An Investigation of Nailed Connection Performance in a Cyclic Humidity Environment

Jeffrey S. Smith

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the degree requirements of

MASTER OF SCIENCE
IN
FOREST PRODUCTS

Through the Department of Wood Science and Forest Products
In the College of Natural Resources

Joseph R. Loferski, Chair
Frederick A. Kamke
Daniel P. Hindman

July 23, 2004
Blacksburg, Virginia

Keywords: wood-based composites, connections, monotonic loading, durability, moisture cycling
An Investigation of Nailed Connection Performance in a Cyclic Humidity Environment

Jeffrey S. Smith

Committee Chairman: Dr. Joseph R. Loferski

(ABSTRACT)

The effect of cyclic moisture infiltration on connections in light-frame wood buildings has received limited research attention. Specifically, the connections between wood-based sheathing materials (OSB, plywood) and solid wood studs are of interest. A comprehensive understanding of connection performance will enhance structure and material design, thereby improving the overall integrity and robustness of light-frame structures.

The focus of this research project was to evaluate the strength and stiffness of wood-frame connections exposed to cyclic humidity conditioning. Nailed sheathing/stud connection samples were tested for lateral resistance following various periods of moisture exposure. Elastic stiffness, 5% offset yield load, maximum yield load, and failure yield were computed and analyzed using the data collected. The parameters were compared among connection specimens receiving either 0, 1, 5, 10, 15, 25, or 40 periods of cyclic moisture conditioning. In addition, the bearing resistances of the materials were investigated for application to the general dowel equations for calculating lateral connection values, the current basis for design of single dowel-type fastener connections between wood-based members. An x-ray density profilometer was used to observe the de-densification processes within the composite sheathing materials throughout the moisture conditioning regime.

Results indicated moderate to extreme changes in the performance of cycled connections involving lower density sheathing materials. Higher density sheathing materials performed favorably at each cycle test period. Comparisons to the yield model were similar to the control results, but usually differed as cycling increased.

Analysis of connection performance following cyclic moisture loading is a vital component in developing a holistic model for service-life prediction of nailed connections in light-frame residential construction.
Acknowledgements

Many bright minds and helping hands contributed to the completion of my graduate work.

I am very grateful for my parents for providing unconditional love, support and motivation throughout my life and especially during my years of schooling at Virginia Tech.

I would like to express my sincere appreciation to my committee chairman, Dr. Joe Loferski, for his keen insight, liberal guidance and inquisitive spirit. In addition, I thank my co-advisors, Drs. Fred Kamke and Dan Hindman, for their assistance, suggestions and expertise provided throughout this endeavor. I am extremely thankful for each committee member’s open-door policy and availability for discussion.

I am deeply grateful for the invaluable advice and direction given by Linda Caudill during my time with the Wood-Based Composites Center – first when I was an undergraduate lab technician, then as a graduate research assistant and recently as an anxious job seeker.

I am very thankful for the assistance given by Rick Caudill during my prolonged occupation of the Engineering Laboratory. His dedicated attention, support and management of the activities within the lab were a tremendous help.

Additionally, I would like to extend my thanks to Kenny Albert, Joanne Buckner, Sharon Daley, Dr. Jim Fuller, Debbie Garnand, David Jones, Angie Riegel, and Butch Sizemore for their service and support.

My thanks to my fellow graduate students for their help and friendship during the past two years.

My appreciation to David Sondel of UC Coatings Corporation for the donation of the wax end sealer.

I respectfully acknowledge the financial support of the Wood-Based Composites Center.
Tables of Contents

Chapter 1 – Introduction..1

1.1 – Description of the Problem..1
1.2 – Objectives..3
1.3 – Overview...4

Chapter 2 – Literature Review..5

2.1 – Durability..5
2.2 – Durability Issues ...6
2.3 – Evaluation of Durability..7
2.4 – Reliability-Based Design..12
2.5 – Design of Wood Connections...16
2.6 – Conclusion..20

Chapter 3 – Materials and Methods...21

3.1 – Introduction ..21
3.1.1 – Specimen Identification System ..24
3.1.2 – Sample Size Determination..25
3.2 – Materials...26
3.2.1 – Main Member – Framing Lumber ..26
3.2.2 – Side Member – Structural-Grade Sheathing...28
3.2.3 – Fastener – Common Wire Nails..29
3.3 – Specimen Fabrication..31
3.3.1 – Connection Specimens...31
3.3.2 – Embedment Specimens...35
3.3.3 – Fastener Bending Specimens..36
3.3.4 – Density Profile Specimens..36
3.3.5 – Moisture Content & Specific Gravity Specimens..36
3.4 – Specimen Conditioning...36
3.4.1 – Conditioning Regime ..37
3.4.2 – Moisture Content Study..41
3.4.3 – Climate Chamber..42
3.4.4 – Conditioning Unit..43
3.4.5 – Temperature and Relative Humidity Recorder ... 44

