Table of Contents

ABSTRACT .. ii
ACKNOWLEDGEMENTS .. iv
LIST OF TABLES ... viii
LIST OF FIGURES ... xii
LIST OF APPENDIX TABLES .. xvii
INTRODUCTION .. 1
REVIEW OF LITERATURE .. 3
 Markers in Ruminant and Equine Nutrition ... 5
 Marker Dosing Methods ... 5
 Verification of Marker Results .. 6
 Internal Markers .. 6
 Rare-Earth Markers .. 8
 89Yttrium ... 9
 91Yttrium .. 9
 External Markers ... 10
 Chromium ... 11
 Diurnal Variation ... 12
 Ytterbium ... 13
 Fecal Kinetics .. 16
OBJECTIVES .. 20
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fecal recovery of yttrium (R_Y, %) for horses offered orchardgrass/alfalfa hay (Diet 1), and tall fescue/alfalfa hay (Diet 2) in Experiment 1</td>
<td>59</td>
</tr>
<tr>
<td>2. Total collection DMD (D_{TC}, %) and estimated DMD (D_E, %) for yttrium, for horses offered orchardgrass/alfalfa hay (Diet 1), and tall fescue/alfalfa hay (Diet 2) in Experiment 1</td>
<td>60</td>
</tr>
<tr>
<td>3. Estimates of fit of pooled fecal chromium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay using total collection data (Diet 1a), or fecal grab data (Diet 1b), and tall fescue/alfalfa hay using total collection data (Diet 2a), or fecal grab data (Diet 2b), in Experiment 1</td>
<td>61</td>
</tr>
<tr>
<td>4. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr and its entry into the compartment, in horses offered orchardgrass/alfalfa hay using total collection data (Diet 1a), or fecal grab data (Diet 1b), and tall fescue/alfalfa hay using total collection data (Diet 2a), or fecal grab data (Diet 2b), in Experiment 1</td>
<td>62</td>
</tr>
<tr>
<td>5. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr and its entry into the compartment, in horses offered orchardgrass/alfalfa hay using total collection data in Experiment 1</td>
<td>63</td>
</tr>
<tr>
<td>6. Estimates of fit of individual fecal chromium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay using total collection data (Diet 1a) in Experiment 1</td>
<td>64</td>
</tr>
<tr>
<td>7. Total collection fecal output (FO_{TC}, kg/d DM), and estimates of fecal output (FO_{CA}, kg/d DM) from the one-compartment model using total collection Cr data for horses offered orchardgrass/alfalfa hay (OGTC, Diet 1a) and tall fescue/alfalfa hay (TFTC, Diet 2a), in Experiment 1</td>
<td>65</td>
</tr>
<tr>
<td>8. Total collection fecal output (FO_{TC}, kg/d DM), and estimates of fecal output (FO_{CA}, kg/d DM) from the one-compartment model using fecal grab Cr data for horses offered orchardgrass/alfalfa hay (OGGR, Diet 1b) and tall fescue/alfalfa hay (TFGR, Diet 2b), in Experiment 1</td>
<td>66</td>
</tr>
</tbody>
</table>
9. Turnover times (TT, h) from the chromium one-compartment model, using total collection data, for horses offered orchardgrass/alfalfa hay (OGTC, Diet 1a) and tall fescue/alfalfa hay (TFTC, Diet 2a), in Experiment 1 67

10. Turnover times (TT, h) from the chromium one-compartment model, using fecal grab data for horses offered orchardgrass/alfalfa hay (OGGR, Diet 1b) and tall fescue/alfalfa hay (TFGR, Diet 2b), in Experiment 1 67

11. Prefecal mass (PFM, kg DM) from the chromium one-compartment model, using total collection data, for horses offered orchardgrass/alfalfa hay (OGTC, Diet 1a) and tall fescue/alfalfa hay (TFTC, Diet 2a), in Experiment 1 68

12. Prefecal mass (PFM, kg DM) from the chromium one-compartment model, using fecal grab data for horses offered orchardgrass/alfalfa hay (OGGR, Diet 1b) and tall fescue/alfalfa hay (TFGR, Diet 2b), in Experiment 1 68

