A STUDY OF FULL DISPLACEMENT DESIGN OF FRAME STRUCTURES
USING DISPLACEMENT SENSITIVITY ANALYSIS

by
Ashraf M. Abou-Rayyan

thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Civil Engineering

APPROVED:

A. E. Somers, Jr., Chairman

S. M. Holzer

R. H. Plaut

December 1985
Blacksburg, Virginia
A STUDY OF FULL DISPLACEMENT DESIGN OF FRAME STRUCTURES
USING DISPLACEMENT SENSITIVITY ANALYSIS

by
Ashraf M. Abou-Rayyan
A. E. Somers, Jr., Chairman
Civil Engineering

(ABSTRACT)

The intent of this study is to develop an algorithm for structural design based on allowable displacements for structural members, independent of stresses caused by the configurations imposed. Structural design can be based on displacement constraints applied in the same basic format as stress constraints so that convergence is based on allowable displacements rather than on stresses. The objective includes the following:

1. To develop an allowable displacement criterion based on structural design considerations for steel and reinforced concrete structures.

2. To implement the design variable linking algorithm to allow each member to be designed for one displacement constraint and one design variable, even though it is composed of separate elements.

3. To develop the displacement design algorithm (independent of stresses) using Newton's method for obtaining the
displacement solution within an iterative process. (This involves the development of displacement sensitivity derivatives and a sensitivity matrix.)

4. To study the convergence characteristics of the displacement controlled design on several test structures; four structural design cases were used:
 A. single story portal frame
 B. two story portal frame
 C. three story portal frame
 D. two bay portal frame

The conclusions drawn from these examples are: (1) the convergence rate depends on the starting initial values for section properties more than the size of the structure; (2) Traynor's equations are apparently no longer valid for larger structures; (3) for small structures, the convergence rate is faster under Traynor's equations than under Ang's equations.
ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. A. E. Somers, Jr., for his guidance and suggestions throughout this study. Thanks are also due to Dr. S. M. Holzer and Dr. R. H. Plaut for reviewing this thesis and serving on the committee. Finally, the author would like to recognize his parents, to whom this thesis is dedicated, for their continued support and encouragement.
TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 ALLOWABLE DEFLECTIONS 5
2.1 Allowable Deflections 5
2.2 Deflection Computations 7
2.3 Observations of the Allowable Deflections 10

3.0 SOLUTION ALGORITHM 11
3.1 General Procedure 11
3.2 Matrix Displacement Method 11
3.3 Development of Displacement Derivatives 14
 3.3.1 Generalized Displacement Derivatives 15
 3.3.2 Design Variable Linking 20
 3.3.3 Design Displacement Transformation 24
 3.3.4 Convergence Test 26
3.4 Multiple Loading Conditions 27

4.0 EXAMPLES AND RESULTS 31
4.1 General Considerations 31
4.2 Case Study I : Single Story Portal Frame 31
4.3 Case Study II : Two Story Portal Frame 36
4.4 Case Study III : Three Story Portal Frame 39
4.5 Case Study IV : Two Bay Portal Frame 42

Table of Contents v
LIST OF ILLUSTRATIONS

Figure 1. Deflections for frame structure 9
Figure 2. Flow Chart 12
Figure 3. Member and Joint Locations for Case Study I 32
Figure 4. Loading Conditions for Case Study I 33
Figure 5. Member and Joint Locations for Case Study II 37
Figure 6. Loading Conditions for Case Study II 38
Figure 7. Member and Joint Locations for Case Study III 40
Figure 8. Loading Conditions for Case Study III 41
Figure 9. Member and Joint Locations for Case Study IV 43
Figure 10. Loading Conditions for Case Study IV 44
Figure 11. Beam-Column Model 63
Figure 12. PROGRAM STRUCTURE 67
Figure 13. MAIN PROGRAM & SUBROUTINE DESIGN 68
Figure 14. SUBROUTINE DESITR 69
Figure 15. SUBROUTINE DEFLE 70
Figure 16. SUBROUTINE MAXDR 71
Figure 17. SUBROUTINES SENS & GDR 72
Figure 18. SUBROUTINE ASSEMK 73
Figure 19. SUBROUTINE QSENS 74
Figure 20. SUBROUTINE SENSD 75
Figure 21. SUBROUTINES SOLVED & CONVRG 76
Figure 22. SUBROUTINES EVALDE & TRIAL 77
Figure 23. SUBROUTINES PROPA, PROPI, & OUTDES 78
Figure 24. SUBROUTINE ASSIGN 79

List of Illustrations vii
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Traynor's Equations and their Derivatives</td>
<td>29</td>
</tr>
<tr>
<td>Table 2</td>
<td>Brown and Ang's Equations and their Derivatives</td>
<td>30</td>
</tr>
<tr>
<td>Table 3</td>
<td>Iteration Numbers For All Cases Under Both Sets</td>
<td>45</td>
</tr>
<tr>
<td>Table 4</td>
<td>Section Properties (Initial Values For All Cases)</td>
<td>46</td>
</tr>
<tr>
<td>Table 5</td>
<td>Final Design Values For Case I</td>
<td>47</td>
</tr>
<tr>
<td>Table 6</td>
<td>Deflection Values & Sensitivity Matrices - Case I</td>
<td>48</td>
</tr>
<tr>
<td>Table 7</td>
<td>Final Design Values For Case II</td>
<td>49</td>
</tr>
<tr>
<td>Table 8</td>
<td>Sensitivity Matrices For Case II</td>
<td>50</td>
</tr>
<tr>
<td>Table 9</td>
<td>Final Deflection Values For Case II</td>
<td>51</td>
</tr>
<tr>
<td>Table 10</td>
<td>Final Design Values For Case IV</td>
<td>52</td>
</tr>
<tr>
<td>Table 11</td>
<td>Deflection Values-Case IV(Small Initial Sec. Prop.)</td>
<td>53</td>
</tr>
<tr>
<td>Table 12</td>
<td>Stiffness Coefficients, Derivatives W.R.T. S</td>
<td>65</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This thesis presents the development and results of an iterative method for obtaining a structural design based on allowable displacements independent of stresses that may occur. The purpose is to understand the characteristics of a displacement controlled iteration procedure. The objective includes the following:

1. Develop an allowable displacement criterion based on structural design considerations for steel and reinforced concrete structures.

