A COMPUTER SIMULATION MODEL TO PREDICT AIRPORT CAPACITY ENHANCEMENTS

by

Vijay Bhushan G. Nunna

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Civil Engineering

APPROVED:

A.A. Trani, Ph.D, Chairman

A.G. Hobelka, Ph.D

D.H. Drew, Ph.D

July 30, 1991

Blacksburg, Virginia
LD
S655
V855
1991
N966
C12
A COMPUTER SIMULATION MODEL TO PREDICT AIRPORT CAPACITY ENHANCEMENTS

by

Vijay Bhushan G. Nunna

Dr. A.A. Trani

(Chairman)

(ABSTRACT)

The ever increasing demand on the air transportation system is causing a lot of congestion and delays, leading to large monetary losses and passenger inconvenience. This has prompted the development of many analysis tools to help the understanding of the airport system where some improvements could be performed to enhance the capacity of the airports.

The Center for Transportation Research at Virginia Tech, in line with the FAA's Capacity Enhancements Plan, is developing strategies to alleviate the airport congestion problem by developing a model (REDIM) to design and optimally locate high-speed exit taxiways. The objective of this research is to develop a computer simulation model to predict the airport capacity enhancements due to the above mentioned high-speed exit taxiways and as well as due to other changes in operational procedures, aircraft characteristics, airport environmental conditions, etc.

RUNSIM (RUNway Simulation Model), a discrete event simulation model was developed using SIMSCRIPT II.5 language. This model simulates dual operations on a single runway, with capabilities of simulating FAA standard and REDIM designed high-speed
exits, variable intrail separations, different aircraft mixes, and weights, arrival rates and patterns, etc. Currently it has a 30 aircraft data base to perform the simulation. Its output includes such global statistics as total arrival and departure delays, weighted average ROT and its standard deviation, aircraft exit assignment table, arrival and departure event lists. It has the capability to perform multiple iterations on a single application, which helps in performing statistical analyses on the results for better inference.
ACKNOWLEDGMENTS

I sincerely wish to express my gratitude to my advisor Dr. Trani for the guidance he has given me right through this research and my stay at Virginia Tech. His encouragement, flexibility to meet me at any time and his moral support were the main reasons for the successful completion of this research.

I am grateful to Dr. Hobeika for his financial support and having confidence in me and allowing to work on couple of projects at the Center for Transportation Research.

I am also thankful to Dr. Drew for serving in my graduate committee. I always enjoyed his teaching and wisdom and especially appreciate his free spirit.

I thank my parents, sister, and brother for their love and support in my endeavours. It would not have been possible to pursue my graduate studies in U.S., if not for the love and affection of my uncle Dr. Nagabushanam Nunna and aunt Dr. Sitalakshmi Nunna to whom I am indebted forever.

Last but not the least I express my appreciation to all those who helped me during my graduate studies.
Table of Contents

1. Introduction
 1.1 Background
 1.2 Subject Description
 1.3 Research Scope
 1.4 Research Objective and Approach

2. Literature Review
 2.1 Introduction
 2.2 Mathematical Models
 2.3 Graphical Models
 2.4 Simulation Models

3. Methodology
 3.1 Description of SIMSCRIPT II.5

4. Model Description
 4.1 Model Environment
 4.2 Model Assumptions
 4.3 Model Parameters
 4.4 Computations
 4.4.1 Final Approach Phase
 4.4.2 Glide Phase
 4.4.3 Rolling Phase
 4.4.4 Turnoff Phase
 4.4.5 Takeoff Phase
 4.5 Program Logic
 4.5.1 Arrivals
 4.5.2 Departures
 4.6 Program Description
 4.6.1 Preamble
 4.6.2 Main
 4.6.3 Routine ASSIGN.ARR.ACFT.NAME
 4.6.4 Routine ASSIGN.DEP.ACFT.NAME
 4.6.5 Routine CHECK.PRECEDE.ACFT.CLR.RWY
 4.6.6 Event CREATE.AIRCRAFT.ARR
 4.6.7 Event CREATE.AIRCRAFT.DEP
 4.6.8 Process DEPARTURE.OPERATION
 4.6.9 Routine DET.DEL.ARR
 4.6.10 Routine DET.DEL.DEP
 4.6.11 Routine DET.DIST.AIR
 4.6.12 Routine DET.EXIT.SPEEDS
 4.6.13 Routine DET.RWY.OCC.TIME
 4.6.14 Routine DET.SELECT.EXIT
 4.6.15 Routine DET.TAKEOFF.TIME
4.6.16 Routine DET.TOT 89
4.6.17 Routine DET.VAPP 91
4.6.18 Process FINAL.APPROACH.OPERATION 92
4.6.19 Process GENERATOR 92
4.6.20 Process GENERATOR.DEP 93
4.6.21 Process LANDING.OPERATION 94
4.6.22 Routine PRECEDE.FASTER.ACFT 94
4.6.23 Routine PRECEDE.SLOWER.ACFT 96
4.6.24 Routine RE.INITIALIZE 97
4.6.25 Routine STATUS.APP.CLR.RWY.OCC 98
4.6.26 Routine STATUS.APP.OCC 99
4.6.27 Routine APP.OCC.RWY.CLR 99
4.6.28 Routine APP.OCC.RWY.OCC 99
4.6.29 Routine STATUS.RWY.OCC 101
4.6.30 Routine SYS.CHECK.AT.STACK 101
4.6.31 Routine SYS.CHECK.AT.THRLD 102
4.6.32 Process WAIT.AT.RAMP 102
4.6.33 Process WAIT.AT.STACK 103

4.7 Model Output 103

5. Model Results and Analysis 106
5.1 Analysis Description 106
5.1.1 Base Scenario 107
5.1.2 Scenario-I 114
5.1.3 Scenario-II 119
5.1.4 Scenario-III 122
5.1.5 Scenario-IV 122
5.1.6 Scenario-V 124

6. Conclusions and Recommendations 128
6.1 Conclusions 128
6.2 Recommendations 130

Bibliography 132

Appendix A. RUNSIM Source Code 134

Appendix B. RUNSIM Aircraft Data File (ACFT.DAT) 254

Appendix C. Turnoff Data File (TOT.DAT) 255

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program 257

Vita 289

Table of Contents vi
List of Figures

1.1 Relationship between Average Delay and ratio of Demand/Capacity 2
1.2 Components of Airport System 4

2.1 Interarrival Separation without and with Buffer 14
2.2 Graphical representation of ATC Runway Operational Procedures 18

3.1 Relationship between Events, an Activity, and a Process 30
3.2 Basic SIMSCRIPT II.5 Timing Routine 35

4.1 Velocity and Distance Profile of a Landing Aircraft on Runway 53
4.2 Runway Clearance Point 57
4.3 Flow Chart for Arrivals 61
4.3 Flow Chart for Arrivals (contd..) 62
4.3 Flow Chart for Arrivals (contd..) 63
4.3 Flow Chart for Arrivals (contd..) 64
4.4 Flow Chart for Departures 68
4.4 Flow Chart for Departures (contd..) 69
4.4 Flow Chart for Departures (contd..) 70
4.4 Flow Chart for Departures (contd..) 71

5.1 Runway Layout of SEA-TAC International Airport 108
5.2 Capacity-Delay Curves for different Scenarios 113
5.3 Comparision of ROT between varying exits 116
5.4 Comparision of ROT between different Weight Factors 120
5.5 Comparision of ROT between FAA and REDIM Exits 126
List of Tables

1.1 Short, Medium and Long Term Projects Affecting Airport Capacity 6

2.1 Typical SIMMOD Analysis Topics 22
2.2 SIMMOD Roll Time 24
2.3 Relationship between High-Speed Exit Heading and Total Roll Time 24

4.1 Inter-Arrival Separations 45
4.2 Departure-Arrival Separations 45
4.3 Inter-Departure Separations 45
4.4 Exit Types Available for Simulation in RUNSIM 47
4.5 Takeoff Time by Aircraft Category 59

5.1 Arrival/Departure Aircraft and Mix 109
5.2 Weight Factor Data 111
5.3 Buffer Data 112
5.4 Airport Environmental Data 112
5.5 Runway Exit Taxiway Data 112
5.6 Base Scenario Exit Assignment 115
5.7 Scenario-I (one exit) Exit Assignment 117
5.8 Scenario-I (two exits) Exit Assignment 118
5.9 Scenario-II Exit Assignment 121
5.10 1996 FAA Proposed ATC Separation Rules 123
5.11 Scenario-IV (First Case) 125
5.12 Scenario-IV (Second Case) 125
1. Introduction

1.1 Background

Transportation infrastructure in recent times has been burdened by high demand compared to the limited capacity available causing heavy delays. Air transportation is also one of the transportation systems that is experiencing delays because of the closing gap between the demand and the available capacity. Figure 1.1 illustrates the relation the average congestion delays during peak hours as a function of ratio of demand to capacity. These delays have economic impact on the users and the suppliers of air transportation. Statistics indicate that nearly $3 billion are paid by the air travellers due to the delays in the U.S. with another $2.1 billion paid by airlines according to the Federal Aviation Administration [FAA, 1988]. U.S., scheduled air carriers recorded a total of 429.1 billion revenue passenger miles in fiscal year 1989 and over the 12-year forecast period the revenue passenger miles are projected to increase at an average annual rate of 4.9 percent, reaching 765.6 billion in fiscal year 2001 [FAA, 1990]. Airlines have changed their routing system from predominantly linear operations to a system of hub and spokes. The development of connecting hub airports has led to high frequencies in peak hours at major airports and as a result approximately 21 airports are experiencing serious congestion problems. The other side effect of hub and spoke system is the chain effect of delays experienced by the interconnected airports. According to FAA the number of congested airports is going to increase to fifty by the end of the century [FAA, 1990].
Figure 1.1 Relationship between Average Delay and ratio of Demand/Capacity.
and one-fifth of them will experience more than 50,000 hours of system imposed delays. The construction of new airports to alleviate this problem is a slow and rare process due to the scarcity of land, limited financial resources and, local opposition due to possible environmental pollution, etc.,

1.2 Subject Description

In order to study an airport as a system, it is customary to divide it into two main components:

1) Airside,
2) Landside.

These are again divided into subcomponents (shown in Figure 1.2) which are as follows:

Airside:
1) Airspace and Air Traffic Control (ATC)
2) Runways
3) Taxiways
4) Aprons and Gates

Landside:
1) Terminal Building
2) Parking
3) Ground Access System

Every subcomponent has influence towards the capacity of the airport and each one should complement each other. Capacity is defined as the processing capability of a

1. Introduction
Figure 1.2 Components of Airport System [TRB, 1987].
service facility over some period of time. Traditionally the capacity of the individual subcomponents have been evaluated and the most critical one would dictate the airport capacity. Of the two main components the airside has in general been the critical component which dictated the capacity of the airport (Bangkok airport being a notable exception where the poor ground access dictates the airport practical capacity). To increase the capacity of the existing air transportation system several topics of interest have been identified by FAA and research is being undertaken ranging in topics from 4D terminal navigation to methods to reduce the runway service time (see Table 1.1). Runway occupancy time (ROT) of aircraft is one of the important factors affecting the capacity of a runway. ROT is the time that an aircraft occupies the runway until a new operation (arrival or departure) can be processed. Some of the most important factors that influence runway capacity are:

1) Intrail separations,
2) Aircraft population mix,
3) Exit locations and their type,

Several studies have suggested that by improving the above factors that there would be an increase in capacity of a single runway by 20 % [Barrer and Diehl, 1988].

1.3 Research Scope

The runway is one of the critical subcomponents of the airport system and if capacity
<table>
<thead>
<tr>
<th>Time Period</th>
<th>Projects with Highest Effects on Capacity</th>
<th>Projects with Moderate to Significant Effect on Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near term (1–5 years)</td>
<td>Instruments approaches to converging runways</td>
<td>Microwave landing system</td>
</tr>
<tr>
<td></td>
<td>Independent, closely spaced parallel approaches</td>
<td>Runway configuration management system</td>
</tr>
<tr>
<td></td>
<td>Separate short runways</td>
<td>Enhanced terminal-area radar</td>
</tr>
<tr>
<td></td>
<td>Triple instruments approaches</td>
<td>Wind measuring equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved landing and navigation systems and revised air traffic control procedures for rotorcraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved approach lighting and visual navigation aids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved airport design and configuration</td>
</tr>
<tr>
<td>Medium term (6–10 years)</td>
<td>None</td>
<td>Airport surface surveillance guidance and control systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doppler weather radar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised computer algorithms for scheduling and metering arrivals and departures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wake vortex detection and avoidance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methods of reducing runway occupancy time</td>
</tr>
<tr>
<td>Long term (over 10 years)</td>
<td>4D terminal-area navigation</td>
<td>Wake vortex forecasting and avoidance</td>
</tr>
<tr>
<td></td>
<td>Automation of air traffic control in terminal areas</td>
<td>More sensitive and accurate radar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low altitude surveillance for rotorcraft and general aviation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode S data link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer-aided decision making in air traffic control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced wind shear detection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved weather sensors</td>
</tr>
</tbody>
</table>

1. Introduction
enhancements to other airside subcomponents are improved, then the runway could become the most critical one. This research focuses on the enhancement of the runway capacity, especially, using optimally located high speed exits.

1.4 Research Objective and Approach

A discrete-event oriented simulation approach is proposed using SIMSCRIPT II.5, a computer simulation language, on an IBM compatible personal computer platform. Computer simulation is a powerful tool to study complex systems which cannot be represented by mathematical formulation. There are time tested analytical tools to evaluate runway capacity performance are being currently used, but they are abstract and mainly useful for long range planning rather than for short range or day to day operational planning. Simulation models reduce the differences between the real world and the abstract world of the model thereby giving better results. To support this contention detailed aircraft and airfield input parameters are planned to be used for the model.

It is proposed to model both the current standard FAA exits and newly proposed rapid runway exit geometries in order to gain appreciation of the ROT gains possible with new exits [Trani, et al, 1990]. These proposed new exit geometries are generated by REDIM (Runway Exit Design Interactive Model), a computer model developed at the Center for Transportation Research, Virginia Tech., which optimizes the location and also generates the geometries of high speed runway exits. This capability of simulating various types of
exits and the ability to modify aircraft arrival and departure patterns make this model suitable to examine runway capacity gains for existing and future ATC systems under realistic airport environmental conditions. The current FAA airspace and airfield simulation model, SIMMOD, does not have the capability of simulating high speed exits realistically, as it assumes for different types of high speed exits some percentage of ROT is spent on those exits while rolling. Also the intrail separations cannot be modified for any simulation runs [USDOT/FAA, 1989].

It is hoped that this research, by demonstrating the effectiveness of the proposed REDIM generated exits, would culminate in adopting the REDIM generated exits into the SIMMOD simulation system making it a more flexible tool.
2. Literature Review

2.1 Introduction

The objective of this literature review is to present some background of past and current research on the influences of airspace separation and runway occupancy time on runway capacity.

Early research on runway capacity began with the development of simple mathematical models to extract only important processes occurring on the runway. Later on graphical and simulation models were developed to incorporate greater details. This chapter discusses the mathematical models first and then graphical and simulation models, respectively.

2.2 Mathematical Models

Mathematical modelling is a convenient and quick method of analyzing any system. The early mathematical models considered a runway as a single channel queuing system with FIFO (First In - First Out) service and the arrivals with poisson probability distribution. In 1948 Brown and Pearcy [Ashford, Wright, 1979] derived an equation for average landing delay, as shown in Eqn. 2.2.1.
\[W = \frac{\rho}{2 \times \mu \times (1 - \rho)} \] \hspace{1cm} \ldots (2.2.1)

where \(\rho \) = load factor = \(\lambda/\mu \)

\(\lambda \) = arrival rate (aircraft/unit time)

\(\mu \) = service rate (aircraft/unit time) = \(1/b \)

\(b \) = mean service time (this could be runway occupancy time or ATC minimum separation rule)

A general rule of the above equation known as the Pollaczek-Khinchum formula is given below:

\[W = \frac{\rho \left(1 + C_b^2\right)}{2 \times \mu \times (1 - \rho)} \] \hspace{1cm} \ldots (2.2.2)

where \(C_b \) = coefficient of variation of service time = \(\sigma_b/b \)

\(\sigma_b \) = standard deviation of mean service time.

These equations could be used either for arrivals or departures, but are applicable for single operations only. For mixed operations, where arrivals are given priority over departures, the delays for the arrivals is estimated by either Eqn. 2.1 or 2.2 and the average delay to departures is given by Eqn. 2.2.3 [Horonjeff, McKelvey, 1983]:

\[W_d = \frac{\lambda_d \left(\sigma_j^2 + j^2\right)}{2 \left(1 - \frac{\lambda_d j}{2}\right)} + \frac{g \left(\sigma_g^2 + f^2\right)}{2 \left(1 - \frac{\lambda_g f}{2}\right)} \] \hspace{1cm} \ldots (2.2.3)

2. Literature Review
where,

\[W_d \] = mean delay to departing aircraft, time units.

\[\lambda_a \] = mean arrival rate, aircraft/unit time.

\[\lambda_d \] = mean departure rate, aircraft/unit time.

\[j \] = mean interval of time between two successive departures.

\[\sigma_j \] = standard deviation of mean interval of time between two successive departures.

\[g \] = mean rate at which gaps between successive arrivals occur.

\[f \] = mean interval of time in which no departure can be released.

\[\sigma_f \] = standard deviation of mean interval of time in which no departure can be released.

All previous equations are valid only if the mean arrival or departure rate is less than the mean service rate.

More detailed mathematical models were proposed by Harris [Harris, 1972]. The models developed considered more factors that affect the runway capacity than the models discussed above as these do not account for the length of the common approach path, individual aircraft speeds, and intrail separations. Some of the models proposed by Harris are discussed below:

IFR Landing Intervals Model and Arrival Capacity: This model determines the nominal time separation between two aircraft travelling at speeds \(V_1 \) and \(V_2 \), which must be
achieved in order to maintain a constant probability of separation violation. Some of the model variations that are considered under this model are:

a) Error Free Case:

"Error free" it implies that a trail aircraft is following another aircraft in the final approach path exactly by a set separation distance without any human or technical error.

\[
m(V_2, V_1) = \frac{\delta}{V_2} \quad (V_2 \geq V_1) \quad \ldots (2.2.4)
\]

or

\[
m(V_2, V_1) = \frac{\delta}{V_2} + \gamma \left(\frac{1}{V_2} - \frac{1}{V_1} \right) \quad (V_2 < V_1) \quad \ldots (2.2.5)
\]

where,

\[T_i \quad = \text{actual time aircraft} \ i \text{crosses the threshold.} \]

\[V_i \quad = \text{speed of the aircraft} \ i. \]

\[\gamma \quad = \text{length of the common path.} \]

\[m(V_2, V_1) = \text{Error free minimum time separation over threshold for aircraft} \ 2 \text{ following aircraft} \ 1. \]

\[\delta \quad = \text{minimum safety separation between landing operations.} \]

If aircraft are processed on a FIFO basis, then the expected minimum landing intervals in error free approach is described by the Eqn. 2.2.6

\[
< m > = \int_0^\infty \int_0^\infty m(V_2, V_1) f_{V_1}(V_1) f_{V_2}(V_2) \ dv_1 dv_2 \quad \ldots (2.2.6)
\]

2. Literature Review
where, $f_\text{r}(\cdot)$ is the probability density function describing the speed mix of the arrival aircraft. Hence the landing capacity (λ_m) for an error free system is given by Eqn 2.2.7.

$$\lambda_m = \frac{1}{\langle m \rangle} \quad \ldots(2.2.7)$$

b) Interarrival Error Case:

In any real-world system errors are bound to occur, so is with the aircraft following another aircraft in the final approach path in violating the minimum separation rules. The possible sources of errors are when pilots try to achieve the minimum separation, and during ATC manual control when the position of aircraft is not located properly, etc. To account for error in minimum separation a buffer time is added to the minimum separation time i.e., the scheduled interval at the threshold, which is the expected value of $T_2 - T_1$, is simply the sum of the minimum separation and buffer time.

$$\langle T_2 - T_1 \rangle = m(V_2, V_1) + b(V_2, V_1) \quad \ldots(2.2.8)$$

where,

$$b(V_2, V_1) = \text{Buffer time between aircraft 2 and 1.}$$

$$\langle : \rangle = \text{Expected value.}$$

Figure 2.1 shows the position of the trail aircraft as it approaches the threshold with and without buffer. If we assume that the actual interarrival times are equal to the expected value plus a zero-mean normally distributed random error, e_o (positive for the second arrival late) with a fixed standard deviation σ_o, then for a given probability of violation p_v:
Figure 2.1 Interarrival Separation without and with Buffer [Horonjeff, Mckelvey, 1983].
\[T_2 - T_1 = m(V_2, V_1) + b(V_2, V_1) + \epsilon_o \quad \ldots (2.2.9) \]

If \(V_2 \geq V_1 \) (Closing Case) then

\[b(V_2, V_1) = \sigma_o \cdot q(p_v) \quad \ldots (2.2.10) \]

where \(q(p_v) \) is the value for which the cumulative standard normal distribution has the value \((1 - p_v) \).

If \(V_2 < V_1 \) (Opening Case) then

\[b(V_2, V_1) = \sigma_o \cdot q(p_v) - \delta \left(\frac{1}{V_2} - \frac{1}{V_1} \right) \quad \ldots (2.2.11) \]

The above equation is limited to a non-negative value only, with a minimum of zero.

\[\langle I \rangle = I(V_2, V_1) = m(V_2, V_1) + b(V_2, V_1) \quad \ldots (2.2.12) \]

Eqn 2.2.12 is the scheduled landing interval, with \(\lambda_i \) as the saturation landing capacity given by Eqn 2.2.13.

\[\lambda_i = \frac{1}{\langle I \rangle} \quad \ldots (2.2.13) \]

c) Runway Occupancy Limitation: In the cases a) and b) runway occupancy was not considered for minimum interval time, to confirm to single occupancy rule. If \(< R_j > \) is runway occupancy time of the lead aircraft, then a modified landing interval will be:

\[\Delta_j = \max\{ < m >, < R_j > \}. \]

To account for some errors in runway occupancy time, a probability of runway occupancy violation is considered, hence

2. Literature Review
\[r_j - \langle R_j \rangle + e_R \quad e_R \sim N(0, \sigma_R) \quad \cdots (2.2.14) \]

\[\langle I \rangle = \langle I \rangle + e_I \quad e_I \sim N(0, \sigma_{Ia}) \quad \cdots (2.2.15) \]

where \(\sigma_{Ia} \) is net interarrival error, over threshold. Assume also that the probability of violation is set to some constant multiple, say \(n \), of \(p_v \). Then

\[\Lambda = \max \left [\langle I \rangle, \langle R_j \rangle + q(nq_v) \sqrt{\sigma_R^2 + \sigma_{Ia}^2} \right] \quad \cdots (2.2.16) \]

Capacity for Mixed Operations under IFR: Here the ATC rules are applicable to the mixing of a departure stream into the arrival stream. Let \(| T_i, T_{i+1} | \) be the landing times (over threshold) of the \(i^{\text{th}} \) and \(i+1^{\text{st}} \) aircraft in the arrival stream and \(T_j \) as the enplaning time of the \(j^{\text{th}} \) departure, which is to be interleaved between \(i \) and \(i+1 \) arrivals. To confirm to the ATC operational procedures, the following rules apply:

Rule A (Arrival Priority): The arrivals are given priority, and departures are required to wait for a gap in the arrival stream, mathematically, \(T_i \) and \(T_{i+1} \) are fixed with \(T_j \) to be inserted in between, if possible.

Rule B (Single Occupancy): A departure or arrival may not be processed until the previous arrival has safely exited the runway, mathematically, \(T_j \geq T_i + R_i \) (also \(T_{i+1} \geq T_i + R_i \)), where \(R_i \) is the ROT for arrival \(i \).

2. Literature Review
Rule C (Departure/Arrival Spacing): A departure may not be released if an arrival is less than δ_d distance from runway threshold, mathematically, $T_i \leq T_{i+1} - (2i+1)$, where $(2i+1)$ is the $i + 1^{\text{st}}$ arrival to travel δ_d distance to reach threshold.

Rule D (Interdeparture Spacing): The departure stream must space itself by some minimum time separation based upon the type of aircraft, mathematically, $T_{i+1} \geq T_i + \Gamma_d$, where Γ_d is the minimum interdeparture spacing.

Figure 2.2 illustrates all the above rules graphically and the Eqn. 2.2.17 summarizes all the above rules:

$$T_{i+1} - T_i > R_{i+2} + \Gamma_{i+1} + (2n_d - 1)\Gamma_d$$

Where n_d is the number of departures that may be released between two arrivals only if a time interval $(i/i+1)$ is present. If p_a is acceptable level of probability of violation, to account for the system errors, then the average interarrival interval, in order to release a departure is given by Eqn. 2.2.18.

$$< T_2 - T_1 > \geq \sigma a q(p_a) + < R_1 > + < \frac{\delta_d}{V_z} > \ldots (2.2.18)$$

2.3 Graphical Models

The most widely used graphical model to estimate runway capacity was developed by FAA in Advisory Circular AC 150/5060-5 [FAA,1983]. The charts in AC 150/5060-5 can be used to find the hourly capacity of the runway system by using various parameters.
Figure 2.2 Graphical representation of ATC Runway Operational Procedures [Harris, 1972].
affecting runway capacity. These charts are developed from computer simulation. These charts are used to determine the runway hourly capacity through the Eqn. 2.3.1.

\[C = C_b E T \] \hspace{1cm} \ldots (2.3.1)

where
- \(C \) = hourly capacity of runway-use configuration in operation per hour.
- \(C_b \) = ideal or base capacity of runway-use configuration.
- \(E \) = exit adjustment factor for number and location of runway exits.
- \(T \) = touch-and-go adjustment factor.

Parameters required to use the above equation and the charts are:

a) Prevailing operating condition (IFR or VFR).

b) The mix index MI, which is an indicator of the level of air-carrier-type operation on the runway and it is calculated as given in Eqn. 2.3.2.

\[MI = C + 3D \] \hspace{1cm} \ldots (2.3.2)

where,
- \(C \) = percentage of type C aircraft in mix of aircraft using runway.
- \(D \) = percentage of type D aircraft in mix of aircraft using runway.

c) Percent arrivals (PA).

d) Percent of Touch and Go’s.

e) Location and number of exits.

f) Runway system, whether it is single, parallel or intersecting with another one. The runway systems are categorized and for every category an appropriate chart is to be used to evaluate the hourly capacity.

2. Literature Review
The charts could be also used to find the hourly delay by identifying the hourly demand (HD), peak 15 minute demand (Q). The hourly delay (DTH) is calculated by Eqn. 2.3.3.

\[
DTH = \frac{HD(FA \times DAHA + (100-FA) DAHD)}{100}
\]...(2.3.3)

where DAHA and DAHD are average delays for arriving and departing aircraft respectively.

These FAA charts are mainly helpful for long range planning. They cannot predict the change in capacity or delays due to changes in the sequencing of arrivals, arrival rate. Enough importance is not given to the type of exits that are being used, and the variability of aircraft landing weights.

2.4 Simulation Models

The most comprehensive simulation model used in airport system planning is SIMMOD, the airport and airspace simulation model developed by FAA [DOT/FAA, 1989]. This model can be used in wide variety of scenarios ranging from enroute and terminal area air traffic studies to airport/airline ground operations. Table 2.1 shows a partial list of possible SIMMOD analyses topics.

The SIMMOD simulation engine is a discrete-event simulation written in SIMSCRIPT II.5 simulation language. SIMMOD represents the basic framework of any airport or airspace

2. Literature Review
system as a series of nodes connected by links. The flight paths, runways and taxiway are depicted by links and their intersections by nodes. In SIMMOD a flight is an aircraft with a unique identifier and a set of data related to it, say, type of flight, starting time and airspace route, and depending on the scenario, arrival at an airport and departure from an airport, etc., are also specified.

SIMMOD uses the Integrated Noise Model (INM) version 3.9 database for aircraft identification and operating characteristics. For the purpose of simulating airspace operations, aircraft are classified into groups, as many aircraft have roughly equivalent characteristics when airborne. Those groups are Heavy, Large, Small, General Aviation, and others (user specified). In airfield operations also the aircraft are categorized into the above groups. The characteristics defined for each group include:

Landing Characteristics: Landing and takeoff roll distances used are based on the observed probabilities which are translated into cumulative distributions. These probabilities are linked to aircraft type and are specified for each airfield. Thus, if the landing rolls are based on observed values then for future scenario simulations the application has to depend on assumed landing roll values. The roll time while landing depends only on the aircraft group to which the aircraft is assigned. The roll times SIMMOD uses for different aircraft group are shown in Table 2.2. The above description implies that irrespective of the cumulative distributions of landing roll the ROT is constant. This is a major deficiency as time and distance are interrelated in the motion of any vehicle.

2. Literature Review
<table>
<thead>
<tr>
<th>Table 2.1 Typical SIMMOD Analysis Topics [DOT/FAA, 1989].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport Facilities</td>
</tr>
<tr>
<td>Impact of new facilities.</td>
</tr>
<tr>
<td>Expansion or relocation of existing terminal.</td>
</tr>
<tr>
<td>Relocation of gates.</td>
</tr>
<tr>
<td>Airfield Design and Procedures</td>
</tr>
<tr>
<td>Revision of terminal routing plan.</td>
</tr>
<tr>
<td>Runway and Taxiway Configuration.</td>
</tr>
<tr>
<td>New runway construction.</td>
</tr>
<tr>
<td>High-speed runway exits.</td>
</tr>
<tr>
<td>Runway and taxiway holding pads.</td>
</tr>
<tr>
<td>Reduction of runway occupancy time.</td>
</tr>
<tr>
<td>Parallel approaches.</td>
</tr>
<tr>
<td>Converging approaches.</td>
</tr>
<tr>
<td>Microwave Landing Systems (MLS).</td>
</tr>
<tr>
<td>Location of navigational aids.</td>
</tr>
<tr>
<td>Apron area operations.</td>
</tr>
<tr>
<td>Queuing strategies and departure rules.</td>
</tr>
<tr>
<td>Airspace Design and Procedures</td>
</tr>
<tr>
<td>Revision of separation rules.</td>
</tr>
<tr>
<td>Speed and altitude restrictions.</td>
</tr>
<tr>
<td>Controller tactics.</td>
</tr>
<tr>
<td>Realignment of en route and terminal airspace.</td>
</tr>
<tr>
<td>Etc.</td>
</tr>
<tr>
<td>Operations</td>
</tr>
<tr>
<td>Aircraft performance.</td>
</tr>
<tr>
<td>Hub and spoke operations.</td>
</tr>
<tr>
<td>Traffic demand and fleet mix.</td>
</tr>
<tr>
<td>Revised ATC procedures.</td>
</tr>
<tr>
<td>Redistribution of departure scheduled at peak hours.</td>
</tr>
<tr>
<td>Visual and instrumental flight procedures (VFR & IFR).</td>
</tr>
<tr>
<td>Etc.</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Noise abatement procedures.</td>
</tr>
<tr>
<td>Wind conditions (speed, direction, ceiling and visibility)</td>
</tr>
</tbody>
</table>
Takeoff Characteristics: The takeoff roll and times are also categorized similarly as the landing characteristics.

Gate Occupancy Characteristics: The loading and unloading times can be described by cumulative distributions for different groups.

In SIMMOD runway is defined as a list of links from one end to the other and can be used both directions. Runway exits can defined at the end of each link on a runway. The selection of an exit by an arriving aircraft depends an where the aircraft finishes its landing roll. Any exit reached after completion of the roll is a viable exit. A high speed exit is also represented by a link. The difference between the headings of the link and the runway determines the amount of the landing roll that may be completed on the high speed exit, as shown in Table 2.3. The selection of high speed exit on the basis of which factor is not defined clearly. As the landing roll and ROT are not related, the use of an high speed exit during a simulation does not decrease the runway occupancy time. Since the dynamics involved in aircraft landing roll are not considered, the exit speed of the high speed exits and the exiting speed of the aircraft will not correlate.

In response to the FAA and NASA needs the Center for Transportation Research developed REDIM 1.0 [Trani, et. al., 1990] a computer model to expedite turnoff designs and to optimize the location of high speed exits. This model addresses the placement of optimal turnoff locations considering arrivals only as these operations have a logical influence on the turnoff location. The aircraft simulation starts from the time it crosses

2. Literature Review
Table 2.2 SIMMOD Roll Time Data.
[USDOT/FAA, 1989]

<table>
<thead>
<tr>
<th>Airline Group Name</th>
<th>Roll time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>54</td>
</tr>
<tr>
<td>SMALL</td>
<td>45</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>50</td>
</tr>
<tr>
<td>LARGE</td>
<td>50</td>
</tr>
<tr>
<td>HEAVY</td>
<td>60</td>
</tr>
<tr>
<td>Other</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.3 Relationship between High-Speed Exit Heading and Total Roll Time.
[USDOT/FAA, 1989]

<table>
<thead>
<tr>
<th>Change in heading</th>
<th>% of roll completed on exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>20%</td>
</tr>
<tr>
<td>20°</td>
<td>15%</td>
</tr>
<tr>
<td>30°</td>
<td>10%</td>
</tr>
<tr>
<td>40°</td>
<td>5%</td>
</tr>
</tbody>
</table>
runway threshold until the vehicle's wingtip clears the runway edge. The simulation of aircraft are independent of each other and hence operational procedures such as interarrival spacing, etc., are not involved in the simulation. The model does not consider the variation in landing weights, due to different flight lengths, during simulation and the overall emphasis of the simulation module is to identify the optimal exit location for every individual aircraft of the aircraft population that use the runway under varying runway environmental conditions. These locations are then used as inputs for the optimization module to locate the exits optimally for the whole aircraft population. Hence this model cannot predict the effect of the optimally located exits on the capacity and delay of the runway in use. This shortcoming is being addressed in this complementary research with the development of RUNSIM (Runway Simulation Model).
3. Methodology

The approach followed by this research is to develop a computer based, discrete-event simulation model which will simulate the runway operations. Simulation is an effective way of pretesting proposed systems, and associated operational policies before developing expensive prototypes, field tests or actual implementations. The model is amenable to manipulation that would be impossible, too expensive, or impractical, to perform on the system it portrays. Discrete-event is chosen over continuous simulation because it describes a system in terms of logical relationships that cause changes of state at discrete points in time rather continuously over time, and this research is interested in knowing the behavior of the components of the system being model at important event times only.

3.1 Description of SIMSCRIPT II.5

The widespread use of simulation as an analysis tool has led to the development of a number of languages specifically designed for simulation [Pritsker, 1986; Russel, 1987; Pritsker, 1974; Pugh, 1970; Henriksen and Crain, 1983]. The languages provide specific concepts and statements for representing the state of a system at a point in time and moving the system from one state to another.

SIMSCRIPT is a computer language developed by Kiviat, Villaneueva, and Markowitz
SIMSCRIPT II.5 is the current version of SIMSCRIPT revised by Alasdair Russel. The simulation modelling framework of SIMSCRIPT II.5 is primarily event-oriented. The state of the system is defined by entities, their associated attributes, and by logical groupings of entities referred to as sets. The dynamic structure of the system is described by defining the changes that occur at event times.

In SIMSCRIPT II.5, two types of activities are considered. An entity which remains throughout a simulation is referred to as a permanent entity. A temporary entity is one which is created and destroyed during the execution of the simulation program. The entities might be flights and airports in a simulated air transport system. In a queuing system, each server could be modelled as a permanent entity and the customers as temporary entities. For each type of entity, appropriate names could be given to the attributes that characterize the entity. For example a temporary entity named MAN could be defined by the following statement in preamble (described in the latter part of the chapter):

```
Every MAN has a HEIGHT,
    a WEIGHT,
    a AGE
```

The attribute of a particular MAN could be accessed through references as HEIGHT(MAN), WEIGHT(MAN), and AGE(MAN). A particular man is specified by the value of the variable MAN. Thus, the EVERY statement defines a class of objects, each called

3. Methodology
MAN, having similar properties. Every MAN, of which there may be many, is portrayed by these attributes.

Sets provide a mean to model the organization of entities in a system. For example, a set containing customers waiting for service could be named as QUEUE and the related statements could be written as:

Every CUSTOMER may belong to QUEUE
The system owns a QUEUE

The first statement above declares that each entity class CUSTOMER could be a member of the set QUEUE. Each set declared in SIMSCRIPT has to be owned by an entity, or a process or the system and hence the second statement accompanied the first. The important points to be noted in a set are:

1) A set is made up of entities, or processes that point to one another, thereby expressing their member relationships i.e., sets are like arrays in that each member elements of which they are composed may be identified and manipulated, but in contrast with static structuring imposed on array elements, the organization of members in sets may be dynamic and changeable.

2) A specific entity can own or belong to any number of sets as long as it has the required pointer attributes.

3. Methodology
3) Every program commences execution with empty sets. As a program proceeds, statements are executed that file entities in sets, examine sets, and remove entities from sets.

In SIMSCRIPT II.5 the beginning and end of an activity, with passage of time, is represented by a process. An activity within a system is bounded by two instantaneous events; when activity starts, and when it stops. Thus the event is the simplest component of an activity description. The important properties of an event are: 1) it occurs at some instant of time, and 2) the occurrence is instantaneous. Figure 3.1 illustrates an activity delimited by two events and its relationship with processes. A process could be defined as a time-ordered sequence of events and may encompass several activities. The passage of time could be predetermined or indeterminate. Predetermined lapse of time could be service time (deterministic or stochastic) and indeterminate passage of time could be due to delay caused by competition for scarce resources.

Resources are passive elements of a model. A resource is used to model an object required by a process. For example a teller in a bank is considered as a resource. He is required by customers (entity) to process an activity. When the teller is busy, other customers have to wait until he is free. Included in the resource concept is the automatic queuing of the processes for unavailable resources and their automatic reactivation when the required resources become available. Resources are declared in preamble. A resource, in SIMSCRIPT, is represented as a permanent entity with some predetermined attributes:

3. Methodology
Figure 3.1 Relationship between Events, an Activity and a Process.
U.resource - specifies the number of this resource currently available.

Each resource also has the owner attributes for maintaining two sets:

Q.resource - is the set of processes currently waiting for this resource.
X.resource - is the set of processes currently using this resource.

Because the resources are modelled as permanent entities, they must be created before being used. For example:

Create every RUNWAY(1)
let U.RUNWAY(1) = 1

The above statements state that there is only one type of runway, and there is only one of them.

Any SIMSCRIPT II.5 simulation model consists of three primary elements [Russel, 1990]: 1) Preamble, 2) Main program module, and 3) Processes. The following paragraphs describe in some detail each one of these:

1) A PREAMBLE is used to define the static structure of the model by prescribing the name of permanent and temporary entities, their attributes, set relationships, resources and processes. It is the first section of any SIMSCRIPT II.5 simulation model. It is not part

3. Methodology
of a executable program. This section is also used for changing background conditions (whether a variable is real, integer, text or alpha), specifying data structures (defining arrays and their dimensions) other than processes and resources, and listing performance measurements (to collect statistics of the run) to be made. For example:

```plaintext
normally mode is integer
```

It implies that the mode of all variables that are not explicitly defined will be integer.

```plaintext
define NAME,
    COLOR as text variables
define DATA as a 2-dimensional integer array
```

The principal outputs of simulation experiments are statistical measurements. Such quantities are the average length of a waiting line and the percentage of idle time of a machine are typical examples. Two features **accumulate** and **tally**, allow such information to be gathered during a simulation run, without requiring any other explicit action to be specified within the program. A statement of the form in preamble:

```plaintext
tally compute list of names
```

performs computations similar to those of ordinary computations in a routine, but in a global manner, over time, rather locally to an instance of its use. Consider the following
example,

tally AVERAGE.WEIGHT as the mean,
MAXIMUM.WEIGHT as maximum of WEIGHT

where, AVERAGE.WEIGHT, MAXIMUM.WEIGHT are global variables collecting statistical data (mean, and maximum respectively) of global variable WEIGHT.

Statistical computations of a different type are made when the word accumulate replaces tally. These calculations introduce simulation time into average, variance, and standard deviation calculation, weighing the collected observations by the apparent length of the simulation. An example of accumulate statement is as follows:

Accumulate AVERAGE.QUEUE as the mean,
and MAXIMUM.QUEUE as the maximum of QUEUE

Accumulate and tally statements cannot be declared for the same variable. This section is headed by the word preamble and terminated by the word end.

2) A MAIN program is where the execution of any SIMSCRIPT II.5 program begins. In this section, usually, resources are created and initialized before used by processes. A typical statement is as follows:

3. Methodology
Create every RUNWAY(1)

let U.RUNWAY(1) = 1

SIMSCRIPT II.5 requires that an event be awaiting execution before a simulation commences. This is done by activating initial processes in MAIN. For example:

Activate a MACHINING (time units)

where MACHINING is a process.

Simulation begins when control passes to a system-supplied timing routine. This is done by executing the START SIMULATION statement. A timing routine is the heart of any discrete-event simulation model. This routine ties the entire collection of processes together, as shown in Figure 3.2. Any statement following the START SIMULATION will not be executed until the simulation has terminated. At this point final reports could be produced and a new simulation run could be initiated. This routine is started by using the word main and terminated by using the word end.

3) A PROCESS routine for each process is declared in the preamble. The names of the process object and the process routine are identical. A process routine embodies the logic description of a process, describing the job done by the process object under all circumstances. A routine is declared to be a process routine rather than a callable subprogram by use of the word process rather than routine in the routine definition.

3. Methodology
Figure 3.2 Basic SIMSCRIPIT II.5 Timing Routine [Russel, 1990].

3. Methodology
The general form of the process routine declaration statement is:

```
process name (optional input argument list)
```

Each process must be declared in the `processes` section of preamble. A process requests a quantity of any given resource using a request statement as shown below:

```
Request 1 RUNWAY(1)
```

If the requested quantity of resources is available, it is given to the process, and the process continues at the statement following the request statement. A process that has requested some units of resources may relinquish some number of these, but not necessarily all it has. An example of relinquish statement is as follows:

```
Relinquish 1 RUNWAY(1)
```

The duration of occupation (or usage) of a resource is modelled by a `work (wait)` statement. For example:

```
Work expression time units
Work 5 days
Work (A + B) hours
```

3. Methodology
The **work** statement has to be stated in between the **request** and **relinquish** statements to depict the usage of resource(s).

Other than the above three primary elements (Preamble, Main, Process) of a SIMSCRIPT II.5 simulation model, it may contain one or more subprograms (routines). Subprograms are not executed directly but are subordinate to a higher level routine, where **Main** routine is at the highest level in the hierarchy.

Though SIMSCRIPT II.5 is popular for its discrete event simulation, it has a continuous simulation capability as well. Given an equation for the rate of change of a variable, it calculates the value of the variable and continuously checking a (or some) condition(s). This is the basis for continuous simulation. For example the following SIMSCRIPT II.5 code shows a typical continuous simulation model:

```
Process SHAPE
    Work continuously evaluating 'EQUATIONS'
        testing 'QUIT'
End
Routine EQUATIONS Given .SHP
    Let D.ANGLE(.SHP) = -.1 "radians/second
    Let D.X(.SHP) = SPEED(.SHP) * cos.f(ANGLE(.SHP))
    Let D.Y(.SHP) = SPEED(.SHP) * sin.f(ANGLE(.SHP))
End
```

3. Methodology
Function QUIT
 If time.v > 5 * seconds
 Return with 1
 Endif
 return with 0
End

SIMSCRIPT II.5 provides many built in functions to simplify the simulation model especially with probability distribution functions, random number generators, etc. Some of the built in probability distribution functions it has are shown in Table 3.1. Other types of functions and routines are shown in Table 3.2.

SIMSCRIPT II.5 has also the capability of static or dynamic presentation graphics, interactive graphics, and animated displays with help of SIMGRAPHICS, an extension of SIMSCRIPT II.5. The typical applications include [CACI, 1991]:

Data Presentation: Histograms, pie-charts, x-y plots, dials and graphics can be generated to display numerical or statistical information.

Model Representation: Animation graphics can represent the system under simulation and evolve as the simulation progresses.

Run Configuration: Simulation experiments start from some initial conditions, which can

3. Methodology
be easily set by manipulating a graphical representation of the system. Interactive reconfiguration at run-time can reduce the iterations needed to achieve stable results, and make simulation programs more general.

SIMGRAPHICS has a built in graphics editor, which helps in creating icons, formatting graphics, and different types of forms like dialog boxes, value boxes, check boxes, buttons and menu bars. When these created icons, forms, etc., are interfaced with the variables of the simulation model the desired graphical presentation output is observed.
4. Model Description

This chapter deals with the description of the simulation model (RUNSIM) developed as part of this research. The description includes the boundaries of the model, assumptions, input parameters, the mathematical computations involved, the algorithms of the simulation which are the heart of the simulation and in the end detailed description of some of the important routines of the source code.

4.1 Model Environment

The process of formulating a simulation model is one which is largely an art. The model should be easily understood, yet sufficiently complex to realistically reflect important characteristics of the real system. The amount of detail included in the model is based on the purpose for which the model is built. Only those elements that could cause significant differences in the decision-making process are considered.

The elements of the airport terminal area and air traffic control procedures included in the simulation model are:

1) In the terminal area air traffic control the boundary for the simulation is the "approach gate", from where the final approach path (common glide path) to runway commences.
2) In the landing area only one runway is modelled.

3) The arrivals exit the simulation immediately after they clear the runway.

4) For departures the aircraft are simulated from the apron at the departure end of the runway till they clear the runway while enplaning.

4.2 Model Assumptions

To simplify the system, and yet capture the essence of the system being modelled the following assumptions were made:

1) The arrivals and departures are generated independent of each other. They are generated by user selected arrival distributions.

2) The arrivals are generated at the approach gate.

3) If the arrivals are greater than the processing capacity of the airport system then the arrivals are queued in a stack at the approach gate.

4) There is no time lag from the time inter-arrival separation at the approach gate is satisfied and the time at which the lagging aircraft departs the stack and enters the final approach path. But this situation is taken care by buffer separation time.

5) For allocating the runway, arrivals are given priority over departures if both events were to occur at the same time.

6) The aircraft has constant velocity in the final approach phase.

7) There is no wind effect.
8) The runway has no gradient.
9) The runway is used only in one direction.
10) Touch and Go operations are not considered. This is so because the model is intended for large commercial airport applications where high speed exits would help to increase the capacity of runway operations under IFR conditions. Touch and Go operations are not allowed under these circumstances.

4.3 Model Parameters.

The output of simulation model is a function of various input parameters. The input parameters of the model and their brief description are as follows:

1) Aircraft Population Mix:
The user can choose the aircraft from a data base of 30 aircraft, shown in Appendix C. The percentage of specific aircraft to be generated for arrivals and departures independently should also be specified.

2) Arrival and Departure Rates:
The inter-arrival distributions for arrivals and departures could be selected independently from a choice of three distributions. They are:
 a) Poisson
 b) Exponential
3) Number of Arrivals and Departures:

The number of arrivals and departures should be selected independently for any application to run. Once the model generates all the arrivals and departures the simulation stops only after all the aircraft are processed.