13. Fecal recovery of chromium (R_{CR}, %) for horses offered orchardgrass/alfalfa hay (Diet 1a) and tall fescue/alfalfa hay (Diet 2a), using total collection fecal samples, in Experiment 1 .. 69

14. Fecal recovery of chromium (R_{CR}, %) for horses offered orchardgrass/alfalfa hay (Diet 1b) and tall fescue/alfalfa hay (Diet 2b), using fecal grab data, in Experiment 1 .. 69

15. Diurnal variation in fecal concentrations (mg/kg, DM) of chromium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay (Diet 1) in Experiment 1 70

16. Diurnal variation in fecal concentrations (mg/kg, DM) of chromium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered tall fescue/alfalfa hay (Diet 2) in Experiment 1 71

17. Partial DMD (Ds, %) of fat-and-fiber, and sugar-and-starch supplements offered to horses in Experiment 2 .. 72

18. Fecal recovery of yttrium (R_Y, %) for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4) in Experiment 2 .. 73

19. Total collection DMD (D_{TC}, %) and estimated DMD (D_{E}, %) for yttrium, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4) in Experiment 2 .. 74
20. Fecal recovery of ytterbium (\(R_{Yb1}, \%\)) for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) in Experiment 2 .. 75

21. Total collection DMD (\(D_{TC}, \%\)) and estimated DMD (\(D_E, \%\)) for ytterbium, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4) in Experiment 2 ... 76

22. Estimates of fit of pooled fecal chromium or ytterbium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay and fat-and-fiber (FF) supplement (Diet 3Cr and 3Yb), or sugar-and-starch (SS) supplement (Diet 4Cr and 4Yb), in Experiment 2 ……………… 77

23. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr or Yb and its entry into the compartment, in horses offered orchardgrass/alfalfa hay and fat-and-fiber (FF) supplement using Cr (Diet 3Cr), or Yb (Diet 3Yb), or orchardgrass/alfalfa hay and sugar-and-starch supplement using Cr (Diet 4Cr), or Yb (Diet 4Yb), in Experiment 2 ... 78

24. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr and its entry into the compartment, in horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement in Experiment 2 ... 79

25. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Yb and its entry into the compartment, in horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement in Experiment 2 ... 80

26. Estimates of fit of individual fecal chromium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) in Experiment 2 ... 81

27. Estimates of fit of individual fecal chromium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr) in Experiment 2 ... 81
28. Total collection fecal output (\(FO_{TC}\), kg/d DM), and estimates of fecal output
(\(FO_{CA}\), kg/d DM) from the one-compartment model using fecal grab data
for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement
(OGFF, Diet 3Cr) or sugar-and-starch supplement (OGSS, Diet 4Cr), with
chromium as the external marker, in Experiment 2 82

29. Total collection fecal output (\(FO_{TC}\), kg/d DM), and estimates of fecal output
(\(FO_{CA}\), kg/d DM) from the one-compartment model using fecal grab data
for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement
(OGFF, Diet 3Yb) or sugar-and-starch supplement (OGSS, Diet 4Yb), with
ytterbium as the external marker, in Experiment 2 83

30. Turnover times (\(TT\), h) from the chromium one-compartment model, for horses
offered orchardgrass/alfalfa hay and fat-and-fiber supplement (OGFF, Diet 3Cr),
and orchardgrass/alfalfa hay and sugar-and-starch supplement (OGSS, Diet 4Cr) in
Experiment 2 ... 84

31. Turnover times (\(TT\), h) from the ytterbium one-compartment model, for horses
offered orchardgrass/alfalfa hay and fat-and-fiber supplement (OGFF, Diet 3Yb),
and orchardgrass/alfalfa hay and sugar-and-starch supplement (OGSS, Diet 4Yb) in
Experiment 2 ... 85

32. Prefecal mass (\(PFM\), kg DM) from the chromium one-compartment model, for
horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement
(OGFF, Diet 3Cr), and orchardgrass/alfalfa hay and sugar-and-starch supplement
(OGSS, Diet 4Cr) in Experiment 2 .. 86

