Bibliography

Alford Design Group. "Process Water Cooling – General Information." 1998.

- Amanna, Ashwin. "Virginia's Smart Road: An Intelligent Transportation Systems Research Facility." 1998.
- Barber, Antony. "Pneumatic Handbook." The Trade & Technical Press Limited, Crown House. 1989.
- Barthold, Scott. "Snowmaking Techniques in the Ski Industry." Proceedings of the Forty-Third Annual Eastern Snow Conference. Hanover, NH, pp. 111-122. 1986.
- Collins, J. and D. M. Masterson. "The State of the Art in Snowmaking and its Application to Arctic Construction." *Eighth International Conference on Offshore Mechanics and Arctic Engineering*. The Hague, Netherlands. pp. 247-251. 1989.
- Collins, J. "Snowmaking Is Heat Transfer." *Eighth Annual Snow Economics Trade Show: Discussion Paper.* Seven Springs Resort, Champion, PA. 1999.
- Dingus, Tom, Ashwin Amanna, Scott Stone and Tom Holbrook. "Preliminary Smart Road Infrastructure Requirements and Specifications." pp. 3-8. 1998.
- Dupre, Herman K. and Charles N. Santry. "A Method and Apparatus for Making Snow, U.S. Patent #5,823,427." U.S. Patent Office, Washington, D.C. 1998.
- Eglin Air Force Base. "Environmental Testing; The McKinley Climatic Laboratory." http://www.eglin.af.mil/46tw/TS/facils/climlab/climlab.htm. 1998.

- Flynn, Taylor. "Snowmaking Big Business for Heavenly Ski Resort." Tahoe Mountain News. <u>http://www.highsierra.com/TahoeMtnNews/</u>. 1996.
- Gibson, Tom. "A Cool Solution for Treating Wastewater." <u>http://ingersoll-</u> rand.com:80/compare/dec96/cool2.htm. 1996.
- Hovey, William B. "High Pressure Snowmaking." *Weatherwise*. pp. 224-230, 254. October, 1970.
- Mann, Jim and Edward Shea. "Heat-Transfer Simulation of the Snowmaking Towers for the Smart Road Project." 1999.
- Perry, Robert H. and Don W. Green. "Perry's Chemical Engineers' Handbook. 6th Edition." McGraw-Hill, New York. 1984.
- Prausnitz, John M., R. N. Lichtenthaler and E. G. de Azevedo. "Molecular Thermodynamics of Fluid-Phase Equilibria." Prentice Hall, Englewood Cliffs, NJ. 1986.
- Rabinowitz, B., T.D. Vassos, W.F. Hyslop, R. Zapf-Gilje and D.S. Mavinic. "Secondary Effluent Disposal Through Snowmaking." *Joint CSCE-ASCE National Conference on Environmental Engineering*. Vancouver, B.C. pp. 736-744. 1988.
- Shenk, W. Stephen. "Planning a 2300-Foot Total Dynamic Head Water System." Public Works. pp. 84-87. April, 1980.

Snow Economics, Inc. "HKD Tower System Operating Manual." 1994.

Spray Systems Co. "Drawing Number 11825-4A." 1973.

Spray Systems Co. "Industrial Spray Products." Factory Catalog. 1996.

Wright, Kenneth R. "Sewage effluent turned to snow: Provides storage, removes pollutants." *Civil Engineering-ASCE*. pp. 88-89. May, 1976.

York Snow, Inc. "Snowgun Performance Evaluation." 1998.