2. Implement the design variable linking algorithm to allow each member to be designed for one displacement constraint and one design variable, even though it is composed of separate elements.

3. Develop the displacement design algorithm (independent of stresses) using Newton's method for obtaining the displacement solution within an iterative process (this involves the development of displacement sensitivity derivatives and a sensitivity matrix).

4. Study the convergence characteristics of the displacement controlled design on several test structures; four structural design cases were used.
In recent years there has been considerable literature devoted to various aspects of optimum structural design. Haug [6] states that the literature appears to be divided into classes depending on the design constraints imposed. Many constraints have been treated, but the essential ones are bounds on stress, displacement, buckling, natural frequency, and multiple loading conditions. Papers involving deflection constraints are less numerous.

Kirsch [8] divides the optimization methods into two different categories:

1. Analytical methods, which implement the mathematical theory of calculus (variational methods, etc.).
2. Numerical methods, which use the mathematical programming methods. These numerical methods have become widely used due to the growing use of digital computers and mainly to the rapid growth in the computer's capacity.

Sensitivity analysis plays an important role in structural optimization. Many of the current papers are devoted to sensitivity analysis. Arora [2] uses the sensitivity analysis in solving a structural optimization problem, which includes two types of constraint conditions, stress and displacement. He suggests imposing the constraints for displacements at nodal points of the structure.
Haug [6] uses the steepest descent method to solve a two-constraint structural problem (displacement and stress). The method first estimates the optimum design variables and then makes small changes in the estimate. This reduces the cost function while satisfying the constraints of the problem. Haug also assumes that displacement constraints must only be at the nodal points.

Pickett [9] uses a design variable linking technique to reduce the number of variables for a one-constraint problem. This technique allows the computer to solve large systems, and also reduces the computer time.

Romstad [11] presents a practical technique to design efficient structures with the aid of digital computers. Solving a two-constraint problem (stress and displacement), the procedure is iterative in nature and the computer program is fundamentally based on the method of matrix structural analysis. He formulates a linear programming problem where weight is the criterion of merit, and where limits on stress and displacement are derived to represent the required multiplier in each of the design parameters from a previous acceptable solution to minimize the weight of the system.

Chapter II discusses the allowable deflection criterion. The development of the procedure used in this study is presented in Chapter III, which includes the algorithm for the displacement sensitivity derivatives and the sensitivity
matrix required for computing the incremental changes in the design variables in each iteration. The incremental changes are used to compute the new design variables (based on Newton's method). Chapter IV presents the convergence criteria for the different cases. Also, a comparison is made between two different sets of dependent section property equations. Conclusions are presented in Chapter V. A review of the matrix displacement method is presented in Appendix A. Appendix B presents the program listing.
2.0 ALLOWABLE DEFLECTIONS

Methods for computing deflections of structural members have been available for many years, yet they have not yielded uniformly consistent results because many factors affecting their true magnitudes have been inadvertently ignored. Fling [4] discusses such factors:

1. Concrete is assumed to carry no tension, which is practically incorrect.
2. Permanent and transient loads should be used instead of those assumed in strength computations. For instance, the applied live load is often less than the load used for design.
3. Actual moments should be used instead of those computed in the design for strength, particularly when empirical moment factors have been used.
4. The sequence of loading during construction can drastically affect the subsequent deflections.

2.1 ALLOWABLE DEFLECTIONS

For a variety of reasons, the tendency of a structure to vibrate and experience excessive deflections can be unde-
sirable. These reasons can be classified in four categories [4]:

(1) Sensory Acceptability

This is a matter of personal opinion. Therefore, limits on deflection vary according to the culture and the main purpose of the structure.

(2) Serviceability

Since deflection limits for serviceability of the structure are related to the intended use of this structure, they can be easily defined.

(3) Effect on Nonstructural Elements

The movements of nonstructural elements (walls and ceilings) should be limited to prevent cracking or other damage. Excessive deflection can prevent doors, folding partitions, and other movable elements from operating properly.

(4) Effect on Structural Elements

The movements of nonstructural elements could affect the structural elements. Therefore, those movements must be limited to prevent the structure from behaving differently than assumed in the design. However, if this cannot be achieved, deflection should be considered as part of the design for strength.
Linear movements can be limited as follows:

1. Setting an absolute value for the allowable deflection related to a fraction of the span or a fraction of the height, depending upon the reasons for the limitation.
2. Allowable deflection in some cases could be a function of the frequency of vibration or the rate of damping.

The most important factor that should be taken into consideration is the sequence of loading the structure. Loading the structure too early may result in larger deflections than those assumed in the design.

2.2 DEFLECTION COMPUTATIONS

This study considers only two types of deflections: beam deflection and column deflection. These are the most common and important deflections of the frame structure.