33. Prefecal mass (\(PFM\), kg DM) from the ytterbium one-compartment model, for
horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement
(OGFF, Diet 3Yb), and orchardgrass/alfalfa hay and sugar-and-starch supplement
(OGSS, Diet 4Yb) in Experiment 2 .. 87

34. Fecal recovery of chromium (\(R_{CR}\), %) for horses offered orchardgrass/alfalfa hay
and fat-and-fiber supplement (Diet 3Cr), and orchardgrass/alfalfa hay and sugar-
and-starch supplement (Diet 4Cr) in Experiment 2 .. 88

35. Fecal recovery of ytterbium (\(R_{YB2}\), %) for horses offered orchardgrass/alfalfa hay
and fat-and-fiber supplement (Diet 3Yb), and orchardgrass/alfalfa hay and sugar-
and-starch supplement (Diet 4Yb) in Experiment 2 .. 88

36. Fecal dry matter (\(DM\), % wet weight), of horses offered orchardgrass/alfalfa
hay (Diet 1), tall fescue/alfalfa hay (Diet 2), orchardgrass alfalfa hay and fat-and-
fiber supplement (Diet 3), and orchardgrass alfalfa hay and sugar-and-starch
supplement (Diet 4), in Experiment 1 and 2 ... 89
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A one-compartment model of the prefecal mass (PFM, kg), or mixing compartment, sampled by feces and fecal output (FO, kg/d), with a delay ((d, d)) between oral administration of Cr or Yb dose (*) and the entry of this Cr or Yb into the PFM. The fecal Cr or Yb concentrations (mg/kg DM) at time (t) ((d)), (C_t), rise to an asymptotic value, (C_a), and can be used to determine a single rate constant, (k) ((d^{-1})): (C_t = C_a - C_a e^{k(t-d)})</td>
<td>90</td>
</tr>
<tr>
<td>2. Total collection (C) of DMD and corresponding marker estimates (M) of DMD predicted by yttrium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay (Diet 1) in Experiment 1</td>
<td>91</td>
</tr>
<tr>
<td>3. Total collection (C) of DMD and corresponding marker estimates (M) of DMD predicted by yttrium marker dilution, were correlated for horses offered tall fescue/alfalfa hay (Diet 2) in Experiment 1</td>
<td>92</td>
</tr>
<tr>
<td>4. Mean daily fecal concentrations of Cr, (C_t), for horses offered orchardgrass/alfalfa hay (Diet 1a) are plotted against time, and the data are fit to a one-compartment model using the total collection data</td>
<td>93</td>
</tr>
<tr>
<td>5. Mean daily fecal concentrations of Cr, (C_t), for horses offered orchardgrass/alfalfa hay (Diet 1b) are plotted against time, and the data are fit to a one-compartment model using the fecal grab data</td>
<td>94</td>
</tr>
<tr>
<td>6. Mean daily fecal concentrations of Cr, (C_t), for horses offered tall fescue/alfalfa hay (Diet 2a) are plotted against time, and the data are fit to a one-compartment model using the total collection data</td>
<td>95</td>
</tr>
<tr>
<td>7. Mean daily fecal concentrations of Cr, (C_t), for horses offered tall fescue/alfalfa hay (Diet 2b) are plotted against time, and the data are fit to a one-compartment model using the fecal grab data</td>
<td>96</td>
</tr>
<tr>
<td>8. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M) using the total collection data, for horses offered orchardgrass/alfalfa hay (Diet 1a) in Experiment 1</td>
<td>97</td>
</tr>
<tr>
<td>9. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M) using the total collection data, for horses offered tall fescue/alfalfa hay (Diet 2a) in Experiment 1</td>
<td>98</td>
</tr>
</tbody>
</table>
10. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M) using the fecal grab data, for horses offered orchardgrass/alfalfa hay (Diet 1b) in Experiment 1 ... 99

11. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M) using the fecal grab data, for horses offered tall fescue/alfalfa hay (Diet 2b) in Experiment 1 ... 100

12. Total collection (C) fecal output and corresponding marker estimates (M) predicted by chromium marker dilution and using the fecal grab data, were correlated for horses offered tall fescue/alfalfa hay (Diet 2b) in Experiment 1 ... 101

