompassing the full essence and 

meaning of "activity" as suggested by Kreutzer or split into separate parts in the more 

traditional way) form the basis for the AS CF. From the above discussion, one should 

realize that the use of the term "activity" is widely accepted to refer to the start and 

finish events within an activity-oriented perspective. Thus, for the remainder of this 

paper, in discussing activity-oriented conceptual frameworks, the terms "start activity" 

and "finish or end activity" will be used. In describing activities of zero duration, others 

have adopted the term "event" which is more precise [Davies and O'Keefe 1987] but may 

lead to further confusion when used within the context of activity-oriented conceptual 

frameworks. 

Implementations of the AS CF include a monitor or executive which performs a time 

scan to ascertain the time increment or update to the system clock. Following the time 

scan, the monitor then conducts an activity scan for the current timing cycle. The 

activity scan is a check of all testheads to determine which of the activities are to be next 

executed [Pidd 1984]. Figure 2.3, a flowchart of the monitor's algorithm, clearly shows 

this two-phase structure (time scan and activity scan). These two scans are discussed in 
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more depth in the next two sections. 

The selection of the next event time is commonly accomplished by maintaining a 

local clock with each object that changes state. For a simple single server queueing prob­

lem, this would mean maintaining such a clock for the next arriving object and also for 

the server object [Fishman 1973]. Pidd [1984] calls these local clocks "time cells" (or t­

cells) and identifies them as attributes of permanent objects which indicate when each 

object is to change state. Certain non-existent pseudo-objects often need to be created 

which will hold the necessary time-cell values. The time cells can be maintained in a list 

(ordered or unordered). The next event time is the minimum time cell value (which is 

greater than current system time) among the time cells on the list. Time cell values which 

are less than the current system time indicate that the associated object is idle or waiting 

to be engaged or committed. Pidd further suggests that the time cell values can be 

recorded in absolute system time or as a time interval to the state change. Laski [1965] 

and Buxton [1966] provide excellent coverage on the use of time cells. 

An alternate method of accomplishing the time scan (rather than attach t-cells to 

objects) is to attach the t-cell to the activity itself [Kreutzer 1986]. (Although Kreutzer's 

discussion is strictly oriented to the Three-Phase Approach, the idea is nevertheless appli­

cable to the pure AS CF.) In this case, the t-cell is (in some way) attached to end or 

finish activities. The update of time is accomplished as discussed above. A close examina­

tion reveals that these methods are, in fact, equivalent. Object t-cells hold time values 

which are associated with finish activities. 
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An important distinction should now be clarified. The ES CF associates the next 

event time with the next event through the use of an events list. Yet, the AS CF transi­

tions to the next event through the logical checks of testheads as discussed above. O'Keefe 

[1986b] puts it another way by stating that there is "no explicit next-event set" in the AS 

CF. Therefore, the. time scan determines the time of the next event by scanning t-cells 

without attempting to identify which activity is due next or which object is causing the 

next state change [Pidd 1984]. 

Within the context of the simple single server queueing problem, some confusion 

exists among Pidd [1984] and Fishman [1973] concerning the description of the time cells 

and the time scan. Certainly, some means of identifying an arrival as imminent during 

the current timing cycle is required. Fishman indicates than an object (or entity) clock of 

the next arriving object needs to be maintained. According to Pidd, a selection of the 

minimum time cell will determine the time of the next imminent event. Pidd's description 

is unclear in that time cells are defined to be attributes of permanent objects (entities). 

The next arriving object is clearly temporary in that it does not exist for the duration of 

the simulation. Instead, it may arrive and depart the system before the simulation ter­

minates. Pidd, however, later clarifies this by implying that arrivals can be handled by 

permanent pseudo-objects (as discussed above) which are "arrival machines" for each type 

of arriving object. 

In this case, as explained by Nance [1987], the time scan checks the arrival clock 

time for each arrival machine. Once system time has overtaken a local arrival clock time, 

this local clock time for a particular object type may be discarded. Thus, this will enable 

reassignment of the arrival clock to the next arrival time for a particular arrival machine. 

By searching the time cells of all permanent (including pseudo) model objects for the next 
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minimum time value, one can then easily determine the time of the next event and if the 

next event is an arrival. Such a characterization of the time scan is consistent to that dis­

cussed by Tocher [1963] in which he suggests that every time variable be associated with 

a machine which may be real or imaginary. His example of the single server queueing 

problem includes an arrival machine (imaginary) and the server (real). The time attri­

butes for these "machines" would correspond to Fishman's object (entity) clocks and to 

Pidd's time cells. 

~.4.~ The Activity Scan 

Kiviat [1969] describes the activity scan as a "search" method in which the "scanner 

examines system state data to determine whether a state change can take place." It is the 

activity scan that moves the model from event to event because "no event list is main­

tained" as in the event scheduling world view [Neelamkavil1987]. It is important to note 

that the activity scan repeats until no further state change or activity is possible. The 

condition blocks shown in Figure 2.3 represent the testheads and are checked in order (1 

to N). Pidd [1984] emphasizes that the ordering of the activity descriptions (conditions 

and action blocks, 1 to N) by priorities is very important in accurately representing sys­

tem behavior by the model. An example is given [Pidd 1984] to illustrate the effect of 

scan priorities on model results. When the conditions of a testhead are satisfied, the 

actions associated with it are executed. If a testhead is not satisfied, the next testhead in 

turn is checked. Activity testheads may be satisfied when a set of boolean conditions 

becomes true. For an end or finish activity, its testhead is satisfied when a check of t-cell 

values indicates that the activity is "due". Indeed, Kreutzer [1986] describes the activity 

scan as a scan of "temporal and other conditions." Thus, activities are associated with a 
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pure set of conditions that state "when an activity of a given class may start, and [in one 

form or another, through object structures or some link to the activity] a time cell that 

specifies when it may finish." 

At the completion of a single scan, if one or more actions blocks have been executed, 

the check of all testheads (beginning at the first) is repeated. The scan continues in this 

way until no testheads are satisfied. This means that no more state changes are possible 

for the current timing cycle. If termination conditions hold, the simulation ends. Other­

wise, the time and activity scan sequence is repeated. 

2.5 The Three-Phase Approach (TP A) 

The Three-Phase Approach is a modification of the AS OF which attempts to 

improve execution efficiency by recognizing that some activities will occur at known and 

determined times in the future. In the case of such activities, there is no need to test for 

the satisfaction of certain conditions. The approach is attributed to Tocher [1963] who 

categorized activities as B-activities or C-activities. A B-activity is one which is bound to 

a certain object or "machine" and its time of execution is known. For example, in the 

simple single server queue problem, the next arriving object or the arrival machine is 

"committed" to an arrival activity which will occur at a determined time in the future. 

In practice, the binding of the activity to an object may be accomplished by assigning an 

integer (which identifies the bound activity) to an appropriate object attribute. The 

object remains committed and the activity is "engaged" or bound by that object as long 

as the system time is less than that object's local time clock. When system time reaches 

this local clock time, the object becomes "available." B-activities are due and executed 

when the object to which they are bound becomes available. The end or finish activity 
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(discussed in the AS CF) is another example of a B-activity. As alluded to earlier, the 

traditional repetitive activity scan and testhead checks do not need to be done on the B­

activities. In a sense, the B-activities are implicitly scheduled, and the TPA could be said 

to incorporate a next-event set or the events list approach that characterizes the ES CF 

[O'Keefe 1986b]. The C-activities can be described as cooperative activities in that 

dependencies with other activities exist. C-activities with testheads must enter the usual, 

repetitive activity scan. [Tocher 1963] 

In a later paper, Tocher (1965] provides more details on the Three-Phase Approach. 

Tocher indicates that a convenient way to determine the pending or imminent bound 

activities is to scan a list of "returning" objects (or entities) which is created at each tim­

ing cycle. The bound activities are executed in the order that they are determined from 

the object list. Thus emphasis is placed on the object and an ordering of objects is 

implied. Such an ordering could be based on priority (or other technique) and will affect 

the behavior of the model in the same manner that ordering of the activity scan influences 

models under a pure AS CF. 

ECSL [Clementson 1966,1978] was an early implementation of the TPA. Pidd 

[1984] provides an excellent overall description of the TPA. Other comprehensive 

descriptions of the TPA are available in current literature [Crookes 1982; Crookes et al. 

1986; O'Keefe 1986a, 1986b; O'Keefe and Davies 1986; Davies and O'Keefe 1987]. 

Although Tocher [1963J is attributed with the TPA, an earlier description of the approach 

exists [Tocher and Owen 1961J. 

With activities now categorized as B or C, the executive can be modified to display 

the three phases. Figure 2.4 graphically represents the implementation of the three 

phases: 
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• Phase A - time scan 

• Phase B - execution of B-activities which are now due 

• Phase C - activity scan on C-activities 

An explanation of Phases A and C is not needed since they follow the time and activity 

scans of the activity scanning world view. The execution of Phase B is covered above. 

Therefore, in summary, instead of an activity scan of all activities with their testheads, 

the B-activities are removed to be executed at their appropriate times. The length of the 

pure activity scan (which now deals with only the C-activities) is reduced. Execution 

efficiency is improved. 

2.5.1 Variants of AS-based Executives 

Interestingly, Tocher [1965] sets forth three possible organizations for activity scan­

based executives. First, of course, is the organization which is the pure activity scan and 

treats all activities as C-activities. This leads to a great deal of "unnecessary testing." 

Secondly, Tocher suggests an organization which consists of only B-activities. An 

extreme burden is placed on the modeler using this scheme in that the modeler can no 

longer present the conditions for an activity in one set of statements. Instead, the modeler 

must "generate for each entity [object} which has reached the end of a previous activity 

the appropriate extra conditions, and do this for every participating entity [object]." The 

third organization, a combination of both Band C activities, represents the Three-Phase 

Approach discussed above. 
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12.5.12 The Cellular Approach 

Closely related to the Three-Phase Approach is the Cellular Approach [DeCarvalho 

et al. 1976]. At any given time, the model activities can be grouped together into a "cell" 

with "those entities [objects] which at the current time are already engaged to, or are 

waiting to be engaged to, one of the activities in the cell." Objects may belong to 

different cells throughout a simulation as they become engaged in different activities. The 

grouping of activities in a cell (the basis for the cellular structure) is such that the execu­

tion of activities within a particular cell at an instant in time does not depend on state 

conditions or variables that exist in other cells at that same instant. Therefore, each cell 

can be considered independent and "non-overlapping" with the other cells of the model. 

Furthermore, each cell is a grouping of Band C-activities and is essentially a Three­

Phase simulation in its own right. 

Objects become associated with different cells as time progresses. Based upon this 

knowledge of an object's process, the model executive is able to discriminately choose 

which cell or group of Band C-activities should be scanned for execution (the B-activities 

of interest) and tested (the C-activities of interest) for possible execution. In 

addition, "there is no point in testing a C-activity within a cell unless that cell has had a 

B-activity executed" within the last clock cycle. In other words, no state changes have 

occurred which would alter the testhead conditions of subsequent C-activities within that 

celL In this way, the cellular structure provides the ability to eliminate the unnecessary 

testing of certain C-activities. For large models in which there are many independent 

events resulting in a large number of cells, this provides further savings in execution time 

beyond that obtained in the Three-Phase Approach. 
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2.6 Process Interaction (PI) 

Kiviat [1969], Fishman [1973] , and Pidd [1984] provide an excellent overview of the 

PI CF. Instead of the event or activity, PI uses the process as its basic building block. 

From the earlier definitions, the process can be considered to be a life-cycle for an object. 

It represents a sequence of events and interspersed activities through which the object 

moves. As the object moves through its process, it may experience certain delays and be 

blocked in its movement. Those delays which are time-based and unconditional (e.g., ser­

vice times, arrival times) must be handled using future event set algorithms [McCormack 

and Sargent 1981] and techniques like those used in the ES CF for the determination of 

the next event time. Those delays which are state-based (e.g., wait-until situations) 

require a scan of conditions to determine the time(s) at which such delays should be 

resolved. Therefore, the PI CF combines certain aspects of the AS and the ES CFs while 

producing an altogether different approach. 

Because an object experiences periods of activity (process statement execution) and 

periods of inactivity (conditional or unconditional delay), one can view an object's process 

description as being a single set of program statements which act like several different, 

individual programs. The PI CF enables the modeler to clearly grasp a model's structure 

now that each object or class of object can be represented by a single, coherent process 

rather than through multiple event routines. [Kiviat 1969; Fishman 1973] 

The PI CF also provides clarity in representing how the various object processes in a 

model are interacting. When an object experiences a delay in its process and becomes 

"passive", another model object is allowed to become "active" [Franta 1977] and to start 

or resume its process. In essence, the object processes within a model behave as corou­

tines, alternating their executing (or active) status wi~h one another in a controlled 
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fashion. Kiviat [1969] calls these locations within an object's process (where such delays 

are incurred and execution is shifted to another object) its "interaction points." In addi­

tion, those points at which an object returns to an active state (following such interac­

tion) are named "reactivation points." Another way to view these points are as code loca­

tions in the program description of an object's process where it resumes execution follow­

ing a delay. 

Figure 2.5 provides a GPSS-like [Henriksen et al. 1983; Schriber 1974] representation 

of the PI CF. Each object has associated with it a record of information which includes 

its reactivation time (if known) and its next reactivation point. Such an implementation, 

described nicely by Pidd [1984] includes two lists, the current events list and the future 

events list. We shall call them the current objects list (COL) and the future objects list 

(FOL) since these lists contain the associated record representations of the objects them­

selves. In addition, these lists are maintained and used to perform the selection of the 

next object that will become active. The COL contains objects which are due for activa­

tion during the current system time or which are in a wait-until status (waiting for cer­

tain conditions to be satisfied). The FOL contains those objects for which a reactivation 

time is known. Furthermore, the objects in the FOL are most likely ordered by time. 

E.6.1 The Clock Update Phase 

The ordering of the FOL enables the updating of the system clock in the "clock 

update phase." The earliest reactivation time from among the objects on the FOL is 

selected and the system clock is assigned this time value for system time. Then all 

objects on the FOL which have this time as their designated reactivation time are 

transferred to the COL, concluding the clock update phase. 
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START 

CLOCK UPDATE PHASE 

CURRENT TIME - MOVE-TIME 
OF THE FIRST OBJECT ON 

THE FUTURE OBJECTS LIST (FOL) 

TRANSFER ALL OBJECTS WITH 
MOVE-TIMES EQUAL TO CURRENT TIME 

FROM THE FOL TO THE 
CURRENT OBJECTS LIST (COL) 

SCAN PHASE 

MOVE THE NEXT OBJECT 
ON THE COL THROUGH 

AS MANY PROCESSES AS POSSmLE 

Figure 2.5 The Process Interaction Conceptual Framework 
[Balci 1988] 
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£.6.£ The Scan Phase 

The "scan phase" next takes each object on the COL, in turn, and tries a restart of 

its process at its reactivation point. Movement may not be possible for those objects in a 

wait-until status. If so, such objects remain on the COL. Each such object is moved as 

far in its process as possible until it is once again blocked or until it completes process 

execution. If blocked, the object is placed on the COL or FOL as appropriate. The scan 

phase continues until no further object movement (within its process) is possible. Please 

note that the clock update phase is restarted following each conclusion of the scan phase 

(as shown in Figure 2.5) until simulation termination conditions are reached. 

SIMULA [Birtwistle et al. 1979; Franta 1977], another process-oriented language, 

differs greatly from the GPSS implementation approach. Objects are maintained on a 

single list called the sequencing set, in contrast to the two-list GPSS approach. Unlike 

the GPSS approach, objects which are in a wait-until status are not directly handled via 

the single-list implementation. The programmer is responsible to implement the trap 

conditions which will reactivate an object and place it in the sequencing set. 

2.7 Transaction Flow (TF) 

TF handles the time and state relationships of the model in exactly the same 

manner as the Process Interaction CF. However, there are three differences which can be 

noted. 

First, Shannon [1975] used the term Transaction Flow to serve as a categorical 

designation for simulation languages rather than as descriptive of a simulation strategy 

or world view. A language of this type uses "specialized blocks" which are assembled into 

the model's structure. The block diagram which can be easily formed from the language 
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blocks represents a clear description of the logic and flow of the system being modeled. 

"Transactions" are created and moved through the blocks, executing specialized actions 

that are "associated" with each block. The movement of the transactions causes the 

simulated time to advance. 

Shub [1980] makes a further distinction by pinpointing the block structure and its 

underlying actions that are performed as the key difference. The block structure gen­

erates a rigid structure which limits the "examination and communication" among system 

components. In addition, as entities (transactions) pass through these blocks, "predefined 

processes" are activated which are hidden to the modeler. Statement languages, on the 

other hand, like STh1ULA, provide generality and flexibility to the modeler. Lower level 

primitives are available which allow the modeler describe entity communications at any 

necessary level of detail. The modeler is not constrained by predetermined blocks and a 

finer level of component interaction can be obtained. 

Finally, a third distinction can be inferred from the term "transaction" itself. 

Tocher [1965], in his review of simulation languages, characterizes the languages as 

machine or material oriented. He further defines "transactions" to be the material enti­

ties. Kreutzer [1986] gives excellent definitions of these two orientations. In a machine 

oriented view, servers (machines) are the dominating and active influence in the model. 

They obtain the material entities (transactions), operate on them, and place them in (or 

remove them from) queues. Conversely, the material oriented models hold the transac­

tions as the dominant entities. Servers, now passive, are "acquired, held, and released 

again" by the transactions which flow from machine to machine [Kreutzer 1986]. There­

fore, in a transaction flow approach, a material oriented view is held. Processes are 

described in terms of the temporary objects or entities (the transactions) which dominate 
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and flow through the model. The permanent entities (machines) become passive [Nance 

1987]. 

From the preceding discussion, "transaction flow" is more appropriately used to 

categorize a simulation language. However, the term can be effectively used to accurately 

describe a variation of the PI CF. 

2.8 The Object-Oriented Paradigm (OOP) 

The paradigm has been described as a "programming style" that views "programs as 

collections of active components (sometimes called classes or actors) and their patterns of 

interaction" [Kreutzer 1986]. These active components are the basis for the term object. 

Additionally, the paradigm is viewed as a concept for system design. According to Meyer 

[1987], "object-oriented design may be defined as a technique which, unlike classical (func­

tional) design, bases the modular decomposition of a software system on the classes of 

objects the system manipulates, not on the functions the system performs." A functional 

decomposition is less likely to be resistant to change over time than one which is based 

upon an object-oriented decomposition. Functions tend to change in order to adapt to 

changing needs whereas objects remain more or less constant [Meyer 1987]. 

Whether a programming style or a design technique, the paradigm may be viewed 

ultimately as a software engineering methodology. A distinction must be made between 

method and methodology. (One must also be careful not to confuse the term method in 

this context with the operations (methods) which an object (in the paradigm context) per­

forms.) A method is a means of accomplishing a given task and contains the decisions to 

be made, how these decisions are made, and the order in which they are made. A metho­

dology, however, is "a collection of complementary methods, and a set of rules for 
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applying them" [Arthur et aL 1986]. Although the paradigm's methods and rules are not 

distinctly available, the material in the following paragraphs indicate that the paradigm 

does contain component philosophies, approaches, or characteristics. These taken as a 

whole suggest that regarding the paradigm as a methodology is an accurate assessment. 

The paradigm is a powerful methodology which is characterized by the encapsula­

tion of data and operations, an inheritance mechanism for developing object hierarchies, a 

binding approach which allows the dynamic change of data types, and, in some cases, the 

ability (activation, passivation) to move objects into and out of various states (active, pas­

sive, etc.). The following subsections will review these principal features which are embo­

died in the paradigm. 

2.8.1 Encapsulation 

The leading experts seem to agree that encapSUlation is a primary ingredient to the 

paradigm. The implementation of an object's actions and "how its internal data is 

arranged" are contained within the object [Cox 1986]. Encapsulation has been called the 

"foundation" of the object-oriented approach and provides several important implications 

[Cox 1986]. First, encapsulation enables a software system to be more "malleable" and 

resistant to change. An object can be considered to be "encapsulated", an "armor-plated" 

entity. As "private data and a set of operations that can access that data", an object by 

nature thus restricts "the effects of change by placing a wall of code around each piece of 

data" [Cox 1986]. The use of objects therefore improves the reliability and maintainabil­

ity of system code. Additionally, by inherent abstraction, the object improves the view of 

the system by introducing a higher level perspective and promotes reusability of code. 

Meyer [1987] states that "object-oriented design is the construction of software systems as 
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structured collections of abstract data-type implementations." In conventional program­

ming styles, the "consumer" of a service must specify the details of how each of the 

desired operations is performed. Using the paradigm, however, one only need to specify 

what is desired. The "supplier" can then encapsulate how these operations are performed 

within the object, hiding the details from the consumer [Cox 1986]. This then allows a 

radical approach which Cox [1986] calls the "software-IC [software-Integrated Circuit]" 

approach to building systems. The analogy to the use of hardware lOs (which are easily 

"plugged" into or removed from an electronic system) is intended. Portions of code then 

become "reusable". For Meyer [1987], the paradigm is "the most promising technique 

now known for attaining the goals of extend ability and reusability." Related terms are 

modularity, abstract data typing, and information hiding [Kafura 1987]. 

2.8.2 Inheritance 

A mechanism for inheritance is another distinguishing characteristic of the para­

digm. Inheritance is the "ability to define new objects by expanding, contracting, or 

modifying the functionality of existing objects" [Kafura 1987J. This is considered perhaps 

the most powerful characteristic of the paradigm. An object clas8 can define the generic 

distinguishing features of a grouping of like objects. Inheritance is a "tool for automati­

cally broadcasting code to classes developed by different members of a team" [Cox 1986]. 

New instances of an object class can be easily created. These new instances automatically 

inherit the attributes of that class definition. Inheritance supports hierarchical structures 

that are commonly found in the real world and provides substantial benefit to the user by 

improving his understanding and view of the system. 

Beyond encapsulation and inheritance, there is less agreement among the authorities 
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of the field as to the features embodied by the paradigm. Inheritance itself does not seem 

to have universal approval as a necessary ingredient for the paradigm. (Some languages, 

like Ada which have been classified as object-oriented, do not support the concept of 

inheritance.) Yet Meyer [1987] states that "the inheritance concept is essential." 

2.8.9 Binding 

How binding is handled is very important to the power of the paradigm. Binding 

relates to the "time at which an object becomes restricted to a fixed collection of types 

which it can manipulate" [Kafura 1987]. Early binding is common among most conven­

tionallanguages. Such binding requires that every data type is known before compile 

time. "Tightly coupled systems" and "static binding" are related terms [Cox 1986]. With 

delayed binding (also known as late or dynamic binding), the data types can dynamically 

change during program execution. This kind of binding is "needed in loosely coupled col­

lections where the consumer's code cannot predict the type of data to be operated on until 

the code is being run" [Cox 1986]. Dynamic binding thus promotes reusability and flexi­

bility. New "data types can be added over time without impacting working code" [Cox 

1986]. These concepts of binding enhance the power of encapsulation and add to the 

measure of its benefit. Objects communicate with each other through the sending of mes­

sages. Messaging impacts the concepts of binding. With encapsulation, the object is sent 

a message which tells it to perform an operation on itself. When reusing object-oriented 

code and implementing dynamic binding, the binding "occurs only at this point [i.e., when 

the message is sent]" [Cox 1986]. 
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2.8.4 Activation and Passivation 

A final and often common feature of the paradigm is that of activation and passiva­

tion, "the ability to save and restore the state of an object independently from the 

program's existence" [Kafura 1987]. Activation/passivation "provides an automated way 

to convert arbitrary objects to a symbolic representation that can be stored ... , and an 

inverse transformation to regenerate objects given the symbolic representation. The sym­

bolic representation can be transmitted between different processes ... " [Cox 1986]. 

2.9 The Process Graph Method (PGM) 

The PGM is derived from the parallel computation model which was suggested by 

Karp and Miller [1966] and later improved upon by the U. S. Navy [Kaplan 1987; Stevens 

1987; Hillson 1987]. The Navy's development of the PGM grew out of its work at the 

Naval Research Laboratory on ECOS/ ACOS (EMSP / ASP Common Operational 

Software Support) Methodology. ASP stands for Advanced Signal Processor, the Navy's 

current standard signal processor. EMSP, or Enhanced Modular Signal Processor, is the 

Navy's follow-on to the ASP. Used primarily for the development of signal processing 

models, the PGM is believed to be applicable to domains other than signal processing and 

capable of being used as a representation of other model types. The basis for the PGM is 

the process graph, a directed graph of nodes and arcs which is classified as a data flow 

model. Three of the primary benefits of the process graph are its parallel computation 

capabilities for greater throughput, the ease at which modelers can perform top-down 

design, and portability of applications. 

Each node in the process graph represents a primitive function (some type of compu­

tation or process) or may alternatively represent a 8ubgraph which is itself a process 
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graph. Such a convention allows the modeler to use abstraction and modularity to 

represent complex models in a fashion that is more easily understood. A node, when 

implemented, contains the following: 

• logical ports - to handle data flow, 

• resident primitive function procedures, and 

• a primitive interface procedure (PIP) - to handle data transfer input and output 

between the primitive functions, queues, and auxiliary data storage entities. 

The arcs represent queues which contain the input and output data needed by the 

nodal primitive functions for execution. The data is ordered on a first-in, first-out basis. 

Each queue has a mode type which characterizes the data type that it carries in residence 

(integer, real, etc.). A queue may carry trigger pulses for synchronization instead of data 

for computational purposes. Queues also provide the necessary connectivity for the 

graph. 

Nodes execute only when the data necessary for execution are available at the input 

queues. Such a node execution scheme allows multiple computations to be performed in 

parallel thus generating a greater throughput. Not all graph data is transmitted along a 

queue. Node execution parameters (NEPs) and auxiliary data storage entities such as 

graph variables, graph controls, and graph instantiation parameters provide additional 

graph control information. Process graph execution is guided by a command program 

which handles input/output to/from the graph, manipulates the control attributes, and 

communicates with the rest of the world, external to the process graph itself. 

The following sections further elaborate on the key elements of process graph 

representation (primitive functions, NEPs, and auxiliary data storage entities) and 
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summarize the current literature descriptions of Weitzman [1986} and Stevens [1987]. 

2.9.1 Primitive Functions 

The primitive functions that are represented by the nodes of the process graph per­

form a computation on the input data elements and distribute the output along the out­

put queues. The primitive functions may be simple or complex in nature. Fast fourier 

transforms, sort routines, and matrix multiplication routines are examples of typical 

primitive functions [Kaplan 1987]. 

e.9.e Node Execution Parameters 

Threshold, offset, read, consume, and produce are the NEPs that specify how the 

data elements are manipulated on the input and output queues. NEPs may be constant 

("fixed") during graph life or they may be recomputed ("variable") for a particular graph 

node. The threshold is the parameter which dictates the number of data elements that 

must be on each input queue before the node can be executed. Data elements can be 

skipped and bypassed when reading in data from an input queue. A number quantifying 

this is referred to as the offset. The read and consume NEPs are related. Read refers to 

the number of data elements which are to be delivered to a node. Oonsume indicates the 

number of elements which are to be removed from an input queue. Finally, produce 

specifies the number of data elements that is output or written to the output queue. 

e. 9.!J Auxiliary Data Storage Entities 

A graph variable (GV) may be internal or dynamic. An internal GV is local to the 

graph in which it is declared. All nodes within a specific graph have read/write privilege 
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to local GVs. Internal GVs may be passed to subgraphs as control. As such, nodes 

within these subgraphs have only read privilege. A dynamic GV is defined in the com­

mand program and is passed to a graph as a control. In this case, the graph has only 

read privilege. 

Graph controls (GCs) are GVs which are passed from the command program or 

from a graph to subordinate graphs. The originator of the GC may change its value for 

subsequent execution sequences. Graphs in receipt of the GC have only read privilege and 

read the latest value of the control at each invocation. 

Graph instantiation parameters (GIPs) are constants which are passed by value to 

the graph at its instantiation or definition. The GIPs are primarily used for establishing 

the start time constraints on the graph. 

2.10 The Entity-Relationship Model (ER) and ER Approach (ERA) 

The ER model [Chen 1976] is a data model which is based upon set and relation 

theory. Of the other three major data models listed by Chen [1976] (network, relational, 

entity set), he claims that one "may view the entity-relationship model as a generalization 

or extension of existing models" and that the ER model "has most of the advantages of 

the above three models." Since the ER model represents an encompassing data model, it 

is worthy of review as a conceptual framework with potential application to model 

representation in discrete event simulation. Chen [1976] represents the definitive work 

which introduces the ER model. This brief description attempts to summarize the princi­

pal components and distinguishing features of the ER approach (ERA) to modeling 

through the use of the ER model. Claimed advantages [Chen 1976] include: 
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• "adopts the more natural view that the real world consists of entities and relation­

ships" 

• achieves "a high degree of data independence" 

• "incorporates some of the important semantic information about the real world" 

Chen [1976J introduces the ER model through the context of levels of logical views 

of data, and develops the ER model for two of these levels which are defined as follows: 

• Level One (a conceptual level) - "information concerning entities and relationships 

which exist in our minds" and 

• Level Two (a representational level) - an information structure or organization of 

information in which data represents entities and the relationships which exist among 

them. 

The next two sections cover Chen's development of the ER model at these two levels. 

2.10.1 ER Model Development at Level One 

Here we are concerned with the conceptual view (of entities, their relationships, and 

their values) as it exists in our minds. To fully develop our understanding of the model 

representation at this level and to avoid confusion, the following relevant terms from 

Chen [1976] must be defined for the ERA: 

• entity - a "thing?' having discriminating features which allow it to be distinguished 

among others. 

• relationship - an interdependence, bond, or "association" among entities. 

An entity may be a "specific" student, professor, or university, for example, whereas 
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student-professor represents a relationship between student and professor entities. The 

term role refers to the function that an entity takes within a defined relationship [Chen 

1976]. 

Entities may be grouped into entity sets upon which predicates can act to test for set 

membership of an entity. Entity sets such as STUDENT and PROFESSOR have 

members which are student and professor entities. The ER model suggests a correlation 

to the OOP, especially the inheritance mechanism. If a specific entity is a mem ber of an 

entity set, we automatically know that it possesses the traits which are "common" to the 

other set members. 

Relationships may also specify similar groupings called relationship sets. A relation­

ship set is a "mathematical relation among n entities each taken from an entity set ... " In 

other words, the members of the relationship set are relationships that are formed by 

tuples of n entities, where each entity is a member of some entity set. The relationship 

set, DEPT-PROFESSOR consists of 2-tuples derived from entities which are members of 

the DEPT and PROFESSOR entity-sets such as [CS, Miller], [ECON, Kenyon], etc. 

Entity and relationship information is maintained within sets which contain values 

(called value sets). Value sets such as CREDIT-HOURS, GRADE, and COURSE-ID 

might contain the values 3, B+, and 4150. Entities and values are linked to one another 

by attributes. Attributes are functions which map from "an entity set or a relationship set 

into a value set or a Cartesian product of value sets ... " For example, the entity set 

COURSE might have an attribute COURSE-DESCRIP that maps into the value sets of 

DEPT-ABBREV, COURSE-ID, and CREDIT-HOURS. In addition to entities, relation­

ships can also have attributes. 
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To organize this conceptual information, Chen [1976] proposes that the entity and 

relationship information be separated in order to enable the identification of the "func­

tional dependencies among the data." In addition, a tabular representation or structure is 

helpful to relate the ER model to the relational model. In the tabular representation for 

entities, all row information relates to a single entity. A particular column holds values 

from a particular value set. Attributes are represented as column headings, and one or 

more columns may apply to a single attribute. In other words, in keeping with the 

definitions above, the attributes map a row identifier (particular entity from an entity 

set) into one or more value sets (grouped columnar information). Relationships can also 

be organized in a similar fashion [Chen 1976]. 

2.10.2 ER Model Development at Level Two 

At this level, Chen [1976] uses the primary key which is a unique identifier of specific 

entities (or relationships). The use of primary keys moves the model representation from 

one which is purely conceptual to one where the conceptual objects exist with a "direct 

representation of values." The primary key serves as this "direct representation" of an 

entity or relationship. Attribute values are used as primary keys if their mapping func­

tion is one-to-one. In many cases, more than one attribute or a group of attributes (an 

entity key) is needed to find such a one-to-one mapping for the members of entity sets. In 

some cases, it is not possible for an entity to be uniquely represented solely by its own 

attribute values. Instead, a usable primary key may be contrived or the primary key of 

another entity which participates in a relationship with the entity of concern is used. The 

primary key of a relationship is composed from the primary keys of the entities that 

make up the relationship. 



42 

The information at this level can now be organized in a tabular representation, as 

before, which identifies the specific entities by their primary keys. Such a table (an entity 

relation) is composed of rows of values called entity tuples [Chen 1976]. When a relation­

ship is used to identify an entity, this is called a weak entity relation. Otherwise, it is a 

regular entity relation. In a similar manner, tabular representations of relationships (rela­

tionship relations) which are composed of rows of relationship tuples [Chen 1976]. 

2.10.9 Using the ER Model 

Four steps [Chen 1976] to using the ER model (particularly for database design) and 

applying the ERA follow: 

• "identify the entity sets and the relationship sets of interest" 

• "identify semantic information in the relationship sets such as whether a certain rela-

tionship set is a 1:n mapping)' 

• "define the value sets and attributes" 

• "organize data into entity/relationship relations and decide primary keys" 

Therefore, successful application of the ERA relies on the proper identification of set 

membership and semantics, definition of value sets and attributes, and organization of 

data into relations. 

12.10.4 ER Model Classifications 

Chen [1983] proposed a framework for classifying ER models which is based on the 

"capabilities and limitations" of each model's relationships and attributes. The two 

broadest classifications of ER models concern their treatment of relationships. When 

relationships can be "defined on more than two entities" the model is classified as 
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Generalized (N-ary) Entity-Relationship Models (GERM). If relationships are only 

allowed on two entities, the model is a Binary Entity-Relationship Model (BERM). These 

categories can also be further classified by their treatment of attributes. There are three 

possibilities: 

• attributes allowed for both entities and relationships 

• attributes allowed for entities only or 

• attributes not allowed. 

Chen [1983] believes that ER models under the different classification categories may 

be converted from one form into another. This implies: 

• ability to model a system by "favorite" model form and then translate it to other 

forms for the purpose of "presentation to others." 

• ability to implement a system which supports "several types of entity-relationship 

models." 

• ability to demonstrate equivalence between different ER models. 

2.11 The Entity-Attribute-Set (EAS) Approach 

Markowitz et al. [1983] claim that the EAS approach is derived from CSL, GASP 

and SIMSCRIPT simulation languages which were introduced in the early 1960's. The 

terms entity, attribute, and set were central concepts that were consistently defined for 

each of these languages as follows [Markowitz et al. 1983]: 

• entity "some concrete or abstract 'thing' represented by the simulation." 

• attribute - "some property or characteristic of the entity" 
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• set - "an ordered collection of entities." 

Markowitz et al. [1984] provide an excellent description of the EAS approach to sys­

tem modeling. In the EAS approach, entities of interest in the system are kept track of by 

a database. Within a system such as a naval task force at sea, these entities might include 

surface ships, submarines, planes, missiles, and torpedoes. The database also maintains 

complete information on a particular entity to include attribute and value data, the 

identification of the sets to which the entity belongs or which it owns, and the member­

ship of the sets which it owns. Attributes of a submarine could include course, depth, and 

speed with respective values of 090 (degrees), 150 (feet), and 25 (knots). 

A key characteristic of the EAS approach is that sets are ordered as noted above. 

This ordering may be strictly on a first-in, first-out (FIFO) basis or in some other deter­

mined order. Considering the task force example, this system may contain the set of all 

combatants ordered by hull designator and number. The task force model itself would 

likely be the owner of such a set. Each com batant may then also own a set of weapons 

perhaps ordered by lethality or protection capability to the owning platform. Hierarchical 

decompositions and tree-like structures of the system are thus easily defined. 

The EAS approach to system description "combines an 'object-influenced' static 

view with an 'event causality' dynamic view [Nance and Overstreet 1986]." Set ordering 

provides the ability to represent timed events and a system state can be represented in a 

database. A function can be determined which transforms the database from state to 

state. Yet, such a transformation cannot be clearly depicted apart from the model imple­

mentation. Thus, model dynamics are difficult to represent. 

Markowitz et a1. [1983,1984] raise interesting comparisons between the EAS and ER 

approaches. The EAS approach is very similar to the ERA in that it allows the modeler 
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to more naturally represent the system of concern. Entities, attributes, and relationships 

are the cornerstones of the approaches. The EAS approach is inherently able to contain 

more information than the ERA due to the set ordering. Yet it is difficult to describe 

many-to-many relationships in the EAS approach. 

2.12 The Conical Methodology (CM) 

Aimed at assisting the modeler during the model development phases of the model 

life cycle [Nance et al. 1984; Balci 1986], the Conical Methodology (CM) is a practical 

guide for accomplishing the model development tasks, particularly model definition and 

specification. Furthermore, the CM is based on the object-oriented paradigm in that the 

world is viewed as being composed of objects (model/submodel components) which are 

distinguished by unique features or attributes. 

According to Nance [1986], the CM seeks to achieve five primary objectives (model 

correctness, testability, adaptability I reusability I and maintainability) through the 

effective use of several key principles. Citing from his work, these principles generally 

"state how the objectives of the CM are to be achieved and at the same time what is 

needed so that the development process can realize those objectives." Top-down 

definition and bottom-up specification techniques are at the core of the procedural gui­

dance that is derived from and prescribed by the CM principles. This description 

emphasizes these techniques and discusses them in further detail since are they central to 

the CM and the guidance which it provides as a conceptual framework to the modeler. 

The CM principles which underlie these techniques and which are not covered here are 

fully discussed by Nance [1986J. Of interest, the CM has provided the fundamental gui­

dance for the development of three prototypes of the Model Generator tool of the SMDE 
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[Balci and Nance 1987a, 1987b]. Bottom-up specification is, however, only supported by 

the third prototype which is described by Barger [1986]. 

2.12.1 Top-down Model Definition 

Top-down model definition under the OM is accomplished through a hierarchical 

decomposition of the model into successive submodels. At each level of decomposition, 

attributes, including attribute dimensionality and range of values, are assigned (to the 

particular submodel associated with that level) and are classified by type in accordance 

with Nance's [1986] taxonomy tree. Nance [1981aJ exhaustively defines all elements of 

this tree which is a hierarchical decomposition of the OM attribute types. Summarizing 

briefly, attributes may provide direct knowledge or information about a submodel (indica­

tive) or they may relate a submodel to other submodels (relationa~. Relational attributes 

may be further classified as hierarchical (establishing a "subordination" of one submodel 

to another) or as coordinate (establishing a "bond or commonality" between two submo­

dels). Indicative attributes of a submodel have values assigned once (permanent) or more 

than once (transitiona~. Transitional attributes are classified as status (value assignments 

occur from a limited set of value) or as temporal (values are a function of time). The pro­

duct of the top-down definition stage is a static model representation. 

2.12.2 Bottom-up Model Specification 

In general, "specification is the process of describing system behavior so as to assist 

the system designer in clarifying his conceptual view of the system" [Barger 1986]. Model 

specification requires an "indepth recognition of the interactions among attributes, partic­

ularly as these interactions vary with time" [Nance 1981a]. The modeler must "specify" 
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these interactions with expressions which determine the value assignments to the attri­

butes. The specification task, once completed at some level in the decomposition hierar­

chy, is performed at successively higher levels until there are no further levels to be 

specified (ie.,the top model level has been reached). In contrast to model definition, the 

specification produces a model representation which contains the necessary information 

for model dynamics. In addition, the "typing, dimensionality, and value information sup­

plied by the modeler enable subsequent diagnosis for consistency (type) and correspon­

dence (dimensions and value range)" [Nance 1986]. 

Bottom-up model specification is accomplished by beginning at some base-level sub­

model. The determination of the beginning point for the specification task is an area of 

current research. Nance [1981a] suggests that one might select the submodel which has 

the most assigned attributes. Research by Barger [1986] promotes two possible 

approaches, the "basic method" and the "status attribute approach.". (Barger's work, 

while based upon the application of the OM, was focused upon creating a specification 

which would result in a condition specification. The conclusions derived from this research 

can be applied generally to the application of the eM to derive a useful specification.) The 

basic method prescribes the selection of some submodel attribute, the specification of the 

condtions and actions that result in changed values for that attribute, and the repetition 

of this process for each submodel attribute in the model. The status attribute approach 

is an "extension of the basic method ... " [Barger 1986]. It begins with the selection of 

some status attribute for specification and leads to the full coverage of all status attri­

butes. Such a method could also be applied to both temporal and permanent attributes. 

Barger [1986] suggests that the status attribute approach" ... shows potential for provid­

ing more structure and guidance to model specification ... " than any of the other 
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approaches. 

2.13 Structured Modeling (SM) 

The Structured Modeling approach [Geoffrion 1987a,1987b,1987c] is a bold attempt 

to provide not only a generic framework for model representation but also an environment 

to meet total model developmental needs throughout the model's life-cycle. Many simi­

larities exist between the representation characteristics of this approach and the Conical 

Methodology. Therefore, SM can be used in a top-down model design strategy which 

embodies a similar stepwise refinement approach and which results in a well documented, 

easily communicated design. Life-cycle objectives via an interactive environment are also 

strongly akin to the primary goals of the SMDE (Simulation Model Development 

Environment) research project [Balci and Nance 1987a}. The SMDE is currently being 

directed toward the discrete event simulation domain. However, SM aims to cover the 

same plus other major modeling areas (mathematical programming, database theory for 

data models, conceptual graphs and knowledge representation, graph grammar-based sys­

tems, etc.) [Geoffrion 1987a]. The issues of SM which pertain to model representation will 

be reviewed and described due to their applicability to discrete event simulation and to 

our notion of conceptual frameworks. Modeling environment considerations will not be 

covered. 

The SM framework for model representation uses "a hierarchically organized, parti­

tioned, and attributed acyclic graph" for model semantic and mathematical structure. 

The framework can be decomposed into elemental, generic, and modular structures. 

Each structure serves a determined aim and can be represented in graphical or textual 

form. Most of the existing research conducted by Geoffrion has been concerned with tex-
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tual representations only. The discussion in the following sections highlights the key ele­

ments of each structure and is a summary and paraphrase of Geoffrion's description of 

the basics of 8M [Geoffrion 1987a]. Quotations, unless otherwise specified, are from his 

work. The reader is encouraged to scan the 8M application in chapter 3 in parallel with 

this section. The SM application provides examples of the following concepts. 

2.19.1 Elemental Structure 

The construction of an elemental structure [Geoffrion 1987a] is intended to com­

pletely capture "the definitional detail of a specific model instance." Within Structured 

Modeling, five types of model elements are defined. Primitive entity elements are the 

model primitives which "represent things or concepts." Compound entities are similar to 

the primitive entity elements but are "defined in terms of other things or concepts." 

Primitive entity elements and compound entity elements have no associated value, and 

thus differ from the attribute, function, and test elements which have value. The attribute 

elements represent the properties of model components and have constant value. When 

an attribute element is subjected to the control of a "solver" or executive, the attribute 

element may have variable values. The function elements represent the calculable proper­

ties of model components and have a value which is variable and dependent upon the 

values of other model elements in accordance with some known rule. Test elements are 

similar to function elements but can have only true or false values. 

Model elemental structure is generated through the formation of model elements of 

these types into a directed graph in which the nodes represent the elements. The graph's 

arcs depict a reference "call" for element definition requirements from the calling element 

(in the head node of an arc) to the called element (the tail node). Such graphs are acyclic 
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in that circularity of definition is not desired. Finally, the graphs are attributed (node and 

arc attributes) to represent element values, calculation rules for test and function ele­

ments, and the ordering of nodal arcs. 

Most often, the elemental graph is much too detailed and is therefore difficult to 

represent in a manner which is easy for the modeler to understand. Therefore, it is com­

mon to use a table representation of the elemental structure. Such tables are called ele­

mental detail tables. Elemental detail tables contain instance data and low-level model 

information which is necessary for a complete model specification. 

2.19.2 Generic Structure 

The generic structure accomplishes [Geoffrion 19S7a] the grouping of elements 

according to "natural familial" boundaries. In effect, such a grouping is a partition in the 

mathematical sense where each partition is a "cell" or "genus" of elements which have 

"generic similarity." Generic similarity among elements means that "every element in a 

genus calls elements in the same foreign genera." The generic structure thus provides the 

modeler with a natural view of the system under study. By identifying and naming the 

element groupings or genera, the elemental structure graph (elemental graph) can be con­

verted to the generic structure graph (genus graph). 

2.19.9 Modular Structure 

The modular structure [Geoffrion 19S7a] is a further refinement on the generic struc­

ture. The modular structure is created in order to bring into play the concepts of data 

abstraction and information hiding. "Modules" are formed by grouping the genera "into 

conceptual units ... according to commonality or semantic relatedness." Modules, them-
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selves, can then be grouped into higher order modules. In this way, complex models can 

be simplified into a representation which will be better understood. The modular struc­

ture is essentially a rooted tree. The leaves of the tree are the genera and the interior 

nodes (the modules) represent the "conceptual units comprising their descendent genera." 

The entire model is represented by the root node within the modular structure. 

