Assembly Sequence Optimization and Assembly Path Planning

by

Jayavardhan N. Marehalli

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Robert H. Sturges, Jr., Chair Michael P. Deisenroth Arvid Myklebust Charles F. Reinholtz

September 1999

Blacksburg, Virginia

Keywords: Liaison diagram, constraints, index of difficulty, principal contacts

Acknowledgements

- First of all I would like to thank Dr. Bob Sturges for giving me an opportunity to work on the assembly problem. His insight and vast knowledge in the area of automation (well, in engineering) shall remain a source of inspiration for me. I thank Dr. Sturges for supervising my work and guiding me through these last two years.
- I would like to thank Dr. Deisenroth, Dr. Myklebust and Dr. Reinholtz for taking the time to be on my committee.
- Special thanks to Keith Wright, Will Vest, Randy Waldron, and Jeff Snider for their excellent support during the course of this work. It is due to their efforts that this work has been made possible. I learnt a lot from their rich experience and my association with them during the course of my stay here at Virginia Tech has been very rewarding.
- My project mates Mohan and Steve, guys it has been great working with you.
 Thanks for your support and for putting up with me for so long!
- My sister, Deeptha Setlur and brother-in-law, Anand Setlur have been of great help and support. They made me feel comfortable when I first landed here two years ago and I thank them for their constant encouragement and motivation.
- My friends here at Virginia Tech Aashish, Ajay, Anuj, Baddy, Kalyan, Karthik, Maya, Pavan, Satish, Sindhu, Suhas (the list goes on). Thanks a lot for making my stay here at Virginia Tech truly enjoyable.
- Finally, the people who matter most, my parents. I would like to thank them for their constant support and encouragement. They sacrificed a lot to ensure that I got good education and imbibed good values. Thanks a lot amma and appa!

Table of Contents

Ał	bstract	i			
Ac	cknowledgements	ii			
Ta	Table of Contents iii				
Li	List of Figuresv				
Li	List of Tablesvii				
1	Introduction	1			
	1.1. Objective				
	1.2. Assembly Sequence Planning	4			
	1.2.1. Background in Assembly Sequence Planning	6			
	1.3. Assembly Path Planning – Contact State Recognition	8			
	1.4. Organization	10			
2	Assembly Sequence Planning	11			
	2.1. Heuristic.	12			
	2.1.1. Definitions	12			
	2.1.2. Algorithm to find an optimum assembly sequence	13			
	2.1.3. Design of the end effector	14			
	2.2. Development of an example	16			
	2.2.1. Liaison technique	16			
	2.2.2. Calculation of IDs	24			
	2.2.3. Design of a gripper	25			
	2.3. Limitations of the heuristic	27			
3	Assembly Path Planning – contact state experiments				

3.1. I	Background in Assembly Path Planning – Contact State Recognition	31
3	.1.1. Contact state representation	31
3	.1.2. Contact state recognition	35
3.2. I	Experiments to Validate the Notion of PCs And CFs	35
3	.2.1. Experimental apparatus	36
	3.2.1.1.Merlin robot	36
	3.2.1.2.JR3 Force/torque sensor	37
3	.2.2. Experimental set-up	
3	.2.3. Methodology and experimental results	39
4 Conc	clusions and future work	51
4.1. 4	Assembly Sequence Planning	51
4.2. 4	Assembly Path Planning	52
Reference	ces	54
Appendi	ix A – Merlin Robot	58
A-1	Types of Motion	62
A-2	Powering up the robot	64
A-3	Power-up Calibration	66
A-4	Frames of Reference	66
A-5	Absolute and Relative points	68
Appendi	ix B – JR3 Force/torque sensor	69
Vita		70

List of Figures

Figure 1.1	The different steps in assembly automation	2
Figure 2.1	The small engine used to demonstrate the heuristic	.15
Figure 2.2	The liaison diagram for the engine example	.16
Figure 2.3	Graphical representation of the liaison diagram	.20
Figure 2.4	Graphical representation of the feasible assembly sequences	
	after applying the precedence constraints	.21
Figure 2.5	3D view of the grasping of the flywheel	26
Figure 2.6	Freebody diagram showing forces and moments in grasping the flywheel	.26
Figure 2.7	Example of the grasping configuration grasping the piston	.27
Figure 3.1	Example to show indistinguishable states due to uncertainties	.34
Figure 3.2	The Merlin Robot with the six axes shown	.36
Figure 3.3	Faceplate mounted on the robot arm, direction of robot's axes	38
Figure 3.4	Contact-state experiment set-up	38
Figure 3.5	The CF graph generated by the automatic planner	.40
Figure 3.6	A schematic of the 'peg' and the 'corner'	.42
Figure 3.7	Schematic to show forces and moments in neighboring contact	
	states $(e_1^{\ c} - e_1^{\ p}, e_2^{\ c} - e_2^{\ p})$ and $(e_1^{\ c} - e_1^{\ p})$.43
Figure 3.8	The peg and the corner in the CF $(e_1^{\ c} - e_1^{\ p}, e_2^{\ c} - e_2^{\ p})$.43
Figure 3.9	The peg and the corner in the CF $(e_1^{c} - e_1^{p})$.43
Figure 3.10	0 Schematic to show forces and moments in neighboring contact	
	states $(e_1^{\ c} - e_1^{\ p})$ and $(e_1^{\ c} - v_2^{\ p})$.43

Figure 3.11 Example to show indistinguishable contact states

	by force/torque sensing	47
Figure A-1	An illustration of the three wrist motions of the robot	59
Figure A-2	A schematic of the driver boxes and modular controller	60
Figure A-3	A schematic of the ARMotion controller interfacing with the	
	teach pendant and motor drives	61
Figure A-4	Circuit diagram showing the interface of switches on the interconnect	
	box and the interconnect module	62
Figure A-5	Circuit diagram of the power supply	63
Figure A-6	The interconnect module	63
Figure A-7	Circuit diagram of the wiring in the driver boxes	64
Figure A-8	Calibration marks on each of the six axes of the robot	67

List of Tables

Table 2.1	Precedence constraints used in the engine assembly example	19
Table 2.2	The feasible assembly sequences after applying the constraints	22
Table 2.3	The IDs computed for the first feasible assembly sequence	22
Table 2.4	The IDs computed for the second feasible assembly sequence	23
Table 2.5	The IDs computed for the third feasible assembly sequence	23
Table 3.1	Forces/torques obtained for the CFs shown in Figure (3.5)	44
Table 3.2	Forces/torques expressed as ratios of changes for each of the	
	Neighboring CFs identified in Figure (3.5)	48
Table A-1	Axis Rotation limits for the Merlin	.58