3.5 – Testing Equipment ... 45

3.6 – Testing Procedures ... 47
 3.6.1 – Connection Tests ... 47
 3.6.2 – Embedment Tests ... 49
 3.6.3 – Fastener Bending Tests .. 50
 3.6.4 – Density Profile Tests .. 51
 3.6.5 – Moisture Content & Specific Gravity Tests .. 53

3.7 – Property Definitions .. 55

Chapter 4 – Results and Discussion ... 58

 4.1 – ‘Mill A’ Connections ... 60
 4.1.1 – Moisture Contents and Specific Gravities ... 61
 4.1.2 – Elastic Stiffness Performance ... 62
 4.1.3 – 5% Offset Yield Performance ... 63
 4.1.4 – Maximum Yield Performance ... 65
 4.1.5 – Failure Yield .. 67
 4.1.6 – Density Analysis .. 70
 4.1.7 – Yield Model Estimation ... 72

 4.2 – ‘Mill B’ Connections ... 74
 4.2.1 – Moisture Contents and Specific Gravities ... 75
 4.2.2 – Elastic Stiffness Performance ... 75
 4.2.3 – 5% Offset Yield Performance ... 77
 4.2.4 – Maximum Yield Performance ... 78
 4.2.5 – Failure Yield .. 81
 4.2.6 – Density Analysis .. 82
 4.2.7 – Yield Model Estimation ... 83