Gaylord [5] suggests that the allowable deflections be computed as follows:

\[
\text{Beam deflection} = \left(\frac{1}{80} \text{ to } \frac{1}{360} \right) \cdot S
\]

\[(2.2.1)\]

\[
\text{Column deflection} = \left(\frac{1}{300} \text{ to } \frac{1}{600} \right) \cdot H
\]

where \(S \) is the beam span and \(H \) is column height. Also, the building drifting can be computed using equation 2.2.2 [2]:

ALLOWABLE DEFLECTIONS
\[
\max A_1 = 0.002 \cdot H \quad (2.2.2)
\]
\[
\max A_2 = 0.15 \text{ in. per story}
\]
where \(A_1 \) and \(A_2 \) are as shown in figure 1.

For computing the column deflection, the two methods are found to be almost the same. For computing beam deflection, the maximum deflection at the middle of the span is considered.

If the beam member is divided into two equal elements, the central lateral deflection of the beam is a function of the vertical joint displacements at the end of the elements. The rule for computing the beam deflection is as follows:

1. Determine the vertical end displacement for each end of each element in the member.
2. Subtract half of the far end vertical displacement for each element from the vertical displacement of the middle joint of the member.
3. The allowable deflection is considered to be \(\frac{1}{80} \) to \(\frac{1}{360} \) times the beam span.

For column deflection the element is considered to be a complete member. The deflection in the horizontal direction is considered. The allowable column deflection is considered to be \(\frac{1}{300} \) to \(\frac{1}{600} \) times the height.
Figure 1. Deflections for frame structure

MAX. $\Delta_1 = 0.002 \text{ (HEIGHT)}$

MAX. $\Delta_2 = 0.15'' (3.8 \text{ mm})$

FRAMED BLDG.
2.3 Observations of the Allowable Deflections

Because of the assumed deformed shape of the structure (due to several loading conditions), the allowable deflection for each member (beam or column) may be completely different.

1. Since the higher the building, the larger the deflection at the top, the deflection of the column members increases with the height. Therefore, the allowable deflection for the higher floors should be more than that deflection for the lower floors. This results in consistency in the deformed shape of the building, and also speeds up the convergence.

2. The allowable deflection should be chosen neither too large nor too small.
3.0 SOLUTION ALGORITHM

3.1 GENERAL PROCEDURE

A computer program has been developed for use in this study (the analysis part written by Holzer [7]; see Appendix B). Figure 2 shows the program flow chart. The analysis method used in this study is the matrix displacement method (see Appendix A). For a detailed description of the method, see Holzer [7].

3.2 MATRIX DISPLACEMENT METHOD

This method is used because of its easy implementation to the computer. Some assumptions have been made to simplify the procedure:

1. The analysis is limited to plane skeletal structures with one-dimensional axial and flexural elements having six degrees of freedom.
2. The frame structure is rigidly connected and experiences several loading conditions.
3. Loading conditions are assumed to be of a static nature.
DEFINE THE STRUCTURE
(SYSTEM DATA AND LOAD CONDITIONS)

ANALYSIS OF STRUCTURE
(MATRIX DISPLACEMENT METHOD)

ASSIGN NEW SEC. PROPERTIES TO EACH ELEMENT

COMPUTE MEMBERS DEFLECTION

COMPUTE DISPLACEMENT SENSITIVITY DATA

MODIFIED TRIAL STRUCTURE
NO

TEST THE STRUCTURE FOR CONVERGENCE
YES

PRINT OUT FINAL DESIGN VALUES

Figure 2. Flow Chart

SOLUTION ALGORITHM 12
4. The material has a linear elastic behavior.

The matrix displacement method is developed from the element model to the system model in the following sequence:

(a.) The local element model:

\[f_i = k_i \cdot d_i \] \hspace{1cm} (3.2.1)

where \(f_i \) = element end forces
\(k_i \) = local element stiffness matrix
\(d_i \) = element end displacements

(b.) The global element model:

\[F_i = K_i \cdot D_i \] \hspace{1cm} (3.2.2)

\[K_i = A_i^T \cdot k_i \cdot A_i \] \hspace{1cm} (3.2.3)

where \(F_i \) = global element end forces
\(K_i \) = global element stiffness matrix
\(D_i \) = global element end displacements

(c.) The generalized element model:

\[F(i) = K(i) \cdot q \] \hspace{1cm} (3.2.4)

\[K_i \xrightarrow{M^i} K(i) \]
\[F_i \xrightarrow{M^i} F(i) \]
where \(F^{(i)} \) = generalized element end forces vector
\(K^{(i)} \) = generalized element stiffness matrix
\(q \) = generalized joint displacements
\(M^{(i)} \) = member code global-system transformation
\(n \) = number of degrees of freedom
\(n_e \) = number of elements in the structure

(d.) The system model:

\[
K = \sum_{i=1}^{n_e} K^{(i)}
\]

\[
K . q = Q
\]

(3.2.5)

where \(K \) = the system stiffness matrix
\(Q \) = generalized external force vector

The details of each stiffness matrix are shown in Appendix A.

3.3 DEVELOPMENT OF DISPLACEMENT DERIVATIVES

Kirsch [8] describes the structural system as a set of quantities where some are fixed and others are variable. The fixed parameters that define the structural system are called preassigned parameters. The independent variable parameters, not preassigned, are called design variables. The design variables, for instance, could represent:

SOLUTION ALGORITHM
1. The mechanical properties of the material.
2. The topology of the structure.
3. The section modulus.
4. The moment of inertia.
5. The cross-sectional area.

