FORMULATING AND PROCESSING OF A NUTRITIONALLY ENHANCED EXTENDED SHELF-LIFE FLUID MILK AND EGG MIXTURE

Tracy D. Sutton

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
IN
FOOD SCIENCE AND TECHNOLOGY

Susan E. Duncan, Chair
Denise Brochetti
Cameron R. Hackney

October 1997
Blacksburg, Virginia

Key words: Custard, Lactose-reduced, Cholesterol reduced, Dessert, Entree
FORMULATING AND PROCESSING OF A NUTRITIONALLY ENHANCED EXTENDED SHELF-LIFE FLUID MILK AND EGG MIXTURE

Tracy D. Sutton

(ABSTRACT)

A milk and egg mixture was processed at 96°C and 92°C with 10 sec hold times and evaluated for nutritional composition, functional characteristics, and shelf-life. The process was more than sufficient to destroy *Coxiella burnetti* and *Salmonella senftenberg* which were the most heat resistant organisms of concern in processing this milk and egg mix. The spoilage organisms received 2,200 D and 425 D processes, respectively, which were more than adequate for providing a safe product and extending the shelf life of the product for seven weeks under refrigerated storage conditions. Both sweetened and unsweetened formulations were evaluated.

The nutritional profile of the milk and egg mix was improved when dried eggs (solids and liquid proportion equivalent to whole egg) were replaced with dried egg white, cholesterol reduced egg yolk, and skim milk. The fat and cholesterol were reduced between 22 to 33% and 37 to 44%, respectively, in the cholesterol reduced formulation (CRF) as compared to the control formulation (CF). The protein content of the milk and egg mix was not altered by utilization of cholesterol - reduced egg yolk in the CRF as compared to the CF. Addition of β-galactosidase decreased the lactose up to 96%. The CF were more yellow than the CRF in the mixes and baked gels (p< 0.05). There were also no difference in gel strength between the baked gels made from the two formulations. There were no significant chemical and physical changes over the seven week storage period of the product at refrigerated conditions (p< 0.05).
DEDICATION

I would like to dedicate this thesis to all of my family who supported me through all of my endeavors as I strived to attain a higher education. You guys always knew what to say or do to bring a little sunshine in my day.
ACKNOWLEDGMENTS

First and foremost, I would like to thank God for giving me the strength and wisdom to complete another goal in my life and for answering all of my prayers as I pursued my academic career. Next, I would like to thank my mother (Hattie Sutton) and father (Alfonza L. Sutton) who were always on my side. They taught me that respect, hard work, and prayer were the key to success. I would also like to thank my brother (Al Sutton) and sister (Marquita Irving) for the many phone calls to make sure I was doing okay.

I would like to thank Dr. Duncan for her patience and guidance as I strived to complete my research and thesis. I would also like to thank my committee members Dr. Hackney and Dr. Brochetti for their advice, patience, and willingness to work with me as I completed my thesis.

I would really like to thank Joe Boling for his help with my statistics, he was always willing to give me a helping hand. I am truly thankful. I would also like to thank Walter Hartman and Harriet Williams for their assistance when processing the product.

I would also like to thank all of my friends who were there for me when I just needed someone to talk to.

Last but not least, I would like to thank my friend Kajuan Johnson for his support and understanding as I worked on completing my thesis.
TABLE OF CONTENTS

TITLE
ABSTRACT
DEDICATION
ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES

I. INTRODUCTION

II. REVIEW OF LITERATURE

A. Nutrition Concerns of American Population

1. Fat and Cholesterol
2. Lactose
3. Nutrition Considerations for Lactose Intolerant

B. Overview of Composition, Nutritional Value, and Functionality of Eggs and Milk

1. Eggs

2. Milk

Page
i
ii
iii
iv
v
x
xi
1
5
5
5
6
7
8
8
9
10
11
13
14
14
3. Milk and Egg Mixture

Products processed with Milk and Eggs 20
Thermal Processing 22
Destruction of Microorganisms 23
Thermal Processing of Milk and Eggs 24
Thermal Processing of a Milk and Egg Mixture 26
Problems with Processing Milk and Egg Mixture 28

C. References

III. THERMAL PROCESSING OF A SWEETENED AND UNSWEETENED MILK AND EGG MIXTURES

A. Abstract 38
B. Introduction 39
C. Materials and Methods 40
1. Mix Formulations and Preparations 40
 Formulations 40
 Preparation 41
 Thermal Processing 42
 Homogenization 43
 Enzyme Addition 43
 Baked Gel Preparation 44
2. Chemical Analyses 44
 Lactose and Galactose Concentration 44
Protein Concentration 44
Total fat Concentration 44
Cholesterol Concentration 45
Fatty Acid Analysis 45
Moisture 46
Ash 46

3. Physical and Microbiological Analyses 46
 Color 46
 Gel Strength 47
 Syneresis 47
 Water Activity 47
 Viscosity 47
 Aerobic Plate Count 48

4. Data Analyses 48
 Data Collection 48
 Statistical Analyses 48

D. Results and Discussion 48
 1. Introduction 48
 2. Thermal Processing 49
 3. Chemical Composition of Sweetened Formulations 51
 Proximate Analysis 51
 Lactose and Galactose Concentrations 53
 Lipid Profile 54
 Water Activity 56
 4. Physical and Functional Characteristics of Sweetened Formulations 57
 Color 57
Gel Strength and Syneresis 57
Viscosity 59