 4.3 – ‘Mill C’ Connections ... 86
 4.3.1 – Moisture Contents and Specific Gravities ... 87
 4.3.2 – Elastic Stiffness Performance ... 87
 4.3.3 – 5% Offset Yield Performance ... 89
 4.3.4 – Maximum Yield Performance ... 91
 4.3.5 – Failure Yield .. 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.6</td>
<td>Density Analysis</td>
<td>95</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Yield Model Estimation</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>‘Mill D’ Connections</td>
<td>98</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Moisture Contents and Specific Gravities</td>
<td>99</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Elastic Stiffness Performance</td>
<td>99</td>
</tr>
<tr>
<td>4.4.3</td>
<td>5% Offset Yield Performance</td>
<td>101</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Maximum Yield Performance</td>
<td>102</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Failure Yield</td>
<td>105</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Density Analysis</td>
<td>107</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Yield Model Estimation</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>‘Mill E’ Connections</td>
<td>110</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Moisture Contents and Specific Gravities</td>
<td>111</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Elastic Stiffness Performance</td>
<td>112</td>
</tr>
<tr>
<td>4.5.3</td>
<td>5% Offset Yield Performance</td>
<td>113</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Maximum Yield Performance</td>
<td>115</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Failure Yield</td>
<td>117</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Density Analysis</td>
<td>119</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Yield Model Estimation</td>
<td>120</td>
</tr>
<tr>
<td>4.6</td>
<td>‘Mill F’ Connections</td>
<td>122</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Moisture Contents and Specific Gravities</td>
<td>123</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Elastic Stiffness Performance</td>
<td>123</td>
</tr>
<tr>
<td>4.6.3</td>
<td>5% Offset Yield Performance</td>
<td>125</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Maximum Yield Performance</td>
<td>126</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Failure Yield</td>
<td>128</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Density Analysis</td>
<td>130</td>
</tr>
<tr>
<td>4.6.7</td>
<td>Yield Model Estimation</td>
<td>131</td>
</tr>
<tr>
<td>4.7</td>
<td>Overall Discussion of Observations</td>
<td>133</td>
</tr>
<tr>
<td>4.7.1</td>
<td>‘Mill A’ Connections</td>
<td>133</td>
</tr>
<tr>
<td>4.7.2</td>
<td>‘Mill B’ Connections</td>
<td>133</td>
</tr>
<tr>
<td>4.7.3</td>
<td>‘Mill C’ Connections</td>
<td>134</td>
</tr>
<tr>
<td>4.7.4</td>
<td>‘Mill D’ Connections</td>
<td>135</td>
</tr>
<tr>
<td>4.7.5</td>
<td>‘Mill E’ Connections</td>
<td>135</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.1: Gaussian and Weibull distributions. ... 14
Figure 2.2: Survival graph ... 15
Figure 2.3: Probability density functions of loading, resistance, and failure region 16
Figure 2.4: Single-shear connection yield modes (from AF&PA 1999) 18
Figure 3.1: (a) Grade stamps and (b) heat treatment mark on main member materials 27
Figure 3.2: Cutting and sequential numbering diagram of main member components 27
Figure 3.3: The six different side member materials .. 28
Figure 3.4: Cutting schedule and numbering system for side member components 29
Figure 3.5: Sizing and configuration of connection specimens 32
Figure 3.6: One-gallon bucket of Anchorseal® end sealer ... 33
Figure 3.7: Main members with dry coat of Anchorseal® end sealer 33
Figure 3.8: Side members with dry coat of Anchorseal® end sealer 34
Figure 3.9: Connection specimen and nailing jig .. 34
Figure 3.10: Simulated moisture content cycling of OSB sheathing layer within a typical wall construction in Madison, WI 38
Figure 3.11: Simulated relative humidity cycling on inside and outside surfaces of OSB sheathing layer within a typical wall construction in Madison, WI 39
Figure 3.12: Relative humidity recordings inside the climate chamber 40
Figure 3.13: Temperature recordings inside the climate chamber 41
Figure 3.14: Moisture contents of materials during one cycle 42
Figure 3.15: Climate chamber located in the Wood Engineering Laboratory 43
Figure 3.16: Shelving system within the climate chamber .. 43
Figure 3.17: Dehumidifier positioned inside the climate chamber 44
Figure 3.18: Circular recorder mounted outside the climate chamber 45
Figure 3.19: MTS 810 servo-hydraulic testing machine ... 46
Figure 3.20: MTS 10/GL screw-drive testing machine ... 47
Figure 3.21: (a) Bracing fixture before and (b) after sample insertion 48
Figure 3.22: MTS displacement vs. string pot displacement ... 49
Figure 3.23: Simulators of 8d and 6d common nails, respectively 50