13. Diurnal variation in fecal concentration (mg/kg, DM) of chromium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay (Diet 1) in Experiment 1 ... 102

14. Total collection (C) of DMD and corresponding marker estimates (M) of DMD predicted by yttrium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3) in Experiment 2 ... 103

15. Total collection (C) of DMD and corresponding marker estimates (M) of DMD predicted by yttrium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4) in Experiment 2 ... 104

16. Mean daily fecal concentrations of Cr, Ct, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) are plotted against time, and the data are fit to a one-compartment model ... 105

17. Mean daily fecal concentrations of Cr, Ct, for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr) are plotted against time, and the data are fit to a one-compartment model ... 106

18. Mean daily fecal concentrations of Yb, Ct, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) are plotted against time, and the data are fit to a one-compartment model ... 107

19. Mean daily fecal concentrations of Yb, Ct, for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) are plotted against time, and the data are fit to a one-compartment model ... 108
20. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M) predicted by chromium marker dilution, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) in Experiment 2 ... 109

21. Total collection (C) fecal output and corresponding marker estimates (M) predicted by chromium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) in Experiment 2 ... 110

22. Linear relationship between total collection (C) fecal output and corresponding adjusted marker estimates (M), predicted by chromium marker dilution for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) in Experiment 2 ... 111

23. Total collection (C) fecal output and corresponding adjusted marker estimates (M) predicted by chromium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) in Experiment 2 ... 112

24. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M) predicted by chromium marker dilution, for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr), in Experiment 2 ... 113

25. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M) predicted by ytterbium marker dilution, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb), in Experiment 2 ... 114

26. Total collection (C) fecal output and corresponding adjusted marker estimates (M) predicted by ytterbium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) in Experiment 2 ... 115

27. Linear relationship between total collection (C) fecal output and corresponding adjusted marker estimates (M), predicted by ytterbium marker dilution for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) in Experiment 2 ... 116

28. Total collection (C) fecal output and corresponding adjusted marker estimates (M) predicted by ytterbium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) in Experiment 2 ... 117
29. Linear relationship between total collection (C) fecal output and corresponding marker estimates (M), predicted by ytterbium marker dilution for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) in Experiment 2 ... 118

30. Linear relationship between prefecal mass (kg DM) predicted by chromium marker dilution (Cr), and prefecal mass predicted by ytterbium marker dilution (Yb) for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diets 3Cr and 3Yb) in Experiment 2 ... 119

31. Linear relationship between prefecal mass (kg DM) predicted by chromium marker dilution (Cr), and prefecal mass predicted by ytterbium marker dilution (Yb) for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diets 4Cr and 4Yb) in Experiment 2 ... 120

32. Diurnal variation in fecal concentration (mg/kg, DM) of chromium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr), in Experiment 2 ... 121

33. Diurnal variation in fecal concentration (mg/kg, DM) of ytterbium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb), in Experiment 2 ... 122

34. Linear relationship between dry matter percentage of feces (DM %) and corresponding turnover times predicted by chromium marker dilution, for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr), in Experiment 2 ... 123

35. Dry matter percentage of feces (DM %) and corresponding turnover times predicted by chromium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr), in Experiment 2 ... 124

36. Linear relationship between dry matter percentage of feces (DM %) and corresponding turnover times predicted by chromium marker dilution, for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr), in Experiment 2 ... 125
37. Dry matter percentage of feces (DM %) and corresponding turnover times predicted by chromium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr), in Experiment 2 ... 126

38. Linear relationship between dry matter percentage of feces (DM %) and corresponding turnover times predicted by ytterbium marker dilution, for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb), in Experiment 2 ... 127

39. Dry matter percentage of feces (DM %) and corresponding turnover times predicted by ytterbium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb), in Experiment 2 ... 128

40. Linear relationship between dry matter percentage of feces (DM %) and corresponding turnover times predicted by ytterbium marker dilution, for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb), in Experiment 2 ... 129

41. Dry matter percentage of feces (DM %) and corresponding turnover times predicted by ytterbium marker dilution, were correlated for horses offered orchardgrass/alfalfa hay (Diet 1), in Experiment 1, and for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb), in Experiment 2 ... 130