Some final requirements must be maintained by the modular structure. It must be 

capable of being placed into an indented list, "textual" representation. When such a 

representation corresponds to the preorder traversal of the modular structure, it is called 

the modular outline. Furthermore, this type of modular structure is called a monotone if 

it does not include forward references. This monotone requirement is critical so that a 

solver can progressively and effectively update model information on a single pass through 

the modular outline. The acyclicity which is maintained via the elemental and generic 

structure helps to determine this monotone ordering [Geoffrion 1987cJ. 

In summary, the structured model is then an "elemental structure together with a 

generic structure satisfying similarity and a monotone-ordered modular structure 

[Geoffrion 1987c]. 

2.14 Condition Specification (CS) 

There has been a recognized need for effective tools which will support model 

specification and documentation. Nance [1977] suggests a Simulation Model Specification 

and Documentation Language (SMSDL). An SMSDL would facilitate the construction of 

the model specification, encourage model documentation, assist in bridging the comm uni­

cation gap between modeler and customer, and produce a precise, yet sufficiently general, 

model description which is independent of existing simulation programming languages 
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[Barger 1986]. The CS is an SMSDL, suitable for use in a Model Management System 

(MMS) [Nance et aL 1981], which produces a model specification that can be analyzed to: 

• "detect potential problems with the specification" 

• "assist in the construction of an executable representation of the model" and 

• "construct useful model documentation." [Overstreet and Nance 1985] 

The CS, attributed to Overstreet [1982], formalizes the time and state relationships 

of the model by the use of a set of language primitives. The resulting formalism enables 

the precise expression of the model's static and dynamic character and the separation of 

the specification of the dynamics from that of the data. Furthermore, the CS provides a 

representational foundation upon which additional analysis can be conducted for efficient 

model implementation [Overstreet and Nance 1985]. The CS does not dictate the time 

flow mechanism to be used in building the model. The following sections discuss the prin­

cipal components of the CS: the interface speczjication, the specification of model dynam­

ics, and the report speczjication. See [Overstreet and Nance 1985] for a complete descrip­

tion of the primitives which are used to describe and implement the above components. 

Overstreet and Nance (1985] describe a Pascal-like form of the CS which does not 

specify a complete syntax. This is not critical in that the CS may take other forms, as 

long as these other forms define model behavior without ambiguity. 

£.1.1.1 The Interface Specificat£on 

The input and output attributes of the model are described within the interface 

specification [Overstreet and Nance 1985]. These attributes completely specify the com­

munication or transmission links between the model and its surrounding environment. 
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The input and output attributes are identified in the specification by name and are typed 

(input or output, and data type). 

2.LI.2 The Specification of Model Dynamics 

The specification of model dynamics [Overstreet and Nance 1985] consists of a set of 

object specifications and a transition specification. 

The object specification represents a complete listing of all objects (by variable 

name) and the identification of all attributes for each object. A value range is given for 

each attribute. The object specification must contain a "special" object, environment. 

The environment object's attribute listing includes system time and any existing model 

inputs. 

The transition specification contains the description of model dynamics in the form 

of condition and action pairs (CAPs). The condition portion of each CAP is simply a 

Boolean expression "composed of standard operators, model attributes, and the special 

sequencing primitives WHEN ALARM and AFTER ALARM" [Overstreet and Nance 

1985]. The WHEN ALARM primitive allows the description of a determz"ned condition 

(see Section 2.3). The AFTER ALARM primitive enables the specification of actions that 

depend on a combination of time and other attribute conditions, in a compound condition 

expression. Overstreet and Nance [1985J call these mixed conditions. Contingent condi­

tions are represented by Boolean expressions which do not utilize the WHEN ALARM and 

AFTER ALARM primitives. The action in each CAP can be anyone or a combination of 

the following five action types: changing attribute values, sequencing time, creating and 

destroying objects, producing output, or terminating an instantiation of a specification. 

Initialization and termination pairs must be included in the set of CAPs in the transition 
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specification. 

£.L/..9 The Report Specification 

The report specification is defined for the data output or results of model execution. 

Overstreet and Nance [1985) do not prescribe a form or syntax for the report specification 

but suggest that one could use CAPs as in the transition specification. 

2.15 System Theoretic Approach (STA) 

The STA [Zeigler 1976, 1984a] is an approach to model definition and specification 

which contains the ability to identify the static and dynamic structure of the model, uni­

formity and strict hierarchy in the definition of the static structure, and the ability to 

define a range set for variables of the model. The ST A is based on set theory and the sys­

tems modeling formalism and provides a comprehensive, yet general, model representa­

tion. 

The system is the basis for model description and is "a collection of interacting com­

ponent systems" [Zeigler 1984a]. Since this is a recursive definition, hierarchical decom­

position of the model is possible. The incorporation of the ideas and principles of set 

theory also allows abstraction in this approach. 

A system model can be informally represented by describing its components, descrip­

tive variables, and component interaction8. Zeigler [1976] defines these as: 

• components - "the parts from which the model is constructed" 

• descriptive variables - "tools to describe the conditions of the components at points 

in time" and 
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• component interactions - "the rules by which components exert influence on each 

other, altering their conditions and so determining the evolution of the model's 

behavior over time." 

The following paragraphs summarize the STA and introduce its key concepts and termi­

nology [Zeigler 1976, 1984a]. 

2.15.1 Preliminary Concepts for Formal Model Specification 

The definitions above can now be used to introduce a formal model representation. 

Initially, we consider only models which are autonomous, having no input variables. The 

descriptive variables make it possible to fully describe the condition or state of the model 

at any given instant in time. A well-described model is one in which the descriptive vari­

ables at time t can determine those at time t' in the future. The state variables, a subset 

of the descriptive variables which do not include the input variables, can be used to 

accomplish this mapping without having to know the values of all descriptive variables. 

Only values of the state variables need to be available at time t for all values of descrip­

tive variables to be computed (using the rules of component interaction) at future time t ' . 

The rules of component interaction are represented by the state transition function, 

0, and the output function, A. The arguments to 0 are the values of the state variables at 

some time t which 0 maps to a corresponding list of values of the state variables at time 

t'. The output function, A, then takes the results of 0 as its arguments and produces a list 

of values for the output variables which may be the complete set of descriptive variables 

or a subset of the same. The values of the output variables which are produced by A 

represent the status of these variables at time t'. The output variables are those model 

variables (from among the descriptive variables) which the modeler is interested in 
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tracking. 

The state of the model at any time instant t can then be defined as a single list of 

values, each value being determined (in accordance with the transition function) from the 

range set of its corresponding state variable. In set notation, the cross product of these 

range sets represents all possible model states. All possible model outputs can be 

represented in a similar fashion. A single model output would therefore be a single list or 

element of the cross product of the range sets of the output variables. 

An ordered sequence of states (generated by model execution) can be mapped to a 

corresponding sequence of associated times. This mapping is called the state trajectory. 

An output trajectory maps a sequence of outputs to their associated times. The set of the 

state trajectories and the set of output trajectories specify the state and output behavior 

of the model. 

With the consideration of input variables, "variables whose values are determined 

externally to the model" [Zeigler 1976], the concepts and notation change slightly to 

accomodate the case of nonautonomous models. However, the underlying principles 

remain the same. Descriptive variables are now composed of the input and non-input 

variables. When the values of the non-input variables at time t and the trajectory of 

values of the input variables over some time interval t to t' can be used to derive the 

values of the non-input variables at time t', the model is well described. As before, if this 

mapping can be performed with only a subset of the non-input variables and their values, 

then this subset is the set of state variables. The state transition and output functions are 

no longer functions of a single variable. The state transition function, Ohl now maps state 

a.nd input values at time t to state values at time t'. The output function, A, likewise 

maps the resulting state values and the input values to output values at time t'. Zeigler 
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[1976], in describing these non autonomous functions, considers the time invariant discrete 

event model, where the time interval t-t' is equal to h, some time constant. In other 

words, time is stepped into the future at constant intervals rather than random intervals. 

2.15.2 The Discrete Event System Specification (DEVS) 

The formal specification derived thus far must now be changed to allow time to 

increment according to the next-event method which is prevalent in discrete event 

models. Zeigler [1976J refers to the time of the next event as its "hatching" time. DEVS 

incorporates these needed changes. 

The Discrete Event System Specification (DEVS) under the STA is a six-tuple made 

up of INPUTS, STATES, OUTPUTS, 8, A, and ta when the system is made up of 

input variables al,OZ, .. , an 

state variables /31,/321' ., f3n 

output variables '''Yt,''Y21 ... ,In 

countdown clock variables O"h0"21"" O"n .. 

Each element of the six-tuple is defined as follows: 

• INPUTS a set ,the cross product of the range sets of the input variables 

• STATES - a set, the cross product of the range sets of the state variables 

• OUTPUTS - a set, the cross product of the range sets of the output variables 

• 0 - a two-part state transition function 

Oq, - function which maps model state at time t to model state at time t' where 

t' is the model's next hatching time and where no external events occur. 
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bex - function which maps model state at time t and model input at time t+e 

to the model state at time t+e where e time units from time t occurs before the 

next hatching time t' . 

• ).. - output function to derive outputs 

• ta - time advance function which maps a model state (call it 8) at time tj to the 

model's next hatching time. 

The countdown clock variables are a subset of the state variables and can be 

represented at model time ti as a list of values, <71,(72) •.• ,<7n . The time 

advance function derives the time interval to the next hatching time which is 

simply the minimum value of the set of <7; where <7; is greater than or equal to 

zero. Thus, the next hatching time is t;+ta( 8). 

The DEVS sets provide the static structure of the model. Model dynamic structure 

is obtained via its functions. With DEVS, discrete event models can be formally specified. 

DEVS is developed from a more general formalism, the Systems Modeling Formalism 

[Zeigler 1984a]' which encompasses not only the discrete time base, but also a continuous 

time base. Only DEVS is presented here since only the discrete event domain is con­

sidered. 



CHAPTER 3 

APPLYING THE CONCEPTUAL FRAlVIEWORKS 

FOR MODELING 

A TRAFFIC INTERSECTION 

In this chapter, we apply each CF for modeling the Traffic Intersection (TI), shown 

in Figure 3.11 located at the intersection of Price's Fork and Tom's Creek Roads in 

Blacksburg, Virginia. A single traffic light with north, south, east, and west directions 

controls vehicular traffic in each of the intersection's eleven lanes. The central intersec­

tion space is conceptually divided into thirty-five blocks through which the vehicles 

travel. The blocks in a vehicle's path are used as locators for that vehicle as it moves 

through the intersection and enable the representation of a smoothly flowing traffic pat­

tern. 

Each CF under review has been illustrated in its corresponding section by construct­

ing (to varying levels of detail) a model of the traffic intersection (based on the system of 

Figure 3.1) in accordance with the CF's concepts and principles. The CM CF application 

is covered first since it provides a clear description and definition of the TI. This coverage 

serves as a valuable reference to understanding the TI which is the basis for the subse­

quent CF representations of the model. 

The TI was selected because it offers complexity of model component interaction 

unlike that found in the usual textbook examples. Reviewing each CF in the context of 

the TI exposes these CFs to a real world problem. Care is taken to be circumspect in 

drawing conclusions from these CF applications under such a restricted domain. The 

59 



60 

OIUROI 

Prices Fork Rc1. 

D 

K L H I'f· t; <> 
<:.1~ 

o 11(2f3 F I~ 
UllUIIUVUII/jj/jJlllllmlJ \ "',' ~ 
C!::~,. \ s R 4 ft, 6 I Q I G I tR) 
€ ==> \ T \ U I 7 I 8 I 9 r V ~;lllll!llltlllHffl/tI/III!!t!I/j/Uumm(y alii. 

€==¥ ~ I ----------

~ W X Y :--Z _____ ~ 
~~ces FO~KRd. . J 

I ;---... 
pel) • 123 I 311 - C.396 

P(ZR). 40 / 188 • 0.213 

P{5R). 45 / 235 • 0.192 

P(llR). 33 / 266 - 0.124 

Figure 3.1 Th T e raffic Intersection (TI) System 



61 

intent, however, is to develop a starting point for discussion by accomplishing a thorough 

application under a single application domain. Future work under other domains is 

needed. 

3.1 Modeling the TI by using the OM 

The following text is a definition of a Traffic Intersection Model using the eM out-

line. 

Traffic Intersection Model (eM Representation) 

I. Statement of Study Objectives 

To compare current light timings with two other alternative ones to determine if 

average vehicle waiting times can be reduced during "rush hour" traffic conditions 

between 4:45 p.m. and 5:15 p.m. 

A. Definitions 

1. 

2. 

N 

m 

= n urn ber of lanes 

= number of vehicles departing from lane j (j-l,2, ... ,N) 

3. Arrival time = The time at which a vehicle joins the end of the waiting line or 

the time at which the vehicle's front end moves across the first white line in the 

lane. 

4. Departure time = The time at which the vehicle's rear end clears the last white 

line in the path of travel. 

5. IAT
ij 

= Interarrival time of the ith vehicle in lane j (i-l,2, ... ,m;j-l,2, ... ,N). 

= Arrival time of the ith vehicle - Arrival time of (i-l)st vehicle in lane i 

(i-l,2, ... , m; i-1,2, ... ,N). 
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6. Vehicle waiting time = Vehicle departure time - vehicle arrival time 

7. w. j = Waiting time of the ith vehicle in lane i (i-l,2,. .. ,m;i-1,2, ... ,N) 

8. WT
J 

= Waiting time of all vehicles in lane j (i-1,2, .... N) 

m 

= EW 
i-I IJ 

9. E(W
J

) = Expected waiting time of vehicles in lane i (i-1,2, ... ,N). 

m 

=.1.. EW. = .1..wT 
m i-I IJ m J 

B . .Assumptions Regarding Objectives 

1. There is no need to consider pedestrians, bicycles, and broken down vehicles 

due to their negligible effect on the Tl's performance. 

2. Light timing sequence is the root cause of excessive vehicle waiting times. 

II. Modeling Environment 

A. Modeling Effort 

CM outline created to illustrate the CM and to describe the traffic intersection model. 

1. Organization creating model, dates, etc. 

Created by J. Derrick in December 1987. Revised in April 1988. 

2. Scope of the effort in time and money 

Completed in two man-weeks. 

B. Model Assumptions 

1. Boundaries 

The system is bounded by the white intersection lines at the traffic intersec-

tion. Vehicles enter the system model by crossing the "entry" white line if 
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there is no queue at the corresponding light or by joining an existing lane 

queue. Vehicles exit the system when departing the last block in the lane. 

2. Interaction with Environment 

a. Input Description 

(1). Vehicle Interarrival Times 

The vehicle interarrival times (UTi) at each lane follow distributions 

which specify the input and which were determined from observation and 

data analysis using UNIFIT - a distribution fitting software package­

by CS4150 Modeling and Simulation (Winter Quarter 1987) students. 

The fitted distributions (by lane designation) follow. 

• Joint (Lanes 1 and 2) - did not fit a known probability distribution. 

Inverse transformation technique is used to generate random interar­

rival times from the cumulative distribution function in Appendix A. 

• Lane 3 - GAMMA distribution 

Location parameter = 0; Scale parameter = 51.248 

Shape parameter = 1.25989; Mean = 64.5667 

Variance = 3419.5 

• Lane 4 - WE/BULL distribution 

Location parameter = -0.01282; Scale parameter = 10.6646 

Shape parameter = 0.82821; Mean = 11.7417 

Variance = 192.766 

• Lane 5 - same as Joint 
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• Lane 6 - EXPONENTIAL distribution 

Mean = 54.6774 seconds 

• Lane 7 WE/BULL distribution 

Location parameter = 0; Scale parameter = 34.7083 

Shape parameter = 0.86424; Mean = 37.3563 

Variance = 1692.63 

• Lane 8 WEIBULL distribution 

Location parameter = 0; Scale parameter = 56.0592 

Shape parameter = 0.63923; Mean 36.8298 

Variance = 1756.41 

• Lane 9 same as Joint 

• Lane 10 same as Joint 

• Lane 11 - same as Joint 

(2). Lane Travel Times 

Vehicle travel times (through the entire lane) were found to be uniformly 

distributed for each lane but are held constant to the mean in the modeL 

Depending on the number of blocks and their sizes, travel times are 

specified by using appropriate ratios to the mean of each travel time dis­

tribution. For the purposes of the model, these travel times are attri­

buted to the blocks as block processing times. Note that right turn on 

red is modeled. 

• Lane 1 
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Observed Average Travel Time = 5.933 seconds 

Designated Travel Path - I Y 8 4 0 

Block Size Factor (13.1) - 3.3 3.4 1.4 2.5 2.5 

Block Travel Time (ms) - 1495 1540 634 1132 1132 

• Lane 2 (Straight) 

Observed Average Travel Time = 4.873 seconds 

Designated Travel Path - J Z 9 6 3 N D 

Block Size Factor (14.6) - 2.8 2.8 1.4 1.9 1.4 2.1 2.2 

Block Travel Time (ms) - 935 935 467 634 467 701 734 

• Lane 2 (Right) 

Observed Average Travel Time = 2.600 seconds 

Designated Travel Path - J M 

Block Size Factor (5.6) - 2.8 2.8 

Block Travel Time (ms) - 1300 1300 

• Lane 3 

Observed Average Travel Time = 5.036 seconds 

Designated Travel Path - G Q 6 8 X 

Block Size Factor (12.8) - 2.9 2.9 1.4 2 3.6 

Block Travel Time (ms) - 1141 1141 551 787 1416 

• Lane 4 

Observed Average Travel Time = 4.594 seconds 
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Designated Travel Path - F P 3 2 1 0 

Block Size Factor (12.4) - 2.9 2.8 1.4 1.4 1.4 2.5 

Block Travel Time (rns) - 1074 1037 519 519 519 926 

• Lane 5 (Straight) 

Observed Average Travel Time = 3.700 seconds 

Designated Travel Path - E N H L K 

Block Size Factor (11.5) - 2.9 2.9 1.4 1.4 2.9 

Block Travel Time (rns) - 933 933 450 450 933 

• Lane 5 (Right) 

Observed Average Travel Time = 3.155 seconds 

Designated Travel Path - E D 

Block Size Factor (6) - 3 3 

Block Travel Time (ms) - 1578 1577 

• Lane 6 

Observed Average Travel Time = 6.386 seconds 

Designated Travel Path - C H 2 5 9 V 

Block Size Factor (14.1) - 3.3 3 1.4 1.9 1.6 2.9 

Block Travel Time (ms) - 1495 1359 634 860 725 1313 

• Lane 7 

Observed Average Travel Time = 4.852 seconds 

Designated Travel Path - B L 1 4 7 X 
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Block Size Factor (14.5) - 3.2 3 1.4 1.9 1.4 3.6 

Block Travel Time (ms) - 1071 1004 468 636 468 1205 

• Lane 8 

Observed Average Travel Time = 3.660 seconds 

Designated Travel Path - A K 

Block Size Factor (5.1) - 3 2.1 

Block Travel Time (ms) - 2153 1507 

• Lane 9 

Observed Average Travel Time = 5.433 seconds 

Designated Travel Path - S R 4 5 3 N D 

Block Size Factor (13.8) - 2.7 2 1.4 1.7 1.7 2.1 2.2 

Block Travel Time (ms) - 1063 788 551 669 669 827 866 

• Lane 10 

Observed Average Travel Time = 3.567 seconds 

Designated Travel Path - T U 7 8 9 V 

Block Size Factor (11.6) - 2.7 1.7 1.5 l.4 1.4 2.9 

Block Travel Time (ms) - 830 523 461 431 431 891 

• Lane 11 (Straight) 

Observed Average Travel Time = 3.967 seconds 

Designated Travel Path - W X Y Z M 

Block Size Factor (10.5) - 3.2 1.5 1.4 1.4 3 



Block Travel Time (ms) 

• Lane 11 (Right) 
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1209 567 529 529 1133 

Observed Average Travel Time = 2.733 seconds 

Designated Travel Path 

Block Size Factor (5.4) 

Block Travel Time (ms) 

(3). Selection Probabilitie8 

W X 

3.4 2 

1721 1012 

With a probability of 0.396 (123/311), a vehicle goes into lane 1. 

With a probability of 0.604 (188/311), a vehicle goes into lane 2. 

With a probability of 0.213 (40/188), a vehicle in lane 2 turns right. 

With a probability of 0.787 (148/188), a vehicle in lane 2 goes straight. 

With a probability of 0.191 (45/235), a vehicle in lane 5 turns right. 

With a probability of 0.809 (190/235), a vehicle in lane 5 goes straight. 

With a probability of 0.124 (33/266), a vehicle in lane 11 turns right. 

With a probability of 0.876 (233/266), a vehicle in lane 11 goes straight. 
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(4). Current Light Timing Sequences 

The following light timing sequence is determined from observed data. 

Direction: North to South and South to North 

green red red 

[---------------] [=j [========================] 

20 1 29 

Direction: East to West 

red red red green 

[============] ( ] 1===:======1[--------------] 

20 1 13 16 

Direction: West to East -..::; ftp~J 

red red green 

================1 [=] [---------------,.~---------] 

20 1 29 / 

(5). Lane Capacity Requirements 

Only 5 vehicles can wait in Lane 1 and only 5 vehicles can wait in lane 2. 

This means that vehicles (which have arrived in the joint lane) must wait 

at the head of the joint lane for available lane space in lane 1 or 2 as 

appropriate. 

(6). Intersection Clearance Checks 

The model simulates an intersection clearance check for all vehicles turn­

ing left into oncoming traffic (lanes I, 3, 6, and 9). In addition, an inter­

section clearance check is made prior to entering the intersection. This 
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check is made beyond the normal checks for vehicles waiting to enter the 

intersection (i.e., light green [or red if turning right], and first block free). 

Vpon a change of light from green to red, this intersection check is only 

made by the first vehicle in lanes 1, 2, 6,7,8,9, 10, or 11 that enters the 

intersection at that time. Vehicles in lanes 3, 4, and 5 do not make this 

intersection clearance check on a light change to green since west to east 

traffic (with a leading green) has already checked the intersection clear. 

All vehicles turning right on red must check the intersection clear before 

proceeding. The following clearance check requirements were followed: 

(a). Left Turn Clearances 

A vehicle in lane 1 (upon reaching block 8) must check that blocks 4, 

1, L, and B are empty before turning left. 

A vehicle in lane 3 (upon reaching block 6) must check that blocks 

T, V, 7, 8, W, X, and Yare empty before turning left. 

A vehicle in lane 6 (upon reaching block 5) must check that blocks 9 

and Z are empty and that block J cannot be occupied by a lane 2 vehicle 

going straight before turning left. 

A vehicle in lane 9 (upon reaching block 5) must check that blocks 2, 

3, P, F, N, and E are empty before turning left. 

(b). Intersection Entry Clearances 

The first vehicle to enter the intersection from lanes 1, 2, 6, 7, or 8 

after the light has just turned green must check that blocks L, H, N, 1, 2, 

3, P, F, S, R, 4, 5,6, Q, G, T, V, 7, 8,9, Y, and Z are empty AND block 
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E is not occupied by a lane 5 vehicle before entering the intersection. 

The first vehicle to enter the intersection from lanes 9, 10, or 11 

after the light has just turned green must check that blocks B, L, 1, 4, 7, 

C, H, 2, 5, 8, Y, I, 6, 9, and Z are empty AND that block J is not occupied 

by a lane 2 vehicle going straight. 

(c). Right Turn Clearances 

A lane 2 vehicle wishing to turn right on red must check that blocks 

J, Z, and Yare empty AND that blocks X and Ware not occupied by a 

lane 11 vehicle going straight. 

A lane 5 vehicle wishing to turn right on red must check that blocks 

E, N, 3, 6, and Z are empty and that blocks 9 and J are not occupied by a 

lane 2 vehicle going straight. 

A lane 8 vehicle wishing to turn right on red must check that blocks 

A, K, L, H, and N are empty and that block E is not occupied by a lane 5 

vehicle going straight. 

A lane 11 vehicle wishing to turn righ t on red must check that 

blocks W, B, L, 1, and 7 are empty and that block 4 is not occupied by a 

lane 7 vehicle going straight. 

b. .Assumptions on Model/Environment Feedback or Effects 

(1) The system boundary does not include adjacent intersections. Cross 

effects may be observed in the model due to potential interaction during 

the "rush-hour" period. 
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(2) Random number generator seeds are strictly controlled during each repli­

cation to ensure that comparison of results using alternative light 

sequences will be valid. 

c. Output and Format Decisions 

The performance measures (Average Waiting Time in Lane j) with desig­

nating titles are given as output. In addition, the model constructs 

confidence intervals (of these performance measures) which are also pro­

vided. 

3. Initial State Definition 

The initial state definition includes: 

No vehicles in system. 

Light colors are north-south (green), east (red), and west (red). 

4. Simulation Termination Conditions 

The simulation is effectively terminated for each run based on the number of 

replications desired and the number of vehicles to be processed. For a given 

light sequence, the model conducts a certain number (say x) of replications. 

Each replication warms up the system by processing a certain number of vehi­

cles (say y) which specifies a transient period. Following the transient period, 

the steady state period for each replication is based on the processing of an 

additional number of vehicles (say z). The values of x, y, and z are prescribed 

by the input. 

III. Model Definition 

A. Model 
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1. Sets: None 

2. Indicative Attributes 

System time: temporal transitional indicative 

Units: 1/1000 seconds 

Maximum number of departures from system in transient period: permanent 

indicative, with value assigned at system time = zero. 

Maximum number of departures from system in steady-state: permanent indica­

tive, with value assigned at system time = zero. 

Number of departures from system in transient period: temporal transitional 

indicative 

Number of departures from system in steady-state: temporal transitional indica­

tive 

Units (all departures): Integer, Number of vehicles 

Number of model replications: permanent indicative, with value assigned at sys­

tem time = zero. 

Number of Lanes: permanent indicative, with value assigned at system time = 

zero. 

Units: Integer 

3. Relational Attributes: None 

B. Submodels. 

1. Vehicle Submodel 

a. Sets 

Set of vehicles (dset) served in lane j (i-1,2, ... ,N) 
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h. Indicative Attributes 

Waiting tz'me of vehicles in lane j, WT; (i-1,2, ... ,N): temporal transitional 

indicative 

Units: seconds 

Total waiting h'me of vehicles in lane j (i-1,2, ... ,N): permanent indicative, 

with value = WT. assigned when number of departures from system in 
J 

steady-state = Maximum number of departures from system in steady-

state. 

Units: seconds 

Number of vehicles departing from lane j, m (i-1,2 .... ,N): temporal transi-

tional indicative 

Total number of vehicles departing from lane j (i-1,2, ... ,N): permanent indi-

cative, with value = m assigned when number of departures from system in 

steady-state = Maximum number of departures from system in steady-

state. 

Expected waiting time of vehicles in lane j, E(Wi ) (i-1,2, ... ,N): permanent 

indicative, with value assigned when number of departures from system in 

steady-state = Maximum number of departures from system in steady-

state. 

Units: seconds 

c. Relational Attributes: A reference mechanism is necessary for the set of 

vehicles served in lane i (i-1,2,. .. ,N). 

(1). Base level of vehicle submodel: Each vehicle is an object. 
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(a). Sets: members of the set of vehicles served in lane i (i-1,2, ... ,N). 

(b). Indicative Attributes 

Waiting time: permanent indicative, with value assigned at 

time of vehicle's departure from system. 

Arrival time: permanent indicative, with value assigned at time 

of vehicle's arrival to system. 

Direction of movement (right or straight): permanent indica­

tive, with value assigned at vehicle's arrival to system. 

Lane identifier (Lane number): permanent indicative, with 

value assigned at vehicle's arrival to system. 

(c). Relational Attributes: Each vehicle has membership in the set 

of vehicles served in lane i (i-1,2, ...• N). 

2. Light Submodel (Base Level): The light is an object. 

a. Sets: None 

b. Indicative Attributes 

Sequence duration (for a particular color): permanent indicative, with 

value assigned at system time = zero. 

Units: seconds 

Direction (North-south, West, East): permanent indicative, with value 

assigned at system time = zero. 

Direction color (red, green): status transitional indicative 

c. Relational Attributes: None 

3. Intersection Submodel 
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a. Sets: A reference mechanism is necessary for the set of blocks which form 

a path through the intersection for the vehicle in lane j (i-1,2, ... ,N). 

b. Indicative Attributes 

Clear for left turn: status transitional indicative 

Clear for entry: status transitional indicative 

Clear for rt"ght turn: status transitional indicative 

Number of Blocks: permanent indicative, with value assigned at system 

time = zero. 

c. Relational Attributes: None 

(3). Block (Base Level): The block is an object. 

(a). Sets 

Set of blocks (dset) which define a vehicle path from lane j 

( i-1,2, ... ,N) 

(b). Indicative Attributes 

Processing time for vehicles which transit the block: permanent 

indicative, with value assigned at system time = zero. 

Units: seconds 

Identifier: permanent indicative, with value assigned at system 

time = zero. 

Statu8 (busy 1 idle): status transitional indicative 

In use by (Transiting Vehicle identifier): status transitional 

indicative 

(c). Relational Attributes 
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Each block is a member in the set of blocks which define a vehi­

cle path from lane j (i-1,2, ... ,N) 

3.2 The ES CF Application 

The SIMSCRIPT [Kiviat et al. 1983; CAOI 1983] Simulation Programming 

Language (SPL) is used to demonstrate the ES CF. Although the later versions of SIM­

SCRIPT allow the development of models based on the PI CF, such features are not 

included and thus a pure ES CF model is obtained. Since SIMSCRIPT is an SPL, it pro­

vides ease of event manipulation of the events list, (including stochastic scheduling by 

common probability distributions) and built-in statistical collection methods. This sec­

tion includes a detailed discussion of 

• the SIMSCRIPT preamble in which the appropriate declarations of model program 

variables and components are given, 

• the Event Routines, the most singularly distinguishing features of an ES CF, 

and a brief discussion of 

• the SIMSCRIPT main routine, the controlling executive of this ES CF model, and 

• the statistics output of the model. 

9.2.1 The Preamble 

The preamble, portions of which are shown in Figure 3.2, gives a clear indication of 

some of these above mentioned features. The event notices (for those event routines which 

are provided as coded procedures in the body of the program) are declared in the pream­

ble. Event notice declarations may include the specification of any arguments that will be 
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preamble 
1 event notices include 
2 turn.ns.red and turn.ns.green and turn.west.green 
3 and turn.east.green "Event arguments include: 
4 every departure has a out.vehicle " outgoing car 
5 every arrival.blockd has a moving.car.d II incoming car to block 
6 every arrival.blockh has a moving.car.h 
7 
8 every arrival.blockz has a moving.car.z 
9 every arrival.blockl has a moving.car.l 
10 
11 
12 
13 
14 
15 
16 
17 

every arrival.block9 has a moving.car.9 
every turning. left has a left.moving.car 
every enter has a in. vehicle 

"Car making turn 
"Car entering intersection 
"Car arriving lane every arrival. joint has a incoming.carl2 

every arrival.lanel has a incoming.carl 

every arrival.lanell has a incoming.carll 

18 normally, mode is integer 
19 permanent entities 
20 every light has a ns.color, a west.color and a east.color 
21 every block has a status, a laneuser, a turner and owns a block.queue 
22 every lane owns a lane.queue 
23 
24 temporary entities 
25 every car has an arrtime, a laneid,an id and a to. right 

and may belong to a block.queue 
and may belong to a lane.queue 
and may belong to a turn. queue 

26 define arrtime as a real variable 

27 The system has a deps.in.ss, "departures in steady state 
28 a length.of.tp, a length.of.s8, "lengths: transient, S8 pds. 
29 a deps.fm.l, a deps.fm.2, a deps.fm.2r, ' 'departure variables/lane 
30 
31 a wait.in.l, a wait.in.2, a wait.in.2r,"waiting times/lane 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

a numrng , a numruns , 
a clearedns , a clearedwe, 
a counter, a debug, an if 
a gen.1.2 random linear variable, 
a gen.5 random linear variable, 

define wait.in.1 as a real variable 
define wait.in.2 as a real variable 
define wait.in.2r as a real variable 

43 define expon as real fortran function 
44 

"num of rn generators, runs 
"boolean, intersection clear 
"utility variables 
"variables for inverse 
II transformation variate gen 

"type definitions 
" and various index assign­
II ments. 

45 tally mean.wait.in.1 as the mean of wait.in.1 
46 tally mean.wait.in.2 as the mean of wait.in.2 
47 
48 end 

Figure 3.2 Portions of SIMSCRIPT Preamble from ES CF Application 
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required for the event routines (e.g., out.vehicle as an argument to event departure in 

line 4). Notice declarations are included for event routines, for example, that represent 

the changing of the color of the light (e.g., turn.ns.red), departures from the intersection 

(departure), arrivals to the intersection blocks (e.g., arrival.blockd), entrance to the 

intersection transit area (enter), and arrivals to the lanes (e.g., arrivaI.lanel). The 

preamble identifies the permanent entities of the model (e.g., the light, the blocks, and 

the lanes, in lines 19-22) and the temporary entities (the vehicles or cars, line 25). Use­

ful attributes are also declared for these model entities or objects. External functions are 

identified in the preamble. An example of this, shown in line 43, is expon, an external 

Fortran function. The tally key words (lines 45,46) provide the ease of calculating the 

mean waiting times of vehicles in each lane for this model. 

9.2.2 The Event Routines 

In this section, we discuss the principal event routines which are included in the ES 

OF application to the TI, 

• Light color changes, 

• Lane arrivals, 

• Vehicle departure, 

• Vehicle entrance to the intersection, and 

• Block arrivals. 

In accordance with the discussion in Section 2.3, the events associated with the changing 

of -the light color (as well as the lane arrival and departure events) are determined events. 

The events which consider vehicle entrance to the transit area and arrival to the indivi-
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dual blocks are contingent events in that they depend on conditions of light color (in the 

case of the "enter" event), etc., and on the availability of the block for an arrival (Le., Is 

there a vehicle already in that particular block?). 

Figure 3.3 shows the turn.ns.green event routine which represents the state change 

of the north-south direction of the light to the green color. As mentioned, this is a deter­

mined event in that the timing of the light color changes can be predetermined. Note 

that on line 12 this event also includes the bootstrapping of the next color change, accom­

plished by the use of the SIMSCRIPT schedule primitive. Use of the "schedule" primi­

tive places an event notice on the event list at its appropriate ordered position. Here, the 

state change of the north-south direction of the light to red (by the "turn.ns.red" event 

routine) is scheduled in 20 seconds. 

In general, the "turn.ns.green" routine includes statements which demonstrate how 

vehicle movement into the intersection transit area is managed, but more importantly, it 

clearly shows the complexity of interaction among event routines that is discussed in Sec­

tion 2.3. Pidd [1984] states that the event routine must identify all possible actions that 

can occur as a result of the state change associated with the event. The identification of 

contingent events which result from the state change makes the programming task 

difficult for the modeler, especially when the system being modeled is as com plex as the 

TI. 

The state change of the "turn.ns.green" event is accomplished by the assignment 

statements in lines 1,2 and 3. Note also that line 4 sets a control variable, clearedwe, to 

false. This indicates that the intersection must be re-cleared for vehicles to enter the 

intersection from east-west directions. (See Section 3.1 for a full description of the condi­

tions that are necessary for determining entrance to the intersection.) Lines 5 through 11 
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"********************************************************************** 
I 'DESCRIPTION: Event TURN.NS.GREEN; Sets nSf east, and west light , , 
I I 

I , 

, , 

direction colors; schedules turn.ns.red during run, otherwise 
sets ns color red blocking intersection with all red. This 
will clear intersection, prevent further entries, and end run. 
Also sets west-east clearance flag to false. 

, I 

"ATTRIBUTES: None , , 
"INPUT(S) : None 
, I 

"OUTPUT(S): Light attributes of color are set. , , 
"CALLS test.entry for all north-south lanes, and east-west right 
II right turning lanes. 
"CALLED BY: None, scheduled by turn.east.green. 
"*********************************************************************; 
event turn.ns.green 
1 let ns.color(1) - green "Set color attributes 
2 let west.color(l) = red 
3 let east.color(l) = red 
4 let clearedwe - false "Set clearance flag to False 
5 call test.entry.9.to.l1(11,lanell,block.w) 
6 call test.entry.34S(S,laneS,block.e) 
7 call test.entry.12(1,lane1,block.i) "Test various entries 
8 call test.entry.12(2,lane2,block.j) 
9 call test.entry.678(6,lane6,block.c) 
10 call test.entry.678(7,lane7,block.b) 
11 call test.entry.678(8,lane8,block.a) 
12 if deps.in.ss (= length.of.ss "Schedule next light change 

schedule a turn.ns.red in 20 seconds 
13 else 

let ns.color(l) - red "Block intersection 
14 always 
15 end 

Figure 3.3 Event TURN.NS.GREEN 
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are calls to user-defined routines (test.entry) that identify the possible actions that 

might follow from the state change. Figure 3.4 is one such "test.entry" routine that 

determines if vehicles can enter from lanes 6, 7, or 8. If conditions for entry are met, then 

the "enter" event routine, a contingent event, is immediately scheduled. Checking all 

actions that can occur following a state change can, therefore, be a quite tedious and 

error-prone task. 

Figures 3.5 and 3.6 give examples of other determined event routines, a lane arrival 

routine and the departure routine. The arrival.lanel event routine of Figure 3.5 demon­

strates the scheduling of future arrivals and the prevalent complexity of interactions 

among events. Conditions may permit an entrance to the intersection immediately after 

arrival to lane 1. In any case, a new arrival can be scheduled. The departure event rou­

tine, Figure 3.6, includes the calculation of important statistical information (e.g., lane 

waiting times) and frees the last block that was transited by the departing vehicle with 

the user .. defined releese routine (e.g., lines 25, 28, or 30 of Figure 3.6). 

Contingent events enter and a block arrival routine, arrival.blockd, are shown in 

Figures 3.7 and 3.8. These events in turn may result in other instances of contingent or 

determined events. The issue of complexity in interaction is again demonstrated. 

9.2.9 The Simulation Executive or Main 

Figure 3.9, the SIMSCRIPT main routine, is the executive that controls the execu .. 

tion of the simulation. The initialization of variables, seed values and associated matrices, 

and the input of variate generation data and the creation model objects are accomplished. 

The method of replications is performed using a looping construct (line 12), looping on 

the number of desired runs or replications. The initial vehicle arrivals are generated 
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"********************************************************************** 
"DESCRIPTION: Routine TEST.ENTRY.678; Checks conditions for entry from 
" Lanes 6,7,and 8. 
I , 

"ATTRIBUTES: None 
I I 

"INPUT(S) Lane and queue id's of waiting cars, 
II and first block into intersection from their lane 

are passed as arguments. 
, I 

, 'OUTPUT,S) When conditions are right, entry is scheduled. , , 
I I CALLS None , , 
"CALLED BY Turn.ns.red, turn.ns.green, various arrival.block routines. 
,,**************************************************** ******************i 
routine test.entry.678(lane.num,queue.id,first.block) 
1 select case lane.num 
2 case 6,7 
3 if lane.queue(queue.id) is not empty then 

"There are cars waiting to enter from lane.num 
4 if «ns.color(tfclight) - green) and (status(first.block) = idle) 

and «intersection(ns) = idle) or (clearedns = true») 
"Conditions satisfied, remove car at head of waiting queue 
Iland schedule that car for an enter event. 

S remove the first waiting.car from lane.queue(queue.id) 
6 schedule an enter given waiting.car now 
7 always 
8 case 8 
9 if lane.queue(queue.id) is not empty then 

"There are cars waiting to enter from lane 8 that may enter 
"a green light or on a red (right turn) if conditions are right. 

10 if «(ns.color(tfclight) - green) and (status(first.block) - idle) 
and «intersection(ns) = idle) or (clearedns = true») or 
«ns.color(tfclight) = red) and 
(to.right(f.lane.queue(queue.id» = true) and 
(status(first.block) - idle) and (right.ok(queue.id) = true») 
"Conditions satisfied, remove car at head of lane 8 queue 
"and schedule that car for an enter event. 

11 remove first waiting.car from lane.queue(queue.id) 
12 schedule an enter given waiting.car now 
13 always 
14 default 
15 endselect 
16 return 
17 end 

Figure 3.4 User-defined Routine TEST.ENTRY.678 
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"********************************************************************** 
"DESCRIPTION: Event ARRIVAL.LANE1; Car is moved as far as it can go ... 
" into lane1 or on into intersection. Also a check is included 
II for cars waiting in the joint lane to see if any of these cars 
" can be moved into lane1 or 2 (within capacity of 5 limitations). , , 
"INPUT(S) Incoming car, arriving to lane 1 , , 
"OUTPUT(S): Car is appropriately transferred to next destination. 
1 1 

, 1 CALLS None , , 
"CALLED BY: Test.entry.12 and self 
"**************************************************** *****************; 
event arrival.lane1 given carl 
1 if lane.queue(lane1) is not empty 
2 file carl in lane.queue(lane1) 
3 else 
4 if «ns.color(tfcllght) = red) or 

«intersection(ns) = busy) and 
file carl in lane.queue(lane1) 

else 

1 'Must stop in lane 1 

"Check for entry to inters. 
(status(block.i) = busy) or 
(clearedns = false») 

1 'Entry not possible 5 
6 

7 schedule an enter given carl now "OK, enter intersection 
8 always 
9 always 
10 if lane.queue(joint) is not empty "Check for cars in joint 
11 if «laneid(f.lane.queue(joint» = 1) and "Find lane1 car 

(n.lane.queue(lane1) < 5» 
12 remove first joint.car from lane.queue(joint) 
13 schedule an arrival.lane1 given joint.car now 
14 else 
15 if «laneid(f.lane.queue(joint» 2) and "Find lane2 car 

(n.lane.queue(lane2) < 5» 
16 remove first jOint. car from lane.queue(joint) 
17 schedule an arrival.lane2 given joint.car now 
18 always 
19 always 
20 always 
21 end 

Figure 3.5 Event ARRIV AL.LANEI 
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"**************************************************** ****************** 
I 'DESCRIPTION: Event DEPARTUREi Depending on the transient and steady-
" state durations, and on the laneid of the departing car, 
" the waiting time of the car is determined and accumulated into 
" the overall waiting time for that lane. Also in some cases , the 
" last block in the departing car's path is released. 
, I 

"INPUT(S) : The departing car is passed to the event. 
I , 

I'OUTPUT(S): Performance measure variables are updated, some blocks are 
" released. 
I I CALLS releese 
I I 

I 'CALLED BY: None, scheduled by arrival.block events (end path blocks). 
"**************************************************** *****************; 
event departure given a.car 
1 if length.of.tp > 1 
2 length.of.tp - length.of.tp - 1 
3 
4 
5 
6 

7 
8 

9 

else 
if length.of.tp 1 

length.of.tp = 0 
else 

deps.in.ss - deps.in.ss + 1 
if deps.in.ss (= length.of.ss 

select case laneid(a.car) 
10 case 1 

"Decrement transient pd 
" counter, nothing else 

"Decrement tp once more 

"Now into steady-state pd. 
"Keep track of deps in ss 
"Calculate waiting times if 
II during steady-state pd. 

11 wait.in.l = time.v - arrtime{a.car) 
12 case 2 
13 if to.right(a.car) = true 
14 wait.in.2r = time.v - arrtime(a.car) 
15 else 
16 wait.in.2 time.v - arrtime(a.car) 
17 always 

18 default 
19 endselect 
20 always 
21 always 
22 always 
23 select case laneid(a.car) 
24 case 1 
25 call releese(block.o) 
26 case 2 
27 if to.right(a.car) = true 
28 call releese(block.m) 
29 else 
30 call releese(block.d) 
31 always 

32 default 
33 endselect 
34 destroy the car called a.car 
35 end 

Figure 3.6 Portions of Event DEPARTURE 
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,'********************************************************************** 
"DESCRIPTION: Event ENTER; Depending upon where the intersection is 
II entered, the first block is setbusy and an appropriate arrival 
" to the next block 1s scheduled. , , 
"INPUT(S) : The entering car is passed to the event. , , 
"OUTPUT(S): The car is moved into the first block of the intersection 
" and the next block arrival for the car is scheduled. 
"CALLS 
, I 

setbusy 

"CALLED BY: various test.entry routines, various arrival.joint/lane 
1 , events. 
"**************************************************** *****************; 
event enter given a.car 
1 select case laneid(a.car) 
2 case 1 
3 call setbusy(block.i, a.car) 
4 schedule an arrival.blocky given a.car in 1.495 seconds 
5 case 2 
6 call setbusy(block.j, a.car) 
7 if to.right(a.car) = true 
8 schedule an arrival.blockm given a.car in 1.300 seconds 
9 else 
10 schedule an arrival.blockz given a.car in 0.935 seconds 
11 always 
12 case 3 
13 call setbusy(block.g, a.car) 
14 schedule an arrival.blockq given a.car in 1.141 seconds 
15 
16 case 8 
17 call setbusy(block.a , a.car) 
18 schedule an arrival.blockk given a.car in 2.153 seconds 
19 case 9 
20 call setbusy(block.s l a.car) 
21 schedule an arrival.blockr given a.car in 1.063 seconds 
22 case 10 
23 call setbusy(block.t, a.car) 
24 schedule an arrival.blocku given a.car in 0.830 seconds 
25 case 11 
26 call setbusy(block.w, a.car) 
27 if to.right(a.car) = true 
28 schedule an arrival.blockx given a.car in 1.721 seconds 
29 else 
30 schedule an arrival.blockx given a.car in 1.209 seconds 
31 always 
32 default 
33 endselect· 
34 end 

Figure 3.7 Portions of Event ENTER 



87 

"**************************************************** ****************** 
"DESCRIPTION: Event ARRIVAL.BLOCKD; Checks block for availability; 
" If not available, put car in block queue, else ... 
" set block busy, release appropriate blocks or setidle; 
" If event is for arrival to first block in path, do appropriate 
II test.entry check; if last block, schedule departure; 
" If block impacts any clearance check (intersection entry, right 
" turn, or left turn) do appropriate test.entry or test.left. 
I I 

"INPUT(S) : Arriving car is passed to event. 
I , 

I'OUTPUT(S): As indicated in above description. 
I , 

, I CALLS Various test.entry, test.left, turning. left routines 
, I (as applicable), as well as setbusy, setidle, releese. 
, 'CALLED BY: For first blocks, sched. by enter event; If block after 
, I 

I , 

a turn, sched. by turning. left event; Typically scheduled by 
the arrival.block event for the block preceding it in the path 

"**************************************************** *****************; 
event arrival.blockd given a.car 
1 if status(block.d) = busy 
2 file a.car in block.queue(block.d) 
3 else 
4 call setbusy(block.d,a.car) 
5 select case laneid(a.car) 
6 case 2 
7 call releese(block.n) 

"Block is busy, queue up 

"Block available so 
" set block busy 

1 'Lane 2 car 
" free block n, test.entry, 
" and sched departure. 