5) Weight Factors for Arriving Aircraft:

One of the important factors that dictate the landing roll of an aircraft is its landing weight. Landing weight at destination is defined as sum of the operating empty weight, the payload, and reserve fuel [Horonjeff, Mckelvy, 1983]. This weight should not exceed the maximum structural landing weight of the aircraft. For example an aircraft within the arrival mix landing at different times would be having different landing weights. This is because of the possible different origins and travel stage lengths. To capture this variation in landing weights a term called "Weight Factor" is introduced. This is a non-dimensional constant which accounts for the fuel consumed during each random flight. The user has to specify mean and standard deviation of the weight factor for every aircraft that was selected for arrivals.

6) ATC Intrail Separations:

Minimum separations are part of air traffic rules for safe aircraft operations. These rules apply only when IFR conditions prevail. Minimum horizontal separations are a function of aircraft type, aircraft speed, availability of radar facilities, and factors such as severity

4. Model Description
of wake vortices. To avoid wake turbulence and conform to prevailing FAA's ATC rules the model has default values for inter-arrival, inter-departure, and departure-arrival separations. If future technology is available to decrease the effect of wake turbulence and better air traffic control procedures the intrail separations could be decreased. This will definitely have an effect on the capacity of an airport facility. To study the effect of reduced intrail separations on the operations at airport, the model has feature a to edit these values for a particular run.

The default intrail separations being used by the model are shown in Tables 4.1, 4.2, and 4.3.

7) Buffer Data:

To take care of errors in attaining minimum separation distance a buffer time is required. The size of the buffer depends on the probability of violation that is acceptable [Harris, 1976]. Hence for inter-arrivals, inter-departures, and departure-arrival safe separations their respective probability of violations and standard deviation are specified.

8) Runway Length:

Length of the runway dictates the type of aircraft that could land or take-off. In planning airports, the runways should be long enough to accommodate the aircraft which requires the greatest length. Hence care has to be taken in specifying runway length, by keeping in view the aircraft selected for simulation. If the landing roll of any aircraft is greater than the runway length the simulation will terminate abruptly with an error message.

4. Model Description
Table 4.1 Inter-Arrival Separations.

<table>
<thead>
<tr>
<th>Lead Aircraft</th>
<th>Heavy (miles)</th>
<th>Large (miles)</th>
<th>Small (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Large</td>
<td>2.5</td>
<td>2.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Small</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 4.2 Departure-Arrival Separations.

<table>
<thead>
<tr>
<th>Lead Aircraft (Departure)</th>
<th>Heavy (miles)</th>
<th>Large (miles)</th>
<th>Small (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Large</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Small</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 4.3 Inter-Departure Separations.

<table>
<thead>
<tr>
<th>Lead Aircraft</th>
<th>Heavy (Sec)</th>
<th>Large (Sec)</th>
<th>Small (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>60</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Large</td>
<td>60</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Small</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

4. Model Description
9) Runway Width:

Runway width is one of the several parameters dictating an aircraft turnoff time, the wider the runway the more time an aircraft takes to clear the runway. The user has a choice of three FAA standard runway widths, they are 30 m, 45 m, and 61 m wide.

10) Number of Exits:

The user has to specify the number of exits for a given length of runway for every application.

11) Type of Exits:

The user has a set of 10 exits to run an application. The exit types available for simulation are shown in Table 4.4. The exit types provided for simulation are a mix FAA’s standard exit and REDIM generated exit types.

12) Exit Locations:

The location of exits has to be provided by the user. The last exit has to be located at the end of runway.

13) Airport Elevation:

Elevation of airport has an effect on the approach velocity of aircraft because of the variation of atmospheric pressure. The relationship between the elevation and the approach velocity is described in Section 4.4.2.

4. Model Description
Table 4.4 Exit Types Available for Simulation in RUNSIM.

<table>
<thead>
<tr>
<th>Exit Type</th>
<th>Max. Exiting Speed (m/s)</th>
<th>Critical Acft. Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° FAA Standard</td>
<td>8.00</td>
<td>None</td>
</tr>
<tr>
<td>45° FAA Standard</td>
<td>15.00</td>
<td>None</td>
</tr>
<tr>
<td>30° FAA Standard</td>
<td>26.00</td>
<td>None</td>
</tr>
<tr>
<td>30° Improved, FAA Standard</td>
<td>26.00</td>
<td>None</td>
</tr>
<tr>
<td>Wide Throat, FAA Standard</td>
<td>17.00</td>
<td>None</td>
</tr>
<tr>
<td>30° REDIM</td>
<td>35.00</td>
<td>Heavy</td>
</tr>
<tr>
<td>20° REDIM</td>
<td>35.00</td>
<td>Heavy</td>
</tr>
<tr>
<td>30° REDIM</td>
<td>35.00</td>
<td>Large</td>
</tr>
<tr>
<td>20° REDIM</td>
<td>35.00</td>
<td>Large</td>
</tr>
<tr>
<td>30° REDIM</td>
<td>35.00</td>
<td>Small</td>
</tr>
</tbody>
</table>

4. Model Description
14) **Airport Mean Temperature:**

The airport temperature influences the air density which in turn affects the density of air aircraft approach speed. Changes in aircraft approach speed are important as they affect the location of optimal turnoff exits through changes in the aircraft landing roll performance. The relationship between the temperature, density of air, and velocity of approach is described in Section 4.4.2.

15) **Final Approach Length:** It is the distance from the entry gate to the runway threshold. It should be at least equal to the largest value in the ATC interarrival separation matrix. The shorter it's length the greater the capacity of the runway.

Changes in any one of the above input parameters is going to change the output values such as delays, weighted average runway occupancy time etc.

4.4 Computations

The simulation of this model involves several computational routines. The dynamics of the aircraft in the model is divided into the following phases: 1) Final Approach Phase, 2) Glide Phase, 3) Rolling Phase, 4) Turnoff Phase, and for departures 5) Takeoff Phase. From the above description it is clear that emphasis on computations is on arrivals and this coincides with the objective of this research, to simulate the arrivals and know the effect of high-speed exits on ROT and capacity. The following sections describe the
computations and assumptions made in the dynamics of the aircraft operations.

4.4.1 Final Approach Phase

The final approach path traversed by an arriving aircraft is the first segment for arrivals in the simulation model. As already mentioned in the Section 4.2 the approach velocity (V_{app}) of any arriving aircraft is constant from the entry fix to the runway threshold crossing point (i.e., common approach path). Hence the relationship between V_{app}, final approach travel time (T_{app}), and length of the final approach (L_{app}) is

$$ T_{app} = \frac{L_{app}}{V_{app}} \quad \ldots(4.4.1.1) $$

T_{app} is the time to traverse from approach gate to threshold of the runway. Each individual aircraft has a specific velocity of approach which is assigned as an attribute of the aircraft.

Estimation of V_{app} for every individual aircraft involves the following calculations:

1) Estimation of atmospheric conditions that affect V_{app}:

The V_{app} of any aircraft depends on the current atmospheric conditions. The following equations were used to calculate the variations in atmospheric conditions from those of an ideal standard atmosphere [Roskam, 1983].

4. Model Description
\[
\delta = (1 - \frac{0.0065}{288.2} \times A_{\text{lev}})^{4.2551} \quad \text{(4.4.1.2)}
\]

\[
T_r = \frac{273 + T_{\text{air}}}{T_{\text{zero}}} \quad \text{(4.4.1.3)}
\]

\[
\gamma = \frac{\delta}{T_r} \quad \text{(4.4.1.4)}
\]

\[
\rho = 1.225 \quad \text{(4.4.1.5)}
\]

\[
g = 9.81 \text{m/sec}^2 \quad \text{(4.4.1.6)}
\]

where,

- \(T_r\) - True temperature ratio.
- \(\gamma\) - Equivalent density ratio
- \(\rho\) - Standard atmosphere sea level density (kg/cu.meter).
- \(g\) - acceleration due to gravity (m/s²).

2) Calculation of weight factor (WF):

WF is a candidate value from a normal distribution probability function with mean and standard deviation specified by the user in order to describe the random behavior of aircraft landing weights.

3) Calculation of aircraft weight (W):

The aircraft weight while landing at a particular airport is a value between maximum allowable landing weight (MALW) and operating empty weight (OEW) of an aircraft.

4. Model Description
and depends on WF as shown below:

\[W = OEW + (MALW - OEW) \times WF \] ... (4.4.1.7)

4) Calculation of approach velocity (V_{app}) [Roskam, 1983]:

\[V_{stall} = \frac{(2 \times W \times g)}{\sqrt{(\rho \times \gamma \times CL_{max} \times WA)}} \] ... (4.4.1.8)

\[V_{app} = 1.3 \times V_{stall} \] ... (4.4.1.9)

where \(V_{stall} \) is stalling velocity of the aircraft (m/s), \(CL_{max} \) is maximum coefficient of lift (dim), and \(WA \) is the wing area of the aircraft (sq. m).

4.4.2 Glide Phase

After crossing the runway threshold, the aircraft flies over the runway to touchdown with inherent air drag deceleration due to a flare maneuver. The distance covered from threshold to touchdown is estimated by assuming a circular arc flare maneuver flown at constant load factor to transition from a constant rate of descent angle on final approach to flat flight path tangent to the runway. The air distance \(S_{air} \) is as shown below [Nicolai, 1976; Torenbeek, 1981; Roskam, 1986]

where \(V_{flare} \) is the flare speed (95% of \(V_{app} \)), \(\gamma \) is the effective descent flight path, \(H_{thres} \) is the threshold crossing altitude, which is a normally distributed variable whose mean

4. Model Description

\[S_{air} = \frac{H_{thres}}{\gamma} + \frac{V_{flare}^2 \times \gamma}{2 \times g \times (n_{flare} - 1)} \] \(\text{...(4.4.21)} \)

value depends on the type of aircraft and standard deviation. The flare load factor \((n_{flare})\) is set to 1.15g's and \(\gamma\) is a normal variate with mean of 3 degrees (0.0523 radians) and a standard deviation of 0.07 of mean to simulate a regular ILS approach flight path. The time consumed in the glide phase \((TT_{air})\) is a function of the touchdown location \((S_{air})\), the approach speed \((V_{app})\), and the touchdown speed \((V_{td})\). Assuming a normal distribution for the aircraft touchdown location \(TT_{air}\) is given as below:

\[TT_{air} = \frac{2 \times S_{air}}{V_{app} + V_{td}} \] \(\text{...(4.4.22)} \)

4.4.3 Rolling Phase

The rolling phase of the arriving aircraft is best explained with the help of Figure 4.1. The rolling phase is BCDEF. AB is the glide phase. BC is an initial free roll where the aircraft rolls freely to simulate a pilots' time delay in applying braking mechanisms such as thrust reversers, spoilers or normal wheel braking. CDE is the braking phase. The braking sequence and the time it takes is the main contributor to ROT. To simulate the aircraft realistically the braking phase is again divided to CD and DE, where D is called Decision Point and its distance from the threshold is designated as \(S_{dp}\).

To select the exit a candidate deceleration value \((DEC_{land})\) for every aircraft is evaluated

4. Model Description
Figure 4.1 Velocity and Distance Profile of a Landing Aircraft on Runway.
using normally distributed probability function with standard deviation as 10% of the mean and within prescribed limits ($\mu \pm 3\sigma$). The nearest exit to where the aircraft can decelerate to achieve the exit speed with constant deceleration DEC_{land} is chosen for exiting. The point where the exit speed is achievable with respect to the threshold is designated as Nominal Point (NP).

Once the exit is selected the aircraft is allowed to decelerate at a constant deceleration DEC_{land} until it reaches point D, the Decision Point. Point D represents a point where the pilot judges and decides whether or not the exit taxiway can be negotiated according to its current aircraft state. The location of this point is a function of the pilots' eye position and his awareness of the runway/exit taxiway configuration. For simplicity a heuristic rule has been used where point D is located at $3V_{\text{st}}$ from NP. At D the deceleration is adjusted or a decision is made to change the deceleration so as to achieve the exit speed slightly before the exit is reached. The new deceleration DEC_{dec} at decision point will be to achieve the exit speed at three-fourths the distance (i.e., point E) between the Decision Point D and the exit location F. The point E takes into consideration of the sight distance from the pilot and the exit location and the need to adjust the deceleration so as to achieve the exit speed comfortably. The location of E is related to human factors and further research has to be done to know the location and its variability and the current approximation. The aircraft then rolls freely with some inherent deceleration to the exit location F.

The travel times calculated during the rolling phase is shown below:

1) Calculation of travel time from B to C (TT_{BC}):

The TT_{BC} is part of the data base of every individual aircraft.
2) Calculation of travel time from C to D \((TT_{CD})\):

\[
TT_{CD} = \frac{V_{td} - V_{dp}}{DEC_{land}}
\]
\(\text{(4.4.3.1)}\)

3) Calculation of travel time from D to E \((TT_{DE})\):

\[
V_{dp} = \sqrt{V^2_{td} - 2 \times (3 \times V_{td}) \times DEC_{land}}
\]
\(\text{(4.4.3.2)}\)

\[
DEC_{dec} = \frac{V^2_{ex} - V^2_{dp}}{2 \times (3/4) \times DF}
\]
\(\text{(4.4.3.2)}\)

\[
TT_{DE} = \frac{V_{ex} - V_{dp}}{DEC_{dec}}
\]
\(\text{(4.4.3.4)}\)

Where \(V_{dp}\) is the velocity at the decision point D, and \(V_{ex}\) is the exit speed.

4) Calculation of travel time from E to F \((TT_{EF})\):

During the final free roll the deceleration due to friction \(D_f\) is taken to be 0.375 m/s\(^2\) [Wong, 1983] and because of it the final velocity \(V_f\) at exit will be less than \(V_{ex}\). But never less than minimum exit velocity \(V_{min}\) (8 m/s).

\[
V_f = \sqrt{V^2_{ex} - 2 \times DEC_{fr} \times EF}
\]
\(\text{(4.4.3.5)}\)

\[
TT_{EF} = \frac{V_{ex} - V_f}{DEC_{fr}}
\]
\(\text{(4.4.3.6)}\)

4. Model Description
4.4.4. Turnoff Phase

The aircraft in the turnoff phase travels with an initial velocity V_f and rolls freely with some inherent deceleration until it clears the runway. The aircraft is considered that it cleared the runway when its wingtip clears the edge of the runway as shown in Figure 4.2.

The turnoff time (TOT) for the aircraft is computed by using the data stored in a data file. This data is obtained from a continuous simulation program shown in Appendix D [Trani, 1991]. That program uses runway width, exit speed, exit geometry, aircraft wingspan as input variables to simulate the motion of the aircraft along the centerline of the exit and calculates simultaneously the coordinates of the wing tip and the time of travel until it clears the runway edge. Mathematically it is as shown below:

$$TOT_{V_{ex}} = f(RWY \text{ WIDTH, AIRCRAFT WINGSSPAN}) \quad ...(4.4.4.1)$$

A population of 34 aircraft representing the entire range (i.e., 4 TERP categories) of aircraft were simulated for every exit type in question. Simulation runs were performed for every exit type from minimum exit velocity V_{min} allowed until the maximum allowable exit speed V_{ex} at some prespecified intervals. Data was collected for each run mentioned above and multiple linear regressional analyses was performed to calculate turnoff time with wing span and runway width as explanatory variables. The intercept and the coefficients for every exit type and velocities are stored in data file (the data is shown in Appendix C). The Runway Simulation Model retrieves this data during the execution of the program and evaluates TOT by interpolation.

4. Model Description
4.4.5 Takeoff Phase

The departing aircraft takeoff time is a constant value for each type of the aircraft. The values are shown in Table 4.5. The reason for the constant takeoff time is that little variation is usually seen in takeoff operation as related to landings.

4.5 Program Logic

The aircraft in the model are generated according to the user selected interarrival distribution for arrivals and departures independently. Though the arrivals and departures are generated independently they interact with each other to process aircraft through the system. Before the program logic is described the modelling of the components of the system in SIMSCRIPT is described below:

1) The final approach is modelled as a resource. Currently a maximum of three aircraft can use the final approach \{ U.FINAL.APPROACH(1) = 3 \} at any given time. This number could be changed depending on the length of the final approach and also the minimum intrail separations allowed.

2) The runway is also modelled as a resource and only one aircraft can use it at any given time \{ U.RUNWAY(1) = 1 \}.

3) The aircraft are modelled as temporary entities which enter the system at their creation time and exit the system after being processed. They are assigned name, type, velocity of approach, type of operation, final approach travel time, runway occupancy time as

4. Model Description
Table 4.5 Takeoff Time by Aircraft Category.

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Takeoff Time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>35</td>
</tr>
<tr>
<td>Large</td>
<td>30</td>
</tr>
<tr>
<td>Small</td>
<td>25</td>
</tr>
</tbody>
</table>
attributes.

4) The aircraft travel in the final approach is modelled as a process.

5) The landing roll for an arrival is modelled as a process.

6) The takeoff of an aircraft is also modelled as a process.

7) The waiting or queuing at stack and departure ramp are modelled as individual processes.

8) The creation of the arrivals and departures are modelled as events separately.

The logical flow of the program is shown in Figures 4.3 and 4.4 for arrivals and departures respectively.

4.5.1 Arrivals

The arrival aircraft at the time of creation are randomly assigned a particular aircraft name along with their attributes. The random assignment of aircraft names confirms to the user specified aircraft population and their creation percentages. For SIMSCRIPT the aircraft is identified by a 1-dimensional pointer array assigned to it at its creation time. Immediately after the creation the model checks the system for three conditions. Condition - I, if the final approach and runway is clear. Condition - II, if the final approach is occupied. Condition - III, if the final approach is clear but runway is occupied.

If Condition - I is satisfied, the aircraft departs the departure ramp immediately requests
Figure 4.3 Flow Chart for Arrivals.
Figure 4.3 Flow Chart for Arrivals (contd.).
Figure 4.3 Flow Chart for Arrivals (contd.).
Figure 4.3 Flow Chart for Arrivals (contd.).
for the final approach (process) uses it (works) for approach travel time \(TT_{app} \) and leaves (relinquish) the final approach once it reaches the threshold of the runway. At the threshold it enters the runway (requests) and uses (works) for the duration of its runway occupancy time and then it leaves (relinquishes) the runway and exits the system. The program logic is so that runway is always available once it leaves the final approach.

If Condition - II is satisfied, a check is done to find the type of aircraft ahead of it in the final approach. This check is done for the minimum intrail separation criteria set plus a buffer. The speed of the preceding aircraft in the final approach is determined. If the leading aircraft is faster, the separation requirement is checked at the gate because this is where the two aircraft will be closest (opening case). If the leading aircraft is slower the separation distance (includes a buffer) must be met at the threshold (closing case) for the same reason.

If the leading aircraft is faster, the present location of the leading aircraft with respect to the entry gate is determined and checked against the separation distance required. If the location is farther than the required separation then the time to achieve minimum separation at stack \(.T.MIN.SEP.STACK \) is set to zero. If the location is nearer than the separation, the time to achieve the separation distance for the leading aircraft from its present location is determined and equated to \(.T.MIN.SEP.STACK \). Then a check is done to find if the leading aircraft clears the runway by the time the lagging aircraft in the stack reaches threshold, if it leaves the stack right away. If the preceding aircraft does not clear the runway then the time difference to accomplish the two operations is calculated and

4. Model Description
assigned to .T.LAG.THRESH.RWY. If the leading aircraft clears the runway then .T.LAG.THRESH.RWY is set to zero.

The delay at stack (.D.STACK) for the first aircraft in the stack (queue) will be the greater value of .T.MIN.SEP.STACK and .T.LAG.THRESH.RWY. After a delay of D.STACK that particular aircraft enters (requests) the final approach and behaves as if Condition - I has existed.

If the leading aircraft is slower, then a different kind of logic is used. It is checked that if the lagging aircraft enters the final approach, immediately, will the minimum separation (includes a buffer) be satisfied when the leading aircraft reaches the threshold. If the separation is going to be violated then the time difference for the lagging aircraft to reach the minimum separation from the threshold and the leading aircraft to reach the threshold is calculated and assigned to .T.MIN.SEP.THRESH. Later a check is again performed to find .T.LAG.THRESH.RWY. The greater value of .T.MIN.SEP.THRESH and .T.LAG.THRESH.RWY will be .D.STACK. After the passage of .D.STACK time units the first aircraft in the stack will enter the final approach as if Condition - I has existed.

If Condition - III is satisfied, it checks if the time remaining for aircraft on the runway (.T.REM.CL.RWY) is greater than approach occupancy time (APP.OCC.TIME) of the aircraft in stack. If it is greater, then the aircraft in stack is let to wait for the difference of time in processing the events WAIT.TIME.STACK. If .T.REM.CL.RWY is less than .APP.OCC.TIME, then the aircraft proceeds as if Condition - I has existed.

4. Model Description
4.5.2. Departures

The departures generated by the user defined interarrival distribution enter the system at
the departure ramp. The aircraft is assigned its attributes pertaining to departure. The
attributes assigned to it are the aircraft name, type, operation type (in this case
"departure"), takeoff time.

Once it enters the ramp, a system check is performed to know the status of the system.
The following four conditions are evaluated:

1) Condition - I, approach and runway clear.
2) Condition - II, approach is clear but runway is occupied.
3) Condition - III, approach is occupied and runway is clear.
4) Condition - IV, both approach and runway are occupied.

If Condition - I is satisfied, the aircraft enters (requests) the runway and uses (work) it for
the duration of takeoff time and leaves (relinquishes) the runway and the system.

If Condition - II is satisfied, the time remaining for the aircraft (if it is landing) on the
runway to clear the runway (T.REM.CLR.RWY) is determined or .T.MIN.SEP.TAKEOFF is
calculated if the aircraft is enplaning for the time to achieve minimum interdeparture
separation plus a buffer. If .T.REM.CLR.RWY (or .T.MIN.SEP.TAKEOFF) is greater than
zero then the departure aircraft is delayed for that time units and then a system check is
performed to know the new status of the system. If the delay was zero, then the aircraft
Figure 4.4 Flow Chart for Departures.

4. Model Description
Figure 4.4 Flow Chart for Departures (contd.).
Figure 4.4 Flow Chart for Departures (contd.).
Figure 4.4 Flow Chart for Departures (contd.).
enters the runway and continues as if Condition - I has existed.

If Condition - III is satisfied, the current location of the aircraft in the final approach nearest to the threshold (at a given moment there could be more than one aircraft in the final approach, but the one nearest to threshold is critical) is determined. Its distance to the threshold (.DIST.TO.THRLD) is compared against the minimum departure-arrival separation plus a buffer. If .DIST.TO.THRLD is more than the separation required then the delay due to an arrival (.DEL.ARR) is set to zero and the departure aircraft proceeds as if Condition - I has existed. If .DIST.TO.THRLD is less than the separation, the time required for the arrival aircraft to reach runway from its present location to reach the runway is determined (.DEL.ARR). The departing aircraft is delayed for .DEL.ARR time units and then again a system check is performed to know the status of the system.

If Condition - IV is satisfied, the type of operation currently on the runway is evaluated. If it is a departure .T.MIN.SEP.TAKEOFF is evaluated, as performed in Condition - II, and equated to .DELAY.DEP1. If the aircraft on the runway is an arrival .T.REM.CLR.RWY is evaluated, as performed in Condition - II, and equated to .DELAY.DEP1. .DEL.ARR is evaluated and equated to .DELAY.DEP2. If .DELAY.DEP1 and .DELAY.DEP2 are equal to zero the departing aircraft proceeds as if Condition - I has existed. If .DELAY.DEP1 and .DELAY.DEP2 are not equal to zero the greater value of the above is taken as the delay for the departing aircraft on the ramp and after the passage of that delay time a system check is performed again to know the new state of the system.

4. Model Description
enters the runway and continues as if Condition - I has existed.

If Condition - III is satisfied, the current location of the aircraft in the final approach nearest to the threshold (at a given moment there could be more than one aircraft in the final approach, but the one nearest to threshold is critical) is determined. Its distance to the threshold (.DIST.TO.THRLD) is compared against the minimum departure-arrival separation plus a buffer. If .DIST.TO.THRLD is more than the separation required then the delay due to an arrival (.DEL.ARR) is set to zero and the departure aircraft proceeds as if Condition - I has existed. If .DIST.TO.THRLD is less than the separation, the time required for the arrival aircraft to reach runway from its present location to reach the runway is determined (.DEL.ARR). The departing aircraft is delayed for .DEL.ARR time units and then again a system check is performed to know the status of the system.

If Condition - IV is satisfied, the type of operation currently on the runway is evaluated. If it is a departure .T.MIN.SEP.TAKEOFF is evaluated, as performed in Condition - II, and equated to .DELAY.DEP1. If the aircraft on the runway is an arrival .T.REM.CLR.RWY is evaluated, as performed in Condition - II, and equated to .DELAY.DEP1. .DEL.ARR is evaluated and equated to .DELAY.DEP2. If .DELAY.DEP1 and .DELAY.DEP2 are equal to zero the departing aircraft proceeds as if Condition - I has existed. If .DELAY.DEP1 and .DELAY.DEP2 are not equal to zero the greater value of the above is taken as the delay for the departing aircraft on the ramp and after the passage of that delay time a system check is performed again to know the new state of the system.

4. Model Description
4.6 Program Description

This section describes some of the important SIMSCRIPT II.5 routines of the model, which is named as RUNSIM (Runway Simulation Model). The subroutines are described in alphabetical order, beginning with preamble and main routines, as they would appear in the source code (Appendix A).

4.6.1 Preamble

As mentioned in Chapter 3., preamble is the first part of a SIMSCRIPT II.5 program where all the global variables, entities, processes, events, and global statistics are declared. The following text is a part of the preamble that shows all the declarations of the model.

normally mode is undefined resources
 every RUNWAY has
 a LENGTH.RWY
 define LENGTH.RWY as a real variable
 every FINAL.APPROACH has
 a LENGTH.APP
 define LENGTH.APP as a real variable

processes include
 FINAL.APPROACH.OPERATION,
 LANDING.OPERATION,
 DEPARTURE.OPERATION,
 GENERATOR,
 GENERATOR.DEP,
 WAIT.AT.STACK,
 WAIT.AT.RAMP

events include
 CREATE.AIRCRAFT.ARR,
CREATE.AIRCRAFT.DEP

In the above part of the program the mode of all the variables are undefined, so as to enable to define every variable very specifically. RUNWAY (Eqn. 4.6.1.1) and FINAL.APPROACH (Eqn. 4.6.1.2) are declared as resources with their respective attributes. The processes and the events that are declared will be explained in their respective sections.

temporary entities
every AIRCRAFT has ...(4.6.1.3)
 a NAME, " Name of the aircraft
 a V.APP, " Velocity of approach
 a TYPE, " Classification of aircraft by weight
 a APP.OCC.TIME, " Time to travel the final approach
 a RWY.OCC.TIME, " Runway Occupancy Time
 a TAKEOFF.TIME, " Takeoff time i.e. to clear the runway
 a OPERATION " to know if it is landing or departure

define NAME as text variable
define V.APP,
 APP.OCC.TIME,
 RWY.OCC.TIME,
 TAKEOFF.TIME as real variables
define TYPE,
 OPERATION as integer variables

In the above part of the program, Eqn. (4.6.1.3), the AIRCRAFT is defined as a temporary entity with some attributes, which will be described when they are used for the first time in the program.

define ARR.ID,
 DEP.ID as 1-dimensional pointer arrays ...(4.6.1.4)
define minutes to mean units ...(4.6.1.5)
define minute to mean units
define seconds to mean /60 minutes
tally TOT.ARR.DELAY as the sum of ARR.DELAY
tally TOT.DEP.DELAY as the sum of DEP.DELAY

4. Model Description
CREATE.AIRCRAFT.DEP

In the above part of the program the mode of all the variables are undefined, so as to enable to define every variable very specifically. RUNWAY (Eqn. 4.6.1.1) and FINAL.APPROACH (Eqn. 4.6.1.2) are declared as resources with their respective attributes. The processes and the events that are declared will be explained in their respective sections.

temporary entities
 every AIRCRAFT has ...
 a NAME, " Name of the aircraft
 a V.APP, " Velocity of approach
 a TYPE, " Classification of aircraft by weight
 a APP.OCC.TIME, " Time to travel the final approach
 a RWY.OCC.TIME, " Runway Occupancy Time
 a TAKEOFF.TIME, " Takeoff time i.e. to clear the runway
 a OPERATION " to know if it is landing or departure

 define NAME as text variable
 define V.APP,
 APP.OCC.TIME,
 RWY.OCC.TIME,
 TAKEOFF.TIME as real variables
 define TYPE,
 OPERATION as integer variables

In the above part of the program, Eqn. (4.6.1.3), the AIRCRAFT is defined as a temporary entity with some attributes, which will be described when they are used for the first time in the program.

define ARR.ID,
 DEP.ID as 1-dimensional pointer arrays ...

define minutes to mean units
define minute to mean units
define seconds to mean /60 minutes

tally TOT.ARR.DELAY as the sum of ARR.DELAY
tally TOT.DEP.DELAY as the sum of DEP.DELAY

4. Model Description
define ARR.DELAY,
 DEP.DELAY as real variables

define ..LANDING to mean 1
define ..DEPARTURE to mean 2
define ..LARGE to mean 3
define ..HEAVY to mean 2
define ..SMALL to mean 1

In Eqn. 4.6.1.4, ARR.ID and DEP.ID are declared as one dimensional pointer arrays, these arrays are used to store in the memory each arriving and departing aircraft entity and their attributes. In Eqn. 4.6.1.5, minutes (or minute) is defined as the basic time unit of the simulation instead of days as the default time unit. The tally statements collect the total delay for arrivals and departures respectively. The define statements are used for implied variables for the program to be more.

4.6.2 Main

The model simulates only one runway operation (shown in Eqn. 4.6.2.1) and hence only one runway type and one of them only is created (shown in Eqn. 4.6.2.2). One type of final approach is created (shown in Eqn. 4.6.2.3) with maximum three identical of them (shown in Eqn. 4.6.2.4) could be used simultaneously. This is done so that at any given time with a given length of approach a maximum of three aircraft could follow each other towards runway. If the approach length is long enough to have more aircraft at a time with intrail separations taken into consideration the U.FINAL.APPROACH(1) may be increased to accommodate them.

create every RUNWAY(1)

...(4.6.2.1)

4. Model Description
let U.RUNWAY(1) = 1 ...(4.6.2.2)

create every FINAL.APPROACH(1) ...(4.6.2.3)
let U.FINAL.APPROACH(1) = 3 "To allow a max. of 3 aircraft to use or enter ...(4.6.2.4)
" final approach at any given time

The following block (between Eqn's. 4.6.2.5 and 4.6.2.8) is nested in a loop so as to
enable the whole simulation program to perform iterations as many times (.NO.REPS) as
specified by the user for any application run. If the application has arrivals then only
GENERATOR is invoked, similarly for departures GENERATOR.DEP is invoked, if both or
any of two are invoked then program control jumps to those processes and returns to line
after Eqn. 4.6.2.1 only after all the process and event notices are cleared, i.e., only after
a particular simulation iteration has come to an end. Eqn. 4.6.2.2 is invoked to reinitialize
all the variables, that affect the simulation, for the next simulation iteration.

for .ITER = 1 to .NO.REPS, do ...(4.6.2.5)
 let RUN.NO. = .ITER
 if TOT.ARR.ACFT gt 0
 activate a GENERATOR now
 always
 if TOT.DEP.ACFT gt 0
 activate a GENERATOR.DEP now
 always
 start simulation ...(4.6.2.6)
 call setvt.r(7,2)
 call DO.BEEP
 call GLOBAL_STAT.OP giving .ITER
 call REPORT.GEN giving .ITER
 call RE.INITIALIZE ...(4.6.2.7)
 loop " .ITER = 1 to .NO.REPS ...(4.6.2.8)

4.6.3 Routine ASSIGN.ARR.ACFT.NAME

This subroutine identifies the arrival aircraft and assigns its attributes.

4. Model Description
reserve .CUM.PERCENT.ARR as (NO.ARR.AIRCRAFT + 1) (4.6.3.1)
let .CUM.PERCENT.ARR(1) = 0
for .NO = 2 to (NO.ARR.AIRCRAFT + 1) do
 let .CUM.PERCENT.ARR(NO) = .CUM.PERCENT.ARR(NO - 1) +
 ARR.ACFT.PERCENT(NO - 1)
loop

In Eqn. 4.3.6.1, the NO.ARR.AIRCRAFT represents the total number of aircraft that are
chosen to constitute the arriving aircraft population mix. Variable .CUM.PERCENT.ARR
is an array to used to store the cumulative arrival percentages of arrival aircraft, starting
with zero in the first array to 100 in the last array, and this is done in the program that is
part of the loop that is shown above.

In the program block shown below, the variable .ASSIGN is assigned a random integer
between 1 and 100. This value is used to find in which cell of the .CUM.PERCENT.ARR
it lies, this identification is done in Eqn. 4.6.3.3. After the identification the corresponding
.IARR value is used to assign the attributes to the aircraft entity, which are done from
Eqn’s. 4.6.3.4 to 4.5.3.8. In Eqn. 4.6.3.9, the array .ROT.STAT is used to store the sum
of the ROT’s of each aircraft to calculate weighted average of ROT and its standard
deviation.

let .ASSIGN = randi.f(1,100, 5) (4.6.3.2)
for .IARR = 1 to NO.ARR.AIRCRAFT do
 if .ASSIGN gt .CUM.PERCENT.ARR(IARR) and
 .ASSIGN le .CUM.PERCENT.ARR(IARR + 1) (4.6.3.3)
 "Assign the name and the other attributes to the entity.
 NAME(ARR.ID(COUNT.ARR)) = ARR.ACFT.NAME(IARR) (4.6.3.4)
 let .DEC = ARR.ACFT.DEC(IARR)
 let TYPE(ARR.ID(COUNT.ARR)) = ARR.ACFT.TYPE(IARR) (4.6.3.5)
 let .FREE.ROLL = ARR.ACFT.FREE.ROLL(IARR)
 let .WING.SPAN = ARR.ACFT.WING.SPAN(IARR)
 call DET.VAPP giving .IARR yielding .VELAPP
 let V.APP(ARR.ID(COUNT.ARR)) = .VELAPP
 call DET.DIST.AIR giving .IARR, .VELAPP yielding .DAIR
 call DET.APP.OCC.TIME giving .VELAPP yielding .APP.OCC.TIME
 let APP.OCC.TIME(ARR.ID(COUNT.ARR)) = .APP.OCC.TIME
 call DET.RWY.OCC.TIME giving .DAIR, .DEC, .FREE.ROLL

4. Model Description
.VELAPP, .WING.SPAN, COUNT.ARR yielding .ROT,
.EXI
let RWY.OCC.TIME(ARR.ID(COUNT.ARR)) = .ROT ...(4.6.3.8)
let ROT.STAT(JARR) = ROT.STAT(JARR) + .ROT ...(4.6.3.9)
let NO.IDENT.ARR(JARR) = NO.IDENT.ARR(JARR) + 1 " Collecting data
" to know number of times similar aircraft were
" generated.
let EXIT.ASSIGNED(COUNT.ARR) = .EXI " storing data on exits assigned
" to the landing aircraft
let EXIT.ASSIGN(.JARR, .EXI) = EXIT.ASSIGN(.JARR, .EXI) + 1
" Collecting data on number of times similar aircraft
" is assigned to different exits
always
loop " till the correct aircraft is identified

4.6.4 Routine ASSIGN.DEP.ACFT.NAME

This routine below is very similar to that described in the previous section except for that
this routine applies to departing aircraft.

reserve .CUM-PERCENT.DEP as (NO.DEP.AIRCRAFT + 1)
let .CUM-PERCENT.DEP(1) = 0
for .NO = 2 to (NO.DEP.AIRCRAFT + 1) do
 let .CUM-PERCENT.DEP(.NO) = .CUM-PERCENT.DEP(.NO - 1) +
 DEP.ACFT.PERCENT(.NO -1)
loop " creating an array for cumulative percentages of departure aircraft
let .ASSIGN = randi.f(1,100,7) " for random assignment of aircraft names to
" newly created aircraft entity.
for .ID = 1 to NO.DEP.AIRCRAFT do
 if .ASSIGN gt .CUM-PERCENT.DEP(.ID) and
 .ASSIGN le .CUM-PERCENT.DEP(.ID + 1)
 NAME(DEP.ID(COUNT.DEP)) = DEP.ACFT.NAME(.ID)
 let TYPE(DEP.ID(COUNT.DEP)) = DEP.ACFT.TYPE(.ID)
call DET.TAKEOFF.TIME given .ID yielding .TAKEOFF.TT
 let TAKEOFF.TIME(DEP.ID(COUNT.DEP)) = .TAKEOFF.TT
always
loop

4. Model Description
4.6.5 Routine CHECK.PRECEDE.ACFT.CLR.RWY

This routine is used to check if the aircraft preceding another one in the final approach will clear the runway by the time the succeeding aircraft reaches the runway threshold. The calculation in latter part Eqn. 4.6.5.1 is used to convert time, which is in minutes and the seconds in hundredth fraction, to minutes and seconds to sixtieth fraction. Notice from Eqn. 4.6.5.2, that if the total time for the preceding aircraft to clear the runway from its present location is less than the time the succeeding aircraft takes to reach the runway threshold from its present location (stack) then the time difference to perform both the operations is stored as zero in (4.6.5.3). If the check in (4.6.5.2) is not satisfied then the difference in time to perform both the operations simultaneously is calculated and assigned to .R.T.LAG.THRLD.RWY in (4.6.5.4).

```plaintext
let .T.PRECEDE.ACFT.CLR.APP = APP.OCC.TIME(ARR.ID(COUNT.APP)) - 
    (trunc.f(time.v - T.DEP.STACK(COUNT.APP)) * 60 + 
    frac.f(time.v - T.DEP.STACK(COUNT.APP)) * 60) 
    ...(4.6.5.1)

" Remaining time for preceding aircraft to clear approach
let .TOT.T.PRECEDE.ACFT.CLR.RWY = (.T.PRECEDE.ACFT.CLR.APP + 
    RWY.OCC.TIME(ARR.ID(COUNT.APP))) 
    " Total time for the preceding aircraft to travel from
    " its present position till it clears runway,
if .TOT.T.PRECEDE.ACFT.CLR.RWY le APP.OCC.TIME(ARR.ID(COUNT.APP + 1)) ...(4.6.5.2)

    .R.T.LAG.THRLD.RWY = 0 "Difference in time to perform the two operations  ...(4.6.5.3)
    "1: Time for precede acft to clear rwy
    "2: Time for lagging acft to reach threshold
else
    .R.T.LAG.THRLD.RWY = (.TOT.T.PRECEDE.ACFT.CLR.RWY - 
        APP.OCC.TIME(ARR.ID(COUNT.APP + 1))) 
        ... (4.6.5.4)
always
4. Model Description
```

79
4.6.6 Event CREATE.AIRCRAFT.ARR

When this event is activated from GENERATOR process it creates a temporary entity AIRCRAFT (Eqn. 4.6.6.2) and it is assigned to an unique memory location by calling ARR.ID(COUNT.ARR) in Eqn. 4.6.6.2. The memory location is unique to the newly created entity because as each time a new entity (aircraft) is created the global pointer variable COUNT.ARR., is incremented by 1 (Eqn. 4.6.6.1) and this way the entity is stored in ARR.ID with a different identifier. The creation time of every arrival is collected in Eqn. 4.6.6.3. To identify that this aircraft entity is arriving, its attribute is equated to an implied global variable ..LANDING (its value being 1) in Eqn. 4.6.6.4. If Eqn. 4.6.6.5, is satisfied it implies that the newly created aircraft is the first one in the stack and hence it can proceed checking the system from stack.

```
if COUNT.ARR lt TOT.ARR.ACFT
    COUNT.ARR = COUNT.ARR + 1  ...(4.6.6.1)
create an AIRCRAFT called ARR.ID(COUNT.ARR)  ...(4.6.6.2)
T.ENTER.STACK(COUNT.ARR) = TIME.V  ...(4.6.6.3)
let OPERATION(ARR.ID(COUNT.ARR)) = ..LANDING  ...(4.6.6.4)
call ASSIGN.ARR.ACFT.NAME
if COUNT.ARR le (COUNT.APP + 1)  ...(4.5.6.5)
call SYS.CHECK.AT.STACK
    always
else
    return
always
```

4.6.7 Event CREATE.AIRCRAFT.DEP

This event routine is very similar to the previous one explained except that this deals with
departures.

\[
\text{if COUNT.DEP} \leq \text{TOT.DEP.ACFT} \\
\text{let COUNT.DEP} = \text{COUNT.DEP} + 1 \\
\text{create an AIRCRAFT called } \text{DEP.ID(COUNT.DEP)} \\
\text{let T.ENTER.RAMP(COUNT.DEP)} = \text{time.v} \\
\text{OPERATION(DEP.ID(COUNT.DEP))} = \text{..DEPARTURE} \\
\text{call ASSIGN.DEP.ACFT.NAME} \\
\text{if COUNT.DEP} \leq \text{(COUNT.T.OFF + 1)} \\
\text{call SYS.CHECK.AT.THRLD} \\
\text{always} \\
\text{else} \\
\text{return} \\
\text{always}
\]

4.6.8 Process DEPARTURE.OPERATION

This process requests the resource runway, in Eqn. 4.6.8.1, and then uses (work) the runway for a period of runway occupancy time of the aircraft which is using the runway. The pointer variable COUNT.T.OFF, in Eqn. 4.6.8.2, is used as a counter to know the sequence number of aircraft that is being or has been processed in the arrival flow. It also helps in retrieving the data related to the aircraft entity that is being processed, as it could be seen in Eqn. 4.6.8.3, where the OCCUPANT.OPERATION variable is given a value to indicate that a departing aircraft is currently using the runway. In Eqn. 4.6.8.4, COUNT.DEP is a pointer variable that indicates the number of departing aircraft that have been created until the current simulation time. The conditional check in Eqn. 4.6.8.4 is done to initiate the first aircraft in the departing queue at the threshold to start checking the system this is a process towards finding a gap for takeoff. The work statement in Eqn. 4.6.8.5 depicts the occupancy of runway by the departing aircraft for the duration of TAKEOFF.TIME. After period of TAKEOFF.TIME the process notice relinquishes, in
Eqn. 4.6.8.6, the runway resource depicting the completion of takeoff of the aircraft.

if COUNT.T.OFF lt TOT.DEP.ACFT
 request 1 RUNWAY(1) ...(4.6.8.1)
if COUNT.T.OFF lt COUNT.DEP
 let COUNT.T.OFF = COUNT.T.OFF + 1 ...(4.6.8.2)
 let OCCUPANT.OPERATION = OPERATION(DEP.ID(COUNT.T.OFF)) ...(4.6.8.3)
 let T.DEP.RAMP(COUNT.T.OFF) = TIME.V
 if COUNT.T.OFF ne COUNT.DEP and (COUNT.T.OFF + 1) le COUNT.DEP ...(4.6.8.4)
 call SYS.CHECK.AT.THRLD
 always " (COUNT.T.OFF + 1) le COUNT.DEP
 work TAKEOFF.TIME(DEP.ID(COUNT.T.OFF)) seconds ...(4.6.8.5)
 always "COUNT.T.OFF lt COUNT.DEP
 relinquish 1 RUNWAY(1) ...(4.6.8.6)
if .ACFT.ID eq TOT.DEP.ACFT
 END.DEP.SIM = time.V
always
 if COUNT.T.OFF ne COUNT.DEP and (COUNT.T.OFF + 1) le COUNT.DEP ...(4.6.8.3)
 call SYS.CHECK.AT.THRLD
 always
always " COUNT.T.OFF lt TOT.DEP.ACFT

4.6.9 Routine DET.DEL.ARR

This routine determines the delay to a departing aircraft due to an aircraft in final approach. To determine the types of aircraft of the first one in the departing queue and the arriving one nearest to runway threshold, Eqn's. 4.6.9.1 and 4.6.9.3 are used.

.DEP.ARR.SEP, in Eqn. 4.6.9.4, is an array which has the departure-arrival separation data. If the leading arriving aircraft is farther than the minimum separation between departure and arrival (.MIN.SEP.ARR.DEP), which is checked in Eqn. 4.6.9.5, then the delay due to the arriving aircraft (.R.DEL.ARR) is zero and if not, .R.DEL.ARR is equal to the time it takes to travel the remaining part of the final approach by the aircraft nearest to threshold.
let .TYPE.DEP = TYPE(DEP.ID(COUNT.T.OFF + 1)) ... (4.6.9.1)
let .LEAD.ACFT.APP = COUNT.LAND + 1 ... (4.6.9.2)
let .TYPE.ARR = TYPE(ARR.ID(LEAD.ACFT.APP)) ... (4.6.9.3)
let .MIN.SEP.ARR.DEP = DEP.ARR.SEP(TYPE.ARR, TYPE.DEP) + INTDEP.ARR.BUFF ... (4.6.9.4)
let .TIME.SPENT.APP = trunc.f(time.v - T.DEP.STACK(LEAD.ACFT.APP)) * 60 +
 frac.f(time.v - T.DEP.STACK(LEAD.ACFT.APP)) * 60
 " seconds
let .TIME.REM.APP = APP.OCC.TIME(ARR.ID(LEAD.ACFT.APP)) - .TIME.SPENT.APP
 " Remaining time in final approach before reaching the
 " runway by the arriving aircraft nearest to the runway
let .DIST.COVERED.APP = .TIME.SPENT.APP * V.APP(ARR.ID(LEAD.ACFT.APP))
let .DIST.TO.THRLD = LENGTH.APP(FINAL.APPROACH) - .DIST.COVERED.APP
if .DIST.TO.THRDL ge .MIN.SEP.ARR.DEP ... (4.6.9.5)
 .R.DEL.ARR = 0.0 " seconds
else
 .R.DEL.ARR = .TIME.REM.APP " seconds
always

4.6.10 Routine DET.DEL.DEP

This routine determines the time to achieve the minimum interdeparture separation.