42. Linear relationship between mean percentage dry matter of feces (DM %) and corresponding mean turnover times predicted by chromium marker dilution, for horses offered hay only in Experiment 1, and hay and supplement in Experiment 2 ... 131
List of Appendix Tables

Appendix Table

<table>
<thead>
<tr>
<th>Appendix Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dietary treatments for horses offered orchardgrass/alfalfa hay (Diet 1) or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tall fescue/alfalfa hay (Diet 2) in Experiment 1</td>
</tr>
<tr>
<td>2. Nutrient composition on a DM basis of orchardgrass/alfalfa hay (Diet 1) and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tall fescue/alfalfa hay (Diet 2) in Experiment 1</td>
</tr>
<tr>
<td>3. Dietary treatments for horses offered orchardgrass/alfalfa hay and fat-and-fiber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>supplement (Diet 3) or orchardgrass/alfalfa hay and sugar-and-starch supplement</td>
</tr>
<tr>
<td></td>
<td>(Diet 4) in Experiment 2</td>
</tr>
<tr>
<td>4. Nutrient composition on a DM basis of orchardgrass/alfalfa hay and fat-and-fiber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>supplement (Diet 3) or orchardgrass/alfalfa hay and sugar-and-starch supplement</td>
</tr>
<tr>
<td></td>
<td>(Diet 4) in Experiment 2</td>
</tr>
<tr>
<td>5. Ingredient composition (%) of the fat-and-fiber (FF) supplement offered in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experiment 2</td>
</tr>
<tr>
<td>6. Ingredient composition of the chromium granola bars (Cr\textsubscript{GB}) offered to horses in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experiment 1 and 2</td>
</tr>
<tr>
<td>7. Dry matter intake (DMI, kg/d), total fecal output (FO, kg/d), and total collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMD (D\textsubscript{TC}, %) for horses offered orchardgrass/alfalfa hay (Diet 1) and tall fescue/</td>
</tr>
<tr>
<td></td>
<td>alfalfa hay (Diet 2) in Experiment 1</td>
</tr>
<tr>
<td>8. Fecal concentrations (mg/kg) of yttrium for horses offered orchardgrass/alfalfa hay (Diet 1) and tall fescue/alfalfa hay (Diet 2) in Experiment 1</td>
<td>138</td>
</tr>
<tr>
<td>9. Mean daily fecal concentrations (mg/kg, DM) of chromium for horses offered orchardgrass/alfalfa hay (Diet 1a) and tall fescue/alfalfa hay (Diet 2a) using total collection data in Experiment 1</td>
<td>139</td>
</tr>
<tr>
<td>10. Mean daily fecal concentrations (mg/kg, DM) of chromium for horses offered orchardgrass/alfalfa hay (Diet 1b) and tall fescue/alfalfa hay (Diet 2b) using fecal grab data in Experiment 1</td>
<td>140</td>
</tr>
<tr>
<td>11. Individual horse daily fecal concentrations (mg/kg, DM) of chromium for horses offered orchardgrass/alfalfa hay (Diet 1a) using total collection data in Experiment 1</td>
<td>141</td>
</tr>
</tbody>
</table>
12. Individual horse daily fecal concentrations (mg/kg, DM) of chromium for horses offered tall fescue/alfalfa hay (Diet 2a) using total collection data in Experiment 1 ... 142

13. Individual horse daily fecal concentrations (mg/kg, DM) of chromium for horses offered orchardgrass/alfalfa hay (Diet 1b) using fecal grab data in Experiment 1 ... 143

14. Individual horse daily fecal concentrations (mg/kg, DM) of chromium for horses offered tall fescue/alfalfa hay (Diet 2b) using fecal grab data in Experiment 1 ... 144

15. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr and its entry into the compartment, in horses offered orchardgrass/alfalfa hay using fecal grab data in Experiment 1 ... 145

16. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr and its entry into the compartment, in horses offered tall fescue/alfalfa hay using total collection data in Experiment 1 ... 146

17. Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr and its entry into the compartment, in horses offered tall fescue/alfalfa hay using fecal grab data in Experiment 1 ... 147