8 
9 

call test.entry.345(S,laneS,block.e) 
schedule a departure given a.car in 0.734 seconds 

10 
11 

case 5 
call setidle(block.e) 

"Lane 5 car 
" free block e, test.left 
" for lane9, test. entry, and 
" sched a departure 

12 call test.left(from.9 , lane9, block.3) 
13 call test.entry.345(5,lane5,block.e) 
14 schedule a departure given a.car in 1.577 seconds 
15 case 9 "Lane 9 car 
16 call releese(block.n) " free block n, test.left 

II for lane9, test.entry, and 
II sched a departure 

17 call test.left(from.9,lane9,block.3) 
18 call test.entry.12(1,lane1,block.i) 
19 call test.entry.12(2,lane2,block.j) 
20 call test.entry.678(6,lane6,block.c) 
21 call test.entry.678(7,lane7,block.b) 
22 call test.entry.678(8,lane8,block.a) 
23 schedule a departure given a.car in 0.866 seconds 
24 default 
25 endselect 
26 always 
27 end 

Figure 3.8 Event ARRIV AL.BLOCKD 
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"********************************************************************** 
"DESCRIPTION: Main; Performs initializations, schedules initial 
" arrivals, starts the simulation, tallies statistics. , , 
"ATTRIBUTES: None 
, I 

"INPUT(S) : Cumulative distribution data, lanes 1,2,5,9,10,11. , , 
"OUTPUT(S): Statistical data, average waiting times per lane. 
I , 

"CALLS buildseeds, load.seeds, make.objects, statistics, 
" init.run, setup.next.run, load.stats 
"CALLED BY: None 
"*********************************************************************; 
main 
1 call init.run 
2 call build.seeds(numrng,numruns) yielding seed.matrix(*,*) 
3 release seed.v(*) "Setup seeds for use 
4 call load.seeds(numrng,l) yielding seed.v(*) 
5 reserve lane1.matrix(*), lane2.matrix(*), lane2r.matrix(*), 
6 lane3.matrix(*), lane4.matrix(*), laneS.matrix(*), 
7 
8 
9 
10 
11 
12 

read gen.1.2 

call make.objects 
call set.output 
for i = 1 to numruns 

"Read input data 

"Loop for replications 
13 do 
14 
15 
16 
17 

18 
19 
20 
21 
22 
23 
24 
2S 
26 
27 
28 
29 
30 
31 
32 
33 
34 
3S 
36 
37 

create a car called car12 
create a car called car3 

"Create initial car for ea 
" lane. 

end 

schedule a turn.ns.green now "Start light sequence 
"Sched initial arrivals 

arrival. joint given car12 in gen.1.2 seconds schedule 
schedule 
schedule 
~chedule 

schedule 
schedule 
schedule 
schedule 
schedule 

an 
an 
an 
an 
an 
an 
an 
an 
an 

arrival.lane3 given car3 in gamma.f(64.5667,1.25989,S) seconds 
arrival.lane4 given car4 in weibull.f{0.82821,10.6646,6) seconds 
arrival. laneS given car5 in gen.S seconds 
arrival.lane6 given car6 in expon(54.6774,seed.v{9» seconds 
arrival.lane7 given car7 in weibull.f(0.86424,34.7083,10) seconds 
arrival.lane8 given car8 in weibull.f(0.63923,56.0592,11) seconds 
arrival.lane9 given car9 in gen.9 seconds 
arrival.lane10 given carlO in gen.10 seconds 

schedule an arrival.lane11 given carll in gen.11 seconds 
start simulation 
call load.stats(i) "Load perf. measure arrays 
call setup. next. run 
if i < numruns "Load seeds for next run 

release seed.v(*) 
call load.seeds(numrng, i+1) yielding seed.v(*) 

always 
loop 
call statistics(numruns) "Output data 

Figure 3.9 Portions of SIMSCRIPT Main Routine 
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using the SIMSCRIPT defined distribution functions or the user-defined functions in lines 

18-27. Statistical information is included in the output of the model following the comple­

tion of all replications. The start simulation statement at line 28 begins the execution 

of event routines for which there are notices on the event list. The processing of the 

event list is automatically performed and continues until there are no further notices on 

the event list. 

9.2.4 The Statistical Output 

The statistical output, Figure 3.10, is called at the end of the simulation. The mean 

waiting time of all vehicles that have departed a particular lane have been recorded in 

matrices where the name of the matrix indicates the lane of interest. In this way, the 

performance measures of the simulation study are produced. Figure 3.11 shows an exam­

ple of the output(s) from a model execution of three replications. 

3.3 The AS CF Application 

Activity Cycle Diagrams (ACDs) which are discussed below are used to introduce the 

application of the AS CF to the TI. Due to the complexity of the TI with its large number 

of cooperating entities (transiting cars and intersection blocks, in particular), a single 

ACD which incorporates all these interrelations could not practically fit within the space 

limitations of this thesis. Therefore, selected portions of the ACD for the TI are provided 

which should lead one to an understanding of the complete ACD and to an appreciation 

of its complexity. 

Following the selected ACDs, the activity descriptions which are suggested by these 

ACDs are given in a Pascal-like pseudocode. The scope of coverage is restricted once 
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,,********************************************************************** 
"DESCRIPTION: Routine STATISTICS; Displays the performance measures, 
" the average waiting times for the cars in each lane ... and 
" displays the confidence interval calculations. 
, I 

"INPUT(S) number of replications is passed in to routine. , , 
"OUTPUT(S): Performance measures of study 
, I 

, 'CALLS None 
I I 

"CALLED BY: main 
1'*********************************************************************; 
routine statistics(numruns) 
1 define i as an integer variable 
2 use 7 for output 
3 for i 1 to numruns 
4 
5 

do 
print 1 line with lane1.matrix(i), lane2.matrix(i), 

lane2r.matrix(i), 1ane3.matrix(i), lane4.matrix(1), and 
lane5.matrix(i) thus 

***.**** ***.**** ***.**** ***.**** ***.**** ***.**** 
6 loop 
7 use 8 for output 
8 for i 1 to numruns 
9 do 
10 print 1 line with lane5r.matr1x(i), lane6.matrix(i), 

lane7.matrix(i), lane8.matrix(1), lane9.matrix(i), and 
lane10.matrix(i) thus 

***.**** ***.**** ***.**** ***.**** ***.**** ***.**** 
11 loop 
12 use 9 for output 
13 for i-I to numruns 
14 do 
15 print 1 line with lanel1.matrix(i) and lanellr.matrix(i) thus 

*** **** ***.**** 
16 loop 
17 use 6 for output 
18 return 
19 end 

Figure 3.10 User-defined Routine STATISTICS 
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6 
Average waiting time in lane 1 
Average waiting time in lane 2 (str) 
Average waiting time in lane 2 (rt) 
Average waiting time in lane 3 
Average waiting time in lane 4 
Average waiting time in lane 5 (str) 

20.1405 17.6129 11.5898 20.2876 18.2098 18.2914 
20.2678 17.2750 10.9285 20.1956 18.6365 18.0423 
20.4581 17.6032 11.3787 19.8717 18.3187 18.4496 

6 
Average waiting time in lane 5 (rt) 
Average waiting time in lane 6 
Average waiting time in lane 7 
Average waiting time in lane 8 
Average waiting time in lane 9 
Average waiting time in lane 10 

14.2450 19.8322 16.3817 5.8213 13.0041 10.0023 
13.1426 20.3903 16.2367 5.7599 13.1836 9.7661 
13.1975 19.7866 16.6054 5.8273 13.3474 10.0401 

2 
Average waiting time in lane 11 (str) 
Average waiting time in lane 11 (rt) 

11.6745 8.3365 
11.8405 8.4285 
11.6309 8.3136 

Figure 3.11 Output of Three Replications from SrMSCRIPT Model 
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again due to the large number of activity descriptions which would be necessary in a com­

plete representation of the AS CF for the TI. Therefore, only a representative sampling 

of activity descriptions (as described below) are given. A more comprehensive listing 

(names only) of the possible activity descriptions in a complete representation is shown, 

however, to indicate this complexity. The activity descriptions which correspond to the 

"given" ACDs and which deal with Lane 1 car entities and their associated model com­

ponents are covered to provide the necessary link in comprehension from the ACD to a 

possible implementation. The limited coverage of activity descriptions is sufficient for the 

purposes of this thesis. 

The selected ACDs, their associated activity descriptions, and the previous discus­

sion of the AS CF combine to demonstrate the essential concepts of the AS CF. 

9.8.1 Activity Cycle Diagram8 

The Activity Cycle Diagram (or ACD) has been proclaimed to be a useful tool in the 

representation of simulation models in a way which is understandable to managers and 

programmers alike. The ACD is most often associated with the AS CF. However, it has 

been claimed to be more generally applicable [Pidd 1984]. This brief description of the 

ACD is a concise summary of the discussions of Pidd [19841, Hutchinson [1975], and 

Mathewson [1974}. ACDs are attributed to Tocher [1966]. Related terms include entity­

cycle diagrams, wheel chart8 or wheel-cycle diagram8, entity- activity diagram8, and 

HOCUS diagrams. O'Keefe and Davies [1987] suggest a slight variation called an activity 

flow diagram. Tocher [1963] illustrates some general simulation problems with the 

diagrams but the diagrams and their usage were apparently not popularized until a few 

years later. 
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According to Pidd [1984], the ACD can graphically represent the interactions of the 

entities of a model at a high level. When using the ACD, one must identify the entities of 

the model, the activities in which each participates, and how the entities and their activi­

ties relate to one another. In a sense, a graphical life history of each entity and their 

interactions as a whole are provided. A precise specification of the details of these 

interactions is often not shown, however. The diagram serves as a starting point in the 

design process which can be further refined (into other forms) as necessary. Hutchinson 

[1975] states that a "completed" ACD includes activity durations in time units, queue dis­

ciplines to be followed (FIFO, etc.), and the starting conditions of the model. In practice 

it seems, however, that such details of ACD representation vary from modeler to 

modeler. This review covers only the most widely used and basic components of the 

ACD. 

The principal components of an ACD are the active and dead state symbols. The 

active and dead states could be conveniently referred to as busy and idle states and are 

represented by squares and circles, respectively. 

An active state describes an activity of an entity in which there is cooperation with 

another model entity or entities. In addition, the active state may only require one entity 

[Hutchinson 1975]. The duration of the active state can be determined in some way, 

perhaps from a suitable probability distribution. A dead state is a period of unknown 

duration during which the entity is waiting for some condition(s) to hold. Before an 

entity can proceed into an active state from a dead state, all necessary cooperating enti­

ties for the upcoming active state must be available. Dead states are most often 

represented as queues. No activity occurs in the dead state since the entity does not 

experience any changes of state in this waiting condition. Mathewson [1974] discusses two 
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particular dead states (beyond those already mentioned) which have additional symbols. 

The infinity queue represents an infinite source or sink from which entities may be taken 

for entrance to the system or to which they may be returned upon exit from the system. 

A flag indicates a queue of entitities for which the queue discipline is of no interest. Thus, 

the ordering of entities is not maintained by a flag. Instead, the flag is simply a counter 

which registers the total number of entities which occupy the queue. Two dead states, 

touching side-by-side, so as to form the familiar infinity symbol, are used to represent the 

infinity queue. The flag is simply a dead state with a diagonal line inscribed within it. 

By convention, the progression or flow of an entity's activities (as shown by the 

ACD) is an alternating sequence of dead and active states. "Dummy" queues or dead 

states [Hutchinson 1975] are often used in the ACD preceding an active state which 

requires only one entity. The dummy queue serves to maintain the convention of alter­

nating dead and active states, but no time is spent in them by the entities which are pass­

ing through. 

The ACD is able to clearly depict a system's entities and the activities in which each 

entity is engaged. The cooperating activities are easily identified. The ACD focuses 

entirely on a system's entities and is independent of system materials, the number of enti­

ties in the system, and the time requirements of the individual entity activities. The 

ACD provides a "sound basis for a discussion of the logic" of a system and represents a 

suitable foundation upon which a simulation can be built [Hutchinson 1975]. 
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9.9.£ Identification of Model Components for the AS CF 

To build the ACDs which will be used to demonstrate the AS CF application of the 

TI, the entities that are involved must first be identified. The following classes of model 

entities (quantities in parentheses) can be specified: 

Imaginary, permanent entities 

Arrival machines for the Joint Lane and Lanes 3 to 11 (10) 

Real, permanent entities 

Light (1) 

Blocks A to Z (26) 

Blocks 1 to 9 (9) 

Real, temporary entities 

Cars (numerous) 

Resources 

Lane 1 space (5 cars or less) 

Lane 2 space (5 cars or less) 

9.9.9 Listing of Possible Activities 

Arrival Activities 

Activity Name Identifier 

Arrival to Joint Lane (ARRJ) 

Arrival to Lane 3 (ARR3) 

Arrival to Lane 11 (ARRl1) 

Participating entities/resources 

Lane 1/2 Car, Joint Arrival Machine 

Lane 3 Car, Lane 3 Arrival Machine 

Lane 11 Car, Lane 11 Arrival Machine 



Light Activities 

Activity Name 

Light, NS green 

Light, NS red 

Light, West green 

Light, East green 

Finish Activities 

Activity Name 

End Transit Block A 

End Transit Block B 

III III" .... III .. ,. '" 

End Transit Block Z 

End Transit Block 1 

End Transit Block 2 

.. .. III ..... .. ~ • 

End Transit Block 9 

Start Activities 

Activity Name 

Identifier 

(L1) 

(L2) 

(L3) 

(L4) 

Identifier 

(ETRANSA) 

(ETRANSB) 

(ETRANSZ) 

(ETRANSl) 

(ETRANS2) 

(ETRANS9) 

Identifier 

Begin Transit Block A (BTRANSA) 

Begin Transit Block B (BTRANSB) 

Begin Transit Block Z (BTRANSZ) 

Begin Transit Block 1 (BTRANSl) 
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Participating entities/resources 

Light only 

Light only 

Light only 

Light only 

Participating entities/resources 

Block A, Lane 8 Car 

Block B, Lane 7 Car 

........... " 

Block Z, Lane 2 or 11 Car 

Block 1, Lane 4 or 7 Car 

Block 2, Lane 4 or 6 Car 

. .......... 

Block 9; Lane 2,6, or 10 Car 

Participating entities/resources 

Block A, Lane 8 Car 

Block B, Lane 7 Car 

Block Z, Lane 2 or 11 Car 

Block 1, Lane 4 or 7 Car 



Begin Transit Block 2 (BTRANS2) 

Begin Transit Block 9 (BTRANS9) 

Special Activities 

Activity Name Identifier 

Split to Lane 1 or 2 (SPLIT) 
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Block 2, Lane 4 or 6 Car 

Block 9; Lane 2,6, or 10 Car 

Participating entities/resources 

Lane1/2 Car, Lane 1/2 Space Resource 

Turn Left in Lane 1 (TURN.LEFT.!) Lane 1 Car only 

Turn Left in Lane 3 (TURN.LEFT.3) Lane 3 Car only 

Turn Left in Lane 6 (TURN.LEFT.6) Lane 6 Car only 

Turn Left in Lane 9 (TURN.LEFT.9) Lane 9 Car only 

9.9.4 Specific Activity Cycle Diagrams 

The above identification of model entities and associated activities suggests the fol­

lowing limited set of ACDs. Single ACDs are given which associate with the primary 

entities that interact with Lane 1 Cars during its arrival, entry, and transit of the traffic 

intersection. Figure 3.12 shows the Light's ACD with active states in different colors. 

Figure 3.13 is a representative sample of Block ACDs for those blocks in a Lane 1 Car's 

path. Figure 3.14 depicts the ACD for a Lane 1 Car showing the various active and dead 

states through which the car proceeds. Finally, a coordinated ACD is given in Figure 3.15 

which attempts to demonstrate the complex interactions that occur as a Lane 1 car trav­

els through the intersection. 
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NORTH-SOUTH 
GREEN 

WEST 
GREEN 

Figure 3.12 The Light Activity Cycle Diagram 

t Dummy queues; No time is spent in them. 

EAST 
GREEN 



BLOCK I 

TRANSIT 
LANE 1 CAR 

TRANSIT 
LANE 1 CAR 

BLOCK 4 

99 

BLOCKY 

TRANSIT 
LANE 11 CAR 

TRANSIT 
LANE 1 CAR 

TRANSIT 
LANE 7 CAR 

TRANSIT 
LANE 1 CAR 

BLOCKS 

Figure 3.13 Sample of Block Activity Cycle Diagrams 

BLOCK 0 

TRANSIT 
LANE 4 CAR 

TRANSIT 
LANE 1 CAR 

TRANSIT 
LANE 3 CAR 



ARRIVAL 
JOINT 

SPLIT 

TRANSIT 
BLOCK I 

TRANSIT 
BLOCKY 
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SOURCE 

TRANSIT 
BLOCK 0 

TRANSIT 
BLOCK 4 

TURN.LEFTl 

TRANSIT 
BLOCK 8 

Figure 3.14 Lane 1 Car Activity Cycle Diagram 
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Figure 3.15 Coordinated Activity Cycle Diagram 
(Lane 1 Car Path) 

JOINT, LANEl, BLOCKY, BLOCK8, WAlT, BLOCK4, and BLOCKO queues are FIFO. 
AV AU,ABLE is a LANE 1 space resource. 

LANE 4 CAR 
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8.8.5 Activity Descriptions 

To aid the understanding of the following activity descriptions, certain implementa-

tion dependent assumptions are listed which underlie these descriptions. 

(1) Each of the permanent entities has an associated record in which t-cell values and 

other necessary information may be stored. For example, the light entity record 

may allow, in addition to its t-cell value, an indicator of the next light activity. 

Similarly, the intersection block record may contain fields for the t-cell and a 

pointer to the car entity (if any) that is transiting the block. 

(2) The temporary entities (cars) may also have associated records to store lane 

identifier, turn, or similar information. 

(3) Assume absolute system time is used in t-cells. 

(4) The "dueness" of activities (such as activities Ll - L4 or any ETRANS activity dis-

cussed below) is determined by a check on the associated entity's t-cell and record 

information. For example, if the current time equals the t-cell value of the light 

AND the next light activity is an L1, then activity L1 is due. If the current simula-

tion time equals the t-cell value of the Block I entity, then activity ETRANSI is due. 

3.3.5.1 Activity Descriptions associated with the Light 

Activity Ll (the North-south green activity) 
IF L1 is due then begin 

north-south color = green; 
east color = red; 

ELSE 

west color = red; 
intersection previously cleared for west-east traffic = false; 
increment t-cell of the light by 20 seconds; 
identify L2 as light activity which is next due; 
end 
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return control to executive; 

Activity L2 (the North-south red activity) 
IF L2 is due then begin 

north-south color = red; 

ELSE 

intersection previously cleared for north-south traffic = false; 
increment t-cell of the light by 1 second; 
identify L3 as light activity which is next due; 
end 

return control to executive; 

Activity La (the West green activity) 
IF L3 is due then begin 

west color = green; 

ELSE 

increment t-cell of the light by 13 seconds; 
identify L4 as light activity which is next due 
end 

return control to executive; 

Activity L4 (the East green activity) 
IF L4 is due then begin 

east color = green; 

ELSE 

increment t-cell of the light by 16 seconds; 
identify Ll as light activity which is next due 
end 

return control to executive; 

3.3.5.2 Activity Description associated with the Arrival Machine 

Activity ARRJ (Arrival to Joint Lane) 
IF ARRJ is due then begin 

create car (record) for attribute assignment; 
arrival time = current clock time 
select car attribute, Lane 1 or Lane 2; 
IF Lane 2 is selected then 

select additional car attribute, right turn or straight; 
file car in joint lane queue; 
generate time of next ARRJ; 
set t-cell of ARRJ arrival machine to this time; 

ELSE 
return control to executive; 
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3.3.5.3 Special Activity Descriptions 

Activity SPLIT (Moving car from Joint Lane to Lane 1 or 2, splitting) 

Note that this activity is a dummy activity which is included solely for the purpose 

of controlling the decision point in a car proceeding into lane 1 or 2. SPLIT consumes 

zero simulated time. Implementations for this action may vary considerably. The con-

cept of a resource which is covered by O'Keefe and Davies [1987] is utilized. Lane 1 space 

and Lane 2 space are resources which provide space for 5 (or less) cars in lanel and in lane 

2 respectively. This resource must be available for the SPLIT activity to occur. 

IF (Joint Lane is not empty and 
«(head car in Joint is Lane 1) and (a Lane 1 space is available» or 
«head car in Joint is Lane 2) and (a Lane 2 space is available)) 
then begin 

release car from Joint Lane; 
CASE car lane identifier 
Lane 1: begin 

decrement Lane 1 space counter by 1; 
file car in Lane 1 queue 
end; 

Lane 2: begin 
decrement Lane 2 space counter by 1; 
file car in Lane 2 queue 
end; 

end; (* CASE *) 
end (* IF *) 

ELSE 
return control to executive; 

Activity TURN.LEFT.l (Turn Left in Intersection, Lane 1 Cars) 

This activity is also a dummy activity to aid in the decision to turn left. The 

activity may not be performed if clearance to turn left (explained in the CM application 

to the TI) is not available. 

IF Waitl queue is not empty and 
clearance to turn is available then begin 

remove car from Waitl queue; 
add car to Block 4 queue 
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end (* IF *) 
ELSE 

return control to executive; 

3.3.5.4 Activity Descriptions associated with Blocks (in Lane 1 Car Path) 

Activity BTRANSI (Begin Transit Block I or Enter Intersection at Lane 1) 
IF «north-south color = green) and (block I is free) 
and (Lane 1 queue is not empty) and «intersection is clear 
for north-south traffic) or (intersection previously cleared))) 
then begin 

ELSE 

IF (intersection not previously cleared) then 
north-south previously cleared = true; 

release car from Lane 1 queue; 
increment Lane 1 space by one; 
block I = busy; 
identify that Block I is being used by this lane 1 car 
increment t-cell of block I by 1.495 seconds 
end 

return control to executive; 

Activity ETRANSI (End of Transit Block I) 
IF ETRANSI is due now for Block I then 

add car to Block Y queue 
ELSE 

return control to executive; 

Activity BTRANSY (Begin Transit Block Y) 
IF Block Y queue is not empty and Block Y is free then begin 

remove car from Block Y queue; 
Block Y = busy; 
IF car is lane 1 car then begin 

identify that Block Y is being used by this lane 1 car; 
Block I = free; 
increment t-cell of Block Y by 1.540 seconds 
end 

ELSE begin (* Car is lane 11 car *) 
Block W = free; 
identify that Block Y is being used by this lane 11 car 
increment t-cell of Block Y by 0.529 seconds 
end; 

end (* IF *) 
ELSE 

return control to executive; 

Activity ETRANSY (End Transit Block Y) 
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IF ETRANSY is due now for Block Y then begin 
IF car in block Y is lane 1 car then 

add car to Block S queue 
ELSE (*car is lane 11 car *) 

add car to Block Z queue 
end (* IF *) 

ELSE 
return control to executive; 

Activity BTRANS8 (Begin Transit Block S) 
IF Block S queue is not empty and Block S is free then begin 

remove car from Block 8 queue; 
Block S = busy; 
IF car is lane 1 car then begin 

identify that Block 8 is being used by this lane 1 car; 
increment t-cell of Block 8 by .634 seconds 
end 

ELSE IF car is lane 3 car then 

ELSE (* car is lane 10 car *) 
......... , 

end (* IF *) 
ELSE 

return control to executive; 

Activity ETRANS8 (End Transit Block 8) 
IF ETRANS8 is due now for Block 8 then begin 

IF car in Block S is lane 1 car then 
add car to Waitl (to turn left) queue 

ELSE if car is lane 3 car then 

ELSE (* car is lane 10 car *) 

end (* IF *) 
ELSE 

return control to executive; 

Activity BTRANS4 (Begin Transit Block 4) 
IF Block 4 is not empty and Block 4 is free then begin 

remove car from Block 4 queue; 
Block 4 = busy; 
IF car is lane 1 car then begin 

identify that Block 4 is being used by this lane 1 car; 
Block Y = free; 
increment t-cell of Block 4 by 1.132 seconds 
end 

ELSE IF car is lane 7 car then 
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ELSE (* car is lane 9 car *) 
......... , 

end (* IF *) 
ELSE 

return control to executive; 

Activity ETRANS4 (End Transit Block 4) 
IF ETRANS4 is due now for Block 4 then begin 

IF car in Block 4 is lane 1 car then 
add car to Block 0 queue 

ELSE IF car is lane 7 car then 

ELSE (* car is lane 9 car *) 

end (* IF *) 
ELSE 

return control to executive; 

Activity BTRANSO (Begin Transit Block 0) 
IF Block 0 queue is not empty and Block 0 is free then begin 

remove car from block 0 queue; 
Block 0 = busy; 
IF car is lane 1 car then begin 

identify that Block 0 is being used by this lane 1 car; 
Block 8 = free; 
Block 4 = free; 
increment t-cell of Block 0 by 1.132 seconds 
end 

ELSE (* car is lane 4 car *) 
........ " 

end (* IF *) 
ELSE 

return control to executive; 

Activity ETRANSO (End Transit Block 0) 
IF ETRANSO is due now for Block 0 then begin 

IF car in Block 0 is lane 1 then begin 
Block 0 = free; 
waiting time for car = current time - arrival time; 
increment counter of departures from lane 1 by 1; 
total waiting time in lane 1 = waiting time for car 

+ previous total waiting time in lane 1; 
end 

ELSE (* car is lane 4 car *) 

end (* IF *) 
ELSE 

return control to executive; 
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9.9.6 Pr'iority of Activities 

Activities are prioritized during the activity scan to ensure that model behavior is 

accurate. The color of the traffic light is the most critical state condition in the model in 

that it directly influences traffic flow at the intersection. Therefore, the light activities 

receive top priority among all activities. To ensure that a car may proceed smoothly 

along its path, end transit activities (e.g. ETRANS8, etc.) are next checked to free as 

many blocks as possible for cars waiting, delayed in their transit. The processing of 

arrivals (e.g. ARRJ, etc.) is now performed since the system is free of departing cars and 

transiting cars have been moved on to their next block. The SPLIT activity follows the 

Arrival Activities to enable a car that has just arrived to the Joint Lane to be moved on 

into Lane 1 or 2 if possible. Begin service activities (e.g. BTRANS4, etc.) are now checked 

to move cars into the intersection or along their way. Finally, TURN.LEFT activities are 

checked to attempt the further progression of cars in the intersection. 

3.4 The TP A CF Application 

The discussion of the previous section covering the AS CF application is wholly 

relevant to the TPA CF application to the TI. We must now simply identify the activities 

in the AS CF application as B-activities or C-activities. Having done this, the TPA CF 

executive (described in Section 2.5) may proceed as follows and as suggested by Pidd 

[1984]. The A Phase, or Time Scan, may be a scan of entity records which include t-cell 

and a pointer to the next activity for that entity. A once-through scan of these records 

retrieves the min.imum t-cell value of all entities which are due to perform a B-activity 

next. The simulated clock time is then updated to this minimum value. Along the way, 

an ordered list of all the B-activities which are due at this time can be constructed. The 
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executive then executes these activities in order in the B-Phase and proceeds into the C­

phase. The type of list used and the specification of the link between the items (B­

activity designations) in this ordered list to the B-activity descriptions is strictly an 

implementation issue that can be handled in a variety of ways. After conducting the C­

phase as discussed in Section 2.4, the executive returns to the A-phase and repeats this 

cycle until simulation termination conditions are reached. Pidd [1984] presents a particu­

larly straightforward implementation of the TPA CF using BASIM, a Three Phase execu­

tive written in BASIC. 

Several comments to distinguish the TPA CF implementation from that of the AS 

CF (beyond the clear differences in the executive) can be made. First of all, the testheads 

can be removed from those activities which are identified as B-activities. It is also impor­

tant to note that the importance of priorities among activities remains a key issue. The 

activities on the execution list of B-activities should be ordered by priority. The tradi­

tional scan in the C-phase should likewise scan by priority among the C-activities, as 

before. 

Therefore, to complete the description of the AS CF implementation, we need only 

identify the activities of the AS CF as B-activities or C-activities. Implementing the exe­

cutive as described above and in Section 2.5 would complete the TP A CF application to 

the TL The algorithm for the TPA CF executive has already been given, and examples 

which illustrate the executive, like BASIM ( above), are available in the literature. There­

fore, the implementation of the executive will not be covered. 
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9.4.1 Activity Designations in the TPA OF Application 

Activities are specified (below) as B (Bound) or C (Conditional) activities. In 

addition, they are listed in a prioritized order. The activity name identifications which are 

used are the same as those used in the AS CF application. 

9 . ./.2 Listing of B-Activities 

Identifier 

Ll 

L2 

L3 

L4 

ETRANSA 

ETRANSZ 

ETRANSI 

ETRANS9 

ARRJ 

ARR3 

ARRII 

Description 

Light, NS green 

Ligh t, NS red 

Light, West green 

Light, East green 

End Transit, Block A 

End Transit, Block Z 

End Transit, Block 1 

End Transit, Block 9 

Arrival, Joint Lane 

Arrival, Lane 3 

Arrival, Lane 11 
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9.4.9 Listing of C-Activities 

Identifier 

SPLIT 

BTRANSA 

BTRANSZ 

BTRANS1 

BTRANS9 

TURN.LEFT.1 

TURN.LEFT.3 

TURN.LEFT.6 

TURN.LEFT.9 

Description 

Split car into Lane 1 or 2 

Begin Transit, Block A 

Begin Transit, Block Z 

Begin Transit, Block 1 

Begin Transit, Block 9 

Turn left in Lane 1 

Turn left in Lane 3 

Turn left in Lane 6 

Turn left in Lane 9 

3.5 The PI OF Application 

The PI OF application is demonstrated in this section by a detailed examination of 

selected portions of a SIMULA [Birtwistle et al. 1979; Franta 1977] model of the TI. 

SIMULA, like SIMSCRIPT, is an SPL and contains many features which make the pro­

gramming task of a model (built under the PI OF) a much simpler undertaking. Besides 

making available the standard statistical packages which include random variate genera­

tion from common probability distributions, etc., SIMULA also offers language primitives 

which enable process development and their coordinated interaction as coroutines. This 

section discusses these primitives and the essential processes underlying the SIMULA 

model of the TI. In addition, the SIMULA executive and statistical output routines are 
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described in order to complement the discussion and add to its completeness. 

8.5.1 Key SIMULA Primitives 

From the discussion in Section 2.6, the whole of the PI CF is dominated by the con­

cept of the process: its meaning, its construction, and its interactions with other 

processes. SIMULA offers several language primitives or constructs that directly appeal 

to these aspects with creative processor control. This discussion is not intended to pro­

vide in-depth coverage of SIMULA and will be limited to a description of SIMULA object 

behavior, in particular, objects of the class PROCESS (For further details, see Section 

3.10 or [Franta 1977]). For the purposes of this discussion, objects of the class PROCESS 

may be considered to be processes that are associated with the objects contained in the 

modeL We shall refer to these processes as object processes. 

When the new construct is used, an object process data record is created and pro­

cessor control passes immediately to the action statements or code of that newly created 

object process [Franta 1977]. Therefore, "new" is somewhat like a typical procedural call. 

An object process, once generated with "new" construct, may find itself in one of several 

states (active, passive, suspended, terminated) and may exist as a coroutine which can be 

executed in a piecemeal fashion. These state categories are defined [Franta 1977] as fol­

lows: 

• active - executing; only one object process may be active at anyone time. 

• suspended - owning a notice which is in the sequencing set and scheduled for 

activation or reactivation; active but delayed in performing its actions. 

• passive - not active, suspended, or terminated; action statements are not 

exhausted or completed but there is no scheduled activation or reactivation time; 



113 

delay duration is an unknown quantity; idle; may be activated or reactivated by 

another object process . 

• terminated - action statements have been exhausted; will exist as long as it is 

referenced; cannot be activated. 

Object processes may therefore be passivated or activated. The passivate statement 

changes the state of an active object process to a passive state and destroys its notice in 

the sequencing set. A passivated object process experiences a period of conditional delay, 

awaiting the satisfaction of some "wait-until" condition, if any. The activate statement 

generates a new notice and places that notice in the sequencing set. Reactivate cancels 

an active object process and then activates it. The activation or reactivation of an object 

process may be dictated when the period of delay is known and unconditional. A pas­

sivated object process, when later activated or reactivated, begins the execution of its 

actions statements following that point at which it was passivated. This "piecemeal" exe­

cution continues in this fashion until all action statements are completed. 

Therefore, the language primitives, "passivate", "activate", and "reactivate", form 

the basis for process interaction and behavior within SIMULA. The next section, which 

covers the primary processes that cooperate within the SIMULA TI model, provides 

examples of how these primitives are effectively used within process descriptions. Please 

note that there are lower level primitives (resume and detach) that are provided by 

SIMULA. Coverage of these is beyond the scope of this discussion. Franta [1977] pro­

vides excellent coverage of process communication using the "resume" and "detach" prim­

itives. 
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9.S.t Processes of the SIMULA TI Model 

The processes of interest in the SIMULA TI model include a "lightctrl" process 

which represents the light controller that manages the light timing sequences of the inter­

section light, a driver process for each vehicle, and the vehicle (or car) processes. 

The light controller process is shown in Figure 3.16. The entire process is clearly 

described within this code. Colors of the north and south directions are initially set to 

green whereas the east and west directions are red. The process reactivates itself with a 

20 second delay being specified. At this time, the north and south directions become red. 

The prior key word ensures that the notice for this process is placed on the sequencing 

set before all other notices which are to be active at that time. This gives the highest 

priority to the light controller process. Following another 1 second delay, the west direc­

tion becomes green. This state of color is maintained until another reactivation changes 

the east direction to green, 13 seconds later. A final reactivation after 16 seconds repeats 

the process cycle since the process is built around the "while true do" looping construct at 

line 4. 

The driver process for each car controls the car's entrance into the transit area of 

the intersection in the same manner as any real driver does. The driver process for cars 

that travel into the intersection from the north or south lanes is shown in Figures 3.17 

and 3.18. Notice that the driver process checks the appropriate conditions that will allow 

his car to enter the intersection. These conditions (which depend on light color, block 

availability, and intersection clearance) are fully described in the CM definition in Section 

3.1. If anyone condition is not satisfied, the driver will reactivate himself on the sequenc­

ing set in the appropriate location. For example, if the light has not permitted entry, the 

driver places himself after the next light controller activation (line 12). If another 
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************************************************************************ 
* DESCRIPTION: Class definition of the LIGHTCTRL (Light Controller) 
* OBJECT's process. 

* * ATTRIBUTES: lite, the referenced LIGHT OBJECT being controlled. 

* 
* INPUT(S): lite, the LIGHT OBJECT 

* * OUTPUT(S): "red" or "green" status is output to the directions of 
* the LIGHT OBJECT to simulate the light timing sequences. 
* CALLS No procedural calls, but remote access of the LIGHT 
* OBJECT is performed. 
* CALLED BY: Referenced by GENOBJECTS upon creation. 
***********************************************************************; 
1 process class LIGHTCTRL(lite)i 
2 ref(light)lite; 
3 begin 
4 while true do 
5 begin 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

lite. north. setgreen; 
lite.south.setgreen; 
lite.east.setred; 
lite.west.setred; 
reactivate this lightctrl 
lite.north.setred; 
lite.south.setred; 
reactivate this lightctrl 
lite.west.setgreen; 
reactivate this lightctrl 
lite.east.setgreen; 
reactivate this lightctrl 

end; 
end CLASS LIGHTCTRL; 

ISet north and south green 

!Set east and west red 

delay 20 prior; 
set north and south to red; 
for 1 sec clearance. 

delay 1 prior; 
, Set West to green 

delay 13 prior; 
I Now East set to green 

delay 16 prior; 
Now restart the cycle 

Figure 3.16 The LIGHTCTRL Object Process 
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**********************************************************.************* 
• DESCRIPTION: Class Definition of a NS DRIVER OBJECT (North, South) 
• 
* ATTRIBUTES: The traffic light (mylight), the driver's car(mycar), 
• the first block to enter (myblock), and the intersection (road). 
* 
* INPUT(S) The above refereced attributes are input on driver creation. 

* * OUTPUT(S): The driver activates his car at the appropriate times 
* after successful checks for entrance to the intersection OR after 
* successful check for a left turn (if applicable). Otherwise, the 
* driver picks an appropriate place to reactivate himself to check 
* for the right conditions to put his car in motion. The driver 
* effectively provides a "wait-until" capability. 

* 
* CALLS 

* 
The appropriate intersection (road) clearance routine. 

." CALLED BY: The driver is activated by his car to enter the inter-
* section or to turn left once in the intersection. 
***********************************************************************; 
driver class NSDRIVER(mylight, myblock, road, mycar); 
1 ref(light)mylight; ref(block)myblock; ref(intersection)roadj 
2 ref(car)mycari 
3 begin 
4 inspect mycar do begin 
5 if not entered then begin 
6 start: if mylight.north.red then begin 
7 road.clearedns :- false; 
8 if (lane- 2 and right) or lane 
9 goto block; 
10 end 
11 else begin 

Check 
First 

Set 
- 8 then 

! Right 

for entry to inters.; 
check light 
road not clear for ns; 
begin 
turner may continue i 

12 reactivate this nsdriver after controller; 
13 goto start; Restart the check at light; 
14 end; 
15 end; 
16 block: if myblock.busy then begin Next check the first block; 
17 place(this nsdriver); 
18 goto start; 
19 end; 
20 if mylight.north.red and lane eq 2 and right then begin 
21 if not road.r2clear then begin This check for a turner 
22 place(this nsdriver); from lane 2 
23 goto start; 
24 end; 
25 end 
26 else if mylight.north.red and lane 8 then begin 
27 if not road.r8clear then begin This check for a turner 
28 place(this nsdriver); from lane 8 
29 goto start; 
30 end; 
31 end 
32 else if «not road.clearedns) and (not road.nsc1ear» 
33 then begin !Now check intersection clear; 
34 place(this nsdriver); 
35 goto start; 
36 end; 
37 activate mycar after current; 
38 passivate; 

Figure 3.17 NSDRIVER Process 
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39 if lane = 1 then begin 
40 while not road.leftlok do begin 
41 place(this nsdriver); end; 
42 end 
43 else begin 
44 while not road.left6ok do begin 
45 place(this nsdriver)i end; 
46 end; 
47 activate mycar after current; 
48 passivate; 
49 end 
50 else begin 
51 if lane 1 then begin 
52 while not road.leftlok do begin 
53 place(this nsdriver); end; 
54 end 
55 else begin 
56 while not road.left6ok do begin 
57 place(this nsdriver); end; 
58 end; 
59 activate mycar after current; 
60 passivate; 
61 end; 
62 end; 
63 end CLASS NSDRIVER; 

!These checks for left turns 

!Left turn checks, for cars 
that immediately entered 
without initial need of 
driver. 

Figure 3.18 NSDRlVER Process (continued) 
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condition has denied entry, then the user-defined place procedure (lines 17, 22, 28, and 

34) inserts the driver process in the sequencing set after the next non-driver process (the 

next possible process that might change state conditions). Following such placement, go 

to is used to restart the check of conditions at the start label, line 6. Once the entrance 

conditions are satisfied, the driver will immediately activate his car process and will pas­

sivate himself. In most cases, his job has been completed. Cars travelling in lanes 1 and 

6, however, have their drivers reactivated to check for left turn clearance of oncoming 

traffic. See lines 39-63 which cover these instances. 

A car process describes the complete movement of the car including arrival to the 

intersection, transit of the intersection, and subsequent departure. Figure 3.19 describes 

the basic actions of all car processes. There are arriving actions such as recording the 

arrival time (lines 14-16), then specific lane functions which are accomodated by the 

inner key word (line 17), and finally departure actions (lines 19-39) to record data for 

later statistical and performance measure calculations. Additional code, determined by 

the lane association of the car, is essentially inserted at the "inner" construct and 

represents the specific lane functions of the car. Figure 3.20 represents an example of this 

"additional" code which, in this case, is the specific lane function for a car in lane 8. Here 

in lines 3-19, a user-defined procedure transitfm8 gives the specific details of the actions 

that are performed by a car transiting the intersection from lane 8. The setbusy and 

setfree procedures update the busy or free status of the blocks that are crossed during 

the car's transit. Therefore, it is clear that blocks "a" and "k" provide the path for a lane 

8 car. Notice that if block "k" is busy (line 8), the object process is placed on a queue and 

passivated (lines 9 and 10) until the block becomes free and the object process is at the 

head of the queue ("blockqk") of processes waiting for that block. Also, once a car has 
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************************************************************************ 
* DESCRIPTION: Class definition for a CAR OBJECT 
* ATTRIBUTES: Arrive and depart procedures. 
* arrtime arrival time 
* lane - resident lane of car. 
* id - car id number for trace purposes. 
* right - boolean indicating if car is right turner. 
* entered - boolean indicating if car is "in" intersection. 
* INPUT(S) : None 
* OUTPUT(S): Statistics information on departure to waiting time and 
* departure variables. 
* CALLS procedure update upon departure to enter statistics. 
* CALLED BY: Referenced by GENOBJECTS upon creation. 
***********************************************************************; 
process class CARi 
1 begin 
2 real arrtime; 
3 integer lane; 
4 integer id; 
5 boolean right; 
6 boolean entered; 
7 procedure update(waittime, departures);! 
8 name waittime, departures; 
9 real waittime; integer departures; 
10 begin 

Car arrival time 
Resident lane of car 

Right turn boolean 
In or out of intersection 
Update lane waiting time 

and departures in lane 

11 waittime: waittime + time - arrtime; 
12 departures := departures + 1; 
13 end PROCEDURE UPDATE; 
14 id:= ctr + 1; 
15 ctr:= ctr + 1; 
16 arrtime'= time; 
17 inner; 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

if lotp > 1 then 
lotp := lotp - 1 

else begin 
if lotp = 1 then 

lotp .= 0 
else begin 

ndiss: ndiss + 1; 
if lane = 1 then 

update(twt1, deps1) 
else if lane = 2 then begin 

if right then 
update(twt2r, deps2r) 

else 
update(twt2, deps2) 

else if lane = 11 then begin 
if right then 

update(twt11r, depsl1r) 
else 

update(twt11, deps11) 
end 

else; 
if ndiss == loss then begin 

end 
end 

activate main; 
passivate; 
end 

end CLASS CAR; 

Arriving actions 
Set id and next id counter.; 
Set arrival time of car. 
Do specific lane functions 
Now do terminating actions 

OR 

OR 

When in transient pd. 

When entering s. s. 

When in s. s. 
count departures and 
update waiting time 
and t departures 
based on lane that car; 
was in. 

Now departures indicate 
replication is over so 

activate the main program.; 

Figure 3.19 Generic Car Process 
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********************"'**"'*"''''*'''*'''*''''''*******''''''*'''**'''******"'*"''''*****''''''**''''''''''''''' 
'" DESCRIPTION: 
'" 

Class description for a CARS OBJECT, ie a car in 
See description for CARl_2 OBJECT since very similar. 
Inline code comments from CARl_2 also pertain. 
Procedure transitfmS gives process description for cars 
from lane S. 

* * ATTRIBUTES: 
* transiting 

* mydriver - the driver process for the car 
* INPUT(S) 
* 

Transit procedure is given the intersection object 

'" OUTPUT(S) No direct output. 