Zarling, John P. "Heat and mass transfer from freely falling drops at low temperatures." *CRREL Report 80-18*. August, 1980. Appendix A – Reference Materials

-apa-	-	N	1220	3 L	PELE	INLE	1001	BNNE	ECE	NO		Equiv. Orifice				0	gallon	APAC s per	TY	÷.				60	PRAY	ANGLE	
Size	1-1	2	H-V	2		×	5		-	2		Diam	6	10	20	8	40	8	80	100	200	300	500	8	9	80	20
	91	14	16	3	10	14 3	37	2 3/	-	1.54	24	menes	[Sci	psi	8	psi	psi	BS	psi	8	psi)Si	psi	psi	g.	B	ä
5001	•	•	•	•		-	-	-	-			.026		8.	10.	60.	.10	.12	.14	.16	.22	27	38	370	200	-655	9
5002	•	•	•				-	-	_			036		.10	14	117	8	25	.28	32	45	15	R	39°	209	219	0
5003	•	•	•		-	-	-	-	_			.043	F.	31.	12	.26	8	37	42	47	.67	8	1.1	°07	3	33	6
5004	•	•	•			-	_	_	_			.052	17	20	.28	35	40	49	12	8	68	1	1.4	42°	ŝ	-95	9
5005	•	•	•	•		-	-	-	-			790	.18	22	.35	.43	22	.61	F	139	1.1	1.4	1.8	44°	-09	-95	9
5006	•	•	•		T		-	-	-			2907	5	.30	.42	.52	09	.73	38,	36	1.3	1.6	2.1	45	-05	-99	9
5008	•	٠	•	•		-	-	-	_			072	28	.40	95	69	8	98	1.1	13	1.8	22	2.8	\$ P	-05	-99	9
5010								-	_			3/64	35	22	F.	.86	1.0	1.2	1.4	1.6	2.2	27	3.5	ş	ŝ	°55	LD.
5015					1		-		-	-		3/15	53	.75	1.1	1,3	1.5	1,8	2.1	2.4	3.4	4.1	5.3	-92	°09	-95	5
5020			T				-		_			The	F.	1.0	1.4	1.7	2.0	2.5	2.8	3.2	4.5	5.5	7.1	45*	3	-99	10
5030	_						-					944	÷	1.5	2	2.6	3.0	3.7	4.2	4.7	6.7	82	10.6	\$2	33	13	10
5040								_	_			3/42	4	2.0	28	3.5	4.0	4.9	5.7	6.3	8.9	11.0	14.2	-	33	1	5
5050								-	-			1/64	1.8	2.5	3.5	4.3	5.0	6.1	7.1	2.9	11.2	13.7	17.7	46°	33	24	-0
5060	_		T	1	-			-	-			3/16	2.1	3.0	42	5.2	6.0	7.3	8.5	56	13.4	16.4	21	46.	33	54°	5
5070				-	-		-		_			19 fee	2.5	3.5	4.9	6.1	7.0	8.6	9.9	11.1	15.7	19.2	5	-99	20	540	10
50100	_			-	-	-	-		_			2	10	5.0	17	86	10.0	0.01	1.1.1	15.0	66	16	35	1.00	-02	ecu.	u

 Table A.1 Nozzle Characteristics (Spray Systems, 1996)