Figure 3.24: (a) Main member and (b) side member samples during embedment testing............... 50
Figure 3.25: Fastener bending test. ... 51
Figure 3.26: Sample tray used with the profilometer. .. 52
Figure 3.27: X-ray density profilometer and computer. .. 52
Figure 3.28: Representative side member samples positioned inside the climate chamber........... 53
Figure 3.29: Specific gravity determination using water immersion method. .. 54
Figure 3.30: Oven, wax bath, and water tank atop scale. .. 55
Figure 3.31: Sample plot and associated performance parameters. .. 56
Figure 4.1: Typical load/slip plot of a ‘Mill A’ connection (sample A3-9)... 60
Figure 4.2: Observed elastic stiffness values of ‘Mill A’ connections. .. 62
Figure 4.3: Observed 5% offset loads of ‘Mill A’ connections. ... 64
Figure 4.4: Observed maximum loads of ‘Mill A’ connections... 65
Figure 4.5: Probability density distributions of maximum yield loads for ‘Mill A’ connections (0-40 cycles). .. 67
Figure 4.6: Mode III_m failure of sample A6-11 (25 cycles). .. 68
Figure 4.7: Mode III_m failure of sample A3-15 (5 cycles). ... 69
Figure 4.8: Mode III, failure of sample A3-1 (5 cycles). ... 69
Figure 4.9: Average density of ‘Mill A’ sheathing after treatments.. 70
Figure 4.10: Overlay of ‘Mill A’ vertical-density profiles... 71
Figure 4.11: Main and side member embedment samples (post-test). .. 72
Figure 4.12: Typical load/slip plot of a ‘Mill B’ connection (sample B4-15)... 74
Figure 4.13: Observed elastic stiffness values of ‘Mill B’ connections.. 76
Figure 4.14: Observed 5% offset loads of ‘Mill B’ connections. ... 77
Figure 4.15: Observed maximum loads of ‘Mill B’ connections... 79
Figure 4.16: Probability density distributions of maximum yield loads for ‘Mill B’ connections (0-40 cycles). .. 80
Figure 4.17: Mode III_m failure of sample B4-11 (10 cycles). ... 81
Figure 4.18: Mode III, failures of samples B4-3 (10 cycles) and B7-12 (40 cycles). 82
Figure 4.19: Average density of ‘Mill B’ sheathing. ... 82
Figure 4.20: Overlay of ‘Mill B’ vertical-density profiles... 83
Figure 4.21: Typical load/slip plot of a ‘Mill C’ connection (sample C3-4)... 87
Figure 4.22: Observed elastic stiffness values of ‘Mill C’ connections. .. 88
Figure 4.23: Observed 5% offset loads of ‘Mill C’ connections... 90
Figure 4.24: Observed maximum loads of ‘Mill C’ connections.. 91
Figure 4.25: Probability density distributions of maximum yield loads for ‘Mill C’ connections (0-40 cycles). ... 93
Figure 4.26: Mode IIIα failure of sample C7-10 (40 cycles). ... 94
Figure 4.27: Mode IIIβ failure of samples C3-10 (5 cycles) and C7-12 (40 cycles)................................ 95
Figure 4.28: Average density of ‘Mill C’ sheathing... 95
Figure 4.29: Overlay of ‘Mill C’ vertical-density profiles... 96
Figure 4.30: Typical load/slip plot of a ‘Mill D’ connection (sample D4-1).. 98
Figure 4.31: Observed elastic stiffness values of ‘Mill D’ connections...100
Figure 4.32: Observed 5% offset loads of ‘Mill D’ connections..101
Figure 4.33: Observed maximum loads of ‘Mill D’ connections..103
Figure 4.34: Probability density distributions of maximum yield loads for ‘Mill D’ connections (0-40 cycles). ...104
Figure 4.35: Mode IIIα failure of sample D7-11 (40 cycles). .. 105
Figure 4.36: Mode IIIβ failure of sample D7-3 (40 cycles). ...106
Figure 4.37: Mode IIIβ failure of samples D3-15 (5 cycles) and D7-14 (40 cycles).......................... 106
Figure 4.38: Average density of ‘Mill D’ sheathing...107
Figure 4.39: Overlay of ‘Mill D’ vertical-density profiles... 107
Figure 4.40: Typical load/slip plot of a ‘Mill E’ connection (sample E3-8)...111
Figure 4.41: Observed elastic stiffness values of ‘Mill E’ connections. ..112
Figure 4.42: Observed 5% offset loads of ‘Mill E’ connections...114
Figure 4.43: Observed maximum loads of ‘Mill E’ connections..115
Figure 4.44: Probability density distributions of maximum yield loads for ‘Mill E’ connections (0-40 cycles)...116
Figure 4.45: Mode IIIα failure of sample E5-7 (15 cycles). ...118
Figure 4.46: Mode IIIα failure of samples E3-11 (5 cycles) and E7-11 (40 cycles).......................... 118
Figure 4.47: Average density of ‘Mill E’ sheathing...119
Figure 4.48: Overlay of ‘Mill E’ vertical-density profiles...119
Figure 4.49: Typical load/slip plot of a ‘Mill F’ connection (sample F5-13).122
Figure 4.50: Observed elastic stiffness values of ‘Mill F’ connections...124
Figure 4.51: Observed 5% offset loads of ‘Mill F’ connections..125
Figure 4.52: Observed maximum loads of ‘Mill F’ connections...126
Figure 4.53: Probability density distributions of maximum yield loads for ‘Mill F’
connections (0-40 cycles). ..128
Figure 4.54: Mode III_m failure of sample F7-9 (40 cycles). ...129
Figure 4.55: Mode III_s failure of samples F6-13 (25 cycles) and F7-5 (40 cycles)......................130
Figure 4.56: Average density of ‘Mill F’ sheathing. ...130
Figure 4.57: Overlay of ‘Mill F’ vertical-density profiles..131
List of Tables