'" 
'" CALLS 

'" 
Attribute setting procedures of each block transited. 
(setbusy, setfree) 

'" CALLED BY Referenced by main simUlation routine upon creation. 
*****"'**"'***"'****"''''**'''*''''''**********'''''''''*''''''''''''*'''**'''**'''**'''*****"'*"'*"'*"''''''''''''''''; 
car class CARS; 
1 begin 
2 ref(nsdriver) mydriver; 
3 procedure transitfmS(road)i 
4 ref(intersection)road; 
5 begin 
6 square_a.setbusy(this carS); lEnter and transit A 
7 reactivate this carS delay(square_a.findtransit(this carS»; 
8 if square_k.busy then begin !Check K, queue up if busy; 
9 into(blokqk); 
10 passivate; 
11 out; 
12 end; 
13 square_k.setbusy(this carS); !Transit K 
14 square_a.setfree; IRelease A 
15 reactivate this carS delay(square_k.findtransit(this carS»; 
16 square_k.setfreei !Release K 
17 if not blokqk.empty then 
18 activate blokqk.first after current; !Enable cars waiting for Ki 
19 end TRANSITFMS; 

20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

33 
34 
35 
36 
37 
3S 
39 
40 
41 
42 

comment; 
activate new carB delay (weibl(56.0592, 0.63923, seed8»; 

!Generate next arrival 
mydriver :- new nsdriver(tfclight, 

this carS); 
lane :- S; 
right :- true; 
if not lane8.empty then begin 

into(lane8); 
passivate; 
activate mydriver after current; 
passivate; 
out; 
end 

square_a, pforkandtcreek, 
lCreate driver 
!Set attributes 

!Enter laneS queue when 
cars are already in lane; 

!Wait in line for turn 
!At head of line, turn on 
I driver. 

else if «(tfclight.south.red) or (square_a.busy) or 
«not pforkandtcreek.nsclear) and 
(not pforkandtcreek.clearedns») and 
«not right) or (tfclight.south.green) or (square_a.busy) or 
(not pforkandtcreek.rSclear») then begin 
into ( 1 aneB) ; ! Can't immedi a tely enter 
activate mydriver after current; so first in queue, 
passivate; and turn on driver. 
out; 
end; 

if not laneS.empty then 
activate laneS. first after current; 

entered :- true; 
transitfmS(pforkandtcreek)i 

end CLASS CAR8; 

!Ready to enter, so turn 
! on any car waiting in 

lane8 queue. 
!Enter and transit 

Figure 3.20 The CARS Process 
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entered a block (such as the case in lines 13-15), the block is set to "busy" and an uncon­

ditional delay, corresponding to the transit time across the block, is set with a reactiva­

tion statement. The bootstrapping of future arrivals to lane 8 (line 20), the creation of the 

car's associated driver process (line 21), and the setting of the lane identification and turn 

indication attributes (lines 23,24) is included in Figure 3.20. This figure also shows that if 

conditions are right, that is if the conditional traps at lines 25 and 32 are passed, the car 

may immediately proceed into the intersection. Otherwise, the car is queued up in the 

appropriate lane queue, its driver is activated, and the process is passivated (until later 

activated by its driver). 

An important aspect of the above discussion of the processes in the SIMULA model 

is that the modeler is required to maintain control of process activation and passivation. 

This adds to the complexity and difficulty of the modeling task. 

9.5.9 The SIMULA Executive 

The executive, Figure 3.21, is itself a process which first performs initializations 

within the setup routine (line 13), creates the necessary object processes via the genob­

jects routine (line 14), schedules the initial arrivals to each lane in lines 15-25, and then 

passivates itself. The last car to depart the intersection (satisfying simulation termination 

conditions, see Figure 3.19, lines 41-43) activates the executive which then performs the 

statistical output actions. The entire executive process is surrounded by a looping con­

struct (line 4) that indexes on the number of replications, thereby accomplishing the 

method of replications to achieve the desired results of the simulation study objectives. 
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************************************************************************ 
* DESCRIPTION: Traffic intersection simulation using process view. 
* Demonstrates the use of the process interaction world view with 
* an example simulation containing sufficient complexity to show 
* the characteristics which are embodied in the view. The model 
* is a simulation of the intersection of Prices Fork Rd. and Toms 
* Creek Road near the campus of Virginia Tech, Blacksburg, Va. 

* 
* ATTRIBUTES: Not applicable 

* 
* INPUT(S) : Random variates from external FORTRAN routines, 
* WEIBL, GAMA, EXPON, and proper random numbers from RANDM. 
* OUTPUT(S): Performance measures for average waiting times for cars in 
* in each of the eleven lanes and also in lanes 2, 5, and 11 when 
* right turns are being made. The performance measures are output 
* after each replication. 

* 
* CALLS Within the simulation block- Procedures SETUP, 
* GENOBJECTS, and STATISTICS. 
* CALLED BY: User upon execution of the model. 
***********************************************************************; 

1 integer numruns; 
2 integer numrng; 

3 comment 

Number of simulation runs ; 
Number of random generators; 

******** BEGIN SIMULATION MODEL AND LOOPING FOR REPLICATIONS **********; 
4 for i := 1 step 1 until numruns do 
S simulation begin 

6 real twt1, twt2, twt2r, twt3, twt4, twtS; Total waiting time per lane; 

7 integer deps1, deps2, deps2r,deps3, deps4;! Departures in s.s. per lane; 

12 

13 setup(i); Setup for replication 
14 genobjects; Create all model objects 
15 activate controller after current; Generate first arrivals 
16 activate new car12 delay (linear(m1_2a, m1_2b, seed1_2»; 
17 car3 delay (gama(Sl.248, 1.260, seed3»; activate new 
18 car4 delay (weibl(10.6646, 0.82821, seed4»; activate new 
19 carS delay (linear(mSa, mSb, seedS»; activate new 
20 car6 delay (expon(S4.6774, seed6»; activate new 
21 car7 delay (weibl(34.7083, 0.86424, seed7»; activate new 
22 car8 delay (weibl(S6.0S92, 0.63923, seed8»; activate new 
23 car9 delay (linear(m9a, m9b, seed9»; activate new 
24 carlO delay (linear(m10a, m10b, seed10»; activate new 
25 carll delay (linear(ml1a, mllb, seed11»; activate new 
26 passivate; 
27 statistics; !Output statistics 
28 outtext("***************END RUN****************"); outimage; 
29 end SIMULATION RUN; 

30 end MODEL; 
Figure 3.21 The SIMULA Executive or Main Routine 
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8.5.4 The Statistical Output Routine 

The Statistical output routine, Figure 3.22, initializes the performance measure vari­

ables (average or mean waiting times of cars, by lane) and then calculates their value by 

dividing the total waiting time of all cars in a particular lane by the number of depar­

tures of cars in that lane. Output is sent to three separate files. An example of the out­

put for a model execution of three replications is shown in Figure 3.23. 

3.6 The TF CF Application 

In this section, the discussion centers on the block structure of a GPSSjH [Henriksen 

and Crain 1983] model of the TI and the organization of its block structure to formulate 

the model processes. After a short introduction to the model, the central model segments 

or submodels that make up the model processes are reviewed. This part of the discussion 

includes a description of the light submodel and an example lane submodel, in this case, 

from lane 8. Using lane 8 as the example will enable the reader to compare this portion 

of the GPSSjH model with the SIMULA model's corresponding code (Figure 3.20). 

Finally, the overall model executive and its statistical output are covered. 

8.6.1 Introduction to the GPSS/H Model 

GPSSjH is a widely used SPL which is based on the TF CF. The GPSSjH model 

used in this section was developed by Osman Balci, and is a useful example for informa­

tively demonstrating the TF CF with its block-oriented nature and its use of transactions 

which "flow" through the model segments. The GPSSjH model conforms to the descrip­

tion of the eM definition given in Section 3.1 of the TI and supports the listed objectives. 

A general description of the model is displayed in Figure 3.24. Model background, 
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************************************************************************ 
* DESCRIPTION: STATISTICS procedure wraps up all statistical infor 
* for output at the end of each simulation run. 

* * ATTRIBUTES: None 

* 
* INPUT(S) : None 
* OUTPUT(S): Performance measures, average waiting times per lane. 

* * CALLS 

* 
None 

* CALLED BY: Replication within main simulation program. 
****************************************************** *****************i 
procedure STATISTICS; 
1 begin 
2 ref(car)temp; 
3 real awtl, awt2, awt2r, awt3, awt4; 
4 real awt5, awt5r, awt6, awt7, awt6; 
5 real awt9, awt10, awt11, awt11r; 
6 awtl·= OJ awt2 .= OJ awt3 0; 
7 awt4 := O} awt5 := 0; awt6 .- 0; 
8 awt7:= 0; awt6 := OJ awt9 0; 
9 awt10 := 0; awt11: 0; 
10 awt2r:= 0; awt5r := 0; awt11r := 0; 
11 if depsl ne 0 then 
12 awtl := twtl/depsli 
13 if deps2 ne 0 then 
14 awt2 := twt2/deps2; 
15 if deps2r ne 0 then 
16 awt2r := twt2r/deps2r; 

17 if deps11 ne 0 then 
18 awt11 := twt11/depsll; 
19 if depsllr ne 0 then 

!Ave. waiting times for each; 
! lane. 

!Calculate perf measures when; 
there have been departures 

! from a lane. 

20 awt11r := twt11r/deps11ri !Output stats to files 
21 one.outfix(awtl,4,10); one.outflx(awt2,4,10)i one.outflx(awt2r,4,10); 
22 one.outfix(awt3,4,10)i one.outfix(awt4,4,10); one.outfix(awt5,4,10); 
23 one.outimagei 
24 two.outfix(awt5r,4,10); two.outfix(awt6,4,10); two.outfix(awt7,4,10); 
25 two.outfix(awt8,4,10)i two.outfix(awt9,4,10); two.outfix(awt10,4,10)i 
26 two.outimagei 
27 three.outfix(awt11,4,10); three.outflx(awt11r,4,10); 
28 three.outimage; 

29 end STATISTICS; 

Figure 3.22 The STATISTICS Routine 
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6 
Average waiting time in lane 1 
Average waiting time in lane 2 (str) 
Average waiting time in lane 2 (rt) 
Average waiting time in lane 3 
Average waiting time in lane 4 
Average waiting time in lane S(str) 

19.3898 17.2164 10.9081 19.7511 
19.6043 16.9220 11.0476 19.3447 
19.7130 17.1718 10.6509 19.5991 

6 
Average waiting time in lane 5(rt) 
Average waiting time in lane 6 
Average waiting time in lane 7 
Average waiting time in lane 8 
Average waiting time in lane 9 
Average waiting time in lane 10 

13.2123 19.4683 16.4761 5.3249 
13.1906 20.3019 15.4443 4.6897 
12.9573 19.8090 15.4271 5.4018 

2 

Average waiting time in lane 11 
Average waiting time in lane 11(rt) 

11.6123 8.3418 
11.5982 8.7260 
11.6678 8.1801 

17.3328 18.0267 
17.7640 17.9730 
17.8314 17.7925 

13.1209 9.5287 
12.7754 9.8429 
12.7706 9.8029 

Figure 3.23 Output of Three Replications of SIMULA Model 
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************************************************************************ 
* 
* 
* 
* 
* 

A GPSS/H SIMULATION MODEL OF THE 
TRAFFIC INTERSECTION AT 

PRICES FORK AND TOMS CREEK ROADS 

* DESCRIPTION: 
* 

A study was initiated as a term project in CS 4150 
during winter 1987 quarter. The objective of the study 
was to compare the current light timing with two other 
alternative ones to see if the average waiting times 
of vehicles can be reduced to an acceptable level . 

* ... 
... 

* 
* 
* 
* 
* HISTORY 

The whole class participated in data collection and 
UNIFIT package program was used to analyze the data. 
This is a GPSS/H model of the traffic intersection. 

* 
* 

Created By 
Date Created 

Osman Balci 
3 June 1987 

* Revised By 
* Date Revised 
* Revision Notes: 
* 
* INPUTS: 
* 

none 

* OUTPUTS: 
* 

GPSS/H standard output for replications I, 2, 
&NRUNS-1, and &NRUNS. 

* 
* 
* 
* CALLS: 
* 
* 
* 
* 
* 
* 
* 
* 

FILE FT09FOOl Al file containing the confidence 
intervals for the 14 performance measures 

CISUB 

- GAMA 
- WEIBL 

EXPON 

[Note 

Confidence Interval construction 
SUBroutine (FORTRAN) 
Gamma random variate generator (FORTRAN) 
Weibull random variate generator (FORTRAN) 
Exponential random variate generator (FORTRAN) 

GAMA, WEIBL, and EXPON call RAND random 
number generator (FORTRAN)] 

* ACTIVATION: gpssh tomscpf size-c 
* 
************************************************************************ 
* 
* 
* 

* 

* 
* 
* ... 

... 

* 

Time Unit - Milliseconds 

SIMULATE 

OPERCOL 30 

EXTERNAL &CISUB 
EXTERNAL &GAMA 
EXTERNAL &WEIBL 
EXTERNAL &EXPON 

INTEGER &I,&J 
INTEGER &NRUNS 

Compile, Link, Load, and Run 

OPERand start COLumn <- 30 

CI 
RVG 

Confidence Interval 
Random Variate Generator 

CI construction SUBroutine in FORTRAN 
Gamma RVG in FORTRAN 
Weibull RVG in FORTRAN 
Exponential RVG in FORTRAN 

Index Variables Used in DO Loops 
No. of Simulation Runs (Replications) 

Figure 3.24 GPSS/H Model Description, Declarations, and Initiation 
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objectives, initial declarations, and the GPSS initiation sequence are all included in this 

figure. Figure 3.25 records the declaration of the performance measure variables. Four­

teen arrays, distinguished in name by the lane which they represent, hold the average 

waiting times of all cars in that lane. The initialization of sets of random seed values, 

used to recreate the exactly same seed streams and experimental conditions during test 

runs, is also included. Figure 3.25 concludes with a description of the assignments of 

these seed sets, stored in a two-dimensional array MX$SEED, to appropriate random 

number generators. Taken as a whole, Figures 3.24 and 3.25 provide a summary of the 

basis of the GPSSjH model of the TI with insight into some of its implementation details. 

The primary interest in this GPSSjH model is to use it to illustrate the distinguish­

ing features of the TF CF. The model is composed of various submodels or groupings of 

code by function, in particular it includes 

• the LIGHT submodel, 

• an example LANE submodel (LANE 8), 

• the EXPERIMENTAL CONTROL submodel, and 

• the CI (Confidence Interval) CONSTRUCTION sub modeL 

The LIGHT and LANE submodels are model segments which are derived from the 

GPSSjH block statements. Since GPSSjH is an extension of the PI CF, these two submo­

dels are actually process descriptions with a material-oriented perspective, and are clearly 

the most illustrative of the TF CF features. The EXPERIMENTAL CONTROL submo­

del and the CI CONSTRUCTION submodels are both formed from GPSSjH control 

statements. The EXPERIMENTAL CONTROL submodel serves as the executive of the 

modeL CALL control statements to an external FORTRAN routine CISUB delivers the 
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*---------------------~------=---------------------------------------~-~ * There are 14 performance measures (response variables) as defined 
* below. The Ith element of the array contains the Average waiting 
* Time Of Vehicles (AWTOV) in a path of traveling and is obtained from 
* the Ith replication of the simulation model. 

*-------------------------------~-----------------------------------~---* 
REAL &AWTOVIL(30) AWTOV Turning Left from Lane 1 
REAL &AWTOV2S(30) AWTOV Traveling Straight from Lane 2 
REAL &AWTOV2R(30) AWTOV Turning Right from Lane 2 
REAL &AWTOV3L(30) AWTOV Turning Left from Lane 3 

REAL &AWTOVI0S(30) AWTOV Traveling straight from Lane 10 
REAL &AWTOVllS(30) AWTOV Traveling Straight from Lane 11 
REAL &AWTOVI1R(30) AWTOV Turning Right from Lane 11 

* 
CHAR*80 &TITLE Title of a performance measure 

* 
LET &NRUNS-30 Number of Runs (Replications) - 30 

* 
SEED MATRIX MX,&NRUNS,l4 Two-dimensional array containing 
* seeds for random number streams 
* 
*-----------------------------------------------------------------------
* Initialization of MX$SEED with random seed values 

*-----------------------------------------------------------------------
* 

DO &J-l,14 
DO &I-l,&NRUNS 

INITIAL MX$SEED(&I,&J),(13519*RNl) 
ENDDO 

ENDDO 
* *-----------------------------------------------------------------------* Since this is a study of comparing different light timings for the 
* traffic intersection, exactly the same experimental conditions must 
* be used for all alternative light timings corresponding to a repli­
* cation of the simulation run. (RNG - Random Number Generator) 
* RNj's are the GPSS/H internal RNGs. RAND is the FORTRAN RNG. 

*-------~-------------------------~-------------------------------------* RNG 
* ----
* RNI 
* RN2 

* RN3 
* RN4 
* RAND 
* RAND 

* RN5 

* RN6 
'II' RAND 
* RAND 

* RAND 
* RN1 
* RN8 
* RN9 

* RNlO 

Seed Value 
--------------

default 
MX$SEED(&I,l) 
MX$SEED(&I,2) 
MX$SEED(&I,3) 
MX$SEED(&I,4) 
MX$SEED(&I,5) 
MX$SEED(&I,6) 
MX$SEED(&I,1) 
MX$SEED(&I,8) 
MX$SEED(&I,9) 
MX$SEED(&I,lO) 
MX$SEED(&I,ll) 
MX$SEED(&I,12) 
MX$SEED(&I,13) 
MX$SEED(&I,14) 

Used For 

Generating seed values for MX$SEED 
Generating vehicle arrivals to Lanes 1 & 2 
Probabilistic branching to Lane 1 or 2 
Probabilistic right turn or straight from 2 
Generating vehicle arrivals to Lane 3 (GAMA) 
Generating vehicle arrivals to Lane 4 (WEIBL) 
Generating vehicle arrivals to Lane 5 
Probabilistic right turn or straight from 5 
Generating vehicle arrivals to Lane 6 (EXPON) 
Generating vehicle arrivals to Lane 7 (WEIBL) 
Generating vehicle arrivals to Lane 8 (WEIBL) 
Generating vehicle arrivals to Lane 9 
Generating vehicle arrivals to Lane 10 
Generating vehicle arrivals to Lane 11 
Probabilistic right turn or straight from 11 

*--------------------------~--------------------------------------------

Figure 3.25 Performance Measure Variables and Seed Initializations 
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final output of the model, 95 per cent confidence intervals, calculated from the data set 

stored in the performance measure arrays. 

9.6.2 The LIGHT and LANE Submodels 

The LIGHT submodel, Figure 3.26, creates (with the GENERATE statement) a 

single transaction to represent the light controller. As this transaction flows through the 

model segment, block statements are used to easily describe its process. ADVANCE 

statements enable the strict timing control of color (state) changes for the light. These 

state changes are accomplished with the LOGIC switches in which boolean Rand S (red 

and green) values are associated with each light direction (L YTESN - North, South 

and South, North; LYTEEW - East, West; and LYTEWE - West, East). A 

diagram shows the timing sequence of color changes by direction. The process is placed 

in a cycle with the unconditional TRANSFER to the REPEAT label. 

The LANE submodel, Figure 3.27, perhaps most closely demonstrates the use of 

blocks and the flow of transactions. Representative of the other LANE submodels (Note 

that there are eleven others, including LANE!, LANE2, etc.), the LANES sub model "gen­

erates" a transaction representing a vehicle arriving to Lane 8 at timed intervals deter­

mined by the Weibull distribution as shown. The single GENERATE statement accom­

plishes the bootstrapping of future arrivals. Each transaction, once created, will then 

"flow" through the block statements of this model segment, effectively simulating the 

behavior of a Lane 8 vehicle in transit. A boolean variable, ENTER8R, is used to 

specify the conditions necessary for entering the intersection from Lane 8; it is tested with 

the TEST statement to check for proper conditions. The SEIZE and RELEASE state­

ments are effectively used to the modeler's advantage to move the transaction from the 
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*-----------------------~--------------------~----------------------~~~-* 
* L I G H T TIM I N G SUB MOD E L * *-----------------------------------------------------------------------* 
* 
* 

LIGHT TIMING AT PRICES FORK AND TOMS CREEK TRAFFIC INTERSECTION 
(Time values are in seconds) 

* 

* 
'If 'If 

'If Direction: North to South and South to North 
* 
* Lanes green red red 

* 1,2,6,7,8 1--------------------1-1-----------------------------1 
'If 20 1 29 
* 
* Direction: East to west 
* 
* 
* 
* 
* 

Lanes 
3,4,5 

red red red green 

1--------------------1-1------------1----------------1 20 1 13 16 

* Direction: West to East 
* 
* 
* 
* 
* 

Lanes 
9,10,11 

red red green 
1--------------------1-1-----------------------------1 

20 1 29 

* Assumption: 
* 
* 
* 

( 1) Yellow light is included in green. 

*-~-----~-----------------------------------------------------------~---* 
GENERATE , , ,1,1 Generate one transaction representing 

'If light controller with a priority of 1 
* higher than the priorities of vehicles 
REPEAT LOGIC S LYTENSN Light for NS & SN directions is green 

LOGIC R LYTEEW Light for EW direction is red 
LOGIC R LYTEWE Light for WE direction is red 
LOGIC R CLEARNSN Intersection clearance has been checked 

* for NS & SN traffic when light LYTENSN 
'If just turns green 

ADVANCE 20000 Lights stay in this status for 20 sees 
* 

LOGIC R LYTENSN Light for NS & SN directions is red 
* 

ADVANCE 1000 One-second intersection clearance 
* 

LOGIC S LYTEWE Light for WE direction is green 
LOGIC R CLEARWE Intersection clearance is not checked 

* for West to East traffic when light 

* LYTEWE just turns green 
ADVANCE 13000 Lights stay in this status for 13 sees 

* 
LOGIC S LYTEEW Light for EW direction is green 

'If 

ADVANCE 16000 Lights stay in this status for 16 secs 

* 
TRANSFER ,REPEAT Start a new cycle of light timing 

* 

Figure 3.26 LIGHT Submodel 
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*-------------------~--~------------------------------------------------
'* LAN E 8 SUB MOD E L 

*~----~-------------*---~----------------------------------------------~ * Using UNIFIT package program, interarrival times of vehicles to 
'* Lane 8 have been found to fit to a WEIBULL probability distribution 
* with the following parameter values: 

'* Location Parameter - O. 
56.0592 
0.63923 

Mean 
Variance 

36.8298 
1756.41 '* Scale 

* Shape 
Parameter -
Parameter "" 

'* 

*------~---~-----~---~-------~~-----------------------------------~-----* For the vehicle at the front end of Lane 8 to turn right: 

'* If LYTENSN is green, then [ block A must be empty 
'* AND (if LYTENSN has just turned green, then the intersection 
'* should first be cleared for the NS & SN traffic) 
* else [ blocks A, K, L, H, and N must be empty AND block E must 
* not be captured by a straight moving vehicle) ] 

*-----------------------------------------------------------------------
ENTER8R BVARIABLE (LS$LYTENSN*FNU$BLOKA*(LS$CLEARNSN+BV$CLEARNSN»+_ 

(LR$LYTENSN*FNU$BLOKA*FNU$BLOKK*FNU$BLOKL*_ 
FNU$BLOKH'*FNU$BLOKN'*LR$EBUBYSS) 

*-----------------------------------------------------------------------
'* L A N E 8 T R A V E L T I M E S 
'* Observed Average Travel Time - 3.660 seconds 
'* Designated Travel Path - A K 
'* Block Size Factor ( 5.1) - 3 2.1 
* Travel Time Per Block (ms) - 2153 1507 

*-----------------------------------------------------------------------

'* 

'* 
SKIP8R 

GENERATE 

QUEUE 
SEIZE 
TEST E 

TEST E 

LOGIC S 

SEIZE 
RELEASE 
ADVANCE 
SEIZE 
RELEASE 
ADVANCE 
RELEASE 
DEPART 
TERMINATE 

1000*&WEIBL(56.0592,O.63923,MX$SEED(&I,10» 
A vehicle arrives in Lane a 
collect statistics for 8R vehicles STAT8R 

FRONT8 capture front end of Lane 8 
BV$ENTER8R,1 wait until the vehicle can enter the 

intersection from Lane 8 to turn right 
LS$LYTENSN,l,SKIP8R If LYTENSN is red, skip 

the next LOGIC Block 
CLEARNSN 

BLOKA 
FRONTa 
2153 
BLOKK 
BLOKA 
1507 
BLOKK 
STAT8R 
1 

Intersection clearance was checked for 
NS & SN traffic when light LYTENSN 
just turned green 
Capture block A 
Free front end of Lane 8 
Travel on block A 
Capture block K 
Free block A 
Travel on block K 
Free block K 
Record collected statistics 
Exit the intersection 

Figure 3.27 LANES Subrnodel 
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front of Lane 8 (FRONT8) to block K (BLOKK) to block A (BLOKA). If anyone of 

these "facilities" is not available when requested with a SEIZE by the transaction, 

GPSSjH handles this "wait-until" condition at a low-level, hidden from the modeler. The 

modeler need not concern himself with determining "when" the facility becomes available. 

GPSSjH automatically makes the facility available to the transaction at the proper time. 

Execution of the RELEASE makes the facility available to the next waiting transaction, 

if any. 

9.B.9 The EXPERIMENTAL CONTROL Submodel 

Figure 3.28 gives the EXPERIMENTAL CONTROL submodel which resides 

between the DO-ENDDO looping construct, replicating the desired number of model 

execution runs, NRUNS. Each run includes a warmup (transient) period for the first 

5000 transactions. After warmup, the RESET statement resets the statistical data, and 

model execution continues for 30000 additional transactions. The GPSSjH standard 

attribute QT (in conjunction with the designated statistics collection queues STATIL, 

STAT2S, etc.) is specified for use to easily calculate the average waiting time per unit or 

transaction. Indexed on the run number, the performance measure arrays are loaded with 

these values at the GPSSjH LET assignment statements. The RMULT statement then 

specifies the starting seed values for the GPSSjH family of random number generators 

using the }JX$SEED array. At the conclusion of each replication, the CLEAR statement 

zeroes the system clock, statistical counts, and other variables (except the MX$SEED 

array) in setting up for the next replication. 
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*===~==-===---=-=--=====-======-====-=~=~====-===~-=-==--=-====-======== 

* E X PER I MEN T CON T R 0 L SUB MOD E L 
*======================================================================= 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

DO 

START 
RESET 

&I=l,&NRUNS 

SOOO,NP 

Replicate the sima run &NRUNS times 

Warm up the model, produce No Print 
Wipe out all statistics collected 

IF (&I(=2)OR(&I>=(&NRUNS-l» 

ELSE 

ENDIF 

LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 

START 30000 Run for 30,000 vehicles in steady 
state, produce standard GPSS/H output 

START 30000,NP Run for 30,000 vehicles in steady 
state, produce no standard output 

&AWTOYIL(&I)=QT$STATIL/IOOO. 
&AWTOY2S(&I)-QT$STAT2S/1000. 
&AWTOY2R(&I}=QT$STAT2R/IOOO. 
&AWTOY3L(&I)=QT$STAT3L/IOOO. 
&AWTOY4S(&I)=QT$STAT4S/1000. 
&AWTOYSS(&I)=QT$STATSS/IOOO. 
&AWTOYSR(&I)=QT$STATSR/IOOO. 
&AWTOY6L(&I)=QT$STAT6L/IOOO. 
&AWTOY7S(&I)=QT$STAT7S/1000. 
&AWTOY8R(&I)=QT$STAT8R/IOOO. 
&AWTOY9L(&I)=QT$STAT9L/IOOO. 
&AWTOYIOS(&I)=QT$STATIOS/IOOO. 
&AWTOYllS(&I)=QT$STATllS/lOOO. 
&AWTOYIIR(&I)=QT$STATIIR/IOOO. 

IF &I(&NRUNS 
RMULT ,MX$SEED(&I+l,1),MX$SEED(&I+l,2),MX$SEED(&I+l,3),_ 

MX$SEED(&I+l,6),MX$SEED(&I+l,7),MX$SEEO(&I+l,11),_ 
MX$SEEO(&I+l,12),MX$SEEO(&I+l,13),MX$SEED(&I+l,14) 

ENOIF 

CLEAR MX$SEEO Clear for the next replication 

ENOOO 

Figure 3.28 EXPERrMENTAL CONTROL Submodel 
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8.6'4 The CI CONSTRUCTION Submodel 

Following completion of all model replications, the CI CONSTRUCTION submodel 

in Figure 3.29 outputs the confidence interval calculations on the average waiting time 

data at each lane using the external FORTRAN routine CISUB. A typical output from 

the GPSS/H model is shown in Figure 3.30 is based on 30 replications of the GPSS/H 

model based on a transien t period of 5000 transactions and a steady state period of 30000 

transactions. 

3.7 The OOP Application 

SIMULA has traditionally been accepted as "the father of all object oriented 

languages" [Meyer 1987] and is therefore particulary suitable to demonstrate the OOP 

features discussed in Section 2.8. The SIMULA model which was covered in section 3.5 

with respect to the PI CF will again be considered. Now, however, the model will be 

examined to determine how the OOP is utilized to assist the modeler in representing the 

model. We consider this SIMULA implementation for its use of encapsulation, inheri­

tance, and activation/passivation, the principal features of the OOP. Each feature, as 

found in the SIMULA model, is discussed, in turn. 

9. 7.1 Encapsulation 

The SIMULA class concept enables one to package data and its operations in a single 

coded structure. Thus, this package (the object) provides a means of data abstraction for 

a modeler. The SIMULA class has "had great influence on programming language design. 

Languages supporting the idea of data encapsulation (CLU, ALP HARD , MESA, CON­

CURRENT PASCAL) and so-called actor languages used by the artificial-intelligence 
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*-~-----------~~----~~-~------------------------------~-----------------
* C.!. CON S T R U C T ION SUB MOD E L 

*-----~-----------~=--~--~-~~~~----------~----------------------------~-
* 

LET &TITLE-'Average Waiting Time of vehi_ 
cles Turning Left from Lane I' 

CALL &CISUB{&AWTOVIL{l),&NRUNS,&TITLE) 

* 
LET &TITLE~'Average Waiting Time of Vehi_ 

cles Traveling straight from Lane 2' 
CALL &CISUB(&AWTOV2S(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average waiting Time of Vehi_ 

cles Turning Right from Lane 2' 
CALL &CISUB(&AWTOV2R(1),&NRUNS,&TITLE) 

LET &TITLE-'Average Waiting Time of Vehi_ 
cles Turning Left from Lane 3' 

CALL &CISUB(&AWTOV3L(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average Waiting Time of Vehi_ 

cles Traveling Straight from Lane 4' 
CALL &CISUB(&AWTOV4S(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average Waiting Time of Vehi_ 

cles Traveling Straight from Lane 5' 
CALL &CISUB(&AWTOVSS(l),&NRUNS,&TITLE) 

LET &TITLE-'Average Waiting Time of Vehi_ 
cles Turning Right from Lane 5' 

CALL &CISUB(&AWTOVSR(l),&NRUNS,&TITLE) 
* 

LET &TITLE-'Average waiting Time of Vehi_ 
cles Turning Left from Lane 6' 

CALL &CISUB(&AWTOV6L(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average Waiting Time of Vehi_ 

cles Traveling Straight from Lane 7' 
CALL &CISUB(&AWTOV7S(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average waiting Time of vehi_ 

cles Turning Right from Lane 8' 
CALL &CISUB(&AWTOV8R(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average Waiting Time of Vehi_ 

cles Turning Left from Lane 9' 
CALL &CISUB(&AWTOV9L(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average Waiting Time of Vehi_ 

cles Traveling Straight from Lane 10' 
CALL &CISUB(&AWTOV10S(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average waiting Time of Vehi_ 

cles Traveling Straight from Lane II' 
CALL &CISUB(&AWTOVllS(1),&NRUNS,&TITLE) 

* 
LET &TITLE-'Average Waiting Time of Vehi_ 

cles Turning Right from Lane 11' 
CALL &CISUB(&AWTOVllR(l),&NRUNS,&TITLE) 

* 
END Return control to Operating System 

Figure 3.29 CONFIDENCE INTERVAL CONSTRUCTION Submodel 
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Average Waiting Time of Vehicles Turning Left from Lane 1 

NUMBER OF INDEPENDENT OBSERVATIONS 30 
SAMPLE MEAN 19.637207 
SAMPLE VARIANCE 0.294181 
LIST OF INDEPENDENT OBSERVATIONS 

20.086243 19.345398 
19.473602 19.900879 
19.548157 19.550400 
19.564423 19.775482 
18.973450 20.215836 
19.033157 19.168320 

CONFIDENCE INTERVALS: 

ALFA LEVEL 

LOWER LIMIT 
UPPER LIMIT 

0.10 

19.507 
19.767 

19.440018 
19.548843 
19.424332 
19.371231 
21.908401 
19.629761 

0.05 0.025 

19.469 
19.805 

19.435 
19.840 

19.385025 
20.199387 
19.573624 
19.022324 
19.974747 
19.548096 

0.01 

19.393 
19.881 

Average Waiting Time of Vehicles Turning Right from Lane 8 

NUMBER OF INDEPENDENT OBSERVATIONS 
SAMPLE MEAN 
SAMPLE VARIANCE 
LIST OF INDEPENDENT OBSERVATIONS 

4.843784 5.297090 
5.011253 5.157214 
5.252214 5.116699 
5.504000 4.757237 
5.345797 5.316929 
5.039577 6.331944 

CONFIDENCE INTERVALS: 

ALFA LEVEL 

LOWER LIMIT 
UPPER LIMIT 

0.10 

4.940 
5.165 

0.05 

4.907 
5.199 

30 
5.052768 
0.221621 

4.691488 
4.238483 
5.320203 
4.790546 
5.435464 
5.893851 

0.025 

4.877 
5.229 

4.426093 
4.414792 
5.480015 
5.261300 
4.735308 
5.068257 

0.01 

4.841 
5.264 

19.111282 
19.696686 
19.523773 
19.338715 
19.882477 
19.904144 

0.005 

19.364 
19.910 

4.497105 
4.243101 
5.349500 
5.224722 
4.651183 
4.888050 

0.005 

4.816 
5.290 

Figure 3.30 Output of Thirty Replications of the GPSS/H Model 
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community (PLASMA, ACT, SMALLTALK) are ultimately rooted in SIMULA " 

[Kreutzer 1986]. SIMULA has been a forerunner and model for the encapsulation feature 

found in languages supporting the OOP. 

"The class concept is the central concept in the SIMULA programming language" 

[Palme 1976]. This is a strategic statement. The SIMULA class is "a block of data and of 

procedures operating on that data" [Palme 1976]. By partitioning a program and its data 

in such a way, the class provides structure, modularity, and more. "Processes comprised 

of like sets of activities are considered to belong to the same cl.a:3s... At any point in time, a 

number of such processes may exist in a system model, in varying stages of execution. 

Each is an instance or a.b.j,.e.cL of its class, uniquely identified among members of that class 

by certain attributes The behavior of processes of the same class may be described by a 

single set of rules describing the activities of all processes from that class together with a 

set of attribute(s) values for each of the existing processes of that class" [Franta 1977]. 

Figure 3.31 provides an example of as class declaration and describes a light "direction". 

Figure 3.32 gives the class declaration of the light itself. Notice that within this object 

description that four "directions" are created with "new". Encapsulated within each 

direction are the procedural actions set red and setgreen which detail the actions that 

occur in accomplishing the transitions on light color between "red" and "green". The 

light controller's class declaration is shown in Figure 3.33. From the light controller per­

spective, the color transitions are simple to achieve. Taking advantage of the encapsula­

tion of the color transitions, the light controller sends a communication "message" to the 

referenced light object which in turn executes the appropriate direction's "setred" or "set­

green" procedural actions. This is aptly demonstrated in the body of Figure 3.33 where 

the encapsulation feature is clearly utilized. 
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************************************************************************ 
* DESCRIPTION: Class definition for light DIRECTION. 

* * ATTRIBUTES: Color of red or green and procedures to set color to red 
* or green. 
* INPUT(S) None 
* OUTPUT(S): Change in color attribute when called. 

* 
* CALLS 

* 
None 

* CALLED BY: LIGHTCTRL process 
***********************************************************************; 

class direction; 
1 begin 
2 boolean red, green; 

3 
4 
5 
6 
7 

8 
9 

procedure setred; 
begin 

red := true; 
green: false; 

end SETRED; 

procedure setgreen; 
begin 

10 green := true; 
11 red := false; 
12 end SETGREEN; 

13 end CLASS DIRECTION; 

!Sets light red 

lSets light green 

Figure 3.31 Class DIRECTION 
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************************************************************************ 
* DESCRIPTION: Class definition for the LIGHT OBJECT. 

* * ATTRIBUTES: north, south, east, and west. Represent the directions 
* of the light. Each direction may hold "red" or "green". 
* INPUT(S) None 
* OUTPUT(S): None 

* 
* CALLS None 

* 
* CALLED BY: The referenced light object is called by the LIGHTCTRL 
* Process 
***********************************************************************; 

class LIGHT; 
1 begin 
2 ref(direction) north, south, 
3 north new direction; 
4 south new direction; 
5 east new direction; 
6 west new direction; 
7 end CLASS LIGHT; 

east, west; 
!Set directions 

Figure 3.32 Class LIGHT 
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************************************************************************ 
* DESCRIPTION: Class definition of the LIGHTCTRL (Light Controller) 

* * ATTRIBUTES: lite, the referenced LIGHT OBJECT being controlled. 

* * INPUT(S): lite, the LIGHT OBJECT 
* OUTPUT(S): "red" or "green" status is output to the directions of 
* the LIGHT OBJECT to simulate the light timing sequences. 
* CALLS No procedural calls, but remote access of the LIGHT 
* OBJECT is performed. 
* CALLED BY: Referenced by GENOBJECTS upon creation. 
***********************************************************************i 

process class LIGHTCTRL(lite); 
1 ref(light)lite; 
2 begin 
3 while true do 
4 begin 
5 lite.north.setgreen; 
6 lite. south. setgreen; 
7 11te.east.setred; 
8 lite.west.setred; 
9 reactivate this lightctrl 
10 lite.north.setred; 
11 lite.south.setred; 
12 reactivate this lightctrl 
13 lite.west.setgreeni 
14 reactivate this lightctrl 
15 lite.east.setgreen; 
16 reactivate this lightctrl 
17 end; 
18 end CLASS LIGHTCTRLi 

delay 

delay 

delay 

delay 

!Set north and south green 

ISet east and west red 

20 prior; 
Set north and south to red; 
for 1 sec clearance. 

1 prior; 
Set West to green 

13 prior; 
Now East set to green 

16 prior; 
Now restart the cycle 

Figure 3.33 Class LIGHTCTRL 
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9. 7.!2 Inheritance 

Concatenation is a binary operation on two SIMULA class declarations. The result 

of this operation is a new class, formed by "merging the attributes of both components 

(classes), and then combining their action (executable) statements" [Franta 1977]. For 

example, the class declaration of a model block object is shown in Figure 3.34. Now, Fig­

ure 3.35 illustrates the concatenation of the classes BLOCK and BLOCKA. As shown, 

"BLOCKA" is now called a subclass of "BLOCK". A class BLOCKA object is called a 

compound object. The result of this concatenation operation is that the instantiation of 

the BLOCKA object fully acquires (inherits) the attributes of the class BLOCK object as 

well as the additional attributes found in the class BLOCKA declaration. Hierarchical 

decomposition is then very easily done by the concatenation operation. Figures 3.19 and 

3.20 in Section 3.5 also represent a clear example of the inheritance characteristic of the 

OOP. The attributes of the generic car (arrival and departure actions) were inherited by 

the individual cars which incorporated their own specific lane actions in their class 

declarations. 

9.7.9 Activation and Passivation 

A complete discussion of the activation and passivation features of the SIMULA 

model was provided in Section 3.5. Figure 3.20 in Section 3.5 (referred to above) includes 

the SIMULA "activate" and "passivate" primitives which enable the saving and restora­

tion of an object's state between its periods of activity. 
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************************************************************************ 
* DESCRIPTION: Class Definition of generic intersection BLOCK OBJECT 

* 
* ATTRIBUTES: busy - boolean, occupied by transiting car 
* laneuser - lane identification of transiting car 
* turner - boolean, car is a right turner 
* setbusy/free - set user variables and value of busy 
* free checks status of block attribute "busy" 

* 
* INPUT(S) : procedure setbusy is given pointer to transiting car 
* OUTPUT(S): procedure free returns status of "busy" attribute 

* 
* CALLS 

* 
None 

* CALLED BY: Transiting car during transit routine (transitfm2, etc.) 
***********************************************************************; 

class BLOCK; 
1 begin 
2 boolean busy; 
3 integer laneuser; 
4 boolean turner; 

S 
6 
7 
8 
9 
10 
11 

procedure setbusy(user)} 
ref(car) user; 
begin 

laneuser := user. lane; 
turner user.right; 
busy .= true; 

end; 

12 procedure setfree; 
13 begin 
14 
lS 
16 
17 

18 
19 
20 

21 
22 
23 
24 

laneuser := OJ 
turner := false; 
busy .= false; 

end; 

boolean procedure free; 
begin 

if not busy then 
free .= true 

else 
free .= false 

end FREE; 

25 end CLASS BLOCK; 

!Identify the user 

!Set busy = true 

!Reset user to nil values 

!Set busy = false 

!Check status of busy 

Figure 3.34 Class BLOCK 
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************************************************************************ 
* DESCRIPTION: Class Definition for BLOCK A OBJECT. 

* 
* ATTRIBUTES: procedure findtransit - determines transit time of car. 

* 
* INPUT( S) : 
* OUTPUT(S): 

procedure findtransit is passed pointer to car object. 
procedure findtransit returns the transit time 

* 
* CALLS 

* 
None 

* CALLED BY: 

* 
Transiting car from transit procedure (transitfm2,etc). 
Also referenced by GENOBJECTS upon creation. 

***********************************************************************; 

BLOCK class BLOCKA; 
1 begin 
2 real procedure findtransit(vehicle); 
3 ref(car)vehicle; 
4 begin 
5 inspect vehicle do 
6 if lane = 8 then !Return transit time based on; 
7 
8 
9 

findtransit 
end FINDTRANSITi 

end CLASS BLOCKA; 

2.153; ! lane id of car. 

Figure 3.35 Class BLOCKA 
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3.8 The PGM Application 

Applying the PGM to the TI was an extremely difficult task. No precedent exists for 

using the PGM in the domain of discrete event simulation. The examples in the litera­

ture all relate to the field of signal processing and provide little, if any, utility in guiding 

the modeling task since the domains of application are so totally different. 

This section presents a discussion of the difficulties that were found in using the 

PGM and also the results of efforts to accomplish the construction of a representation of 

the TI with the PGM. Note that the application which resulted is not meant to be a 

complete specification of the TI. Only portions of the specification were completed, those 

portions that could provide sufficient detail to enable a rough evaluation of the PGM. 

9.B.l A Possible Approach to using PGM 

The PGM is very effective in the context of signal processing applications, a compu­

tationally intensive domain. The reason for this is evident from the principal concepts 

around which the PGM is based. As discussed in Section 2.9, a connected network of 

nodes (the process graph) can be easily described by the PGM to represent a directed 

graph through which data flows from node to node. Each node represents a primitive 

function or computational instance. The necessary input for executing the function or 

computation enters the node from its input "queues" of data flow. The result of the node 

execution is placed on the output queue(s). The time of node execution is determined by 

the availability of the node input data at the input queue(s). Once this "scheduling cri­

terion" is met, the node is executed. The number of data elements that are required at an 

input node (to enable the "firing" of the node) is determined by that input queue's thres­

hold setting. This "firing" of the node is reminiscent of that found among nodes in Petri 
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nets [Peterson 1977J. 

At first glance, it would be reasonable to assume that such representational scheme 

would be perfect for the representation of object flow in a material-oriented manner, 

much like that discussed for the TF CF. As you remember, the activity-cycle diagrams 

(ACDs) in Section 3.3 also present a very similar viewpoint in depicting the direction of 

"entity" movement throughout a model instance as it moves from activity to activity. 

Therefore, a first-look (in a top-down fashion) at the TI might produce a graph instance, 

not unlike that in Figure 3.36 (showing vehicle flow from the Joint Lane and through the 

intersection from Lane 1 only). Vehicles are thought to queue up along the arcs of the 

nodes (the queues) and proceed through the intersection as each node executes, essentially 

pumping the vehicles along. Each node would represent a lane or block or special position 

within the intersection. However, the flow along the graph is determined by the timing of 

the node executions. These in turn are determined by more complex interactions than 

simply the presence of a vehicle at the input queue to a particular node. In addition, 

ECOS [Weitzman 1986] implementation of the PGM does not provide any effective timing 

mechanisms which might enable the delay of a node's output. 

Figure 3.37 represents a more reasonable view to support object interactions within 

the realm of the PGM. Here the nodes (from Figure 3.36) are each transformed into sets 

of nodes as shown by the boxes, now labelled with the identifiers of the previous nodes. 