18. Estimates of fit of individual fecal chromium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay using fecal grab data (Diet 1b) in Experiment 1 ... 148

19. Estimates of fit of individual fecal chromium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered tall fescue/alfalfa hay using total collection data (Diet 2a) in Experiment 1 ... 149

20. Estimates of fit of individual fecal chromium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered tall fescue/alfalfa hay using fecal grab data (Diet 2b) in Experiment 1 ... 150
21. Fecal concentrations (mg/kg DM) of chromium for horses offered orchardgrass/alfalfa hay (Diet 1a) and tall fescue/alfalfa hay (Diet 2a) using total collection data in Experiment 1 ... 151

22. Fecal concentrations (mg/kg DM) of chromium for horses offered orchardgrass/alfalfa hay (Diet 1b) and tall fescue/alfalfa hay (Diet 2b) using fecal grab data in Experiment 1 ... 152

23. Dry matter intake (DMI, kg/d), total fecal output (FO, kg/d), and total collection DMD (DTC, %) for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4) in Experiment 2 .. 153

24. Fecal concentrations (mg/kg DM) of yttrium for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4) in Experiment 2 ... 154

25. Fecal concentrations (mg/kg DM) of ytterbium for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4) in Experiment 2 ... 154

26. Mean daily fecal concentrations (mg/kg, DM) of chromium for horses offered orchardgrass/alfalfa and fat-and-fiber supplement (Diet 3Cr) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr) in Experiment 2 155

27. Mean daily fecal concentrations (mg/kg, DM) of ytterbium for horses offered orchardgrass/alfalfa and fat-and-fiber supplement (Diet 3Yb) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) in Experiment 2 156

28. Individual horse daily fecal concentrations (mg/kg, DM) of chromium for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) in Experiment 2 .. 157

29. Individual horse daily fecal concentrations (mg/kg, DM) of ytterbium for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) in Experiment 2 .. 158

30. Individual horse daily fecal concentrations (mg/kg, DM) of chromium for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr) in Experiment 2 .. 159

31. Individual horse daily fecal concentrations (mg/kg, DM) of ytterbium for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) in Experiment 2 .. 160
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32.</td>
<td>Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Cr and its entry into the compartment, in horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement in Experiment 2 ... 161</td>
</tr>
<tr>
<td>33.</td>
<td>Fits of data to a one-compartment model of fecal kinetics without a delay, the administration curve, the post-administration curve, and the total curve with a delay between administration of an oral dose of Yb and its entry into the compartment, in horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement in Experiment 2 ... 162</td>
</tr>
<tr>
<td>34.</td>
<td>Estimates of fit of individual fecal ytterbium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) in Experiment 2 .. 163</td>
</tr>
<tr>
<td>35.</td>
<td>Estimates of fit of individual fecal ytterbium concentration data to a one-compartment model, model parameters, and calculated variables in horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) in Experiment 2 .. 164</td>
</tr>
<tr>
<td>36.</td>
<td>Fecal concentrations (mg/kg DM) of chromium for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr) in Experiment 2 165</td>
</tr>
<tr>
<td>37.</td>
<td>Fecal concentrations (mg/kg DM) of ytterbium for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) and orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) in Experiment 2 165</td>
</tr>
<tr>
<td>38.</td>
<td>Diurnal variation in fecal concentrations (mg/kg DM) of chromium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Cr) in Experiment 2 ... 166</td>
</tr>
<tr>
<td>39.</td>
<td>Diurnal variation in fecal concentrations (mg/kg DM) of chromium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Cr) in Experiment 2 ... 167</td>
</tr>
<tr>
<td>40.</td>
<td>Diurnal variation in fecal concentrations (mg/kg DM) of ytterbium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay and fat-and-fiber supplement (Diet 3Yb) in Experiment 2 ... 168</td>
</tr>
</tbody>
</table>
41. Diurnal variation in fecal concentrations (mg/kg DM) of ytterbium for individual horse fecal grab samples collected on d 8 of dosing, for horses offered orchardgrass/alfalfa hay and sugar-and-starch supplement (Diet 4Yb) in Experiment 2 ... 169