5. Chemical Composition of Unsweetened Formulations 59
 Proximate Analysis 59
 Lactose and Galactose Concentrations 59
 Lipid Profile 61
 Water Activity 61

6. Physical and Functional Characteristics of Unsweetened Formulations 61

E. Conclusion 66
F. References 67

IV. EXTENDED SHELF LIFE STUDY OF A THERMALLY PROCESSED SWEET MILK AND EGG MIX 70
 A. Abstract 70
 B. Introduction 71
 C. Materials and Methods 72
 1. Mix Formulations and Preparation 72
 Formulations 72
 Preparation 72
 Thermal Processing 72
 Enzyme Addition 73
 Baked Gel Preparation 73
 2. Chemical Analyses 73
 Lactose and Galactose Concentration 73
 Protein Concentration 73
 Total Fat Concentration 74
 Cholesterol Concentration 74
Fatty Acid Analysis 74
Moisture 74
Ash 75

3. Physical and Microbiological Analyses 75
Color 75
Gel Strength 75
Syneresis 75
Aerobic Plate Count 76

4. Data Analyses 76
Data Collection 76
Statistical Analyses 76

D. Results and Discussion 76
1. Thermal Processing 76
Aerobic Plate Count 77

2. Chemical Composition of Sweetened Formulations 77
Proximate Analysis 77
Lactose and Galactose Concentrations 79
Lipid Profile 79

3. Physical and Functional Characteristics of Sweetened Formulations 79
Color 79
Gel Strength and Syneresis 83

E. Conclusion 94

F. References 95

APPENDIX A 96
VITAE 100
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1.</td>
<td>Mean “L” values for CF and CRF for the mix (n=4) over a seven week storage period.</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.2.</td>
<td>Mean “L” values for CF and CRF for the top surface of baked gels (n=4) over a seven week storage period.</td>
<td>85</td>
</tr>
<tr>
<td>Figure 4.3.</td>
<td>Mean “L” values for CF and CRF for the bottom surface of baked gels (n=4) over a seven week storage period.</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.4.</td>
<td>Mean “a” values for CF and CRF for the mix (n=4) over a seven week storage period.</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.5.</td>
<td>Mean “a” values for CF and CRF for the top surface of baked gels (n=4) over a seven week storage period.</td>
<td>88</td>
</tr>
<tr>
<td>Figure 4.6.</td>
<td>Mean “a” values for CF and CRF for the bottom surface of baked gels (n=4) over a seven week storage period.</td>
<td>89</td>
</tr>
<tr>
<td>Figure 4.7.</td>
<td>Mean “b” values for CF and CRF for the mix (n=4) over a seven week storage period.</td>
<td>90</td>
</tr>
<tr>
<td>Figure 4.8.</td>
<td>Mean “b” values for CF and CRF for the top surface of baked gels (n=4) over a seven week storage period.</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.9.</td>
<td>Mean “b” values for CF and CRF for the bottom surface of baked gels (n=4) over a seven week storage period.</td>
<td>92</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Comparative heat resistance of bacteria for pasteurized foods.</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Temperature and time combinations for milk pasteurization.</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Pasteurization conditions for egg products.</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Temperature and time combinations for egg nog pasteurization.</td>
<td>27</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Formulation for sweetened milk and egg mixture.</td>
<td>41</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Unit placement of thermocouples between sections of the heating line.</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>D_{205} values for concern in the milk and egg mix.</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Means ± standard deviations for proximate analysis of sweetened milk and egg mixture.</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Interaction means ± standard deviations for lactose and galactose of sweetened milk and egg mixture.</td>
<td>53</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Means ± standard deviations for fatty acids in sweetened milk and egg mixture.</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>Means ± standard deviations for lipid profile of sweetened milk and egg mixture.</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>Interaction means ± standard deviations for physical measurements of sweetened milk and egg mixture.</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>Means ± standard deviations for proximate analysis of unsweetened milk and egg mixture.</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.14</td>
<td>Interaction means ± standard deviations for lactose and galactose of unsweetened milk and egg mixture.</td>
<td>62</td>
</tr>
</tbody>
</table>
Table 3.15. Means \pm standard deviations for fatty acids in unsweetened milk and egg mixture.

Table 3.16. Means \pm standard deviations for lipid profile of unsweetened milk and egg mixture.

Table 3.17. Interaction means \pm standard deviations for physical measurements of unsweetened milk and egg mixture.

Table 4.18. Unit placement of thermocouples between sections of the heating line.

Table 4.19. Means \pm standard deviations for proximate analysis of sweetened milk and egg mixture.

Table 4.20. Interaction means $^1 \pm$ standard deviations for lactose and galactose of sweetened milk and egg mixture.

Table 4.21. Means \pm standard deviations for fatty acids in sweetened milk and egg mixture.

Table 4.22. Means \pm standard deviations for lipid profile of sweetened milk and egg mixture.

Table 4.23. Interaction means \pm standard deviations for physical measurements of sweetened milk and egg mixture.