For example, Block I now becomes a "begin transit" node and an "end transit" node. The 

begin transit node can be fired by signal (CA-SIGNAL) when the conditions are met for 

that node execution. That is, the node will execute when the CA-SIGNAL is present, and 

when vehicles are present at the input of the Lane 1 Queue. When executing, also notice 

that a T-DELAY is output indicating the time delay or transit delay across Block I. 
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Figure 3.36 Initial Vehicle Flow 

NOTES: 
1. Queues a,b,c, and d place competing vehicles in FIFO order for next block. 
2. /mi = from lane, 
3. At queue b, cars from lanes 3 and 10 compete for access 

to block 8. 
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B_SIGNAL 

JOINT 

A-DELAY 

CA-SIGNAL 
SPLIT 

LANE-2( Queue) 

CA-SIGNAL 

BA-SIGNAL 

Figure 3.37 Improved Vehicle Flow 
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Similarly, the end transit node execution will occur when the firing signal (BA-SIGNAL) 

and vehicles in VEILOBJ (Vehicle Object) Queue are present. Thus, we have each node 

representing an event, with firing signals controlling their execution, and the vehicle 

objects being pushed along their path. With this discussion as background, we can now 

classify nodes as B, BA, C, and CA nodes (taking the approach of the TPA) and fit this 

concept to the PGM. Band BA nodes are related to their "bound" activity counterparts. 

The B-nodes are used to determine if a B-activity is due. If due, the associated BA-node 

(the B-node's Action equivalent) is executed. Similarly, the C-nodes represent the test­

heads for the C-activities. If the C-node determines that its condition is satisfied, it sig­

nals its associated CA-node for execution. 

Consider now the diagram of Figure 3.38. An additional graph structure can be 

attached to the Band C-nodes. Its data flow offers the executive control flow to manage 

the simulation. A time scan node receives the delays from nodes that schedule the 

"bound" activities. These delay times are scanned to determine their minimum value. 

This minimum is used to update the clock and to build a list of all the B-activities that 

are due. (Note that the delay times are initialized to enable the initial arrivals to the 

lanes or to O. Each queue which contains a delay time has its threshold set at O. 

Although the threshold setting remains constant for the life of the graph, other NEPs 

(Node Execution Parameters, like read, consume, and produce) may be variable, if so 

declared. The time scan node takes advantage of this variable NEP property to enable 

its selectivity of which delay time queues it will read and consume data on.) Once the 

time scan node execution is complete, the execution signal is passed to the B-nodes. 

These nodes use the list of B-activities that was com piled by the time scan node to deter­

mine if their associated BA-node should be activated. After each B-node is activated, a 
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L-DELAY 

AI-DELAY 

A2-DELAY 

START_SIGNAL 

T-DELAY 

T-DELAY 

B_SIGNAL 

: NEXT 

M-SIGNAL 

: NEXT 

Figure 3.38 Executive Control Flow 
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similar scheme is followed by passing the execution signal to the C-nodes. The C-nodes, 

unlike the B-nodes, pass firing signals to their partner CA-nodes only upon satisfaction of 

their testing condition. 

Following the format of the EOOS tutorial [Weitzman 1986], a sampling of the node 

descriptions is given for the TI. Figure 3.39 describes the Time Scan Node. Figures 3.40 

through 3.42 show selected BA-nodes that represent the B- Activities. Figure 3.43 gives 

the C-node (testhead) for the OA-node "Begin Transit of Block Y" whose description is in 

Figure 3.44. Finally, Tables 3.1 and 3.2 provide the overall attribute declarations and 

queue descriptions, complete with NEP values. 

8.8.2 Lessons Learned 

The PGM can be effectively used to represent interactions among model components 

much like the ACD. However, no guidance is available to the modeler for model 

definition or specification. The modeler is strictly on his own in specifying the model 

dynamics and, in fact, must place his descriptions of the graph representation in the 

SPGN (Signal Processing Graph Notation) [Weitzman 1986], which is one, if not the only, 

available developmental notation for graph design. (The formats followed for the exam­

ples given in the preceding figures are strictly informal representations of the more com­

plicated notation in the SPGN.) The conceptual representation is aided within the PGM 

by its ability to offer abstraction and modularity in that any node may be representing an 

underlying subgraph. In addition, PGM supports inheritance features in that nodes 

and/or families of nodes can be defined which can be used as templates for the creation of 

additional nodes. Thus, the newly created nodes inherit the features of their parent nodes 

or family. 
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PRIl\1ITIVE NAME: TlME-SCAN 

DESCRIPTION: The TIME-SCAN Node handles the update of system time by 
selecting the minimum time from all delay times. The node then schedules all B-Nodes 
which are due based upon the new system time. The TIME-SCAN Node implements the 
sequencing found in the TP A CF. 

ALGORITHM: 
Using the EVT-ARRAY, determine which delays among the DELAY ports to 
read/consume (Setting appropriate values for variable NEPs). 
Load delay times into a temporary array. 
Scan these times for the minimum time; set 6 = minimum delay time. 
CLOCK - CLOCK + 8 

Load BLIST with the due B-nodes for output. 

PARAMETER LIST: 
PRIMITIVE = TIME-SCAN 
PRThLIN= START-SIGNAL, CLOCK, EVT-ARRAY 
PRThLOUT= CLOCK, BLIST 

INPUT TABLE 
Identifier Description Mode 

START_SIGNAL Firing Signal INT 

CLOCK System Time FLOAT 
EVT-ARRAY Contains Scheduled INT ARRAY 

B-nodes 

OUTPUT TABLE 
Identifier Description Mode 

CLOCK System Time FLOAT 

Range 
{I} 

R+ 

{O(Not Sched),l(Sched)} 

Range 

R+ 

BLIST List of due INT ARRAY Each Element 
B-nodes {O,l} 

Figure 3.39 Description of TIME-SCAN Node 
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PRIMITIVE NAME: NS_GREEN (BA-Node) 

DESCRIPTION: The NS_GREEN Node performs the Action routine to change the 
North-South light to Green. In addition, the West and East lights are set to Red. The 
node is executed only when this routine becomes bound and scheduled in the 
EVT-ARRA Y and when signalled by the BA-SIGNAL. 

ALGORITIDd: 
NS-COLOR - 0 /* Set Green * / 
W_COLOR -1 /* Set Red * / 
E-COLOR -1 

EVT-ARRAY [NS-GREEN 1- 1 j* Schedule the Next Action Routine * / 
LDELAY - 20.0 /* Set Delay Time Signal * / 

PARAMETER LIST: 
PRIMITIVE = NS_GREEN 
PRIM-lN= NS_COLOR, W_COLOR, E_COLOR, EVT-ARRAY, BA...SIGNAL 
PRIM-OUT= NS_COLOR, W _COLOR, E_COLOR, EVT -ARRAY, L-DELA Y 

INPUT TABLE 
Identifier Description Mode Range 

NS_COLOR North-South Color !NT {O(Green).l(Red)} 
W_COLOR West Color INT {O(Greenj,l(Red)} 
E_COLOR East Color !NT {O(Green) l(RedH 
EVT-ARRAY Scheduled !NT ARRAY {O(Not Sched),l(Sched)} 

B-nodes 
BA-SIGNAL Firing Signal INT {I} 

OUTPUT TABLE 
Identifier Description Mode Range 

NS_COLOR North-South Color !NT {O(Green).l(Red)} 

W_COLOR West Color !NT {O( Green ),l(Red)} 

E-COLOR East Color !NT {O(Green),l(Red)} 

EVT-ARRAY Scheduled INT ARRAY {O(Not Sched),l(Sched)} 
B-nodes 

L-DELAY Timing Delay FLOAT R+ 

Figure 3.40 Description of NS_GREEN (BA Node) 
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PRIMITIVE NAME: ARILLANE3 (BA-Node) 

DESCRIPTION: The ARILLANE3 Node performs the Action routine to accomplish a 
vehicle arrival to Lane 3. Bootstrapping the next arrival to Lane 3 is also accomplished. 
The node is executed only when this routine becomes bound and scheduled in the 
EVT-ARRA Y and when signalled by the BA-SIGNAL. 

ALGORITHM: 
VElLOBJ.LANE-ID - 3 /* Set Vehicle Attributes in Record * / 
VElLOBJ.MOTION - N 

VElLOBJ.ARR_TIME =- CLOCK 

A-DELAY - GAMA ! GSCALE, GSHAPE 1 /* Set Delay Time to Next * / 
EVT-ARRAY I ARR-LANE3j- 1 /* Arrival; Schedule B-Node * / 
LANE-3 - VElLOBJ /* Output Vehicle to Lane Queue * / 

PARAMETER LIST: 

PRIMITIVE = ARILLANE3 
PRIMJ:N= CLOCK, GSHAPE, GSCALE, BA-SIGNAL, EVT-ARRAY 
PRIM-OUT=LANE_3, A-DELAY, EVT-ARRAY 

INPUT TABLE 
Identifier Description Mode Range 

CLOCK System Time FLOAT R+ 

GSHAPE Gamma Shaj>e FLOAT R+ 

GSCALE Gamma Scale FLOAT R+ 

BA-SIGNAL Firing Signal INT {l} 

EVT-ARRAY Scheduled INT ARRAY {O(Not Sched),l(Sched)} 
B-Nodes 

OUTPUT TABLE 
Identifier Description Mode Ranjle 

LANE_3 New Vehicle RECORD LANE_ID={1,2, ... ,11} 
MOTION={N(Normal),R(Right)} 
ARR-TIME=R+ 

A-DELAY Next Arriva.l FLOAT R+ 

Time 
EVT-ARRAY Scheduled INT ARRAY {O(Not Sched),l(Sched)} 

B-Nodes 

Figure 3.41 Description of ARILLANE3 (BA Node) 
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PRIMITIVE NAME: END_TRANSIT-BLOCKY (BA-Node) 

DESCRIPTION: The END_TRANSIT-BLOCKY Node performs the Action routine to 
complete the transit of a vehicle through Block 3. First, NEP Produce value is set for 
correct output queue; then the exiting vehicle is placed in that queue. The node is exe­
cuted only when this routine becomes bound and scheduled in the EVT-ARRAY and 
when signalled by the BA-SIGNAL. 

ALGORITHM: 
NEP Calculation: 
If VEILOBJ.LANE-ID = 1 then 

PRODUCE for BLOCK-Z = 0 /* Set output for BLOCK-8 * / 
PRODUCE for BLOCK-8 = 1 

Else 
PRODUCE for BLOCK-8 = 0 /* Set output for BLOCILZ * / 
PRODUCE for BLOCILZ = 1 

Actions: 
If VEH_OBJ.LANE-ID = 1 then 

BLOCK-8 = VEH_OBJ 
Else 

BLOCILZ = VEH_OBJ 

PARAMETER LIST: 

PRIMITIVE = END_TRANSIT-BLOCKY 
PRIM-IN= VEILOBJ, BA-SIGNAL 
PRIM-OUT= BLOCK-8, BLOCK-Z 

INPUT TABLE 
Identifier Description Mode Range 

VEILOBJ Transit Vehicle RECORD LANE_ID={ 1,2, ... ,II} 
MOTION={N(Normal) ,R(Right)} 
ARR-TIME=R+ 

B.A.-SIGNAL Firin~ Signal INT {l} 

OUTPUT TABLE 
Identifier Description Mode Ran~e 

BLOCIL8 Exiting Vehicle RECORD LANE_ID={l,2, ... ,11} 
MOTION={N(Normal),R(Right )} 
ARR-TIME=R+ 

BLOCILZ Exiting Vehicle RECORD LANE-ID={1,2, ... ,11} 
MOTION={N(Normal),R(Right)} 
ARR-TIME=R+ 

Figure 3.42 Description of END_TRANSIT-BLOCKY (BA Node) 
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PRIMITIVE NAME: BEGIN_TRANSIT-BLOCKY (C-Node) 

DESCRIPTION: The BEGIN_TRANSIT-BLOCKY Node performs the test (testhead) 
for beginning transit of Block Y. First, NEP Produce value is set for correct output sig­
nal (Le., whether CA-SIGNAL is turned on or off); then the testhead is performed. 

ALGORITHM:: 
NEP CALCULATION: 
If BLOCI<-ARRAY [Yj.QUEUECOUNT > 0 and BLOCI<-ARRAY [Y].STATUS = 
IDLE then 

PRODUCE for CA-SIGNAL = 1 /* Output turned on * / 
Else 

PRODUCE FOR CA-SIGNAL = 0 /* Output turned off * / 
Aetions: 
If BLOCI<-ARRAY {Y].QUEUECOUNT > 0 and BLOCI<-ARRAY [Y].STATUS = 
IDLE then 

CA-SIGNAL = 1 
NEXT = 1 

PARAMETER LIST: 
PRIMITIVE = BEGIN_TRANSIT-BLOCKY (C) 
PRThUN= C-SIGNAL, BLOCK-ARRA Y 
PRllvLOUT= CA-SIGNAL, NEXT 

INPUT TABLE 
Identifier Description Mode 

C_SIGNAL Firing Signal INT 
BLOCILARRAY Block Status RECORD ARRAY 

Array 

OUTPUT TABLE 

Range 
{l} 

Each Record 
QUEUECOUNT=z+o 
STATUS={Idle ,Busy} 
OCCLANE={1,2, ... ,11} 
OCCMOTION={N(NormaI), R(Right n 

Identifier Description Mode Range 
CA-SIGNAL Firing Signal INT {I} 

NEXT Firing Signal INT {I} 

Figure 3.43 Description of BEGIN_TRANSIT-BLOCKY (C Node) 
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PRIMITIVE NAME: BEGIN_TRANSIT-BLOCKY (CA-Node) 

DESCRIPTION: The BEGIN_TRANSIT-BLOCKY Node performs the Action routine 
for beginning transit of Block Y. The node is executed only when this routine is signalled 
by the CA-SIGNAL. 

ALGORITHM: 
VEILOBJ = BLOCK-Y j* Acquire the waiting vehicle * / 
BLOCK-ARRAY {Y].QUEUECOUNT = BLOCILARRAY [Y].QUEUECOUNT - 1 
BLOCK-ARRAY [Y].STATUS = busy j* Set Block Y attributes * / 
BLOCK-ARRAY [Y].OCCLANE = VEILOBJ.LANE-ID j* Set resident id * / 
BLOCILARRAY [Y].OCCMOTION =VEH_OBJ.MOTION /* and motion */ 
If VEILOBJ.LANE-ID = 1 then 

BLOCILARRAY [I].STATUS = idle /*Free Block I */ 
T-DELAY = SVCTIME (Y, 1, N) 

Else j* Vehicle is Lane 11 Car * / ..... . 

PARAMETER LIST: 
PRIMITIVE = BEGIN_TRANSIT-BLOCKY (CA) 
PRIMJ:N= CA-SIGNAL, BLOCK-ARRAY, EVT-ARRAY, BLOCK-Y 
PRIM-OUT= T -DELA Y, EVT -ARRAY, VEILOBJ 

INPUT TABLE 
Identifier Description Mode Range 

CA.-SIGNAL Firing Signal INT {I} 

BLOCILARRAY Block Status RECORD ARRAY Each Record 
Array QUEUECOUNT=zo+ 

STATUS={Idle,Busy} 
EVT-ARRAY Sched Array INT ARRAY {O(Not Sched).l(SchedJ} 
BLOCICY Waiting Vehicle RECORD LANE-ID={1,2, ... 11} 

MOTION={N(Normal) ,R(Right)} 
ARR-TIME=R+ 

OUTPUT TABLE 
Identifier Description Mode Range 

EVT-ARRAY Sched Array !NT ARRAY {O(Not Sched),l(Sched)} 
VEILOBJ Transit Vehicle RECORD LANE_ID={1,2, ... 11} 

MOTION={N(Normal),R(Right )} 
ARR-TIME=R+ 

T-DELAY Transit Delay FLOAT R+ 

Figure 3.44 Description of BEGIN_TRANSIT -BLOCKY (CA Node) 
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Table 3.1 PGM Variable Attribute Table 

TYPE NAME MODE DESCRIPTION 
GV NS_COLOR INT [INIT to 11 North-South Color 
GV W_COLOR INT rINIT to 11 West Color 
GV E COLOR INT fINIT to 11 East Color 
GV EVT-ARRAY INT ARRA Y(50)§ B-Node Scheduling 

fINIT to (OO,O, ... ,O}l Array 
GV BLIST INT ARRAY(50)§ Current B-Node 

[INIT to fO ° 0 ... 011 Arrav (Due) 
GV CLOCK FLOAT fINIT to 0.01 System Time 
GIP GSHAPEt FLOAT G.AM:MA Shape 

Parameter 
GIP GSCALEt FLOAT G.AM:MA Scale 

Parameter 
GV BLOCK-ARRAY RECORD-ARRA Y( 35)* Block Status Array 
GV BSCAN INT {O,l} Begin Scan 

Boolean 
GV NDISS INT Departures in 

Steady State 
GV LOTP INT Transient Period 

Counter 
GIP LOSS INT Length of Steady 

State Period 

§ Size of array depends on number of B-Nodes. 
t Shown for example purposes; other distribution constant information 

would be present. 
+ Size of array depends on number of Blocks. 
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Table 3.2 PGM Queue Attribute Table 

Type Queue Name Mode T§ R§ C§ O§ P§ Description 
LOCAL START_SIGNAL INT 1 1 1 0 V Start-up 

fINIT to 11 Signal 
LOCAL L-D E LAYs FIXED 0 V V V V Light 

fINIT to O.oU Delay 
LOCAL A-DELAYs FIXED 0 V V V V In terarri val 

fINIT to 0.011 Delay 
LOCAL T-DELAYs FIXED 0 V V V V Block Transit 

fINIT to 0.011 Delav 
LOCAL B_SIGNAL INT 1 1 1 0 1 Start B-node 

Executions 
LOCAL BA-SIGNALs INT 1 1 1 0 V Start BA-node 

Execution 
LOCAL C_SIGNAL INT 1 1 1 0 1 Start Condition 

Scan Execution 
LOCAL CA-SIGNALs INT 1 1 1 0 V Start CA-node 

Execution 
LOCAL NEXT !NT 1 1 1 0 1 Firing Signal 

to Next Node 
LOCAL M-SIGNAL !NT 1 1 1 0 V Control for 

[INIT to 01 Control Scan 
LOCAL N'M-SIGNAL INT 1 V V V V Control for 

More Scan 
LOCAL E_SIGNAL INT 1 V V V V Control for 

End Simulation 

LOCAL VEILOBJ RECORD 1 1 1 0 1 Vehicle Object 
Record 

LOCAL LANE-xs RECORD 1 1 1 0 1 Lane Queues 
of Vehicle Records 

LOCAL BLOCK--Xs RECORD 1 1 1 0 1 Block Queues 
of Vehicle Records 

§ Code for Table: 
T: Threshold 
R: Read 
C: Consume 
0: Offset 
P: Produce 
V: Variable 
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The PGM provides some useful tools during the design process, however provides lit­

tle guidance in a "framework" sense. It is likely t too, that implementations of discrete 

event models using the data flow concepts of the PGM would be highly inefficient. 

3.9 The ERA Application 

One of the important contributions of the ER model [Chen 19761 was the introduc­

tion of a diagramming technique called the entity-relationship diagram which is 

extremely useful in designing databases. The ERA CF application to the TI is demon­

strated using such an entity-relationship diagram. First, using the terminology which 

was introduced in Section 2.10, we describe the diagramming technique and its notational 

conventions which were developed by Chen [1976]. The TI is then described in terms of 

an entity-relationship diagram. 

9.9,1 The Entity-Relationship Diagramming Technique 

The three primitive concepts which form the basis of the ERA CF are the concepts 

of the ent£ty, the relationship, and value [Dos Santos et al. 1980]. The entity-relationship 

diagram is used to depict the entities which are realized in a model, the relationships 

which exist between them, and the values of attributes which are associated with the enti­

ties or their determined relationships. The symbolic notation for an entity set is a box. 

Relationship sets are indicated by a diamond shape. Finally, value sets are notationally 

specified as circles. Normally, the attribute name that is attached to an entity is placed 

within the value set sym bol [Hartson 1987]. Lines are used to interconnect the sym boIs in 

such a way as to display the existing role or attribute mappings between entity, relation­

ship, and value sets. Figure 3.45 shows these symbols and their composition in a generic 
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diagram. Following these conventions, the symbols may take on the instance described by 

the diagram of Figure 3.46 in which an student entity set (with attributes of "student­

id", "name", and "age") is related to the course entity set (with the attribute "course­

name"). The relationship set student_course also includes an attribute, "grade". For 

simplification, all attribute names for a particular entity are enclosed within a single cir­

cle with the assumption that the domain of the value sets (from which the attribute 

values are derived) is logically implied from the associated attribute name. Also note that 

primary keys for a particular entity set are identified by underlining them [Hartson 1987]. 

Chen [1976] points out that a typical diagram may contain "several important 

characteristics about relationships in general". The diagram clarifies which entities enter 

into relationships. For example, a single relationship set may exist on one or more entity 

sets, or more than one relationship set can be defined on a group of entity sets. Also, the 

diagram distinguishes between one-to-one (1:1), one-to-many (l:n), and many-to-many 

(m:n) relationships. Normally, 1:1 relationships refer to the 1:1 mapping between an 

entity and its attributes, and 1: n relationships denote a hierarchical structure [Hartson 

1987]. Figure 3.46 shows a many-to-many relationship since a single student may take 

many different courses and a single course may be taken by many different students. 

8.9.2 An Entity-Relationship Diagram of the TI 

In building an appropriate entity-relationship diagram for the TI, the four step pro­

cedure described in Section 2.10 was used. By following this procedure, the diagram struc­

ture of Figure 3.47 was determined . 

• Step One - Identify entity and relationship sets of interest 
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Figure 3.45 Generic Mappings in an Entity-Relationship Diagram 
[Dos Santos et al. 1980] 
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Figure 3.47 Entity-Relationship Diagram of the TI 
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Entity sets necessary to represent the TI were identified as VEIDCLE, 

LIGHT-DmECTION, BLOCK, LANE, and LANE_CAT (Lane Category). In 

addition, an entity set to represent the entire model, INTERSECTION (which is com­

posed of the above entity sets), was determined. At this point in the design process, two 

particularly important relationship sets were recognized. First, a LANE-LANE_CAT 

relationship set is needed to define the various paths a vehicle might travel dependent 

upon the lane and direction of movement. This relationship set is very important and 

serves as the basis for determining the desired performance measures. Secondly, block 

service times are related to the lane and to the lane category. The resulting relationship 

set, BLOCK-LANE-LANE_CAT, is determined from among these three indicated 

en tity sets . 

• Step Two - Identify semantic information 

There is a l:m mapping between the INTERSECTION entity set and each of the 

entity sets, VEHICLE, LIGHT-DIRECTION, BLOCK, and LANE. The LANE­

LANE_CAT relationship is a m:n mapping. The BLOCK-LANE-LANE_CAT relationship 

is also a composed of many-to-many mappings. If not clear at this point, the semantic 

designations of the mappings as l:m or m:n is clarified with the description of the attri­

butes and their associated value sets in the next step . 

• Step Three Define value sets and attributes 

Attributes for e~ch entity set and the value sets of their attributes are shown in 

Table 3.3. Since each lane may be associated with two or fewer lane categories and each 

lane category may be related to any of eleven different lanes, the m:n relationship of the 

LANE-LANE_CAT relationship set is verified. Also notice that similar logic shows the 
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Table 3.3 ERA Entity Sets and Relationship Sets 

Entity Set Attribute Value Set 
INTERSECTION ModeLname character string 

Reps positive integers 
Mru,-deps.-SS positive integers 
Max_deps_tp positive integers 

VEHICLE Vehiclejd positive integers 
Lanejd integer from 1..11 
Motion R (right) or N (normal, straight) 
Arrtime positive reals 
Deptime positive reals 
Waittime positive reals 

LIGHT.-DffiECTION Dir-Dame NS, E, orW 
Color Red or Green 

LANE Lane name integer from 1..11 

LANE_CAT Cat name R (right) or N (normal, straight) 
BLOCK Block-Dame character from A .. Z or 1..9 

Status idle or busy 

Relationship Set Attribute Value Set 
LANE-LANE_CAT Deps.-SS positive integers 

Deps_tp positive integers 
TotaL waittime positive reals 
Exp_waittime positive reals 

BLOCK-LANE-LANE CAT Svc time positive reals 
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validity of the many-to-many mappings for the BLOCK-LANE-LANE_CAT relationship 

set. 

• Step Four Organize data into relations, decide primary keys 

The primary keys which uniquely specify the entity instances are indicated in Figure 

3.47. The translation of the diagram into a relational data model [Date 1986] and the 

associated construction of relational tables is discussed by Chen [1976]. Hartson [1987] 

provides a good summary of the process. Essentially, simple entity relations are derived 

from the entity sets and their attributes. The one-to-many relationships do not become a 

relation. Instead, the primary key from the "one" entity becomes an attribute or part of 

the key of the "many" entity. The many-to-many relationships become a linking relation 

[Hartson 1987]. The primary key of this linking relation is derived from the keys of each 

of the "many" entities and remaining attributes are taken from the attributes of the rela­

tionship set, if any. Table 3.4 gives examples of such relations which are derived from the 

entity-relationship diagram of the TI model. The LIGHT-DIRECTION relation shows 

how the primary key of the INTERSECTION entity (with name TOMSCPF, for Toms 

Creek and Prices Fork Road) becomes part of LIGHT-DIRECTION's key in a l:m 

derivation. BLOOK-LANE-LANE_OAT is a linking relation where the primary key is 

determined from the collaborating entities. 

3.10 The EAS OF Application 

Due to the claim stated in Section 2.11 that the EAS OF was derived, in part, from 

SIMSORIPT, the SIMSORIPT model (also used extensively in the ES OF application of 

the TI) is considered as a suitable example to illustrate the prominent features of the EAS 

OF. As a point of quick review, the EAS OF is primarily an approach which can be used 
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Table 3.4 Example Relations from the TI 

LIGHTJ)IRECTION 
Mod namet Dir namet Color 
TOMSCPF NS Red 
TOMSCPF E Red 
TOMSCPF W Red 

BLOCK-LANE-LANE CAT 
Block_namet Lan e-fi amet Cat-fiamet Svc_time 1 ms) 

A 8 R 2153 
B 7 N 1071 
C 6 N 1495 
D 5 R 1577 
E 5 N 933 
E 5 R 1578 

" . .. . . .. ... 

t Columns represent primary key 
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to represent the model "static" definition. Its central concepts include those of the entity, 

entity attr'ibutes, and collections of entities called sets. The SIM:SCRIPT model of the TI 

includes such an approach for providing its static definition. This definition is realized in 

the formulation of the model preamble, portions of which are shown in Figure 3.48. 

Recall, however, that model "dynamics" are not easily represented but due to the "order­

ing" imposed on the sets, time and state relationships can be, in a limited sense. 

9.10.1 Entities and Their Attributes 

Every entity which is a component of the model is defined in the preamble following 

the key words permanent entities or temporary entities, whichever is more 

appropriate. Permanent entities in the TI, shown in lines 19-22 of Figure 3.48, include 

• the light, 

• the blocks, and 

• the lanes. 

The SIMSCRIPT standard convention for defining the entities is straightforward 

and includes an equally simple means of identifying the attributes of these entities. The 

light entity has the defined attributes of color for each specified direction. A block entity 

has the attibutes of status, laneuser, and turner. In the context of the SIMSCRIPT 

model, the status attribute indicates whether a block is "idle" (i.e., there is no transiting 

car occupying its physical space) or "busy" (a car is in the block). Laneuser and turner 

attributes both refer to characteristics of a car that is in the block, identifying the lane 

the car has come from and the car's direction of movement ("straighe' or "right" turn­

ing). The turner attribute is actually a boolean that, when true, indicates the car is a 

right turner. The SIMSCRIPT representation does clearly show the associated attributes 
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preamble 
1 event notices include 
2 turn.ns.red and turn.ns.green and turn.west.green 
3 and turn.east.green "Event arguments include: 
4 every departure has a out.vehicle " outgoing car 
5 every arrival.blockd has a moving.car.d " incoming car to block 
6 every arrival.blockh has a moving.car.h 
7 
8 every arrival.blockz has a moving.car.z 
9 every arrival.blockl has a moving.car.1 
10 
11 
12 
13 
14 
15 
16 

every arrival.block9 has a moving.car.9 
every turning. left has a left.moving.car 
every enter has a in. vehicle 
every arrival. joint has a incoming.car12 
every arrival.lane1 has a incoming.car1 

17 every arrival.lanel1 has a incoming.carl1 

18 normally, mode is integer 
19 permanent entities 

"Car making turn 
"Car entering intersection 
"Car arriving lane 

20 every light has a ns.color, a west.color and a east. color 
21 every block has a status, a laneuser, a turner and owns a block.queue 
22 every lane owns a lane.queue 
23 
24 temporary entities 
25 every car has an arrtime, a laneid,an id and a to.right 

and may belong to a block.queue 
and may belong to a lane.queue 

26 define arrtime as a real variable 
30 
31 end 

Figure 3.48 The SIMSCRIPT PreaInble with EAS CF Features 
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of these entities. Notice that there are no designated attributes for a lane entity. 

For the TI, only the cars or vehicles are temporary and their definition is shown in 

lines 24-26 of the modified preamble of Figure 3.48. Each car is defined with attributes 

arrtime, laneid, id, and to. right. The arrtime attribute is the arrival time of the car. 

Laneid and to. right directly correspond to the block attributes of laneuser and turner. 

Laneid is the car's lane of origin and to. right is a boolean which logically indicates the 

car's direction of movement. The attribute id is a unique, sequential identification 

number given to each car arriving to the intersection. 

Values held by all the attributes are of type integer with one exception. The "nor­

mally, mode is integer" statement in line 18 specifies this "normal" condition of value 

types. The exception, attribute arrtime, is defined in line 26, apart from the other attri­

bu tes, to be of type real. 

9.10.2 Set Ownership and Membership 

The set definitions and designations of hierarchical structure for the EAS OF in the 

SIMSORIPT model are included in the entity definitions discussed above. The key word 

owns following the specification of attributes, if any, describes those components which 

may be attached to or associated with specific entities. In Figure 3.48, queues are associ­

ated each block and each lane. Thus, a one-to-one relationship is indicated between these 

entities and their associated queues. Ownership of components or sets (as described 

above) is a way of showing hierarchical relationships in SIMSCRIPT. Membership in 

sets, like the queues mentioned above, is declared using the key words may belong to 

within an entity description. For example, in line 25, cars are defined as members of 

block and lane queues. Therefore, using set ownership and membership definitions, 
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relationships among model components is simplified. 

3.11 The 8M Application 

Geoffrion [1988] provides a Structured Modeling Language (SML) which is a 

language for model definition. It is used to develop "text-oriented" and "table-oriented" 

model representations which are based on SM concepts. In this chapter, the SML is used 

to demonstrate the application of the SM CF for modeling the TI system. Following a 

brief description of the SML, a typical modular outline with a collection of elemental 

detail tables and an associated genus graph for a model of the TI are given. These three 

core aspects of a structured model representation support the earlier description of SM 

given in Section 2.13 and enable one to grasp the essential details of this CF. During the 

development of the SM application to the TI, there were difficulties with the representa­

tion of the dynamic relationships between model objects. The application is primarily 

geared toward a static representation and is, therefore, incomplete in that the model 

dynamics are not included. 

9.11.1 Descn'ption 0/ SML 

As described above, the SML contains the necessary components which allow the 

construction of an indented list, text-oriented representation and also a table-oriented 

representation. The text-oriented form is described by the language through the use of a 

detailed notation which facilitates the development of a modular outline from which one 

can derive modular and generic information. The detailed data of the elemental structure 

is represented within the guidelines of SML's table-oriented notation, producing a set of 

elemental detail tables. 
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3.11.1.1 The Text-Oriented Notation 

Central to the use of the text-oriented notation is the development of module and 

genus paragraphs for use as nodes in the indented list, rooted, textual tree. Each para­

graph description (whether module or genus) is concluded with the reserved word ":.". 

The syntax for the module paragraph [Geoffrion 1988] is 

&MODULE-NAME :1 interpretation :. 

The ampersand denotes a node as a module paragraph and the "d" is a reserved word 

which denotes the "end of the formal part" of the paragraph. In addition, the interpreta­

tion is an informal English description which introduces key words that amplify the 

meaning of the module name. The interpretation may reference other key words that 

have been previously introduced. Key words, when first introduced in an interpretation, 

are preceded and followed by the reserved word ":/" . 

Genus paragraphs follow a similar but much more detailed notational syntax. The 

general form of the genus paragraph [Geoffrion 1988] is 

GNAME [new index] [(generic calling sequence)J jtypej [index set statementJ [:: 

domain statement] [: range statement] [; generic rule] d [interpretation] :. 

Square brackets indicate optional arguments. Specific forms for genus paragraphs differ 

according to the specified genus "type". Depending on the type, the number and applica­

bility of options will vary. The type declaration is specified by one of the following 

reserved words: 



Ipel primitive entity 

Icel compound entity 

lal attribute 

Ivai variable attribute 

If I function 

It I test 
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Each component of the genus paragraph fulfills a unique role. Each can be infor-

mally described as follows: 

• The new index allows the specification of the individual elements within the genus 

GNAME by designating a sym bolic index for each GNAME set member. 

• The generic calling sequence indicates those genera (if any) which take part in the 

definition of GNAME. 

• The index set statement "gives information about the population of the genus" 

GNAME. 

• The domain statement, if used, specifies the "data type for the identifiers (names) 

used for the individual elements" of a genus using the new index option [Geoffrion 

1988]. 

• The range statement gives the range set of allowable values for attribute genera. 

• The generic rule indicates the rule of computation which determines the returned 

value of a function or test genus. 

• The interpretation is exactly as described for the module paragraph. 

Geoffrion [1988] gives an informal coverage (narrative in nature) that details the 

complete syntax requirements of each option in a set of informative appendices. Formal 
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coverage is also provided in an additional appendix which introduces a context-free gram­

mar that describes the syntactic and lexical structure of the notation. 

3.11.1.2 The Table-Oriented Notation 

Proper use of the text-oriented notation will generate the "general structure" of a 

model representation. The SML also provides "a notation that is primarily table-based 

because tables can be an effective way to organize masses of element-level data ... effective 

both for people to grasp and for machines to process [Geoffrion 1988). As noted previ­

ously, these tables are called the elemental detail tables. 

The elements of each genus are usually put into the tables in a format that depends 

on genus type. Informally, the tables hold the naming conventions for genus elements, 

interpretations of the elements, and values, if appropriate. Normally, primitive and com­

pound entity elements which are singletons are not represented in the tables since the 

genus paragraph contains all the necessary information. Other singleton elements (like 

attribute, function, and test singleton elements) become a single value cell. The specific 

details of how the tables are structured, loaded, and edited are given by Geoffrion [1988]. 

8.11. e The Genus Graph 

In developing the text and table-oriented representations for modeling the TI sys­

tem, the basic element types were first identified. The TI system contains a number of 

lanes, blocks, vehicles, and a light as described in the CM definition in Section 3.1. Each 

collection of vehicles, lanes, and blocks were grouped into a primitive entity genus called 

VEHICLE, LANE, and BLOCK respectively. The light genus, LIGHT, is a singleton. 

Each of these primitive entity genera was further specified as follows: 
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• VEHICLE - Attribute genera (with value) and a function genus were defined for 

each vehicle. These include 

(1) LANE-ID (attribute), the lane number of the lane in which the vehicle is 

traveling, 

(2) ARR-TlME (attribute), a vehicle's arrival time to the intersection, 

(3) MOTION (attribute), a vehicle's direction of movement in its lane, whether 

straight or right turning, 

(4) DEP _TIME ( attribute), a vehicle's departure time from the intersection, 

and 

(5) WAIT_TIME (function), the waiting time of a vehicle in the intersection . 

• LANE - Additional compound entity genera were derived from the lane ele­

ments. Attribute genera are also defined on the LANE genus and its related com­

pound entity genera. 

(1) JOINTLANE (compound entity) describes the relationship between lanes 1 

and 2. Lanes 1 and 2 taken together are called the Joint Lane. 

(2) VIRT-LANE (compound entity), a set of conceptual lanes, was defined 

which represents the possible paths which vehicles may take, i.e., in lane 1 

going straight, in lane 2 turning right, in lane 5 going straight, etc. An addi­

tional primitive entity genus, LANE_CAT (with categories denoting straight or 

right turning) was created to enable the definition of the virtual lanes. 

(3) CAPACITY (attribute) was defined for lanes 1 and 2 to hold the maximum 

vehicle capacity in these two lanes. 
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(4) DEPS-SS (attribute) and DEPS_TP (attribute) represent values which are 

maintained by the solver and are counters of the current numbers of vehicle 

departures in steady state or during the transient period. These current values 

can be compared against the maximum allowed values to fix the termination of 

execution . 

• BLOCK - Each block has the following attribute genera: 

(1) STATUS (attribute), which indicates if the block is idle or busy (occupied 

by a vehicle), and 

(2) SVC_TIME (attribute), the vehicle transit time across a block which 

depends on the associated virtual lane of the transiting vehicle . 

• LIGHT - The light determines a compound entity genus and its attribute genus. 

(1) DIRECTION (compound entity) represents the four directions (north, 

south, east, and west) of the light. 

(2) COLOR (attribute) is defined for each direction and may have red or green 

value. The color of each direction is updated by the solver and is used to con­

trol the flow of vehicles through the intersection. 

The genus graph of Figure 3.49 shows the relationships which exist among these 

primitive entity genus types and their associated compound entity, attribute, and func­

tion genera. The genus graph also includes other function and attribute genera which are 

used by the solver to control model execution and to output useful statistical data. Attri­

butes MAX-DEPS-SS, MAX-DEPS_TP, and REPS are used by the solver and represent 

the maximum number of departures (of vehicles) in steady state or during the transient 

period and also the number of replications that are desired. These values indicate the 
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Figure 3.49 The TI Genus Graph 
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model execution termination conditions. Figure 3.49 also includes the statistical data 

that are derived from the above mentioned genera. The waiting time of each vehicle is 

associated with the vehicle's virtual lane by the function VL_ WAIT_TIME, the virtual 

lane waiting time. The sum or total of all virtual lane waiting times in each virtual lane 

is calculated by the function TOT_WAlT_TIME. The function EXP_WAlT_TIME 

defines the expected waiting time for all transiting vehicles in a particular virtual lane. 

8.11.8 SM Modular Outline and Elemental Detail Tables 

The 8M modular structure (conceptual in nature) is considered to be the collection 

of the basic primitive entity elements (&OBJECT8), the collective grouping of data and 

information about the vehicles (&VEILDAT), the lanes (&LANE-DAT), the transit area 

(&TRANS-AREA-DAT, which includes block and light data), and statistics 

(&STAT-DAT). In addition, the modular structure includes overall model attributes (as 

shown in the genus graph) such as number of replications (REPS), etc., that assist in 

solver or executive control. Figure 3.50 shows a typical modular structure to the first 

sibling level. Figures 3.51 through 3.55 complete the modular structure by further 

developing the interior nodes (modules) of Figure 3.50 (Le., &OBJECTS, &VEILDAT, 

&LANE-DAT, &TRANS-AREA-DAT, and &STAT-DAT) to their descendant genera 

(leaf nodes). 

The elemental detail tables provide the additional low-level information that cannot 

be represented by the genus and module paragraphs. The tables must be loaded with ini­

tial elemental information and are updated by the solver. The tables are structured and 

ordered so that the monotone property of the modular structure with no forward refer­

ences is maintained. This eases the update operation or "editing" as Geoffrion [1988] calls 
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&TRAFFIC-INTERSECTION :\ There is a traffic :/INTERSECTION:/. :. 

&OBJECTS :\ The INTERSECTION is composed of key :/OBJECTS:/ :. 

&VEILDAT :1 There is ./VEHICLE DATA:/ :. 

&LANE-DAT :1 There £s :/LANE DATA:/ :. 

&TRANS-AREA-DAT :I There is :/TRANSIT AREA DATA:/ .. 

MAX..J)EPS_SS lall : Int+ :I There are a :/MAXIMUM NUMBER OF 
DEPARTURES IN STEADY STATE:/. :. 

MAX..J)EPS_TP lall : Int+ :1 There are a :/MAXIMUM NUMBER OF 
DEPARTURES IN TRANSIENT PERIOD:/. :. 

REPS la/I: Int+ :I There are a designated number of :/REPLICATIONS:/ :. 

&STAT-DAT :I There are :/STATISTICS:/ :.:. 

Figure 3.50 Overview of the Modular Structure (to First Sibling Level) 
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&OBJECTS :\ The INTERSECTION is composed of key, base :/OBJECTS:/ :. 

VEffiCLEi /pe/ :: Int+ :1 There are :/VEHICLES:/ that ~ransit the INTERSEC­
TION. :. 

LANE j /pe/ Size {LANE} = 11 :: Int+ :\ There are :/LANES.·j £n the INTER­
SECTION. Each :/LANE./ serves as an entry point to the INTERSECTION. :. 

BLOCKk /pe/ Size {BLOCK} = 35 :: Int+ :\ There are :/BLOCKS:/ which serve 
as conceptual locations for VEHICLES in the£r transit of the INTERSECTION. :. 

LIGHT /pe/ Size {LIGHT} = 1 :\ There is a :/LIGHT:/ that controls the move­
ment of the VEHICLES. :. 

Figure 3.51 Modular Structure of &OBJECTS 
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&VEH-DAT :1 :/VEHICLE DATA:/ :. 

LANE-ID (VEHICLE i) /a/ {VEHICLE} :Range {LANE} :1 Each VEHICLE 
arrives to the INTERSECTION in a certain LANE; Each VEHICLE has a :/LANE 
IDENTIFIER:/ :. 

ARILTIME (VEHICLE i) /a/ {VEHICLE} :R+ :1 Each VEHICLE has an 
:/ARRIVAL TIME:/ to the INTERSECTION. :. 

MOTION (VEHICLE i) /a/ {VEHICLE}: nrighttt,ttnormal" :1 Each VEHICLE has 
an identifiable :/lY/OTION:/, and will either turn right on red (1,) possible) or will fol­
low the normal flow of traffic in z'ts LANE. :. 

DEP_TIME (VEHICLE i) /al {VEHICLE} :R+ :I 
Each VEHICLE has a :/DEPARTURE TIME:/ from the INTERSECTION . .. 

WAIT_TIME (VEHICLE i) If/ {VEHICLE} ; DEP _TIMEi - ARR-TIMEi:1 Each 
VEHICLE has a :/WAITING TIME:;' :. 

Figure 3.52 Modular Structure of &VEH-DAT 
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&LANE-DAT :1 :/LANE DATA:/ :. 

JOINTLANE (LANE<l>, LANE<2» Icel Size {JOINT} = 1 :\ There £s a 
:/JOINTLANE:/ which is a composite LANE formed from LANES 1 and 2. :. 

LANE_CATl Ipel Size = 2 :: String :\ There are :/LANE CATEGORIES:/ 
which conceptually label a LANE as normal (straight) or as right turning. :. 

VIRT-LANE (LANEj, LANE_CAT/) Icel Select {TRANS-LANE} X 
{LANE_CAT} where j covers {LANE}, I covers {LANE_CAT} :1 There are :/VIR­
TUAL LANES:/ which are conceptual in nature and which coincide with the LANES 
but are additionally distinguished by a LANE GA TEGOR Y. :. 

CAPACITY (LANE < 1:2» / al : In t+ :\ LANES 1 and e have an associated 
:/CAPACITY:/ :. 

DEPS-SS (VIRT-LANEjl) IvaI {VIRT-LANE} : Int+ :\ There is a dynamically 
changing number of :/DEPARTURES IN STEADY STATE:/ which the solver main­
tains and corresponds to the number of VEHICLE departures in steady state from 
each VIRTUAL LANE, :. 

DEPS_TP (VIRT-LANEjl) Ivai {VIRT-LANE} : Int+ :\ There is a dynamically 
changing number of :/DEPARTURES IN THE TRANSIENT PERIOD:/ which the 
solver maa'ntains and corresponds to the number of VEHICLE departures in the tran­
sient period from each VIR TUAL LANE, :, 

Figure 3.53 Modular Structure of &LANE-DAT 
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&TRANS....AREA-DAT :1 :/TRANSIT AREA DATA:/ :. 

&LIGHT-DAT :I :/LIGHT DATA:/ :. 
DmECTIONm (LIGHT) Ice/ Size {DIRECTION} = 4 :: Char 1 :1 Associ­
ated with the LIGHT are its ./DIRECTIONS.·/ corresponding to the major 
points on the compass. :. 

COLOR (DIRECTIONm) Iva/ {DIRECTION} : red, green :1 Each DIREC­
TION dynamically changes its :/COLOR:/ .. 

&BLOCILDAT :1 :/BLOCK DATA:/ :. 

STATUS (BLOCKk) Ivai {BLOCK} : busy, idle:1 Each BLOCK has a 
:/STATUS./ which is dependent on the presence of a transiting VEHICLE . .. 

SVC_TIME (BLOCKk,VIRT-LANEjo) jaj Select {BLOCK} X 
{VIRT-LANE} : R+ :1 There is a :/SERVICE TIME:/ (Transit time) for each 
BLOCK which depends on the VIRTUAL LANE source of VEHICLES that may 
use the BLOCK. :. 

Figure 3.54 Modular Structure of &TRANS-AREA-DAT 
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&;STAT-DAT :/ :/STATISTICAL DATA:/ 

VL_WAIT_TIME (VIRT-LANEjlm WAIT_TIME i) If I Select {VIRT-LANE} X 
{WAIT_TIME} : R+ ; WAIT_TIME; :1 The modeler selects the index set such that 
each VIRTUAL LANE (first term of the Cartesian product) is paired with a WAIT­
ING TIME of any VEHICLE that is transiting that particular VIRTUAL LANE. 
The :/VIRTUAL LANE WAITliVG TIMES:/ are essentially a redesignation of the 
WAITING TIMES. That is, we have now associated each VEHICLE's WAITING 
TIME with a VIRTUAL LANE. :. 