Table 2.1: Distribution descriptions. ... 14
Table 2.2: General dowel equations for single-shear connections (from AF&PA 1999). 19
Table 3.1: Connection sample components and replications per treatment.................................. 23
Table 3.2: Sheathing and fastener assignments, nail dimensions, and classifications. 30
Table 3.3: Dates of connection fabrication and testing... 40
Table 4.1: Observed metrics and predictions of ‘Mill A’ connections.. 60
Table 4.2: Moisture content (at testing) and specific gravity values of ‘Mill A’ connection components. .. 61
Table 4.3: Two tailed t-test results of ‘Mill A’ elastic stiffness values (95% CI). 63
Table 4.4: Fisher’s LSD results of ‘Mill A’ elastic stiffness values (95% CI). 63
Table 4.5: Two tailed t-test results of ‘Mill A’ 5% offset yield values (95% CI). 64
Table 4.6: Fisher’s LSD results of ‘Mill A’ 5% offset yield values (95% CI). 64
Table 4.7: Two tailed t-test results of ‘Mill A’ maximum yield values (95% CI). 65
Table 4.8: Fisher’s LSD results of ‘Mill A’ maximum yield values (95% CI). 66
Table 4.9: Weibull distribution parameters... 67
Table 4.10: Yield modes observed at failure for ‘Mill A’ connections... 68
Table 4.11: Relative and cumulative changes in thickness of ‘Mill A’ sheathing................................. 71
Table 4.12: Yield model input parameters for ‘Mill A’ connection components.................................. 72
Table 4.13: Comparisons of observed vs. predicted 5% offset loads for ‘Mill A’ connections......... 73
Table 4.14: Observed metrics and predictions of ‘Mill B’ connections.. 74
Table 4.15: Moisture content (at testing) and specific gravity values of ‘Mill B’ connection components. .. 75
Table 4.16: Two tailed t-test results of ‘Mill B’ elastic stiffness values (95% CI). 76
Table 4.17: Fisher’s LSD results of ‘Mill B’ elastic stiffness values (95% CI). 76
Table 4.18: Two tailed t-test results of ‘Mill B’ 5% offset yield values (95% CI). 78
Table 4.19: Fisher’s LSD results of ‘Mill B’ 5% offset yield values (95% CI). 78
Table 4.20: Two tailed t-test results of ‘Mill B’ maximum yield values (95% CI). 79
Table 4.21: Fisher’s LSD results of ‘Mill B’ maximum yield values (95% CI). 79
Table 4.22: Weibull distribution parameters... 80
Table 4.23: Yield modes observed at failure for ‘Mill B’ connections................................. 81
Table 4.24: Relative and cumulative changes in thickness of ‘Mill B’ sheathing......................... 83
Table 4.25: Yield model input parameters for ‘Mill B’ connection components.......................... 85
Table 4.26: Comparisons of observed vs. predicted 5% offset loads for ‘Mill B’ connections......... 85
Table 4.27: Observed metrics and predictions of ‘Mill C’ connections.. 86
Table 4.28: Moisture content (at testing) and specific gravity values of ‘Mill C’ connection components. .. 87
Table 4.29: Two tailed t-test results of ‘Mill C’ elastic stiffness values (95% CI).-----------------------89
Table 4.30: Fisher’s LSD results of ‘Mill C’ elastic stiffness values (95% CI). 89
Table 4.31: Two tailed t-test results of ‘Mill C’ 5% offset yield values (95% CI).----------------------90
Table 4.32: Fisher’s LSD results of ‘Mill C’ 5% offset yield values (95% CI). 90
Table 4.33: Two tailed t-test results of ‘Mill C’ maximum yield values (95% CI).--------------------92
Table 4.34: Fisher’s LSD results of ‘Mill C’ maximum yield values (95% CI). 92
Table 4.35: Weibull distribution parameters.. 93
Table 4.36: Yield modes observed at failure for ‘Mill C’ connections.. 94
Table 4.37: Relative and cumulative changes in thickness of ‘Mill C’ sheathing......................... 96
Table 4.38: Yield model input parameters for ‘Mill C’ connection components.......................... 97
Table 4.39: Comparisons of observed vs. predicted 5% offset loads for ‘Mill C’ connections......... 97
Table 4.40: Observed metrics and predictions of ‘Mill D’ connections.. 98
Table 4.41: Moisture content (at testing) and specific gravity values of ‘Mill D’ connection components. .. 99
Table 4.42: Two tailed t-test results of ‘Mill D’ elastic stiffness values (95% CI).-----------------------100
Table 4.43: Fisher’s LSD results of ‘Mill D’ elastic stiffness values (95% CI). 100
Table 4.44: Two tailed t-test results of ‘Mill D’ 5% offset yield values (95% CI).----------------------102
Table 4.45: Fisher’s LSD results of ‘Mill D’ 5% offset yield values (95% CI). 102
Table 4.46: Two tailed t-test results of ‘Mill D’ maximum yield values (95% CI).---------------------103
Table 4.47: Fisher’s LSD results of ‘Mill D’ maximum yield values (95% CI). 103
Table 4.48: Weibull distribution parameters.. 104
Table 4.49: Yield modes observed at failure for ‘Mill D’ connections.. 105
Table 4.50: Relative and cumulative changes in thickness of ‘Mill D’ sheathing......................... 108