1	-	1	-	-	-	-						-	-		-	-	-			-		-		-	-		-	-	-	-	-	-11
5010	6020	OFF	Flow	GPM	12	e t	14	44	ŝ	10	91	17	11	18	13	61	6.1	30	20	20	51	51	22	22	23	23	23	24	2.4	24	25	25
5010	5020	5020	Flow	0 EM	2.0	23	E N	4	5	3.6	1	8	¢) N	¢1 CV	3.0	••	32	5	5	34	5	90	ψ m	1.5	3.8	0 0	60	90	40	ę	17	4.2
5010	5020	5040	Plow	Web	28	30	32	88	3	36	37	9.6	40	1 1	4.2	6.4	4 5	46	4.7	4.8	ণ শ	20	tin.	53	63 10	54	40	ໝ ເຕັ	949	N IO	00 10	85
5010	5020	5060	Flow	NUS	37	38	41	43	4	9 4 0	43	50	51	53	40	10	57	59	6.0	61	6.9	6.4	99	99	6.8	69	2.0	11	72	52	512	25
5020	5020	OFF	Flow	GPM	16	1.7	81	0	30	21	24	22	53	24	2.4	in N	25	24	27	27	5.0	# 2	01 (4	30	90	5	# M	32	3 5	33	n n	33
5020	5020	5020	Flow	Mado	24	56	27	28	3.0	12	32	CE.	5	10	36	37	88	66	4.0	1.4	44	43	43	44	5	46	47	4.7	10 10	4.9	0.5	5.0
5.0.2.0	5020	5040	Flow	W.C	3.3	34	36	3.8	4.0	41	4.0	44	9.9	47	4.8	0.5	5	52	53	10	50	57	5.0	53	6.0	61	62	6.3	64	5.9	59	67
5020	5020	5060	Flow	GPM	-	e #	45	4.7	0.5	52	53	5	2.5	6.9	60	83	10	83	67	8.8	2.0	11	7.2	4	in Pa	11	78	5.2	80	82	1)	83
5920	5040	OFF	Flow	Web	24	26	27	2.8	30	31	32	66	46	ц С	9 E	17	38	60	40	41	42	43	4	4.4	5.5	46	47	47	40	9	0 10	50
5020	5040	5040	Flow	8	1.5	5.5	4	4.7	0 9	2	(1) (1)	10	57	0.0	0.9	2 9	* 9	59	1.0	6.8	0.2	71	N	7.4	101	17	78	7.9	08	8	(M)	83
5020	5640	5060	Flow	Web	69	см УЛ	54	29	cn vn	62	64	10	89	11	13	75	76	7.8	8.0	82	84	50	8.7	68	0.6	2.6	n n	9.6	96	98	9.6	100
5040	5040	OFF	Flow	A	ee		3.6	8	0 7		en 1	44	-1 -1	4 4	-00	20		25	50	un Va	56	57	58	6	6.0	61	6.2	63	10	6.5	9.9	67
5040	5040	5040	Etime	e	49	н сл н	10	г. 11	5	e,	24	10	89	11	E A	5	10	7.8	8.0	6.8	10	10 =)	1 0	0.0	0	0	E G	un ch	10	8	66	100
5040	5040	5060	though	Nag	1.5	ŭ	6.9	9	9	14	10	14	01	6.5	10	19	0	6	6.0	19	60 41	100	101	103	103	107	103	111	112	114	116	117
Ton North Tuno	and the second states	Bottom Nozzle Type	Weiter	Upda	LICOMULATION AND		000	240	040	280	007	120		040		400	120	440	0.4	480	002	000	040	200	04	500	620	640	660	630	700	012

 Table A.2 Flow Characteristics of the HKD Spectrum with Various Nozzle Configurations (modified, Snow Economics, 1994)

MICRON DROPLET SIZE	MILLIONS OF MICRON DROPLETS IN 100,000 GALLONS	ICE NUCLEATION SITES SNOMAX @ 10.76 IN 300 GRAM BAGS	ICE NUCLEATION SITES SNOMAX @ 11.17 IN 270 GRAM BAGS	ICE NUCLEATION SITES SNOMAX @ 11.33 IN 270 GRAM BAGS	ICE NUCLEATION SITES SNOMAX @ 11.44 IN 270 GRAM BAGS
500	5,783,978	17,263,198	39,935,926	57,724,976	74,364,175
450	7,934,832	17,263,198	39,935,926	57,724,976	74,364,175
400	11,296,832	17,263,198	39,935,926	57,724,976	74,364,175
350	16,862,910	17,263,198	39,935,926	57,724,976	74,364,175
300	26,777,676	17,263,198	39,935,926	57,724,976	74,364,175
250	46,271,825	17,263,198	39,935,926	57,724,976	74,364,175
200	90,374,658	17,263,198	39,935,926	57,724,976	74,364,175
150	214,221,411	17,263,198	39,935,926	57,724,976	74,364,175
100	722,997,264	17,263,198	39,935,926	57,724,976	74,364,175

Table A.3 Theoretical Effectiveness of Snomax[™] at various Micron Droplet Size and INA (York Snow, 1999)