Throughout this study, the design variables represent the section modulus values, referred to as the X vector.

3.3.1 GENERALIZED DISPLACEMENT DERIVATIVES

The approach used in this study is called the design state method [8]. Before discussing the development of this approach, the variable dependency is presented. The variables are defined below:

1. **Section properties**:
 - A = Area, which is a dependent variable.
 - I = Moment of inertia, which is a dependent variable.
 - x = Section modulus, which is the independent variable.

2. **Stiffness matrices**:
 - a. **Local element k**:

 The local element stiffness matrix is a function of the modulus of elasticity E, the element length L, area A, and moment of inertia I:
\(k^i = k^i(E, L, A, I) \) \hspace{1cm} (3.3.1)

b. Global element \(K \):

The global element matrix \(K \) is also a function of the sine (C1) and cosine (C2) directions of the element, as well as a function of all previous parameters:

\[K^i = K^i(E, L, C1, C2, A, I) \] \hspace{1cm} (3.3.2)

c. System \(K \):

\[K = \sum_{i=1}^{ne} K^{(i)} \] \hspace{1cm} (3.3.3)

where

\[K^{(i)} = K^{(i)}(E, L, C1, C2, A, I) \] \hspace{1cm} (3.3.4)

and:

\[K = K(E, L, C1, C2, A, I) \] \hspace{1cm} (3.3.5)

In \(K^{(i)} \), the parameters A and I depend only on \(x^i \) of element \(i \), but in system \(K \) they depend on all \(x^i \) (\(i = 1, 2, \ldots n \)). Also, the only variable parameters in \(K \) are A and I.
3. Load Vector:

\[Q = \bar{Q} - \Delta Q \] \hspace{1cm} (3.3.6)

where:

- \(\bar{Q} \) = equivalent joint force vector
- \(Q \) = applied joint force vector
- \(\Delta Q \) = constrained joint force vector

\[\Delta Q = Q(L, x_1, x_2, p) \] \hspace{1cm} (3.3.7)

\[Q = Q(\bar{Q}, L, x_1, x_2, p) \] \hspace{1cm} (3.3.8)

where:

- \(p \) = element action
- \(x_1 \) = Load distance from a-end
- \(x_2 \) = Load distance from b-end

The parameter \(\Delta \) is not considered in the function \(Q \) because dead load is not considered.

4. Response:

\[\{q\} = [K]^{-1} \cdot \{Q\} \] \hspace{1cm} (3.3.9)

From equation 3.3.5 and equation 3.3.8, the generalized displacement vector \(q \) is a function, in general, of the following:

SOLUTION ALGORITHM 17
\[q = q (E, L, C_1, C_2, A, I, Q) \quad (3.3.10) \]

where the only parameters that depend on the design variables are the areas \(A \) and the moments of inertia \(I \).

The design state approach is developed as follows:

let the function \(G \) represents the system model

\[G = K \cdot q - Q = 0 \quad (3.3.11) \]

(\(n,1 \)) (\(n,n \)) (\(n,1 \)) (\(n,1 \))

According to equation 3.3.5 and equation 3.3.10, the system stiffness matrix \(K \) and displacement vector \(q \) are each functions of the areas \(A \) and the moments of inertia \(I \). Differentiating \(G \) with respect to the design variable \(x \) (W.R.T. \(x \)) for member \(j \) results in equation 3.3.12:

\[
\frac{\partial G}{\partial x_j} = \frac{\partial (K \cdot q)}{\partial x_j} - \frac{\partial Q}{\partial x_j} \quad (3.3.12)
\]

and

\[
\frac{\partial Q}{\partial x_j} = 0 \quad (3.3.13)
\]

because \(Q \) is not a function of the design variable. Equation 3.3.12 can be rewritten as:

\[
\frac{\partial G}{\partial x_j} = K \cdot \frac{\partial q}{\partial x_j} + \frac{\partial K}{\partial x_j} \cdot q \quad (3.3.14)
\]
\[K \cdot \frac{\partial q}{\partial x_j} = -\frac{\partial K}{\partial x_j} \cdot q \] (3.3.15)

Realizing that the system stiffness matrix \(K \) is the sum of the generalized element stiffness matrices,

\[K = K^{(1)} + K^{(2)} + \ldots + K^{(ne)} \] (3.3.16)

it is clear that

\[\frac{\partial K}{\partial x_j} = \frac{\partial K^{(1)}}{\partial x_j} + \frac{\partial K^{(2)}}{\partial x_j} + \ldots + \frac{\partial K^{(ne)}}{\partial x_j} = \sum_{i=1}^{ne} \frac{\partial K^{(i)}}{\partial x_j} \] (3.3.17)

\(K^{(i)} \) is a function of area \((A^i) \) and moment of inertia \((I^i) \) for that element only. Therefore,

\[\frac{\partial K^{(i)}}{\partial x_j} = \frac{\partial K^{(j)}}{\partial A_j} \cdot \frac{\partial A^j}{\partial x_j} + \frac{\partial K^{(j)}}{\partial I^j} \cdot \frac{\partial I^j}{\partial x_j} \] (3.3.18)

\[\frac{\partial A^i}{\partial x_j} = 0, \quad \frac{\partial I^i}{\partial x_j} = 0 \quad \text{for} \quad i=j \]

Thus, the matrix \(\frac{\partial K^{(i)}}{\partial x_j} \) has value only when \(i=j \)

\[\frac{\partial K^{(i)}}{\partial x_j} = \frac{\partial K^{(i)}}{\partial x_i} \] (3.3.19)

To compute \(\frac{\partial K^{(j)}}{\partial A_j} \) and \(\frac{\partial K^{(j)}}{\partial I_j} \), the coefficients of the element stiffness matrix, \(q_1-q_7 \), are differentiated with respect to \(A^j \) and \(I^j \) respectively. The coefficients and the differentiations are shown in Appendix A [10].
To compute the section property derivatives of equation 3.3.18, two sets of section property functions are differentiated with respect to the design variable. The first set is Traynor's equations [12]; the second is Brown and Ang's equations [3] (see Chapter V for comparison of the two sets). Tables 1 and 2 present the equations and their derivatives respectively.