SEP.T.TAKEOFFS, in Eqn. 4.6.10.1, is an array which has the interdeparture separation
data. INT.DEP.BUFF is the buffer time for the interdeparture separation.

if COUNT.T.OFF lt TOT.DEP.ACFT
 let .PRECEDE.TYPE = TYPE(DEP.ID(COUNT.T.OFF))
 let .FLLNG.TYPE = TYPE(DEP.ID(COUNT.T.OFF + 1))
 let .PRECEDE.DEP.STRT.TIME = T.DEP.RAMP(COUNT.T.OFF) " departure time of
 " of preceding aircraft
 let .MIN.T.SEP.TAKEOFF = SEP.T.TAKEOFFS(FLLNG.TYPE, .PRECEDE.TYPE) +
 INTDEP.BUFF ... (4.6.10.1)
 let .T.MIN.SEP.TAKEOFF = .MIN.T.SEP.TAKEOFF -
 (trunc.f(time.v - .PRECEDE.DEP.STRT.TIME) * 60 +
 frac.f(time.v - .PRECEDE.DEP.STRT.TIME) * 60) +
 INTDEP.BUFF
 " time to achieve minimum separation between
 " successive takeoffs from present time
always

4. Model Description
4.6.11 Routine DET.DIST.AIR

This routine calculates the distance travelled in the air from the time the arriving aircraft crosses runway threshold until it touches down on the runway. The mathematical calculations were discussed in Section 4.4.2.

\[
\text{let } .GAMMA.NOM = 0.0523 \quad \text{"Descent flight path angle used to estimate the}
\]
\[
\text{"airborne portion of the landing path}
\]
\[
\text{"New procedure to estimate } \gamma \text{ as a random variable}
\]
\[
\text{let } .GAMMA.STD = .GAMMA.NOM * 0.07
\]
\[
\text{let } .MAX.GAMMA = .GAMMA.NOM + 3.5 * .GAMMA.STD
\]
\[
\text{let } .MIN.GAMMA = .GAMMA.NOM - 3.5 * .GAMMA.STD
\]
\[
\text{"Choose a candidate flight path angle among those permissible}
\]
\[
\text{until } .GAMMA \leq .MAX.GAMMA \text{ and } .GAMMA \geq .MIN.GAMMA \text{ do}
\]
\[
\text{let } .GAMMA = \text{normal.f}(.GAMMA.NOM, .GAMMA.STD, 9)
\]
\[
\text{loop}
\]
\[
\text{"End of new procedure to estimate GAMMA (flight path angle)
}\]
\[
\text{let } .NFLARE = 1.15 \quad \text{"Landing flare load factor (in g's)
}\]
\[
\text{let } .ACC.GRA = 9.81 \quad \text{"Acceleration due to gravity (m/s-s)
}\]
\[
\text{if } \text{ARR.ACFT.TYPE(DRR) eq _HEAVY}
\]
\[
.HT.THRLD.NOM = 15.0 \quad \text{"Runway threshold crossing altitiude(meters)
}\]
\[
\text{else}
\]
\[
\text{if } \text{ARR.ACFT.TYPE(DRR) eq _LARGE}
\]
\[
.HT.THRLD.NOM = 15.0
\]
\[
\text{else}
\]
\[
.HT.THRLD.NOM = 10.0
\]
\[
\text{always}
\]
\[
\text{always}
\]
\[
\text{"New procedure to estimate HTRLD as a normally distributed random variable}
\]
\[
\text{"HT.HTRL.D.NOM is the nominal threshold crossing height}
\]
\[
\text{let } .HT.THRLD.STD = .HT.THRLD.NOM * .10
\]
\[
\text{let } .MAX.HT.THRLD = .HT.THRLD.NOM + 3.5 * .HT.THRLD.STD
\]
\[
\text{let } .MIN.HT.THRLD = .HT.THRLD.NOM - 3.5 * .HT.THRLD.STD
\]
\[
\text{until } .HT.THRLD \leq .MAX.HT.THRLD \text{ and } .HT.THRLD \geq .MIN.HT.THRLD \text{ do}
\]
\[
\text{let } .HT.THRLD = \text{normal.f}(.HT.THRLD.NOM, .HT.THRLD.STD, 4)
\]
\[
\text{loop}
\]
\[
\text{let } .VFLARE = 0.95 * .VELAPP
\]
\[
\text{let } .DAIR = .HT.THRLD / .GAMMA + (VFLARE ** 2 * .GAMMA) /
\]
\[
\quad (2 * .ACC.GRA * (NFLARE - 1))
\]
\[
\quad \text{"Distance traveled in air after crossing threshold}
\]
\[
\quad \text{"and before touchdown.
}\]

return

4. Model Description
4.6.12 Routine DET.EXIT.SPEEDS

This routine determines the maximum exit speeds of each exit that was chosen by the user for simulation. The array EXIT.CHOOSE, shown in Eqn. 4.6.12.1, has the exit numbers identifying the exits chosen by the user. The corresponding maximum exit speeds are stored in the array EXIT.SPEED.

```
for .ES = 1 to NO.EXITs do
  select case EXIT.CHOOSE(ES) ...
    case 1
      let EXIT.SPEED(ES) = 8.00 " meters/sec
      " 90 deg FAA STANDARD
    case 2
      let EXIT.SPEED(ES) = 15.00
      " 45 deg FAA STANDARD
    case 3
      let EXIT.SPEED(ES) = 26.00
      " 30 deg FAA STANDARD
    case 4
      let EXIT.SPEED(ES) = 26.00
      " 30 deg IMPROVED
    case 5
      let EXIT.SPEED(ES) = 17.00
      " WIDE THROAT
    case 6
      let EXIT.SPEED(ES) = 35.00
      " 30 deg REDIM - HEAVY(CRITICAL ACFT)
    case 7
      let EXIT.SPEED(ES) = 35.00
      " 20 deg REDIM - HEAVY(CRITICAL ACFT)
    case 8
      let EXIT.SPEED(ES) = 35.00
      " 30 deg REDIM - LARGE (CRITICAL ACFT)
    case 9
      let EXIT.SPEED(ES) = 35.00
      " 20 deg REDIM - LARGE(CRITICAL ACFT)
    case 10
      let EXIT.SPEED(ES) = 35.00
      " 30 deg REDIM - SMALL (CRITICAL ACFT)
  default
    let EXIT.SPEED(ES) = 8.00
  endselect " EXIT.CHOOSE(ES)
```

4. Model Description
4.6.13 Routine DET.RWY.OCC.TIME

This routine calculates the runway occupancy time of a landing aircraft. The deceleration during the landing roll is assumed to be normally distributed with mean and standard deviation of .DEC and .DEC.STD respectively. The deceleration is controlled within limits as shown in Eqn. 4.6.13.1. To calculate the travel time during final free roll, .TT.FINAL.ROLL, the velocity of the aircraft at the exit, .VELAT.EXIT, is required. Initially .VELAT.EXIT is calculated with .DEC.FINAL.ROLL (deceleration during the final free roll, a default value shown in Eqn. 4.6.13.2) in Eqn. 4.6.13.2. If that value is less than the minimum allowable exiting velocity, .MIN.EXIT.VEL, then .VELAT.EXIT assumes the minimum allowable value, i.e., .MIN.EXIT.VEL. Consequently a new or adjusted deceleration during final roll is calculated in Eqn. 4.6.13.4. The calculation of travel time during final free roll (TT.FINAL.ROLL) is calculated in Eqn. 4.6.13.5.

let .VELTD = (1.15/1.3) * .VELAPP
" Velocity at touchdown
let .DEC.STD = 0.10 * .DEC
" Standard deviation of the deceleration
let .MAX.DEC = .DEC + 3.0 * .DEC.STD
" Upper limit of the deceleration
let .MIN.DEC = .DEC - 3.0 * .DEC.STD
" Lower limit of the deceleration
" Choosing a candidate deceleration value between upper and lower limit
until .LAND.DEC le .MAX.DEC and .LAND.DEC ge .MIN.DEC do
 let .LAND.DEC = normal.f(.DEC, .DEC.STD, 8)
 " Deceleration after landing
loop
let .INIT.FREE.ROLL.DIST = .TT.FREE.ROLL * .VELTD
" Initial free Roll distance immediately after touchdown
call DET.SELECT.EXIT giving .RCARR, .VELTD, .LAND.DEC, .DAIR, .INIT.FREE.ROLL.DIST yielding .NOMINAL.PT, .EXIT.CHosen

4. Model Description
let .DECISION_PT = (.NOMINAL_PT - 3 * .VEL_TD - .INIT.FREE.ROLL.DIST
 - .DAIR) " This is a point w.r.t. threshold
 " where a decision is made to adjust the deceleration
 " so as to achieve the exit velocity slightly ahead
 " of the exit it has selected.
let .VEL_DECISION_PT = sqrt.f(.VEL_TD ** 2 -
 2.0 * .LAND_DEC * .DECISION_PT)
 " Velocity at the decision point
let .DIST_DECISION_EXIT = EXIT.LOCATION(EXIT.CHosen) - .DECISION_PT
 " Distance between the decision point and the exit
 " chosen.
let .DEC.AFTER_DECISION = (.VEL_DECISION_PT ** 2 -
 .EXIT.SPEED(EXIT.CHosen) ** 2) / (2.0 * (3/4) *
 .DIST_DECISION_EXIT)
 "Deceleration after decision point till the threefourth
 " of the distance between the decision point and exit
 " and attaining the exit speed.
let .TT_TD = .DAIR / ((.VELAPP + .VEL_TD) / 2.0)
 " Travel time from threshold to touchdown
let .TT_TD_DECISION_PT = (.VEL_TD - .VEL_DECISION_PT) / .LAND_DEC
 " Travel time from touchdown to decision point
let .TT_AFTER_DECISION = (.VEL_DECISION_PT - .EXIT.SPEED(EXIT.CHosen)) /
 .DEC.AFTER_DECISION
 " Travel time decision point till it achieves the
 " exit speed.
let .DEC_FINAL.ROLL = 0.375 " Deceleration during final roll - m/s-s
let .DIST_FINAL.ROLL = (1/4) * .DIST_DECISION.EXIT
 " Distance to cover during final roll
let .MIN.EXIT.VEL = 8.0
 " Minimum allowable exit velocity
let .MOD.EXIT.VEL = (EXIT.SPEED(EXIT.CHosen)) ** 2 -
 (2.0 * .DEC_FINAL.ROLL * .DIST_FINAL.ROLL)
if .MOD.EXIT.VEL gt 0
 .VEL_AT_EXIT = sqrt.f(.MOD.EXIT.VEL)
 " Velocity of aircraft at the exit
 " if it decelerates with .DEC_FINAL.ROLL
else
 .VEL_AT_EXIT = .MIN.EXIT.VEL
always
if .VEL_AT_EXIT lt .MIN.EXIT.VEL
 .VEL_AT_EXIT = .MIN.EXIT.VEL " if velocity achieved is less than the
 " minimum exit prescribed velocity
 " adjust velocity at exit to that min.
let .DEC_FINAL.ROLL = ((EXIT.SPEED(EXIT.CHosen)) ** 2 -
 (.VEL_AT_EXIT) ** 2) / (2.0 * .DIST_FINAL.ROLL)
 " Adjusted deceleration during final roll
always
let .TT_FINAL.ROLL = (EXIT.SPEED(EXIT.CHosen) - .VEL_AT_EXIT) /

4. Model Description
.DEC.FINAL.ROLL
 " Travel time during final roll
call DET.TOT giving .EXIT.CHosen, .VEL.AT.EXIT, .WING.SPAN yielding
 .TT.EXIT
let .RWYOT = (.TT.TD + .TT.FREE.ROLL + .TT.TD.DECISION.PT +
 .TT.AFTER.DECISION + .TT.FINAL.ROLL + .TT.EXIT)
 " Runway occupancy time

4.6.14 Routine DET.SELECT.EXIT

This routine selects the exit that is likely to be taken by a landing aircraft. It also calculates the nominal point of that aircraft on the runway. The selection process of the exit starts from the nearest exit to the farthest exit with respect to the threshold, and this is initiated by the for-do-loop starting in Eqn. 4.6.14.1. If the aircraft can decelerate to the maximum exit velocity at or before the exit location that is being evaluated then that is the exit that will be chosen to exit from runway, as shown in Eqn. 4.6.14.2 and the corresponding .NO.PT will be the nominal point of that aircraft. If none of the exits is suitable for an aircraft then an error message is shown on the screen (Eqn. 4.6.14.3).

for .IEX = 1 to NO.EXITS do ...
 let .FINAL.VEL = EXIT.SPEED(.IEX)
 let .DIST.TRAVELED = (.VTD ** 2 - .FINAL.VEl ** 2)/(2.0 * .LDEC)
 " Distance covered to decelerate from velocity at
 " touchdown to the exit speed of the exit in question.
 let .NO.PT = .TDPT + .INFRoll + .DIST.TRAVELED
 if .NO.PT le EXIT.LOCATION(.IEX)
 .EXCHosen = .IEX
 return
 always
 if .IEX eq NO.EXITS
 call vclears.r
 call vgtoxy.r(18,0)
 call DO.BEEP
 call vbcolor.r(12)
 print 2 lines with NAME(ARR.ID(IRR)) thus ...

4. Model Description
THE ************ AIRCRAFT CANNOT LAND: INSUFFICIENT RUNWAY LENGTH.
QUITTING THE SIMULATION.------------------------TYPE "QUIT" AT THE PROMPT

 call vbcolor.r(1)
 always
 loop

4.6.15 Routine DET.TAKEOFF.TIME

This routine determines the takeoff time of an aircraft. The takeoff time is related to three aircraft categories shown in the following block of equations.

 if DEP.ACFT.TYPE(RID) eq ..HEAVY
 .TAKEOFF.TTR = 35 "SECONDS
 always
 if DEP.ACFT.TYPE(RID) eq ..LARGE
 .TAKEOFF.TTR = 30 "SECONDS
 always
 if DEP.ACFT.TYPE(RID) eq ..SMALL
 .TAKEOFF.TTR = 25 "SECONDS
 always

4.6.16 Routine DET.TOT

This routine determines the turnoff time (.TOT) of the exit that was chosen by an aircraft. Depending on the exit type (EXIT.CHOICE(EXIT.NO)), and the speed (.ACFT.SPEED) at the entry turnoff point the intercept (.INPT), runway width coefficient (.RW.CF), and aircraft wing span coefficient (.ACFWS.CF) are calculated in Eqn's. 4.6.16.1, 4.6.16.2, and 4.6.16.3 respectively, by interpolation from the data obtained from turnoff time data file (TOT.DAT). The above calculated values are used in the regression equation in Eqn. 4.6.16.4 to calculate .TOT, which is a function of aircraft speed, runway width and

4. Model Description
wingspan.

open unit 9 for input, name = 'TOT.DAT'
use unit 9 for input
let eof.v = 1
while mode is alpha do
 start new input record
 loop
 until .READ.NO eq EXIT.CHOICE(EXIT.NO), do
 skip 1 input record
 read .READ.NO
 loop
 read .NO.OF.SPEEDS
 reserve .SPEED.INC,
 .INTERCEPT,
 .RW.COEFF,
 .ACFWS.COEFF as .NO.OF.SPEEDS
let .STEP = 1
until .STEP gt .NO.OF.SPEEDS, do
 read .READ.NO, .SPEED.INC(.STEP), .INTERCEPT(.STEP), .RW.COEFF(.STEP),
 .ACFWS.COEFF(.STEP)
 let .STEP = .STEP + 1
loop
close unit 9
let .STEP = 1
for .STEP = 1 to (.NO.OF.SPEEDS - 1), do
 if .ACF.T.SPEED ge .SPEED.INC(.STEP) and
 .ACF.T.SPEED le .SPEED.INC(.STEP + 1)
 .FACT = ((.ACF.T.SPEED - .SPEED.INC(.STEP)) /
 (.SPEED.INC(.STEP + 1) - .SPEED.INC(.STEP)))
 let .INPT = .FACT * (.INTERCEPT(.STEP + 1) - .INTERCEPT(.STEP)) +
 .INTERCEPT(.STEP) ... (4.6.16.1)
 let .RW.CF = .FACT * (.RW.COEFF(.STEP + 1) - .RW.COEFF(.STEP)) +
 .RW.COEFF(.STEP) ... (4.6.16.2)
 let .ACFWS.CF = .FACT * (ACFWS.COEFF(.STEP + 1) -
 ACFWS.COEFF(.STEP)) + ACFWS.COEFF(.STEP) ... (4.6.16.3)
 let .TOT = .INPT + .RW.CF * RWY.WIDTH + .ACFWS.CF * .WING.SPAN ... (4.6.16.4)
 let .STEP = .NO.OF.SPEEDS
 always
loop

4.6.17 Routine DET.VAPP

This routine calculates the velocity of approach of an arriving aircraft. The mathematical

4. Model Description
calculations are discussed in Section 4.4.1. The aircraft landing weight (.ACFT.WT) is a function of maximum allowable landing weight (ARR.ACFT.MALW), operating empty weight (ARR.ACFT.OEW), weight factor (.WT.FACTOR) of the arriving aircraft. Weight factor of an aircraft is normally distributed with an user defined mean (ARR.ACFT.WTF.MEAN) and standard deviation (ARR.ACFT.WTF.STD), as shown in Eqn. 4.6.17.1.

let .TZERO = 288.2
let .LAMBDA = .0065
* Estimate the standard atmosphere values at given elevation
 let .THETAS = 1 - (.LAMBDA/.TZERO) * AIR.ELEV
 let .DELTA = .THETAS ** 4.2561
* Estimate true temperature ratio
 let .TR.TEMP.RATIO = (273 + AIR.TEMP) / 288.2
* Compute the equivalent density ratio(.SIGMA)
 let .SIGMA = .DELTA / .TR.TEMP.RATIO
let .RHO = 1.225 " Standard atmosphere sea level density(kg/cu.meter)
let .ACC.GRA = 9.81 "Acceleration due to gravity(m/sec-sec)
" Determination of the candidate aircraft weight while landing
if ARR.ACFT.WTF.STD(VRR) eq 0
 ARR.ACFT.WTF.STD(VRR) = .001
always
 let .WT.FACTOR = normal.f(ARR.ACFT.WTF.MEAN(VRR), ARR.ACFT.WTF.STD(VRR),
 2) ... (4.6.17.1)
let .ACFT.WT = ARR.ACFT.OEW(VRR) + (ARR.ACFT.MALW(VRR) -
 ARR.ACFT.OEW(VRR)) * .WT.FACTOR
"Calculate velocity of approach
let .V.STALL = sqrt.f(2 * .ACFT.WT * .ACC.GRA /
 (.RHO * .SIGMA * ARR.ACFT.CL.MAX(VRR) *
 ARR.ACFT.WING.AREA(VRR)))
* Stalling velocity
let .VELOCITY = 1.3 * .V.STALL

4.6.18 Process FINAL.APPROACH.OPERATION

This process routine simulates the aircraft flight from stack to the runway threshold. The aircraft that is first in the stack requests for entering the final approach (resource) in Eqn.

4. Model Description
4.6.17.1. COUNT.APP, in Eqn. 4.6.18.2, is a pointer variable which keeps track of the aircraft sequence number that has entered the final approach. It also helps in retrieving the attributes of the arriving aircraft entity as shown in Eqn. 4.6.18.4. The aircraft occupies the final approach for the duration of its approach travel time (APP.OCC.TIME). After that duration the FINAL.APPROACH.OPERATION process relinquishes, in Eqn. 4.6.18.5, the final approach depicting the aircraft leaving the final approach and immediately landing activity is started by activating the LANDING.OPERATION process. The conditional check in Eqn. 4.6.18.3 is performed to activate the system checking activity at the stack for the first aircraft in the queue at the approach gate.

request 1 FINAL.APPROACH(1) ...(4.6.18.1)
let COUNT.APP = COUNT.APP + 1 ...(4.6.18.2)
let T.DEP.STACK(COUNT.APP) = time.v
if (COUNT.APP + 1) le COUNT.ARR
 call SYS.CHECK.AT.STACK
always
let ARR.DELAY = (T.DEP.STACK(COUNT.APP) -
 T.ENTER.STACK(COUNT.APP))
work APP.OCC.TIME(ARR.ID(COUNT.APP)) seconds ...(4.6.18.4)
relinquish 1 FINAL.APPROACH(1) " after reaching threshold ...(4.6.18.5)
activate a LANDING.OPERATION now

4.6.19 Process GENERATOR

This process is the first routine along with GENERATOR.DEP to be activated from main. Depending on the user defined arrival distribution this process activates the CREATE.AIRCRAFT.ARR event routine to create arrivals, and this activation continues till all the arrivals (TOT.ARR.ACFT) are created.

for .LL = 1 to TOT.ARR.ACFT do
 if ARR.DIST eq 1

4. Model Description
.R.ARR.DIST = poisson.f(ARR.DIST.MEAN, 1)
else
 if ARR.DIST eq 2
 .R.ARR.DIST = exponential.f(ARR.DIST.MEAN, 1)
 else
 if ARR.DIST eq 3
 .R.ARR.DIST = uniform.f(ARR.DIST.MEAN, ARR.DIST.STD, 1)
 always
 always
 activate a CREATE.AIRCRAFT.ARR now
 wait .R.ARR.DIST seconds
 loop " .l! = 1 to TOT.ARR.ACFT

4.6.20 Process GENERATOR.DEP

This is similar to previous process except for that this is a generator for departures.

reserve DEP.ID,
 T.ENTER.RAMP,
 T.DEP.RAMP as TOT.DEP.ACFT
for .l! = 1 to TOT.DEP.ACFT do
 "choosing the correct distribution for the interarrivals for departing aircraft
 if DEP.DIST eq 1
 .R.DEP.DIST = poisson.f(DEP.DIST.MEAN, 3)
 else
 if DEP.DIST eq 2
 .R.DEP.DIST = exponential.f(DEP.DIST.MEAN, 3)
 else
 if DEP.DIST eq 3
 .R.DEP.DIST = uniform.f(DEP.DIST.MEAN, DEP.DIST.STD, 3)
 always
 always
 activate a CREATE.AIRCRAFT.DEP now
 wait .R.DEP.DIST seconds
 loop

4. Model Description
4.6.21 Process LANDING.OPERATION

This process routine simulates the landing portion of an arrival. For an arriving aircraft the runway is always available once it reaches the threshold. In Eqn. 4.6.21.1, COUNT.LAND is a pointer variable used to know the number in the sequence of landings. It also helps in retrieving the attributes of the arriving aircraft entity. After a duration of RWY.OCC.TIME, which is the ROT of the current aircraft, the runway is relinquished. In Eqn. 4.6.21.2, the arriving aircraft (temporary entity) which has exited the runway is destroyed as it is no longer required for simulation.

request 1 RUNWAY(1)
let COUNT.LAND = COUNT.LAND + 1 (4.6.21.1)
let OCCUPANT.OPERATION = OPERATION(ARR.ID(COUNT.LAND))
let T.LANDING(COUNT.LAND) = time.v
let .ACFT.ID = COUNT.LAND
work RWY.OCC.TIME(ARR.ID(COUNT.LAND)) seconds
relinquish 1 RUNWAY(1)
if .ACFT.ID eq TOT.ARR.ACFT
 END.LAND.SIM = time.v
always
 destroy this AIRCRAFT called ARR.ID(.ACFT.ID) (4.6.21.2)

4.6.22 Routine PRECEDE.FASTER.ACFT

This routine is used to analyze the "opening case" of an aircraft about to follow a faster aircraft in the final approach path. It determines the delay, if any, due to the faster preceding aircraft. The calculation of buffer distance, in Eqn. 4.6.22.1, is similar to the mathematical model proposed by Harris as discussed in Section 2.2. In Eqn. 4.6.22.2, T.DEP.STACK is an array which has information of the departing times of the aircraft from

4. Model Description
the stack. In Eqn. 4.6.22.2, T.DEP.STACK is used to find the time it has travelled since
it left the stack, .TT.APP.PRECEDE, by subtracting it from the current simulation time
(time.v). .T.MIN.SEP.STACK, in Eqn. 4.6.22.3, is the time to achieve the minimum
separation at approach gate (stack). The rest of the calculations and logic is as
discussed in Section 4.5.1 of condition-Ii of the preceding faster aircraft case. To simulate
the delay at the stack in order to satisfy the delay either due to minimum separation rule
or single occupancy rule of runway the WAIT.AT.STACK is activated in Eqn. 4.6.22.4.

let .PREACFT = TYPE(ARR.ID(COUNT.APP))
let .FOACFT = TYPE(ARR.ID(COUNT.APP + 1))
let .BUFFER = INTARR.BUFF - SEP.DIST.ARR(.FOACFT, .PREACFT) *
 (1 / V.APP(ARR.ID(COUNT.APP + 1)) - 1 / V.APP.(ARR.ID(COUNT.APP))) ...(4.6221)
 " IN SECONDS
if .BUFFER lt 0
 .BUFFER = 0 " buffer cannot be less than zero
always
let .MIN.SEP.BET.ARR = SEP.DIST.ARR(.FOACFT, .PREACFT) + .BUFFER *
 V.APP(ARR.ID(COUNT.APP + 1))
 " minimum separation distance plus the buffer dist.
let .TT.APP.PRECEDE = trunc.f(time.v - T.DEP.STACK(COUNT.APP)) * 60 +
 frac.f(time.v - T.DEP.STACK(COUNT.APP)) * 60 ...(4.6.22.2)
 "Time elapsed since the preceding aircraft
 " departed the stack
let .DIST.PRECEDE.STACK = V.APP(ARR.ID(COUNT.APP)) * .TT.APP.PRECEDE
 "Distance from stack to the preceding
 " aircraft in the final approach.
" check for minimum separation
if .MIN.SEP.BET.ARR le .DIST.PRECEDE.STACK
 .T.MIN.SEP.STACK = 0 "Time to achieve minimum separation from stack
else
 .T.MIN.SEP.STACK = (.MIN.SEP.BET.ARR - .DIST.PRECEDE.STACK)/
 V.APP(ARR.ID(COUNT.APP)) "seconds ...(4.6.22.3)
always
"check if leading aircraft clears runway before lagging aircraft reaches
"threshold.
call CHECK.PRECEDE.ACFT.CLR.RWY yielding .T.LAG.TRHLD.RWY
if .T.MIN.SEP.STACK ge .T.LAG.TRHLD.RWY
 .DEL.STACK = .T.MIN.SEP.STACK "seconds
else
 .DEL.STACK = .T.LAG.TRHLD.RWY "seconds

4. Model Description
always
let WAIT.TIME.STACK = .DEL.STACK
activate a WAIT.AT.STACK now ...(4.6.22.4)

4.6.23 Routine PRECEDE.SLOWER.ACFT

This routine is similar to the previous routine except for that this is for a "closing arrival case", that is a fast aircraft following a slower aircraft in the final approach. In Eqn. 4.6.23.1, the time to achieve the minimum separation at the threshold (.T.MIN.SEP.THRLD) is compared with the time difference to accomplish, the preceding aircraft clearing the runway and the following aircraft reaching the threshold activities simultaneously. This comparison is performed as delay could be greater of either delay due to minimum separation rule or delay due to single occupancy rule of runway, but not both as aircraft can be delayed only at the stack and that too before it enters the final approach.

let .PFT = TYPE(ARR.ID(COUNT.APP))
let .FFT = TYPE(ARR.ID(COUNT.APP + 1))
let .MIN.SEP.BET.ARR = SEP.DIST.ARR (.FFT, .PFT) + INTARR.BUFF * V.APP(ARR.ID(COUNT.APP))
let .T.REM.PRECEDE.THRLD = APP.OCC.TIME(ARR.ID(COUNT.APP)) - (trunc.f(time.v - T.DEP.STACK(COUNT.APP)) * 60 + frac.f(time.v - T.DEP.STACK(COUNT.APP)) * 60)
"Time to reach the threshold by the preceding aircraft"
"from its present position.
let .DIST.LAG.ACFT = .T.REM.PRECEDE.THRLD * V.APP(ARR.ID(COUNT.APP + 1))
"The distance the lagging aircraft will cover, if released
"now, in the time the preceding aircraft reaches threshold.
let .DIST.LAG.THRLD = LENGTH.APP(FINAL.APPROACH) -.DIST.LAG.ACFT
"Distance between the lagging aircraft and threshold after"
".T.REM.PRECEDE.THRLD
if .MIN.SEP.BET.ARR le .DIST.LAG.THRLD ...(4.6.23.1)
.T.MIN.SEP.THRLD = 0 "Difference of time between the preceding aircraft
"reaching threshold and lagging aircraft reaching
"minimum separation distance from threshold.

4. Model Description 96
else
 .T.MIN.SEP.THRLD = .T.REM.PRECEDE.THRLD - (LENGTH.APP (FINAL.APPROACH) -
 .MIN.SEP.BET.ARR) / V.APP(ARR.ID(COUNT.APP + 1))
always
call CHECK.PRECEDE.ACFT.CLR.RWY yielding .T.LAG.THRLD.RWY
if .T.MIN.SEP.THRLD ge .T.LAG.THRLD.RWY
 .D.STACK = .T.MIN.SEP.THRLD "seconds
else
 .D.STACK = .T.LAG.THRLD.RWY "seconds
always
if .D.STACK gt 0.0001
 let WAIT.TIME.STACK = .D.STACK
 activate a WAIT.AT.STACK now
else
 activate a FINAL.APPROACH.OPERATION now
always

4.6.24 Routine RE.INITIALIZE

In this routine all the global variables, attributes of the runway resource (Eqn's. 4.6.24.1
and 4.6.24.2), and final approach resource (Eqn's. 4.6.24.3 and 4.6.24.4) that affect the
simulation are reinitialized. Current time (time.v) is set back to zero. In Eqn. 4.6.24.5, all
departure aircraft (temporary entities) are destroyed. All statistical arrays are also
reinitialized. This reinitialization is done to facilitate another iteration to start.

let N.X.RUNWAY(1) = 0 ...(4.6.24.1)
let N.Q.RUNWAY(1) = 0 ...(4.6.24.2)
let N.X.FINAL.APPROACH(1) = 0 ...(4.6.24.3)
let N.Q.FINAL.APPROACH(1) = 0 ...(4.6.24.4)
let ARR.DELAY = 0
let DEP.DELAY = 0
let COUNT.ARR = 0
let COUNT.APP = 0
let COUNT.LAND = 0
let COUNT.DEP = 0
let COUNT.T.OFF = 0
let time.v = 0.0
for .i = 1 to TOT.DEP.ACFT do
 destroy the AIRCRAFT called DEP.ID(.i)
loop

4. Model Description
release NO.IDENT.ARR(*),
 EXIT.ASSIGN(*,*)
 ROT.STAT(*)
reset totals of ARR.DELAY,
 DEP.DELAY

4.6.25 Routine STATUS.APP.CLW.RWY.OCC

This routine determines the delay, if any, due to the Condition-II that is discussed in Section 4.5.2. In Eqn. 4.6.25.1, it is checked if the aircraft on the runway is an arrival or a departure. Array T.LANDING has the times at which the arrivals cross the runway threshold, and this time is used in Eqn. 4.6.25.2 to calculate the remaining time of runway occupancy by the landing aircraft. To simulate the delay due to single occupancy rule process WAIT.AT.RAMP in Eqn. 4.6.25.3 is activated. If it is determined that there is no delay then the departure of the first aircraft in the departing queue is started by activating the process DEPARTURE.OPERATION in Eqn.4.6.25.4.

if OCCUPANT.OPERATION eq ..LANDING
 .T.REM.CLW.RWY = RWY.OCC.TIME(ARR.ID(COUNT.LAND)) -
 (frac.f(time.v -T.LANDING(COUNT.LAND)) * 60 +
 trunc.f(time.v - T.LANDING(COUNT.LAND)) * 60)
 "Remaining time to clear the runway by the landing aircraft
if .T.REM.CLW.RWY le 0.00001
 WAIT.TIME.RAMP = 0.005
else
 WAIT.TIME.RAMP = .T.REM.CLW.RWY
 always
 activate a WAIT.AT.RAMP now
else
call DET.DEL.DEP yielding .T.MIN.SEP.TAKEOFFS
if .T.MIN.SEP.TAKEOFFS gt 0
 WAIT.TIME.RAMP = .T.MIN.SEP.TAKEOFFS
 activate a WAIT.AT.RAMP now
else
 activate a DEPARTURE.OPERATION now
always
always

4.6.26 Routine STATUS.APP.OCC

This routine is part of the Condition-II discussion in Section 4.5.1. This routine determines whether it is an "opening" or "closing" case. This is determined by comparing the velocity of approaches of the aircraft in question in Eqn. 4.6.26.1.

let .PRECEDE.SPEED = V.APP(ARR.ID(COUNT.APP))
let .OWN.SPEED = V.APP(ARR.ID(COUNT.APP + 1))
if .PRECEDE.SPEED ge .OWN.SPEED {...(4.6.26.1)
call PRECEDE.FASTER.ACFT " preceding aircraft is faster
else
call PRECEDE.SLOWER.ACFT " preceding aircraft is slower
always

4.6.27 Routine APP.OCC.RWY.CLR

This routine performs the Condition-III discussion of Section 4.5.2.

call DET.DELARR yielding .DELARR
if .DELARR gt 0 " minimum separation doesn't exist
 let WAIT.TIME.RAMP = .DELARR
 activate a WAIT.AT.RAMP now
else
 activate a DEPARTURE OPERATION now " minimum separation exists
always

4.6.28 Routine APP.OCC.RWY.OCC

This routine determines delay, if any, due to the Condition-IV as discussed in Section 4. Model Description
4.5.2. The following block of the program determines delay due to runway occupation (.DEL.DEP1).

```
if OCCUPANT.OPERATION eq .LANDING
   .T.REM.CLR.RWY = RWY.OCC.TIME(ARR.ID(COUNT.LAND)) -
   (trunc.f(time.v - T.LANDING(COUNT.LAND)) * 60 +
   frac.f(time.v - T.LANDING(COUNT.LAND)) * 60 )
   " Remaining time for the landing aircraft
   " to clear runway.
   let .DEL.DEP1 = .T.REM.CLR.RWY
else
   call DET.DEL.DEP yielding .T.MIN.SEP.TAKEOFFS
   let .DEL.DEP1 = .T.MIN.SEP.TAKEOFFS
always
```

Eqn. 4.6.28.1 is used to determine delay due to an arriving aircraft in final approach path, .DEL.DEP2. The WAIT.AT.RAMP is adjusted to a higher value, in Eqn. 4.6.28.2, in order the value to be within the accuracy of simulation clock because at very smaller values the clock cannot advance.

```
call DET.DEL.ARR yielding .DEL.DEP2
if .DEL.DEP1 le 0 and .DEL.DEP2 le 0
   activate a DEPARTURE.OPERATION now
else
   if .DEL.DEP1 gt .DEL.DEP2
      if .DEL.DEP1 le 0.0001
         WAIT.TIME.RAMP = 0.05
      else
         WAIT.TIME.RAMP = .DEL.DEP1
      always
      activate a WAIT.AT.RAMP now
   else
      if .DEL.DEP2 le 0.0001
         WAIT.TIME.RAMP = 0.05
      else
         WAIT.TIME.RAMP = .DEL.DEP2
      always
      activate a WAIT.AT.RAMP now
always
always
```

4. Model Description
4.6.29 Routine STATUS.RWY.OCC

This routine performs the discussion under Condition-II of Section 4.5.1.

let .T.REM.CLR.RWY = RWY.OCC.TIME(ARR.ID(COUNT.LAND)) -
 (frac.f(time.v - T.LANDING(COUNT.LAND)) * 60 +
 trunc.f(time.v - T.LANDING(COUNT.LAND)) * 60)
 " time remaining for the landing aircraft to clear runway
if .T.REM.CLR.RWY gt APP.OCC.TIME(ARR.ID(COUNT.APP + 1))
 WAIT.TIME.STACK = .T.REM.CLR.RWY - APP.OCC.TIME(ARR.ID(COUNT.APP + 1))
if WAIT.TIME.STACK le 0.0001
 WAIT.TIME.RAMP = 0.005
 always
 activate a WAIT.AT.STACK now
else
 activate a FINAL.APPROACH.OPERATION now
always

4.6.30 Routine SYS.CHECK.AT.STACK

This routine checks the three conditions at the stack which are discussed in Section 4.5.1. Eqn. 4.6.30.1 checks for Condition-II. Eqn. 4.6.30.2 checks for Condition-III. If none of the above conditions are satisfied, then it is implied that Condition-I is satisfied and hence process FINAL.APPROACH.OPERATION is activated in Eqn. 4.6.30.3.

let .APPROACH.STATUS = N.X.FINAL.APPROACH(1) " N.X.resource is a system
 " attribute which gives the no. of
 " requests the resource is
 " currently satisfying.

let .RWY.STATUS = N.X.RUNWAY(1)
if .APPROACH.STATUS gt 0
 " approach is occupied
 call STATUS.APP.OCC ...(4.6.30.1)
else
 if .RWY.STATUS gt 0 and OCCUPANT.OPERATION eq ..LANDING
 call STATUS.RWY.OCC ...(4.6.30.2)
 else
 activate a FINAL.APPROACH.OPERATION now ...(4.6.30.3)
 always

4. Model Description
always

4.6.31 Routine SYS.CHECK.AT.THRDL

This routine checks the system at runway threshold for four conditions that are discussed in Section 4.5.2.

if COUNT.DEP gt COUNT.T.OFF
 let .APP.STATUS = N.X.FINAL.APPROACH(1)
 let .RWY.STATUS = N.X.RUNWAY(1)
 if .APP.STATUS eq 0 and .RWY.STATUS eq 0 "approach and runway clear
 activate a DEPARTURE.OPERATION now
 else
 if .APP.STATUS eq 0 and .RWY.STATUS gt 0 "approach clear and
 "runway occupied
 call STATUS.APP.CLR.RWY.OCC
 else
 if .APP.STATUS gt 0 and .RWY.STATUS eq 0 "approach occupied and
 "runway clear
 call STATUS.APP.OCC.RWY.CLR
 else
 if .APP.STATUS gt 0 and .RWY.STATUS gt 0 "both approach and
 "runway occupied
 call STATUS.APP.OCC.RWY.OCC
 always
 always
 always
 always
always

4.6.32 Process WAIT.AT.RAMP

This process simulates the waiting of a departing aircraft at the ramp. After the waiting period, the control is passed to SYS.CHECK.AT.THRDL to again check the system and evaluate the changes in the system and determine delay, if any, due to the new state of the system.
wait WAIT.TIME.RAMP seconds
call SYS.CHECK.AT.THRLD

4.6.33 Process WAIT.AT.STACK

This process simulates the waiting of an arriving at the stack. After the duration of
WAIT.AT.STACK the aircraft immediately enters the final approach by initiating the
FINAL. APPROACH. OPERATION.

 wait WAIT.TIME.STACK seconds
 activate a FINAL. APPROACH. OPERATION now

4.7 MODEL OUTPUT

The model generates the following output:

i) Global Statistics: In this, the following data is presented:

 a) Total Arrivals Simulated
 b) Total Arrival Delay
 c) Average Arrival Delay
 d) Total Arrival Simulation Time
 e) Total Departures Simulated

4. Model Description
f) Total Departure Delay

g) Average Departure Delay

h) Total Departure Simulation Time

i) Weighted Average ROT (WAROT)

j) Standard Deviation of WAROT

k) Total Simulation Time

The above data is also stored in an output file called "******G.#", by the program immediately after each iteration, where "******" is the first seven letters of the application file name given by the user, "G" is for global statistics, and "#" denotes the iteration number.

ii) Arrival Event List: In this, the following data is presented for every arrival:

a) Creation Time

b) Final Approach Entering Time

c) Time of Landing

d) ROT

e) Exit Chosen

f) Delay

This output is stored in an output file called "******R.#", where "R" stands for arrival event.
list data, and the rest being same as discussed before.

iii) **Departure Event List**: In this, the following data is shown for every departure:

 a) Creation Time
 b) Time of Takeoff
 c) Delay

The output is automatically saved after every iteration in a file called "******D.#", where "D" stands for departure event list, and the rest being same as discussed before.

iv) **Assignment Table**: This table displays how many times each aircraft from the whole population of arrival mix is assigned to each exit. The output, if needed has to be saved by the user, but the file name is defined by the program as "******A.#", where "A" denotes as assignment table file, and the rest of them being same as discussed before.

The output in i) and iv) can be printed from the program, but ii) and iii) can be printed only from HIGH2 subdirectory either in SIMLAB or DOS environment.

4. Model Description
5. Model Results and Analysis

5.1 Analysis Description

In order to demonstrate the versatility and the capabilities of the model several scenarios were developed. These scenarios represent possible airport systems under present and future ATC conditions with various exit locations, geometries and under various aircraft operational parameters.

An initial "baseline scenario" was developed using existing ATC conditions and with an aircraft mix representative of a large hub airport facility. Several input parameters were varied from "baseline scenario" to test the sensitivity of the model. Other scenarios analyzed and their corresponding input parameters were:

1) Scenario-I: Number of exits.

2) Scenario-II: Aircraft Landing Weights.

3) Scenario-III: Arrival Intrail Separations.

4) Scenario-IV: REDIM generated exits.

5) Scenario-V: REDIM generated exits and new Intrail Separations.
5.1.1 Base Scenario

Runway 16R, shown in Figure 5.1, at the Seattle-Tacoma (Sea-Tac) International Airport was chosen as the test runway to perform complete analysis. The current aircraft population using this facility and other input parameters used for this analysis are discussed below:

1) Aircraft Population: Sea-Tac International is representative of a large hub facility with a present aircraft mix index of 66. The aircraft population is shown in Table 5.1., and it can be seen that a fairly large presence of commuter operations take place today. The general aviation population is small with only 2% of the total operations.

2) Arrival and Departure Rates: A poisson distribution of interarrivals and interdeparture was assumed. The interarrival time was varied from 125 seconds to 150 seconds to test the sensitivity of the runway delay to demand rate. In this range the total arrival delay is very sensitive to the demand rate because the demand is reaching the arrival capacity of the runway. A 150 seconds interdeparture rate was used for the analysis. The reason for a constant interdeparture rate is that the main emphasis of this analysis is to study effect of different parameters on the arrival capacity and delay during the peak hours of arrival's demand. The model however, is flexible enough to allow any combination of interarrival and interdeparture times.
Figure 5.1 Runway Layout of SEA-TAC International Airport.
Table 5.1 Arrival/Departure aircraft and mix.

<table>
<thead>
<tr>
<th>Aircraft name</th>
<th>% of total arrival/departures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-300-600</td>
<td>2</td>
</tr>
<tr>
<td>A-310-300</td>
<td>3</td>
</tr>
<tr>
<td>B-727-200</td>
<td>17</td>
</tr>
<tr>
<td>B-737-300</td>
<td>15</td>
</tr>
<tr>
<td>B-747-400</td>
<td>2</td>
</tr>
<tr>
<td>B-767-300</td>
<td>1</td>
</tr>
<tr>
<td>MD-83</td>
<td>11</td>
</tr>
<tr>
<td>PA-38-112</td>
<td>1</td>
</tr>
<tr>
<td>PA-32-301</td>
<td>2</td>
</tr>
<tr>
<td>CE-210P</td>
<td>1</td>
</tr>
<tr>
<td>CE-421</td>
<td>4</td>
</tr>
<tr>
<td>CE-550</td>
<td>4</td>
</tr>
<tr>
<td>CL-601-3A</td>
<td>3</td>
</tr>
<tr>
<td>BAe-31</td>
<td>10</td>
</tr>
<tr>
<td>EMB-120</td>
<td>2</td>
</tr>
<tr>
<td>DHC-8-100</td>
<td>10</td>
</tr>
<tr>
<td>SA-227-AT/41</td>
<td>12</td>
</tr>
</tbody>
</table>
3) **Number of Arrivals and Departures:** Due to the stochasticity of the model 1000 arrivals and 500 departures were used per iteration to represent operations over a long period of time.

4) **Weight Factor Data:** This data pertains to landings only. The mean and standard deviation for weight factor of each aircraft specified is shown in Table 5.2. The data were chosen to model different flight stages the aircraft would have travelled to reach the destination. The significance of this parameter will be evident later in this thesis.

5) **Intrail Separations:** The current FAA set ATC separations were used for the base run, are shown in Tables 4.1, 4.2, and 4.3.

6) **Buffer Data:** The air traffic control interoperation time buffer data used for the analysis is shown in Table 5.3.

7) **Airport Data:** Data containing airport environment and runway exit taxiway characteristics for this baseline analysis is shown in Tables 5.4 and 5.5.

With the above data, and for each interarrival time RUNSIM was run for five iterations to generate data for total delay for arrivals and departures, weighted average runway occupancy time (WAROT) and its standard deviation. The average values of these runs was used for plotting a demand versus average delay graph as shown in Figure 5.2. Figure 5.2 illustrates that as the demand nears the ultimate capacity (i.e., capacity

5. Model Results and Analysis*
Table 5.2 Weight Factor Data.

<table>
<thead>
<tr>
<th>Aircraft name</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-300-600</td>
<td>.40</td>
<td>.10</td>
</tr>
<tr>
<td>A-310-300</td>
<td>.40</td>
<td>.10</td>
</tr>
<tr>
<td>B-727-200</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>B-737-300</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>B-747-400</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>B-767-300</td>
<td>.40</td>
<td>.10</td>
</tr>
<tr>
<td>MD-83</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>PA-38-112</td>
<td>.70</td>
<td>.10</td>
</tr>
<tr>
<td>PA-32-301</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>CE-210P</td>
<td>.85</td>
<td>.10</td>
</tr>
<tr>
<td>CE-421</td>
<td>.85</td>
<td>.10</td>
</tr>
<tr>
<td>CE-550</td>
<td>.70</td>
<td>.10</td>
</tr>
<tr>
<td>CL-601-3A</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>BAe-31</td>
<td>.70</td>
<td>.10</td>
</tr>
<tr>
<td>EMB-120</td>
<td>.70</td>
<td>.10</td>
</tr>
<tr>
<td>DHC-8-100</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>SA-227-AT/41</td>
<td>.70</td>
<td>.10</td>
</tr>
</tbody>
</table>
Table 5.3 Buffer Data.

<table>
<thead>
<tr>
<th>Separation</th>
<th>Probability of Violation</th>
<th>Std. Dev. (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interarrival</td>
<td>.05</td>
<td>20</td>
</tr>
<tr>
<td>Interdeparture</td>
<td>.05</td>
<td>10</td>
</tr>
<tr>
<td>Departure-Arrival</td>
<td>.05</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5.4 Airport Environment Data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport Elevation</td>
<td>130 m. (m.s.l.)</td>
</tr>
<tr>
<td>Airport Mean Temperature</td>
<td>15° C</td>
</tr>
<tr>
<td>Runway Length</td>
<td>2853 m.</td>
</tr>
<tr>
<td>Runway Width</td>
<td>45 m.</td>
</tr>
<tr>
<td>Final Approach Length</td>
<td>12000 m.</td>
</tr>
<tr>
<td>Number of Exits</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 5.5 Runway Exit Taxiway Data.

<table>
<thead>
<tr>
<th>Exit No.</th>
<th>Exit Type</th>
<th>Location (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>45° FAA</td>
<td>1006</td>
</tr>
<tr>
<td>2.</td>
<td>90° FAA</td>
<td>1142</td>
</tr>
<tr>
<td>3.</td>
<td>30° FAA</td>
<td>1749</td>
</tr>
<tr>
<td>4.</td>
<td>90° FAA</td>
<td>2853</td>
</tr>
</tbody>
</table>
Figure 5.2 Capacity-Delay Curves for different Scenarios.
associated with an infinite delay) the total delay increase very rapidly. For an acceptable average delay of 1 minute, the practical capacity for arrivals is 25.7 arrivals per hour under the baseline aircraft mix. The resulting WAROT of the aircraft population is 51.75 seconds. A sample of the aircraft exit assignment for this scenario is shown in Table 5.6, which is the output of the first iteration. The aircraft exit assignment will be a very useful input for the airport operators for planning the taxiway operations efficiently.

5.1.2 Scenario-I

Here we study effect of addition of exits on the delay output parameters. First, only one exit is added at 1442 meters from the threshold and then another exit is added at 675 meters from the threshold. Separate runs were made to observe variations in output parameters. The new WAROT with one additional exit was 46.62 seconds, and for two it was 45.58 seconds. Compared to the addition of one exit, the gain in WAROT for the second addition is small as a reduced number of aircraft operations (mainly GA’s) take advantage of this second exit as shown in Figure 5.3. The arrival capacity-delay curve for both additions were same as that of the base scenario. This implies that the interarrival separation and not the ROT of the aircraft is the critical factor governing the capacity and delay. But the average delay for departures decreased from 1.48 minutes to 1.01 minutes, and this could be attributed due to the availability of more acceptable gaps for departures, an effect of decreased WAROT. The change in the aircraft exit assignment is shown Tables 5.7 and 5.8. Further discussion of the economic implications
Table 5.6 Base Scenario Exit Assignment.