Table A.4 Standard Error of Density Samples

Sample	Density (lbs/cf)	
1	25.1	Mean = 26.3
2	27.6	
3	26.9	Std Error = 1.0 (3.8%)
4	26.9	
5	25.2	

	-													
	D.B. 38.0	D.B. 36.0	D.B. 34.0	D.B. 32.0	D.B. 30.0	D.B. 28.0	D.B. 26.0	D.B. 24.0	D.B. 22.0	D.B. 20.0	D.B. 18.0	D.B. 16.0	D.B. 14.0	D.B. 12.0
R.H.	₩.B.	W.B.	W.B.	W.B.	W.B.	₩.В.	W.B.	W.B.	W.B.	Ψ.B.	W.B.	¥.B	W.B.	W.B.
100%	38.0	36.0	34.0	32.0	30.0	28.0	26.0	24.0	22.0	20.0	18.0	16.0	14.0	12.0
308	36.9	35.0	33.0	31.0	29.1	27.2	25.0	23.2	21.3	19.4	17.3	15.3	13.5	11.5
80%	35.8	33.9	32.0	30.0	28.1	26.1	24.2	22.4	20.5	18.6	16.8	14.9	12.9	11.0
70%	34.5	32.5	30.9	28.9	27.2	25.0	23.1	21.5	19.8	18.0	16.0	14.2	12.2	10.4
60%	33.0	31.1	29.4	27.8	26.0	24.2	22.4	20.8	19.0	17.2	15.4	13.5	11.8	9.9
50%	31.5	30.0	28.2	26.6	25.0	23.1	21.5	19.9	18.1	16.3	14.6	13.0	11.0	9.2
40%	30.1	28.5	27.0	25.4	23.9	22.2	20.6	19.0	17.3	15.6	13.9	12.2	10.4	8.8
30%	28.8	27.2	25.8	24.2	22.8	21.2	19.6	18.2	16.5	14.8	13.2	11.6	9.9	8.2
20%	27.2	26.0	24.5	23.0	21.6	20.1	18.6	17.2	15.6	14.0	12.5	10.9	9.2	7.5
10%	26.0	24.5	23.2	22.0	20.5	19.0	17.6	16.2	14.8	13.2	11.8	10.1	8.U	7,0
20	24.5	23.0	22.0	20.8	19.5	18.0	16.7	15.3	13.9	12.5	11.0	9.6	8.0	6.5
D.B. = Dry	Bulb Te	mperat	ure (°F)	3	'.B. = W	fet Bulb	Tempe	srature	(∘F)	R.H. =	Relativ	e Humi	idity	

 Table A.5 Dry Bulb to Wet Bulb Conversion Chart (Snow Economics, 1994)

Figure A.1 Relationship Between Particle Size and Water Pressure for Nozzles (Spray Systems, 1973)

Figure A.2 Relationship Between Air Pressure and Flowrate in the HKD Spectrum

Figure A.3 Water Sample Nucleation Tests (Barthold, 1986)

Figure A.4 Effect of Inflow Water Temperature on Air/Water Ratio (Alford, 1998)

Figure A.5 Heat Transfer Rates for a 200 Micron Droplet (Barthold, 1986)

TESTING SESSION #:	DATE(S):	
TOWER # , LOCATION:	_	
WEATHER:		
NAT"L SNOW ACCUM:		
GROUND COVER:		

TEST CONDITIONS

NOZZLE CONFIG (T-M-B): SNOMAX LTRS/KGAL:

	BEGIN -			END
TIME				
DRY BULB - F				
HUMIDITY - %				
WET BULB - F				
WIND - MPH/DRXN				
		_		_
	SYS / HYD	SYS / HYD	SYS / HYD	SYS / HYD
WATER PRESS PSI				
WATER FLOW - GPM				
AIR PRESS PSI				
AIR FLOW - GPM				
FLOWMETER ?				

SAMPLE	WGT / DENSITY	SAMPLE	WGT / DENSITY

Figure A.6 Data Collection Form, Front

Figure A.7 Data Collection Form, Back