TOT_WAlT_TIME (VL_WAIT_TIMEju) If I {VIRT-LANE} : R+; SUM; 
VL_WAIT_TlMEili :1 The ./TOTAL WAITING TIME:/ for a particular VIRTUAL 
LANE is computed by summing over all VIRTUAL LANE WAITING TIMES associ­
ated with that VIRTUAL LANE. That is, we have now provided for the calculation of 
the sum of all WAITING TIMES for VEHICLES transiting a particular VIRTUAL 
LANE. :. 

EXP_WAlT_TIME (TOT_WAIT_TIMEjl, DEPS-SSjl) If I {VIRT-LANE} 
R+; TOT_WAIT_TIMEjl / DEPS-SSjl :1 There is an :/EXPECTED WAITING 
TIME:/ for a VIRTUAL LANE which is calculated by dividing the TOTAL WAIT­
ING TIME for a given VIRTUAL LANE by the number of VEHICLES departing that 
VIR TUAL LANE during the steady state period. :. 

Figure 3.55 Modular Structure of &STAT-DAT 
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it. Tables 3.5 through 3.9 provide the complete elemental detail tables for the genera 

that are defined in this TI model. Table 3.5 shows a preliminary set of elemental detail 

tables for the primitive entities in the &OBJECTS module. The VEHICLE elemental 

detail table is further developed in Table 3.6 to include all vehicle attribute information. 

The BLOCK elemental detail table is also extended in Table 3.7 with the listing of the 

STATUS attribute. The TOT_WAIT_TIME and EXP_WAIT_TIME elemental detail 

(shown in Table 3.8) could be joined into a single table since both are indexed by virtual 

lanes. Finally, Table 3.9 shows the simple, single value elemental detail tables of the top 

level model attributes (e.g., REPS) that guide the solver. 

3.12 The CS Application 

This section describes the application of the CS to the TI. The figures of this section 

provide the complete specification of the TI and list the interface, object, transition, func­

t£on, and report specification components of the CS. The syntax of the CS [Overstreet 

1982; Overstreet and Nance 1985] is closely followed with some minor extensions which 

were necessary due to the complexity of the TI. These extensions deal with the means of 

object referencing and the creation of set objects. Overstreet and Nance [1985] recognized 

that complex models may require extensions in these areas beyond the original "abbrevi­

ated" treatment. In the subsections that follow, we discuss these extensions and explain, 

in detail, the components of this CS application and the corresponding figures. 
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Table 3.5 Preliminary Elemental Details of Base Objects 

VEHICLE Elemental Detail 
VEHICLE INTERP 

1 Vehicle Number 1 
2 Vehicle Number 2 
3 Vehicle Number 3 
... . .. 

LANE Elemental Detail 
LANE INTERP 

1 Lane 1 
2 Lane 2 
3 Lane 3 
., . . .. 
11 Lane 11 

BLOCK Elemental Detail 
BLOCK INTERP 

1 Block A 
2 Block B 
3 Block C 

.. . ... 
26 Block Z 
27 Block 1 
28 Block 2 
29 Block 3 
... . .. 
35 Block 9 
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Table 3.6 Elemental Details of Vehicle and Lane Data 

VEHICLE Elemental Detall 
VEmCLE INTERP LANE_IDt ARILTIMEt MOTIONt DEP_TIMEt WAIT_TIMEt 

1 Vehicle Number 1 2 1.5 normal 5.6 4.1 
2 Vehicle Number 2 5 1.6 right 7.0 5.4 
3 Vehicle Number 3 7 1.7 normal 8.1 6.4 

.. . .. . .. . ... .. . . .. . .. 

LANE_CAT Elemental Detail 
LANE_CAT INTERP 

N Normal, straight 
R Right turning 

VIRT-LANE Elemental Detail 
LANE LANE_CAT INTERP DEPS_SSt DEPS_TPf 

1 N Virtual Lane IN 1505 133 
2 N Virtual Lane 2N 1739 245 
2 R Virtual Lane 2R 648 71 
3 N Virtual Lane 3N 1321 211 
4 N Virtual Lane 4N 1276 309 
5 N Virtual Lane 5N 1894 266 
5 R Virtual Lane 5R 766 123 
6 N Virtual Lane 6N 962 117 
7 N Virtual Lane 7N 1278 225 
8 R Virtual Lane 8R 532 110 
9 N Virtual Lane 9N 1066 312 
10 N Virtual Lane ION 1143 219 
11 N Virtual Lane lIN 1369 287 
11 R Virtual Lane 11R 592 107 

CAPACITY Elemental Detail 
LANE CAPACITY 

1 5 
2 5 

t Data values in this column are shown for completeness, yet would be blank in the initial 
table and inserted by solver during execution. 
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Table 3.7 Elemental Details of Transit Area Data 

DffiECTION Elemental Detail 
DIRECTION INTERP COLORt 

N North red 
S South red 
E East red 
W West red 

BLOCK Elemental Detail 
BLOCK INTERP STATUSf 

1 Block A idle 
2 Block B busy 
3 Block C idle 
4 Block D idle 
... " . . .. 

SVC_ TIME Elemental Detail 
BLOCK LANE LANE_CAT SVC_TIME(ms) 

1 8 R 2153 
2 7 N 1071 
3 6 N 1495 
4 5 R 1577 
5 5 N 933 
5 5 R 1578 
... .. . . .. . .. 

t Data values in this column are shown for completeness, yet would be blank in the initial 
table and inserted by solver during execution. 
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Table 3.8 Elemental Details of Statistical Data 

VL_WAIT_TIME Elemental Detail 
LANE LANE_CAT WAIT_TIMEt VL_WAIT_TIMEt 

1 N 4.5 4.5 
1 N 4.7 4.7 
1 N 4.9 4.9 
2 N 6.5 6.5 
2 N 6.4 6.4 
2 R 3.5 3.5 
2 R 3.7 3.7 
3 N 4.8 4.8 
3 N 5.1 5.1 
3 N 5.3 5.3 
... " . . .. . .. 

TOT_WAIT_TIME Elemental Detail Table 
LANE LANE_CAT TOT_ WAIT_TIMEt 

1 N 14.1 
2 N 12.9 
2 R 7.2 
3 N 15.2 
... .. . . .. 

EXP_WAIT_TIME Elemental Detail Table 
LANE LANE_CAT EXP_WAIT_TIMEt 

1 N 4.7 
2 N 6.45 
2 R 3.6 
3 N 5.07 
.. . ... . .. 

t Data values in this column are shown for completeness, yet would be blank in the initial 
table and inserted by solver during execution. 
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Table 3.9 Remaining Elemental Details 

30000 

MAX-DEPS_TP 

5000 

M 
~ 
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9.12.1 Syntax Extensions for Object Specification 

The examples that have been given by Overstreet and Nance [1985] rely heavily on a 

Pascal-like syntax to represent the CS. One of the extensions developed for this applica­

tion is the incorporation of the Pascal concept of enumerated types. Use of enumerated 

types enables the creation of and later identification of model objects with natural and 

more meaningful identifiers. As pointed out by Overstreet and Nance [1985]' if "multiple 

instances of an object type can exist simultaneously, some mechanism must exist to 

uniquely identify individual instances of objects and object attributes when necessary." 

An object identifier which takes its values from an enumerated type definition is used to 

accomplish this. Figure 3.56 shows the definition of those enumerated types that are used 

in this application. Block identifiers may take values from within the range A to B9. This 

supports the block naming conventions that were specified in the CM definition of Section 

3.1. Similarly, the range for identifiers of lane objects covers the values L1 (for lane 1) to 

JOINT. The range dir-.lane-range defines the allowable identifier values of the special 

model object type, dir-Iane (described in the next subsection). The implied meanings of 

these range values are, for example, normal or straight in lane 1 (Nl) or right turning in 

lane 11 (Rl1). 

Although Overstreet and Nance [1985] utilize a bracket index to reference object 

attributes where there are multiple instances of a single object type, Overstreet [1982] 

suggests that the dot notation like that used in SIMULA is appropriate. For example, to 

reference the attribute status of an instance of the block object type, the dot notation 

specifies that 

block [i : A .. B9}. status 
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{ Type Name Definition 

block _range (A, B, C, D, .... I Z, BI, B2, .... I B9) ; 

lane_range (LI, L2, ••• I LII, JOINT) ; 

dir - lane _range (NI, N2, R2, N3, N4, NS, RS, N6, 
N7, N8 f N9, NIO, NIl, RII); 

Figure 3.56 Use of Enumerated Types 
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is sufficient to pinpoint the "status" attribute. In contrast, the bracket index notation 

status [i : A .. B9J 

accomplishes the same result. The dot notation, rather than the bracket notation, is used 

in this application and is preferred. The object to which the referenced attribute is 

attached is more clearly indicated. 

9.12.2 Semantic Extensions Jor Object Specification 

Overstreet and Nance [1985] state that for "complex models it may be necessary to 

regard some model objects as composed of both attributes and other model objects." The 

notion of a set, a model object that contains other model objects and which has attributes 

of its own, is another extension that is followed here. The object types of block, lane, 

and dir-Iane are considered to be sets which contain an ordered collection of vehicle 

objects, like a queue. These sets are implicitly defined to have standard attributes and 

processing primitives (closely akin to those found in SThfSCRIPT) which include attri­

butes of 

• card (for cardinality) - in the standard sense, representing the number of objects 

in the set (nonnegative integer), 

• first - which indicates the first object in the ordered collection (vehicle object), 

• empty - indicating the empty condition of the set (Boolean), 

and the primitives 

• put - for inserting an object into the set in FIFO order, and 

• remove - which removes a model object from the set. 
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Each of these sets qualifies as a defined-set in the CM terminology [Nance 1981a]. 

Briefly, the defined-set is a set object which contains objects and whose membership is 

determined dynamically by existing relationships among objects. On the other hand, the 

primitive-set contains objects with identical attributes and has a static membership. Use 

of the set objects enhances the specification process. For example, the set object 

dir-Iane represents the collection of all vehicles which reside in a particular lane and 

which have the same direction of movement. (The SM application in Section 3.7 defined 

the virtual lane which corresponds in concept to this set object.) The attributes of the set 

members of a dir.Jane object can be analyzed during the report phase of the specification 

to determine the desired performance measures. Nance [1988] notes that while perfectly 

reasonable in the specification of a model, the use of such a set during implementation 

would be impractical. Set member objects (vehicles) are temporary and would normally 

be destroyed on departure from the intersection. Yet, existence of the set object would 

require the necessary overhead to maintain and update its member objects for the entire 

duration of a single model execution. 

9.12.9 Interface and Object Specafications 

The interface and object specifications of the CS application to the TI are shown in 

Figures 3.57 and 3.58. The interface specification defines the input and output data. The 

input represents that information required to control the length of the simulation and the 

necessary probability distribution data. The output describes the performance measure 

requirements. The object specification includes the complete definition of all model 

objects and their attributes. Model object types in this application are environment, 

light, vehicle, and the set object types block, lane, and dir_lane. 



Input: 

loss 
lotp 
gscale 
gshape 
wscale 
wshape 
mean 
yvalues 

xvalues 

Output: 
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Length of steady state period ) 
Length of transient period J 
Gamma scale parameter ] 
Gamma shape parameter ] 
Weibull scale parameter ] 
Weibull shape parameter ] 
Negative Exponential mean ] 
Y-axis values, 0 .. 1, for use ] 
in building a cumulative distribu- ] 
tion function for random variate ] 
generation by inverse transformation] 
X-axis values to associate with ] 
above yvalues ) 
Block service or transit times array] 
which is 2-dim, Block X Lane_Dir ] 

( Expected or average waiting times for the set of 
{ vehicles in each distinguishable lane path 

positive integer; 
positive integer; 
positive real; 
positive real; 
positive real; 
positive real; 
positive real; 

array of real; 

array of real; 

2-dim array of real; 

: nonnegative real 

Figure 3.57 Traffic Intersection Interface Specification 



{ Object 

environment .. 

light 

vehicle 

( Sets holding vehicle objects) 
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Attribute 

system_time 
loss 
lotp 
gscale 
gshape 
wscale 
wshape 
mean 
yvalues 
xvalues 
cleared_ns 
cleared_we 
ndiss 
svc_times 
1 

ns_color 
west_color 
east_color 
ns_green 
ns_red 
west_green 
east_green 
cleared_ns 
cleared_we 

1 
arr_time 
wait_time 
lane_id 
wait_left 
departed 
id 
arr_lane 
end_trans 
departure 
delay 

block .. status 

lane 

occupant 
end_trans 
departure 

tot_wait_time 
deps 
exp_wait_time 

Type 

positive real; 
positive integer; 
nonnegative integer; 
positive real; 
positive real; 
positive real; 
positive real; 
positive real; 
array of real; 
array of real; 
Boolean; 
Boolean; 
nonnegative integer; 
2-dim array of real; 
nonnegative integer; 

(red, green); 
( red, green); 
(red, green); 
time-based signal; 
time-based signal; 
time-based signal; 
time-based signal; 
Boolean; 
Boolean; 

nonnegative integer; 
positive real; 
positive real; 
dir_lane_range; 
Boolean; 
Boolean; 
positive integer; 
time-based signal; 
time-based signal; 
time-based signal; 
nonnegative real; 

(busy, idle); 
positive integer; 
time-based signal; 
time-based signal; 

time-based signal; 

nonnegative real; 
nonnegative integer; 
nonnegative real; 

Figure 3.58 Traffic Intersection Object Specifications 
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8.1£.4 The Tran8ition Specification 

The transition specification provides the necessary details of the dynamic features, 

the time and state relationships, of the model and its objects. Included in the transition 

specification are the condition action pairs (CAPs) for initialization and termination, light 

changes, and for vehicle end block transits, lane arrivals, departures, and begin block 

transits. In addition, the specification of the special actions required by vehicles during 

branching in the joint lane (to lanes 1 or 2) and when making left turns before oncoming 

traffic are included. The transition specification is tailored to those actions of a lane 1 

vehicle as it transits the intersection. For purposes of simplification, the specification of 

the condition action pairs (CAPs) for vehicles of other lanes is not included. However, a 

complete specification would be readily derivable from the given information. 

A read operation retrieves the input data and the permanent model objects (light, 

blocks, lanes, and dir_Ianes) are created during the jnjtjaJjza,tjon actions as shown in Fig­

ure 3.59. Model object attributes are also given initial values, including the environment 

object attributes of "cleared-ns", "cleared_we", "ndiss", and "1". "Cleared-ns" and 

"cleared_we" represent the Boolean condition of whether or not the intersection has been 

cleared for entry for the north-to-south traffic (or the south-to-north traffic) and for the 

west-to-east traffic, respectively. The first vehicle to enter the intersection for these direc­

tions must check the intersection clear (as specified in the CM definition of Section 3.1). 

Following vehicles do not have to make this check. "Ndiss" indicates the number of 

departures in steady state and "I" is an integer counter that indexes each vehicle object as 

it is created. Note that initialization also includes the "setting" of the initial light change 

and the initial arrivals to all lanes. Termination conditions are reached when the number 



Initialization } 
INITIALIZATION: 

VAR i block_range; 
j : lane_range; 
k : dir_lane_range; 
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READ (loss, lotp, gscale, gshape, wscale, wshape, mean, yvalues, xvalues); 
READ (svc_times); 
CREATE (light); 
ns_color := red; 
west_color red; 
east_calor red; 

FOR i := A TO B9 DO 
CREATE ( block[l] ); 
block [i].status := idle; 
block [i] .occupant 0; 
END FOR; 

cleared_ns 
cleared_ns 
ndiss :== 0; 
1 : = 0; 

false; 
false; 

FOR j: Ll TO JOINT DO 
CREATE ( lane [j] ); 
END FOR; 

FOR k := Nl TO R11 DO 
CREATE ( dir_lane [k] ); 
dir~lane [k).tot_wait_time .= 0; 
dir_lane [kJ.exp_wait_time 0; 
dir_lane [k].deps := 0; 
END FOR 

SET ALARM ens_green, 0); 
SET ALARM (arr_lane [JOINT], inv_trans (yvalues, xvalues»; 
SET ALARM (arr_lane [L3], gamma (gscale, gshape»; 
SET ALARM carr_lane [L4], weibull (wscale, wshape»; 
SET ALARM (arr_lane [LS], inv_trans (yvalues, xvalues»; 
SET ALARM (arr_lane [L6], neg_exp (mean»; 
SET ALARM Carr_lane [L7], weibull (wscale, wshape»i 
SET ALARM (arr_lane [La], weibull (wscale, wshape»; 
SET ALARM (arr_lane [L9], inv_trans (yvalues, xvalues»; 
SET ALARM (arr_lane [L10], inv_trans (yvalues, xvalues»; 
SET ALARM Carr lane [Lll), inv_trans (yvalues, xvalues»i 

Termination ) 
ndiss )= loss 

STOP 

Figure 3.59 Traffic Intersection Transition Specification 
(Initialization and Termination) 
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of departures in steady state equals the defined length of the steady state period. 

The l.ight. change CAPs (Figure 3.60) dictate the light timing sequences of the vari­

ous color changes for the light object. Each CAP includes within it the determination of 

the next light action with the SET ALARM primitive. Timing delays are in seconds. 

CAPs which describe the actions to be taken by vehicles upon completion of a block 

transit, fIl.d .b.lad transit, are shown in Figure 3.61. Since only the actions for lane 1 vehi­

cles are specified, only blocks I, 0, Y, B4, and B8 are covered. These represent all the 

blocks in a lane 1 vehicle's path through the intersection. The scheduling of concurrent 

events is handled by the addition of the "NOT (ns-green ... )" portion of the condition 

expression for this action cluster. In effect, end block transit actions will be taken only 

when the alarm is due and there is no light change action due at the same time. This 

gives priority to the light change actions. A scan of the remainder of the transition 

specification shows how this feature, noted by Overstreet and Nance [1985), is accom­

plished within the es. For simplification, some of the later concurrent scheduling and 

prioritizing conditions are not included (at the "NOT .... " statements, e.g., at Figure 

3.64). Although the complete specification of priorities is not included, sufficient detail to 

describe the concept has been provided. The actions taken upon an end of transit of 

block 0 are essentially departure actions since block 0 is the last block in a lane 1 

vehicle's transit path. The vehicle's waiting time is calculated, and a general departure 

action is scheduled immediately with the SET ALARM primitive. 

Lane arrivals and departnre actions are shown in Figure 3.62. Arrival to the JOINT 

lane results in actions which create the vehicle for the arrival, set the vehicle's initial 

attributes (including arrival time), and determine which lane (1 or 2) it will join. If the 

lane is to be 2, the direction of the vehicle (if to the right) is also determined 



Light Changes } 
North-south to green 
WHEN ALARM (ns_green) 

ns_color := green; 
west_color red; 
east_color := red; 
cleared_we: false; 
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SET ALARM (ns_red, system_time + 20) 

North-south to red } 
WHEN ALRAM (ns_red) : 

ns_color := red; 
cleared_ns := false; 
SET ALARM (west_green, system_time + 1) 

West to green } 
WHEN ALARM (west_green) 

west_color := green; 
SET ALARM (east_green, system_time + 13) 

East to green J 
WHEN ALARM (east_green) 

east_color := green; 
SET ALARM ens_green, system_time + 16) 

Figure 3.60 Transition Specification 
(Ligh t Changes) 
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End Block Transit } 
WHEN ALARM (end_trans [i : block_range] & 

NOT (ns_green OR ns_red OR west_green OR east_green» 
VAR veh_id : integer; 
veh_id := block [iJ.occupant; 
CASE i of 

A begin end; 

I begin 
put vehicle [veh_id] in block [Y]; 

end; 

o begin 
CASE vehicle [veh_id].lane_id of 

1 begin 
block [O).occupant := 0; 
block [0] .status := idle; 
vehicle [veh_id].wait_time 

system_time - vehicle [veh_iq].arr_time; 
vehicle [veh_id] .departed .= true; 

y 

end; 
4 begin .. end; 

SET ALARM (departure, 0); 
end; 

begin 
CASE vehicle [veh_id] . lane_ 

1 put vehicle [veh_id] 
11 : put vehicle [veh_id] 

end; 

id of 
in block [B8] ; 
in block [Z] ; 

B4 begin 
CASE vehicle [veh_id].lane_id of 

1 put vehicle [veh_id] in block [0]; 
7 begin end; 
9 begin .. end; 

end; 

B8 begin 
CASE vehicle [veh_id].lane_id of 

1 vehicle [veh_id].wait_Ieft .= true; 
3 begin end; 

10 begin .. end; 
end; 

B9 : begin .. end; 

Figure 3.61 Transition Specification 
(End Block Transits) 
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Lane Arrivals } 
WHEN ALARM Carr_lane [j : lane_range] & 

NOT (ns_green OR ns_red OR west_green OR east_green OR end_trans»): 
VAR delay, draw_lane, draw_turn : positive real; 
CASE j of 

Ll, L2 : i 

L3 : begin end; 

Lll 
JOINT 

begin .. end; 
begin 

CREATE (vehicle [1]); 
vehicle [1] .arr_time := system_time; 
vehicle [1] . wait_left := false; 
vehicle [l).departed .~ false; 
vehicle [l].id := 1; 
draw_lane := randm; 
if draw_lane (= .396 then 

put vehicle [1] in dir_lane [NI] 
else begin 

draw_turn := randm; 
if draw_turn (= .213 then 

put vehicle [1] in dir_lane [R2] 
else 

put vehicle [1] in dir_lane [N2]; 
end; 

put vehicle [1] in lane [JOINT]; 
delay := inv_trans (yvalues, xvalues); 

end; 
SET ALARM carr_lane [j], system_time + delay; 
1 := 1 + 1 

Departure J 
WHEN ALARM (departure & 

NOT (ns_green OR ns_red OR west_green OR east_green» 
IF lotp > 1 THEN 

lotp .= lotp - 1 
ELSE begin 

IF lotp = 1 THEN begin 
lotp: 0; 
CLEAR dir_lane of vehicles where departed true; 
end; 

ELSE 
ndiss 

end; 
ndiss + 1; 

Figure 3.62 Transition Specification 
(Lane Arrivals and Departure) 
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probabilistically. The newly created vehicle is placed in the JOINT lane and the delay 

(inter-arrival time) to the next arrival to the JOINT lane is calculated. Arrival actions 

conclude with the setting of the alarm for the next arrival and incrementing the vehicle 

counter "I". Departure actions provide control over the duration of the simulation by 

managing the length of transient period ("Iotp") and number of departures in steady state 

("ndiss") attributes. Once the end of the transient period is reached, all vehicle objects 

that departed during the transient period are removed from the dir-Iane sets, essentially 

resetting the model for purposes of statistical collection. F rom then on, the departure 

actions will update "ndiss" until termination conditions are reached. 

Figures 3.63 and 3.64 include the CAP for vehicles to .b.e.gin hlo.c.k. transit Each of 

the begin block transit CAPs represent contingent conditions. Upon entering the inter­

section at the first block (block I for lane 1 vehicles), the cleared-Ils attribute (for the 

environment) is set to true for following vehicles. The vehicle is removed from its lane 

and the entered block is set to busy. Also, the block occupant attribute is set to the 

incoming vehicle. As a vehicle enters other blocks during its transit of the intersection, it 

is removed from the entered block's set and assigned to that block's space. This assign­

ment results in that block's status being set to busy and the updating of the occupant 

attribute. When possible, the status and occupant attributes of blocks that have been 

"crossed" are reset (to idle and 0, respectively), "freeing" that block for occupancy by 

another vehicle object. End transit actions for the block being transited are determined 

and set at the conclusion of its begin transit action. 

Figure 3.65 provides a description of the CAPs for the branching or splittjng of a 

vehicle in the JOINT lane to lane 1 or to lane 2 and a description of the CAPs for accom· 

plishing l.ef1.t.w:.na.. Note that these also contain contingent conditions. 
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{ Begin Block Transits 

Block 1 ] 
«ns_color = green) & (block [11.status = idle) & 

(NOT lane [LI].empty) & (int_nsclear OR cleared_ns» & 
NOT (ns_green OR ns_red OR west_green OR east_green OR 

end_trans OR arr_Iane) 
VAR tmpvehicle : vehicle; 
IF NOT cleared_ns THEN 

cleared_ns: true; 
tmpvehicle := lane [LI] .first; 
remove tmpvehicle from lane [LI]; 
block [I).status := busy; 
block [I] . occupant := tmpvehicle.id 
SET ALARM (end_trans [I], 

system_time + trans_time (I,tmpvehicle.lane_id})i 

Block 0 ) 
NOT block [O).empty & block [O).status idle & NOT ..... . 

VAR tmpvehicle : vehicle; 
tmpvehicle := block [0] .first; 
remove tmpvehicle from block [0]; 
block (O).status := busy; 
block [O).occupant := tmpvehicle.id 
CASE tmpvehicle.lane_id of 

NI :begin 
block [Ba].occupant := 0; 
block [Ba].status := idle; 
block [B4].occupant := OJ 

block [B4).status := idle; 
SET ALARM (end_trans [a], 

system_time + trans_time (0, tmpvehicle.lane_id»; 
end; 

N4 :begin .. end; 

Block Y 
NOT block [Y].empty & block [YJ.status idle & NOT ..... . 

VAR tmpvehicle : vehicle; 
tmpvehicle := block [Yl.firstj 
remove tmpvehicle from block [Y]i 
block [Yl.status := busy; 
block [Y].occupant := tmpvehicle.id 
CASE tmpvehicle.lane_id of 

Nl :begin 
block [1] . occupant := OJ 

block [1] . status := idle; 
SET ALARM (end_trans [Y], 

system_time + trans_time (Y, tmpvehicle.lane_id»; 
end; 

NIl :begin .. end; 

Figure 3.63 Transition Specification 
( Begin Block Transits) 
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Begin Block Transits 
Block B4 ] 
NOT block {B4].empty & block [B4].status idle & NOT ..... . 

YAR tmpvehicle : vehicle; 
tmpvehicle := block [B4] .first; 
remove tmpvehicle from block [B4]; 
block [B4] .status := busy; 
block [B4] .occupant := tmpvehicle.id 
CASE tmpvehicle.lane_id of 

Nl :begin 
block [YJ . occupant := 0; 
block [YJ . status : idle; 
SET ALARM (end_trans [B4], 

system_time + trans_time (B4, tmpvehicle.lane_id»; 
end; 

N7 :begin end; 
N9 :begin end; 

Block B8 
NOT block (B8].empty & block [B8].status idle & NOT ..... . 

YAR tmpvehicle : vehicle; 
tmpvehicle := block [B8].first; 
remove tmpvehicle from block [B8]; 
block [B8] .status := busy; 
block [B8].occupant := tmpvehicle.id 
CASE tmpvehicle.lane_id of 

Nl :begin 
SET ALARM (end_trans [B8], 

system_time + trans_time (B8, tmpvehicle.lane_id»i 
end; 

N3 :begin end; 
NlO :begln end; 

Figure 3.64 Transition Specification 
( Begin Block Transits) 
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Splitting from Joint to Lanes 1 or 2 } 
(NOT lane [JOINT] . empty) & 

«( lane [JOINT].first.lane_id = Nl) & (lane [Ll].card <= 4» OR 
«(lane [JOINTJ.first.lane_id = N2) OR (lane [JOINT] .first.lane_id R2» 
& (lane [L2] .card (= 4») & NOT 

VAR tmpvehicle : vehicle; 
tmpvehicle: lane [JOINT].first; 
remove tmpvehicle from lane [JOINT] 
CASE tmpvehicle.lane_id of 

1 put tmpvehicle in lane [Ll]; 
2,2R put tmpvehicle in lane [L2]; 

Turning Left from Lane 1 J 
vehicle [block [B8].occupant].waiting true & leftl ok & NOT ..... 

vehicle [block [B8].occupant].waiting = false; 
put vehicle [block [B8].occupant) in block [B4]; 

Turning Left from Lane 3 } 

( Turning Left from Lane 6 } 

{ Turning Left from Lane 9 J 

figure 3.65 Transition Specification 
( Split and Turning) 
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9.12.5 The Function and Report Specifications 

The final components of the es are the function and report specifications, Figures 

3.66 and 3.67. The function specification includes a brief description of the functions used 

by the es. These functions are not fully defined for the sake of simplicity and include 

functions for the determination of the stochastic delays (inter-arrival times) for the initial 

and subsequent arrivals to the lanes. The function trans_time returns the transit or ser­

vice time delay of a particular block based on the block's identifier and the identifier of its 

transiting vehicle. Also included are Boolean functions for checking clearance for making 

left turns and for entering the intersection. The report specification takes advantage of 

the utility of the dir-Iane set. It specifies the performance measures as the summation of 

all wait_times of departed vehicles in a particular dir-Iane object divided by the number 

of departed vehicles in that object. 

3.13 The STA Application 

The STA application develops both a static and dynamic specification of the TI 

using an AS approach. Figures 3.68 through 3.73 provide informal coverage in the 

manner suggested by Zeigler [1976J for an informative but non-technical description. Fig­

ures 3.74 through 3.83 complete the specification by recording its formal portions, in 

accordance with the DEVS (Discrete Event System Specification) formalism [Zeigler 1976, 

1984a, 1984b, 1987; Concepcion and Zeigler 1988]. This section presents and discusses the 

use of the STA. A close review of the examples provided by the figures enables a deeper 

grasp of the technical details. 

The examples in Zeigler's work [1976] do not clearly establish the means whereby 

temporary objects are created and destroyed. This application attempts to produce a 



( Function 

weibull 

begin · . end; 

gamma 

begin · . end; 

neg_exp 
begin · . end; 

inv_ trans 

begin · . end; 

randm 
begin · . end; 

trans time -

leftl_ok 
begin .. end; 

left3_ok 
begin .. end; 

left6_ok 
begin .. end; 

left9_ok 
begin 

int_nsclear 

end; 

begin .. end; 

int_westclear 
begin .. end; 
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Arguments 

(wscale 
wshape 

(gscale 
gshape 

(mean 

(yvalues 
xvalues 

(blockname 
lanename 

real, 
real) 

real, 
real) 

real) 

array of real, 
array of real) 

block_range, 
lane_dir_range) 

Type } 

positive real; 

positive real; 

positive real; 

positive real; 

positive real; 

positive real; 

Boolean; 

Boolean; 

Boolean; 

Boolean; 

Boolean; 

Boolean; 

Figure 3.66 Traffic Intersection Function Specifications 



Report Actions } 
WHEN end of simulation 

VAR i : dir_lane_range; 
FOR 1 := Nl TO Rll DO 
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FOR every vehiclel in dir_lane [1] where departed = true DO 
dir_lane [i].tot_wait_time := 

END FORi 

dir_lane [i] .tot_wait_time + vehicle I.wait_time; 
dir_lane [iJ.deps: lane_dir [iJ.deps + Ii 
dir_lane [i] .exp_wait_time := 

dir_lane [iJ.tot_wa1t_time / lane_dir [iJ.deps; 
END FORi 

FOR i := Nl TO Rll DO 
WRITE ("For Vehicles in Lane ", i,": H); 
WRITELN C' Expected Waiting Time is ", dir_lane [i]. exp_wai t_time) ; 
END FOR; 

Figure 3.67 Traffic Intersection Report Specification 
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similar effect by assuming that the initial vehicle is available (created on initialization) 

with lane, direction 1 and arrival time descriptive variables set to null values. An arrival 

machine (one for each lane) operates on the vehicle counter, which is initialized to 1. The 

first machine to perform an arrival increments the vehicle counter to set up for the next 

vehicle. At each increment of the vehicle counter, a vehicle creation is implicitly under­

stood to occur. Also note that the specification only includes transition descriptions of 

the blocks in a lane 1 vehicle path and that the specification is intended to support one 

replication. 

9.19.1 The Informal Description 

Following the general format that Zeigler [1976] suggests, an informal description is 

first presented of the model components (Figure 3.68), descriptive variables (Figures 3.69 

and 3.70), and parameters (Figures 3.71 and 3.72). Model components are listed in Figure 

3.68 as being active or passive. The active components are responsible for state changes 

among model components and thus "act on" other components and their descriptive vari­

ables. The passive components are not capable of this type of action and will change 

state only when "influenced" by an active component [Zeigler 1976]. 

The descriptive variables provide the state information of the model components. 

Each active component has at least two descriptive variables of the form "STATE OF" 

and "TIME LEFT IN STATE". The first is extremely important in specifying how a par­

ticular component "interacts" with the others. The latter corresponds to a countdown 

clock variable as mentioned in the overview of Section 2.15. Constants and functions 

which further help to define the model are called "parameters". The parameters of the TI 

application are listed and briefly described. For purposes of simplicity, the details of the 
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Components 

Active: 
LIGHTNS, LIGHTW, LIGHTE 
ARRMACHINE·3, ARRMACHINE-4, ___ , ARRMACHINE'll, ARRMACHINE·JNT 
BLOCK·A, BLOCK-B, _ . _, BLOCK-Z 
BLOCK'!, BLOCK'2, _ .. , BLOCK'9 
TURNER-!, TURNER-3, TURNER-6, TURNER-9 
SPLITTER, EXIT, TERM 

Passive: 
VEHICLE-!, VEHICLE-2, - _. 
INTERSECTION, MODEL 
LANE· QUEUE-1, LANE-QUEUE-2, . __ ,LANE-QUEUE-11, LANE· QUEUE-JNT 
WAIT'QUEUE-1, WAIT-QUEUE-3, WAIT-QUEUE-6, WAIT-QUEUE·9 
STATISTICS-1, STATISTICS'2, .. _) STATISTICS-1IR 

Figure 3.68 Informal Description (Components) 
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Descriptive Variables 

Describing LIGHTx (x = NS (north-south), W (west), E (east) 
STATE-OF-LIGHTx -+ with range {O(green), l(redH, (ss) 
X· TIME·LEFT·IN·STATE-+ with range Rt, «7s) 
DELA Y -+ time delay determined by LIGHTx and its state 

Describing ARRMACHINE'y (y = 1, ... , II,JNT) 
STATE· OF·ARRMACHINE·y -+ with range {O( wait), 1( createvehicle H, (SMy) 
My· TIME·LEFT·IN·STATE -+ with range Rt, «7My) 
INTERARRIVAL· TIME -+ rv determined by machine id, y 

Describing BLOCK·k (k =A, .. _ ,Z, 1, _ .. ,9) 
STATE-OF'BLOCK'k -+ with range {O(id/e, begin), l(busy, end)}, (sBk) 
Bk· TIME-LEFT'IN'STATE -+ with range R600 (O"Bk) 
OCCUPANT·OF·BLOCK·k -+ with range {I,:., VEH·COUNTER}, (OCCBk) 
sve- TIME -+ transit time delay determined by Block type, k, 
and ly( DccBI;)' and d y( DeeSI;) of VEHICLE description 

Describing TURNER'n ( n = 1,3,6,9) 
STATE· OF· TURNER'n -+ with range {O( wait), l(turn)}, (sTn) 
Tn' TIME'LEFT1N-STATE -+ with range Roo, «7Tn) 

Describing SPLITTER 
STATE-OF-SPLITTER -+ with range {O( wait), I (split)}, (ssp) 
SP· TIME·LEFT·IN·STATE -+ with range Roo, «7sp) 

Describing EXIT 
STATE· OF· EXIT -+ with range {O(wait), l(depart)}, (sEX) 
EXIT· TIME·LEFT·IN·STATE -+ with range Roo, «7EX) 

Describing TERM 
STA TE· OF· TERM -+ with range {O(wait), l(terminate)}, (sTERM) 
TERM· TIME·LEFT·IN·STATE -+ with range Roo I «7TERM) 

Figure 3.69 Informal Description (Descriptive Variables, Active) 
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Descriptive Variables 

Describing VEHICLE· j ( j = I, ... , VEH·COUNTER) 
(implying that VEHICLE· j exists for all j < VEH·COUNTER) 

DIRECTION· OF· V j -+ with range {N( normal), R( right)}, (dvj ) 
LANE· OF· V j -+ with range {I, ... ,II}, (Lvj ) 
ARR·TIME·OF· Vj -+ with range Rt , (Avj) 

Describing MODEL 
MODEL -+ with range {O (transient), 1 (transition), 2 {steady state}, 

3 ( terminate)} (s MOD) 
VEH· COUNTER --+ with range zt , (sve) 
NDISS --+ with range zt , (sNDISS) 
LOTP --+ with range zt , (sLOTP) 

Describing INTERSECTION 
CLEARANCE --+ with range {O( clearedns), 1( clearedwe)}, (SOL) 

Describing LANE-QUEUE'" ( i = 1, .. ') Il,JNT) 
LANE-QUEUE·; --+ with range {1,2, ... , VEH·COUNTER} *, (SLQi) 

(A sequence of vehicle components) 

DescribingBLOCK·QUEUE·k (k =A, ... ,Z,l, ... ,9) 
BLOCK· QUEUE'k --+ with range {1,2, ... , VEH·COUNTER}*, (SBQk) 

(A sequence of vehicle components) 

Describing WAIT'QUEUE'n (n = 1,3,6,9) 
WAIT'QUEUE'n --+ with range {1,2, .. _ , VEH·COUNTER} *, (SWQn) 

(A sequence of vehicle components) 

Describing STATISTICS'o (0 = 1,2,2R,3,4,5,5R,6,7,8,9,lO,11,11R) 
WAIT· TIME· 0 --+ with range Rt , (sWTo) 

Figure 3.70 Informal Description (Descriptive Variables, Passive) 
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PARAMETER 

LOSS -+ a constant indicating length of steady state period 

INTERARRIVAL· TIME -+ a function that determines the 
time delay until the next vehicle arrival (using standard 
probability distributions and inverse transformation), based on 
arrival machine identifier and its inter arrival seed; 

returns value in range R+ 

DELA Y -+ a function that determines the time delay until the 
next color change, based on light identifier and its state; 
returns value in range Z+ 

SVC· TIME -+ a function that determines the transit time 
delay of vehicles transiting a particular block, based on 
the block and the transiting vehicle's lane and direction; 
returns value in range R+ 

Figure 3.71 Parameters (Model Constants and Functions) 
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INTERARRIVAL· TIME (V, TIl) where y is ARRMACHINE identifier 
and rv is INTERARRIVAL·SEED 

probability distributions for function with respect to V defined for: 

3 --+ Gamma 
4 --+ Weibull 
6 --+ Neg_exp 

V - 7 --+ Weibull 

8 --+ Weibull 

else --+ Inverse Transform 

DELAY ( X, sz) where x is LIGHT identifier and s:: is state 
and for the folIoing arguments returns these values (in seconds): 
NS, 0 --+ 30 
NS,1 --+ 20 
W, 0 --+ 21 
W,1-+29 
E, 0 --+ 34 
E, 1 --+ 16 

SVC- TIME (k, ly( occ
Bk

)' dy( OCC
Bk

)) 

where k is a BLOCK identifier 

STRING OPERATIONS: 
top defined by top (al a2 - - . an) = a l [Zeigler 1976] 
rest defined by rest (al a2 ... an) = ( a2 . - - an) [Zeigler 1976] 
num defined by num (al a2 . .. an) = n 

Figure 3.72 Functions and String Operations 
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functions are not given. Only the essentials are listed. Note that the string operations 

shown in Figure 3.72 are extremely useful in the manipulation of the sets, a characteristic 

feature of the STA. 

The model dynamics and "component interaction" are clarified with a plain English 

explanation in Figure 3.73. Model dynamics dictate that each component will transition 

from state to state as described. These transitions are translated into the formal transi­

tion functions which represent the bulk of the formal specification. 

9.19.2 Beyond Informality in Time and State 

The formalism of the STA makes it extremely difficult to use in practical applica­

tions like the TI example. Yet, where other CFs have failed (notably in their failure to 

adequately describe time and state relationships), the STA is effective. The time advance 

function is applied to the model state set to determine the next event time. This function 

essentially selects the minimum value found among the countdown variables. By associa­

tion, one or more components which are due to change state are determined. [Note that 

if there is more than one component due to change state at the same instant, a prioritiz­

ing function (Zeigler [1976] uses SELECT) is used to break ties. Such tie-breaking rules 

are informally given in Figure 3.73.] Once "selected", an active component "executes" its 

formal transition function, and thereby produces the model state changes. The state 

changes are produced through the manipulation of descriptive variable values. The 

countdown clock variables must be accurately updated in order to maintain the proper 

time and state relationships. 



Oomponent Interaction 
LIGHTx 
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O. Green for DELA y. PERIOD, then to state 1 
1. Red for DELAY·PERIOD, returns to state 0 

ARRMAOHINE·y 
O. Waits for INTERARRIVAL·DELAY 
1. Creates vehicle, returns to state 0 

BLOOK·k 
O. Idle condition, waits for right conditions, 

(vehicle waiting to occupy and transit BLOOK·y) 
and then begins transit event 

1. Busy condition, waits SVO· TIME and does end transit event 
and returns to state 0 

TURNER'n 
O. Waits for right conditions (oncoming traffic and blocks 

are clear) to do the turn 
1. Does the turn, returns to state 0 

SPLITTER 
O. Waits for right conditions (vehicle is at the head of the 

Joint Lane and must branch to Lanes 1 or 2, and there is 
room in lanes 1 or 2( capacity of 5)) to do the split or branch 

1. Does the split and returns to state 0 

EXIT 
O. Waits for right conditions (vehicle departure) to update 

departure information 
1. Updates departure information, maintains model state, and returns 

to state 0 

TERM 
O. Waits for the model to enter state 3 
1. Terminates model execution 

TIE-BREAKING RULES 
TERM in state 1 first, then any LIGHT, then EXIT in state 1, then 
BLOCKs in state 1, then ARRMACHlNEs in state 1, then SPLITTER in 
state 1, then BLOCK in state 0, and finally, TURNERs in state 1. 

Figure 3.73 Informal Description of Component Interactions 
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S.lS.S The Formal Specification 

The structured formal specification [Zeigler 1976] is produced with a set description 

of the tie-breaking rules, and a clear indication of the "influencees" within the model. 

Informal coverage of the tie-breaking rules is sufficient for this discussion. The 

influencees are clearly distinguishable in the local transition functions, the principal com­

ponents of the specification. 

The local transition functions are given for each active com ponent. As discussed in 

Zeigler [1976], these may be developed under the ES, AS, or PI CFs. The approach taken 

here closely follows the AS and the combined models approach described in Zeigler [1976]. 

For each component's transition function, we define a "condition routine" and an 

"activity routine". The condition routines are specified in such a manner that the 

occurrence of a state change for a particular component can be identified. When the con­

dition is .tl:JJ..e and the component is selected (on the basis of analysis of the next imminent 

event data from the time advance function), the activity routine is executed. The use of 

negative-valued countdown variables enables the incorporation of the AS technique. 

When the condition is determined, the countdown variables can be exactly set so that 

they will reach zero at the precise instant at which the state change is to occur. For con­

tingent conditions, however, the countdown variables are allowed to go negative so that 

when the condition routine becomes true, the component is an immediate candidate for 

selection. 

Finally, all the condition routines can be incorporated into a list and "scanned". 

During each clock cycle, those component's condition routines which become true have 

their associated activity routines executed. The components whose condition routines are 

false during that same cycle have their countdown clock variables updated. 
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Figure 3.74 gives a simple example of the approach. The condition routine checks 

the state of the light, 'f:' Therefore, whenever the state of any light is 0 or 1 (and the 

countdown variable produces that light component's selection), the activity routine is exe­

cuted. The activity routine changes the state and resets the countdown variables. Table 

3.10 shows one cycle of the state progressions of the lights. The local transitions which 

complete the specification are given in Figures 3.75 through 3.83. These are not discussed 

but follow the same concepts showed in Figure 3.74 (albeit at a more complex level). 