<table>
<thead>
<tr>
<th>AIRCRAFT NAME</th>
<th>EXIT NO.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-300-600</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>A-310-300</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>B-727-200</td>
<td>0</td>
<td>0</td>
<td>164</td>
<td>0</td>
</tr>
<tr>
<td>B-737-300</td>
<td>1</td>
<td>47</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>B-747-400</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>B-767-300</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>MD-83</td>
<td>0</td>
<td>1</td>
<td>112</td>
<td>0</td>
</tr>
<tr>
<td>PA-38-112</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PA-32-301</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-210P</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-421</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-550</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CL-601-3A</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BAe-31</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EMB-120</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DHC-8-100</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SA-227-A7/41</td>
<td>117</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exit No.</th>
<th>Location (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1306</td>
</tr>
<tr>
<td>2</td>
<td>1142</td>
</tr>
<tr>
<td>3</td>
<td>1749</td>
</tr>
<tr>
<td>4</td>
<td>2853</td>
</tr>
</tbody>
</table>

5. Model Results and Analysis
Figure 5.3 Comparison of ROT between varying exits.
Table 5.7 Scenario-I (one exit) Exit Assignment.

<table>
<thead>
<tr>
<th>AIRCRAFT NAME</th>
<th>EXIT NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-300-600</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A-310-300</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-727-200</td>
<td>0</td>
<td>0</td>
<td>164</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-737-300</td>
<td>1</td>
<td>47</td>
<td>114</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-747-400</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-757-300</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MD-83</td>
<td>0</td>
<td>1</td>
<td>112</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PA-38-112</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PA-32-301</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-210P</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-421</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-550</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CL-601-3A</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BAE-31</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EMB-120</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DHC-8-100</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SA-227-AT/41</td>
<td>117</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Exit No.

1. 1006
2. 1142
3. 1442
4. 1749
5. 2853
Table 5.8 Scenario-I (two exits) Exit Assignment.

<table>
<thead>
<tr>
<th>AIRCRAFT NAME</th>
<th>EXIT NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-300-600</td>
<td></td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A-310-300</td>
<td></td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-727-200</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>164</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-737-300</td>
<td></td>
<td>0</td>
<td>1</td>
<td>47</td>
<td>114</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-747-400</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>B-767-300</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MD-83</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>112</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PA-38-112</td>
<td></td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PA-32-301</td>
<td></td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-210P</td>
<td></td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-421</td>
<td></td>
<td>1</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-550</td>
<td></td>
<td>4</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CL-601-3A</td>
<td></td>
<td>6</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BAe-31</td>
<td></td>
<td>0</td>
<td>72</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EMB-120</td>
<td></td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DHC-8-100</td>
<td></td>
<td>3</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SA-227-A7/41</td>
<td></td>
<td>0</td>
<td>117</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exit No.</th>
<th>Location (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>678</td>
</tr>
<tr>
<td>2.</td>
<td>1006</td>
</tr>
<tr>
<td>3.</td>
<td>1142</td>
</tr>
<tr>
<td>4.</td>
<td>1442</td>
</tr>
<tr>
<td>5.</td>
<td>1749</td>
</tr>
<tr>
<td>6.</td>
<td>2853</td>
</tr>
</tbody>
</table>

5. Model Results and Analysis
will be discussed in Chapter 6., of this thesis.

5.1.3 Scenario-II

This scenario models the effect of different flight stages of the same aircraft population on the capacity. This is done by changing the mean and standard deviation of the weight factor. For this scenario all the means and the standard deviations were changed to 0.9 and 0.01 respectively, to depict the aircraft landing at near maximum allowable landing weights (MALW) and thus simulating short stage length segment operations. This scenario also includes the two extra exits used in Scenario-I. The rest of the data being same as "base scenario", the model is run for different demand rates and the results are plotted in Figure 5.2. Figure 5.2 shows the increase in capacity (practical) to 27.5 as compared to 25.7 operations per hour of the "base scenario". This was attributed to the increased speeds caused by the increase in aircraft weight and also the exit locations were more optimal for these weight factors as these were determined with REDIM at MALW. The WAROT has decreased to 44.19 seconds as compared to 45.58 of Scenario-I (two exits), as shown in Figure 5.4. Due to the increased weight the aircraft exit assignment has shifted downwards, shown by the computer output in Table 5.9, as compared to exit assignment in Table 5.8. Although the assignment of exits has shifted downrange from the threshold the WAROT has still decreased, and this due is to the fact that the aircraft have exited the runway at higher speeds, than in Scenario-I (two exits).
Figure 5.4 Comparison of ROT between different Weight Factors.
Table 5.9 Scenario-II Exit Assignment.

<table>
<thead>
<tr>
<th>AIRCRAFT NAME</th>
<th>EXIT NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-300-600</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A-310-300</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-727-200</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>146</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>B-737-300</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>162</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B-747-400</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>B-767-300</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MD-83</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>PA-38-112</td>
<td></td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PA-32-301</td>
<td></td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-210P</td>
<td></td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-421</td>
<td></td>
<td>0</td>
<td>1</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CE-550</td>
<td></td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CL-601-3A</td>
<td></td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bae-31</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EMB-120</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>DHC-8-100</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>SA-227-AT/41</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>117</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Exit No. Location (m)
1. 675
2. 1006
3. 1142
4. 1442
5. 1749
6. 2853

5. Model Results and Analysis
5.1.4 Scenario-III

The current ATC separation rules set by FAA is the critical parameter governing the delay at most airport facilities. By improving the technology in dealing with wake turbulence, improved radar technology for better air traffic control, the FAA proposes to decrease the interarrival separation to the values shown in Table 5.10. This scenario studies the effect of new ATC separation rules on capacity and delay. The model is run by changing the arrival separation to the new values and keeping the other values same as in "baseline scenario". The Figure 5.2 shows the capacity and delay relationship of this scenario, where the capacity (practical) has increased to 30.5 operations per hour, which is an increase of 5 operations (arrivals) per hour as compared to the present rules. The average delay to departures has increased from 1.48 to 2.75 minutes, this is because of the decreased interarrival spacing whereby effectively the acceptable gaps for departures has been decreased. To achieve reduced delays for both the arrivals and departures the interdeparture and departure-arrival separations should also be decreased.

5.1.5 Scenario-IV

One of the main purposes of developing RUNSIM is to predict the capacity enhancements due to REDIM designed variable geometry high speed exits. In this scenario two case were run one with the runway designed with FAA standard exits but located optimally using REDIM and the second case also has only REDIM designed high speed exits and
Table 5.10 1996 Proposed ATC Separation Rules.

<table>
<thead>
<tr>
<th>Lead Aircraft</th>
<th>Heavy (miles)</th>
<th>Large (miles)</th>
<th>Small (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Large</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Small</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
locations. REDIM model was run with same aircraft population of "baseline scenario" to find the optimal location of exits. With a 90° exit at the end of the runway the other three exits for both the cases were located as shown in Tables 5.11 and 5.12. Table 5.11 also shows the type of exits used for the simulation. The WAROT achieved from the simulation runs for the first case was 37.22 and 29.19 seconds for the second case as compared to 51.75 seconds of the "baseline scenario", whose comparison is shown in Figure 5.5. This was achieved because for the first case all the first three exits are 30° FAA standard exit types with 26m/s exit speed and located optimally and for the second case the exit speed of the REDIM exits was much higher than the standard FAA exits facilitating the aircraft to exit at higher speeds whereby reducing their runway occupancy time. The capacity-delay curve is same as that of the "base scenario". This illustrates that still the interarrival separation is the critical factor. The average delay for departures has decreased to 0.5 minutes as compared to 1.48 minutes of "baseline scenario" for REDIM designed high-speed exits case. Effectively REDIM exits help in increasing the total capacity of the runway by increasing the departure capacity.

5.1.6 Scenario-V

In this scenario, the combined effect of new 1996 ATC interarrival separation and the REDIM exits on the capacity and delay is investigated. The interarrival separations is changed to the values to shown in Table 5.10. The new capacity-delay curve that was generated from the simulation runs was similar to that of scenario-III. The WAROT is
Table 5.11 Scenario-IV (First Case)

<table>
<thead>
<tr>
<th>Exit No.</th>
<th>Exit Type</th>
<th>Exit Speed (m/s)</th>
<th>Exit Location (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30° FAA</td>
<td>26</td>
<td>878</td>
</tr>
<tr>
<td>2</td>
<td>30° FAA</td>
<td>26</td>
<td>1242</td>
</tr>
<tr>
<td>3</td>
<td>30° FAA</td>
<td>26</td>
<td>1607</td>
</tr>
</tbody>
</table>

Table 5.12 Scenario IV (Second Case)

<table>
<thead>
<tr>
<th>Exit No.</th>
<th>Exit Type (REDIM)</th>
<th>Critical Acft. Type</th>
<th>Exit Speed (m/s)</th>
<th>Location (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30°</td>
<td>Small</td>
<td>25</td>
<td>979</td>
</tr>
<tr>
<td>2</td>
<td>30°</td>
<td>Large</td>
<td>35</td>
<td>1679</td>
</tr>
<tr>
<td>3</td>
<td>20°</td>
<td>Heavy</td>
<td>35</td>
<td>2312</td>
</tr>
</tbody>
</table>

* The last exit (90° FAA) for both cases is located at the end of runway.
Figure 5.5 Comparision of ROT between FAA and REDIM Exits.
same as that of the scenario-IV. Compared to scenario-III, the average delay for departures has decreased from 2.75 to 0.75 minutes.

Hence for the REDIM exits to be more effective and dominant factor in the capacity of arrivals, the ATC separations have to be further more decreased and this is possible only if new technology advances enough to allow smaller separations.
6. Conclusions and Recommendations

6.1 Conclusions

The simulation approach to investigate the problem of relieving the airport congestion and improving the airport capacity with varied input parameters has proven to be very effective. The model has proved to be very flexible enough to the present needs. The decision to use SIMSCRIPT II.5 as a tool develop the simulation model has definitely paid off. As shown and described in Chapter 2 and 4, English-like syntax is self documenting, and readable which makes the task of future enhancements by other researchers very easy. Like any other high-level simulation languages, its built-in timing routine and other functions and random number generators has reduced both the programming and project time.

With the amount of time and money being wasted due to delays, the want for solutions are congestion problem is more than it was ever before. There is a great potential for the simulation models like RUNSIM, REDIM, and SIMMOD to address these problems and given insight to the system more clearly and help in decision-making for improvements.

As demonstrated in the former chapter, RUNSIM is capable on aiding a planner to develop strategies to improve the capacity of the airport, or atleast from the runway
operations point of view. RUNS!M could be applied in simulating runway for scenarios including sensitivity to the following:

a) Airport types, by varying aircraft weight factors and mixes,
b) Demand rates and patterns (poisson, exponential, and uniform),
c) Intrall separations including buffers,
d) Number and types of exit taxiways,
e) and other airport environmental conditions.

It was proved that the use of REDIM generated high-speed exits can result in moderate gains in total capacity of the airport. This is mainly due to the increase in the number of departure operations, and reductions of their delays. These reductions in delay have economically great effect on other operating costs like fuel consumption. In the top five most busy airports in U.S., currently the total number of enplanements are above 12 millions [FAA, 1990] per year and even if 25% of them are departures during the peak hours, the savings in fuel consumptions ($3 million from the case study), user costs, other operational costs, and the reductions in air pollution due to lesser idling of the aircraft at the departure ramps is worth implementing the improvements. The higher exiting speeds by the aircraft also decreases the taxiing time to terminal, whereby effectively increasing the capacity of the taxiway system. Further improvements in the airport capacity can be realized if the FAA proposed 1996 intrall separations are incorporated along the REDIM generated high-speed. It was also found that REDIM designed exits will be very effective in increasing the arrival capacity once the interarrival

6. Conclusions and Recommendations
separations are decreased to 1.5 miles.

6.2 Recommendations

The following recommendations are a result of the experience gained in developing RUNSIM, by studying and modelling runway operations microscopically, and the analysis done on the present and future airport operations. The proposed recommendations for future research are:

a) Improve the input module of RUNSIM by using the features of SIMGRAPHICS. This would make the model more user-friendly, will enable to incorporate more aircraft models very easily.

b) Improve the output module of RUNSIM by including graphic presentation of the output. This would enhance the understanding of the system that is being studied.

c) Enhance RUNSIM to have the capability of simulating different types of runway configurations.

d) Enhance RUNSIM to incorporate taxiway operations so as to study the effect of REDIM generated high speed exits on the taxiway system in detail. This would permit further evaluation of ground operational procedures allowing aircraft taxi at higher speeds
and effectively increase the taxiway capacity.

e) Incorporate the algorithms of dynamic simulation of landings of RUNSIM into SIMMOD to make the simulation of landings in SIMMOD more realistic. This would also help simulating high speed exits more realistic than it does currently. In SIMMOD, the cumulative probability distributions for landing distances and the constant roll times should be changed by including the more realistic landing modelling performed in RUNSIM. The percentages of roll distances incorporated in SIMMOD to model high-speed should also to be substituted by incorporating the turnoff phase algorithm of RUNSIM and include the data base similar to TOT.DAT (see Appendix C). The suggested could be easily performed as both the models are developed by using SIMSCRIPT II.5, and hence transferring of the model code is easy.

f) Enhance SIMMOD's definition of high speed exits and its modelling and incorporate REDIM designed exits.

g) Gain more knowledge in decreasing the effects of wake turbulence on the trailing aircraft while landing so as to increase the capacity of the airport, as it was demonstrated that most of the time intrail separations dictated the capacity of the airport.

6. Conclusions and Recommendations
Bibliography

Company, La Jolla, California, 1990.

Appendix A. RUNSIM Source Code

preamble

"Program Name: Runway Simulation Program
"File Name: High2
' Programmer: Vijay B. Nunna
"Description: This program simulates airport runway operations which includes
" landings from stack at the beginning of the final approach till
" the aircraft exits the turnoffs. Takeoffs are till the aircraft
" clears the runway end.
" Date: 3/6/91 (original), 7/30/91 (Version 1.0)

normally mode is undefined

resources

every RUNWAY has

 a LENGTH,RWY

 define LENGTH,RWY as a real variable

every FINAL,APPROACH has

 a LENGTH,APP

 define LENGTH,APP as a real variable

processes include

 FINAL,APPROACH,OPERATION,
 LANDING,OPERATION,
 DEPARTURE,OPERATION,
 GENERATOR,
 GENERATOR,DEP,
 WAIT,AT,STACK,
 WAIT,AT,RAMP

events include

 CREATE,AIRCRAFT,ARR,
 CREATE,AIRCRAFT,DEP

temporary entities

every AIRCRAFT has

Appendix A. RUNSIM Source Code

134
define NAME as text variable
define V.APP,
 APP.OCC.TIME,
 RWY.OCC.TIME,
 TAKEOFF.TIME as real variables
define TYPE,
 OPERATION as integer variables
define ARR.ID,
 DEP.ID as 1-dimensional pointer arrays
define T.ENTER.STACK,
 T.DEP.STACK,
 D.STACK,
 T.LANDING,
 T.ENTER.RAMP,
 T.DEP.RAMP,
 EXIT.SPEED,
 EXIT.LOCATION as real 1-dimensional arrays
define ARR.ACFT.NO,
 DEP.ACFT.NO,
 EXIT.ASSIGNED,
 EXIT.CHOICE,
 NO.IDENT.ARR

Appendix A. RUNSIM Source Code
ARR.ACFT.TYPE,
DEP.ACFT.TYPE as integer 1-dimensional arrays

define ARR.ACFT.PERCENT,
ARR.ACFT.MALW,
ARR.ACFT.OEW,
ARR.ACFT.CL.MAX,
ARR.ACFT.FREE.ROLL,
ARR.ACFT.DEC,
ARR.ACFT.WING.AREA,
ARR.ACFT.WING.SPAN,
ARR.ACFT.WTF.MEAN,
ARR.ACFT.WTF.STD,
DEP.ACFT.PERCENT,
DEP.ACFT.MATW,
ROT.STAT as real 1-dimensional arrays

define ACFT.NAME,
ARR.ACFT.NAME,
DEP.ACFT.NAME as text 1-dimensional arrays

define EXIT.ASIGN as 2-dimensional integer array

define SEP.DIST.ARR,
DEP.ARR.SEP,
SEP.T.TAKEOFFS as real 2-dimensional arrays

define NO.ARR.AIRCRAFT,
NO.DEP.AIRCRAFT,
TOT.ARR.ACFT,
TOT.DEP.ACFT,
COUNT.ARR,
COUNT.DEP,
COUNT.APP,
COUNT.LAND,

Appendix A. RUNSIM Source Code
COUNT.T.OFF,
NO.EXIT.S,
R.WY.WIDTH,
RUN.NO,
OCCUPANT.OPERATION as integer variables

define ARR.DIST,
ARR.DIST.MEAN,
ARR.DIST.STD,
DEP.DIST,
DEP.DIST.MEAN,
DEP.DIST.STD,
INTARR.BUFF,
INTDEP.BUFF,
INTDEP.ARR.BUFF,
AIR.ELEV,
AIR.TEMP,
R.WY.LTH,
WAIT.TIME.RAMP,
WAIT.TIME.STACK,
END.LAND.SIM,
END.DEP.SIM as real variables

define APP.FILE.NAME as a text variable

" TITLE ANIMATION

Normally mode is integer

Temporary entities include
MAP

Graphic entities include
MAP

processes include
ACFTFIG

dynamic graphic entities include
ACFTFIG

Appendix A. RUNSIM Source Code
Define ..DISPLAY,VIEW,PORT to mean 2
```
" TITLE ANIMATION DECLERATIONS END

define minutes to mean units

define minute to mean units

define seconds to mean /60 minutes

normally mode is undefined

tally TOT.ARR.DELAY as the sum of ARR.DELAY

tally TOT.DEP.DELAY as the sum of DEP.DELAY

define TOT.ARR.DELAY,

          TOT.DEP.DELAY as real variables

define ..LANDING to mean 1

define ..DEPARTURE to mean 2

define ..HEAVY to mean 1

define ..LARGE to mean 2

define ..SMALL to mean 3

end " preamble
main

define ..NO.REPS,

        ..ITER as integer variables
```
" title animation starts

call SET.GRAPHICS
Create a MAP
Display MAP with "thw"
activate a ACFTFIG now

show ACFTFIG with "PLANE.ICN"
start simulation

let time.v = 0

let timescale.v = 1 " reinitializing for faster simulation

call vclears.r

" title animation ends

Appendix A. RUNSIM Source Code
use unit 6 for output

let lines.v = 0 " to eliminate page breaks during screen display

create every RUNWAY(1)

let U.RUNWAY(1) = 1

create every FINAL.APPROACH(1)

let U.FINAL.APPROACH(1) = 5 "To allow a max. of 3 aircraft to use or enter
" final approach at any given time

" call PROG.STRTPR.try

call APP.CHICE

call READ.APP.DATA

call READ.DATA.FILE

call DET.EXIT.SPEEDS

print 1 line thus
STARTING THE SIMULATION

call NO.REPLICATIONS yielding .NO.REPS

for .ITER = 1 to .NO.REPS, do

let RUN.NO. = .ITER

if TOT.ARR.ACFT gt 0

activate a GENERATOR now

always

if TOT.DEP.ACFT gt 0

activate a GENERATOR.DEP now

always

 call vbcolor.r(1)

 call vclears.r

 call vfcolor.r(5)

 call vgotoxy.r(16,10)

 print 1 line thus
 MODEL IS EXECUTING

 call vfcolor.r(14)

 print 1 line with .ITER, .NO.REPS thus
 ITERATION **** OF ****
call vcolor.r(2)

print 1 line thus

PLEASE WAIT......
call setvr.r(7,0)
start simulation
call setvr.r(7,2)
call DO.BEEP
call GLOBAL.STAT.OP giving .ITER
call REPORT.GEN giving .ITER
call RE.INITIALIZE
loop ".ITER = 1 to .NO.REPS
end "main
routine ACFT.DUP.CHECK given .IAD, ACFT.NO.AD yielding .NEW.ACFT.NO, .DUP

" This routine checks if the newly selected aircraft is already selected
" or not. If so then the user is asked to choose again.
" CALLED FROM: NEW.APP.STRT
" CALLS: DO.BEEP

define .IAD,

.IDUP,

.NEW.ACFT.NO as integer variables
define .ACFT.NO.AD as a 1-dimensional integer array
define .DUP as a text variable
reserve .ACFT.NO.AD as .IAD
if .IAD gt 1
for .IDUP = 1 to (.IAD - 1) do
if .ACFT.NO.AD(.IAD) eq .ACFT.NO.AD(.DUP)
call DO.BEEP
call vgotoxy.(r(22,1)
call vcolor.(r(12)
print 1 line thus
WARNING: THE AIRCRAFT IS ALREADY SELECTED: CHOOSE ANOTHER ONE
call vcolor.(r(1)
call vgotoxy.(r(17,44)

Appendix A. RUNSIM Source Code
call vclear.r
read .NEW.ACFT.NO

call vgotoxy.r(22,0)
call vclear.r
let .DUP = "Y"
return
always
loop
always
let .NEW.ACFT.NO = .ACFT.NO.AD(1,1AD)
let .DUP = "N"
return
end " aect.dup.check
routine ACFT.LIST.SCRN yielding .NO.RECORDS

"This routine generates aircraft list on screen for simulation selection
"CALLED FROM: NEW.APP.STRT

define .NO.RECORDS,
.i,
}.{ as integer variables
call vclear.r
call vfcolor.r(14)
print 1 line thus
AIRCRAFT LIST

call vfcolor.r(4)
print 1 line thus

\n\ncall vfcolor.r(15)
open unit 10 for input, name = "ACFT.DAT"
use unit 10 for input
"JUMP OVER THE COMMENTS IN THE DATA FILE
while mode is alpha do

Appendix A. RUNSIM Source Code
start new record
loop " mode is alpha do
start new input record
read .NO.RECORDS
reserve ACFT.NAME as .NO.RECORDS
start new input record
for .I = 1 to .NO.RECORDS, read ACFT.NAME(I) as t 12, /
close unit 10
for .II = 1 to .NO.RECORDS by 3 do
 write .II, ACFT.NAME(II), (II + 1), ACFT.NAME(II + 1), (II + 2),
 ACFT.NAME(II + 2) as s 8, i 2, ;", s 1, t 12, s 5, i 2, ;", s 1, t 12, /
loop
call vfcolor.r(4)
print 1 line thus

 call vfcolor.r(15)

return
end " aef, list, scm
process ACFTFIG

define .X1,
 .X2,
 .Y1,
 .Y2,
 .SPEED,
 .TIME,
 .DIRECTION as real variables

let .X1 = -15.0
let .Y1 = 10.0
let .X2 = -5.0
let .Y2 = 5.0
let .SPEED = 2.0
let location_a(ACFTFIG) = location.f(X1, Y1)
call VECTOR given .X1, .Y1, .X2, .Y2, .SPEED yielding .TIME, .DIRECTION
let velocity_a(ACFTFIG) = velocity.f(.SPEED, .DIRECTION)
Let orientation.a(ACFTFIG) = .DIRECTION
Display ACFTFIG
Wait .TIME units
let .X1 = -5.0
let .Y1 = 5.0
let .X2 = 0.0
let .Y2 = 2.5
let .SPEED = 2.0

call VECTOR given .X1, .Y1, .X2, .Y2, .SPEED yielding .TIME, .DIRECTION
Let velocity.a(ACFTFIG) = velocity.f(SPEED, .DIRECTION)
Let orientation.a(ACFTFIG) = .DIRECTION
Display ACFTFIG
Wait .TIME units

let .X1 = 0.0
let .Y1 = 2.5
let .X2 = 5.0
let .Y2 = 0.0
let .SPEED = 2.0

call VECTOR given .X1, .Y1, .X2, .Y2, .SPEED yielding .TIME, .DIRECTION
Let velocity.a(ACFTFIG) = velocity.f(SPEED, .DIRECTION)
Let orientation.a(ACFTFIG) = .DIRECTION
Display ACFTFIG
Wait .TIME units

let .X1 = 5.0
let .Y1 = 0.0
let .X2 = 12.0
let .Y2 = 0.0
let .SPEED = 2.0

call VECTOR given .X1, .Y1, .X2, .Y2, .SPEED yielding .TIME, .DIRECTION
Let velocity.a(ACFTFIG) = velocity.f(SPEED, .DIRECTION)
Let orientation.a(ACFTFIG) = .DIRECTION
Display ACFTFIG
Wait .TIME units

" call readloc.r
" given 0, 0, 0 yielding DUMMY.X, DUMMY.Y, DUMMY.V
" let DUMMY.X = DUMMY.X
" let DUMMY.Y = DUMMY.Y
" let DUMMY.V = DUMMY.V

end " acftfig

routine APP.CALL

define .EXIST.APP,
 .FILE.NAME as text variables
" .APP.CHOICE as text variables

define .ROW,
 .COLUMN as integer variables

call vclears.r

skip 3 lines

print 1 line thus
 EXISTING APPLICATION FILE NAME

Appendix A. RUNSIM Source Code
skip 1 line

open unit 10 for input, name = "APP.FILE"

use unit 10 for input

while data is not ended do

read .EXIST.APP,
.FILE.NAME

print 1 line with .EXIST.APP and .FILE.NAME thus

*************************** . ******************

loop " if data has not ended

close unit 10

skip 2 lines

print 1 line thus
Choose the application and enter its file name here:

call vgetby.r yielding .ROW, .COLUMN

let .ROW = .ROW - 1

let .COLUMN = 55

call vgotoxy.r(.ROW, .COLUMN)

read APP.FILE.NAME

let APP.FILE.NAME = upper.f(APP.FILE.NAME)

call READ.APP.DATA

return

end " APP.CALL

routine APP.CHOICE

define .NUM.CHOICE as integer variable

call vclears.r

skip 3 lines

call vbcolor.r(1)

call vfcolor.r(14)

print 1 line thus

INPUT MODULE

call vfcolor.r(4)

print 1 line thus

Appendix A. RUNSIM Source Code
call vcolor.r(15)
skip 8 line
print 1 line thus
Select one option
skip 1 line
print 3 lines thus
 1) Existing Application
 2) New Application
skip 2 lines
print 1 line thus
Enter your choice number:
call vgotoxy.r(20,27)
read .NUM.CHOICE
until .NUM.CHOICE ge 1 and .NUM.CHOICE le 2, do
call DO.BEEP
call vgotoxy.r(22,1)
call vcolor.r(12)
print 1 line thus
MESSAGE: PLEASE ENTER ONLY CHOICE NO. 1 OR 2; TRY AGAIN
call vcolor.r(1)
call vgotoxy.r(20,27)
call vclear.r
read .NUM.CHOICE
call vgotoxy.r(22,0)
call vclear.r
loop
if .NUM.CHOICE = 1
call APP.CALL.
else
call NEW.APP.STRT
always
return

Appendix A. RUNSIM Source Code
end "APP.CHICE"
routine ARRIVAL.POP.OP given .ITER

" This routine displays the arrival aircraft used for the simulation .
" CALLED FROM: INPUT.DATA.OP
" CALLS:

define .ITER,

.ANO,
.XLOC,
.YLOC as integer variables
define .CHOICE as a text variable

until .CHOICE eq 'Q', do
call vnleara.r

print 3 lines thus

[[ARRIVAL AIRCRAFT POPULATION]]

skip 1 line

print 1 line with APP.FILE.NAME thus
APP. FILE NAME : ************

print 1 line with TOT.ARR.ACF.T thus
NO. OF ARRIVALS : ********

print 1 line thus

let .XLOC = 7
let .YLOC = 3

for .ANO = 1 to NO.ARR.AIRCRAFT, do
call vgotoxy.r(XLOC, .YLOC)

print 1 line with .ANO, ARR.ACF.T.NAME(.ANO), ARR.ACF.T.PERCENT(.ANO) thus
| **| ************ (** %) |

let .XLOC = .XLOC + 1

if .XLOC eq 20
let .XLOC = 7
let .YLOC = .YLOC + 24
always ".XLOC eq 20

Appendix A. RUNSIM Source Code

146
loop " .ANO = 1 to NO.ARR.AIRCRAFT

call vgotoxy.r(20,0)

print 1 line thus

call vgotoxy.r(22,1)
call vbcolor.r(5)
call vfcolor.r(15)

print 1 line thus
ENTER (PRINT SCREEN) KEY TO PRINT; (Q)UIT:
call vgotoxy.r(22,43)
read .CHOICE
call vbcolor.r(3)
call vfcolor.r(0)
let .CHOICE = fixed.f(.CHOICE, 1)
let .CHOICE = upper.f(.CHOICE)

loop " .CHOICE eq Q
if .CHOICE eq "Q"

 call INPUT.DATA.OP giving .ITER
always " .CHOICE eq Q

return

end " arrival.pop.op
routine ARRIVALS.EVENT.OP given .ITER

"This routine prints on the screen the arrival event list.
"CALLED FROM: REPORT.GEN
"CALLS:
"OPENS(FOR INPUT) : .NEW.FILE.NAME

define .NEW.FILE.NAME,
 .EXT,
 .CHOICE,
 .NAME as text variables

define .ITER,
 .CT.REC,
define .CR.TIME,
.EAP.TIME,
.LD.TIME,
.RO.TIME,
.DEL as real variables

let .NEW.FILE.NAME = substr.f(APP.FILE.NAME, 1, 7)

let .EXT = itot.f(.ITER)

let .NEW.FILE.NAME = concat.f(.NEW.FILE.NAME, ".*", .EXT)

let .CHOICE = "P"

while .CHOICE eq "P", do

 call vclears.r

 print 3 lines with APP.FILE.NAME, .ITER thus

 open unit 21 for input, name = .NEW.FILE.NAME

 use unit 21 for input

 skip 10 records

 for .CT.REC = 1 to COUNT.LAND, do

 read .NAME, .CR.TIME, .EAP.TIME, .LD.TIME, .RO.TIME, .EXIT.NO, .DEL

 print 1 line with .NAME, .CR.TIME, .EAP.TIME, .LD.TIME, .RO.TIME, .EXIT.NO, .DEL thus

 let .LINE = .LINE + 1

 if .LINE eq 14

Appendix A. RUNSIM Source Code
close unit 21

print 1 line thus

call vgotoxy.r(22,1)

print 1 line thus
ENTER CHOICE: ([M]EET SCREEN, [Q]UIT :
call vgotoxy.r(22,38)
read .CHOICE
let .CHOICE = fixed.f(.CHOICE,1)
let .CHOICE = upper.f(.CHOICE)
if .CHOICE eq 'N'
 let .LINE = 0
 for .CLEAN = 7 to 22 do
 call vgotoxy.r(.CLEAN , 0)
 call vclear.r
 loop " .CLEAN = 7 to 20
call vgotoxy.r(7,0)
open unit 21 for input, name = .NEW.FILE.NAME
use unit 21 for input
let .SKIP.REC = .CT.REC + 9
skip .SKIP.REC records
else
 let .CT.REC = COUNT.LAND
always " .CHOICE eq N
always
loop " .CT.REC = 1 to COUNT.LAND
close unit 21
if .CHOICE eq "Q"
call REPORT.GEN giving .ITER
return
always

Appendix A. RUNSIM Source Code
call vgotype.r(22,1)

print 1 line thus

ENTER CHOICE: (P)RINT LIST AGAIN; (Q)UIT:

call vgotype.r(22,43)

read .CHOICE

let .CHOICE = fixed.f(.CHOICE,1)

let .CHOICE = upper.f(.CHOICE)

if .CHOICE eq 'Q'

call REPORT.GEN giving .ITER

return

always

loop * .choice eq P

return

eend " arrivals.event.op

routine ASSIGN.ARR.ACFR.NAME

" This routine assigns the name to the aircraft just created randomly but
" confirming to the user specified population and respective percentages.
" The aircraft is also assigned its other respective attributes too.
" "CALLED FROM : CREATE.AIRCRAFT.ARR
" CALLS: DET.APP.OCC.TIME, DET.RWY.OCC.TIME

define .NO,

.iarr,

.assign,

.exi as integer variables

define .app.occ.time,

.rot,

.velapp,

.dec,

.free.roll,

.wing.span,

.dair as real variables

Appendix A. RUNSIM Source Code
define .CUM.PERCENT.ARR as a integer 1-dimensional array

reserve .CUM.PERCENT.ARR as (NO.ARR.AIRCRAFT + 1)

let .CUM.PERCENT.ARR(1) = 0

"creating an array of cumulative percentages of arriving aircraft percent of
"creation

for .NO = 2 to (NO.ARR.AIRCRAFT + 1) do
 let .CUM.PERCENT.ARR(NO) = .CUM.PERCENT.ARR(NO - 1) +
 ARR.ACFT.PERCENT(NO - 1)

loop

let .ASSIGN = rand.f(1,100, 5)

for .IARR = 1 to NO.ARR.AIRCRAFT do
 if .ASSIGN gt .CUM.PERCENT.ARR(IARR) and
 .ASSIGN le .CUM.PERCENT.ARR(IARR + 1)

 "Assign the name and the other attributes to the entity.
 NAME(ARR.ID(COUNT.ARR)) = ARR.ACFT.NAME(IARR)
 let .DEC = ARR.ACFT.DEC(IARR)
 let .TYPE(ARR.ID(COUNT.ARR)) = ARR.ACFT.TYPE(IARR)
 let .FREE.ROLL = ARR.ACFT.FREE.ROLL(IARR)
 let .WING.SPAN = ARR.ACFT.WING.SPAN(IARR)
 call DET.VAPP giving .IARR yielding .VELAPP
 let V.APP(ARR.ID(COUNT.ARR)) = .VELAPP
 call DET.DIST.AIR giving .IARR, .VELAPP yielding .DAIR
 call DET.APP.OCC.TIME giving .VELAPP yielding .APP.OCC.TIME
 let APP.OCC.TIME(ARR.ID(COUNT.ARR)) = .APP.OCC.TIME
 call DET.RWY.OCC.TIME giving .DAIR, .DEC, .FREE.ROLL,
 .VELAPP, .WING.SPAN, COUNT.ARR yielding .ROT,
 .EXI

 let RWY.OCC.TIME(ARR.ID(COUNT.ARR)) = .ROT
 let ROT.STAT.(IARR) = ROT.STAT.(IARR) + .ROT

 let NO.IDENT.ARR(IARR) = NO.IDENT.ARR(IARR) + 1 " Collecting data
 " to know number of times similar aircraft were
 " generated

 let EXIT.ASSIGNED(COUNT.ARR) = .EXI " storing data on exits assigned
 " to the landing aircraft

Appendix A. RUNSIM Source Code
let EXIT.ASSIGN.IARR.1EXI = EXIT.ASSIGN.IARR.1EXI + 1
 " Collecting data on number of times similar aircraft
 " is assigned to different exits

always

loop " till the correct aircraft is identified

return

end " assign.arr.acft.name

routine ASSIGN.DEP.ACFT.NAME

"This routine assigns names to the aircraft created randomly but
"confirming to user specified population and individual percentages.
"Other related attributes are also specified to the entity.
"CALLED FROM: CREATE.AIRCRAFT.DEP
"CALLS:

define .ID,
 .NO,
 .ASSIGN as integer variables
define .TAKEOFF.TT as a real variable
define .CUM.PERCENT.DEP as an integer 1-dimensional array
reserve .CUM.PERCENT.DEP as (NO.DEP.AIRCRAFT + 1)
let .CUM.PERCENT.DEP(1) = 0
for .NO = 2 to (NO.DEP.AIRCRAFT + 1) do
 let .CUM.PERCENT.DEP(.NO) = .CUM.PERCENT.DEP(.NO - 1) +
 DEP.ACFT.PERCENT(.NO -1)
loop " creating an array for cumulative percentages of departure aircraft
let .ASSIGN = randi.f(1,100,7) " for random assignment of aircraft names to
" newly created aircraft entity.
for .ID = 1 to NO.DEP.AIRCRAFT do
 if .ASSIGN gt .CUM.PERCENT.DEP(.ID) and
 .ASSIGN le .CUM.PERCENT.DEP(.ID + 1)

 NAME(DEP.ID(COUNT.DEP)) = DEP.ACFT.NAME(ID)
 TYPE(DEP.ID(COUNT.DEP)) = DEP.ACFT.TYPE(ID)
 DET.TAKEOFF.TIME given .ID yielding .TAKEOFF.TT
 .TAKEOFF.TIME(DEP.ID(COUNT.DEP)) = .TAKEOFF.TT

always

loop

Appendix A. RUNSIM Source Code
return
end
"assign.dep.aircraft.name
routine ASSIGN.TABLE.OP given .ITER
" This routine displays assignment of aircraft to different exits
" CALLED FROM : REPORT.GEN
" CALLS: REPORT.GEN

define .CHOICE,
 .EXT,
 .NEW.FILE.NAME,
 .FILE.NAME as text variables
define .ROW,
 .COL,
 .ITER,
 .IEX,
 .IAR,
 .CLR as integer variables

let .NEW.FILE.NAME = substr.f(APP.FILE.NAME,1,7)
let .EXT = itot.f(.ITER)
let .NEW.FILE.NAME = concat.f(.NEW.FILE.NAME,".", .EXT)
let .CHOICE = "V"
until .CHOICE eq "O", do

call vclears.r
if .CHOICE eq "P" or .CHOICE eq "S"
 open unit 13 for output, name = "ASSIGN.RSM"
 use unit 13 for output
 let page.v = 1
 begin report
 always
 if TOT.ARRACFT gt 0
 print 2 lines thus

Appendix A. RUNSIM Source Code
print 1 line thus

AIRCRAFT : EXIT NO.

write as "NAME :"

for .IEX = 1 to NO.EXIT, write .IEX as $ 3, 1 2

start new output line

print 1 line thus

for .JAR = 1 to NO.ARR.AIRCRAFT do

write ARR.ACFT.NAME(.JAR) as t 12

for .IEX = 1 to NO.EXIT, write EXIT.ASSIGN(.JAR,.IEX) as $ 1, 1 4

start new output line

print 1 line thus

call vgeby.r yielding .ROW, .COL

if .CHOICE ne "P" and .ROW ge 20 and .COL ge 0

 call vgotoxy.r(22,1)
 call vbcolor.r(5)
 call vfcolor.r(15)

print 1 line thus

HIT ANY KEY TO VIEW REST OF THE ASSIGNMENT TABLE:

call vgotoxy.r(22,51)

call rcr.r

read as / using unit 5

call vbcolor.r(3)

call vfcolor.r(0)

for .CLR = 5 to 22 do

 call vgotoxy.r(.CLR, 0)

 call vclear.r

loop " until all the lines below 6 are cleared

call vgotoxy.r(5,0)

always

loop " until all the data is printed

Appendix A. RUNSIM Source Code
if .CHOICE eq "P" or .CHOICE eq "S"
 end " report section
let .FILE_NAME = .NEW.FILE_NAME
 if .CHOICE eq "P"
 close unit 13
 else
 close unit 13, name = .FILE_NAME
 always
" COMMANDS TO PRINT THE FILE ON PRINTER THROUGH DOS COMMANDS
 if .CHOICE eq "P"
 let GT.1 = "CD HIGH2"
 SYS$DO.X(11)
 let GT.1 = "COPY ASSIGN.RSM LPT1"
 SYS$DO.X(11)
 let GT.1 = "CD.."
 SYS$DO.X(11)
 always
 always
 call vgotoxy.r(22,1)
 call vbcolor.r(3) "cyan background"
 always
 if TOT.ARR.LCFT eq 0
 print 2 lines thus
 ARRIVALS ARE NOT SIMULATED
 RETURN TO (O)UTPUT MENU
 always
 call vbcolor.r(5)
 call vfcolor.r(15)
 print 1 line thus
 ENTER - (P)RINT; (S)AVE; (V)IEW AGAIN; (O)UTPUT MENU :
 call vgotoxy.r(22,57)
 read .CHOICE

Appendix A. RUNSIM Source Code
call vbcolor.r(3)
call vbcolor.r(0)
let .CHOICE = upper.f(CHOICE)
let .CHOICE = fixed.f(CHOICE,1)
if .CHOICE eq "O"
call REPORT.GEN giving .ITER
return
always
loop
return
end " assign.table.op
routine CHECK.PRECEDE.ACFT.CLR.RWY yielding .R.T.LAG.THRLD.RWY

" This routine checks if the preceding acft clears runway when the lagging
" aircraft reaches threshold.
" CALLED FROM: PRECEDE.FASTER.ACFT, PRECEDE.SLOWER.ACFT
" CALLS:

define .T.PRECEDE.ACFT.CLR.APP,
 .TOT.T.PRECEDE.ACFT.CLR.RWY,
 .R.T.LAG.THRLD.RWY as real variables
let .T.PRECEDE.ACFT.CLR.APP = APP.OCC.TIME(ARR.ID(COUNT.APP)) -
 (trunc.f(time.v - T.DEP.STACK(COUNT.APP)) * 60 +
 frac.f(time.v - T.DEP.STACK(COUNT.APP)) * 60)
" Remaining time for preceding aircraft to clear approach
let .TOT.T.PRECEDE.ACFT.CLR.RWY = (.T.PRECEDE.ACFT.CLR.APP +
 RWY.OCC.TIME(ARR.ID(COUNT.APP)))
" Total time for the preceding aircraft to travel from
" its present position till it clears runway.
if .TOT.T.PRECEDE.ACFT.CLR.RWY le APP.OCC.TIME(ARR.ID(COUNT.APP + 1))
 .R.T.LAG.THRLD.RWY = 0 "Difference in time to perform the two operations
 "1: Time for precede acft to clear rwy
 "2: Time for lagging acft to reach threshold
else
 .R.T.LAG.THRLD.RWY = (.TOT.T.PRECEDE.ACFT.CLR.RWY -
 APP.OCC.TIME(ARR.ID(COUNT.APP + 1)))
always
return

Appendix A. RUNSIM Source Code
end "check.preced.acft.cir.rwy
event CREATE.AIRCRAFT.ARR

" This routine creates arriving aircraft at a specified time.
" CALLED FROM: GENERATOR
" CALLS: ASSIGN.ARR.NAME, SYS.CHECK.AT.STACK

if COUNT.ARR lt TOT.ARR.ACFT
 COUNT.ARR = COUNT.ARR + 1
 create an AIRCRAFT called ARR.ID(COUNT.ARR)
 T.ENTER.STACK(COUNT.ARR) = TIME.V
 let OPERATION(ARR.ID(COUNT.ARR)) = LANDING
 call ASSIGN.ARR.ACFT.NAME
 if COUNT.ARR le (COUNT.ARR + 1)
 call SYS.CHECK.AT.STACK
 always
 else
 return
 always
 return
end " create.aircraft.arr
event CREATE.AIRCRAFT.DEP

" The departure aircraft are created in this event routine as scheduled in
" the generator
" CALLED FROM: GENERATOR
" CALLS: ASSIGN.DEP.ACFT.NAME, SYS.CHECK.AT.THRLD

if COUNT.DEP lt TOT.DEP.ACFT
 let COUNT.DEP = COUNT.DEP + 1
 create an AIRCRAFT called DEP.ID(COUNT.DEP)
 let T.ENTER.RAMP(COUNT.DEP) = TIME.V
 OPERATION(DEP.ID(COUNT.DEP)) = DEPARTURE
 call ASSIGN.DEP.ACFT.NAME
 if COUNT.DEP le (COUNT.DEP + 1)
 call SYS.CHECK.AT.THRLD
 always

Appendix A. RUNSIM Source Code
else
 return
always
return
end " create.aircraft.dep"
routine DEP.POP.OP given .ITER

" This routine displays the departure aircraft used for the simulation .
" CALLED FROM: INPUT.DATA.OP
" CALLS:

define .ITER,
 .ANO,
 .XLOC,
 .YLOC as integer variables
define .CHOICE as a text variable
until .CHOICE eq "Q", do
call vcleans.r
print 3 lines thus
 DEPARTURE AIRCRAFT POPULATION

skip 1 line

print 1 line with APP.FILE.NAME thus
APP. FILE NAME : ***********

print 1 line with TOT.DEP.ACFT thus
NO. OF DEPARTURES : ********

print 1 line thus

let .XLOC = 7
let .YLOC = 3
for .ANO = 1 to NO.DEP.AIRCRAFT, do
call vgotoxy.r(.XLOC, .YLOC)
 print 1 line with .ANO, DEP.ACFT.NAME(.ANO), DEP.ACFT.PERCENT(.ANO) thus
 | **| *********** (** %) |
 let .XLOC = .XLOC + 1

Appendix A. RUNSIM Source Code
if .XLOC eq 20
 let .XLOC = 7
 let .YLOC = .YLOC + 24
always ".XLOC eq 20
loop ".ANO = 1 to NO.DEP.AIRCRAFT
 call vgotoxy.r(20,0)
 print 1 line thus
 call vgotoxy.r(22,1)
 call vbcolor.r(5)
 call vfcolor.r(15)
 print 1 line thus
 ENTER (PRINT SCREEN) KEY TO PRINT; (Q)UIT:
 call vgotoxy.r(22,43)
 read .CHOICE
 call vbcolor.r(3)
 call vfcolor.r(6)
 let .CHOICE = fixed.f(.CHOICE, 1)
 let .CHOICE = upper.f(.CHOICE)
 loop ".CHOICE eq 'Q'
if .CHOICE eq 'Q'
 call INPUT.DATA.OP giving .ITER
always ".CHOICE eq 'Q'
 return
end ".dep.pop.op
process DEPARTURE OPERATION
" The takeoff operation is activated as scheduled and then the aircraft
" departs the system after its takeoff time.
" CALLED FROM: SYS.CHECK.AT.THRLD, STATUS.APP CLR.RWY.OCC,
" STATUS.APP.OCC.RWY.CLK, STATUS.APP.OCC.RWY.OCC
" CALLS:
define .EXT,
 .NEW.FILE.NAME as text variables

Appendix A. RUNSIM Source Code
define .ACFT.ID as a pointer variable

let .NEW.FILE.NAME = substr.f(APP.FILE.NAME,1,7)
let .EXT = itot.f(RUN.NO)
let .NEW.FILE.NAME = concat.f(.NEW.FILE.NAME,"D.", .EXT)

if COUNT.T.OFF lt TOT.DEP.ACFT
 request 1 RUNWAY(1)
if COUNT.T.OFF lt COUNT.DEP
 let COUNT.T.OFF = COUNT.T.OFF + 1
 let OCCUPANT.OPERATION = OPERATION(DEP.ID(COUNT.T.OFF))
 let T.DEP.RAMP(COUNT.T.OFF) = TIME.V
 let TOT.DEPDELAY = TOT.DEPDELAY + (T.DEP.RAMP(COUNT.T.OFF) - T.ENTER.RAMP(COUNT.T.OFF))
if COUNT.T.OFF ne COUNT.DEP and (COUNT.T.OFF + 1) le COUNT.DEP
 call SYS.CHECK.AT.THRLD
 always " (COUNT.T.OFF + 1) le COUNT.DEP"

"A REPORT OF DEPARTURE EVENTS LIST IS CREATED BELOW"
if COUNT.T.OFF eq 1
 open unit 15 for output, name = .NEW.FILE.NAME
 use unit 15 for output
 let page.v = 1
 begin report on a new page
 begin heading
 if page is first
 print 2 lines thus
 DEPARTURE EVENT LIST
 skip 1 line
 print 1 line with APP.FILE.NAME, RUN.NO thus
 APPLICATION FILE NAME: ********** RUN NO.: *****
 skip 1 line
 print 4 lines thus
 AIRCRAFT CREATION EMPLACE DELAY
 NAME TIME TIME

Appendix A. RUNSIM Source Code
always "page is first

end " heading section

always " COUNT.T.OFF eq 1

if COUNT.T.OFF gt 1

open unit 15 for output, name = .NEW.FILE.NAME, append

use unit 15 for output

always " COUNT.T.OFF gt 1

write NAME(DEP.ID(COUNT.T.OFF)),
 (T.ENTER.RAMP(COUNT.T.OFF)),
 (T.DEP.RAMP(COUNT.T.OFF)), (T.DEP.RAMP(COUNT.T.OFF) -
 T.ENTER.RAMP(COUNT.T.OFF)) as s 2, t 12, s 10, d(6,2),
 s 12, d(6,2), s 10, d(7,2), /

if COUNT.T.OFF eq TOT.DEP.ACFT

end " report section

always " COUNT.T.OFF eq TOT.DEP.ACFT

close unit 15

let .ACFT.ID = COUNT.T.OFF

work TAKEOFF.TIME(DEP.ID(COUNT.T.OFF)) seconds

always "COUNT.T.OFF lt COUNT.DEP

relinquish 1 RUNWAY(1)

if .ACFT.ID eq TOT.DEP.ACFT

END.DEP.SIM = time.v

always

if COUNT.T.OFF ne COUNT.DEP and (COUNT.T.OFF + 1) le COUNT.DEP

call SYS.CHECKAT.THRLD

always

always " COUNT.T.OFF lt TOT.DEP.ACFT

return

derend " departure.operation
routine DEPARTURES.EVENT.OP given .ITER

"This routine prints on the screen the departure event list.