Solving equation 3.3.15 gives the following expression:

\[
\frac{\partial q}{\partial x_j} = - K^{-1} \cdot \frac{\partial K}{\partial x_j} \cdot q \tag{3.3.20}
\]

The left side term could be represented as follows:

\[
\frac{\partial q}{\partial x_j} = \begin{bmatrix}
\frac{\partial q_1}{\partial x_1} & \cdots & \cdots & \frac{\partial q_1}{\partial x_{ne}} \\
\vdots & \ddots & \ddots & \vdots \\
\frac{\partial q_n}{\partial x_1} & \cdots & \cdots & \frac{\partial q_n}{\partial x_{ne}}
\end{bmatrix} \tag{3.3.21}
\]

3.3.2 DESIGN VARIABLE LINKING

The design displacements are the displacement quantities associated with each structural member to be used in the application of the displacement controlled design. Two types
of members are defined: beams (horizontal members) and columns (vertical members). Each beam is composed of two elements and the design displacement is the local central lateral displacement. Each column is composed of one element and the design displacement is the difference in the lateral displacements at the ends (relative lateral displacement).

The matrix displacement analysis is concerned with elements and points, where joints are the connection joints of the elements. If, as in the case for beams, the structural member is composed of more than one element, then these elements must be linked together so that the computer understands that they compose one member, which has one controlling design displacement. In addition, the entire member has only one design variable; i.e., each element of the set is identical. The algorithm required to control these relationships between elements and structural members is called variable linking [8]. Each of the design displacements can be related to the generalized structural displacements \(q \).

Equation 3.3.22 represents the relationship between the element design variable and the member design variable.

\[
\{x\} = [T] \cdot \{X\} \quad (3.3.22)
\]

\[
(ne) \quad (ne,m) \quad (m)
\]
where

\(x = \text{element design variable vector.} \)

\(X = \text{member design variable vector} \)

\(T = \text{design variable transformation matrix.} \)

\(m = \text{number of members (groups)} \)

Equation 3.3.22 for case I (page 36) can be expressed as:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 X_1 \\
 X_2 \\
 X_2 \\
 X_3
\end{bmatrix}
\]

which represents the following relationships:

\(x_1 = X_1 \)

\(x_2 = X_2 \)

\(x_3 = X_2 \)

\(x_4 = X_3 \)

Equation 3.3.20 gives the change of the generalized displacements \(q \) with respect to the change in the design variable for element \(j \) \((x_j)\).

Since the element design variables are functions of the member design variables, and the generalized displacements are functions of element design variables, see equation 3.3.10; There are two sets of functions as in equation 3.3.23 and equation 3.3.24:
where

\(x = \text{element design variable.} \)

\(X = \text{member design variable.} \)

The partial derivatives of these composite functions can be obtained by the chain rule.

\[
\frac{\partial q_k}{\partial X_j} = \sum_{i=1}^{n} \frac{\partial q_k}{\partial x_i} \frac{\partial x_i}{\partial X_j}
\]

(3.3.25)

Equation 3.3.25 can be expressed concisely in matrix form. The partial derivatives \(\frac{\partial q}{\partial X_j} \) are the entries in the \(n \times m \) matrix

\[
\left(\frac{\partial q}{\partial X_j} \right) = \begin{bmatrix}
\frac{\partial q_1}{\partial X_1} & \cdots & \frac{\partial q_1}{\partial X_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial q_n}{\partial X_1} & \cdots & \frac{\partial q_n}{\partial X_m}
\end{bmatrix}
\]

(3.3.26)

The formulas involve two other matrices; one is equation 3.3.21 and the other is equation 3.3.27:
Realizing that the derivatives of x with respect to X to compose the matrix in equation 3.3.27 are the same as the T matrix. Therefore, the T matrix is used instead of equation 3.3.27 throughout the program. Equation 3.3.26 represents the change in the generalized displacement for member i with respect to the change in the design variable for member j.

3.3.3 DESIGN DISPLACEMENT TRANSFORMATION

This study considers only one design displacement per member (see Chapter II). The transformation matrix A is needed to relate the joint displacements to the member design displacements as shown below:

$$
\{e\} = [A] \cdot \{q\}
$$

(3.3.28)

where:

- $e = \text{member design displacement vector}$
- $A = \text{member displacement transformation matrix}$
- $q = \text{joint displacement vector}$
Differentiating e with respect to the member design variable X results in equation 3.3.29:

$$\frac{\partial e^i}{\partial X_j} = \frac{\partial (A,q)}{\partial X_j} = A \cdot \frac{\partial q}{\partial X_j} + \frac{\partial A}{\partial X_j} \cdot q$$ (3.3.29)

The last term is equal to zero, since A is a constant; therefore, equation 3.3.29 becomes:

$$\frac{\partial e^i}{\partial X_j} = A \cdot \frac{\partial q}{\partial X_j}$$ (3.3.30)