9.11.4 Summary of the STA Applicah'on 

Zeigler [1976] gives excellent and wide coverage of the DEVS in the context of the 

ES, AS, and PI CFs, with a few examples. The examples shed light on the practical 

aspects of the DEVS formalism, However, since many of these examples are incomplete 

(their completion is left as an "exercise" to the reader), the intricate details of the formal­

ism are cloudy and a solid understanding of the approach is difficult to achieve. More 

recent work surrounding the development of a PC-based environment (PC-Scheme) 

should help to improve the modeler's ability to build model specifications based upon 

DEVS and the STA [Zeigler 1987J. 
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STATE VARIABLES 

For each LIGHTx, the following are state variables: 
STATE·OF·LIGHTx,( s;e) 
x' TIME·LEFT1N·STATE,( u;e) 

CONDITION ROUTINE FOR LIGHTx 

G;e (8;e) = 
1. (8z =0) OR 
2. (8z =l) 

ACTIVITY ROUTINE FOR LIGHTx 

8' z = (8z + 1) mod 2 

Figure 3.74 Local Transition for LIGHTx 
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Table 3.10 State Transitions for LIGHT;!: 

Descrip Variable Value (at indicated times) 

Variable t=O t=20 t=21 t=34 t=50 

8NS 
0 1 1 1 0 

(INS 20 30 29 16 20 

8W 1 1 0 0 1 

(lw 21 1 29 16 21 

BE 1 1 1 0 1 

(IE 34 14 13 16 34 
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STATE VARIABLES: 
For each ARRMAGHINE'Y, the following are state variables: 

STATE·OF·ARRMAGHINE·y( SMy) 
My·TIME·LEFT1N·STATE( O"My) 
INTERARRIVAL·TIME·SEED( rMy) 

CONDITION ROUTINE FOR ARRMAGHINE·y: 
CMy (SMy) = 

1. (s My = 0 ) OR 
2. (SMu = 1) 

ACTIVITY ROUTINE FOR ARRMA CHINE· y: 

fMu ( sMu' O"Mu ' rMy, sLQu ' Sye, ly( 'Yo)' dy( 'Yo)' Ay( 8 yO }) = 
( S'Mu ' u'My , r'MII ' s'LQu ' s' ye , I' Y( 8yO ) , d' Y( 8 yO ) , A' Y( 8 yO ) ) 

S'MII = (SMy + 1) mod 2 

{
o if sM1I =0 

u'My = INTERARRIVAL· TIME (y, rMy) otherwise 

{
rM1I if sMII = 0 

r' -My - r ( rMy) otherwise 

{
SLQY if SMy = 0 

s' -LQy - sLQII Sye otherws'se 

{
sYe if SMy = 0 

s' ye = Sye + 1 otherwise 

!
IV( 8yO} if SMy = 0 

I'Y( 8
yO

) = Y otherwise if y = 3, ... ) 11 
1,2 otherwise (probalistic assign) 

!
dV( 8 yO ) if SMy = 0 

d'v( 8
yO

) = N otherwise if y = 3,4,6,7,8,9,10 
R otherwise (probalistic assign) 

{
AV( 8yO) if SMy = 0 

A' -V( 8 yO ) - CLOCK otherwise 

Figure 3.75 Local Transition for ARRMACHINEy 
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STATE VARIABLES: 
STATE·OF·BLOCK·k( SBI:) 

Bk· TIME·LEFT·IN·STATE( UBI:) 

OCCUPANT·OF·BLOCK·k( OCCBk) 

CONDITION ROUTINE FOR BLOCK·I: 
CBI ( sNS, sLQI' SBI, SCL , SBL , SBH, sBN, sBl , SB2, 

~'~'~'~'~'~'~'~'~'~G' 
SBT, SBU, SB7 , SBS, SB9 J SBg , sBZ, OCCBE) = 

1. (( SNS =0 AND sBI =0) AND 
(SLQ1 # A AND (( sBk for all k monitored = 0 AND lv( oee

SE
) # 5 OR 

sCL = 0)), OR 
2. sBI = 1 

ACTIVITY ROUTINE FOR BLOCK·I: 
fBI ( SBI, UBI, OCCBI, SCL , SLQl , SBQY) = 

( s'BI , UBI, Occ'BI, 8' CL , S'LQl , 8' BQY ) 

SIBI = 1 

{
SVC'TIME ( I, Iv( aee ), dv( oce )) if s - 0 

SI Sf BI-
UBI = h . 00 at erw.se 

- {top ( SLQl) if sBI = 0 
occ' -

BI - occBl otherwise 

{
o if sBI = 0 and sCL = 1 

s'CL -- sCL otherwise 

, _ {rest ( SLQl) if sBI = 0 
s LQl - sLQl otherwise 

{

SBQY if sBl = 0 
8' -

BQY - sBQY occBl otherwise 

Figure 3.76 Local Transition for BLOCKk, with BLOCK·I 
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CONDITION ROUTINE FOR BLOCK· Y: 
CBy ( sBQY, sBY) = 

1. (SBQY~ A AND sBY= 0), OR 
2. sBY= 1 

ACTIVITY ROUTINE FOR BLOCK· Y: 
fBY ( SBY 1 O"BY, OCCBY, SBI, O"BI' OCCBI, SBW, O"BW, OCCBW, SB'lY' SB'lZ, SB'l8 ) 

( ' 0' I , 0' I I 0' I I I I S BY , BY, OCC BY , 8 BI , BI , OCC BI , S BW , BW, OCC BW , 8 B'lY , S B'lZ , 8 BQ8) 

S'BY = 1 

{
BVC' TIME ( Y, lv( oecSY ) ' dv( oecSY ») if sBY = 0 

0' BY = 00 otherwise 

{

top ( SBQY) if sBY = 0 
occ' -

BY - occBY otherwise 

\

0 if sBY 0 AND Iv( lop ('SQY» = 1 
s' -

B/,BW - sBI,BW otherwise 

\

0 if sBY = 0 AND lv( lop ('SQY») = 1 

0' BI,BW = (fBI BW otherwise , 

\

0 if sBY= 0 AND 
occ' -

BI,BW - occB/,BW otherwise 

{

rest (SBQY) if sBY = 0 
s' -

BQY - sBQY otherwise 

{

SBQZ if sBY = 0 
s' -

BQZ - sBQZ occBY otherwise 

{

SBQ8 if sBY = 0 
s' -

BQ8 - sBQ8 0ccBY otherwise 

Figure 3.77 Local Transition for BLOCK· Y 
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CONDITION ROUTINE FOR BLOCK·8: 

CBS ( 8BQS , 8BS) = 
1. sBQS =F A AND sBS = 0), OR 
2. SBS"= 1 

ACTMTY ROUTINE FOR BLOCK·8: 

fBS ( sBS, (1BS , oeeBS I 8WQl , 8BQS , ... ) = 
( ' -I I I I ) S BS' O"BS, oee BS, 8 WQl , 8 BQS " .. 

S'BS = 1 

88 88 B8 
{
SVC.TIME ( 8, lv( occ ), dv( occ )) if s = 0 

alBS = h . 00 ot erwlse 

{

top ( SBQS) if SBS = 0 
oee' -

B8 - oeeB8 otherwise 

if 8BS = 0 
{

SWQ l 
S' -

WQl - sWQl oeeBS otherwise 

{

rest ( SBQ8) if sBS = 0 
s' -

BQS - sBQ8 otherwise 

Figure 3.78 Local Transition for BLOCK·8 
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CONDITION ROUTINE FOR BLOCK'4: 

CB4 ( sBQ4 , SB4) = 
1. sBQ4 ~ A AND sB4 = 0), OR 
2. sB4 = 1 

IB4 ( sB4 , O"B4 , occB4 , sBY, O"BY, oecBY, sBQO , sBQ4 , ... ) = 
( ' -I I I.-J I I I ) S B4 , U' B4 1 OCC B4 , S BY , U' BY, occ BY , S BQO 1 s BQ4 , ... 

S'B4 = 1 

{
SVC' TIME ( 4, ly( top( 8

SQ4
)) , dv( lop( 8

8Q4
») if sB4 = 0 

U B4 = 00 otherwise 

{

top ( SB(4) if sB4 = 0 
occ' -

B4 - occB4 otherwise 

1
0 if sB4 = 0 AND I - 1 Y( lop( 'SQ4)) -

s' -
BY - sBY otherwise 

1
0 if sB4 = 0 AND ly( top( '8Q4» = 1 

rlBy = h' SBY at erwlse 

1
0 if SB4 = 0 AND 

occ' -
BY - occBY otherwise 

, {SBQO if sB4 = 0 
S BQO = sBQO oecB4 otherwise 

{

rest ( SB(4) if sB4 = 0 
s' -

BQ4 - sBQ4 otherwise 

1-1 Y( tope 'SQ4) ) -

Figure 3.79 Local Transition for BLOCK'4 
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CONDITION ROUTINE FOR BLOCK· 0: 
CBO ( SBQO , sBO ) = 

1. SBQO :;i; A AND sBO = 0), OR 
2. sBO = 1 

ACTMTY ROUTINE FOR BLOCK'O: 

f Bo ( sBO ,(jBO , OCCBO , SB4 , (jB4, occB4' sB8' (jB8' oeeB8, SEX, (jEX, sWTl , sBQO , ... ) = 
(

' -I I 1-1 , , -1 I , 0' I , ) S BO ,U' 0, occ BO , S B4 , UB4' oec B4 , S B8, U'B8' occ B8, SEX, EX, S WTl , S BQO , ... 

1 if sBO = 0 , 
S BO - 0 otherw£se 

SVC- TIME ( 0, lv( top( B
890

») , dv( top( B
890

)) if sBO = 0 

0' BO = 0 otherwise 

otherwise 

top ( SBQO) if sBO = 0 
oec'BO = 0 

S' -B4,B8 -

o if sBO = 0 AND lv( tope '8(0)) = 1 

sB4,B8 otherwise 

o if sBO = 0 AND lv( lop( B
890

» = 1 

(jB4,B8 otherwise 

/

0 if SBO = 0 AND lv( tope '8QO) = 1 
oce' -

B4,B8 - oecB4,B8 otherwise 

S'EX = 
o if sBO = 0 

1 otherwise 

00 if sBO = 0 

0' EX = 0 otherwise 

rest ( SBQO) if SBO = 0 

s' BQO = sBQO otherwise 

SWTl if sBO = 0 , 
S WTl - SWTl + (CLOCK - Av( DCC

80
») otherwise 

Figure 3.80 Local Transition for BLOCK· a 
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STATE VARIABLES: 

For each TURNERn, the following are state variables: 
STA TE· OF· TURNERn (sTn) 

Tn' TIME· LEFT· IN· STATE (O'Tn) 

CONDITION ROUTINE FOR Tl: 

0TI (sB47 sBIl sBL, sBB, sTV SWQI) = where activating conditions are 
1. ( sWQI;afA AND sTI =0 AND 
(sB4 =0 AND sBI =0 AND sBL =0 AND sBB =0)) OR 
2. sTI = 1 

ACTMTY ROUTINE FOR Tl: 

S'TI = ( STI + 1) mod 2 

{ 
sWQI if sTl =0 

s' -
WQI - rest( SWQI) otherwise 

{ 
sBQ4 if sTI = 0 

s' -
BQ4 - sBQ4 top( SWQl) otherwise 

Figure 3.81 Local Transition for TURNERn 



STATE VARIABLES: 
STATE·OF·SPLITTER( ssp) 

Sp·TIME·LEFT·IN·STATE( asp) 
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CONDITION ROUTINE FOR SPLITTER: 
Csp ( sLQINT , sLQl , sLQ2 , ssp) = 

1. (SLQINT:f= A AND ssp = 0 AND 
« num( sLQl ) < 4 AND lv( tope BLQINT») = 1) OR 

( num( SL(2) < 4 AND Iv( top( BLQ1NT)) = 2)), OR 
2. ssP = 1 

ACTIVITY ROUTINE FOR SPLITTER: 
fsp (ssp, asp, sLQINT, sLQ1 , SL(2) = 

( s'sP , lisp, S'LQINT, stLQ1 , S'L(2) 

s'sP = (ssp + 1) mod 2 

lisp = 0 

{
SLQINT if ssp = 0 

s' -
LQINT - rest ( SLQINT) otherwise 

(

SLQ1 top ( SLQINT) if ssp = 1 and Iv( tope BLQ1NT» = 1 
s' -

LQl - sLQl otherwise 

( 

t ( ) if sS'P = 1 and Iv( I ( ) ) = 2 sLQ2 op sLQINT .op BLQ1NT 

8' -
LQ2 - sLQ2 otherwise 

Figure 3.82 Local Transition for SPLITTER 
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STATE VARIABLES: 
STATE·OF·EXIT( sEX) 

EXIT·TIME-LEFT-IN·STATE( (jEX) 

STATE-OF·TERM( STERM ) 

TERM- TIME·LEFT·IN·STATE( O'TERM) 

CONDITION ROUTINE FOR EXIT: 
CEX ( sEX' SMOD) = 

1. (sEX = 1) AND sMOD # 3 

ACTMTY ROUTINE FOR EXIT: 
fEX (sEX' O'EX, SLOTP' SNDISS, sMOD) = 

( S'EX, 0' EX' s'LOTP , s' NDISS , s'MOD ) 

S'EX 0 

o'EX = 00 

{
SLOTP 

s' -
LOTP - sLOTP 

1 if sMOD < 1 

otherwise 

{

SNDISS + 1 if sMOD = 2 
s' -

NDISS - S NDISS otherwise 

S ' -MOD -

o if sLOTP > 1 

1 if sLOTP = 0 

2 if sLOTP = 0 

3 if 8NDISS > LOSS 

{
o (for all 0) if SMOD = 1 

s' -
WTo - sWTo otherwise 

CONDITION ROUTINE FOR TERM: 
CTERM ( sMOD) = 

1. (SMOD = 3) 

ACTMTY ROUTINE FOR TERM: 
f TERM ( sHALT) = ( s'HALT) 

Figure 3.83 Local Transitions for EXIT and TERM 



CHAPTER 4 

ACOMPARAT~REvmW 

The literature review and CF applications, discussed in Chapters 2 and 3, indicate 

that two basic types of guidance are provided by the commonly used CFs in constructing 

model representations. 

First is implementation guidance (algorithmic, managerial, supervisory) which 

directly impacts the subsequent executable form of any model representation. Such gui­

dance centers on two aspects of the model representation: a model's mode of sequencing 

(whether in the form of events, activities, processes, etc.) and its method of sequenc­

ing (e.g., whether by explicit scheduling of events, scanning of conditions, or by the 

concurrent control of component interactions utilizing a combination of scheduling and 

scanning techniques). This type of guidance is fundamental to achieving the translation of 

the representation into executable code. 

Secondly, CFs can provide design (structural, existential, skeletal) guidance. Here, 

the modeler is aided in his definition of the model's s1a.tk structure as he identifies the 

objects (components, entities) and their attributes which comprise the model. Within 

design guidance, the modeler is further assisted in the expression of the dynamic relation­

ships and the rules of interaction that must exist among model objects during the pro­

gression of the model through time and state (i.e., the model's dynamic structure). The 

common provision of enabling the representation of relationships (or sets) which exist 

among model objects may be provided. 

Since the boundaries among CFs are not well-defined, it is difficult to objectively 
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compare them. However, we strive to consider the CFs in their purest form and inten­

tion, with regard to their explicit (rather than implicit) features. We caution the reader 

from attempting to generalize the comparisons to all problem domains. Instead, com­

parative comments are made on the bMis of our experience in the problem domain 

(Traffic Intersection) in which we performed the CF applications. In addition, since the 

ES, PI, and TF applications were performed under the influence of an SPL (Simulation 

Programming Language), we restrict our comparison to the features of the CFs which are 

independent of their surrounding language implementation. Therefore, in this chapter we 

explore the comparisons of the CFs with regards to the types of guidance that each expli­

citly makes available to the modeler. Grouping our comparisons by guidance type 

improves the clarity and meaningfulness of our review. Consequently we draw comparis­

ons among those CFs (and only among those) which display implementation guidance, 

etc. The groupings of CFs by the type of guidance permitting comparisons are shown 

later in Figure 5.1. By means of this comparative discussion, the roles of the CFs are 

clarified with respect to their guidance. Thus, the bMis for the development of a taxon­

omy in Chapter 5 is realized. 

4.1 Implementation Comparisons 

A discussion of the comparison among CFs that deliver implementation guidance 

includes an analysis of the characteristics of the ES, AS, TP A, PI, and TF CFs. These 

CFs, because of their very nature, form the basis for the boundaries of this comparison. 

We first consider the relative merits of ES, AS, and PI and then extend the comparison to 

include TPA and TF. Comments pertinent to other CFs are also offered. 

From the introduction to this chapter, we realize that implementation guidance 
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influences the mode of sequencing of the model representation and the algorithmic stra­

tegyor method of sequencing that is to be employed. These constituents of implementa­

tion guidance, due to their low-level nature, have a definite impact upon the modeler. 

Both take part in determining efficiency in terms of building the model representation, 

the subsequent programming task, and its later computer execution. The mode of 

sequencing reflects the world view or Weltansicht [Lackner 1962] that is promoted by the 

CF in use by the modeler and the view that will be taken to effect model transformation 

from state to state. Viewing the model as being composed of events, activities, or 

processes (characteristic of the ES, AS, and PI CFs respectively) influences the 

programmer's task and determines the coding format and structure (e.g., whether in the 

form of event routines, testheads and activity routines, or process descriptions) of the 

programmed model. The method of sequencing found in the implementation guidance 

determines the data structures and list processing techniques (if any) that are necessary. 

4.1.1 Aspects Concerning the Sequencing Mode 

Since the ES CF dictates that the modeler use events as the principal unit for com­

ponent interaction, a programmed model based on the ES CF is distinguished by event 

routines. The turn.ns.green, arriv al.lane 1 , departure, enter, and the 

arrival.blockd event routines from the ES CF application in Chapter 3 are examples. 

The burden is placed upon the modeler to include all conditional testing (based upon con­

ditions other than time) within these routines [Fishman 1973; Hooper 1986b]. The 

modeler must explicitly state, through means of this conditional testing, all consequences 

that will follow the occurrence of a particular event, as contained within its event routine 

[NeelamkavilI987]. The events which change the light colors in the ES CF application of 
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Chapter 3 (Section 3.2) also include various conditional tests for controlling vehicle entry 

to the intersection. Figure 4.1 (taken from the turn.ns.green event routine) shows that 

after a north-south light change to green the modeler tests the entry conditions for vehi­

cles to enter from lanes 1,2,5,6,7,8, and 11 with the "call test.entry" statements. Since 

the consequences of this light change to green may influence a right turn on red for lanes 

5 and 11 or direct movement into the intersection from lanes 1,2,6,7, or 8, the modeler is 

forced to consider and check all possibilities. Also notice a similar problem for the 

modeler in Figure 4.2 taken from the arrival.blockd event routine. For vehicles that 

have come from lane 9, the modeler must release block N and then check several entry 

conditions. The simple consequence of releasing block N may satisfy the entry conditions 

for vehicles from any of several lanes. The burden to recognize which conditions to test 

lies squarely on the modeler's shoulders. Experts [Pidd 1984; Birtwistle et al. 1985; 

Kreutzer 1986] agree that as model complexity increases, it becomes increasingly difficult 

for the modeler to accurately handle these determinations and maintain consistency. 

With an increase in complexity, the programmed model tends to be error-prone. 

Also, modifications and enhancements to the code are not easily made and debugging can 

be a frustrating task. Furthermore, the scheduling commands of future events are scat­

tered throughout the code resulting in a programmed model that has fragmented logic 

and is difficult to read and understand [Kreutzer 1986]. All of these problems characterize 

the development of the ES CF application. The lack of key conditional tests early in 

development causes the traffic intersection to become clogged during testing. Debugging 

to locate such problems is extremely difficult and tedious. Once a problem is solved and 

corrected, it is not uncommon to find that the same correction is required in multiple 

locations within the code due to the fragmentation of the logic. 
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turn.ns.green 
let ns.color(l) green "Set color attributes 
let west.color(l) red 
let east.colorel) = red 
let clearedwe false "Set clearance flag to False 
call test.entry.9.to.ll(11,lanell,block.w) 
call test.entry.34S(S,laneS,block.e) 
call test.entry.12(1,lanel,block.i) "Test various entries 
call test.entry.12(2,lane2,block.j) 
call test.entry.678(6,lane6,block.c) 
call test.entry.678(7,lane7,block.b) 
call test.entry.678(8,lane8,block.a) 

Figure 4.1 A Portion of Event TURN.NS.GREEN (ES OF) 
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case 9 "Lane 9 car 
call releese(block.n) " free block n, test.left 

" for lane9, test.entry, and 
" sched a departure 

call test.left(from.9,lane9,block.3) 
call test.entry.12(1,lane1,block.i) 
call test.entry.12(2,lane2,block.j) 
call test.entry.678(6,lane6,block.c} 
call test.entry.67S(7,lane7,block.b} 
call test.entry.678(S,laneS,block.a) 
schedule a departure given a.car in 0.S66 seconds 

Figure 4.2 A Portion of Event ARRIV AL.BLOCKD (ES CF) 
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On the other hand, when the number of objects that compose a model is manageable 

and the interactions among them are few, the modeler enjoys precise control over the 

model's execution [Kiviat 1969]. Because of the complexity of the TI, this advantage is 

not realized during the ES CF application. 

The AS CF with its activity-orientation promotes a dramatic improvement in the 

modeler's ease during the programming task. The duo of testheads and activity routines 

frees the modeler from having to explicitly specify the interactions and relations among 

events [Kreutzer 1986; Laski 1965}. Therefore, the removal of this modeler responsibility 

for complex applications produces substantial gains in programming efficiency. The 

result is a model representation that is "readable, easy to design, modify, and extend" 

[Kreutzer 1986]. Easier top-down design with a uniform style can be achieved [Pidd 1984; 

Birtwistle et al. 1985]. The readability and simplification of the model derived from the 

AS CF primarily result from the clarity achieved through the grouping of the conditional 

tests [Kiviat 1969; Kreutzer 1986J. The benefits of such an approach are evident from 

inspection of the AS CF application pseudo-code in Chapter 3 (Section 3.3). The test­

heads for each of the activity routines are clear and relatively easily stated. The modeler 

is not entangled with the details of the consequences of state changes. This is in stark con­

trast to the ES OF application where such details are a major encumbrance to the 

modeler. 

The process descriptions of the PI CF introduce a totally different approach. Shan­

non [1975] describes this approach as permitting conceptual "articulation". Others con­

sider that the PI CF allows a model representation that is more natural, intuitive, under­

standable, and conceptually simpler [Pidd 1984; Fishman 1973; Neelamkavill987; Hooper 

and Reilly 1982; Birtwistle et al. 1985]. The modeler is able to confine all information 
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pertinent to a single process within its description, including the time flow data [Neelam­

kavill987J. 

Most often, the PI CF is used in conjunction with the OOP in performing this 

encapsulation of information into object modules [Kreutzer 1986]. Each module charac­

terizes the process dynamics of a single process class. Therefore, modularization becomes 

an achievable feature; the model is not as fragmented as in comparable ES and AS models 

[Birtwistle et al. 1985]. Model logic is concentrated in a single location resulting in 

improved readability and understanding of model logic flow, reduced complexity, and 

shorter model descriptions [Kiviat 1969; Banks and Carson 1985; Kreutzer 1986]. Modu­

larization naturally enhances maintainability and helps reduce problems in debugging the 

programmed model. Fishman [1973] also adds that statistics collection statements are 

easier to implement since they can be localized in modules rather than spread out as in an 

ES CF model. 

The construction of the PI CF application in Chapter 3 (Section 3.5) appears to pro­

gress faster than the ES CF. The task of converting the conceptual notions of the model 

into the process descriptions is accomplished in a smooth fashion. The findings in the 

literature that characterize such an approach as "natural", "intuitive", "understandable", 

etc. are confirmed. Issues of modularity come to bear heavily in speeding the develop­

ment of the application. Each process description clearly shows all the interactions of the 

vehicle and its points of conditional and unconditional delay. Corrections to the code are 

easily made during the accomplishment of the application. The descriptions, in some 

respects self-documenting, enable the modeler to maintain an effective grasp on and 

understanding of the finer details of the model. Even with the lapse of several months 

since the completion of the PI CF application, maintaining excellent comprehension on 
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returning to the code is experienced. 

Overstreet and Nance [1986] provide an interesting conceptual summary of the ES, 

AS, and PI CFs on the basis of locality, or that property which is distinguished by the 

grouping of common information into one location. The ES CF can be considered to 

display locality of .tim.e in that event routines contain the related actions that are to take 

place in one instant. The events list then groups all simultaneous events into one location. 

The AS CF provides locality of aiaJ&.. The testheads offer a grouping of model state condi­

tions under which associated actions are to occur. Finally, locality of ~ is evident in 

models based on the PI CF. Each process description describes the life-cycle actions of a 

particular class of model object. 

Each perspective of locality offers a unique advantage. Clearly, the modeler must 

choose that locality which most benefits his cause and promotes the attainment of model 

objectives. 

4.1.2 Aspects Concerning Sequencing Method 

The sequencing methods of the ES, AS, and PI CFs primarily influence the execution 

efficiency of models which are constructed in accordance with their implementation gui­

dance. This aspect of implementation guidance is hidden in most respects to the modeler 

when an SPL is used: the SPL largely assumes responsibility for the algorithmic strategy. 

Such is the case for our applications of the ES, PI, and TF CFs, which are accomplished 

using SIMSCRIPT, SIMULA, and GPSS/H respectively. The modeler often needs to 

understand the SPL's use of its sequencing method, even though it is hidden to him. The 

effects of this "hidden" component remain significant. Comments concerning execution 

efficiency in this section follow the majority view that is found in the literature and are 
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not based on studies performed as a result of this research. We choose not to perform 

such studies since applications of the CFs to the TI require extensive programming in the 

absence of an SPL. SPLs are not readily available for the AS and TP A CFs; their algo­

rithmic strategies are not implemented in our applications. 

As noted earlier, the sequencing guidance of the ES CF stipulates that an events list 

holds (ordered by time) a succession of unconditional events [Hooper 1986b]. This exact 

determination of event routine execution produces an efficient execution when the model 

is composed of less interactive, more independent components [Kiviat 1969; Shannon 

1975; Birtwistle et al. 1985; Hooper 1986b}. Unlike within the AS CF, "repeated scanning 

is not required to determine when they [the independent events] can be done" [Kiviat 

1969]. The algorithm is streamlined because the modeler assumes the burden of represent­

ing the component interactions as discussed earlier. From experience with the ES CF 

application, once appropriate conditional tests are inserted and consistency among them 

is achieved (albeit after many labor-intensive hours of work), the modeler is able to con­

centrate on other aspects of the model. He is able to completely divorce himself from 

concerns of the sequencing method. Although selection of the next event is easily done, 

the algorithm still handles the filing, searching, selection, creation, and destruction of 

event records in the events list [Fishman 1973]. 

Under these same circumstances (i.e., independent components), the AS CF produces 

an inefficient representation for execution. As you recall, all testheads are scanned during 

a single scanning phase. Obviously, as the number of independent components increase, 

the number of repetitive, redundant, and unnecessary scans also increases [Laski 1965; 

Kreutzer 1986; Pidd 1984; O'Keefe 1986b]. According to Kreutzer [1986], this is the "price 

to be paid for the convenience of declarative (conditional) scanning". However, when the 
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model is characterized by a large number of primarily dependent and interactive com­

ponents, the AS CF demonstrates improved execution efficiency [Kiviat 1969; Hooper 

1986b]. A corresponding ES CF model which has highly interactive components could 

spend a great deal of execution time in list processing chores. Since there is no such 

analogous "list", the AS CF escapes this type of work [NeelamkavilI987] and is more 

attractive than the ES CF under these circumstances. The scanning and logical checks 

become "less time consuming" than the overhead requirements of record management and 

list processing [Fishman 19731. The AS CF algorithm, unlike the ES CF, is considered to 

provide much more useful work for the modeler since it handles the component interac­

tions with the scan and removes this responsibility from the modeler (Kreutzer 1986; Pidd 

1984; Birtwistle et aL 1985]. Indeed, this becomes quite clear when an application, like 

that given in Chapter 3 (Section 3.3) is undertaken under the AS CF. 

Much like the AS CF, the PI CF is able to simplify the specification of a model since 

the use of reactivation points enables a conditional wait capability. The interactions 

among components remain implicit and the modeler is eased of the burden of explicitly 

representing these dependencies [Blunden and Krasnow 1967]. However, the PI CF 

demands a much more complicated implementation due to its concurrency requirements 

and need to combine activity scanning and event scheduling techniques [Kreutzer 1986; 

Pidd 1984]. This problem can be overcome, however, when an SPL is used that imple­

ments the PI CF. It follows that we do not experience this drawback during our applica­

tion of the PI CF. However, this would be readily apparent in the performance of a com­

parable model using some high-level language, (e.g., standard Pascal) which in its stan­

dard form has no capability for concurrency. 
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The PI CF is preferred when the model is composed of a "balance" of independent 

and dependent components [Hooper 1986b]. However, the PI CF becomes less efficient 

when competition for resources is dominant [O'Keefe 1986b]. We see in the next section 

that the competition for resources also places added requirements on the modeler. 

,/.. 1. 9 Extending the Comparisons 

Laski [1965] recognizes that during the update of the clock for the AS CF that the 

information is lost which would link the new time with associated Bound-activities. The 

TPA CF does not lose this information. Instead, the pending Bound-activities are clearly 

identified with the updated clock time. Their execution during the B-phase reduces the 

length of the C-phase and eliminates unnecessary scans for Bound-activities that are not 

pending. The application of the TP A CF in Chapter 3 (Section 3.4) demonstrates these 

points. The list of B-activities due for execution is derived by examining the t-cells of the 

B-activities shown in Section 3.4.2. The AS CF requires 89 testheads to be scanned. 

Elimination of the testheads of the B-activities (while using the TPA CF) reduces the 

number of scanned testheads to 40, a fifty-five percent reduction. 

By separating the "things that must happen" (the due B-activities) from the "things 

that might happen" if the conditions are right (the C-activities) [Crookes et aL 1986], the 

TPA CF removes most of the inefficiencies of the AS CF [Tocher 1979; O'Keefe 1986b]. 

This proves helpful in making the model "easier to analyze, comprehend, and extend", 

especially when there is complex interaction and competition for resources [Crookes et al. 

1986]. The TPA CF thereby retains the advantages of the AS CF while improving upon 

a model's execution efficiency. The incorporation of a next-event set approach (in the B­

phase) and the retention of a reduced length C-phase enables the TPA CF to be efficient 
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for both models with relatively independent and highly dependent components [O'Keefe 

1986b]. 

The TF CF improves upon the PI CF by automatically accomplishing "many of the 

tasks which fall upon the programmer" who uses a PI-based SPL like SIMULA [Birtwistle 

et al. 1985]. For instance, the PI CF application to the Traffic Intersection (Chapter 3, 

Section 3.5) demonstrates that the modeler is responsible for signaling an object's passiva­

tion and reactivation. Furthermore, it is necessary for the modeler to explicitly control 

the queueing up and competition for resources. This is illustrated in lines 25-40 of Figure 

4.3, a portion of the process for cars from lane 8. If a vehicle cannot enter the intersec­

tion, the modeler explicitly provides for that vehicle to enter the lane queue, awaiting 

entry to the intersection. Once in the queue, the vehicle's process is passivated. Also, 

notice that when a vehicle is removed from the lane queue (line 30 or 36) and enters the 

intersection (line 38-40), the modeler is required to activate the first car (if any) remain­

ing in the lane queue. Although the advantages to describing the movement of a single 

vehicle within a process description are significant, these details of an object's movement 

are difficult to specify. Indeed, the difficulties described here rival (to a lesser exten t) 

those discussed concerning the conditional testing requirements placed on the modeler 

when under the ES OF. Such problems also contribute to the added length in application 

code over that for the ES CF. 

The TF CF performs these tasks within the block structures that are provided (e.g., 

the block statements of GPSS). Figure 4.4 (taken from the lane 8 submodel in Chapter 3, 

Section 3.6) demonstrates the advantage of the TF CF in accomplishing object activation, 

passivation, and competition for resources for the modeler. The block statements 

(specifically SEIZE and RELEASE), as discussed in Section 3.6.2, automatically do 
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20 activate new car8 delay (weibl{S6.0S92, 0.63923, seed8»; 
!Generate next arrival 

21 mydriver:- new nsdriver(tfclight, square_a, pforkandtcreek, 
22 this car8)} !Create driver 
23 lane: = 8; ! Set attributes 
24 right:= true; 
2S if not lane8.empty then begin !Enter lane8 queue when 
26 into(lane8); ! cars are already in lane; 
27 passivate; !Wait in line for turn 
28 activate mydriver after current; !At head of line, turn on 
29 passivate; , driver. 
30 out; 
31 end 
32 else if «(tfclight.south.red) or (square_a. busy) or 

«not pforkandtcreek.nsclear) and 
(not pforkandtcreek.clearedns») and 
«not right) or (tfclight.south.green) or (square_a. busy) or 
(not pforkandtcreek.r8clear») then begin 

33 into(lane8); 'Can't immediately enter 
34 activate mydriver after current; so first in queue, 
3S passivate; ! and turn on driver. 
36 
37 
38 
39 
40 
41 

out; 
end; 

if not lane8.empty then 
activate lane8.first after current; 

entered: true; 
transitfm8(pforkandtcreek); 

!Ready to enter, so turn 
, on any car waiting in 
, lane8 queue. 
!Enter and transit 

Figure 4.3 Excerpts from the CARS Process (PI CF) 
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1000*&WEIBL(56.0592,O.63923,MX$SEED(&I,10» 
A vehicle arrives in Lane 8 

STAT8R Collect statistics for 8R vehicles 
FRONT8 
BV$ENTER8R,1 

Capture front end of Lane 8 
Wait until the vehicle can enter the 
intersection from Lane 8 to turn right 

LS$LYTENSN,1,SKIPSR If LYTENSN is red, skip 
the next LOGIC Block 

CLEARNSN 

BLOKA 
FRONTS 
2153 
BLOKK 
BLOKA 
1507 
BLOKK 
STATSR 
1 

Intersection clearance was checked for 
NS & SN traffic when light LYTENSN 
just turned green 
Capture block A 
Free front end of Lane S 
Travel on block A 
Capture block: K 
Free block A 
Travel on block K 
Free block K 
Record collected statistics 
Exit the intersection 

Figure 4.4 Excerpts from the LANES Submodel (TF OF) 



246 

these operations. This feature significantly improves the speed in accomplishing the TF 

CF application over that achieved for the PI CF. However, ease in developing the process 

descriptions is comparable. Perhaps the singlemost distinguishing feature of the TF CF 

application is the tremendous reduction in the amount of code compared with the ES and 

PI CFs. 

A block structure or chart of transaction flow is also a very natural way to represent 

many systems. The textual form of the block structure provides a clear and straightfor~ 

ward means of documenting the model [Gordon 1979]. Debugging is simplified in that 

errors can be isolated to a particular block. With the "block isolating" error-reporting 

features of GPSS/H, the time spent in debugging is reduced for the TF CF application. 

In some cases, the modeler is limited, however, to using the defined block structures and 

flexibility is lost. This limitation may also inhibit the modeler's ability to specify details 

of communication among components. No such problems are experienced during the TF 

CF application to the TI. 

4.1.4 Summarizing Compara'sons Based on Implementation Guidance 

Tables 4.1 and 4.2 review the comparative features just discussed. Table 4.1 covers 

the eminent features of the CFs relative to implementation guidance. Table 4.2 gives a 

panorama of the key, related characteristics for complex models (i.e, models like that of 

the TI with many components and component interactions). 

The ES, AS, TPA, PI, and TF CFs provide a wide range of implementation gui~ 

dance characteristics, compared and discussed above. Although other CFs under review 

may be used in the context of some identifiable implementation guidance like that found 

in the aforementioned CFs, none contains guidance that specifies the mode and method of 
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Table 4.1 Eminent Features of CFs Based on Implementation Guidance 

CONCEPTUAL MODE OF METHOD OF LOCALITY 
FRAMEWORK SEQUENCING SEQUENCING 

ES event Explicit time scheduling of events; time 
update to next-event time on events list 

AS activity Conditional scanning of state conditions; state 
update to minimum t-cell time 

TPA event, activity Explicit time scheduling of B-activities; time, state 
conditional scanning or state conditions 
for C-activities; update to minimum 
t-cell time 

PI process Explicit time scheduling or object object 
move-times on FOL with transrer to COL and 
conditional scan or objects on COL; 
update to next object move-time on FOL 

TF process Explicit time scheduling or object object 
move-times on FOL with transfer to COL and (transaction) 
conditional scan of objects on COL; 
update to next object move-time on FOL 
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Table 4.2 Characteristics of Complex Models 

CONCEPTUAL ES AS TPA PI 
FRAMEWORK 

CONDITIONS Independent Dependent Independent or Balance of 
FOR Objects Objects Dependent Independent and 

MAXIMUM Objects with Dependent Objects 
EFFICIENCY resource with low resource 

competition competition 

BURDEN ON High Low Low Moderate. 
MODELER 

BURDEN ON Low High High High 
EXECUTIVE 

Fragmented Conditional logic Conditional logic Concentrated in 
throughout concentrated at concentrated at modules of 

MODEL LOGIC event routines testheads testheads and process 
DESCRIPTION determined logic descriptions 

concentrated at 
B-activities 

MAINTAINABILITY Low Hight Hight High§ 

NATURAL 
REPRESENTATION Minimal Good Good Excellent 

CAPABILITY 

DEVELOPMENTAL 
TIME, EFFORT Very high Low Low High 

REQUIRED 

APPLICATION 
LINES OF 1312 . . 1778 

CODEt 

t Due to localization of state with grouping of conditional testing 
§ Due to localization of object and modularization of process descriptions 
* Due to modeler responsibilities in activation, passivation, 

and queueing for resources 
t Lines of code for event routine or process descriptions; 

applicable to Chapter 3 applications only; 
does not include code for initialization or statistics collection 

TF 

Balance of 
Independent and 
Dependent Objects 
with low resource 
competition 

Low 

High 

Concentrated in 
modules of 
block 
segments 

High§ 

Excellent 

Low 

443 
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sequencing that is characteristic of pure implementation guidance. For example, one 

point has been made regarding the OOP in its association with the PI CF: the OOP 

enhances modularization of the process descriptions. In addition, a common feature of 

the OOP is the ability to save and restore an object's state, similar to the use of reactiva­

tion points in the PI CF. Indeed, some [Kreutzer 1986] feel that the OOP is an extension 

of the PI CF. However, the OOP does not explicitly possess the mode and method of 

sequencing in its guidance. Therefore, we do not consider it to contain implementation 

guidance. 

While the impact of implementation guidance primarily centers on the program 

design and execution efficiency, the remaining sections of the comparative review deal 

with the conceptual and communicative [Balci 1986J design issues of model representa­

tion. 

4.2 Design Comparisons 

This section deals with comparing the CFs relative to their ability to effectively 

assist the modeler in his design of the static and dynamic structure of the model. More 

specifically, we seek to investigate how well each CF aids in the designation of model 

objects and their associated attributes and in the specification of the dynamic rules of 

interaction. Additionally, the identification of relationships (how the objects are "bound" 

or related to one another) and the description of the input/output exchange of the model 

with its environment are also of concern. The bonding and interfacing requirements may 

be of a static or dynamic nature. 
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-/.2.1 Object and Attribute Identification 

With the exception of the ES, AS, TP A, PI and TF CFs, all the CFs under review 

provide limited guidance for the identification of objects and their attributes. The 

modeler must use his understanding of the system being modeled to identify the objects 

and their attributes. The CFs discussed below coerce the modeler to perform this task . 

• OOP - The OOP is clearly based upon the decomposition of a model into its 

component objects. Additionally, the OOP conceptually stipulates that all informa­

tion for a given object is encapsulated within that object's description. This 

includes the provision, enhanced by inheritance mechanisms, for attribute 

identification which is required to describe an object. Modularity of an object and its 

attributes is important to the modeler due to conceptual clarity and maintainability 

issues. Inheritance eases attribute association for a modeler and is an important 

benefit of the OOP concerning object and attribute identification, eliminating redun­

dancies which might otherwise be required. The class BLOCK and class 

BLOCKA declarations of the OOP application in Chapter 3 (Section 3.7) demon­

strate the power of this feature. With 35 block descriptions to declare (blocks A-Z, 

blocks 1-9), the attributes of a generic block (the class BLOCK) are inherited by 

each individual block; the redeclaration of the generic attributes within each of the 

35 blocks is not required . 

• PGM - Object and attribute data are contained in the Variable Attribute and 

Queue Attribute Tables which are presented in the PGM application of Chapter 3 

(Section 3.8) . 

• ERA and EAS Both the ERA and EAS CFs derive their conceptual basis from 
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the objects (entities) and attributes that make up a given model. The squares 

(objects) and circles (value sets for attributes) demonstrate the ease in which objects 

and attributes are designated under the ERA CF with the aid of the entity­

relationship diagram (Chapter 3, Section 3.9). Within the SIMSCRIPT preamble 

(Chapter 3, Section 3.10), the objects and attributes of the EAS CF application 

(within 8IM8CRIPT) are evident. 

• CM - The CM is an extension of the OOP and therefore provides for model 

object and attribute identification. The CM outline in Chapter 3 (Section 3.1) very 

clearly guides the modeler in a top-down definition of model objects and attributes, 

through the various submodels down to the base level (Le., from the top-level Model 

to the Vehicle, Light, and Block submodels at the base level). 

• SM - The elemental and generic structures of the SM enable a full designation of 

objects and their attributes. The genus graph (Chapter 3, Section 3.11) highlights 

the basic model objects of the 8M CF application and also shows attribute informa­

tion. Applying the SM CF for this level of design guidance is straightforward. 

• CS - The object specification includes provision for object and attribute 

iden tification and establishes the static structure of the model of the TI for the CS 

application (Chapter 3, Section 3.12). 

• STA - Model components and descriptive variables relate object and attribute 

information for the STA. The informal descriptions (Chapter 3, Section 3.13) are 

evidence of how the STA prompts the modeler for this data. 
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.4. fJ. fJ Dynamic Interach'ons 

The relationships and rules of dynamic design guidance, once specified, provide the 

motive force for effecting the state changes among the model objects. Therefore, this 

aspect of guidance is critical to producing an accurate model representation. By means of 

constituent components or methodological guidance aimed directly at the specification of 

model dynamics, the CS, STAt and CM CFs provide explicit support, albeit limited, for 

accomplishing this task. We note that the dynamic design guidance provided by these 

CFs is independent of world view. 

The transition specification of the CS guides a modeler for this purpose. CAPs 

(using Boolean expressions or sequencing primitives to generate time-based signals) con­

tribute to the effectiveness of the transition specification. The transition specification, 

however, only provides limited guidance in format and syntax to the modeler. The 

modeler in using this guidance must depend upon his own knowledge and experience with 

the system under study to accurately develop the dynamic relationships. With the transi­

tion specification, the as coerces the modeler to specify the model dynamics. 

The STA via the DEVS formalism also provides dynamic design guidance. The 

"necessary equipment" to specify model dynamics is available to the modeler in the form 

of the time advance and transition functions The time advance feature is implicitly pro­

vided; the modeler provides information for the transition function. However, similar to 

the OS, the STA provides only limited guidance in format and syntax (notation). In addi­

tion, set theoretic notation and the intricate details of the DEVS formalism makes "using 

the equipment" a difficult task for the modeler. Yet, the STA "equipment", when prop­

erly specified, accomplishes the following: 
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• The time advance function enables the selection of the clock phase time and the 

update of the countdown variables . 

• The transition functions (acting like event or activity routines, or process descrip­

tions) are selected for execution, producing the state changes of the model. Tie­

breaking rules are also accomodated for function selection. 

Although the formal approach of DEVS makes it more unwieldy than the CS, the STA 

also coerces the modeler into the specification of model dynamics. 

Bottom-up specification of the CM enables the specification of model dynamics. 

Bottom-up specification is not accomplished with the CM application. But as noted in 

Chapter 2, Barger [1986} conducted related research and supported bottom-up 

specification under the CM in her version of the Model Generator tool of the SMDE. 

Barger [1986] suggests possible ways to explicitly guide the modeler in the specification 

process using the information included in the CM top-down definition. The specification 

of model dynamics under the CM is less structured than that for the CS and ST A. 

It has been conjectured [Geoffrion 1987a; Patrick 1987] that SM can accommodate 

the dynamic relationships of discrete-event models. The SM application does not contain 

model dynamics. However, since the 8M is not specifically oriented towards discrete­

event models, dynamic design guidance is not explicit and applicability is yet to be shown. 

No other CFs provide an explicit capability for dynamic design guidance except as 

provided by the modeler. 
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4.2.9 Hierarchical, Top-down Decomposition and Relationships 

Balmer [1987] discusses hierarchical modeling based on "structures centered around 

activity modules." But within the context of this review, the hierarchical, top-down 

decomposition which is discussed is based on a system object viewpoint instead. A 

hierarchical decomposition capability supports the definition of 1:1 or 1:m relationships. 

Hierarchical decompositions (from an object or entity viewpoint) are possible when the 

model is influenced by OOP, PGM, ERA, EAS, CM, SM, or STA CFs. 

Wasserman [1984] defines a hierarchy as "a group of objects that exist in some par­

tially ordered state such that a sub-group of objects that are all subservient to another 

object form a logical class." A hierarchical structure may demonstrate different forms of 

subservience or fundamental relations that are dependent "on the information that the 

hierarchy is attempting to capture" [Wasserman 1984]. Wasserman [1984] gives several 

common examples of these fundamental relations: 

• IS-A, in which subordinate objects are instances of their parent object(s), 

• PART-OF, where subordinate objects are components of their parent object(s), 

and 

• REPORTS-TO, a useful relation for showing chain-of-command structures. 

The inheritance features of the OOP and PGM described in their applications allow 

hierarchical decompositions. As discussed earlier, the class BLOCK and class 

BLOCKA declarations (Chapter 3, Section 3.7) demonstrate an IS-A hierarchy. The 

class DIRECTION and class LIGHT declarations show the creative use of the inheri­

tance feature to generate a PART-OF hierarchy (Le., the Light consists of four directions 

or parts: north, south, east, and west). 



255 

The use of entity and relationship sets enable the ERA to easily handle hierarchical 

decompositions. For example, the use of the entity-relationship diagram in Section 3.9 of 

Chapter 3 makes it easy to define the l:m relationship that exists between the intersec­

tion and its component blocks, a PART-OF hierarchy. An IS-A hierarchy is also implicit 

in that each of the "many" blocks takes on the attributes of the indicated value set for 

the BLOCK object. In a similar manner, the use of sets in the EAS CF makes such 

decomposition possible. In Figure 4.5 taken from the SIMSCRIPT preamble, lines 20-22 

and 25 show how the EAS CF is comparable. Line 20 represents aPART-OF hierarchy; 

the light has component colors. Since lane.queue is a set in line 22, a l:m relationship 

(PART-OF) is established between a lane and the cars in its queue. 