Appendix A. RUNSIM Source Code
"CALLED FROM: REPORT.GEN
"CALLS:
"OPENS(FOR INPUT) : .NEW.FILE.NAME

define .NEW.FILE.NAME,
 .EXT,
 .CHOICE,
 .NAME as text variables

define .ITER,
 .CT.REC,
 .LINE,
 .CLEAN,
 .SKIP.REC as integer variables

define .CR.TIME,
 .TOFF.TIME,
 .DEL as real variables

let .NEW.FILE.NAME = substr.f(APP.FILE.NAME,1,7)
let .EXT = int.f(.ITER)
let .NEW.FILE.NAME = concat.f(.NEW.FILE.NAME,"D.", .EXT)
let .CHOICE = "P"
until .CHOICE eq "Q", do
 call vclears.r
 print 3 lines with APP.FILE.NAME, .ITER thus

<table>
<thead>
<tr>
<th>APP. FILE: ************</th>
<th>DEPARTURE EVENT LIST</th>
<th>RUN NO.: ****</th>
</tr>
</thead>
</table>

print 4 lines thus
AIRCRAFT	CREATION	EMPLANE	DELAY
NAME	TIME	TIME	
Min	Min	Min	

open unit 22 for input, name = .NEW.FILE.NAME
use unit 22 for input
skip 10 records
for .CT.REC = 1 to COUNT.T.OFF, do

Appendix A. RUNSIM Source Code
read .NAME, .CR.TIME, .TOFF.TIME, .DEL

print 1 line with .NAME, .CR.TIME, .TOFF.TIME, .DEL thus

let .LINE = .LINE + 1

if .LINE eq 14

close unit 22

print 1 line thus

call vgotoxy.r(22,1)

print 1 line thus
ENTER CHOICE: (N)EXT SCREEN, (Q)UIT :
call vgotoxy.r(22,36)
read .CHOICE
let .CHOICE = fixed.f(.CHOICE,1)
let .CHOICE = upper.f(.CHOICE)
if .CHOICE eq "N"

let .LINE = 0
for .CLEAN = 7 to 22 do
call vgotoxy.r(.CLEAN, 0)
call vclear.r
loop ".CLEAN = 7 to 20

call vgotoxy.r(7,0)
open unit 22 for input, name = .NEW.FILE.NAME
use unit 22 for input
let .SKIP.REC = .CT.REC + 9
skip .SKIP.REC records

else

let .CT.REC = COUNT.T.OFF
always " if .CHOICE eq N
always ".LINE eq 15
loop ".CT.REC = 1 to COUNT.T.OFF

Appendix A. RUNSIM Source Code
close unit 22

if .CHOICE eq 'Q'
 call REPORT.GEN giving .ITER
 return
 always " .CHOICE eq Q

print 1 line thus

 call vgotoxy.r(22,1)

print 1 line thus
ENTER CHOICE: (P)RINT LIST AGAIN; (Q)UIT :

 call vgotoxy.r(22,43)
 read .CHOICE
 let .CHOICE = fixed.f(.CHOICE,1)
 let .CHOICE = upper.f(.CHOICE)
 loop " .choice eq Q
 if .CHOICE eq 'Q'
 call REPORT.GEN giving .ITER
 always " .CHOICE eq Q
 return
 end " departures.event.list
routine DET.APP.OCC.TIME given .VELAPH yielding .R.A.O.TIME

" This routine determines the time to traverse the final approach till it
" reaches threshold.
" CALLED FROM: ASSIGN.ARR.ACFT.NAME
" CALLS:

define .R.A.O.TIME,
 .VELAPH as real variables
 let .R.A.O.TIME = LENGTH.APP(1) / .VELAPH
 return
end
routine DET.DEL.ARR yielding .R.DEL.ARR

"This routine is called from STATUS.APP.OCC.RWY.CLR or STATUS.APP.OCC.
"RWY.OCC to determine the delay if any due to an arriving aircraft.
"CALLED FROM: STATUS.APP.OCC.RWY.CLR, STATUS.APP.OCC.RWY.OCC
"CALLS: DET.SEP.DATA
define .TYPE.DEP,
 .TYPE.ARR,
 .LEAD.ACFT.APP as integer variables

define .MIN.SEP.ARR.DEP,
 .TIME.SPEND.APP,
 .TIME.REM.APP,
 .DIST.COVERED.APP,
 .DIST.TO.THRLD,
 .R.DEL.ARR as real variables

let .TYPE.DEP = TYPE(DEP.ID(COUNT.T.OFF + 1))

let .LEAD.ACFT.APP = COUNT.LAND + 1

let .TYPE.ARR = TYPE(ARR.ID(.LEAD.ACFT.APP))

let .MIN.SEP.ARR.DEP = DEP.ARR.SEP(TYPE.ARR, .TYPE.DEP) + INTDEP.ARR.BUFF

let .TIME.SPEND.APP = trunc.f(time.v - T.DEP.STACK(.LEAD.ACFT.APP)) * 60 +
 frac.f(time.v - T.DEP.STACK(.LEAD.ACFT.APP)) * 60
 " seconds

let .TIME.REM.APP = APP.OCC.TIME(ARR.ID(.LEAD.ACFT.APP)) - .TIME.SPEND.APP
 " Remaining time in final approach before reaching the
 " runway by the arriving aircraft nearest to the runway

let .DIST.COVERED.APP = .TIME.SPEND.APP * V.APP(ARR.ID(.LEAD.ACFT.APP))

let .DIST.TO.THRLD = LENGTH.APP(FINAL.APPROACH) - .DIST.COVERED.APP

if .DIST.TO.THRLD ge .MIN.SEP.ARR.DEP
 .R.DEL.ARR = 0.0 " seconds
else
 .R.DEL.ARR = .TIME.REM_APP "seconds
always

return

end " det.del.arr
routine DET.DEL.DEP yielding .T.MIN.SEP.TAKEOFF

" This routine determines the delay due to preceding aircraft departure
" and time to achieve minimum sepaeration for inter departures.
" CALLED FROM : STATUS.APP.CLW.RWY.OCC, STATUS.APP.CCC.RWY.OCC
" CALLS : DET.SEP.DATA

Appendix A. RUNSiM Source Code
define .PRECEDE.DEP.STRT.TIME,
 .MIN.T.SEP.TAKEOFF,
 .T.MIN.SEP.TAKEOFF as real variables

define .PRECEDE.TYPE,
 .FLLWNG.TYPE as integer variables

if COUNT.T.OFF lt TOT.DEP.ACFT

let .PRECEDE.TYPE = TYPE(DEP.ID(COUNT.T.OFF))

let .FLLWNG.TYPE = TYPE(DEP.ID(COUNT.T.OFF + 1))

let .PRECEDE.DEP.STRT.TIME = T.DEP.RAMP(COUNT.T.OFF) " departure time of
 "of preceding aircraft

let .MIN.T.SEP.TAKEOFF = SEP.T.TAKEOFFS(.FLLWNG.TYPE, .PRECEDE.TYPE) +
 INTDEP.BUFF

let .T.MIN.SEP.TAKEOFF = .MIN.T.SEP.TAKEOFF -
 (trunc.(f)(time,v - .PRECEDE.DEP.STRT.TIME) * 60 +
 frac.(f)(time,v - .PRECEDE.DEP.STRT.TIME) * 60) +
 INTDEP.BUFF
 "time to achieve minimum separation between
 "successive takeoffs from present time

always

return

end "det.del.dep

routine DET.DIST.AIR given .DRR, .VELAPP yielding .DAIR

"This routine calculates the distance the aircraft travels in air from
"threshold to touchdown.
"CALLED FROM: ASSIGN.DEP.ACFT.NAME
"CALLS:

define .VELAPP,
 .GAMMA,
 .GAMMA.NOM,
 .MAX.GAMMA,
 .MIN.GAMMA,
 .GAMMA.STD,
 .ACC.GRA,
 .NFLARE,
 .VFLARE,

Appendix A. RUNSIM Source Code
.HT.THRLD,
.HT.THRLD.NOM,
.MAX.HT.THRLD,
.MIN.HT.THRLD,
.HT.THRLD.STD,

.DAIR as real variables

define .DRR as a integer variable

let .GAMMA.NOM = 0.0523 "Descent flight path angle used to estimate the
"airborne portion of the landing path

" New procedure to estimate gamma as a random variable

let .GAMMA.STD = .GAMMA.NOM * 0.07
let .MAX.GAMMA = .GAMMA.NOM + 3.5 * .GAMMA.STD
let .MIN.GAMMA = .GAMMA.NOM - 3.5 * .GAMMA.STD

" Choose a candidate flight path angle among those permissible
until .GAMMA le .MAX.GAMMA and .GAMMA ge .MIN.GAMMA do

let .GAMMA = normal.f(.GAMMA.NOM, .GAMMA.STD, 9)

loop

" End of new procedure to estimate GAMMA (flight path angle)

let .NFLARE = 1.15 "Landing flare load factor (in g's)

let .ACC.GRA = 9.81 "Acceleration due to gravity (m/s-s)

if ARR.ACFT.TYPE(DRR) eq ..HEAVY

-HT.THRLD.NOM = 15.0 "Runway threshold crossing altitude (meters)
else

if ARR.ACFT.TYPE(DRR) eq ..LARGE

-HT.THRLD.NOM = 15.0
else

-HT.THRLD.NOM = 10.0
always
always

" New procedure to estimate HTRLD as a normally distributed random variable
" HTRLD.NOM is the nominal threshold crossing height

Appendix A. RUNSIM Source Code
let .HT.THRLD.STD = .HT.THRLD.NOM * .10
let .MAX_HT.THRLD = .HT.THRLD.NOM + 3.5 * .HT.THRLD.STD
let .MIN_HT.THRLD = .HT.THRLD.NOM - 3.5 * .HT.THRLD.STD
until .HT.THRLD le .MAX_HT.THRLD and .HT.THRLD ge .MIN_HT.THRLD do
let .HT.THRLD = normal.f(.HT.THRLD.NOM, .HT.THRLD.STD, 4)
loop

" open unit 24 for output, name = "GHT.DAT", append
" use unit 24 for output
" print 1 line with .GAMMA , .HT.THRLD thus
" ****** ****** ****** ******
" close unit 24
" End of new procedure
let .VFLARE = 0.95 * .VELAPP
let .DAIR = .HT.THRLD / .GAMMA + (.VFLARE ** 2 * .GAMMA) / (2 * .ACC.GRA * (.NFLARE - 1))
" Distance traveled in air after crossing threshold
" and before touchdown.
return
end "det.dist.air
routine DET.EXIT.SPEEDS

" This routine determines the exit speeds of the exits chosen based on the
" type of the exits.
" CALLED FROM: MAIN
" CALLS:

define .ES as an integer variable
reserve EXIT.SPEED as NO.EXITS
for .ES = 1 to NO.EXITS do
 select case EXIT.CHOICE(ES)
 case 1
 let EXIT.SPEED(ES) = 8.00 " meters/sec
 " 90 deg FAA STANDARD
 case 2
 let EXIT.SPEED(ES) = 15.00
 " 45 deg FAA STANDARD
 case 3

Appendix A. RUNSIM Source Code
let EXIT.SPEED(ES) = 26.00
 " 30 DEG FAA STANDARD

case 4

let EXIT.SPEED(ES) = 26.00
 " 30 DEG IMPROVED

case 5

let EXIT.SPEED(ES) = 17.00
 " WIDE THROAT

case 6

let EXIT.SPEED(ES) = 35.0
 " 30 DEG REDIM - HEAVY(CRITICAL ACFT)

case 7

let EXIT.SPEED(ES) = 35.0
 " 20 DEG REDIM - HEAVY(CRITICAL ACFT)

case 8

let EXIT.SPEED(ES) = 35.0
 " 30 DEG REDIM - LARGE (CRITICAL ACFT)

case 9

let EXIT.SPEED(ES) = 35.0
 " 20 DEG REDIM - LARGE(CRITICAL ACFT)

case 10

let EXIT.SPEED(ES) = 35.0
 " 30 DEG REDIM - SMALL (CRITICAL ACFT)

default

let EXIT.SPEED(ES) = 8.00

endsel

loop " until .ES = NO.EXITS

return

end " det.exit.speeds

routine DET.RWY.OCC.TIME given .DAIR, .DEC, .TT.FREE,ROLL, .VELAPP, .WING.SPAN,
 .RCARR yielding .RWYOT, .EXIT.CHosen

" This routine determines the runway occupancy time of the aircraft in
" question.It also calls routine DET.SELECT.EXIT to select the exit
" and the occupancy time of that exit.
" CALLED FROM: ASSIGN.ARR.ACFT.NAME
" CALLS: DET.SELECT.EXIT

Appendix A. RUNSIM Source Code
define .RCARR,
 .EXIT.CHosen as integer variable
define .DAIR,
 .VELAPP,
 .VEL.TD,
 .DEC,
 .DEC.STD,
 .MAX.DEC,
 .MIN.DEC,
 .LAND.DEC,
 .TT.FREE.ROLL,
 .INIT.FREE.ROLL.DIST,
 .NOMINAL.PT,
 .DECISION.PT,
 .DIST.DECISION.EXIT,
 .VEL.DECISION.PT,
 .DEC.AFTER.DECISION,
 .TT.TD,
 .TT.TD.DECISION.PT,
 .TT.AFTER.DECISION,
 .DEC.FINAL.ROLL,
 .DIST.FINAL.ROLL,
 .VEL.AT.EXIT,
 .MIN.EXIT.VEL,
 .MOD.EXIT.VEL,
 .TT.FINAL.ROLL,
 .TT.EXIT,
 .RWYOT,
 .WING.SPAN as real variables
let .VEL.TD = (1.15/1.3) * .VELAPP
 " Velocity at touchdown

let .DEC.STD = 0.07 * .DEC
 " Standard deviation of the deceleration

let .MAX.DE = .DEC + 3.5 * .DEC.STD
 " Upper limit of the deceleration

let .MIN.DE = .DEC - 3.5 * .DEC.STD
 " Lower limit of the deceleration

" Choosing a candidate deceleration value between upper and lower limit
until .LAND.DE <= .MAX.DE and .LAND.DE ge .MIN.DE do
 let .LAND.DE = normal.f(.DEC, .DEC.STD, 8)
 " Deceleration after landing

loop

let .INIT.FREE.ROLL.DIST = .TT.FREE.ROLL * .VEL.TD "Initial
 " free Roll distance immediately after touchdown

call DET.SELECT.EXIT giving .RCARR, .VEL.TD, .LAND.DE, .DAIR, .INIT.FREE.ROLL.DIST yielding .NOMINAL.PT, .EXIT.CHosen

let .DECISION.PT = (.NOMINAL.PT - 3 * .VEL.TD)
 " This is a point w.r.t. threshold
 " where a decision is made to adjust the deceleration
 " so as to achieve the exit velocity slightly ahead
 " of the exit it has selected.

" Printing nominal point

" open unit 22 for output, name = "NOMP.DAT", append

" use unit 22 for output

" print 1 line with NAME(ARR.ID(.RCARR)), .NOMINAL.PT, .LAND.DE thus
" *********** *********** ***********

" close unit 22

" End printing procedure

let .VEL.DEcision.PT = sqrt.f(.VEL.TD ** 2 - 2.0 * .LAND.DE * (DECISION.PT - .DAIR - .INIT.FREE.ROLL.DIST))
 " Velocity at the decision point

let .DIST.DEcision.EXIT = EXIT.LOCATION(.EXIT.CHosen) - DECISION.PT
 " Distance between the decision point and the exit
 " chosen.

let .DEC.AFTER.DEcision = (.VEL.DEcision.PT ** 2 - EXIT.SPEED(EXIT.CHosen) ** 2)/(2.0 * (3/4) * .DIST.DEcision.EXIT)
 " Deceleration after decision point till the threefourth

Appendix A. RUNSIM Source Code
of the distance between the decision point and exit
and attaining the exit speed.

let .TT.TD = .DAIR / (.VEL.engine + .VEL.TD) / 2.0
" Travel time from threshold to touchdown

let .TT.TD,DECISION,PT = (.VEL.TD - .VEL.DECISION,PT) / .LAND,DEC
" Travel time from touchdown to decision point

let .TT.AFTER,DECISION = (.VEL.DECISION,PT - EXIT.SPEED(EXIT,CHosen)) / .DEC.AFTER,DECISION
" Travel time decision point till it achieves the
" exit speed.

let .DEC.FINAL,Roll = 0.375 " Deceleration during final roll - m/s-s

let .DIST.FINAL,Roll = (1/4) * .DIST,DECISION.EXIT
" Distance to cover during final roll

let .MIN.EXIT,VEL = 8.0
" Minimum allowable exit velocity

let .MOD.EXIT,VEL = (EXIT.SPEED(EXIT,CHosen)) ** 2 -
(2.0 * .DEC.FINAL,Roll * .DIST.FINAL,Roll)

if .MOD.EXIT,VEL gt 0

let .VELAT.EXIT = sqrt(.MOD.EXIT,VEL)
" Velocity of aircraft at the exit
" if it decelerates with .DEC.FINAL.Roll

else

let .VELAT.EXIT = .MIN.EXIT,VEL
always

if .VELAT.EXIT lt .MIN.EXIT,VEL

let .VELAT.EXIT = .MIN.EXIT,VEL " if velocity achieved is less than the
" minimum exit prescribed velocity
" adjust velocity at exit to that min.

let .DEC.FINAL,Roll = ((EXIT.SPEED(EXIT,CHosen)) ** 2 -
(.VELAT.EXIT) ** 2) / (2.0 * .DIST.FINAL,Roll)
" Adjusted deceleration during final roll
always

if EXIT.SPEED(EXIT,CHosen) eq .VELAT.EXIT

let .TT.FINAL,Roll = .DIST.FINAL,Roll / .VELAT.EXIT
"travel time with uniform velocity during final roll

else

let .TT.FINAL,Roll = (EXIT.SPEED(EXIT,CHosen) - .VELAT.EXIT) / .DEC.FINAL,Roll
" Travel time during final roll
always

Appendix A. RUNSIM Source Code
call DET:TOT giving .EXIT:CHOSEN, .VELAT:EXIT, .WING:SPAN yielding .TT:EXIT

" open unit 31 for output, name = 'rolldist.dat', append"

" use unit 31 for output"

" *****.* ****.* *****.* *****.* *****.* *****.*

" close unit 31"

" open unit 30 for output, name = 'roll.dat', append"

" use unit 30 for output"

"************** ****.* **.* ***.* ***.* ***.* ***.* ***.* ***.*

" close unit 30

return

end " det.rwy.occ.time
routine DET:SELECT.EXIT given .IRR, .VTD, .LDEC, .TDPT, .INFROLL yielding .NO:PT, .EXCHOSEN

" This routine selects the exit for the aircraft in question and also the
turnoff time."
"CALLED FROM: DET.RWY.OCC:TIME"
"CALLS:

define .VTD,
 .LDEC,
 .TDPT,
 .INFROLL,
 .FINAL:VEL,
 .DIST:TRAVELED,
 .NO:PT as real variables
define .IRR,
 .IX,
 .EXCHOSEN as integer variables

Appendix A. RUNSIM Source Code
for .IEX = 1 to NO.EXITs do

let .FINAL.VEL = EXIT.SPEED(.IEX)

let .DIST.TRAVELED = (.VTD ** 2 - .FINAL.VEL ** 2)/(2.0 * .LDEC)
 " Distance covered to decelerate from velocity at
 " touchdown to the exit speed of the exit in question.

let .NO.PT = .TDPT + .INRROLL + .DIST.TRAVELED

if .NO.PT le EXIT.LOCATION(.IEX)
 .EXCHOSEN = .IEX
 return
always

if .IEX eq NO.EXITs
 call vclears.r
 call vgotoxy1(18,0)
 call DO.BEEP
 call vbcolor.r(12)
 print 2 lines with NAME(ARR.ID(IRR)) thus
 THE *************** AIRCRAFT CANNOT LAND: INSUFFICIENT RUNWAY LENGTH.
 QUITTING THE SIMULATION.---------TYPE "QUIT" AT THE PROMPT
 call vbcolor.r(1)
 always
loop
return
end " .det.select.exit
routine DET.TAKEOFF.TIME given .RID yielding .TAKEOFF.TTR

" This routine determines the takeoff time of the aircraft depending
" on the type it belongs
" CALLED FROM: ASSIGN.DEP.ACFT.NAME
" CALL:

define .RID as an integer variable
define .TAKEOFF.TTR as a real variable

if DEP.ACFT.TYPE(.RID) eq .HEAVY
 .TAKEOFF.TTR = 35 "SECONDS
always

if DEP.ACFT.TYPE(.RID) eq .LARGE
 .TAKEOFF.TTR = 30 "SECONDS

Appendix A. RUNSIM Source Code
always

if DEP.ACFT.TYPE(RID) eq .SMALL

.TAKEOFF.TTR = 25 "SECONDS

always

return

deroutine DET.TOT given .EXIT.NO, ACFT.SPEED, WING.SPAN yielding .TOT
" This routine calculates the turnoff time for a given aircraft and extnng
" speed. It opens TOT.DATA file and reads the data required i.e. intercept,
" runway width coefficient and act wing span coefficient and then interpolates
" the data to calculate TOT.
" CALLED FROM: DET.RWY.OCC.TIME
" CALLS:

define .EXIT.NO,

.READ.NO,

.NO.OF.SPEEDS,

.STEP as integer variables

define .ACFT.SPEED,

.TOT,

.FACT,

.INPT,

.RW.CF,

.ACFWS.CF,

.WING.SPAN as real variables

define .SPEED.INC,

.INTERCEPT,

.RW.COEFF,

.ACFWS.COEFF as 1-dimensional real arrays

open unit 9 for input, name = 'TOT.DAT'

use unit 9 for input

let ecf.v = 1

while mode is alpha do

Appendix A. RUNSIM Source Code
start new input record

loop

until .READ.NO eq EXIT.CHOICE(EXIT.NO), do

skip 1 input record

read .READ.NO

loop

read .NO.OF.SPEEDS

reserve .SPEED.INC,

.INTERCEPT,

.RW.COEFF,

.ACFWS.COEFF as .NO.OF.SPEEDS

let .STEP = 1

until .STEP gt .NO.OF.SPEEDS, do

read .READ.NO, .SPEED.INC(.STEP), .INTERCEPT(.STEP), .RW.COEFF(.STEP), .ACFWS.COEFF(.STEP)

let .STEP = .STEP + 1

loop

close unit 9

let .STEP = 1

if EXIT.CHOICE(EXIT.NO) eq 1

.TOT = .INTERCEPT(.STEP) + .RW.COEFF(.STEP) * RWY.WIDTH +

.ACFWS.COEFF(.STEP) * .WING.SPAWN

else

for .STEP = 1 to (.NO.OF.SPEEDS - 1), do

if .ACFT.SPEED ge .SPEED.INC(.STEP) and

.ACFT.SPEED le .SPEED.INC(.STEP + 1)

_FACT = ((.ACFT.SPEED - .SPEED.INC(.STEP)) /

(.SPEED.INC(.STEP + 1) - .SPEED.INC(.STEP)))

let .INPT = _.FACT * (.INTERCEPT(.STEP + 1) - .INTERCEPT(.STEP)) +

.INTERCEPT(.STEP)

let .RW.CF = FACT * (.RW.COEFF(.STEP + 1) - .RW.COEFF(.STEP)) +

.RW.COEFF(.STEP)

let .ACFWS.CF = FACT * (ACFWS.COEFF(.STEP + 1) -

Appendix A. RUNSIM Source Code
.ACFWS.COEFF(STEP) + .ACFWS.COEFF(STEP)

let .TOT = .INPT + .RW.CF * RWY.WIDTH + .ACFWS.CF * .WING.SPAN

let .STEP = .NO.OF.SPEEDS " to quit from the loop

always

loop

always

return

end " det.tot
routine DET:VAPP given .VRR yielding . VELOCITY

" This routine calculates the atmospheric constants for the given airport
" conditions and then the velocity of approach for the aircraft in question.
" CALLED FROM: ASSIGN.ARR.ACFT.NAME
" CALLS:

define .VRR as an integer variable

define .VELOCITY,

.TZERO,

.LAMBDA,

.THETAS,

.DELTAS,

.TR.TEMP.RATIO,

.SIGMA,

.RHO.

.ACC.GRA,

.WT.FACTOR,

.ACFT.WT,

.V.STALL as a real variables

let .TZERO = 288.2

let .LAMBDA = .0065

" Estimate the standard atmosphere values at given elevation

let .THETAS = 1 - (.LAMBDA/TZERO) * AIR.ELEV

let .DELTAS = .THETAS ** 4.2561

" Estimate true temperature ratio

Appendix A. RUNSIM Source Code
let .TR.TEMP.RATIO = (273 + AIR.TEMP) / 288.2

" Compute the equivalent density ratio(SIGMA)

let .SIGMA = .DELTAS / .TR.TEMP.RATIO

let .RHO = 1.225 " Standard atmosphere sea level density(kg/cu.meter)

let .ACC.GRA = 9.81 "Acceleration due to gravity(m/sec-sec)

" Determination of the candidate aircraft weight while landing

if ARR.ACFT.WTF.STD.(VRR) eq 0
 ARR.ACFT.WTF.STD.(VRR) = .001
always
until .WT.FACTOR gt 0.0 and .WT.FACTOR le 1.0 , do

let .WT.FACTOR = normal.f(ARR.ACFT.WTF.MEAN.(VRR), ARR.ACFT.WTF.STD.(VRR), 2)
loop

let .ACFT.WT = ARR.ACFT.OEW.(VRR) + (ARR.ACFT.MALW.(VRR) - ARR.ACFT.OEW.(VRR)) * .WT.FACTOR

" Calculate velocity of approach

let .V.STALL = sqrt(2 * .ACFT.WT * .ACC.GRA / (.RHO * .SIGMA * ARR.ACFT.CL.MAX.(VRR) * ARR.ACFT.WING.AREA.(VRR)))

" Stalling velocity

let .VELOCITY = 1.3 * .V.STALL

" New printing procedure for approach velocity

" open unit 23 for output, name = "VAPP.DAT", append

" use unit 23 for output

" print 1 line with .VELOCITY thus
" ***********
" close unit 23

" End of printing procedure

return

end "det.vapp
routine DO.BEEP

" This beeps when called
" CALLED FROM: NEW.APP.STRT, NEW.INPUT.DIST
define .BEEP as a integer variable

for .BEEP = 1 to 10, do

 write 7 as A 1, + using unit 6

loop

return

end " do.beep
process FINAL.APPROACH.OPERATION

" In this process the aircraft enters the final approach as per its
" T.DEP.STACK and reaches threshold after its APPROACH.OCC.TIME. The
" No. of aircraft using the FINAL.APPROACH is also kept in track this helps
" in knowing the aircraft that is preceding the one in the stack by using
" counter COUNT.APP.
" CALLED FROM: SYS.CHECK, STACK, PRECEDE.FASTER.ACFT, PRECEDE.SLOWER.ACFT
" CALLS: LANDING.OPERATION

request 1 FINAL.APPROACH(1)
let COUNT.APP = COUNT.APP + 1
let T.DEP.STACK(COUNT.APP) = time.v
if (COUNT.APP + 1) le COUNT.ARR
 call SYS.CHECK.AT.STACK
always

let TOT.ARR.DELAY = TOT.ARR.DELAY + (T.DEP.STACK(COUNT.APP) - T.ENTER.STACK(COUNT.APP))
work APP.OCC.TIME(ARR.ID(COUNT.APP)) seconds
relinquish 1 FINAL.APPROACH(1) " after reaching threshold
activate a LANDING.OPERATION now

return

end " final.approach.operation
process GENERATOR

" The initiation of the creation of the aircraft according to user specified
" distribution is executed in this process.
" CALLED FROM: MAIN
" CALLS: CREATE.AIRCRAFT.ARR, CREATE.AIRCRAFT.DEP

define .RARR.DIST as a real variable
define .II as an integer variable

Appendix A. RUNSIM Source Code 179
reserve ARR.ID,
 T.ENTER.STACK,
 T.DEP.STACK,
 T.LANDING,
 EXIT.ASSIGNED as TOT.ARR.ACFT
reserve ROT.STAT,
 NO.IDENT.ARR as NO.ARR.AIRCRAFT
reserve EXIT,assign as NO.ARR.AIRCRAFT by NO.EXITS
for .ii = 1 to TOT.ARR.ACFT do
 if ARR.DIST eq 1
 .R.ARR.DIST = poisson.f(ARR.DIST.MEAN, 1)
 else
 if ARR.DIST eq 2
 .R.ARR.DIST = exponential.f(ARR.DIST.MEAN, 1)
 else
 if ARR.DIST eq 3
 .R.ARR.DIST = uniform.f(ARR.DIST.MEAN, ARR.DIST.STD, 1)
 always
 always
 always
 activate a CREATE.AIRCRAFT.ARR now
 wait .R.ARR.DIST seconds
 loop " .ii = 1 to TOT.ARR.ACFT
 end "generator
process GENERATOR.DEP
define .R.DEP.DIST as a real variable
define .ii as an integer variable

reserve DEP.ID,
 T.ENTER.RAMP,
 T.DEP.RAMP as TOT.DEP.ACFT

Appendix A. RUNSIM Source Code
for .ii = 1 to TOT.DEP.ACFT do

"choosing the correct distribution for the interarrivals for departing aircraft

if DEP.DIST eq 1

 .R.DEP.DIST = poisson.f(DEP.DIST.MEAN, 3)

else

if DEP.DIST eq 2

 .R.DEP.DIST = exponential.f(DEP.DIST.MEAN, 3)

else

if DEP.DIST eq 3

 .R.DEP.DIST = uniform.f(DEP.DIST.MEAN, ARR.DIST.STD, 3)

always

always

always

activate a CREATE.AIRCRAFT.DEP now

wait .R.DEP.DIST seconds

loop

return

end " generator.dep
routine GLOBAL:STAT.OP given .ITER

"This routine displays the global statistics of the simulation run.
"CALLED FROM: REPORT.GEN
"CALLS: REPORT.GEN

define .WR,

 .ITER,

 .NO.ARR as integer variables

define .WAROT,

 .IND.WT.ROT,

 .SUM.SQ.IND.WT.ROT,

 .STD.WAROT as real variables

define .NEW.FILE.NAME,

 .EXT as text variables

Appendix A. RUNSIM Source Code
"CALCULATION OF WEIGHTED AVERAGE ROT

if TOT.ARR.ACFT gt 0
 for .WR = 1 to NO.ARR.AIRCRAFT do
 if NO.IDENT.ARR(WR) eq 0
 .IND.WT.ROT = 0
 .NO.ARR = .NO.ARR + 1
 else
 .IND.WT.ROT = (ROT.STAT(WR) / NO.IDENT.ARR(WR)) * ARR.ACFT.PERCENT(WR) / 100
 end always
 end

 .WAROT = .WAROT + .IND.WT.ROT
 .SUM.SQ.IND.WT.ROT = .SUM.SQ.IND.WT.ROT + (.IND.WT.ROT) ** 2
end loop

 .STD.WAROT = sqrt.f(((NO.ARR.AIRCRAFT - .NO.ARR) * (SUM.SQ.IND.WT.ROT) - .WAROT ** 2) / (NO.ARR.AIRCRAFT - .NO.ARR))

always

let .NEW.FILE.NAME = substr.f(APP.FILE.NAME,1,7)

let .EXT = itot.f(.ITER)

let .NEW.FILE.NAME = concat.f(.NEW.FILE.NAME,".*",.EXT)

open unit 12 for output, name = .NEW.FILE.NAME

use unit 12 for output

write COUNT.LAND, TOT.ARR.DELAY, COUNT.T.OFF, TOT.DEP.DELAY, .WAROT, .STD.WAROT, END.LAND.SIM, END.DEP.SIM, time.v as i 5, s 1, d(10,2), s 1, i 5, s 1, d(10,2), s 1, d(8,2), s 1, d(8,2), s 1, d(8,3), s 1, d(8,3), s 1, d(9,3)

close unit 12

call REPORT.GEN giving .ITER

return

end "global.stat.op
routine GLOBAL.STAT.VIEW given .ITER

"This routine displays the global statistics of the simulation run.
"CALLED FROM: REPORT.GEN
"CALLS: REPORT.GEN

Appendix A. RUNSIM Source Code
define .CT.LAND,
 .CT.T.OFF,
 .ITER as integer variables

define .TOT.ARR.DEL,
 .TOT.DEP.DEL,
 .ARR.SIM,
 .DEP.SIM,
 .TOT.SIM,
 .WAROT,
 .STD.WAROT as real variables

define .CHOICE,
 .NEW.FILE.NAME,
 .EXT as text variables

call vclears.r

let .NEW.FILE.NAME = substr.f(APP.FILE.NAME,1,7)
let .EXT = itot.f(.ITER)

let .NEW.FILE.NAME = concat.f(.NEW.FILE.NAME,",G.",.EXT)
" Reading the global statistics from the output file

open unit 12 for input, name = .NEW.FILE.NAME
use unit 12 for input

read .CT.LAND, .TOT.ARR.DEL, .CT.T.OFF, .TOT.DEP.DEL, .WAROT, .STD.WAROT,
 .ARR.SIM, .DEP.SIM, .TOT.SIM

close unit 12
" completed the input

let .CHOICE = "A"

until .CHOICE eq "O" do

if .CHOICE eq "P"

open unit 12 for output, name = "GLOBAL.RSM"
use unit 12 for output
always

let page.v = 1

Appendix A. RUNSIM Source Code
begin report on a new page

begin heading

if page is first

 print 1 line thus
 GLOBAL STATISTICS

 print 1 line with .ITER thus
 ITER. NO. ****

always

skip 1 output line

end "heading section"

print 1 line with .CT.LAND thus
Total Arrivals Simulated: *****
skip 1 line

print 1 line with .TOT.ARR.DEL, (.TOT.ARR.DEL / .CT.LAND) thus
Total Delay for Arrivals: *****.** Min; Ave. Arrival Delay: ****.*** Min
skip 1 line

print 1 line with .ARR.SIM thus
Total Simulation Time for Arrivals: *****.*** Min
skip 1 line

print 1 line with .CT.T.OFF thus
Total Departures Simulated: *****
skip 1 line

print 1 line with .TOT.DEP.DEL, (.TOT.DEP.DEL / .CT.T.OFF) thus
Total Delay for Departures: *****.** Min; Ave. Departure Delay: *****.*** Min
skip 1 line

print 1 line with .DEP.SIM thus
Total Simulation Time for Departures: *****.*** Min
skip 1 line

print 1 line with .WAROT thus
Weighted Average Runway Occupancy Time: *****.** Secs
skip 1 line

print 1 line with .STD.WAROT thus
Std. Dev., of Weighted Average ROT: *****.**
skip 1 line

Appendix A. RUNSIM Source Code
print 1 line with .TOT.SIM thus
Total Simulation Time: ****,** Mins

end "report section

if .CHOICE eq "P"

close unit 12

" COMMANDS FOR USING DOS COMMANDS"

let GT.1 = "CD HIGH2"

SYS$DO.X(11)

let GT.1 = "COPY GLOBAL.RSM LPT1"

SYS$DO.X(11)

let GT.1 = "CD.."

SYS$DO.X(11)

always
call vfcolor.r(4)
call vgotoxy.r(22,1)
call vbcolor.r(5)
call vfcolor.r(15)

print 1 line thus
ENTER - (P)RINT; (O)UTPUT MENU:

call vgotoxy.r(22,33)

read .CHOICE

let .CHOICE = upper.f(.CHOICE)

let .CHOICE = fixed.f(.CHOICE,1)
call vbcolor.r(3)
call vfcolor.r(0)

loop " until .CHOICE = "O"
call REPORT.GEN given .ITER

return

end "global.stat.view
routine INPUT.DATA.OP given .ITER
"This routine gives an option to choose view the data used for the simulation.
" CALLED FROM: REPORT.GEN
" CALLS: ARRIVAL,POP.OP, DEP,POP.OP, RWY,EX.OP, INT,SEP.OP, INT,ARR.OP,
define .ITER,

.CHOICE as integer variables

call vclears.r

print 3 lines thus

APPLICATION DATA

skip 2 lines

print 6 lines thus

1) ARRIVAL POPULATION
2) DEPARTURE POPULATION
3) RUNWAY & EXIT DATA
4) INTRAIL SEPARATION
5) INTERARRIVAL DISTRIBUTIONS
6) RETURN TO OUTPUT MENU

call vgotoxy.r(22,1)

print 1 line thus
ENTER CHOICE NO.:

call vgotoxy.r(22,18)

read .CHOICE

select case .CHOICE

case 1

call ARRIVAL.POP.OP giving .ITER

case 2

call DEP.POP.OP giving .ITER

case 3

call RWY.EX.OP giving .ITER

case 4

call INT.SEP.OP giving .ITER

case 5

call INT.ARR.OP giving .ITER

case 6

call REPORT.GEN giving .ITER

Appendix A. RUNSIM Source Code
default
 call REPORT.GEN giving .ITER
endselect
return
end " input.data.op
routine INT.ARR.OP given .ITER
 " This routine displays the interarrival distributions used for the current
 " application run.
 " CALLED FROM: INPUT.DATA.OP
 " CALLS
define .ITER as an integer variable
define .DIST,
 .CHOICE as text variables
call vclear.a
print 3 lines thus
 INTERARRIVAL DISTRIBUTIONS

skip 2 lines
print 2 lines thus
 ARRIVALS
select case ARR.DIST
 case 1
 let .DIST = "POISSON"
 case 2
 let .DIST = "EXPONENTIAL"
 case 3
 let .DIST = "UNIFORM"
endselect
skip 1 line
if ARR.DIST lt 3
 print 1 line with .DIST, ARR.DIST, MEAN thus
 DISTRIBUTION : *********** MEAN: *****.** Sec
Appendix A. RUNSIM Source Code
else

print 1 line with .DIST, ARR.DIST.MEAN, ARR.DIST.STD thus
DISTRIBUTION : *********** LOWER: *****.** Sec HIGHER : *****.** Sec
always "ARR.DIST it 3

skip 2 lines

print 2 lines thus

DEPARTURES

select case DEP.DIST

case 1

let .DIST = "POISSON"

case 2

let .DIST = "EXPONENTIAL"

case 3

let .DIST = "UNIFORM"

endselcase

skip 1 line

if DEP.DIST it 3

print 1 line with .DIST, DEP.DIST.MEAN thus
DISTRIBUTION : *********** MEAN: *****.** Sec

else

print 1 line with .DIST, DEP.DIST.MEAN, DEP.DIST.STD thus
DISTRIBUTION : *********** LOWER: *****.** Sec HIGHER : *****.** Sec

always

call vgtoxy.r(22,1)

call vbcolor.r(5)

call vcolor.r(15)

print 1 line thus

HIT: (PRINT SCREEN) TO PRINT ; (Q)UIT:

until .CHOICE eq "Q", do

call vgtoxy.r(22,40)

read .CHOICE
call vbcolor.r(3)
call vcolor.r(0)
let .CHOICE = fixed.f(.CHOICE,1)
let .CHOICE = upper.f(.CHOICE)
loop ",".CHOICE eq Q
call INPUT.DATA.OP giving .ITER

return
end " int.arr.op
routine INT.SEP.OP given .ITER

" This routine displays the min. interarrival separation data used.
" CALLED FROM: INPUT.DATA.OP
" CALLS:
define .ITER,
 .CT,
 .LOC,
 .IPS as integer variables
define .CHOICE as a text variable
while .CHOICE ne 'Q', do
call vclear.r
let .CT = .CT + 1
if .CT eq 1
 print 1 line thus
 MIN. INTER-ARRIVAL SEPERATION (METERS)
else
 if .CT eq 2
 print 1 line thus
 MIN. DEPARTURE-ARRIVAL SEPERATION (METERS)
 else
 print 1 line thus
 MIN. INTER-DEPARTURE SEPERATION (SECONDS)
 always
always
call SEP.SCREEN

Appendix A. RUNSIM Source Code 189
let .LOC = 4
let .IPS = 0
for .IPS = 1 to 3 do
 let .LOC = .LOC + 2
 call vgotoxy.r(LOC,18)
if .CT eq 1
 print 1 line with SEP.DIST.ARR(.IPS,1), SEP.DIST.ARR(.IPS,2), SEP.DIST.ARR(.IPS,3) thus
 ****,** ****,** ****,**
else
 if .CT eq 2
 print 1 line with DEP.ARR.SEP(.IPS,1), DEP.ARR.SEP(.IPS,2), DEP.ARR.SEP(.IPS,3) thus
 ****,** ****,** ****,**
 else
 print 1 line with SEP.T.TAKEOFFS(.IPS,1), SEP.T.TAKEOFFS(.IPS,2), SEP.T.TAKEOFFS(.IPS,3) thus
 ****,** ****,** ****,**
 let .CT = 0
 always
 always
loop "until .IPS = 3
 call vgotoxy.r(22,1)
 call vfcolor.r(15)
 call vbcolor.r(5)
 print 1 line thus
 ENTER (N)EXT SCREEN; (Q)UIT :
 call vgotoxy.r(22,30)
 read .CHOICE
 call vbcolor.r(3)
 call vfcolor.r(0)
 let .CHOICE = fixed.f(.CHOICE, 1)
 let .CHOICE = upper.f(.CHOICE)

Appendix A. RUNSIM Source Code
if .CHOICE eq "Q"
 call INPUT.DATA.OP giving .ITER
 always
 loop
 return
end " int.sep.op
process LANDING.OPERATION

" in this process the arriving aircraft touchdowns and exits the runway after
" selecting the proper exit. Then the aircraft exits the system.
" CALLED FROM: FINAL.APPROACH.OPERATION
" CALLS:

define .EXT,
 .NEW.FILE.NAME as text variables
define .ACFT.ID as a pointer variable
let .NEW.FILE.NAME = substrf(APP.FILE.NAME,1,7)
let .EXT = itof(RUN.NO)
let .NEW.FILE.NAME = concatf(.NEW.FILE.NAME,"R",.EXT)
request 1 RUNWAY(1)
let COUNT.LAND = COUNT.LAND + 1
let OCCUPANT.OPERATION = OPERATION(ARR.ID(COUNT.LAND))
let T.LANDING(COUNT.LAND) = time.v
if COUNT.LAND eq 1
 open unit 16 for output, name = .NEW.FILE.NAME
 use unit 16 for output
 let page.v = 1
 begin report on a new page
 begin heading
 print 2 lines thus
 ARRIVAL EVENT LIST
 skip 1 line
 print 1 line with APP.FILE.NAME, RUN.NO thus

Appendix A. RUNSIM Source Code
skip 1 line

print 4 lines thus

AIRCRAFT CREATION ENTER FINAL LANDING ROT EXIT DELAY
NAME TIME APPROACH TIME CHOSEN
Min Min Min Sec Min

end " heading section

always

if COUNT.LAND gt 1

open unit 16 for output, name = .NEW.FILE.NAME, append

use unit 16 for output

always

write NAME(ARR.ID(COUNT.LAND)),
(T.ENTER.STACK(COUNT.LAND)),
(T.DEP.STACK(COUNT.LAND)),
(T.LANDING(COUNT.LAND)),
RWY.OCC.TIME(ARR.ID(COUNT.LAND)),
EXIT.ASSIGNED(COUNT.LAND),
(T.DEP.STACK(COUNT.LAND) -
T.ENTER.STACK(COUNT.LAND)) as t 12, s 2, d(8,2), s 5,
d(8,2), s 5, d(8,2), s 2, d(8,2), s 2,
i 2, s 5, d(7,2), /

if COUNT.LAND eq TOT.ARR.ACFT

end " report section

always " COUNT.LAND eq TOT.ARR.ACFT

close unit 16

let .ACFT.ID = COUNT.LAND

work RWY.OCC.TIME(ARR.ID(COUNT.LAND)) seconds

relinquish 1 RUNWAY(1)

if .ACFT.ID eq TOT.ARR.ACFT

END.LAND.SIM = time.v

always

destroy this AIRCRAFT called ARR.ID(.ACFT.ID)

return

end " landing.operation

Appendix A. RUNSIM Source Code
Routine NEW.APP.STRT
"This routine is the main input routine and writes the data to an application
"file.
"CALLED FROM: APP.CHOICE
"CALLS: ACFT.LIST.SCRN, DO.BEEP, NEW.INPUT.DIST, YES.NO.MESSAGE,
"ROW.COL.WARNING

Define .APP.NAME,

..SURE,
..YESNO,
..YSN,
..YNO,
..YYNO,
..DUP as text variables

Define .CUM.PERCENT.DEP,

..DIST.ARR.MEAN,
..DIST.ARR.STD,
..DIST.DEP.MEAN,
..DIST.DEP.STD,
..ARR.BUFF,
..DEP.BUFF,
..DEP.ARR.BUFF,
..RWY.ELEV,
..RWY.TEMP,
..RWY.LEN,
..APP.LENGTH,
..TRANS as real variables

Define .NO.RECORDS,

..CUM.PERCENT,
..IA,
..ID,
..CT,
..CD,
Appendix A. RUNSIM Source Code
.LOC,
.XLOC,
.LNO,
.YCD,
.YTYP,
.EDIT.EX,
.NEW.ACFT.NO,
.TRAN.SCHOICE,
.NN,