Equation 3.3.30 is the change in the design displacement of member i due to a change in the design variable of member j:

$$\frac{\partial e}{\partial X} = \begin{bmatrix}
\frac{\partial e^1}{\partial X_1} & \ldots & \frac{\partial e^1}{\partial X_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial e^m}{\partial X_1} & \ldots & \frac{\partial e^m}{\partial X_m}
\end{bmatrix}$$ (3.3.31)

To compute the incremental change in the design variable, (ΔX), the first approximation for a single design displacement can be defined as:

$$\Delta e^i = \frac{\partial e^i}{\partial X_1} \cdot \Delta X_1 + \frac{\partial e^i}{\partial X_2} \cdot \Delta X_2 + \ldots + \frac{\partial e^i}{\partial X_m} \cdot \Delta X_m$$ (3.3.32)
Equation 3.3.32 can be expressed in matrix form as follows:

\[
\frac{\Delta e}{\Delta X} \cdot \Delta X = \Delta e \tag{3.3.33}
\]

where \(\Delta e \) = vector of all design displacement changes
\(\Delta X \) = vector of all design variable changes
and \(\frac{\partial e}{\partial X} \) is the displacement sensitivity matrix. In this set of equations the \(\Delta X \) represents the unknowns.

Using Newton's method, equation 3.3.35 represents the new set of design variables.

\[
x^{k+1} = x^k + \Delta X \tag{3.3.35}
\]

where \(k \) is the iteration number.

3.3.4 CONVERGENCE TEST

The program tests the system for convergence using the deflection ratio as follows:
\[DR = \frac{e^i}{e^a} \]

where \(DR \) = displacement ratio.

\[e^i - e^a = 0 \]

\[
\frac{e^i - e^a}{e^a} = DR - 1 = 0 \quad (3.3.36)
\]

Setting some tolerance \(\varepsilon \), equation 3.3.36 becomes

\[|DR - C| \leq \varepsilon \quad (3.3.37) \]

where \(C = 1 - \varepsilon \)

If the convergence test fails, a new trial structure is computed using the new design variable and one of the two sets of section property functions. To assign the new computed member properties to each corresponding element to start a new iteration, a relation between elements in each group (member) is developed (see Nassis-Schneiderman diagram for Subroutine Assign).

3.4 MULTIPLE LOADING CONDITIONS

For a structure under multiple loading conditions, there is a unique response associated with each loading condition. Therefore, to predict the structural response to an isolated loading condition, one must examine the sensitivity matrix for that loading condition only.
However, in this algorithm the design variable for a member is determined by the maximum deflection for this member under multiple loading conditions. Likewise, the controlling deflection sensitivities for each member are determined by the controlling loading condition that caused the maximum deflection for that member. Therefore, the sensitivity matrix consists of a composite of the controlling sensitivities for each member. Thus, the composite sensitivity matrix for a structure under multiple loading conditions is equivalent to the sensitivity matrix for a structure under a single loading condition. The rule for constructing the composite matrix is as follows:

1. Determine the critical loading condition that causes the maximum deflection for each member.
2. From the sensitivity matrix for the corresponding critical loading condition for each member i, retain $\frac{\partial e^i}{\partial X_j}$ to construct the composite sensitivity matrix, where $\frac{\partial e^i}{\partial X_j}$ represents row i.
Table 1. Traynor's Equations and their Derivatives

\[
\begin{align*}
[0 < S < 1100 \text{ in}^3] \\
A &= 3.62415 + (0.119637)S - (9.70882 \times 10^{-5})S^2 + (5.34160 \times 10^{-8})S^3 \\
\frac{\partial A}{\partial S} &= 0.119637 - (19.4175 \times 10^{-5})S + 16.02478 \times 10^{-8}S^2 \\
[0 < S < 50 \text{ in}^3] \\
I &= (7.98)S \\
\frac{\partial I}{\partial S} &= 7.98 \\
[50 \text{ in}^3 < S < 1100 \text{ in}^3] \\
I &= -191.3096 + (10.90819)S + (0.01840775)S^2 - (1.076241 \times 10^{-5})S^3 \\
\frac{\partial I}{\partial S} &= 10.90819 + (0.0368155)S - 3.228723 \times 10^{-5}S^2
\end{align*}
\]

where \(S = \) section modulus
Table 2. Brown and Ang's Equations and their Derivatives

\[
[0 < S < 503 \text{ in}^3]
A = 0.464 \left[\frac{(290+S)^2 - 84100}{60.6} \right]^{0.5}
\]
\[
\frac{dA}{dS} = 0.0298025 \frac{(2S+580)}{(S^2+580S)^{0.5}}
\]

\[
[503 \text{ in}^3 < S < 1113 \text{ in}^3]
A = \frac{18.5111 S + 1988.9336}{256}
\]
\[
\frac{dA}{dS} = 0.072309
\]

\[
[0 < S < 503 \text{ in}^3]
I = \frac{(290+S)^2 - 84100}{60.6}
\]
\[
\frac{dI}{dS} = \frac{(S+290)}{30.3}
\]

\[
[503 \text{ in}^3 < S < 1113 \text{ in}^3]
I = 18.5111 S - 311.0664
\]
\[
\frac{dI}{dS} = 18.5111
\]

where \(S = \) section modulus
4.0 EXAMPLES AND RESULTS

4.1 GENERAL CONSIDERATIONS

The purpose of this chapter is to demonstrate the procedure and compare the convergence characteristics for several examples under multiple loading conditions, and to compare the results of the two sets of section property functions mentioned earlier (see tables 1 and 2).