Both CM (with its OOP orientation) and SM (with its hierarchically organized 

structures) provide the flexibility of hierarchical decompositions and tout their top-down 

design capabilities. Under the CM, relational attributes and the concept of set allow a 

natural breakdown into hierarchies other than IS-A. The top-down definition of the inter­

section submodel in Chapter 3 is a PART-OF hierarchy. The modular structure of the 

SM makes it extremely flexible to form hierarchies according to any conceptual grouping 

or relation. The overview modular structure of the SM CF application in demonstrates 

this flexibility with its &OBJECTS, &VEILDAT, &LANE-DAT, 

&TRANS-AREA-DAT, etc., conceptual modules. 

The set orientation of the ST A allows the establishment of object hierarchies. 

Experience from the STA application shows that the representation of sets of objects are 

easily shown. The LANE.QUEUE, BLOCK.QUEUE, and WAIT.QUEUE sequences 

(Chapter 3, Section 3.13) are examples. Hierarchical relationships can be conceptualized 

in the informal description portions for clarification. A stronger means for representing 
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19 permanent entities 
20 every light has a ns.color, a west.color and a east.color 
21 every block has a status, a laneuser, a turner and owns a block.queue 
22 every lane owns a lane.queue 
23 
24 temporary entities 
25 every car has an arrtime, a laneid,an id and a to.right 

and may belong to a block.queue 
and may belong to a lane.queue 

26 define arrtime as a real variable 
30 

Figure 4.5 A Portion of the SIMSCRIPT Preamble with EAS CF Features 
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the hierarchical relationships between objects and attributes seems to be lacking. The CS 

application extends the CS in Chapter 3 (Section 3.12) to include sets with the block, 

lane, and dir-Iane set objects in the object specification. Such extensions should allow 

hierarchical decom posi tions. 

The ERA includes a clear representation of m:n relationships. Such a relationship 

exists between the lanes (1 through 11) and lane categories (Normal or Right). It has been 

noted from the literature that the EAS can accommodate m:n relationships but with 

difficulty. The EAS CF application of Chapter 3 does not directly show m:n relationships 

(e.g., the lane-to-lane category relationship). The need for declaring this relationship is 

overcome by in-line coding rather than use of explicit EAS CF features. Although we do 

not pursue m:n relationships with the eM application, the concepts of set objects and of 

relational attributes should make this possible. Within the SM application, the definition 

of the lane-to-Iane category relationship is accomplished with limited success with the 

VIRT-LANE object. The definition of m:n relationships under the SM is not particu­

larly straightforward due to the complicated rules of the SML. 

Similar to the EAS application, we do not define m:n relationships under the ST A. 

Instead, relationships like the lane-to-Iane category relationship are accomodated through 

the definitions of the descriptive variables. For example, the use of this relationship to 

recover statistics data is accomplished by indexing the statistics component by the index 

variable, 0 (see Figure 4.6), which in turn ranges over values associated with the lane-to­

lane category relationship. The set object dir-Iane (see Figure 4.7) under the CS appli­

cation is used to convey this same lane-to-Iane category relationship information. Note 

that dir-Iane objects are identified by indices in the range dir-Iane-range, reflecting a 

similar technique to that used under the ST A. 
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Descriptive Variables 

Describing 
STATISTICS'o (0 = 1,2,2R,3,4,5,5R,6,7,8,9,lO,11,11R) 

WAIT· TIME· 0 -+ with range 
Rt, (SWTo) 

Figure 4.6 A Portion of the STA OF Informal Description 



259 

(From Enumerated Type Description) 
( Type Name Definition 

(NI, N2, R2, N3, N4, NS, RS, N6, 
N7, NS, N9, NlO, Nll, Rll); 

(From Object Specification) 
{Object.. Attribute 

tot_walt_time 
deps 
exp_wait_tirne 

(From Initialization Transition Specification) 
FOR k := Nl TO Rll DO 

CREATE ( dir_lane [k1 ); 
dir_lane [kJ.tot_wait_time 0; 
dir_lane [k].exp_wait_time 0; 
dir_lane [kJ.deps := 0; 
END FOR 

Type } 

nonnegative real; 
nonnegative integer; 
nonnegative real; 

Figure 4.7 Excerpts from OS Application 
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Since an object may represent a set of objects and a process graph node may 

represent an underlying network of process graph nodes, we believe that the OOP and 

PGM also allow definition of m:n relationships. However, the OOP and PGM applica­

tions in Chapter 3 do not demonstrate this. 

Although our experience from applications to the TI system is limited concerning 

abilities of the CFs for m:n relationships, we offer the following perceptions: 

• ERA offers the most straightforward approach for m:n relationships when assisted 

by the entity-relationship diagram. 

• CM and SM suggest excellent capabilities for m:n relationships based on the 

experience gained from the literature review and in performance of Chapter 3 appli­

cations. Ease in use of the SM within the SML is limited. 

• EAS, STA, and CS allow definition of m:n relationships but without the direct, 

natural clarity of the above approaches. 

• OOP and PGM should permit designation of m:n relationships. 

,f.2.,f Explicit Input/Output SpecificaUon 

The CS and STA both contain explicit requirements for input and output 

specification. For the CS, the input, output, and report specification serve this require­

ment. The INPUT, OUTPUT, and output function components of the DEVS formalism 

provide this facility for the STA. Model parameters (e.g., LOSS, DELAY in the STA 

application of Chapter 3, Section 3.13) contribute to the input/output specification under 

the STA. The CM outline includes a section for interaction with the environment which 

also serves this function. Section II of the CM outline (see Section 3.1 in Chapter 3), enti-
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tIed Modeling Environment, covers model boundaries, input description, and output deci­

sions. Other CFs, through the use of object and attribute facilities, may provide a simi­

lar result; however, the requirement is not explicit. 

4.2.S Summarizing Comparisons Based on Desz'gn Guidance 

Table 4.3 outlines the comparisons of CFs based on design guidance. Each CF that 

has been considered in this section provides a level of design guidance that is sufficient to 

adequately define model structure. Depending on the aspect, certain CFs maintain a clear 

advantage for the modeler. 
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Table 4.3 Comparisons Based on Design Guidance 

CONCEPTUAL OOP ERA EAS CM§ SM§ CS§ STA§ PGM§ 
FRAMEWORK 

OBJECT Yes Yes Yes Yes Yes Yes Yes Yes 
NAMING 

ATTRIBUTE Yes Yes Yes Yes Yes Yes Yes Yes 
NAMING 

CAP ABILITY FOR 
DYNAMIC DESIGN No No No Limited No Limited Limited No 
SPECIFICATIONS 

TOP·DOWN 
HIERARCHICAL Yes Yes Yes Yes Yes Yes* Yes Yes 

DECOMPOSITION 

CAP ABILITY FOR 
MANY-MANY Yest Excellent Yest Excellent Good Limited Limited Yest 

RELATIONSHIPS 

EXPLICIT 
INPUT/OUTPUT No No No Yes No Yes Yes No 
SPECIFICATION 

t Not observed 
* With set extension 
§ Includes documenting features 
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A TAXONOMY OF CFs 

Based upon the comparative review of Chapter 4 we consolidate the results into a 

single table, Table 5.1, which places each CF according to the type of guidance that it 

provides. From this vantage point, we are able to step back from the details of the com­

parison and to grasp a broader appreciation and perspective of the CFs under review. In 

first considering the capabilities of the CFs with regard to the type of guidance provided, 

we notice varying levels of modeler support. Furthermore, we see that CFs may be 

categorized by the range of guidance provided. The development of a taxonomy of CFs is 

naturally focused on guidance types, perceived levels of modeling support, and the range 

of guidance. 

5.1 Taxonomy Base Categories 

The foundation for the categories of the taxonomy is derived from the types of gui­

dance that a CF provides. CFs may be classified, therefore, as implementatz'on or design 

CFs. 

An implementation CF is defined as one providing guidance that determines the 

mode and method of model sequencing. The mode and method of sequencing within 

implementation guidance suggest that CFs may also be distinguished as: 

• event-oriented - having the event as the mode of sequencing and explicit 

scheduling of events within its method of sequencing, 

• activity-oriented - having the activity as the mode of sequencing and condi-
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Table 5.1 Classifications of the CFs Under Review 

IMPLEMENTATION DESIGN DESIGN 
(STATIC) (DYNAMIC) 

ES EAS CM 
AS ERA OS 

TPA CM STA 
PI SM 
TF OOP 

PGM 
OS 

STA 
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tiona} scanning of state conditions within its method of sequencing, or 

• process-oriented - having the process as the mode of sequencing and schedul­

ing or scanning of objects within its method of sequencing. 

The design CF contains guidance that assists the modeler in defining and specifying 

the model static and dynamic structure. Based upon the comparative discussion in 

Chapter 4, it follows that design guidance also contains two sub-categories, static and 

dynamic. 

• static - providing guidance which aids the definition of model static structure. 

• dynamic - providing guidance that guides the modeler in specifying model 

dynamics. 

Notice in Table 5.1 that the ES CF is an implementation CF while CS is both a 

static design CF and a dynamic design CF. Figure 5.1 shows the resulting taxonomy 

tree. 

We noted earlier that the boundaries among CFs (based upon these categories alone) 

are not well defined. A taxonomy must necessarily include additional categorizations to 

allow further clarification where overlaps occur. These additional categorizations are now 

introduced to the taxonomy. 

5.2 Support Level Categories 

Implementation guidance, as discussed in Chapter 4, includes guidance that directly 

relates to the programmed execution of the model. As such, the modeling routine formats 

(as derived from the sequencing mode) and the model executive or monitor structure ( the 

method of sequencing or the algorithmic strategy) represent the lowest level aspects of the 
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TAXONOMY 

IMPLEMENTATION DESIGN 

EVENT ACTIVITY PROCESS STATIC DYNAMIC 

ORIENTED ORIENTED ORIENTED 

Figure 5.1 The Taxonomy Tree 
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model. Low-level guidance requires more intimate involvement by and retrieval of details 

from the modeler. Issues of syntax, etc., are also at a low-level. In general, we seek to 

shield the modeler from such low-level participation in order that he or she may devote 

full attention to the model at a higher level, free from the entanglement of details. 

The CFs that provide dynamic design guidance tend to be characterized by both 

low-level and high-level directions. For example, CS offers high-level guidance for the 

specification of model dynamics as imposed by the transition specification requirements. 

However, the transition specification also forces the modeler to a low-level with its syntax 

requirements for the construction of the Condition Action Pairs, CAPs (use of sequencing 

primitives, etc.). A similar argument can be made concerning the STA. In this regard, 

the CM's flexibility helps to keep the modeler at a higher level. Dynamic design guidance, 

therefore, typically occurs with both low and high-level components and represents a con­

ceptual bridge between low and high-level requirements that are placed on the modeler. 

In general, the highest level of guidance for the modeler is that found within avail­

able static design guidance, applied to representing the model's static structure. At this 

level, the modeler is completely unencumbered with implementation details and focuses 

strictly on the model's static representation. 

Figure 5.2 summarizes the notions of variations in support level. On the basis of 

this perspective, CFs may be classified as low-level or high-level CFs. When a CF con­

tains guidance with both low and high-level components of support, such a CF is referred 

to as being a mid-level CF. 
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J1dPLEMENTATION DYNAMIC (DESIGN) STATIC (DESIGN) 

Lowest 

[execution, program design) 
implementation 

+-

Highest 

[definition and specification] 
model design 
-+ 

Figure 5.2 Low-level versus High-level Guidance 
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5.3 Range Capabilities and Resulting Categories 

We speculate that a model representation must include the data derived from some 

form of implementation, and static design and dynamic design guidance if it is to be fully 

translatable into executable code. A OF which provides all three guidance types is con­

sidered to be a full-range OF in that it makes the "full-range" of guidance capability 

available to the modeler. Such a OF I if it were to exist, would provide significant advan­

tages to the modeler. There are, however, no known full-range OFs. 

The capabilities of a full-range OF are instead provided by comp08z'te OFs. Over­

street and Nance [1986] and Zeigler [1976] discuss at length how the OS and STA OFs 

may be adapted into implementation OFs (ES, AS, or PI). By transforming these OFs 

(the OS and STA, both of which are static design and dynamic design) to include imple­

mentation details, a composite CF is formed. Therefore, a composite CF is by definition 

one constructed from the combination of two or more CFs that provide distinct types of 

guidance. The use of an SPL, for example, by the modeler can be considered to be the 

implicit use of a composite OF. The SPL provides some type of implementation guidance 

(e.g., SIMULA provides the PI CF) and the data necessary for the static structural 

definition and the dynamic structural specification is modeler-defined through his use of 

the available primitives of the SPL. 

The preceding discussion infers that a composite CF may be derived from the base 

guidance types and may not contain full-range capabilities. Because such a CF does not 

contain the full-range of guidance and contains only parts of the whole, it'is considered to 

be fragmentary, Note that every CF is fragmentary. 
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5.4 Summary of Taxonomy Categories 

CFs may be categorized on the basis of their guidance, i.e., as implementation 

(event-oriented, activity-oriented, or process-oriented), static design, or dynamic design. 

Level of support to the modeler determines whether a CF is classified as low, mid, or 

high-level. CFs may also be labeled as composite, fragmentary or full-range, depending 

on the range of guidance that they provide. Table 5.2 summarizes the terminology which 

has been developed for the taxonomy. 
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Table 5.2 Definitions of Categories of the CF Taxonomy 

CATEGORY DEFINITION 
Implementation Provides guidance that determines the mode 

and method of sequencing the model. 
Event-oriented Having the event as the mode of sequencing 

and explicit scheduling of events 
within the method of sequencing. 

Activity-oriented Having the activity as the mode of sequencing 
and conditional scanning of state conditions 
within the method of sequencing. 

Process-oriented Having the process as the mode of sequencing 
and scheduling or scanning of objects 
within the method of seouencimz:. 

Design Provides guidance that assists the modeler in 
defining and specifying model static or dynamic structure. 

Static Provides guidance which aids the definition of model 
static structure. 

Dynamic Provides guidance that guides the modeler in specifying 
the model dynamics. 

Low-level Provides low-level support to the modeler with 
particular emphasis on implementation details. 

High-level Provides high-level support to the modeler with 
particular emphasis on model design. 

Mid-level Provides both low and high level components of 
modelinlr suPPort. 

Full-range Provides a minimum of implementation, static design, 
and dynamic design guidance. 

Composite Constructed from the combination of two or more CFs 
that provide distinct base types of guidance. 

Fragmentary Provides guidance support that is less than full-range 
in capability. 
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CONCLUSIONS AND SIDv.[MARY 

This research contributes a comprehensive comparative review of CFs which is 

based on their individual application to a complex modeling problem 1 modeling the 

Traffic Intersection. Several represent a first-time application to this type of problem. In 

addition 1 a taxonomy of CFs is developed. The significant benefits of this research 

include determination of those features that are desired in a CF, improved knowledge of 

the types of guidance available to the modeler 1 insights into the information which is 

required from the modeler during the model design process, and implications for future 

research in CF development. 

6.1 Characteristics of a Next-Generation CF 

In Chapter 1 we noted that the CF or CFs for the SMDE MG tool must permit 

development of representations that will enable the subsequent development of model 

specifications which are analyzable, domain-independent, and fully translatable. The fol­

lowing features are desirable in any CF which is to accomplish these objectives for the 

realization of the automation-based paradigm [Balzer et al. 1983]. We discuss these 

features and offer comment on the current status of their availability among today's CFs . 

• High-level - This feature supports the ease of use which will undoubtedly charac­

terize CFs of the future. With a high-level CF, the use of simulation for discrete­

event systems will be available to a larger audience. Certainly, we must provide 

CFs which can be used by modeler's who are not programmers or simulation 

experts. For example, the low-level features of the SM, CS, and STA CFs make 
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their direct use by the modeler an extremely difficult task. CFs which support 

high-level features are often relegated to static design guidance only. 

• Independent of Domain - This feature will support domain independence require­

ments of resulting specifications. The modeler will be able to remain at a higher 

level, removed from world view considerations. Success in studying a particular 

problem domain is closely tied to the choice of implementation guidance for the 

modeL The implementation guidance rather than static design or dynamic design 

guidance determines the world view. Currently, we see from the literature and from 

our experience that the CS, STA, and CM CFs are apparently free of ties to world 

view and can be transformed to suit a particular view, suggesting a tendency toward 

domain independence. However, the low-level features of the CS and STA are again 

highlighted with concern. 

• Natural for Model Representation - Here, we consider that such a CF will pro­

duce a representation which will enable (from both static and dynamc information) 

the realization of a usable specification. The OOP, although limited in naturally 

representing other than IS-A hierarchies, brings substantial utility to the modeler 

through inheritance and encapsulation. Given current trends, future CFs will most 

likely be based upon the OOP. The OOP, although well suited to a PI- and TF­

based representation, is not easily adaptable to other implementation CFs for the 

accomodation of different world view orientations. This issue is necessarily a prob­

lem which must be dealt with if a singular (OOP-based) CF must be relied on for 

general application to any problem domain. 

• Broad Range of Guidance Support - In order to permit translation into execut­

able code, the CF or CFs must guide in both the model static and dynamic design, 
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and in the implementation as well. This range of guidance is currently not available 

from a single CF. This is not necessarily a problem since composite CFs which offer 

static and dynamic design and implementation guidance are easily derived. 

6.2 The Role of CFs 

The role of CFs can be characterized as being two-fold: providing guidance to the 

modeler and information retrieval for the express purpose of developing a usable model 

specification. Both of these areas are considered strongly linked to the base guidance 

categories (implementation, static design, and dynamic design) of the taxonomy which 

has been developed. In the case of the first role, this link is obvious; the provision of gui­

dance has been typed and classified by the taxonomy. In the latter case, as the modeler is 

guided in the model representation, the guidance must be sufficient to match the 

modeler's level of expertise and to enable the retrieval of information sufficient for the 

development of a model specification. Therefore, it is not surprising that the two roles 

work hand-in-hand with the success of the second role depending heavily upon the capa­

bility of the first. The interface (like the MG tool) between the modeler and the CF 

becomes critical in appropriating the capabilities of the CF and in transporting the infor­

mation from the mind of the modeler to the final specification. 

The applications of Chapter 3 and the comparative review of Chapter 4 leads to the 

following conclusions concerning the observed roles of the CFs under review. 

• The implementation CFs (namely the ES, AS, TPA, PI, and TF CFs) were 

shown to deliver excellent guidance to the modeler. 

• For best performance, the implementation guidance which is chosen by the 

modeler should be matched to the problem domain and level of model component 



275 

interaction. This matching could possibly be delayed until after some type of 

analysis of the model design. 

• To keep the modeler free of the low-level details of the implementation CF, the 

interface and knowledge-based "participating assistant" [Balzer et al. 1983J must be 

heavily utilized to create the implementation level details that can be transformed 

into formatted code (event routines, process descriptions, etc.) and efficient algo­

rithmic strategies. 

• The issues of locality indicate that a CF must effectively retrieve information 

pertinent to time, state, and object localities. 

• Improvements are required for static design and dynamic design guidance. 

Current approaches are manual-based and require heavy low-level modeler involve­

ment. With regard to dynamic design guidance, only CS, CM, and STA CFs pro­

vide limited support in this area. 

6.3 Areas of Future Research 

This work suggests future areas of research aimed at the eventual development of a 

new CF philosophy (applicable for the SMDE MG tool), namely: 

• the study of inheritance mechanisms - especially directed at improvements in 

representing m:n relationships and the various hierarchical relationships, 

• investigation into the requirements for specification analysis - a review of existing 

analysis techniques and their distinguishing features, 

• a review of the domains of applicability - determining the required range of gen­

ericity may suggest other features necessary in CFs, 
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• the study of the issues of the knowledge-based assistant - particularly in the 

areas of matching the domain to world view, transforming the the representation to 

a specific world view, and aiding the modeler in static design and dynamic design 

represen tation, 

• the development of an integrating CF or CFs which will contain the desirable 

characteristics, and 

• the development of the interface requirements for the new CF or CFs. 

6.4 Summary 

The research reported in this thesis has clarified the differences that exist among the 

myriad of CFs that are in use today. In particular, the comparative review highlights the 

significant CF features that are necessary for successful model representation of discrete­

event systems. The taxonomy provides a useful and meaningful classification of CFs and 

produces insights into the conceptual relationships that exist among them. The charac­

teristics of a CF or CFs that will effectively support the SMDE MG tool are identified. 

The roles of CFs are better understood and specific potential directions for future 

research are pinpointed. 



211 

BffiLIOGRAPHY 

Arthur, J.D., R.E. Nance, and S.M. Henry (1986), "A Procedural Approach to Evaluating 
Software Development Methodologies: The Foundation," Technical Report SRC-
86-008, Department of Computer Science, Virginia Tech, Blacksburg, Va., Sept. 

Bagrodia, R.L, K.M. Chandy, and J. Misra (1981), "A Message-Based Approach to 
Discrete-Event Simulation," IEEE Transactions on Software Engineering SE-18, 6 
(June), 654-665. 

Balci, O. (1986), "Guidelines for Successful Simulation Studies: Part I and II", Technical 
Report TR-85-2, Department of Computer Science, Virginia Tech, Blacksburg, Va., 
Sept. 

Balci, O. (1988), "The Implementation of Four Conceptual Frameworks for Simulation 
Modeling in High-Level Languages," In Proceedings of the 1988 Winter Simulation 
Conference (San Diego, Calif., Dec. 12-14). To appear. 

Balci, O. and R.E. Nance (1985), "Formulated Problem Verification as an Explicit 
Requirement of Model Credibility," Simulation 45, 2(Aug.), 76-86. 

Balci, O. and R.E. Nance (1987a), "Simulation Model Development Environments: A 
Research Prototype," Journal of the Operational Research Society 98, 8 (Aug.), 
753-763. 

Balci, O. and R.E. Nance (1987b), "Simulation Support: Prototyping the Automation­
Based Paradigm," In Proceedings of the 1987 Winter Simulation Conference 
(Atlanta, Ga., Dec. 14-16). IEEE, Piscataway, N.J., pp. 495-502. 

Balmer, D.W. (1981), "Software Support For Hierarchical Modelling," Technical Report, 
Department of Statistical and Mathematical Sciences, London School of Economics 
and Political Science, London, England. 

Balzer, R., Cheatham, T.E., and Green, C. (1983), "Software Technology in the 1990's: 
Using a New Paradigm," Computer 16, 11 (Nov.), 39-45. 

Banks, J. and J. S. Carson,II (1985), "Process-interaction Simulation Languages," 
Simulation 4.4, 5 (May), 225-235. 

Barger, L.F. (1986), "The Model Generator: A Tool for Simulation Model Definition, 
Specification, and Documentation," Master's Thesis, Department of Computer 
Science, Virginia Tech, Blacksburg, Va., Aug. 

Barger, L.F. and R.E. Nance (1986), "Simulation Model Development: System 
Specification Techniques," Technical Report SRC-86-005, Department of Computer 
Science, Virginia Tech, Blacksburg, Va. 

Bauman, R. and T.A. Turano (1986), "Production Based Language Simulation of Petri 
Nets," Simulation 47, 5 (Nov.), 191-198. 

Birtwistle, G., G. Lomow, B. Unger, and P. Luker (1984), "Process Style Packages for 
Discrete Event Modeling: Data Structures and Packages in SIMULA," Transact£ons 
of the Society for Computer Simulation 1, 1 (May), 61-82. 



278 

Birtwistle, G., G. Lomow, B. Unger, and P. Luker (1985), "Process Style Packages for 
Discrete Event Modeling: Experience from the Transaction, Activity, and Event 
Approaches,» Transactions of the Society for Computer Simulation £, 1 (May), 27-
56. 

Birtwistle, G.M., O.J. Dahl, B. Myhrhaug, and K. Nygaard (1979), Simula Begin, (2nd 
ed.), Van Nostrand Reinhold, New York. 

Blunden, G.P. (1968), "Implicit Interaction in Process Models," In Simulatz'on 
Programming Languages: Proceedings of the IFIP Working Conference on 
Simulation Programming Languages (Oslo,Norway, May, 1967). North-Holland, 
Amsterdam, pp. 283-287. 

Blunden, G.P. and H.S. Krasnow (1967), "The Process Concept as a Basis for Simulation 
Modeling," Simulation 9, 2 (Aug.), 89-93. 

Buxton, J.N. (1966), "Writing Simulations in CSL," The Computer Journal 9, 2 (Aug.), 
137-143. 

Buxton, J.N. and J.G. Laski (1962), "Control and Simulation Language/' The Computer 
Journal 5, (Apr. 1962-Jan. 1963), 194-199. 

Chen, P.P. (1976), "The Entity-Relationship Model- Toward a Unified View of Data," 
ACM Transactions on Database Systems 1, 1 (Mar.), 9-36. 

Chen, P.P. (1983), "A Preliminary Framework for Entity-Relationship Models," In 
Entity-Relationship Approach to Information Modeling and Analysis: Proceedings of 
the Second International Conference on Entity-Relationship Approach (Washington, 
D.C., Oct. 12-14, 1981). North-Holland, Amsterdam, pp. 19-23. 

Clementson, A.T. (1966), "Extended Control and Simulation Language," The Computer 
Journal 9, 3 (Nov.), 215-220. 

Clementson, A.T. (1978), "Extended Control and Simulation Language," In Proceedings 
of the 1978 UKSC Conference on Computer Simulation (Chester, England, Apr. 4-
6). IPC Science and Technology Press, Guildford, England, pp. 174-180. 

Concepcion, A.I. and B.P. Zeigler (1988), "DEVS Formalism: A Framework for 
Hierarchical Model Development," IEEE Transactions on Software Engineering L/., 
2 (Feb.), 228-241. 

Cox, B.J. (1986), Object-Oriented Programming: An Evolutionary Approach, Addison­
Wesley, Reading, Mass. 

Crookes, J.G. (1982), "Simulation in 1981," European Journal of Operational Research 9, 
1, 1-7. 

Crookes, J.G., D.W. Balmer, S.T. Chew, and R.J. Paul (1986), "A Three-Phase 
Simulation System Written in Pascal," Journal of Operational Research Society 97, 
6 (June), 603-618. 

CACI, Inc. (1983), SIMSCRIPT 11.5 Reference Handbook, J.E. Braun, Ed. CACI, Inc.­
Federal, Los Angeles, Calif. 



279 

Date, C.J. (1986), An Introduction to Database Systems (Volume I), Addison-Wesley, 
Reading, Mass. 

Davies, R. and R. O'Keefe (1987), Simulation Modelling with Pascal, Draft manuscript, 
forthcoming. 

DeCarvalho, R.S. and J.G. Crookes (1976), "Cellular Simulation," Operational Research 
Quarterly £1, 1, 31-40. 

Dos Santos, C.S., E.J. Neuhold, and A.L. Furtado (1980), "A Data Type Approach to the 
Entity-Relationship Model," In Entity-Relationship Approach to Systems Analysys 
and Design: Proceedings of the International Conference on Entity-Relationship 
Approach to Systems Analysz's and Design (Los Angeles, Calif., Dec. 10-12, 1979). 
North Holland, Amsterdam, pp. 103-119. 

Emshoff, J.R. and R.L. Sisson (1970), Design and Use of Computer Simulation Models, 
Macmillan Publishing Co., New York. 

Fishman, G.S. (1973), Concepts and Methods in Discrete Event DS'gital Simulation, John 
Wiley and Sons, New York. 

Frankowski, E.L. and W.R. Franta (1980), "A Process Oriented Simulation Model 
Specification and Documentation Language," Software -- Practice and Experience 
10, 9 (Sept.), 721-742. 

Franta, W.R. (1977), The Process View of Simulation, North Holland Publishing, 
Amsterdam. 

Franta, W.R. (1978), "SIMULA Language Summary," ACM SIGPLAN Notices 19,8 
(Aug.), 243-244. 

Geoffrion, A.M. (1987a), "An Introduction to Structured Modeling," Working Paper 
Number 338, Western Management Science Institute, University of California, Los 
Angeles, Calif., Feb. 

Geoffrion, A.M. (1987b), "Modeling Approaches and Systems Related to Structured 
Modeling," Working Paper Number 339, Western Management Science Institute, 
University of California, Los Angeles, Calif., Feb. 

Geoffrion, A.M. (1987c), "The Theory of Structured Modeling," Working Paper Number 
346, Western Management Science Institute, University of California, Los Angeles, 
Calif., May. 

Geoffrion, A.M. (1988), "SML: A Language for Structured Modeling," Draft Working 
Paper, Western Management Science Institute, University of California, Los 
Angeles, Calif., Jan. 

Golden, D.G. (1986), "Software Engineering Considerations for the Design of Simulation 
Languages," Simulation 45, 4 (Oct.), 169-178. 

Gordon, G. (1975), The Application of GPSS V to Discrete System Simulation, Prentice­
Hall, Englewood Cliffs, N. J. 



280 

Gordon, G. (1979), "The Design of the GPSS Language," In Current Issues in Computer 
Simulation, N.R. Adam and A. Dogramaci, Eds., Academic Press, New York, pp. 
15-25. 

Hartson, H. Rex (1987), "Introduction to Relational Database Management Systems," 
Course notes for CS5361 (Winter 1988), Department of Computer Science, Virginia 
Tech, Blacksburg, Va., Nov. 

Henriksen, J.O. and R.C. Crain (1983), General Purpose Simulation System/H (GPSS/H) 
User's Manual, (2nd ed.), Wolverine Software Corporation, Annandale, Va., Feb. 

Hillson, R. (1987), "Processing Graph Architectures," In Proceedings of the 1987 Summer 
Computer Simulation Conference (Montreal, Quebec, July 27-30). The Society for 
Computer Simulation, San Diego, Calif. 

Hooper, J. W. (1986a), "Activity Scanning and the Three-Phase Approach," Simulation 
-17, 5 (Nov.), 210-211. 

Hooper, J.W. (1986b), "Strategy-related Characteristics of Discrete-event Languages and 
Models," Simulation -16, 4 (Apr.), 153-159. 

Hooper, J.W. and K.D. Reilly (1982), "An Algorithmic Analysis of Simulation Strategies," 
International Journal of Computer and Information Sciences 11, 2, 101-122. 

Hutchinson, G.K. (1975), "Introduction to the Use of Activity Cycles as a Basis for 
System's Decomposition and Simulation," ACM SIGSIM Simu/etter 7, 1 (Oct.), 15-
20. 

Kafura, D. (1987), "Object-Oriented Programming," Class Notes, CS5980 (Spring, 1987), 
Department of Computer Science, Virginia Tech, Blacksburg, Va. 

Kaplan, D.J. (1987), "The Process Graph Method, An Iconic Method of Controlling 
Networks of Processors," In Proceedings of the 1987 Summer Computer Simulation 
Conference (Montreal, Quebec, July 27-30). The Society for Computer Simulation, 
San Diego, Calif. 

Karp, R.M. and R.E. Miller (1966), "Properties of a Model for Parallel Computations: 
Determinacy, Termination, Queueing," SIAM Journal on Applied Mathematics 14, 
6(Nov.), 1390-1411. 

Kelley, D.H. and J.N. Buxton (1962), "Montecode - An Interpretive Program for Monte 
Carlo Simulations," The Computer Journal 5, (Apr. 1962-Jan. 1963), 88-93. 

Kiviat, P.J. (1967), "Digital Computer Simulation: Modeling Concepts," Memorandum 
RM-5378-PR, The Rand Corporation, Santa Monica, Calif., Aug. 

Kiviat, P.J. (1969), "Digital Computer Simulation: Computer Programming Languages," 
Memorandum RM-5883-PR, The Rand Corporation, Santa Monica, Calif., Jan. 

Kiviat, P .J., H. Markowitz, and R. Villanueva (1983), SIMSCRIPT II. 5 ProgrammJ'ng 
Language (Revised), E. C. Russell, Ed. CACI, Inc.-Federal, Los Angeles, Calif. 



281 

Kreutzer, W. (1986), System S£mulation: Programming Styles and Languages, Addison­
Wesley, Reading, Mass. 

Lackner, M.R. (1962), "Toward a General Simulation Capability," In Proceedings of the 
AFIPS 19612 Spring Joint Computer Conference 121 (San Francisco, Calif., May 1-3). 
National Press, Palo Alto, Calif., pp. 1-14. 

Lackner, M.R. (1965), "A Process Oriented Scheme for Digital Simulation Modeling," In 
Proceedings of the 1965 IFIP Conference 12, (New York City, May 24-29). Spartan 
Books, Washington, D.C., pp.413-414. 

Laski, J.G. (1965), "On Time Structure in (Monte Carlo) Simulations," Operational 
Research Quarterly 16, 3(Sept.), 329-339. 

Lavender, G. (1987), "Different Inheritance Mechanisms," Presentation for CS5980, 
Department of Computer Science, Virginia Tech, Blacksburg, Va., May. 

Malhotra, A., H.M. Markowitz, and D.P. Pazel (1982), "The EAS-E Programming 
Language," Research Report RC 8935 (39133), Computer Science, IBM Thomas J. 
Watson Research Center, Yorktown Heights, N.Y., Aug. 

Markowitz, H.M., A. Malhotra, and D.P. Pazel (1983), "The ER and EAS Formalisms for 
System Modeling and the EAS-E Language," In Entity-Relationsha'p Approach to 
Information Modeling and Analysis: Proceedings of the Second International 
Conference on Entity-Relationship Approach (Washington, D.C., Oct. 12-14, 1981). 
North-Holland, Amsterdam, pp. 29-48. 

Markowitz, H.M., A. Malhotra, and D.P. Pazel (1984), "The EAS-E Application 
Development System: Principles and Language Summary," Communications of the 
ACM 127,8 (Aug.), 785-799. 

Mathewson, S.C. (1974), "Simulation Program Generators," Simulation 128, 6 (Dec.), 181-
189. 

McCormack, W.M. and R.C. Sargent (1981), "Analysis of Future Event Set Algorithms 
for Discrete Event Simulation," Communications of the ACM 124, 12 (Dec.), 801-812. 

McFarland, G. (1986), "The Benefits of Bottom-up Design," ACM SIGSOFT Software 
Engineering Notes 11, 5 (Oct.), 43-51. 

Meyer, B. (1987), "Reusability: The Case for Object-Oriented Design," IEEE Software, 
(Mar.), 50-64. 

Nance, R.E. (1971), "On Time Flow Mechanisms for Discrete System Simulation," 
Management Science 18, 1 (Sept.), 59-73. 

Nance, R.E. (1977), "The Feasibility of and Methodology for Developing Federal 
Documentation Standards for Simulation Models," Final Report prepared for 
National Bureau of Standards, Department of Computer Science, Virginia Tech, 
Blacksburg, Va., Dec. 

Nance, R.E. (1979), "Model Representation in Discrete Event Simulation: Prospects for 
Developing Documentation Standards," In Current Issues in Computer Simulation, 
N.R. Adam and A. Dogramaci, Eds., Academic Press, New York, pp. 83-96. 



282 

Nance, R.E. (1981a), "Model Representation in Discrete Event Simulation: The Conical 
Methodology," Technical Report CS81003-R, Department of Computer Science, 
Virginia Tech, Blacksburg, Va., Mar. 

Nance, R.E. (1981b), "The Time and State Relationships in Simulation Modeling," 
Communications of the ACM 24,4 (Apr.), 173-179. 

Nance, R.E. (1986), "The Conical Methodology: A Framework for Simulation Model 
Development," In Proceedings of the Conference on Methodology and Validation 
(1987 Eastern Simulation Conference, Orlando, Fla., April 6-9). The Society for 
Computer Simulation, San Diego, Calif., pp. 38-43. 

Nance, R.E. (1987), Personal Communication, Department of Computer Science, Virginia 
Tech, Blacksburg, Va., Sept. 

Nance, R.E. (1988), Personal Communication, Department of Computer Science, Virginia 
Tech, Blacksburg, Va., May. 

Nance, R.E. and C.M. Overstreet (1986), "Diagnostic Assistance Using Digraph 
Representations of Discrete Event Simulation Model Specifications," Technical 
Report SRC-86-001, Department of Computer Science, Virginia Tech, Blacksburg, 
Va., Mar. 

Nance, R.E., A.L. Mezaache, and C.M. Overstreet (1981), "Simulation Model 
Management: Resolving the Technological Gaps," In Proceedings of the 1981 Winter 
Simulation Conference (Atlanta, Ga., Dec. 9-11). IEEE, Piscataway, N.J., pp. 173-
179. 

Nance, R.E., O. Balci, and R.L. Moose, Jr. (1984), "Evaluation of the UNIX Host for a 
Model Development Environment," In Proceedings of the 1984 Winter Simlation 
Conference (Dallas, Tex., Nov. 28-30). IEEE, Piscataway, N.J., pp. 577-584. 

Neelamkavil, F. (1987), Computer Simulation and Modelling, John Wiley and Sons, New 
York. 

Nygaard, K. and O. Dahl (1978), "The Development of the SIMULA Languages," ACM 
SIGPLAN Notices 19, 8 (Aug.), 245-272. 

O'Keefe, R. and R. Davies (1986), "A Microcomputer System for Simulation Modelling," 
European Journal of Operational Research 24, 1,23-29. 

O'Keefe, R.M. (1986a), "Simulation and Expert Systems - A Taxonomy and Some 
Examples," Simulation 46, I(Jan.), 10-16. 

O'Keefe, R.M. (1986b), "The Three-Phase Approach: A Comment on Models'," 
Simulation 47, 5 (Nov.), 208-210. 

Oldfather, P.M., A.S. Ginsberg, and H.M. Markowitz (1966), "Programming by 
Questionnaire: How to Construct a Program Generator," Memorandum RM-5129-
PR, The Rand Corporation, Santa Monica, Calif., Nov. 

Oren, T.!. and B.P. Zeigler (1979), "Concepts for Advanced Simulation Studies," 
Simulation 92, 3 (Mar.), 69-82. 



283 

Overstreet, C.M. (1982), "Model Specification and Analysis for Discrete Event 
Simulation," PhD Dissertation, Department of Computer Science, Virginia Tech, 
Blacksburg, Va., Dec. 

Overstreet, C.M. and R.E. Nance (1985), "A Specification Language to Assist in Analysis 
of Discrete Event Simulation Models," Communications of the ACM £8, 2 (Feb.), 
190-201. 

Overstreet, C.M. and R.E. Nance (1986), "World View Based Discrete Event Model 
Simplification," In Modelling and Sa'mulation Methodology in the Artificial 
Intelligence Era, M.S. Elzas, T.I. Oren, and B.P. Zeigler, Eds. North Holland, 
Amsterdam, pp. 165-179. 

Overstreet, C.M., R.E. Nance, O. Balci, and L.F. Barger (1986) "Specification Languages: 
Understanding Their Role in Simulation Model Development," Technical Report 
SRC-87-001, Department of Computer Science, Virginia Tech, Blacksburg, Va., 
Dec. 

Palme, J. (1976), "The Class Concept in the Simula Programming Language," FOA 
Report C l0052-M3(E5), National Defense Research Institute, Stockholm, Sweden, 
Aug, 

Patrick, D.J. (1987), "The Applicability of Structured Modeling to Discrete Event 
Simulation Systems," Master's Thesis, Naval Postgraduate School, Monterey, 
Calif.,(Mar.). 

Peterson, J.L. (1977), "Petri Nets," Oomputing Surveys 9,3 (Sept.), 223-252, 

Pidd, M. (1984), Oomputer Simulation in Management Science, John Wiley and Sons, New 
York. 

Roberts, N., D.F. Andersen, R.M. Deal, M.S. Garet, and W.A. Shaffer (1983), 
Introduction to Computer Simulation: A Systems Dynamics Modeling Approach, 
Addison-Wesley, Reading, Mass. 

Saydam, T. (1985), "Process--Oriented Simulation Languages," Simuletter 16,2 (Apr.), 8-
13. 

Schriber, T.J. (1974), Simulation Using GPSS, John Wiley and Sons, New York. 

Schruben, L. (1983), "Simulation Modeling with Event Graphs," Communications of the 
AOM £6, 11 (Nov.), 957-963. 

Shannon, R.E. (1975), Systems Simulation, The Art and Science, Prentice-Hall, 
Englewood Cliffs, N.J. 

Shub, C.M. (1978), "On the Relative Merits of Two Major Methodologies for Simulation 
Model Construction," In Proceedings of the 1978 Winter Simulation Oonference 
(Miami Beach, Fla., Dec. 4-6). IEEE, Pisacataway, N.J., pp. 257-264. 

Shub, C. M. (1980), "Discrete Event Simulation Languages," In Proceedings of the 1980 
Winter Ss'mulation Oonference £ (Orlando, Fla., Dec. 3-5). IEEE, Piscataway, N.J., 
pp. 107-124. 



284 

Stevens, R.S. (1987), "A Tutorial on the Processing Graph Method," In Proceedings of the 
1987 Summer Computer Simulation Conference (Montreal, Quebec, July 27-30). 
The Society for Computer Simulation, San Diego, Calif. 

Teichroew, D. and J.F. Lubin (1966), «Computer Simulation- Discussion of the Technique 
and Comparison of Languages," Communications of the ACM 9, 10 (Oct.), 723-741. 

Teichroew, D., F. Germano, and L. Silva (1983), "Applications of the Entity-Relationship 
Approach," In Entity-Relationship Approach to Information Modeling and Analysis: 
Proceedings of the Second International Conference on Entity-Relationship 
Approach (Washington, D.C., Oct. 12-14, 1981). North-Holland, Amsterdam, pp. 1-
17. 

Teichroew, D., P. Macasovic, E.A. Hershey III, and Y. Yamamoto (1980), "Application of 
the Entity-Relationship Approach to Information Processing Systems Modeling," In 
Entity-Relationship Approach to Systems Analysis and Design: Proceedings of the 
International Conference on Entity-Retlationship Approach to Systems Analysis and 
Design (Los Angeles, Calif., Dec. 10-12, 1979). North Holland, Amsterdam, pp. 15-
38. 

Tocher, K.D. (1963), The Art of Simulation, English Universities Press, London. 

Tocher, K.D. (1965), "Review of Simulation Languages," Operational Research Quarterly 
16,2 (June), 189-217. 

Tocher, K.D. (1966), "Some Techniques of Model Building," In Proceedings of the IBM 
Scientific Computing Symposium on Simulation Models and Gaming (Thomas J. 
Watson Research Center, N.Y., Dec. 7-9, 1964). IBM Data Processing Division, 
White Plains, N.Y., pp. 119-155. 

Tocher, K.D. (1979), "Keynote Address," In Proceedings of the 1979 Winter Simulation 
Conference (San Diego, Calif., Dec. 3-5). IEEE, Piscataway, N.J., pp. 640-654. 

Tocher, K.D. and D.G. Owen (1961), "The Automatic Programming of Simulations," In 
Proceedings of the Second International Conference on Operational Research 
(University of Aix-Marseille, Aix-en-Province, France, Sept. 5-9, 1960). John Wiley 
and Sons, New York, pp. 50-68. 

Torn, A. A. (1981), "Simulation Graphs: A General Tool for Modeling Simulation 
Designs," Simulation 97, 6 (Dec.), 187-194. 

Unger, Brian W. (1986), "Object Oriented Simulation - Ada, C++, Simula," In 
Proceedings of the 1986 Winter Simulation Conference (Washington, D.C., Dec. 8-
10). IEEE, Piscataway, N.J., pp. 123-124. 

Wasserman, K. (1984), "Understanding Hierarchically Structured Objects," Technical 
Report CUCS-124-85, Department of Computer Science, Columbia University, New 
York, N.Y., May. 

Weitzman, E. (1986), "ECOS Tutorial (Draft)," Analytic Disciplines, Inc., Washington, 
D.C., May. 



285 

Zeigler, B.P. (1976), Theory of Modelling and Simu.lation, John Wiley and Sons, New 
York. 

Zeigler, B.P. (1984a ), "System-Theoretic Representation of Sim ulation Models," lIE 
Transactions 16, 1 (Mar.), 19-34. 

Zeigler, B.P. (1984b), Multifacetted Modelling and Discrete Event Simu.lation, Academic 
Press, New York. 

Zeigler, B.P. (1987), "Hierarchical, Modular Discrete-Event Modelling in an Object­
Oriented Environment," Simulation 49, 5 (Nov.), 219-229. 



Name: Emory Joseph Derrick 

Address: 2719 Newton Court 
Blacksburg, Va. 24060 

Phone: 703-953-2000 

Birthdate: 17 January 1952 

Marital Status: Married, three children 

Education: M. S.- (candidate) 

286 

VITA 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 24061 

B.S. -

1988 

Electrical Engineering 
United States Naval Academy 
Annapolis, Mary land 
1974 

From 1974 to 1980, Mr. Derrick served as an officer in the Submarine Service of the 

United States Navy. During the period 1981 to 1985, Mr. Derrick was employed by the 

U.S. Navy as a civilian General Engineer with the Naval Sea Systems Command. He is 

currently a Commander (Select) in the United States Naval Reserve. Mr. Derrick has 

been employed as a teaching and research assistant by the Computer Science Department 

and the Systems Research Center of Virginia Tech since 1985. Mr. Derrick is a student 

member of the Association for Computing Machinery and The Society for Computer 

Simulation. 