.JJ as integer variables

define .ACFT.NO.ARR,
 .ACFT.PERCENT.ARR,
 .ACFT.NO.DEP,
 .ACFT.PERCENT.DEP,
 .EXIT.SCHOICE as 1-dimensional integer arrays

define .WT.F.MEAN,
 .WT.F.STD,
 .EXIT.LOC as 1-dimensional real arrays

define .ARR.SEP,
 .ARR.DEP.SEP,
 .DEP.SEP as 2-dimensional real arrays

call vclears.r

skip 2 lines

call vcolor.r(14)

print 1 line thus NEW APPLICATION
call vcolor.r(4)

print 1 line thus

call vcolor.r(15)

skip 1 line

Appendix A. RUNSIM Source Code
print 1 line thus
Name of the application:

call vgotoxy.r(5,26)

read .APP.NAME

let .APP.NAME = upper.f(APP.NAME)

skip 1 line

print 1 line thus
File name of the application:

call vgotoxy.r(7,32)

read APP.FILE.NAME

let APP.FILE.NAME = upper.f(APP.FILE.NAME)

call vclears.r

call ACFT.LIST.SCRN yielding .NO.RECORDS

reserve .ACFT.NO.ARR,

 .ACFT.PERCENT.ARR,

 .WT.F.MEAN,

 .WT.F.STD,

 .ACFT.NO.DEP,

 .ACFT.PERCENT.DEP as .NO.RECORDS

call vfcolor.r(14)

print 1 line thus
DATA INPUT FOR ARRIVALS

call vfcolor.r(15)

call vgotoxy.r(15,0)

print 1 line thus
Enter No. of Arrivals to be simulated:

call vgotoxy.r(15,40)

read .NO.ARR.GEN

call vgotoxy.r(17,0)

print 1 line thus
Select the aircraft by entering the number:

call vgotoxy.r(19,0)

Appendix A. RUNSIM Source Code
print 1 line thus
Enter the percentage of the above aircraft to be simulated:

call vgotoxy.r(21,0)

print 1 line thus
Cumulative percentage of aircraft selected for simulation:

until .CUM.PERCENT ge 100 do

let .IA = .IA + 1

call vgotoxy.r(17,44) "for the cursor to be at 1st question

read .ACFT.NO.ARR.(IA)

"CHECK FOR DUPLICATION OF AIRCRAFT SELECTION

let .DUP = "N"

until .DUP eq "N" do

call ACFT.DUP.CHECK giving .IA, .ACFT.NO.ARR(*) yielding .NEW.ACFT.NO,
 .DUP

"CHECK FOR CORRECT INPUT WITHIN THE LIMITS

until .NEW.ACFT.NO ge 1 and .NEW.ACFT.NO le .NO.RECRODS, do

call DO.BEEP

call vgotoxy.r(22,1)

call vbcolor.r(12)

print 1 line thus
WARNING: THE ENTERED AIRCRAFT NO. IS NOT AVAILABLE, ENTER VALUE AGAIN

call vbcolor.r(1)

call vgotoxy.r(17,44)

call vclear.r

read .NEW.ACFT.NO

call vgotoxy.r(22,0)

call vclear.r

loop "until .ACFT.NO.ARR.(IA) is > 1 or < 30

let .ACFT.NO.ARR.(IA) = .NEW.ACFT.NO

loop

let .DUP = "Y"

Appendix A. RUNSIM Source Code
call vgotoxy.r(19,60) " for cursor to be at the second question
read .ACFT.PERCENT.ARR.(IA)
until (.ACFT.PERCENT.ARR.(IA) + .CUM.PERCENT) le 100, do
 call DO.BEEP
 call vgotoxy.r(22,1)
 call vbcolor.r(12)
 print 1 line thus
 WARNING: THE PERCENTAGE CHOSEN EXCEEDS 100 ; ENTER A VALUE AGAIN
 call vbcolor.r(1)
 call vgotoxy.r(19,60)
 call vclearl.r
 read .ACFT.PERCENT.ARR.(IA)
 call vgotoxy.r(22,0)
 call vclearl.r
loop
let .CUM.PERCENT = .CUM.PERCENT + .ACFT.PERCENT.ARR.(IA)
call vgotoxy.r(21,59)
call vclearl.r
print 1 line with .CUM.PERCENT thus
*** %
call vgotoxy.r(17,44)
call vclearl.r
call vgotoxy.r(19,59)
call vclearl.r
loop " until the percentage of aircraft chosen is 100
" input for weight factor data for landing aircraft
call vclears.r
call vbcolor.r(14)
print 1 line thus
INPUT WEIGHT FACTOR DATA

Appendix A. RUNSIM Source Code
call vfc10.r(4)

print 1 line thus

call vfc10.r(15)

print 1 line thus

| LANDING AIRCRAFT | MEAN | STD. DEV. |

call vfc10.r(4)

print 1 line thus

call vfc10.r(7)

skip 1 line

for .IW = 1 to .IA, write ACFT.NAME(ACFT.NO.ARR(.IW)) as s 9, t 12, /

let .SURE = "Y"

until .SURE = "N" do

let .CROW = 4

for .IW = 1 to .IA do

let .CROW = .CROW + 1

call vgotoxy.r(.CROW, 39)

call vclear1.r

read .WT.F.MEAN(.IW)

call vgotoxy.r(.CROW, 62)

read .WT.F.STD(.IW)

loop " until selected aircraft were assigned their wt. factor

call YES.NO.MESSAGE yielding .SURE

loop "until .SURE = N

call vclear1.r

" DATA INPUT FOR DEPARTURES

call ACFT.LIST.SCRN yielding .NO.RECORDS

call vfc10.r(14)

print 1 line thus

DATA INPUT FOR DEPARTURES

Appendix A. RUNSIM Source Code
call vcolor.r(15)

skip 1 line

call vgotoxy.r(15,0)

print 1 line thus
Enter No. of Departures to be simulated:

call vgotoxy.r(15,42)

read .NO.DEP.GEN

call vgotoxy.r(17,0)

print 1 line thus
Select the aircraft by entering the number:

call vgotoxy.r(19,0)

print 1 line thus
Enter the percentage of the aircraft to be simulated:

call vgotoxy.r(21,0)

print 1 line thus
Cumulative percentage of aircraft selected for departures:

until .CUM.PERCENT.DEP ge 100 do

let .ID = .ID + 1

call vgotoxy.r(17,44)

read .ACFT.NO.DEP.(ID)

"CHECK FOR DUPLICATE SELECTION OF AIRCRAFT"

let .DUP = "Y"

until .DUP eq 'N' do

call ACFT.DUP.CHECK giving .ID, .ACFT.NO.DEP(*) yielding .NEW.ACFT.NO, .DUP

" CHECK FOR LIMITS OF SELECTION OF AIRCRAFT"

until .NEW.ACFT.NO ge 1 and .NEW.ACFT.NO le .NO.RECORDS, do

 call DO.BEEP

 call vgotoxy.r(22,1)

 call vbcolor.r(12)

print 1 line thus
WARNING: THE ENTERED AIRCRAFT NO. IS NOT AVAILABLE, ENTER THE VALUE AGAIN

 call vbcolor.r(1)

Appendix A. RUNSIM Source Code
call vgotoxy.r(17,44)
call vclear.r
read .NEW.ACFT.NO
call vgotoxy.r(22,0)
call vclear.r

loop
 let .ACFT.NO.DEP(.ID) = .NEW.ACFT.NO
loop " UNTIL BOTH CHECKS ARE SATISFIED

let .DUP = "*

call vgotoxy.r(19,56)
read .ACFT.PERCENT.DEP(.ID)

until (.ACFT.PERCENT.DEP(.ID) + .CUM.PERCENT.DEP) ge 1 and
 (.ACFT.PERCENT.DEP(.ID) + .CUM.PERCENT.DEP) le 100, do
 call DO.BEEP
 call vgotoxy.r(22,1)
call vbcolor.r(12)

print 1 line thus
WARNING: THE SELECTED PERCENTAGE EXCEEDS 100; ENTER A VALUE AGAIN

call vbcolor.r(1)
call vgotoxy.r(19,56)
call vclear.r
read .ACFT.PERCENT.DEP(.ID)
call vgotoxy.r(22,0)
call vclear.r

loop

let .CUM.PERCENT.DEP = .CUM.PERCENT.DEP + .ACFT.PERCENT.DEP(.ID)
call vgotoxy.(21,59)
call vclear.r

print 1 line with .CUM.PERCENT.DEP thus
*** %
call vgotoxy.r(17,44)

Appendix A. RUNSIM Source Code
call vclearl.r

call vgotoxy.r(19,56)

call vclearl.r

loop " until percentage of dep. aircraft is 100.

call vcleara.r

call NEW.INPUT.DIST yielding .DIST.ARR, .DIST.ARR.MEAN, .DIST.ARR.STD,

.DIST.DEP, .DIST.DEP.MEAN, .DIST.DEP.STD

" INPUT DATA REGARDING THE MINIMUM SEPARATIONS.

reserve .ARR.SEP,

.ARR.DEP.SEP,

.DEP.SEP as 3 by 3

open unit 10 for input, name = "SEP.DAT"

use unit 10 for input

" JUMP OVER THE COMMENT LINES IN THE DATA FILE

while mode is alpha do

start new input record

loop " until mode is alpha

for .RPS = 1 to 3, do

start new input record

read .ARR.SEP(.RPS,1)

read .ARR.SEP(.RPS,2)

read .ARR.SEP(.RPS,3)

loop

for .SPS = 1 to 3, do

start new input record

read .ARR.DEP.SEP(.SPS,1)

read .ARR.DEP.SEP(.SPS,2)

read .ARR.DEP.SEP(.SPS,3)

loop

for .TPS = 1 to 3, do

Appendix A. RUNSIM Source Code
start new input record
read .DEP.SEP(TPS,1)
read .DEP.SEP(TPS,2)
read .DEP.SEP(TPS,3)

loop
close unit 10

"END OF READING THE SEPERATION DATA"
call vclear

call vfcolor.r(14)

print 1 line thus

MIN. INTERARRIVAL SEPERATION (METERS)

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(15)

print 1 line thus

| LEADING heavy large small |

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(15)

print 7 line thus

| FOLLOWING 1 2 3 |
| HEAVY 1 |
| LARGE 2 |
| SMALL 3 |

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(15)

let .YESNO = "Y"

until .YESNO eq "N" do

let .LOC = 4

Appendix A. RUNSIM Source Code
for .IPS = 1 to 3 do
 let .LOC = .LOC + 2
 call vgotoxy.r(LOC,18)
 print 1 line with .ARR.SEP(.IPS,1), .ARR.SEP(.IPS,2), .ARR.SEP(.IPS,3) thus
 ***** ** ***** ** ***** **
loop "until .IPS = 3
 call YES.NO.MESSAGE yielding .YESNO
if .YESNO eq "Y"
 call vgotoxy.r(15,0)
 print 2 lines thus
ENTER THE LOCATION OF THE VALUE TO BE CHANGED - ROW:
 COLUMN:
 call vgotoxy.r(15,53)
 read .ROWSEP
 until .ROWSEP ge 1 and .ROWSEP le 3, do
 let .LOC = 15
 call ROW.COL.WARNING giving .LOC yielding .ROWSEP
 loop "" until .ROWSEP is within 3
 call vgotoxy.r(16,53)
 read .COLSEP
 until .COLSEP ge 1 and .COLSEP le 3, do
 let .LOC = 16
 call ROW.COL.WARNING giving .LOC yielding .COLSEP
 loop "" until .COLSEP is within 3
 call vgotoxy.r(19,0)
 print 2 lines with .ARR.SEP(.ROWSEP, .COLSEP) thus
 CHANGE THE VALUE FROM : ***** **
 TO :
 call vgotoxy.r(20,25)
 read .ARR.SEP(.ROWSEP, .COLSEP)
 for .LOC = 15 to 21 do
 call vgotoxy.r(LOC,0)
call vclear.r

loop " until all lines are cleared below the table

always

loop " until .YESNO = "N"

call vclear.s

call vfcolor.r(14)

print 1 line thus
MINIMUM SEPERATION BETWEEN A DEPARTURE AND ARRIVAL (METERS)

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(15)

print 1 line thus
| LEADING(DEPARTURE) HEAVY | LARGE | SMALL |

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(15)

print 7 lines thus
<table>
<thead>
<tr>
<th>FOLLOWING(ARRIVAL)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAVY</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARGE</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMALL</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(15)

let .YSN = "Y"

until .YSN eq "N" do

let .LOC = 4

for .JPS = 1 to 3 do

let .LOC = .LOC + 2

call vgotoxy.r(.LOC,18)
print 1 line with .ARR.DEP.SEP(JPS, 1), .ARR.DEP.SEP(JPS, 2), .ARR.DEP.SEP(JPS, 3) thus

*****.** *****.** *****.**

loop "" until .JPS = 3

call YES.NO.MESSAGE yielding .YSN

if .YSN eq "Y"

call vgotoxy.r(15,0)

print 2 lines thus
ENTER THE LOCATION OF THE VALUE TO BE CHANGED - ROW:
COLUMN:

call vgotoxy.r(15,53)

read .RADS

until .RADS ge 1 and .RADS le 3, do
 let .LOC = 15
 call ROW.COL.WARNING giving .LOC yielding .RADS
loop "" until .RADS is within 3

call vgotoxy.r(16,53)

read .CADS

until .CADS ge 1 and .CADS le 3, do
 let .LOC = 16
 call ROW.COL.WARNING giving .LOC yielding .CADS
loop "" until .CADS IS within 3

call vgotoxy.r(19,0)

print 2 lines with .ARR.DEP.SEP(.RADS, .CADS) thus
CHANGE THE VALUE FROM : *****.**
TO :

call vgotoxy.r(20,25)

read .ARR.DEP.SEP(.RADS, .CADS)

for .LOC = 15 to 21, do
 call vgotoxy.r(.LOC,0)
 call vclear.r

loop "" to clear all the lines below the table

always

Appendix A. RUNSIM Source Code
loop "" until .YSH eq "N"

call vclears.r

call vcolor.r(14)

print 1 line thus
MIN. INTERDEPARTURE SEPERATION (IN SEC'S)

call vcolor.r(4)

print 1 line thus

call vcolor.r(15)

print 1 line thus
| LEADING =========== | HEAVY | LARGE | SMALL |

call vcolor.r(4)

print 1 line thus

call vcolor.r(15)

print 7 line thus
FOLLOWING	1	2	3	
HEAVY	1			
LARGE	2			
SMALL	3			

call vcolor.r(4)

print 1 line thus

call vcolor.r(15)

let .YNO = "Y"

until .YNO eq "N" do

let .LOC = 4

for .KPS = 1 to 3 do

let .LOC = .LOC + 2

call vgotoxy.r(.LOC,18)

print 1 line with .DEP,SEP(.KPS,1), .DEP,SEP(.KPS,2), .DEP,SEP(.KPS,3) thus
***.** ***.** ***.**

loop "until .KPS = 3

Appendix A. RUNSIM Source Code
call YES.NO.MESSAGE yielding .YN0

if .YN0 eq "Y"
call vgotoxy.(15,0)

print 2 lines thus
ENTER THE LOCATION OF THE VALUE TO CHANGED - ROW:
COLUMN:
call vgotoxy.(15,53)
read .RDS
until .RDS ge 1 and .RDS le 3, do
let .LOC = 15
call ROW.COL.WARNING giving .LOC yielding .RDS
loop
call vgotoxy.(16,53)
read .CDS
until .CDS ge 1 and .CDS le 3, do
let .LOC = 16
call ROW.COL.WARNING giving .LOC yielding .CDS
loop
call vgotoxy.(19,0)
print 2 lines with .DEP.SEP(.RDS,.CDS) thus
CHANGE THE VALUE FROM : *****,**
TO :
call vgotoxy.(20,25)
read .DEP.SEP(.RDS,.CDS)
for .LOC = 15 to 21 do
call vgotoxy.(.LOC,0)
call vclear.r
loop " to clear all lines below the table
always
loop " until .YN0 = "N"
call SEP.BUFFER yielding .ARR.BUFF, .DEP.BUFF, .DEP.ARR.BUFF

Appendix A. RUNSIM Source Code
" INPUT DATA FOR RUNWAY

call vclear.r

call vfcolor.r(14)

print 1 line thus
AIRPORT DATA

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(15)

skip 1 line

print 1 line thus
1. AIRPORT ELEVATION (ABOVE MSL IN METERS):

call vgotoxy.r(3,45)

read .RWY.ELEV

skip 1 line

print 1 line thus
2. MEAN TEMPERATURE AT AIRPORT (IN CELSIUS):

call vgotoxy.r(5,45)

read .RWY.TEMP

skip 1 line

print 1 line thus
3. RUNWAY LENGTH (METERS):

call vgotoxy.r(7,45)

read .RWY.LEN

skip 1 line

print 1 line thus
4. NO. OF EXITS (INCLUDE RUNWAY END EXIT):

call vgotoxy.r(9,45)

read .NO.OF.EXITS

skip 1 line

print 1 line thus
5. RUNWAY WIDTH (ENTER CHOICE NUMBER):

skip 1 line

Appendix A. RUNSIM Source Code

209
print 1 line thus
(CHOICE : (1) 30 m : (2) 45 m : (3) 61 m)

call vgotoxy.r(11,45)

read .RUN.WIDTH

call vgotoxy.r(15,0)

print 1 line thus
6. LENGTH OF THE FINAL APPROACH PATH(METERS):

call vgotoxy.r(15,45)

read .APP.LENGTH

let .YYNO = "y"

until .YYNO eq "N", do

call YES.NO.MESSAGE yielding .YYNO

if .YYNO eq "Y"

call vgotoxy.r(20,1)

print 1 line thus
 CHOOSE THE LINE NO. TO CHANGE:

call vgotoxy.r(20,53)

read .LNO

until .LNO ge 1 and .LNO le 6, do

let .LOC = 20

call ROW.COL.WARNING giving .LOC yielding .LNO

loop

call vgotoxy.r(20,0)

call vclear.r

if .LNO eq 1

call vgotoxy.r(3,45)

call vclear.r

read .RWY.ELEV

always
if .LNO eq 2

call vgotoxy.r(5,45)

Appendix A. RUNSIM Source Code
call vclear.r
read .RWY.TEMP
always
if .LNO eq 3
 call vgotoxy.r(7,45)
call vclear,r
read .RWY.LEN
always
if .LNO eq 4
 call vgotoxy.r(9,45)
call vclear,r
read .NO.OF.EXIT5
always
if .LNO eq 5
 call vgotoxy.r(11,45)
read .RUN.WIDTH
always
if .LNO eq 6
 call vgotoxy.r(15,45)
call vclear,r
read .APP.LENGTH
always
always
loop "until" .YYNO eq N
if .RUN.WIDTH eq 1
 .RUN.WIDTH = 30
else
 if .RUN.WIDTH eq 2
 .RUN.WIDTH = 45
else

Appendix A. RUNSIM Source Code
.RUN.WIDTH = 61

always

always
call vclears.r

reserve .EXIT.LOC,

.EXIT.CHOOSE as .NO.OF.EXITS
call vfcolor.r(14)

print 1 line thus

EXITS AVAILABLE FOR SIMULATION
call vfcolor.r(4)

print 1 line thus

<table>
<thead>
<tr>
<th>NO.</th>
<th>TYPE</th>
<th>SPEED(m/s)</th>
<th>NO.</th>
<th>TYPE</th>
<th>SPEED(m/s)</th>
</tr>
</thead>
</table>
call vfcolor.r(4)

print 1 line thus

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
call vfcolor.r(15)

print 5 lines thus

1) 90° (STANDARD) 8.00	6) 30° (REDIM-HEAVY) 35.00
2) 45° (STANDARD) 17.00	7) 20° (REDIM-HEAVY) 35.00
3) 30° (STANDARD) 26.00	8) 30° (REDIM-LARGE) 35.00
4) 30° (IMPROVED) 26.00	9) 20° (REDIM-LARGE) 35.00
5) WIDE THROAT 17.00	10) 30° (REDIM-SMALL) 25.00
call vfcolor.r(4)

print 1 line thus

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
call vfcolor.r(15)

skip 1 line
call vfcolor.r(14)

print 1 line thus

INPUT RUNWAY EXIT DATA
call vfcolor.r(4)

Appendix A. RUNSIM Source Code 212
print 1 line thus

call vfcolor.(15)

print 1 line thus
| EXIT NO. LOCATION(MTS) CHOICE NO. | EXIT NO. LOCATION(MTS) CHOICE NO. |
call vfcolor.(4)

print 1 line thus

call vfcolor.(15)

let .XLOC = 15
let .YCD = 13
let .YTP = 31
let .LNO = 6

for .CT.EXIT = 1 to .NO.OF.EXITS do

 if .CT.EXIT eq 7
 .XLOC = 9
 let .XCD = 0
 let .LNO = 45
 let .YCD = 56
 let .YTP = 74

 always
 let .XCD = .XLOC + .CT.EXIT

call vgotoxy.(XCD,,LNO)

print 1 line with .CT.EXIT thus

call vgotoxy.(XCD,,YCD)

read .EXIT.LOC.(CT.EXIT)

until .EXIT.LOC.(CT.EXIT) ge 0 and .EXIT.LOC.(CT.EXIT) le .RWY.LEN, do

 call DO.BEEP

 call vgotoxy.(22,1)

 call vbgcolor.(12)

Appendix A. RUNSIM Source Code
print 1 line with .RWY.LEN thus
WARNING: THE EXIT LOCATION EXCEEDS RUNWAY LENGTH OF *****.**; ENTER AGAIN

call vbcolor.r(1)
call vgotoxy.r(XCD.,YCD)
call vclear.r
read .EXIT.LOC.(CT.EXIT)
call vgotoxy.r(22,0)
call vclear.r
loop "until exit is within the runway length

call vgotoxy.r(XCD.,YTYP)
read .EXIT.CHOICE.(CT.EXIT)
until .EXIT.CHOICE.(CT.EXIT) ge 1 and .EXIT.CHOICE.(CT.EXIT) le 10, do
"the selected is within the choice number given in the exit table

call DO.BEEP
call vgotoxy.r(22,1)
call vbcolor.r(12)

print 1 line thus
WARNING: THE SELECTED EXIT CHOICE IS UNAVAILABLE: ENTER AGAIN

call vbcolor.r(1)
call vgotoxy.r(XCD.,YTYP)
call vclear.r
read .EXIT.CHOICE.(CT.EXIT)
call vgotoxy.r(22,0)
call vclear.r
loop " until the exit choice is within the available exit types
loop " until .CT.EXIT = .NO.OF.EXITS
let .YN0 = "Y"
until .YN0 eq "N" do

call YES.NO.MESSAGE yielding .YN0
if .YN0 eq "Y"
 call vgotoxy.r(22,1)
print 1 line thus
ENTER THE EXIT NUMBER OF THE EXIT TO BE EDITED:

call vgotoxy.r(22,50)

read .EDIT.EX

call vgotoxy.r(22,0)

call vclearl.r

print 1 line with .EDIT.EX thus
EDIT THE DATA OF **) EXIT TO - LOCATION: CHOICE:

call vgotoxy.r(22,42)

read .EXIT.LOC(.EDIT.EX)

call vgotoxy.r(22,62)

read .EXIT.CHOICE(.EDIT.EX)

for .XLOC = 15 to 22 do

call vgotoxy.r(.XLOC,0)

call vclearl.r

loop

let .XLOC = 15

let .YCD = 13

let .YTYP = 31

let .LNO = 6

for .CT.EXIT = 1 to .NO.OF.EXITS do

if .CT.EXIT eq 7

.XLOC = 9

let .XCD = 0

let .LNO = 45

let .YCD = 56

let .YTYP = 74

always

let .XCD = .XLOC + .CT.EXIT

call vgotoxy.r(.XCD,.LNO)

print 1 line with .CT.EXIT thus

Appendix A. RUNSIM Source Code

215
call vgotoxy.(XCD.,YCD)

print 1 line with .EXIT.LOC.(CT.EXIT) thus

*****,**
call vgotoxy.(XCD.,YTYP)

print 1 line with .EXIT.CHOOSE.(CT.EXIT) thus

**

loop " until .CT.EXIT. = .NO.OF.EXITS
always

loop " until .YNQ = 'N'
call vclears.r

"SORTING THE EXIT.LOC ARRAY ACCORIDING TO INCREASING ORDER OF EXIT LOCATION
" AND CORRESPONDINGLY THE .EXIT.CHOOSE ARRAY

if .NO.OF.EXITS gt 1

let .NN = (.NO.OF.EXITS - 1)
for .CT.EXIT = 1 to .NN dc

let .JJ = .NO.OF.EXITS - .CT.EXIT
for .LNO = 1 to .JJ do

if .EXIT.LOC.(LNO) gt .EXIT.LOC.(LNO + 1)

.TRAN = .EXIT.LOC.(LNO)
let .EXIT.LOC.(LNO) = .EXIT.LOC.(LNO + 1)
.TRAN = .EXIT.LOC.(LNO)
LET .EXIT.LOC.(LNO + 1) = .TRAN
.TRAN.CHOOSE = .EXIT.CHOOSE.(LNO)
let .EXIT.CHOOSE.(LNO) = .EXIT.CHOOSE.(LNO + 1)
let .EXIT.CHOOSE.(LNO + 1) = .TRAN.CHOOSE
always
loop
loop
always

" WRITING THE INPUT DATA TO APPLICATION FILE

skip 10 lines

Appendix A. RUNSIM Source Code
print 1 line with APP.FILE.NAME thus
WRITING THE INPUT DATA TO FILE: ***************

open unit 10 for output, name = APP.FILE.NAME
use unit 10 for output
write APP.FILE.NAME, .APP.NAME as t 15, s 2, t 20, /
write .IA as i 3, /
for .CT = 1 to .IA, write .ACFT.NO.ARR(.CT), .ACFT.PERCENT.ARR(.CT),
.WT.F.MEAN(.CT), .WT.F.STD(.CT) as i 3, s 2, i 3, s 2, 2 d(10,4), /
skip 1 line
write .NO.ARR.GEN as i 5 , / /
write .DIST.ARR, .DIST.ARR.MEAN, .DIST.ARR.STD as i 1, 2 d(10,4), /
skip 1 line
write .ID as "Departure Data", /, i 3, /
for .CD = 1 to .ID, write .ACFT.NO.DEP(.CD), .ACFT.PERCENT.DEP(.CD)
as i 3, s 2, i 3, /
skip 1 line
write .NO.DEP.GEN as i 5 , / /
write .DIST.DEP, .DIST.DEP.MEAN, .DIST.DEP.STD as i 1, 2 d(10,4), /
"writing min.seperation data
write as 'SEPERATION DATA', /
for .MAS = 1 to 3 do
for .NAS = 1 to 3 do
write .ARR.SEP(.MAS, .NAS) as s 1, d(8,2)
loop " until .NAS = 3
loop " until .MAS = 3
skip 1 line
for .MDS = 1 to 3 do
for .NDS = 1 to 3 do
write .DEP.SEP(.MDS,.NDS) as s 1, d(8,2)
loop " until .NDS = 3
loop " until .MDS = 3

Appendix A. RUNSIM Source Code
skip 1 line
for .MADS = 1 to 3 do
 for .NADS = 1 to 3 do
 write .ARR.DEP.SEP(.MADS, .NADS) as s 1, d(8,2)
 loop "until .NADS = 3
loop " until .MADS = 3
skip 2 lines
write as 'BUFFER DATA', /
write .ARR.BUFF.,DEP.BUFF, .DEP.ARR.BUFF as s 2,
d(6,2), s 2, d(6,2), s 2, d(6,2)
skip 2 lines
write as 'AIRPORT DATA', /
write .RWY.ELEV, .RWY.TEMP, .RWY.LEN, .RUN.WIDTH, .APP.LENGTH as s 2, d(8,2),
s 2, d(5,2), s 2, d(8,2), s 2, i 2, s 2, d(8,2), /
skip 1 line
write .NO.OF.EXITS as s 2, /
for .EXIT = 1 to .NO.OF.EXITS do
 write .EXIT.LOC(.EXIT), .EXIT.CHOOSE(.EXIT) as s 2, d(8,2), s 2, i 2, /
loop " until .EXIT = .NO.OF.EXITS
close unit 10
"APPENDING APP.FILE TO INCLUDE THIS NEW APPLICATION INTO THAT LIST
open unit 10 for output, name = "APP.FIL", append
use unit 10 for output
write .APP.NAME, APP.FILE.NAME as t 20, s 2, t 15
close unit 10

skip 2 lines
print 1 line thus
 DATA ENTRY COMPLETED
 return
end "new.app.strt"
routine NEW.INPUT.DIST yielding .SR.DIST.ARR, .SR.DIST.ARR.MEAN,
 .SR.DIST.ARR.STD, .SR.DIST.DEP,

Appendix A. RUNSIM Source Code
define .SR.DIST.ARR,
 .SR.DIST.DEP,
 .CLEAR as integer variables
define .SR.DIST.ARR.MEAN,
 .SR.DIST.ARR.STD,
 .SR.DIST.DEP.MEAN,
 .SR.DIST.DEP.STD as real variables
define .FLAG,
 .EDM as text variables

"INPUT SCREEN FOR INTERARRIVAL DISTRIBUTIONS FOR BOTH ARRIVALS & DEP'S"
call vclear.r
skip 3 lines
call vcolor.r(14)
print 1 line thus
 INTERARRIVAL DISTRIBUTIONS
call vcolor.r(4)
print 1 line thus

 call vcolor.r(15)
skip 1 lines
print 5 lines thus
 1) POISSON
 2) EXPONENTIAL
 3) UNIFORM

skip 2 lines
call SE.DIST.NO yielding .SR.DIST.ARR
skip 1 line

Appendix A. RUNSIM Source Code
call SEL.MEAN.STD giving .SR.DIST.ARR yielding .SR.DIST.ARR.MEAN,
 .SR.DIST.ARR.STD

let .FLAG = "Y

until .FLAG eq "$N", do
 call YES.NO.MESSAGE yielding .FLAG
 if .FLAG eq "$Y"
 call SEL.EDIT.DM yielding .EDM
 if .EDM eq "$D"
 for .CLEAR = 15 to 20, do " to clear all lines below the choice line
 call vgotoxy.r(CLEAR,0)
 call vclearl.r
 loop
 call SE.DIST.NO yielding .SR.DIST.ARR
 skip 1 line
 call SEL.MEAN.STD giving .SR.DIST.ARR yielding .SR.DIST.ARR.MEAN,
 .SR.DIST.ARR.STD
 else
 call SEL.MEAN.STD giving .SR.DIST.ARR yielding .SR.DIST.ARR.MEAN,
 .SR.DIST.ARR.STD
 always
 always
 loop " until .FLAG for arrivals is N
 call vclears.r
 skip 3 lines
 call vfcolor.r(14)
 print 1 line thus
 INTERDEPARTURE DISTRIBUTIONS
 call vfcolor.r(4)
 print 1 line thus

 call vfcolor.r(15)
 skip 2 lines
 print 5 lines thus
 1) POISSON

Appendix A. RUNSIM Source Code
2) EXPONENTIAL
3) UNIFORM

skip 2 lines

call SE.DIST.NO yielding .SR.DIST.DEP

skip 1 line

call SEL.MEAN.STD giving .SR.DIST.DEP yielding .SR.DIST.DEP.MEAN,
 .SR.DIST.DEP.STD

let .FLAG = "Y"

until .FLAG eq "N", do

 call YES.NO.MESSAGE yielding .FLAG

if .FLAG eq "Y"

 call SEL.EDIT.DM yielding .EDM

 if .EDM eq "D"

 for .CLEAR = 15 to 20 , do "" to clear lines below choice line

 call vgotoxy.r(.CLEAR, 0)

 call vclear.r

 loop

 call SE.DIST.NO yielding .SR.DIST.DEP

 skip 1 line

 call SEL.MEAN.STD giving .SR.DIST.DEP yielding .SR.DIST.DEP.MEAN,
 .SR.DIST.DEP.STD

else

 call SEL.MEAN.STD giving .SR.DIST.DEP yielding .SR.DIST.DEP.MEAN,
 .SR.DIST.DEP.STD

always

always

loop "" until .FLAG for dep is N

call vclear.r

return

end " new.input.dist
routine NO.REPLICATIONS yielding .NO.REPS

" This routine requests the user for number of runs for a given application.
" CALLED FROM : MAIN

Appendix A. RUNSIM Source Code
define .NO.REPS as an integer variable

call vclears.r

skip 3 lines

call vfcolor.r(14)

print 1 line thus

SIMULATION RUNS

call vfcolor.r(4)

print 1 line thus

call vfcolor.r(7)

skip 5 lines

print 1 line thus
Enter No. of replications:

call vgotoxy.r(10,30)

read .NO.REPS

call vclears.r

return

end " no.replications

routine NORMAL::INVERSE.CDF given .ARR.PROB.VIOL, .DEP.PROB.VIOL,
.DEP.ARR.PROB.VIOL yielding .ARR.PERCENTILE, .DEP.PERCENTILE, .DEP.ARR.PERCENTILE

" calculates percentile values from the probability values.
" CALLED FROM: SEP.BUFFER
" CALLS:

define .ARR.PROB.VIOL,
.DEP.PROB.VIOL,
.DEP.ARR.PROB.VIOL,
.ARR.PERCENTILE,
.DEP.PERCENTILE,
.DEP.ARR.PERCENTILE,
.PROB,
.SPLIT,
.A0,
.ZP as real variables

define .I as an integer variable

let .SPLIT = .42
let .A0 = 2.50662623884
let .A1 = -18.6150662529
let .A2 = 41.39119773534
let .A3 = -25.4410649637
let .B1 = -8.4735109309
let .B2 = 23.08336743743
let .B3 = -21.06224101826
let .B4 = 3.13062909833
let .C0 = -2.78718931138
let .C1 = -2.29796479134
let .C2 = 4.85014127135
let .C3 = 2.32121276858

Appendix A. RUNSIM Source Code
let .D1 = 3.54388924762
let .D2 = 1.63706781897

for .l = 1 to 3 do
 if .l eq 1
 .PROB = (1 - .ARR.PROB.VIOL)
 else
 if .l = 2
 .PROB = (1 - .DEP.PROB.VIOL)
 else
 .PROB = (1 - .DEP.ARR.PROB.VIOL)
 always
 always

if .PROB lt 0 or .PROB gt 1
 .ZP = 0
else
 .Q = .PROB - 0.5
 if abs.f(.Q) le .SPLIT
 .R = .Q ** 2
 else
 .R = .PROB
 if .Q gt 0
 .R = 1 - .PROB
 always
 let .H = sqrt.f(- log.e.f(.R))
 (((.D2 * .R + .D1) * .R + 1)
 if .Q lt 0
 .ZP = - .ZP

Appendix A. RUNSIM Source Code
always
always
always
if .I eq 1
 .ARR.PERCENTILE = .ZP
else
 if .I = 2
 .DEP.PERCENTILE = .ZP
 else
 .DEP.ARR.PERCENTILE = .ZP
always
always
loop " .I = 1 to 3
return
end " normal.inverse.cdf
routine PRECEDE.FASTER.ACFT

" This routine checks the location of the preceding aircraft from the stack
" then it checked against the minimum separation criteria and some buffer.
" Accordingly the lagging aircraft is released into the final approach.
" CALLED FROM: STATUS.APP.OCC
" CALLS: PRECEDE.ACFT.CL.RWY, DET.SEP.DATA

define .TT.APP.PRECEDE,
 .DIST.PRECEDE.STACK,
 .BUFFER,
 .MIN.SEP.BET.APR,
 .T.MIN.SEP.STACK,
 .DEL.STACK,
 .T.LAG.TRHLD.RWY as a real variable
define .PREACFT,
 .FOACFT as integer variables

let .PREACFT = TYPE(ARR.ID(COUNT.APP))
let .FOACFT = TYPE(ARR.ID(COUNT.APP + 1))

Appendix A. RUNSIM Source Code
let .BUFFER = INTARR.BUFF - SEP.DIST.ARR(.FOACFT, .PREACFT) *
(1 / V.APP(ARR.ID(COUNT.APP + 1)) - 1 / V.APP(ARR.ID(COUNT.APP)))
" in seconds"

if .BUFFER lt 0

 .BUFFER = 0 " buffer cannot be less than zero

always

let .MIN.SEP.BET.ARR = SEP.DIST.ARR(.FOACFT, .PREACFT) + .BUFFER *
V.APP(ARR.ID(COUNT.APP + 1))
" minimum separation, distance plus the buffer dist.

let .TT.APP.PRECEDE = trunc.f(time.v - T.DEP.STACK(COUNT.APP)) * 60 +
frac.f(time.v - T.DEP.STACK(COUNT.APP)) * 60
"Time elapsed since the preceding aircraft
" departed the stack

let .DIST.PRECEDE.STACK = V.APP(ARR.ID(COUNT.APP)) * .TT.APP.PRECEDE
"Distance from stack to the preceding
"aircraft in the final approach.

" check for minimum separation

if .MIN.SEP.BET.ARR le .DIST.PRECEDE.STACK

 .T.MIN.SEP.STACK = 0 "Time to achieve minimum separation from stack

else

 .T.MIN.SEP.STACK = (.MIN.SEP.BET.ARR - .DIST.PRECEDE.STACK)/
V.APP(ARR.ID(COUNT.APP)) "seconds

always

"check if leading aircraft clears runway before lagging aircraft reaches
"threshold.

call CHECK.PRECEDE.ACFT.CLR.RWY yielding .T.LAG.TRHLD.RWY

if .T.MIN.SEP.STACK ge .T.LAG.TRHLD.RWY

 .DEL.STACK = .T.MIN.SEP.STACK "seconds

else

 open unit 42 for output, name = "runocc.del", append

 use unit 42 for output

 print 1 line with COUNT.APP, .T.MIN.SEP.STACK, .T.LAG.TRHLD.RWY thus
 **** ***** **** *****

 close unit 42

 .DEL.STACK = .T.LAG.TRHLD.RWY "seconds

always

Appendix A. RUNSIM Source Code
let WAIT.TIME.STACK = .DEL.STACK

activate a WAIT.AT.STACK now

return

end "precede.faster.acft
routine PRECEDE.SLOWER.ACFT

" This routine checks if the lagging aircraft is released immediately
" into the final approach the minimum separation will be maintained
" when the preceding aircraft is at the threshold and if not appropriately
" the aircraft in the stack is delayed.
" CALLED FROM: STATUS.APP.OCC
" CALLS : CHECK.PRECEDE.ACFT.CLR.RWY, DET.SEP.DA DATA

define .PFT,

 .FFT as integer variables

define .MIN.SEP.BET.ARR,

 .T.REM.PRECEDE.THRLD,
 .DIST.LAG.ACFT,
 .DIST.LAG.THRLD,
 .T.LAG.THRLD.RWY,
 .T.MIN.SEP.THRLD,
 .D.STACK as real variables

let .PFT = TYPE(ARR.ID(COUNT.APP))
let .FFT = TYPE(ARR.ID(COUNT.APP + 1))

let .MIN.SEP.BET.ARR = SEP.DIST.ARR (.FFT, ,PFT) + INTARR.BUFF *
 V.APP(ARR.ID(COUNT.APP))

let .T.REM.PRECEDE.THRLD = APP.OCC.TIME(ARR.ID(COUNT.APP)) -
 (trunc.f(time.v - T.DEP.STACK(COUNT.APP)) * 60 +
 frac.f(time.v - T.DEP.STACK(COUNT.APP)) * 60)
 " Time to reach the threshold by the preceding aircraft
 " from its present position.

let .DIST.LAG.ACFT = .T.REM.PRECEDE.THRLD * V.APP(ARR.ID(COUNT.APP + 1))
 "The distance the legging aircraft will cover, if released
 "now, in the time the preceding aircraft reaches threshold.

let .DIST.LAG.THRLD = LENGTH.APP(FINAL.APPROACH) - .DIST.LAG.ACFT
 " Distance between the lagging aircraft and threshold after
 " T.REM.PRECEDE.THRLD

if .MIN.SEP.BET.ARR le .DIST.LAG.THRLD
.T.MIN_SEP.THRLD = 0 " Difference of time between the preceding aircraft
 " reaching threshold and lagging aircraft reaching
 " minimum separation distance from threshold.
else

 .T.MIN_SEP.THRLD = .T.REM.PRECEDE.THRLD - (LENGTH_APP (FINAL_APPROACH) -
 .MIN_SEP.BET.ARR) / V_APP(ARR.ID(COUNT.APP + 1))
always

 call CHECK.PRECEDE.ACFT.CLR.RWY yielding .T.LAG.THRLD.RWY
if .T.MIN_SEP.THRLD ge .T.LAG.THRLD.RWY

 .D.STACK = .T.MIN_SEP.THRLD "seconds
else

 open unit 42 for output, name = "RUNOCC.DEL", append
 use unit 42 for output
 print 1 line with COUNT.APP, .T.MIN_SEP.THRLD, .T.LAG.THRLD.RWY thus
 **** ***** ***** *****
 close unit 42

 .D.STACK = .T.LAG.THRLD.RWY "seconds
always

 if .D.STACK gt 0.0001

 let WAIT.TIME.STACK = .D.STACK

 activate a WAIT_AT.STACK now
else

 activate a FINAL_APPROACH.OPERATION now
always

 return
end "precede.slower.acft
routine PROG.OR.STRT.SCRN
"Currently SIMGRAPHICS produces the title screen and animation. This is no longer in use.
call vbcolor.r(1)
call vcolor.r(7)
call vclears.r

 skip 3 lines
 call vcolor.r(14)
print 3 lines thus

RUNWAY SIMULATION MODEL

call vfcolor.r(7)

skip 3 lines

" print 2 lines thus
" Developed by : Mr. Vijay B. Nunna
" Dr. Antonio A. Trani

skip 8 lines

call vfcolor.r(5)

print 3 lines thus
UNIVERSITY CENTER FOR TRANSPORTATION RESEARCH
VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY
BLACKSBURG, VIRGINIA

call vfcolor.r(15)

call vgotoxy.r(22,1)

print 1 line thus
Hit RETURN(ENTER) key to continue....

call vgotoxy.r(22,38)

"pause until a key pressed

read as / using unit 5

return

end
routine RE.INITIALIZE

" This routine reinitializes the variables that affect the simulation reruns.

define .i as an integer variable

let N.X.RUNWAY(1) = 0

let N.Q.RUNWAY(1) = 0

let N.X.FINAL.APPROACH(1) = 0

let N.Q.FINAL.APPROACH(1) = 0

let COUNT.ARR = 0

let COUNT.APP = 0

let COUNT.LAND = 0

Appendix A. RUNSIM Source Code
let COUNT.DEP = 0
let COUNT.T.OFF = 0
let time.v = 0.0
for .i = 1 to TOT.DEP.ACFT do
 destroy the AIRCRAFT called DEP.ID(.i)
loop
release NO.IDENT.ARR(*),
EXIT.ASSIGN(*,*),
POT.STAT(*)
reset totals of ARR.DELAY and
 DEPDELAY
return
end " re.initialize
routine READ.APP.DATA

" This routine reads the data specified by the user from a selected
" application file.
" CALLED FROM: MAIN
" CALLS:

define .IA,
 .ID,
 .JAS,
 .JAS,
 .JADS,
 .JADS,
 .IDS,
 .JDS,
 .EXIT.CT as integer variables
define .FILE.NAME as a text variable
open unit 10 for input, name = APP.FILE.NAME
use unit 10 for input
let eol.v = 1
read .FILE.NAME

Appendix A. RUNSIM Source Code
start new input record

if APP.FILE.NAME ne .FILE.NAME
 call vcleart
 call vgotoxy.r(15,0)

 print 2 lines with APP.FILE.NAME thus
 APPLICATION INPUT FILE NAME : **************
 DOES NOT EXIST IN THE DATA FILE. QUITTING FROM SIMULATION

else

 print 1 line thus
 READING THE APPLICATION FILE

 read NO.ARR.ARRIVAL as i 3, / " No. of arrival aircraft chosen for
 " simulation

 reserve ARR.ACFT.NO,
 ARR.ACFT.PERCENT,
 ARR.ACFT.WTF.MEAN,
 ARR.ACFT.WTF.STD as NO.ARR.ARRIVAL

for .IA = 1 TO NO.ARR.ARRIVAL do
 read ARR.ACFT.NO(.IA), ARR.ACFT.PERCENT(.IA), ARR.ACFT.WTF.MEAN(.IA),
 ARR.ACFT.WTF.STD(.IA) as i 3, s 2, i 3, 2 d(10,4), /

 loop "until .IA = no.arr.acft

start new input record

read TOT.ARR.ARRIVAL

read ARR.DIST, ARR.DIST.MEAN, ARR.DIST.STD as /, /, i 1, 2 d(10,4), /, /, /

read NO.DEP.ARRIVAL

start new input record

reserve DEP.ACFT.NO,
 DEP.ACFT.PERCENT as NO.DEP.ARRIVAL

for .ID = 1 to NO.DEP.ARRIVAL, read DEP.ACFT.NO(.ID), DEP.ACFT.PERCENT(.ID)
 as i 3, s 2, i 3, /

start new input record

read TOT.DEP.ARRIVAL

read DEP.DIST, DEP.DIST.MEAN, DEP.DIST.STD as /, /, i 1, 2 d(10,4), /

reserve SEP.DIST.ARR,
DEP.ARR.SEPI,
SEP.T.TAKEOFFS as 3 by 3
start new input record
for .IAS = 1 to 3 do
 for .JAS = 1 to 3 do
 read SEP.DIST.ARR(.IAS, .JAS) as s 1, d(8,2)
 loop " until .JAS = 3
 loop " until .IAS = 3
start new input record
for .IDS = 1 to 3 do
 for .JDS = 1 to 3 do
 read SEP.T.TAKEOFFS(.IDS, .JDS) as s 1, d(8,2)
 loop " until .JDS = 3
 loop " until .IDS = 3
start new input record
for .JADS = 1 to 3 do
 for .JADS = 1 to 3 do
 read DEP.ARR.SEPI(.JADS, .JADS) as s 1, d(8,2)
 loop " until .JADS = 3
 loop " until .JADS = 3
start new input record
read INTARR.BUFF, INTDEP.BUFF, INTDEP.ARR.BUFF as /,
 /, s 2, d(8,2), s 2, d(8,2), s 2, d(8,2)
start new input record
read AIR.ELEV, AIR.TEMP, RWY.LTH, RWY.WIDTH, LENGTH.APP(1) as /,
 /, s 2, d(8,2), s 2, d(8,2), s 2, d(8,2), s 2, i 2, s 2, d(8,2), /
skip 1 input record
"read exit details
read NO.EXITS as i 2, /
save EXIT LOCATION,
EXIT.CHOICE as NO.EXITS

Appendix A. RUNSIM Source Code
for .EXIT.CT = 1 to NO.EXITs, read EXIT.LOCATION(.EXIT.CT),
 EXIT.CHOICE(.EXIT.CT) as s 2, d(8,2),
 s 2, i 2, /

always

close unit 10

print 1 line thus
COMPLETED READING THE APPLICATION FILE

list eof.v

return

end "read.app.data"
routine READ.DATA.FILE

" This routine reads the data from the data file as per the data required
" by the application file.
" Called from: MAIN
" Calls:

define .LNO as a integer variable

if TOT.ARR.ACFT gt 0

 reserve ARR.ARR.ACFT.NAME,
 ARR.ARR.ACFT.MALW,
 ARR.ARR.ACFT.OEW,
 ARR.ARR.ACFT.CL.MAX,
 ARR.ARR.ACFT.DEC,
 ARR.ARR.ACFT.FREE.ROLL,
 ARR.ARR.ACFT.WING.AREA,
 ARR.ARR.ACFT.WING.SPAN,
 ARR.ARR.ACFT.TYPE as NO.ARR.AIRCRAFT

always

if TOT.DEP.ACFT gt 0

 reserve DEP.ACFT.TYPE,
 DEP.ACFT.NAME as NO.DEP.AIRCRAFT

always

print 1 line thus
READING THE DATA BASE

Appendix A. RUNSIM Source Code
open unit 10 for input. name = "ACFT.DATA"

if TOT.ARR.ACFT gt 0
 for .L.NO = 1 to NO.ARR.AIRCRAFT do
 use unit 10 for input
 while mode is alpha do " to jump over the comments in the data file
 start new input record
 loop " mode alpha
 start new record
 skip (ARR.ACFT.NO(L.NO) + 1) records
 read ARR.ACFT.NAME(L.NO), ARR.ACFT.TYPE(L.NO), ARR.ACFT.MALW(L.NO),
 ARR.ACFT.OEW(L.NO), ARR.ACFT.CL.MAX(L.NO),
 ARR.ACFT.DEC(L.NO), ARR.ACFT.FREE.ROLL(L.NO),
 ARR.ACFT.WINGAREA(L.NO), ARR.ACFT.WING.SPAN(L.NO)
 rewind 10
 loop " until all arriving aircraft data is read
 always
 if TOT.DEP.ACFT gt 0
 for .L.NO = 1 to NO.DEP.AIRCRAFT do
 use unit 10 for input
 while mode is alpha do
 start new input record
 loop " while mode is alpha
 start new input record
 skip (DEP.ACFT.NO(L.NO) + 1) records
 read DEP.ACFT.NAME(L.NO), DEP.ACFT.TYPE(L.NO)
 rewind 10
 loop " till all departure aircraft data is read
 always
 close unit 10
 print 1 line thus
 COMPLETED THE READING OF THE DATA BASE
 return