Four cases with different section properties and two different sets of trial structure equations have been conducted in this study. The convergence tolerance for all cases is one percent (EPS=0.01). Other necessary information, such as initial section properties, number of iterations, etc., is provided with each case. Table 3 shows the number of iterations for each case.

4.2 CASE STUDY I: SINGLE STORY PORTAL FRAME

The single story portal frame was analyzed under three loading conditions. Figure 3 shows the frame layout, as well as joints, elements, and member locations. Figure 4 shows the three loading conditions, which are the same for all tested cases.
Figure 3. Member and Joint Locations for Case Study I
Figure 4. Loading Conditions for Case Study I
The frame was tested under three different initial section property values. The first test (I) was conducted for very small initial values; the second (II) for initial values which were close to the final design values; the third (III) for large initial values. All tests were conducted under two different sets of section property functions. Table 4 and table 5 show the initial starting values and the final design values respectively.

The first loading condition is a wind load applied to the top left joint in a positive direction with a value of 45 k. The second one is also a wind load but applied to the top right joint in a negative direction with value of -45 k. The third loading condition is a distributed load of -0.5 k/in applied to the beams. As shown in table 5, the structure under three loading conditions collectively yields a symmetric design condition.

As shown in table 3, the structure tends to converge faster under Traynor's equations for the three different initial design values. Also, there was not much change in the number of iterations under Traynor's equations when starting with small or large values. However, with initial values close to the final values, it is clear that the number of iterations was cut down significantly. On the other hand, for Ang's equations there was a drop from 15 iterations to 10 iterations when starting with large values instead of small values.

EXAMPLES AND RESULTS

34
The results for the maximum deflections under the three loading conditions and the results for the final (allowable) deflections are shown in table 6. When the structure was analyzed for the first iteration, the deflection for the column members was 1.11 inch and for the beam member was 2.515 inches. After three iterations, the deflections were almost equal to the allowable ones. Also, the convergence indicator was near the convergence point after the third iteration.

Two displacement sensitivity matrices (for the first, the third, and final iterations respectively) are shown in table 6. It has been noticed for this case that the sensitivity matrix after the third cycle of iteration represents a fairly accurate estimate of the final matrix because it changes slightly with each successive iteration after the third one.

The structure was also tested under the displacement ratio modification rule (analogous to the stress ratio modification rule) which computes the new design variable according to the deflection ratio (DR) instead of using Newton's method. Table 3 shows no change in number of iterations under this method.
4.3 CASE STUDY II: TWO STORY PORTAL FRAME

The test for this case was conducted under the same loading conditions and the same initial design values as case one.

The structure and the loading conditions are shown in Figures 5 and 6 respectively. Also, table 7 shows the final design values for the case. For initial design values close to the final values, the test shows little difference in number of iterations when using any set of section property functions. But for small initial values the system tends to converge faster under Ang's equations, and for large initial values the system tends to converge faster under Traynor's equations.

The sensitivity matrices shown in table 8 are for the first and the final iterations respectively, using both sets of equations. The maximum deflections under all loading conditions and the final deflections are shown in table 9.

The case was also tested for convergence using the displacement ratio modification rule. But for this case the system did not converge after 45 iterations.
Figure 5. Member and Joint Locations for Case Study II
Figure 6. Loading Conditions for Case Study II
4.4 CASE STUDY III: THREE STORY PORTAL FRAME

The same analysis procedure and loading conditions were used for this case. The structure and the loading conditions are shown in figures 7 and 8 respectively.

In this case the system converged under Ang's equations, but not under Traynor's equations or under the displacement ratio modification rule. Traynor's equations are apparently not valid when the design variables are larger than the maximum section modulus in the range specified (see tables 1 and 2) and give negative values for the area and moment of inertia. This results in a condition of singularity in the stiffness matrix because some of the stiffness coefficients are negative.

This problem was encountered only in case II and case III. To overcome it, an upper bound for the design variables was set to be 1100 in3. If the new computed design variable is greater than this bound, the design variable is reduced to a value of 600 to start a new iteration. This modification did not work for case III because the structure was large. The reason for nonconvergence is that the limit on the design variables does not allow the incremental design variable, ΔX, to change freely, as dictated by the behavior constraints and the sensitivity matrix for each iteration. So, each iteration cuts down the change in the design variable to a constant.
Figure 7. Member and Joint Locations for Case Study III
Figure 8. Loading Conditions for Case Study III
value, which results in an increase in the number of iterations and gives the nonconvergent condition.

Also, for this case the sensitivity matrix after the third cycle of iteration represents a fairly accurate estimate of the final matrix.

4.5 CASE STUDY IV: TWO BAY PORTAL FRAME

The same loading conditions and the same initial design values were used. The results show that the structure converged faster under Traynor's equations. Figures 9 and 10 show the structure and the loading conditions respectively. Table 10 shows the final design values for the structure. Table 11 shows the initial and the final member deflection.
Figure 9. Member and Joint Locations for Case Study IV
Figure 10. Loading Conditions for Case Study IV
Table 3. Iteration Numbers For All Cases Under Both Sets

<table>
<thead>
<tr>
<th>Sec. prop.</th>
<th>One story</th>
<th>Two story</th>
<th>Three st.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANG</td>
<td>TRAY</td>
<td>ANG</td>
</tr>
<tr>
<td>I</td>
<td>15</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Two Bay I</td>
<td>17</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modif. rule</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Section Properties (Initial Values For All Cases)

<table>
<thead>
<tr>
<th>Sec. prop.</th>
<th>A</th>
<th>I</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.5</td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>800</td>
<td>70</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>10000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Table 5. Final Design Values For Case I