Appendix A. RUNSIM Source Code
end "read.data.file"
routine REPORT.GEN given .ITER

"This routine displays the output selection menu"
"CALLED FROM: MAIN"
"CALLS: ASSIGN.TABLE.OP, ARRIVALS.OP, DEPARTURES.OP, EVENT.LIST.OP,"
" RNY.OCC.STAT.OP, GLOBAL.STAT.OP, INPUT.DATA.OP"

define .NUM,

 .ITER as integer variables

call vbcolor.r(3)
call vfcolor.r(0)
call vclear.r

print 3 lines thus

 OUTPUT MENU

skip 2 lines

print 6 lines thus

 1. ASSIGNMENT TABLE
 2. ARRIVAL EVENT LIST
 3. DEPARTURE EVENT LIST
 4. GLOBAL STATISTICS
 5. INPUT DATA
 6. QUIT (NEXT RUN)

call vgotoxy.r(22,1)
call vbcolor.r(5)

print 1 line thus

SELECT THE CHOICE NUMBER :
call vgotoxy.r(22,29)

read .NUM

until .NUM ge 1 and .NUM le 6 , do

call vgotoxy.r(22,29)
call vclear.r

read .NUM

loop
call vbcolor.r(3)

select case .NUM

Appendix A. RUNSIM Source Code
case 1
 call ASSIGN.TABLE.OP giving .ITER

case 2
 call ARRIVALS.EVENT.OP giving .ITER

case 3
 call DEPARTURES.EVENT.OP giving .ITER

case 4
 call GLOBAL.STAT VIEW giving .ITER

case 5
 call INPUT.DATA.OP giving .ITER

case 6
 return
default
 return
endselect ".NUM

return

end " report.gen
routine ROW.COL.WARNI NG given .LOC yielding .RADS

" This routine prints warning messages until correct value is entered, at
" the row or column locations during editing the separation data
" CALLED FROM: NEW.APP.STRT
" CALLS:

define .RADS,
 .LOC as an integer variable

call DO.BEEP

call vbcolor.r(12)

call vgotoxy.r(22,1)

print 1 line thus
WARNING: THE VALUE ENTERED EXCEEDS THE FIELD; ENTER A VALUE AGAIN

call vbcolor.r(1)

call vgotoxy.r(.LOC,53)
call volearl.r
read .RADS

call vgotoxy.r(22,0)

call vclear.r

return

end "row.col.warning
routine RWY.EX.OP given .ITER

"This routine displays the runway and exit data.
" CALLED FROM : INPUT.DATA.OP
" CALLS:

define .ITER,

.CT,

.NO,

.YLOC as integer variables

define .CHOICE,

.TYPE as text variable

let .CHOICE = "A"

until .CHOICE eq "Q", do

call vclear.r

print 3 lines thus

[RUNWAY & EXIT DATA]

print 1 line thus

print 1 line with APP.FILE.NAME thus
| APP. FILE NAME : ************ |

print 1 line thus

print 3 lines with RWY.LTH, AIR.ELEV, RWY.WIDTH, AIR.TEMP thus
| RUNWAY LENGTH : *****.** m | ALTITUDE : *****.** m |
| RUNWAY WIDTH : *****.** m | MEAN TEMP.: *****.** C |

print 1 line thus

print 1 line thus

Appendix A. RUNSIM Source Code
EXIT DATA

print 1 line thus

<table>
<thead>
<tr>
<th>NO. LOCATION</th>
<th>TYPE</th>
<th>NO. LOCATION</th>
<th>TYPE</th>
</tr>
</thead>
</table>

print 1 line thus

let .YLOC = 2

for .CT = 1 to NO.EXITS do

 select case EXIT.CHOICE(.CT)

 case 1
 let .TYPE = "90"(STANDARD)"

 case 2
 let .TYPE = "45"(STANDARD)"

 case 3
 let .TYPE = "30"(STANDARD)"

 case 4
 let .TYPE = "30"(IMPROVED)"

 case 5
 let .TYPE = "WIDE THROAT"

 case 6
 let .TYPE = "30"(REDIM-HEAVY)"

 case 7
 let .TYPE = "20"(REDIM-HEAVY)"

 case 8
 let .TYPE = "30"(REDIM-LARGE)"

 case 9
 let .TYPE = "20"(REDIM-LARGE)"

 case 10
 let .TYPE = "30"(REDIM-SMALL)"

 default

Appendix A. RUNSIM Source Code
let .TYPE = ""

endselect

let .NO = .NO + 1

call vgotoxy.r(.(NO + 13), .YLOC)

print 1 line with .CT, EXIT LOCATION(.CT), .TYPE thus
) ********** ***************

if .NO eq 7

.NO = 0

let .YLOC = 40

always

loop " .CT = 1 to NO.EXITS

call vgotoxy.r(22,1)

call vcolor.r(15)

call vbcolor.r(5)

print 1 line thus
HIT: (PRINT SCREEN) FOR A PRINT; (Q)UIT :

call vgotoxy.r(22,42)

read .CHOICE

call vbcolor.r(3)

call vcolor.r(0)

let .CHOICE = fixed.f(.CHOICE, 1)

let .CHOICE = upper.f(.CHOICE)

loop " .CHOICE eq *Q*

if .CHOICE eq "Q"

call INPUT.DATA.OP giving .ITER

always

return

end " my.ex.op
routine SE.DIST.NO yielding .SR.DIST.AD
" This requests the user to choose the distribution from the available
" selection and returns the choice.
" CALLED FROM: NEW.INPUT.DIST
" CALLS : DO.BEEP

Appendix A. RUNSIM Source Code
define .SR.DIST.AD as an integer variable

call vgotoxy.r(14,0)

print 1 line thus
Enter your choice:

call vgotoxy.r(14,20)
call vclear.r

read .SR.DIST.AD

until .SR.DIST.AD ge 1 and .SR.DIST.AD le 3 , do

call DO.BEEP

call vgotoxy.r(22,1)
call vbcolor.r(12)

print 1 line thus
WARNING: THE SELECTED CHOICE IS UNAVAILABLE; ENTER YOUR CHOICE AGAIN

call vbcolor.r(1)
call vgotoxy.r(14,20)
call vclear.r

read .SR.DIST.AD
call vgotoxy.r(22,0)
call vclear.r

loop

return

end " sel.dist.no
routine SEL.EDIT.DM yielding .SR.EDM

"This routine requests user to choose the editing option of either the "distribution or the mean/standard dev

define .SR.EDM as a text variable
call vgotoxy.r(22,1)
call vbcolor.r(5)

print 1 line thus
DO YOU WANT TO EDIT (D)ISTRIBUTION OR (M)EAN/(S)TD. DEV:

call vgotoxy.r(22,60)

read .SR.EDM

Appendix A. RUNSIM Source Code
let .SR.EDM = upper.f(SR.EDM)

let .SR.EDM = fixed.f(SR.EDM,1)

call vbcolor.r(1)

call vgotoxy.r(22,0)

call vclear.r

return

end " sel.edit.dm

routine SEL.MEAN,STD given .SR.DIST,AD yielding .SR.MEAN, .SR.STD

" This routine requests for mean or lower and upper values of the distribution
" selected.
" CALLED FROM : NEW.INPUT.DIST
" CALLS:

define .SR.DIST,AD as an integer variable

define .SR.MEAN,

 .SR.STD as real variables

if .SR.DIST,AD le 2

call vgotoxy.r(16,0)

print 1 line thus
Enter the mean (Sec):

call vgotoxy.r(16,22)

call vclear.r

read .SR.MEAN

else

call vgotoxy.r(16,0)

print 3 lines thus
Enter the lower value (Sec):

Enter the upper value (Sec):

call vgotoxy.r(16,29)

call vclear.r

read .SR.MEAN

call vgotoxy.r(18,29)

call vclear.r

read .SR.STD

Appendix A. RUNSIM Source Code

241
always

return

end " sel.mean.std
routine SEP.BUFFER yielding .ARR.BUFF, .DEP.BUFF, .DEP.ARR.BUFF

" Data for buffer time is input here and calculated to be used for
" separations between aircraft.
" CALLED FROM: NEW.APP.RET
" CALLS: YES.NO.MESSAGE, NORMAL.INVERSE.CDF

define .ARR.BUFF,
 .ARR.PROB.VIOL,
 .ARR.BUFF.STD,
 .DEP.BUFF,
 .DEP.PROB.VIOL,
 .DEP.BUFF.STD,
 .DEP.ARR.BUFF,
 .DEP.ARR.PROB.VIOL,
 .DEP.ARR.BUFF.STD,
 .ARR.PERCENTILE,
 .DEP.PERCENTILE,
 .DEP.ARR.PERCENTILE as real variables

define .LINE as an integer variable

define .SURE as a text variable

call vclears.r

call vcolor.r(14)

print 1 line thus
 BUFFER TIME DATA

call vcolor.r(4)

print 1 line thus

 PROBABILITY OF VIOLATION | STD. DEV.(SEC'S) |

 PROBABILITY OF VIOLATION | STD. DEV.(SEC'S) |

call vcolor.r(4)
print 1 line thus

call vcolor.r(15)

skip 1 line

print 1 line thus
1) INTER-ARRIVALS

skip 1 line

print 1 line thus
2) INTER-DEPARTURES

skip 1 line

print 1 line thus
3) DEPARTURE-ARRIVAL

skip 1 line

call vcolor.r(4)

print 1 line thus

call vcolor.r(15)

let .SURE = "Y"

until .SURE = "N" do

if .LINE eq 1 or .LINE eq 0

call vgotoxy.r(5, 39)

call vclear.r

read .ARR.PROB.VIOL

call vgotoxy.r(5, 62)

read .ARR.BUFF.STD

always

if .LINE eq 2 or .LINE eq 0

call vgotoxy.r(7, 39)

call vclear.r

read .DEP.PROB.VIOL

call vgotoxy.r(7, 62)

read .DEP.BUFF.STD

Appendix A. RUNSIM Source Code
always
if .LINE eq 3 or .LINE eq 0
 call vgotoxy.r(9, 39)
call vclear.r
read .DEP.ARR.PROB.VIOL
call vgotoxy.r(9, 62)
read .DEP.ARR.BUFF.STD
always
call YES.NO.MESSAGE yielding .SURE
if .SURE eq "Y"
call vgotoxy.r(22,1)
call vclear.r
call vbcolor.r(5)
 print 1 line thus
ENTER THE LINE NO. TO BE EDITED:
call vgotoxy.r(22,32)
read .LINE
call vgotoxy.r(22,0)
call vclear.r
call vbcolor.r(1)
always
loop "until .SURE = N
 call NORMAL.INVERSE.CDF giving .ARR.PROB.VIOL, .DEP.PROB.VIOL,
 .DEP.ARR.PROB.VIOL yielding .ARR.PERCENTILE ,
 .DEP.PERCENTILE, .DEP.ARR.PERCENTILE
if .ARR.PERCENTILE lt 0
 .ARR.PERCENTILE = 0
always
if .DEP.PERCENTILE lt 0
 .DEP.PERCENTILE = 0
always

Appendix A. RUNSIM Source Code
let .ARR.BUFF = .ARR.BUFF.STD * .ARR.PERCENTILE
let .DEP.BUFF = .DEP.BUFF.STD * .DEP.PERCENTILE
let .DEP.ARR.BUFF = .DEP.ARR.BUFF.STD * .DEP.ARR.PERCENTILE

call vclears.r

return

dez " sep.buffer
routine SEP.SCREEN
" This routine display a template for the operation data to be incorporated
" within
" CALLED FROM: INT.SEP.OP
" CALLS:

print 1 line thus

print 1 line thus
| LEADING HEAVY LARGE SMALL |

print 1 line thus

print 7 lines thus
| FOLLOWING |
| HEAVY |
| LARGE |
| SMALL |

print 1 line thus

return

dez " sep.screen
Routine SET.GRAPHICS

Let timescale.v = 100

" Set up a display view port

Let uform.v = ..DISPLAY.VIEW.PORT
Call setworld.r (-15, 15, -15, 15)
" Call setview.r (6000, 26000, 1000, 21000)

End "SET.GRAPHICS
routine STATUS.APP.CLK.RWY.OCC

" This routine checks if an aircraft is landing or taking off. Depending on

Appendix A. RUNSIM Source Code
" the operation the departure is scheduled. If departure is delayed the
" routine SYS.CHECKAT.THRLD is called to know the system status after
" the delay.
" CALLED FROM: SYS.CHECKAT.THRLD
" CALLS: DET.DELEDEP, SYS.CHECKAT.THRLD

define .T.REM.CLR.RWY,
 .T.MIN.SEP.TAKEOFFS as real variables

if OCCUPANT.OPERATION eq ..LANDING

 .T.REM.CLR.RWY = RWY.OCC.TIME(ARR.ID(COUNT.LAND)) -
 (frac.f(time.v - T.LANDING(COUNT.LAND)) * 60 +
 trunc.f(time.v - T.LANDING(COUNT.LAND)) * 60)
" Remaining time to clear the runway for the landing aircraft

if .T.REM.CLR.RWY le 0.00001

 WAIT.TIME.RAMP = 0.005

else

 WAIT.TIME.RAMP = .T.REM.CLR.RWY

always

 activate a WAIT.AT.RAMP now

else

 call DET.DELEDEP yielding .T.MIN.SEP.TAKEOFFS

if .T.MIN.SEP.TAKEOFFS gt 0

 WAIT.TIME.RAMP = .T.MIN.SEP.TAKEOFFS

 activate a WAIT.AT.RAMP now

else

 activate a DEPARTURE.OPERATION now

always

always

return

end " status.app.clr.rwyo.occ
routine STATUS.APP.OCC

" This routine checks the preceding aircraft whether it is faster or slower
" than the one in stack for interarrival separation criteria.
" CALLED FROM: SYS.CHECKAT.STACK
" CALLS: PRECED.ACFT.FASTER, PRECED.ACFT.SLOWER

define .PRECED.ACFT.SPEED,

Appendix A. RUNSIM Source Code
.OWN.SPEED as real variables
let .PRECEDE.SPEED = V.APP(ARR.ID(COUNT.APP))
let .OWN.SPEED = V.APP(ARR.ID(COUNT.APP + 1))
if .PRECEDE.SPEED ge .OWN.SPEED
 call PRECEDE.FASTER.ACFT " preceding aircraft is faster"
else
 call PRECEDE.SLOWER.ACFT " preceding aircraft is slower"
always
return
end "status.app.occ"
routine STATUS.APP.OCC.RWY.CLR
" The routine determines if the minimum separation distance exists between " the arriving and departing aircraft. If satisfied the takeoff is set off " if not the departure is delayed and again system check is done by calling " SYS.CHECK.AT.THRLD. " CALLED FROM: " CALLS: DET.DEL.ARR, DEPARTURE.OPERATION, SYS.CHECK.AT.THRLD, WAIT.AT.RAMP
define .DEL.ARR as a real variable
call DET.DEL.ARR yielding .DEL.ARR
if .DEL.ARR gt 0 " minimum separation doesn't exist
 let WAIT.TIME.RAMP = .DEL.ARR
 activate a WAIT.AT.RAMP now
else
 activate a DEPARTURE.OPERATION now " minimum separation exists
always
return
end "app.occ.rwyr.clr"
routine STATUS.APP.OCC.RWY.OCC
" This routine first checks the type of operation on runway and determines " delay 1, if any, for a departure. Then it checks if min. separation is " present or not between arriving aircraft and accordingly delay 2 due to " arrival is found. If both the the delays is zero then takeoff is commenced " if not the departure is delayed by the greater of both delays and " again system condition is checked. " CALLED FROM: SYS.CHECK.AT.THRLD " CALLS: DET.DEL.DEP, DET.DEL.ARR
define .DEL.DEP1,

Appendix A. RUNSIM Source Code
.DEL.DEP2,
.T.REM.CLR.RWY,
.T.MIN.SEP.TAKEOFFS as real variables

if OCCUPANT оперATION eq .LANDING

.T.REM.CLR.RWY = RWY, OCC.TIME(ARR,ID(COUNT.LAND)) -
(trunc(f(time,v - T.LANDING(COUNT.LAND)) * 60 +
frac(f(time,v - T.LANDING(COUNT.LAND)) * 60)
" Remaining time for the landing aircraft
" to clear runway.

let .DEL.DEP1 = .T.REM.CLR.RWY

else

call DET.DELEL.DEP yielding .T.MIN.SEP.TAKEOFFS

let .DEL.DEP1 = .T.MIN.SEP.TAKEOFFS

always

call DET.DELEL.ARR yielding .DEL.DEP2

if .DEL.DEP1 le 0 and .DEL.DEP2 le 0

activate a DEPARTURE OPERATION now

else

if .DEL.DEP1 gt .DEL.DEP2

if .DEL.DEP1 le 0.0001

WAIT.TIME.RAMP = 0.05

else

WAIT.TIME.RAMP = .DEL.DEP1

always

activate a WAIT.AT.RAMP now

else

if .DEL.DEP2 le 0.0001

WAIT.TIME.RAMP = 0.05

else

WAIT.TIME.RAMP = .DEL.DEP2

always

activate a WAIT.AT.RAMP now

Appendix A. RUNSIM Source Code
always
always

return

end " status.app.occ.rwy.occ
routine STATUS.RWY.OCC

" This routine checks if there is any delay for an arriving aircraft
" due to the presence of a landing aircraft on the runway, and if so it is
" delayed for the same.
" CALLED FROM: SYS.CHECK.AT.STACK
" CALLS:

define .T.REM.CLR.RWY as a real variable

let .T.REM.CLR.RWY = RWY.OCC.TIME(ARR.ID(COUNT.LAND)) -
 (frac.(time.v - T.LANDING(COUNT.LAND)) * 60 +
 trunc.(time.v - T.LANDING(COUNT.LAND)) * 60)
" time remaining for the landing aircraft to clear runway

if .T.REM.CLR.RWY gt APP.OCC.TIME(ARR.ID(COUNT.APP + 1))

open unit 40 for output, name = "check.del", append
use unit 40 for output

print 1 line with (COUNT.APP + 1), COUNT.LAND thus
***** *****

close unit 40

WAIT.TIME.STACK = .T.REM.CLR.RWY - APP.OCC.TIME(ARR.ID(COUNT.APP + 1))

if WAIT.TIME.STACK le 0.00001

 WAIT.TIME.RAMP = 0.005

 always
 activate a WAIT.AT.STACK now

else

 activate a FINAL.APPROACH.OPERATION now

always

return

end " status.rwy.occ
routine SYS.CHECK.AT.STACK

" This routine checks the system conditions for the aircraft before it enters
" the final approach to satisfy the minimum interarrival separation criteria.
" Each system condition is done by a separate subroutine.
" CALLED FROM: CREATE.AIRCRAFT.ARR
" CALLS: STATUS.APP.OCC, STATUS.APP.CLR.RWY.OCC

Appendix A. RUNSIM Source Code
define .APPREACH.STATUS,

.RWY.STATUS as integer variables

let .APPROACH.STATUS = N.X.FINAL.APPROACH(1) " N.X.resource is a system
" attribute which gives the no. of
" requests the resource is
" currently satisfying.

let .RWY.STATUS = N.X.RUNWAY(1)

if .APPROACH.STATUS gt 0 " approach is occupied
 call STATUS.APP.OCC
else
 if .RWY.STATUS gt 0 and OCCUPANT OPERATION eq ..LANDING
 call STATUS.RWY.OCC
 else
 activate a FINAL.APPROACH.OPERATION now
always
always
return
end " sys.check.at.stack
routine SYS.CHECK.AT.THRLD

"This routine checks the system conditions at runway threshold for departures.
"Depending on the condition the appropriate routine is called for scheduling
"departures.
"CALLED FROM : CREATE.AIRCRAFT.DEP
"CALLS : DEPARTURE.OPERATION, STATUS.APP.CLAR,RWY.OCC, STATUS.APP.OCC,RWY.CLAR
" STATUS.APP.OCC,RWY.OCC

define .APP.STATUS,

.RWY.STATUS as integer variables

if COUNT.DEP gt COUNT.T.OFF
 let .APP.STATUS = N.X.FINAL.APPROACH(1)
 let .RWY.STATUS = N.X.RUNWAY(1)
if .APP.STATUS eq 0 and .RWY.STATUS eq 0 "approach and runway clear
 activate a DEPARTURE.OPERATION now
else
 if .APP.STATUS eq 0 and .RWY.STATUS gt 0 "approach clear and
 "runway occupied

Appendix A. RUNSIM Source Code
call STATUS.APP.CLR.RWY.OCC

else

if .APP.STATUS gt 0 and .RWY.STATUS eq 0 "approach occupied and runway clear"
call STATUS.APP.OCC.RWY.CLR

else

if .APP.STATUS gt 0 and .RWY.STATUS gt 0 "both approach and runway occupied"
call STATUS.APP.OCC.RWY.OCC

always

always

always

always

return

end "sys.check.at.thrd"

Routine VECTOR

Given
.X1,
.Y1,
.X2,
.Y2,
.SPEED
"Coordinates of first point"
"Coordinates of second point"
"Speed of object"

Yielding
.TIME,
.DIRECTION
"Time to go from first to second point"
"Direction from first to second point (radians)"

Define .X1,
.Y1,
.X2,
.Y2,
.SPEED,
.TIME,
.DIRECTION,
.DELTA.X and
.DELTA.Y
as real variables

Let .DELTA.X = .X2 - .X1
Let .DELTA.Y = .Y2 - .Y1
Let .TIME = sqrt(f(.DELTA.X ** 2 + .DELTA.Y ** 2) / .SPEED
Let .DIRECTION = arctan(f(.DELTA.Y, .DELTA.X))

End "VECTOR"

Appendix A. RUNSIM Source Code
process WAIT.AT.RAMP

" This process allows the aircraft to wait for some more time defined by
" WAIT.TIME.RAMP before the program again checks the system to know the
" status.
" CALLED FROM: STATUS.APP.CLR.RWY.OCC, STATUS.APP.OCC.RWY.CLR,
" STATUS.APP.OCC.RWY.OCC
" CALLS:

 wait WAIT.TIME.RAMP seconds

 call SYS.CHECK.AT.THRLD

 return

end " wait.at.ramp
process WAIT.AT.STACK

" This process allows the aircraft to wait for some more time defined by
" WAIT.TIME.STACK before the aircraft is allowed to leave the stack.
" CALLED FROM: PRECED.FASTER.ACFT, PRECEDE.SLOWER.ACFT
" CALLS:

 wait WAIT.TIME.STACK seconds

 activate a FINAL.APPROACH OPERATION now

 return

end " wait.at.stack
routine YES.NO.MESSAGE yielding .YES.NO

" This routine prints a choice message to edit any data in the present screen
" CALLED FROM: NEW.APP.STRT
" CALLS:

 define .YES.NO as a text variable

 call vbcolor.r(5)

 call vgotoxy.r(22,1)

 print 1 line thus
 DO YOU WANT TO CHANGE ANY VALUE (Y/N) :

 call vgotoxy.r(22,42)

 read .YES.NO

 let .YES.NO = upper.f(.YES.NO)

 let .YES.NO = fixed.f(.YES.NO,1)

 call vbcolor.r(1)

 call vgotoxy.r(22,0)

 call vclear.r

Appendix A. RUNSIM Source Code
return

end "yes.no.message"
Appendix B. RUNSIM Aircraft Data File (ACFT.DAT)

- Aircraft data is given below
- For type: 3-heavy, 2-large, 1-small
- Aircraft type MALW OEW CL DEC FREE WING WING
- NAME MAX M/Roll AREA SPAN
- (Kg's) (Kg's)(DIM) S-S (S) (Sq.M) (M)
- End of comments; data starts

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Max M</th>
<th>Roll Area</th>
<th>Span</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-300-600</td>
<td>140000</td>
<td>89669</td>
<td>3.009</td>
<td>1.90</td>
<td>3.00</td>
<td>260.00</td>
<td>44.84</td>
</tr>
<tr>
<td>A-310-300</td>
<td>123000</td>
<td>80500</td>
<td>3.1912</td>
<td>2.00</td>
<td>3.00</td>
<td>219.00</td>
<td>43.90</td>
</tr>
<tr>
<td>A-320-200</td>
<td>64500</td>
<td>39980</td>
<td>2.9941</td>
<td>1.89</td>
<td>3.00</td>
<td>122.40</td>
<td>33.91</td>
</tr>
<tr>
<td>FOKKER-100</td>
<td>39915</td>
<td>24541</td>
<td>2.5326</td>
<td>2.19</td>
<td>3.00</td>
<td>93.50</td>
<td>28.08</td>
</tr>
<tr>
<td>BAe-146-200</td>
<td>36740</td>
<td>23882</td>
<td>3.3849</td>
<td>2.43</td>
<td>3.00</td>
<td>77.30</td>
<td>26.34</td>
</tr>
<tr>
<td>B-727-200</td>
<td>72200</td>
<td>46675</td>
<td>2.5580</td>
<td>1.89</td>
<td>3.00</td>
<td>157.30</td>
<td>32.92</td>
</tr>
<tr>
<td>B-737-300</td>
<td>51710</td>
<td>31479</td>
<td>2.8425</td>
<td>2.17</td>
<td>3.00</td>
<td>105.40</td>
<td>28.88</td>
</tr>
<tr>
<td>B-737-400</td>
<td>285765</td>
<td>178661</td>
<td>2.7859</td>
<td>1.36</td>
<td>3.00</td>
<td>511.00</td>
<td>54.94</td>
</tr>
<tr>
<td>B-757-200</td>
<td>89810</td>
<td>57180</td>
<td>2.8866</td>
<td>1.98</td>
<td>3.00</td>
<td>185.25</td>
<td>38.05</td>
</tr>
<tr>
<td>B-767-300</td>
<td>129273</td>
<td>83778</td>
<td>2.4480</td>
<td>1.81</td>
<td>3.00</td>
<td>283.30</td>
<td>47.57</td>
</tr>
<tr>
<td>MD-83</td>
<td>63276</td>
<td>36543</td>
<td>2.9319</td>
<td>1.89</td>
<td>3.00</td>
<td>118.00</td>
<td>32.87</td>
</tr>
<tr>
<td>DC-10-30</td>
<td>182798</td>
<td>121198</td>
<td>2.6595</td>
<td>1.85</td>
<td>3.00</td>
<td>367.70</td>
<td>50.40</td>
</tr>
<tr>
<td>PA-38-112</td>
<td>757</td>
<td>502</td>
<td>1.5748</td>
<td>2.04</td>
<td>2.00</td>
<td>11.59</td>
<td>10.36</td>
</tr>
<tr>
<td>PA-32-301</td>
<td>1640</td>
<td>878</td>
<td>1.6472</td>
<td>2.84</td>
<td>2.00</td>
<td>16.63</td>
<td>11.02</td>
</tr>
<tr>
<td>BE-F33A</td>
<td>1542</td>
<td>964</td>
<td>2.1300</td>
<td>1.79</td>
<td>2.00</td>
<td>16.81</td>
<td>10.21</td>
</tr>
<tr>
<td>CE-210P</td>
<td>1772</td>
<td>1052</td>
<td>1.9925</td>
<td>2.45</td>
<td>2.00</td>
<td>16.50</td>
<td>11.20</td>
</tr>
<tr>
<td>BE-58</td>
<td>2500</td>
<td>1579</td>
<td>1.4859</td>
<td>2.19</td>
<td>2.00</td>
<td>18.52</td>
<td>11.53</td>
</tr>
<tr>
<td>BE-300</td>
<td>6363</td>
<td>3851</td>
<td>2.0760</td>
<td>2.13</td>
<td>2.00</td>
<td>28.16</td>
<td>16.61</td>
</tr>
<tr>
<td>CE-421</td>
<td>3266</td>
<td>2298</td>
<td>1.4310</td>
<td>3.23</td>
<td>2.00</td>
<td>19.97</td>
<td>12.53</td>
</tr>
<tr>
<td>CE-550</td>
<td>5773</td>
<td>3351</td>
<td>1.7680</td>
<td>3.60</td>
<td>3.00</td>
<td>30.00</td>
<td>15.90</td>
</tr>
<tr>
<td>LEARJET-31</td>
<td>6940</td>
<td>4514</td>
<td>2.4130</td>
<td>3.13</td>
<td>3.00</td>
<td>24.57</td>
<td>13.34</td>
</tr>
<tr>
<td>G1159C</td>
<td>26535</td>
<td>18098</td>
<td>1.5472</td>
<td>4.37</td>
<td>3.00</td>
<td>89.29</td>
<td>23.72</td>
</tr>
<tr>
<td>BAe-125-800</td>
<td>10590</td>
<td>6858</td>
<td>2.1704</td>
<td>4.18</td>
<td>3.00</td>
<td>34.75</td>
<td>15.66</td>
</tr>
<tr>
<td>CL-601-3A</td>
<td>16363</td>
<td>2937</td>
<td>2.1780</td>
<td>4.06</td>
<td>3.00</td>
<td>42.00</td>
<td>19.61</td>
</tr>
<tr>
<td>SAAB-340</td>
<td>11566</td>
<td>7194</td>
<td>2.5779</td>
<td>1.67</td>
<td>2.00</td>
<td>41.80</td>
<td>21.44</td>
</tr>
<tr>
<td>BAe-31</td>
<td>6600</td>
<td>4103</td>
<td>2.1346</td>
<td>1.98</td>
<td>2.00</td>
<td>25.20</td>
<td>15.85</td>
</tr>
<tr>
<td>EMB-120</td>
<td>11250</td>
<td>7070</td>
<td>2.2722</td>
<td>1.61</td>
<td>2.00</td>
<td>39.43</td>
<td>19.28</td>
</tr>
<tr>
<td>DHC-8-100</td>
<td>15375</td>
<td>10024</td>
<td>3.2894</td>
<td>1.71</td>
<td>2.00</td>
<td>54.35</td>
<td>25.91</td>
</tr>
<tr>
<td>FOKKER-50</td>
<td>18890</td>
<td>12520</td>
<td>2.5417</td>
<td>1.88</td>
<td>2.00</td>
<td>70.00</td>
<td>29.00</td>
</tr>
<tr>
<td>SA-227-AT/41</td>
<td>6590</td>
<td>3833</td>
<td>1.8267</td>
<td>2.96</td>
<td>2.00</td>
<td>28.73</td>
<td>16.60</td>
</tr>
</tbody>
</table>
Appendix C. Turnoff Data File (TOT.DAT)

* TURNOFF OCCUPANCY TIME DATA IS GIVEN BELOW
* EXIT NO OF SPEED INTERCEPT RWY ACFT
* TYPE RECORDS WIDTH WING SPAN

-999 DATA START;

<table>
<thead>
<tr>
<th>1</th>
<th>8</th>
<th>3.739</th>
<th>0.073</th>
<th>0.158</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>13.239</td>
<td>-0.029</td>
<td>0.173</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>1.386</td>
<td>0.209</td>
<td>0.204</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>8.237</td>
<td>0.072</td>
<td>0.108</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11.344</td>
<td>0.175</td>
<td>0.266</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>7.148</td>
<td>0.175</td>
<td>0.266</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>4.255</td>
<td>0.109</td>
<td>0.170</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>3.749</td>
<td>0.073</td>
<td>0.112</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>3.388</td>
<td>0.061</td>
<td>0.094</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>26.745</td>
<td>0.197</td>
<td>0.287</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>22.409</td>
<td>0.196</td>
<td>0.286</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>9.428</td>
<td>0.095</td>
<td>0.141</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>8.237</td>
<td>0.072</td>
<td>0.108</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>18.133</td>
<td>0.137</td>
<td>0.220</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>11.973</td>
<td>0.136</td>
<td>0.218</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>8.318</td>
<td>0.103</td>
<td>0.173</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>23.214</td>
<td>0.236</td>
<td>0.329</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>14.838</td>
<td>0.235</td>
<td>0.327</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>7.971</td>
<td>0.125</td>
<td>0.177</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td>6.346</td>
<td>0.078</td>
<td>0.109</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>5.136</td>
<td>0.058</td>
<td>0.081</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>23.811</td>
<td>0.257</td>
<td>0.351</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>15.445</td>
<td>0.257</td>
<td>0.350</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>7.945</td>
<td>0.140</td>
<td>0.196</td>
</tr>
<tr>
<td>7</td>
<td>29</td>
<td>6.473</td>
<td>0.085</td>
<td>0.118</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>5.258</td>
<td>0.064</td>
<td>0.088</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>15.576</td>
<td>0.162</td>
<td>0.253</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>7.456</td>
<td>0.159</td>
<td>0.250</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>5.517</td>
<td>0.140</td>
<td>0.196</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>4.259</td>
<td>0.050</td>
<td>0.079</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>3.441</td>
<td>0.039</td>
<td>0.060</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>25.291</td>
<td>0.248</td>
<td>0.341</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>16.866</td>
<td>0.247</td>
<td>0.339</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>8.632</td>
<td>0.136</td>
<td>0.196</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>6.924</td>
<td>0.083</td>
<td>0.114</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>5.601</td>
<td>0.062</td>
<td>0.085</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>21.798</td>
<td>0.248</td>
<td>0.343</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>18.342</td>
<td>0.247</td>
<td>0.342</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>10.912</td>
<td>0.247</td>
<td>0.342</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>7.254</td>
<td>0.165</td>
<td>0.236</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>6.919</td>
<td>0.110</td>
<td>0.154</td>
</tr>
</tbody>
</table>

Appendix C. Turnoff Data File (TOT.DAT)
Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program

Program to estimate the turnoff time of various aircraft and various turnoff angles.

OPEN *Results* FOR OUTPUT AS # 11

200 CALL title (runwid,extype)

FOR acftype = 1 TO 34

SELECT CASE acftype

CASE IS = 1
 'Piper Tomahawk (PA-28)
 icat = 1
 acfmass = 757 ' turnoff generating aircraft mass (kilograms)
 acfim = 77.5 ' Percent mass on main gear (%)
 acfwb = 1.45 ' Aircraft wheelbase (meters)
 acfwls = 10.36 ' Aircraft wingspan (meters)
 tspan = 3.56 ' Aircraft tail span (meters)
 nttip = 5.66 ' Distance from main gear to tail plane ref. point
 nwtip = 1.76 ' Distance from nose gear to wing tip plane

CASE IS = 2
 'Piper Dakota II
 icat = 1
 acfmass = 1363 ' turnoff generating aircraft mass (kilograms)
 acfim = 81.73 ' Percent mass on main gear (%)
 acfwb = 1.98 ' Aircraft wheelbase (meters)
 acfwls = 10.92 ' Aircraft wingspan (meters)
 tspan = 3.15 ' Aircraft tail span (meters)
 nttip = 8.56 ' Distance from main gear to tail plane ref. point
 nwtip = 3.1 ' Distance from nose gear to wing tip plane

CASE IS = 3
 'Cessna Skyhawk
 icat = 1
 acfmass = 1090 ' turnoff generating aircraft mass (kilograms)
 acfim = 77.93 ' Percent mass on main gear (%)
 acfwb = 1.7 ' Aircraft wheelbase (meters)
 acfwls = 10.92 ' Aircraft wingspan (meters)
 tspan = 2.78 ' Aircraft tail span (meters)
 nttip = 5.78 ' Distance from main gear to tail plane ref. point
 nwtip = 1.9 ' Distance from nose gear to wing tip plane

CASE IS = 4
 'Beechcraft Baron 58P
 icat = 2
 acfmass = 2500 ' turnoff generating aircraft mass (kilograms)
 acfim = 84.73 ' Percent mass on main gear (%)
 acfwb = 2.72 ' Aircraft wheelbase (meters)
acfws = 11.53
tspan = 3.34
nttip = 5.7
nwtip = 2.25

' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 5
icat = 1
acfmass = 1772
acfm = 83.31
acfbw = 2.44
acfw = 13.66
tspan = 3.8
nttip = 6.1
nwtip = 2.5

' Turnoff generating aircraft mass (kilogram)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (metres)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 6
icat = 1
acfmass = 4082
acfm = 83.31
acfbw = 3.31
acfw = 12.52
tspan = 6.21
nttip = 8.48
nwtip = 3.52

' Turnoff generating aircraft mass (kilogram)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (metres)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 7
icat = 1
acfmass = 3107
acfm = 83.31
acfbw = 4.15
acfw = 13.45
tspan = 5.43
nttip = 8.9
nwtip = 4.16

' Turnoff generating aircraft mass (kilogram)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (metres)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 8
icat = 2
acfmass = 11250
acfm = 90.77
acfbw = 6.97
acfw = 19.78
tspan = 6.82
nttip = 17.56
nwtip = 7.57

' Turnoff generating aircraft mass (kilogram)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (metres)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 9
icat = 2
acfmass = 7303
acfm = 90.77
acfbw = 7.17
acfw = 16.81

' Turnoff generating aircraft mass (kilogram)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
<table>
<thead>
<tr>
<th>CASE IS</th>
<th>Aircraft Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>BAe ATP</td>
</tr>
<tr>
<td>11</td>
<td>Aerospatiale ATR 42</td>
</tr>
<tr>
<td>12</td>
<td>CASA/Nurtanio 235</td>
</tr>
<tr>
<td>13</td>
<td>Shorts 330</td>
</tr>
<tr>
<td>14</td>
<td>Saab 340</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>icat</th>
<th>acfmass</th>
<th>acflm</th>
<th>acfwb</th>
<th>acfws</th>
<th>tspan</th>
<th>nttip</th>
<th>nwtip</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21733</td>
<td>90.77</td>
<td>8.59</td>
<td>30.63</td>
<td>10.87</td>
<td>20.3</td>
<td>9.75</td>
<td>Aircraft tail span (meters)</td>
</tr>
<tr>
<td>2</td>
<td>15500</td>
<td>90.77</td>
<td>8.901</td>
<td>24.57</td>
<td>7.31</td>
<td>20.57</td>
<td>9.49</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td>2</td>
<td>14200</td>
<td>90.77</td>
<td>6.83</td>
<td>25.81</td>
<td>10.89</td>
<td>18.36</td>
<td>7.259</td>
<td>Distance from nose gear to wing tip plane</td>
</tr>
<tr>
<td>2</td>
<td>10251</td>
<td>90.77</td>
<td>6.37</td>
<td>22.76</td>
<td>5.75</td>
<td>15.48</td>
<td>6.74</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td>2</td>
<td>12020</td>
<td>90.88</td>
<td>7.04</td>
<td>21.44</td>
<td>7.92</td>
<td>15.84</td>
<td></td>
<td>Distance from nose gear to wing tip plane</td>
</tr>
</tbody>
</table>

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
<table>
<thead>
<tr>
<th>Case ID</th>
<th>Aircraft Model</th>
<th>icat</th>
<th>acfmass</th>
<th>acfim</th>
<th>acfwb</th>
<th>acfws</th>
<th>tsfan</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>BAe 31 'Jetstream'</td>
<td>2</td>
<td>6600</td>
<td>82.18</td>
<td>4.6</td>
<td>15.85</td>
<td>6.79</td>
<td>11.615</td>
<td>4.82</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fairchild Metro SA 227</td>
<td>2</td>
<td>6350</td>
<td>84.73</td>
<td>5.984</td>
<td>17.37</td>
<td>5.543</td>
<td>14.75</td>
<td>8.273</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17</td>
<td>'Boeing DeHavilland DHC-8'</td>
<td>2</td>
<td>14923</td>
<td>84.73</td>
<td>7.92</td>
<td>25.91</td>
<td>7.92</td>
<td>19.9</td>
<td>8.56</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
<td>'Douglas DC-8-73'</td>
<td>2</td>
<td>117000</td>
<td>91</td>
<td>21.59</td>
<td>45.2</td>
<td>13.47</td>
<td>48.79</td>
<td>33.24</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>19</td>
<td>'Douglas DC-9-50'</td>
<td>2</td>
<td>49695</td>
<td>90</td>
<td>18.01</td>
<td>28.47</td>
<td>11.43</td>
<td>36.02</td>
<td>21.48</td>
</tr>
</tbody>
</table>

'Distance from nose gear to wing tip plane'

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program 260
CASE IS = 20
'Douglas DC-10-30

<table>
<thead>
<tr>
<th>icat</th>
<th>acmass</th>
<th>acfim</th>
<th>acfwb</th>
<th>acfws</th>
<th>tspan</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>182766.6</td>
<td>93</td>
<td>26.17</td>
<td>50.4</td>
<td>22.56</td>
<td>45.57</td>
<td>41.51</td>
</tr>
</tbody>
</table>

- `acmасс`: turnover generating aircraft mass (kilograms)
- `acфим`: Percent mass on main gear (%)
- `acfwб`: Aircraft wheelbase (meters)
- `acfws`: Aircraft wingspan (meters)
- `tспан`: Aircraft tail span (meters)
- `ntтип`: Distance from main gear to tail plane ref. point
- `nwтип`: Distance from nose gear to wing tip plane

CASE IS = 21
'MD-11

<table>
<thead>
<tr>
<th>icat</th>
<th>acmass</th>
<th>acfim</th>
<th>acfwb</th>
<th>acfws</th>
<th>tspan</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>195040.0</td>
<td>92</td>
<td>24.8</td>
<td>51.7</td>
<td>16.36</td>
<td>54.63</td>
<td>44.63</td>
</tr>
</tbody>
</table>

- `acмасс`: turnover generating aircraft mass (kilograms)
- `acфим`: Percent mass on main gear (%)
- `acfwб`: Aircraft wheelbase (meters)
- `acfws`: Aircraft wingspan (meters)
- `tспан`: Aircraft tail span (meters)
- `ntтип`: Distance from main gear to tail plane ref. point
- `nwтип`: Distance from nose gear to wing tip plane

CASE IS = 22
'MD-82

<table>
<thead>
<tr>
<th>icat</th>
<th>acmass</th>
<th>acfim</th>
<th>acfwb</th>
<th>acfws</th>
<th>tspan</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58060.0</td>
<td>89</td>
<td>21.79</td>
<td>32.87</td>
<td>11.82</td>
<td>42.47</td>
<td>29.55</td>
</tr>
</tbody>
</table>

- `acмасс`: turnover generating aircraft mass (kilograms)
- `acфим`: Percent mass on main gear (%)
- `acfwб`: Aircraft wheelbase (meters)
- `acfws`: Aircraft wingspan (meters)
- `tспан`: Aircraft tail span (meters)
- `ntтип`: Distance from main gear to tail plane ref. point
- `nwтип`: Distance from nose gear to wing tip plane

CASE IS = 23
'Fokker F-28

<table>
<thead>
<tr>
<th>icat</th>
<th>acmass</th>
<th>acfim</th>
<th>acfwb</th>
<th>acfws</th>
<th>tspan</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>31525</td>
<td>88</td>
<td>10.37</td>
<td>25.07</td>
<td>8.72</td>
<td>25.92</td>
<td>12.25</td>
</tr>
</tbody>
</table>

- `acмасс`: turnover generating aircraft mass (kilograms)
- `acфим`: Percent mass on main gear (%)
- `acfwб`: Aircraft wheelbase (meters)
- `acfws`: Aircraft wingspan (meters)
- `tспан`: Aircraft tail span (meters)
- `ntтип`: Distance from main gear to tail plane ref. point
- `nwтип`: Distance from nose gear to wing tip plane

CASE IS = 24
'Fokker F-100

<table>
<thead>
<tr>
<th>icat</th>
<th>acmass</th>
<th>acfim</th>
<th>acfwb</th>
<th>acfws</th>
<th>tspan</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>38330.8</td>
<td>88</td>
<td>14.07</td>
<td>29.08</td>
<td>8.73</td>
<td>31.88</td>
<td>16.37</td>
</tr>
</tbody>
</table>

- `acмасс`: turnover generating aircraft mass (kilograms)
- `acфим`: Percent mass on main gear (%)
- `acfwб`: Aircraft wheelbase (meters)
- `acfws`: Aircraft wingspan (meters)
- `tспан`: Aircraft tail span (meters)
- `ntтип`: Distance from main gear to tail plane ref. point
- `nwтип`: Distance from nose gear to wing tip plane

CASE IS = 25
'Airbus A320

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
<table>
<thead>
<tr>
<th>Case</th>
<th>Aircraft Model</th>
<th>icat</th>
<th>acfmas</th>
<th>acflm</th>
<th>acfwb</th>
<th>acfws</th>
<th>atspan</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>British Aerospace 146-200</td>
<td>2</td>
<td>61000.8</td>
<td>90.77</td>
<td>12.83</td>
<td>33.91</td>
<td>12.94</td>
<td>34.43</td>
<td>22.5</td>
</tr>
<tr>
<td>3</td>
<td>TAR-011 CNIAR 1-11</td>
<td>3</td>
<td>36740.8</td>
<td>90.26</td>
<td>11.2</td>
<td>26.34</td>
<td>4.7</td>
<td>12.05</td>
<td>12.82</td>
</tr>
<tr>
<td>29</td>
<td>Boeing 737-300</td>
<td>3</td>
<td>121000 &</td>
<td>92 &</td>
<td>10.5</td>
<td>44.42</td>
<td>6.73</td>
<td>13.8</td>
<td>41.61</td>
</tr>
<tr>
<td>29</td>
<td>Boeing 737-300</td>
<td>2</td>
<td>51710 &</td>
<td>89 &</td>
<td>92 &</td>
<td>48.8</td>
<td>28.8</td>
<td>12.25</td>
<td>16.16</td>
</tr>
</tbody>
</table>

* Turnoff generating aircraft mass (kilograms)
 * Percent mass on main gear (%)
 * Aircraft wheelbase (meters)
 * Aircraft wingspan (meters)
 * Aircraft tail span (meters)
 * Distance from main gear to tail plane ref. point
 * Distance from nose gear to wing tip plane

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
icat = 3
acfmass = 72200,
acflm = 92.5
acfwb = 16.75
acfw = 36.75
acflw = 5.71
tspan = 14.55
rttip = 42.11
rwtip = 25.3

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft wheeltrack (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 31 'Boeing 757-200
icat = 2
acfmass = 898300,
acflm = 90
acfwb = 18.08
acfw = 38.05
tspan = 14.5
rttip = 40.44
rwtip = 22.51

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 32 'Boeing 757-200
icat = 2
acfmass = 1237330
acflm = 92
acfwb = 22.59
acfw = 47.57
tspan = 18.16
rttip = 49.17
rwtip = 27.33

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 33 'Boeing 747-400
icat = 4
acfmass = 2857500
acflm = 94
acfwb = 25.6
acfw = 63.3
tspan = 11.05
tspan = 21.08
rttip = 62.11
rwtip = 41.03

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft wheeltrack (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 34 'Airbus A300-600
icat = 4
acfmass = 1400000
acflm = 92.5
acfw = 18.6
acfw = 44.8
acflw = 9.61
tspan = 15.96
rttip = 46.96
rwtip = 32.8

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft wheeltrack (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

END SELECT
* Definition exit parameters for standard geometries
 IF extype = 6 THEN GOTO 100

SELECT CASE extype

CASE IS = 1 '90 Deg. FAA Standard Geometry
 vexit = 8 'standard exit speed (m/sec.)
 theta = 90/57.29 'standard turnoff angle (deg.)
 Rpath = 77 'largest radius of curvature (m.)

CASE IS = 2 '45 Deg. FAA Standard
 vexit = 8 'standard exit speed (m/sec.)
 theta = 45/57.29 'standard turnoff angle (deg.)
 Rpath = 244 'standard radius for 45 Deg. exit

CASE IS = 3 '30 Deg. FAA Standard Geometry
 vexit = 26.7 'standard exit speed (m/sec.)
 theta = 90/57.29 'standard turnoff angle (deg.)
 Rpath = 550 'radius of curvature (m)

CASE IS = 4 '30 Deg. with 1400 ft. spiral
 vexit = 26.7 'standard exit speed (m/sec.)
 theta = 30/57.29 'standard turnoff angle (deg.)
 Rpath = 550 'radius of curvature (m)

CASE IS = 5 'Wide Throat Geometry Estimation Parameters
 vexit = 17 'standard exit speed (m/sec.)
 theta = 90/57.29 'standard turnoff angle (deg.)
 Rpath = 550 'radius of curvature (m)

END SELECT

* General Algorithm for Standard Geometries

* Initialize exit parameters
 xpath = 0
 ypath = 0
 vpath = vexit
 sai = 0
 tpath = 0!
 dt = .05
 count = 0!
 sai1s = 0!
 tprint = 0!

 xm = xpath - acfwb
 ym = ypath

 xtip = xm
 ytip = ypath - (acfws/2!)

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
LOCATE 4, 5 : PRINT "Time (s) Xcoord (m) Ycoord (m) Heading Speed Heading"
LOCATE 6,4: PRINT USING"#####.#####"; tpath, xpath, ypath, sai, vsai, vpath, sai

IF (extype = 4 OR extype = 5) THEN

5

IF (extype = 5) THEN
 dxpath = 1 - .002 * xpath
ELSE
 dxpath = 1 - .000625 * xpath
END IF

xpath1 = xpath + dxpath

IF (extype = 5) THEN
 ypath1 = 1.3763*10^-6*(.006301*xpath1)
ELSE
 ypath1 = -.202 + .012 * xpath1 - .0001072 * xpath1^2 + 1.2086E-06 * xpath1^3
END IF

dypath = ypath1 - ypath

ds = SQRT(dxpath^2 + dypath^2)
dt = ds / vpath

IF (sai < theta*57.29) THEN
 dsai = ATN (dypath / dxpath)
ELSE
 dsai = 0
END IF

IF (vpath < 8) THEN
 accpath = 0
ELSE
 accpath = -.375
END IF

' Integration of nose gear parameters

xpath = xpath1
ypath = ypath1
vpath = vpath + dt*accpath
sai = sai + dsai
tpath = tpath + dt
tprint = tprint + dt

sai = (vpath - ym) / (xpath - xm) ' Fuselage instantaneous heading angle
xm = xm + dt * vpath * COS (sai)
ym = ym + dt * vpath * SIN (sai)

xtip = xpath - ntip * COS (sai) + (actip/2) * SIN (sai)
ytutp = ypath - ntip * SIN (sai) - (actip/2) * COS (sai)

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
said = sai*57.29
thetad = theta*57.29

IF tprint > .5 THEN

PRINT USING"#####.#####"; tpath, xpath, ypath, said, vpath, sai
 tprint = 0!
END IF

IF (ytip < runwd/21 OR yt nip < runwd/21) GOTO 5

PRINT "click to continue": WHILE MOUSE (0) <> 1 :WEND

CLS

ELSE
 GOTO 3
END IF

3 'Estimation of Rate Variables

dpath = vpath*dt
dsaid = dpath/Repath

' Estimation of heading rate of change

IF (sai < theta) THEN
 saidot = said/dt
ELSE
 saidot = 0!
END IF

' Estimation of deceleration rate of change

IF (vpath < 8) THEN
 acopath = 0!
ELSE
 acopath = -.375
END IF

' Estimation of downrange position changes

xdot = dpath*COS(sai)/dt
ydot = dpath*SIN(sai)/dt

' integration of nose gear parameters

xpath = xpath + dt*xdot
ypath = ypath + dt*ydot
vpath = vpath + dt*acopath
sai = sai + dt* saidot
tpath = tpath + dt

saiful = (y path - y m) / (x path - x m) 'Fuselage instantaneous heading angle

xm = xm + dt * vpath * COS (saiful)
ym = ym + dt * vpath * SIN (saiful) 'Main gear centerline trajectory

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
xwttip = xpath - nwttip * COS (saius) + (acfws/2) * SIN (saius)
ywttip = ypath - nwttip * SIN (saius) - (acfws/2) * COS (saius)

xttip = xpath - ntttip * COS (saius) + (tspan2/2) * SIN (saius)
yttip = ypath - ntttip * SIN (saius) - (tspan2/2) * COS (saius)

said = sai*57.29
thetad = theta*57.29

count = count + 1

IF count = 10 THEN

PRINT USING "************", tpath, Rpath, xpath, ypath, said, vpath
count = 0!
END IF

IF (ywttip < runwid/2! OR ytttip < runwid/2!) GOTO 3

'PRINT "click to continue" : WHILE MOUSE (0) <> 1 :WEND
CLS

PRINT "Geometry Parameters"
PRINT "*
PRINT " Aircraft Type = ", acftype
PRINT " Turnoff Angle = ", thetad
PRINT " Exit Speed = ", vexit
PRINT " Turnoff Time = ", tpath
PRINT " Aircraft Wingspan = ", acfws
PRINT " Distance from NG to Wingtip plane = ", nwttip
PRINT " Distance from NG to Tailtip plane = ", ntttip
PRINT " Final Fuselage Exit Angle = ", said

WRITE # 11, acftype, thetad, vexit, tpath, acfws, nwttip, ntttip, said

'PRINT "click to continue" : WHILE MOUSE (0) <> 1 :WEND
CLS
NEXT acftype

100 CLOSE # 11

GOTO 500

100 ' Define constants of the model (only for REDIM computations)

vars=1
n=1
g= 9.81
pi = 3.141592654#
froll = .03
dt = .05
dx = 5
dy = 5
rho = 1.125

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
countl=0!
jerkmax = .55 ' Maximum jerk in m/sec-sec-sec
anmax = 1.2

pcount = 0

'Estimation of the aircraft cornering capabilities (inertia limitations in the turn)
'Estimate the yaw inertia (IZZ) of the aircraft in question
acfyaw = 10 ^ (1.7215 * LOG (acfmass) / LOG (10) - 1.673)

IF vars = 1 THEN
 CALL skid(icat, iwt, ymumax, vexit, sf)
ELSE
 CALL fixskid(iwt, ymumax)
END IF

' Initialization of variables (aircraft generating the turnoff geometry)

xpath = 0
yopath = 0
vpath = vexit
saig = 0
castor = 0
tpath = 0
tpath1 = 0
Rpath = 5000

xm = xpath - acfwb
ym = yopath

xtip = xm
ytip = yopath - (acfws/2!)

LOCATE 4,5: PRINT "Time (s) Radius (m) Xcoord(m) Ycoord. (m.) Heading Speed"
LOCATE 6,4: PRINT USING"#*####.####": tpath, Rpath, xpath, ypath, saifus, vpath

' Estimation of rate variables (in the turn alone)

rdot1 = acfmass * acfw
rdot0 = (acfm / 100!) * (1 - acfms /100!)

2 IF vpath <= 10! THEN
 acpath = 0!
 ELSE
 acpath = (-1) * g * froll
 END IF

' Estimation of scrubbing coefficient and steering algorithm

CALL steer (Rpath, vpath, saig, saidotg, ypath, theta)
CALL scrub (Rpath, acfmass, ymuc)

ymuc = vpath ^ 2 / (Rpath * g)
cenacc = ymuc * g
ymui = ymumax - ymuc - ymuc

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
rdot2 = -(ymul * g * Rapath ^ 2 / (acfyaw * vpath))
rdot = rdot0 * rdot1 * rdot2

' Estimation of the normal acceleration (an) and jerk-related parameters
an = vpath^2/Rapath
rdotjerk = - Rapath^2 * jerkmax / vpath^2
jerk = an * vpath / lpath
rdotan = - Rapath^2 * anmax / (lpath * vpath)

xjerk = xpath
yjerk = jerkmax * lpath^3 / (6*vpath^3)

IF ABS(rdot) > ABS(rdotjerk) THEN
 rdot = rdotjerk
END IF

' Integrate aircraft generating exit parameters
lpath = lpath + dt * vpath
saig = saig + dt * saidotg
Rapath = Rapath + dt * rdot
xpath = xpath + dt * vpath * COS (saig)
ypath = ypath + dt * vpath * SIN (saig)
vpath = vpath + dt * acpath
tpath = tpath + dt
count = count + 1

saifus = (vpath - ym) / (xpath - xm) ' Fuselage instantaneous heading angle
xm = xm + dt * vpath * COS (saifus) ' Main gear centerline trajectory
ym = ym + dt * vpath * SIN (saifus)
xwtip = xpath - nwtip * COS (saifus) + (acfwsa2) * SIN (saifus)
ywtip = ypath - nwtip * SIN (saifus) - (acfwsa2) * COS (saifus)
xrtip = xpath - nrtip * COS (saifus) + (tvspan2) * SIN (saifus)
yrtip = ypath - nrtip * SIN (saifus) - (tvspan2) * COS (saifus)

saifusd = saifus*57.29
said = saig*57.29

IF count = 10 THEN
 PRINT USING "####.####"; tpath, Rapath, xpath, ypath, saifusd, vpath
 count = 0!
END IF

IF (ywtip < runw/2! OR yrtip < runw/2!) GOTO 2

'PRINT "click to continue" : WHILE MOUSE (0) <> 1 :WEND
CLS
PRINT * REDIM Geometry Parameters
PRINT *
PRINT * Turnoff Angle = *, theta
PRINT * Ext Speed = *, vexit

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
PRINT 'Turnoff Time = tpath
PRINT 'Aircraft Wingspan = a.chws
PRINT 'Distance from NG to Wingtip plane = n.wtip
PRINT 'Distance from NG to Tailtip plane = n.ntltip
PRINT 'Final Fuselage Exit Angle = said

'PRINT 'click to continue': WHILE MOUSE (0) <> 1 :WEND

500 PRINT 'Would you like another run -
PRINT '
PRINT ' 1 - no
PRINT ' 2 - yes

INPUT 'rerun - ', rerun
IF (rerun = 2) THEN
 GOTO 200
END IF

STOP
END

------------ Subroutines ------------

SUB steer (Rapath, vpath, saig, saidotg, ypath, theta) STATIC

 tpol = 2 'straight ahead after (theta) heading

 IF tpol = 1 THEN
 IF saig < 1.41 THEN
 IF ypath < (dist/2!) THEN
 saidotg = vpath / Rapath
 ELSE
 saidotg = (-1) * vpath / Rapath
 END IF
 ELSE
 saidotg = (-1) * vpath / Rapath
 END IF
 ELSE
 IF saig < (theta/57.29) THEN
 saidotg = vpath / Rapath
 ELSE
 saidotg = 0
 END IF
 END IF

END SUB

SUB scrub (Rapath, acfmass, ymusc) STATIC

IF Rapath < 50 THEN
 ymusc = .015
ELSE
 IF acfmass > 165000& THEN
 k1 = - 43.8987 + .0002706 * acfmass
 k2 = .1807 - 4.88E-06 * acfmass
 ELSE
 k1 = - 43.8987 + .0002706 * acfmass
 k2 = .1807 - 4.88E-06 * acfmass
 END IF

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program 270
ELSE
 k1 = 5.1349 - 0.0000266 * acfmass
 k2 = - 1.8417 + 7.37E-06 * acfmass
END IF

ymusc = k1 * Raphat^2 * k2

END IF

END SUB

SUB title (runwid, extype) STATIC

PRINT ""
PRINT ""
INPUT "Runway Width (meters) =", runwid

PRINT "Enter the Exit Type"
PRINT
PRINT 1 - 90 Deg FAA Standard"
PRINT 2 - 45 Deg FAA Standard"
PRINT 3 - 30 Deg FAA Standard"
PRINT 4 - 30 Deg FAA Standard with 1400 ft Spiral"
PRINT 5 - Wide Throat Geometry"
PRINT 6 - REDIM Geometry"

INPUT "Exit Type =", extype

IF (extype = 6) THEN
 INPUT "Exit Speed (m/sec.) =", vexit
 INPUT "Safety Factor for =", sy = sy
 INPUT "Turnoff Angle (degrees) =", theta

END IF

CLS
END SUB

SUB skid(icat, lwet, ymumax, vexit, sf) STATIC

IF lwet = 2 THEN

SELECT CASE icat
CASE 1
 ymumax = .6919 - .0448*vexit + .0022*vexit^2 - 5.392E-05*vexit^3 + 4.847E-07*vexit^4

CASE 2
 ymumax = .6313 - .0406*vexit + .0021*vexit^2 - 5.413E-05*vexit^3 + 5.175E-07*vexit^4

CASE 3
 ymumax = .5725 - .0373*vexit + .0019*vexit^2 - .0000487*vexit^3 + 4.642E-07*vexit^4

CASE 4
 ymumax = .5153 - .0326*vexit + .0016*vexit^2 - 3.885E-05*vexit^3 + 3.579E-07*vexit^4

END CASE

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
END SELECT

ELSE

SELECT CASE icat

CASE IS = 1
 k = .8515

CASE IS = 2
 k = .773

CASE IS = 3
 k = .6945

CASE IS = 4
 k = .616

END SELECT

mumax = 1.001 - .0574*vexit + .0023*vexit^2 - .0000545*vexit^3 + 6.911E-07*vexit^4 - 3.567E-09*vexit^5

ymumax = k * mumax

END IF

ymumax = ymumax / (1 + st/100) ' Sf is the safety factor applied to the ultimate μn

END SUB

SUB fixsid(iwet,ymumax) STATIC
 IF iwet = 1 THEN
 ymumax = .35
 ELSE
 ymumax = .2
 END IF

END SUB

SUB box STATIC
 LINE (10,10) - (600,380), B

END SUB

SUB small.box STATIC
 LINE (20,20) - (400,180), B

END SUB

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
Program to estimate the turnoff time of various aircraft and various turnoff angles.

OPEN "Results" FOR OUTPUT AS # 11

200 CALL title (runwid,extype)

FOR actype = 1 TO 34

SELECT CASE actype

CASE IS = 1
 'Piper Tomahawk (PA-28)
 icat = 1
 acfmass = 757 ' turnoff generating aircraft mass (kilograms)
 acfm = 77.5 ' Percent mass on main gear (%)
 acfwb = 1.45 ' Aircraft wheelbase (meters)
 acfws = 10.36 ' Aircraft wingspan (meters)
 ts = 3.56 ' Aircraft tail span (meters)
 nttip = 5.68 ' Distance from main gear to tail plane ref. point
 nwtip = 1.76 ' Distance from nose gear to wing tip plane

CASE IS = 2
 'Piper Dakotta II
 icat = 1
 acfmass = 1363 ' turnoff generating aircraft mass (kilograms)
 acf = 81.73 ' Percent mass on main gear (%)
 acfwb = 1.98 ' Aircraft wheelbase (meters)
 acfws = 10.92 ' Aircraft wingspan (meters)
 ts = 3.15 ' Aircraft tail span (meters)
 nttip = 8.56 ' Distance from main gear to tail plane ref. point
 nwtip = 3.1 ' Distance from nose gear to wing tip plane

CASE IS = 3
 'Cessna Skyhawk
 icat = 1
 acfmass = 1090 ' turnoff generating aircraft mass (kilograms)
 acf = 77.93 ' Percent mass on main gear (%)
 acfwb = 1.7 ' Aircraft wheelbase (meters)
 acfws = 10.92 ' Aircraft wingspan (meters)
 ts = 2.78 ' Aircraft tail span (meters)
 nttip = 5.78 ' Distance from main gear to tail plane ref. point
 nwtip = 1.9 ' Distance from nose gear to wing tip plane

CASE IS = 4
 'Beechcraft Baron 58P
 icat = 2
 acfmass = 2500 ' turnoff generating aircraft mass (kilograms)
 acf = 84.73 ' Percent mass on main gear (%)
 acfwb = 2.72 ' Aircraft wheelbase (meters)
 acfws = 11.53 ' Aircraft wingspan (meters)
 ts = 3.34 ' Aircraft tail span (meters)

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
<table>
<thead>
<tr>
<th>Case IS</th>
<th>Aircraft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Piper Malibu</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance from nose gear to wing tip plane</td>
</tr>
<tr>
<td></td>
<td>icat = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acfmass = 1772</td>
<td>Turnoff generating aircraft mass (kilograms)</td>
</tr>
<tr>
<td></td>
<td>aclim = 83.31</td>
<td>Percent mass on main gear (%)</td>
</tr>
<tr>
<td></td>
<td>aclwb = 2.44</td>
<td>Aircraft wheelbase (meters)</td>
</tr>
<tr>
<td></td>
<td>aclws = 13.66</td>
<td>Aircraft wingspan (meters)</td>
</tr>
<tr>
<td></td>
<td>tspan = 3.8</td>
<td>Aircraft tail span (meters)</td>
</tr>
<tr>
<td></td>
<td>nttip = 6.1</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td></td>
<td>nwtip = 2.5</td>
<td>Distance from nose gear to wing tip plane</td>
</tr>
<tr>
<td>6</td>
<td>Piper Navajo (PA-31)</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td></td>
<td>icat = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acfmass = 4082</td>
<td>Turnoff generating aircraft mass (kilograms)</td>
</tr>
<tr>
<td></td>
<td>aclim = 83.31</td>
<td>Percent mass on main gear (%)</td>
</tr>
<tr>
<td></td>
<td>aclwb = 3.31</td>
<td>Aircraft wheelbase (meters)</td>
</tr>
<tr>
<td></td>
<td>aclws = 12.52</td>
<td>Aircraft wingspan (meters)</td>
</tr>
<tr>
<td></td>
<td>tspan = 6.21</td>
<td>Aircraft tail span (meters)</td>
</tr>
<tr>
<td></td>
<td>nttip = 8.48</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td></td>
<td>nwtip = 3.52</td>
<td>Distance from nose gear to wing tip plane</td>
</tr>
<tr>
<td>7</td>
<td>Cessna 402C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>icat = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acfmass = 3107</td>
<td>Turnoff generating aircraft mass (kilograms)</td>
</tr>
<tr>
<td></td>
<td>aclim = 83.31</td>
<td>Percent mass on main gear (%)</td>
</tr>
<tr>
<td></td>
<td>aclwb = 4.15</td>
<td>Aircraft wheelbase (meters)</td>
</tr>
<tr>
<td></td>
<td>aclws = 13.45</td>
<td>Aircraft wingspan (meters)</td>
</tr>
<tr>
<td></td>
<td>tspan = 5.43</td>
<td>Aircraft tail span (meters)</td>
</tr>
<tr>
<td></td>
<td>nttip = 8.9</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td></td>
<td>nwtip = 4.16</td>
<td>Distance from nose gear to wing tip plane</td>
</tr>
<tr>
<td>8</td>
<td>Embraer 120 Brasilia</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td></td>
<td>icat = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acfmass = 11250</td>
<td>Turnoff generating aircraft mass (kilograms)</td>
</tr>
<tr>
<td></td>
<td>aclim = 90.77</td>
<td>Percent mass on main gear (%)</td>
</tr>
<tr>
<td></td>
<td>aclwb = 6.97</td>
<td>Aircraft wheelbase (meters)</td>
</tr>
<tr>
<td></td>
<td>aclws = 19.78</td>
<td>Aircraft wingspan (meters)</td>
</tr>
<tr>
<td></td>
<td>tspan = 6.82</td>
<td>Aircraft tail span (meters)</td>
</tr>
<tr>
<td></td>
<td>nttip = 17.58</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
<tr>
<td></td>
<td>nwtip = 7.57</td>
<td>Distance from nose gear to wing tip plane</td>
</tr>
<tr>
<td>9</td>
<td>Beech 1900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>icat = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acfmass = 7303</td>
<td>Turnoff generating aircraft mass (kilograms)</td>
</tr>
<tr>
<td></td>
<td>aclim = 90.77</td>
<td>Percent mass on main gear (%)</td>
</tr>
<tr>
<td></td>
<td>aclwb = 7.17</td>
<td>Aircraft wheelbase (meters)</td>
</tr>
<tr>
<td></td>
<td>aclws = 16.61</td>
<td>Aircraft wingspan (meters)</td>
</tr>
<tr>
<td></td>
<td>tspan = 5.63</td>
<td>Aircraft tail span (meters)</td>
</tr>
<tr>
<td></td>
<td>nttip = 17.34</td>
<td>Distance from main gear to tail plane ref. point</td>
</tr>
</tbody>
</table>

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
<table>
<thead>
<tr>
<th>CASE IS</th>
<th>Description</th>
<th>icat</th>
<th>acfmm</th>
<th>acflm</th>
<th>acflb</th>
<th>acfws</th>
<th>tspn</th>
<th>nttip</th>
<th>nwtip</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>'BAe ATP</td>
<td>2</td>
<td>21733</td>
<td>90.77</td>
<td>8.59</td>
<td>30.63</td>
<td>10.87</td>
<td>20.3</td>
<td>9.75</td>
</tr>
<tr>
<td>11</td>
<td>'Aerospatiale ATR 42</td>
<td>2</td>
<td>15500</td>
<td>90.77</td>
<td>8.901</td>
<td>24.57</td>
<td>7.31</td>
<td>20.57</td>
<td>9.49</td>
</tr>
<tr>
<td>12</td>
<td>'CASA/Nurtanio 235</td>
<td>2</td>
<td>14200</td>
<td>90.77</td>
<td>6.83</td>
<td>25.81</td>
<td>10.89</td>
<td>18.36</td>
<td>7.259</td>
</tr>
<tr>
<td>13</td>
<td>'Shorts 330</td>
<td>2</td>
<td>10251</td>
<td>90.77</td>
<td>6.37</td>
<td>22.76</td>
<td>5.75</td>
<td>15.48</td>
<td>6.74</td>
</tr>
<tr>
<td>14</td>
<td>'Saab 340</td>
<td>2</td>
<td>12020</td>
<td>90.86</td>
<td>7.04</td>
<td>21.44</td>
<td>7.92</td>
<td>15.84</td>
<td>9.86</td>
</tr>
<tr>
<td>CASE IS</td>
<td>Aircraft Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>'BAe 31 Jetstream'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>'Fairchild Metro SA 227'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>'Boeing DeHavilland DHC-8'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>'Douglas DC-8-73'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>'Douglas DC-9-50'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>'Douglas DC-10-30'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CASE IS = 15
- icat = 2
- acfmass = 6600
- acflm = 87.18
- acfwb = 4.6
- acfws = 15.85
- tsf = 6.79
- nttip = 11.615
- nwtip = 4.82

CASE IS = 16
- icat = 2
- acfmass = 6350
- acflm = 84.73
- acfwb = 5.984
- acfws = 17.37
- tsf = 4.643
- nttip = 14.75
- nwtip = 6.273

CASE IS = 17
- icat = 2
- acfmass = 14923
- acflm = 84.73
- acfwb = 7.92
- acfws = 25.91
- tsf = 7.92
- nttip = 19.9
- nwtip = 8.56

CASE IS = 18
- icat = 2
- acfmass = 117000
- acflm = 91
- acfwb = 21.59
- acfws = 45.2
- tsf = 13.47
- nttip = 48.79
- nwtip = 33.24

CASE IS = 19
- icat = 2
- acfmass = 49895
- acflm = 90
- acfwb = 18.01
- acfws = 28.47
- tsf = 11.43
- nttip = 36.02
- nwtip = 21.48

CASE IS = 20
- icat = 2
- acfmass = 117000
- acflm = 91
- acfwb = 21.59
- acfws = 45.2
- tsf = 13.47
- nttip = 48.79
- nwtip = 33.24

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
icat = 2
acfmass = 152766
acfm = 93
actwb = 25.17
actws = 50.4
actspan = 22.56
rntip = 45.57
ntwtip = 41.51

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 21 'MD-1'

icat = 2
acfmass = 195040
acfm = 92
actwb = 24.8
actws = 51.7
actspan = 16.36
rntip = 54.63
ntwtip = 44.63

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 22 'MD-82'

icat = 2
acfmass = 58060
acfm = 89
actwb = 21.79
actws = 32.87
actspan = 11.82
rntip = 42.47
ntwtip = 29.55

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 23 'Fokker F-28'

icat = 2
acfmass = 31525
acfm = 88
actwb = 10.37
actws = 25.07
actspan = 8.72
rntip = 25.92
ntwtip = 12.25

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 24 'Fokker F-100'

icat = 2
acfmass = 38330
acfm = 88
actwb = 14.07
actws = 28.38
actspan = 8.73
rntip = 31.88
ntwtip = 16.37

' Turnoff generating aircraft mass (kilograms)
' Percent mass on main gear (%)
' Aircraft wheelbase (meters)
' Aircraft wingspan (meters)
' Aircraft tail span (meters)
' Distance from main gear to tail plane ref. point
' Distance from nose gear to wing tip plane

CASE IS = 25 'Airbus A320'

icat = 2

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program 277
acfmass = 61000\&.
acflm = 90.77
acfwb = 12.63
acfw = 33.91
tspan = 12.94
nttip = 34.43
rwtip = 22.5

* Turnoff generating aircraft mass (kilograms)
* Percent mass on main gear (%)
* Aircraft wheelbase (meters)
* Aircraft wingspan (meters)
* Aircraft tail span (meters)
* Distance from main gear to tail plane ref. point
* Distance from nose gear to wing tip plane

CASE IS = 26

icat = 3
acfmass = 36740\&.
acflm = 90.26
acfwb = 11.2
acfw = 26.34
acfw = 4.7
nttip = 26.05
rwtip = 12.82

* Turnoff generating aircraft mass (kilograms)
* Percent mass on main gear (%)
* Aircraft wheelbase (meters)
* Aircraft wingspan (meters)
* Aircraft wheeltrack (meters)
* Aircraft tail span (meters)
* Distance from main gear to tail plane ref. point
* Distance from nose gear to wing tip plane

CASE IS = 27

icat = 2
acfmass = 39462\&.
acflm = 89
acfwb = 12.67
acfw = 28.5
nttip = 8.89
nttip = 26.03
rwtip = 15.63

* Turnoff generating aircraft mass (kilograms)
* Percent mass on main gear (%)
* Aircraft wheelbase (meters)
* Aircraft wingspan (meters)
* Aircraft wheeltrack (meters)
* Aircraft tail span (meters)
* Distance from main gear to tail plane ref. point
* Distance from nose gear to wing tip plane

CASE IS = 28

icat = 3
acfmass = 121000\&.
acflm = 92.1
acfwb = 18.5
acfw = 44.42
nttip = 13.8
nttip = 41.61
rwtip = 28.51

* Turnoff generating aircraft mass (kilograms)
* Percent mass on main gear (%)
* Aircraft wheelbase (meters)
* Aircraft wingspan (meters)
* Aircraft wheeltrack (meters)
* Aircraft tail span (meters)
* Distance from main gear to tail plane ref. point
* Distance from nose gear to wing tip plane

CASE IS = 29

icat = 2
acfmass = 51710\&.
acflm = 89
acfwb = 12.25
acfw = 28.68
nttip = 12.25
nttip = 28.68
rwtip = 16.16

* Turnoff generating aircraft mass (kilograms)
* Percent mass on main gear (%)
* Aircraft wheelbase (meters)
* Aircraft wingspan (meters)
* Aircraft tail span (meters)
* Distance from main gear to tail plane ref. point
* Distance from nose gear to wing tip plane

CASE IS = 30

icat = 2
acfmass = 71200\&.
acflm = 89
acfwb = 12.25
acfw = 28.68
nttip = 12.25
rwtip = 16.16

* Turnoff generating aircraft mass (kilograms)
* Percent mass on main gear (%)
* Aircraft wheelbase (meters)
* Aircraft wingspan (meters)
* Aircraft tail span (meters)
* Distance from main gear to tail plane ref. point
* Distance from nose gear to wing tip plane

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program

CASE IS = 31
% Boeing 757-200

icat	acfmass	acflm	acfwb	acfws	acfwt	tspan	nttip	nwtp	' turnoff generating aircraft mass (kilograms)
3	72200 &	92.5	16.75	36.75	5.71	14.55	42.11	25.3	Percent mass on main gear (%)

acfwtp	' Aircraft wheelbase (meters)
	’ Aircraft wingspan (meters)
	’ Aircraft wheeltrack (meters)
	’ Aircraft tail span (meters)
	’ Distance from main gear to tail plane ref. point
	’ Distance from nose gear to wing tip plane

CASE IS = 32
% Boeing 767-200

icat	acfmass	acflm	acfwb	acfws	acfwt	tspan	nttip	nwtp	' turnoff generating aircraft mass (kilograms)
2	89830 &	90	18.08	38.05	14.5	40.44	22.51		Percent mass on main gear (%)

acfwtp	’ Aircraft wheelbase (meters)
	’ Aircraft wingspan (meters)
	’ Aircraft wheeltrack (meters)
	’ Aircraft tail span (meters)
	’ Distance from main gear to tail plane ref. point
	’ Distance from nose gear to wing tip plane

CASE IS = 33
% Boeing 747-400

icat	acfmass	acflm	acfwb	acfws	acfwt	tspan	nttip	nwtp	' turnoff generating aircraft mass (kilograms)
4	285750 &	94	22.59	47.57	18.16	49.17	27.33		Percent mass on main gear (%)

acfwtp	’ Aircraft wheelbase (meters)
	’ Aircraft wingspan (meters)
	’ Aircraft wheeltrack (meters)
	’ Aircraft tail span (meters)
	’ Distance from main gear to tail plane ref. point
	’ Distance from nose gear to wing tip plane

CASE IS = 34
% Airbus A300-600

icat	acfmass	acflm	acfwb	acfws	acfwt	tspan	nttip	nwtp	' turnoff generating aircraft mass (kilograms)
4	140000 &	92.5	25.6	63.3	11.05	21.08	62.11	41.03	Percent mass on main gear (%)

acfwtp	’ Aircraft wheelbase (meters)
	’ Aircraft wingspan (meters)
	’ Aircraft wheeltrack (meters)
	’ Aircraft tail span (meters)
	’ Distance from main gear to tail plane ref. point
	’ Distance from nose gear to wing tip plane

END SELECT
' Definition exit parameters for standard geometries
IF extype = 6 THEN GOTO 100

SELECT CASE extype

CASE IS = 1 ' 90 Deg. FAA Standard Geometry
 vexit = 8 ' standard exit speed (m/sec.)
 theta = 90/57.29 ' standard turnoff angle (deg.)
 Rapath = 77 ' Largest radius of curvature (m.)

CASE IS = 2 ' 45 Deg. FAA Standard
 vexit = 8 ' standard exit speed (m/sec.)
 theta = 45/57.29 ' standard turnoff angle (deg.)
 Rapath = 244 ' Standard radius for 45 Deg. exit

CASE IS = 3 ' 30 Deg. FAA Standard Geometry
 vexit = 26.7 ' standard exit speed (m/sec.)
 theta = 30/57.29 ' standard turnoff angle (deg.)
 Rapath = 550 ' Radius of curvature (m)

CASE IS = 4 ' 30 Deg. with 1400 ft. spiral
 vexit = 26.7 ' standard exit speed (m/sec.)
 theta = 30/57.29 ' standard turnoff angle (deg.)
 Rapath = 550 ' Radius of curvature (m)

CASE IS = 5 ' Wide Throat Geometry Estimation Parameters
 vexit = 17 ' standard exit speed (m/sec.)
 theta = 90/57.29 ' standard turnoff angle (deg.)
 Rapath = 550 ' Radius of curvature (m)

END SELECT

' General Algorithm for Standard Geometries

' Initialize exit parameters
xpath = 0
yopath = 0
vpath = vexit
sai = 0
tpath = 0!
dt = .05
count = 0!
safus = 0!
tprint = 0!

xm = xpath - acfw
ym = yopath

xtip = xm
ytip = ypath - (acfws/2!)

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
LOCATE 4, 5 : PRINT "Time (s) Xcord (m) Ycoord (m) Heading Speed Heading"
LOCATE 6,4: PRINT USING "####.####;####.####;####.####;####.####;####.####;####.####"; tpath, xpath, ypath, saifus, vpath, sai

IF (extype = 4 OR extype = 5) THEN

5

IF (extype = 5) THEN
 dxpath = 1 - .002 * xpath
ELSE
 dxpath = 1 - .000625 * xpath
END IF

xpath1 = xpath + dxpath

IF (extype = 5) THEN
 ypath1 = 1.3763*10^- (.006301*xpath1)
ELSE
 ypath1 = -.202 + .012 * xpath1 + .0001072 * xpath1^2 + .001208E-06 * xpath1^3
END IF

dxpath = ypath1 - ypath

ds = SQRT(dxpath^2 + dxpath^2)
dt = ds / vpath

IF (sai < theta*57.29) THEN
 dsai = ATN (dxpath / dxpath)
ELSE
 dsai = 0!
END IF

IF (vpath < 8) THEN
 acopath = 0!
ELSE
 acopath = -.375
END IF

' Integration of nose gear parameters

xpath = xpath1
ypath = ypath1
vpath = vpath + dt*acopath
sai = sai + dsai
tpath = tpath + dt
tprint = tprint + dt

saifus = (ypath - ym) / (xpath - xm) ' Fuselage instantaneous heading angle

xm = xm + dt * vpath * COS (saifus)
yn = ym + dt * vpath * SIN (saifus) ' Main gear centerline trajectory

xwtip = xpath - nwtip * COS (saifus) + (acfw(2) * SIN (saifus))
ywtip = ypath - nwtip * SIN (saifus) - (acfw(2) * COS (saifus))

xttip = xpath - nttip * COS (saifus) + (tspan(2) * SIN (saifus))
yttip = ypath - nttip * SIN (saifus) - (tspan(2) * COS (saifus))
said = sai*57.29
thetad = theta*57.29

IF tprint > .5 THEN

PRINT USING "###########.####"; tpath, xpath, ypath, said, vpath, sai
tprint = 0!
END IF

IF (ytip < runwid/2! OR ytip < runwid/2!) GOTO 5

PRINT "click to continue" : WHILE MOUSE (0) <> 1 : WEND

CLS

ELSE
GOTO 3
END IF

3 'Estimation of Rate Variables
dspath = vpath*dt
dsal = dspath/Rapath

' Estimation of heading rate of change
IF (sai < theta) THEN
 saisdot = dsal/dt
ELSE
 saisdot = 0!
END IF

' Estimation of deceleration rate of change
IF (vpath < 0) THEN
 accopath = 0!
ELSE
 accopath = -.375
END IF

' Estimation of downrange position changes
xdot = dspath*COS(sai)/dt
ydot = dspath*SIN (sai)/dt

' Integration of nose gear parameters
xpath = xpath + dt*xdot
yopath = ypath + dt*ydot
vpath = vpath + dt*accopath
sai = sai + dt* saisdot
tpath = tpath + dt

saifus = (yopath - ym) / (xpath - xm) ' Fuselage instantaneous heading angle

xm = xm + dt * vpath * COS (saifus)
ym = ym + dt * vpath * SIN (saifus) ' Main gear centerline trajectory

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
\[x_{\text{wtip}} = \text{xpath} - \text{nwtip} \times \cos(\text{saifus}) + (\text{acfws}/2) \times \sin(\text{saifus}) \]
\[y_{\text{wtip}} = \text{ypath} - \text{nwtip} \times \sin(\text{saifus}) - (\text{acfws}/2) \times \cos(\text{saifus}) \]
\[x_{\text{tip}} = \text{xpath} - \text{nntip} \times \cos(\text{saifus}) + (\text{tspen}/2) \times \sin(\text{saifus}) \]
\[y_{\text{tip}} = \text{ypath} - \text{nntip} \times \sin(\text{saifus}) - (\text{tspen}/2) \times \cos(\text{saifus}) \]

\[\text{said} = \text{saifus}^{57.29} \]
\[\text{thetad} = \text{theta}^{57.29} \]

\[\text{count} = \text{count} + 1 \]

\text{IF} \quad \text{count} = 0 \quad \text{THEN}

\text{PRINT USING*"************"; tpath, Rpath, xpath, ypath, said, vpath, count = 0!}
\text{END IF}

\text{IF} \quad (\text{ywtip} < \text{runwid}/2!) \quad \text{OR} \quad (\text{yttip} < \text{runwid}/2!) \quad \text{GOTO 3}

\text{PRINT*"click to continue": WHILE MOUSE (0) <> 1 :WEND}

\text{CLS}

\text{PRINT*"Geometry Parameters"}
\text{PRINT * Aircraft Type} \quad = *, \text{actype}
\text{PRINT * Turnoff Angle} \quad = *, \text{thetad}
\text{PRINT * Exit Speed} \quad = *, \text{vexit}
\text{PRINT * Turnoff Time} \quad = *, \text{tpath}
\text{PRINT * Aircraft Wingspan} \quad = *, \text{acfws}
\text{PRINT * Distance from NG to Wingtip plane} \quad = *, \text{nwtip}
\text{PRINT * Distance from NG to Tailtip plane} \quad = *, \text{nttip}
\text{PRINT * Final Fuselage Exit Angle} \quad = *, \text{said}

\text{WRITE # 11, actype, thetad, vexit, tpath, acfws, nwtip, nttip, said}

\text{PRINT*"click to continue": WHILE MOUSE (0) <> 1 :WEND}
\text{CLS}

\text{NEXT actype}

\text{100 CLOSE # 11}
\text{GOTO 500}

\text{100 Define constants of the model (only for REDIM computations)}
\text{vars} = 1
\text{n} = 1
\text{g} = 9.81
\text{pi} = 3.141592654#
\text{froll} = .03
dt = .05
dx = 5
dy = 5
\text{rho} = 1.125

\text{Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program}
countl = 0!
jerkmax = .55
anmax = 1.2
pcount = 0

' Estimation of the aircraft cornering capabilities (inertia limitations in the turn)
' Estimate the yaw inertia (IZZ) of the aircraft in question
acfyaw = 10 * \((1.7215 \cdot \log(acfmass) / \log(10)) - 1.673\)

IF vars = 1 THEN
CALL skid(icat, lwet, ynumax, vexit, sf)
ELSE
CALL fixskid(lwet, ynumax)
END IF

' Initialization of variables (aircraft generating the turnoff geometry)
xpath = 0
ypath = 0
vpath = vexit
saig = 0
caster = 0
tpath = 0
tpath1 = 0
Rpath = 5000
xm = xpath - acfwb
ym = ypath
xtip = xm
yttip = ypath - (acfws/2!)

LOCATE 4, 5 : PRINT "Time (s) Radius (m) Xcoord(m) Ycoord (m) Heading Speed"
LOCATE 6, 4 : PRINT USING "###########" ; tpath, Rpath, xpath, ypath, saig, vpath

' Estimation of rate variables (in the turn alone)
rdot1 = acfmass * acfwb
rdot0 = (acfwm / 100!) * (1 - acfwm / 100!)

2 IF vpath <= 10 THEN
 acpath = 0!
 ' Clip the value of deceleration to zero
 ELSE
 acpath = (-1) * g * ftoll
 END IF

' Estimation of scrubbing coefficient and steering algorithm
CALL steer(Rpath, vpath, saig, saidotg, ypath, theta)
CALL scrub(Rpath, acfmas, ypath)
ynuc = vpath ^ 2 / (Rpath * g)
ecnuc = ynuuc * g
ynui = ynumax - ynuuc - ynu
rdot2 = -(ymui * g * Rapath ^ 2 / (acfyaw * vpath))
rdot = rdot0 * rdot1 * rdot2

' Estimation of the normal acceleration (an) and jerk-related parameters
an = vpath ^ 2/Rapath
rdotjerk = -Rapath ^ 2 * jerkmax / vpath ^ 2
jerk = an * vpath / lpath
rdotan = -Rapath ^ 2 * anmax / (lpath * vpath)
xjerk = xpath
yjerk = jerkmax * lpath ^ 3 / (6 * vpath ^ 3)

IF ABS(rdot) > ABS(rdotjerk) THEN
 rdot = rdotjerk
END IF

' Integrate aircraft generating exit parameters
lpath = lpath + dt * vpath
saig = saig + dt * saidotg
Rapath = Rapath + dt * rdot
xpath = xpath + dt * vpath * COS (saig)
ypath = ypath + dt * vpath * SIN (saig)
vpath = vpath + dt * acpath
tpath = tpath + dt
count = count + 1

saisus = (xpath - ym) / (xpath - xm) ' Fuselage instantaneous heading angle
xm = xm + dt * vpath * COS (saisus)
ym = ym + dt * vpath * SIN (saisus)

xwtip = xpath - nwtip * COS (saisus) + (actwes/2) * SIN (saisus)
ywtip = ypath - nwtip * SIN (saisus) - (actwes/2) * COS (saisus)
xttip = xpath - nttip * COS (saisus) + (tspan/2) * SIN (saisus)
yttip = ypath - nttip * SIN (saisus) - (tspan/2) * COS (saisus)

saisusd = saisus*57.29
saids = saig*57.29

IF count = 10 THEN
 PRINT USING"##############"; tpath, Rapath, xpath, ypath, saisusd, vpath
 count = 0!
END IF

IF (ywtip < runwid/2! OR yttip < runwid/2!) GOTO 2

'PRINT "click to continue" : WHILE MOUSE (0) <> 1 :WEND
CLS

PRINT * REDIM Geometry Parameters
PRINT * Turnoff Angle = *, theta
PRINT * Exit Speed = *, vexit

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
PRINT * Turnoff Time = tpath
PRINT * Aircraft Wingspan = acfws
PRINT * Distance from NG to Wingtip plane = nwtip
PRINT * Distance from NG to Tailtip plane = ntip
PRINT * Final Fuselage Exit Angle = said

"PRINT * click to continue" : WHILE MOUSE (0) <> 1 :WEND

500 PRINT * Would you like another run - *
PRINT **
PRINT * 1 - no *
PRINT * 2 - yes *

INPUT rerun > , rerun
IF (rerun = 2) THEN
 GOTO 200
END IF

STOP
END

__ Subroutines ________________

SUB steer (Rapath, vpath, saig, saidotg, ypath, theta) STATIC

tpol = 2

* straight ahead after (theta) heading

IF tpol = 1 THEN
 IF saig < 1.41 THEN
 IF vpath < (dist/2l) THEN
 saidotg = vpath / Rapath
 ELSE
 saidotg = (-1) * vpath / Rapath
 END IF
 ELSE
 saidotg = (-1) * vpath / Rapath
 END IF
ELSE
 saidotg = (-1) * vpath / Rapath
END IF
ELSE
 IF saig < (theta/57.29) THEN
 saidotg = vpath / Rapath
 ELSE
 saidotg = 0
 END IF
END IF
END SUB

SUB scrub (Rapath, acfmass, ymusc) STATIC

IF Rapath < 50l THEN
 ymusc = .015
ELSE
 IF acfmass > 165000l THEN
 k1 = - 43.8987 + .0002706 * acfmass
 k2 = .1807 - 4.88E-06 * acfmass
 ELSE
 k1 = - 43.8987 + .0002706 * acfmass
 k2 = .1807 - 4.88E-06 * acfmass
 END IF
END SUB

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
ELSE
 k1 = 5.1349 - .0000066 * acfmass
 k2 = - .8417 + 7.37E-06 * acfmass
END IF

ymusc = k1 * Repath ^ k2

END IF

END SUB

SUB title (runwid, extype) STATIC

PRINT *
PRINT ' '
INPUT *Runway Width (meters) = *, runwid

PRINT *Enter the Exit Type*
PRINT *
PRINT 1 - 90 Deg FAA Standard*
PRINT 2 - 45 Deg FAA Standard*
PRINT 3 - 30 Deg FAA Standard*
PRINT 4 - 30 Deg FAA Standard with 1400 ft. Spiral*
PRINT 5 - Wide Throat Geometry*
PRINT 6 - REDIM Geometry*

INPUT *Exit Type = *, extype

IF (extype = 6) THEN
 INPUT *Exit Speed (m/sec.) = *, vexit
 INPUT *Safety Factor for = (%) = *, sf
 INPUT *Turnoff Angle (degrees) = *, theta
END IF

CLS
END SUB

SUB skid(icat,iwt,ymumax,vexit, sf) STATIC

IF iwt = 2 THEN

SELECT CASE icat

CASE IS = 1
 ymumax = .0919 - .0448*vexit + .0022*vexit^2 - 5.932E-05*vexit^3 + 4.847E-07*vexit^4

CASE IS = 2
 ymumax = .6313 - .0406*vexit + .0021*vexit^2 - 5.413E-05*vexit^3 + 5.175E-07*vexit^4

CASE IS = 3
 ymumax = .5725 - .0373*vexit + .0019*vexit^2 - .0000487*vexit^3 + 4.842E-07*vexit^4

CASE IS = 4
 ymumax = .5153 - .0326*vexit + .0016*vexit^2 - 3.885E-05*vexit^3 + 3.579E-07*vexit^4

END SELECT

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
END SELECT

ELSE

SELECT CASE icat

CASE IS = 1
 k = .8515

CASE IS = 2
 k = .773

CASE IS = 3
 k = .6945

CASE IS = 4
 k = .616

END SELECT

mumax = 1.001 * .0574*vexit + .0023*vexit^2 - .0000545*vexit^3 + 6.911E-07*vexit^4 - 3.567E-09*vexit^5

ymumax = k * mumax

END IF

ymumax = ymumax / (1 + sf/100) * Sf is the safety factor applied to the ultimate y

END SUB

SUB fixskid(lwet,ymumax) STATIC
 IF lwet = 1 THEN
 ymumax = .35
 ELSE
 ymumax = .2
 END IF

END SUB

SUB box STATIC
 LINE (10,10) - (600,380), , B

END SUB

SUB small.box STATIC
 LINE (20,20) - (400,180), , B

END SUB

Appendix D. Source Code of Aircraft Turnoff Time Evaluation Program
Vita

The author was born in December 16, 1967, in Kurnool, Andhra Pradesh, India. He received his undergraduate degree in Bachelor of Engineering in Civil Engineering from Osmania University, India in June 1989. He started pursuing his graduate studies at the University of Oklahoma from Fall 1989 and then transferred to Virginia Tech in Spring 1990. He completed M.S., in Civil Engineering, specializing in Transportation Engineering in July 1991. He accepted a job in a consulting firm to pursue his career in Transportation Engineering with plans to do Ph.D., after gaining some experience.