<table>
<thead>
<tr>
<th>Member</th>
<th>A</th>
<th>I</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANG</td>
<td>TRAY</td>
<td>ANG</td>
</tr>
<tr>
<td>1</td>
<td>23.05</td>
<td>23.20</td>
<td>2469.46</td>
</tr>
<tr>
<td>2</td>
<td>19.78</td>
<td>19.54</td>
<td>1818.08</td>
</tr>
<tr>
<td>3</td>
<td>23.06</td>
<td>23.21</td>
<td>2469.95</td>
</tr>
</tbody>
</table>
Table 6. Deflection Values & Sensitivity Matrices - Case I

<table>
<thead>
<tr>
<th>MEMBER</th>
<th>Initial Defl</th>
<th>Final Defl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1060</td>
<td>0.6000</td>
</tr>
<tr>
<td>2</td>
<td>-2.5158</td>
<td>-2.0000</td>
</tr>
<tr>
<td>3</td>
<td>-1.1106</td>
<td>-0.6000</td>
</tr>
</tbody>
</table>

\[
\frac{\Delta e}{\Delta X_j} = \\
\begin{pmatrix}
-0.005651 & -0.005354 & -0.005408 \\
0.006554 & 0.024180 & 0.006554 \\
0.005408 & 0.005354 & 0.005651
\end{pmatrix}
\]

First iteration

Third iteration

\[
\frac{\Delta e}{\Delta X_j} = \\
\begin{pmatrix}
-0.001552 & -0.002971 & -0.001441 \\
0.001641 & 0.024657 & 0.001640 \\
-0.001442 & 0.002971 & 0.001552
\end{pmatrix}
\]

Final iteration

EXAMPLES AND RESULTS 48
Table 7. Final Design Values For Case II

<table>
<thead>
<tr>
<th>Member</th>
<th>A</th>
<th>I</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANG</td>
<td>TRAY</td>
<td>ANG</td>
</tr>
<tr>
<td>1</td>
<td>36.63</td>
<td>38.72</td>
<td>6233.52</td>
</tr>
<tr>
<td>2</td>
<td>15.41</td>
<td>14.88</td>
<td>1103.49</td>
</tr>
<tr>
<td>3</td>
<td>14.12</td>
<td>13.62</td>
<td>926.57</td>
</tr>
<tr>
<td>4</td>
<td>10.48</td>
<td>10.32</td>
<td>510.20</td>
</tr>
<tr>
<td>5</td>
<td>15.41</td>
<td>14.88</td>
<td>1103.67</td>
</tr>
<tr>
<td>6</td>
<td>36.64</td>
<td>38.72</td>
<td>6234.22</td>
</tr>
</tbody>
</table>
Table 8. Sensitivity Matrices For Case II

\[\frac{\delta e}{\delta X_j} = \]

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.007279</td>
<td>-0.000481</td>
<td>-0.001601</td>
<td>-0.014812</td>
<td>-0.000574</td>
<td>-0.006990</td>
</tr>
<tr>
<td></td>
<td>-0.002249</td>
<td>-0.009084</td>
<td>-0.013734</td>
<td>-0.017276</td>
<td>-0.008980</td>
<td>-0.002455</td>
</tr>
<tr>
<td></td>
<td>-0.000135</td>
<td>0.002811</td>
<td>-0.009444</td>
<td>-0.000078</td>
<td>0.002811</td>
<td>-0.000135</td>
</tr>
<tr>
<td></td>
<td>0.000390</td>
<td>0.000427</td>
<td>-0.000309</td>
<td>0.007546</td>
<td>0.000427</td>
<td>0.000390</td>
</tr>
<tr>
<td></td>
<td>0.002455</td>
<td>0.008980</td>
<td>0.013734</td>
<td>0.017276</td>
<td>0.009084</td>
<td>0.002249</td>
</tr>
<tr>
<td></td>
<td>0.006990</td>
<td>0.000574</td>
<td>0.001601</td>
<td>0.014812</td>
<td>0.000481</td>
<td>0.007279</td>
</tr>
</tbody>
</table>

Under Traynor's Set (First Iteration)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.000637</td>
<td>-0.000022</td>
<td>-0.000394</td>
<td>-0.002374</td>
<td>-0.000082</td>
<td>-0.000561</td>
</tr>
<tr>
<td></td>
<td>0.000466</td>
<td>0.002194</td>
<td>0.003783</td>
<td>0.002839</td>
<td>0.002036</td>
<td>0.000533</td>
</tr>
<tr>
<td></td>
<td>-0.000025</td>
<td>0.000721</td>
<td>0.002903</td>
<td>0.000004</td>
<td>0.000721</td>
<td>-0.000009</td>
</tr>
<tr>
<td></td>
<td>0.000533</td>
<td>-0.002036</td>
<td>-0.003783</td>
<td>-0.002839</td>
<td>-0.002194</td>
<td>-0.000466</td>
</tr>
<tr>
<td></td>
<td>0.000561</td>
<td>0.000082</td>
<td>0.000394</td>
<td>0.002374</td>
<td>0.000022</td>
<td>0.000637</td>
</tr>
</tbody>
</table>

Under Traynor's Set (Final Iteration)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.006566</td>
<td>-0.000427</td>
<td>-0.001418</td>
<td>-0.013134</td>
<td>-0.000509</td>
<td>-0.006306</td>
</tr>
<tr>
<td></td>
<td>-0.002027</td>
<td>-0.008053</td>
<td>-0.012180</td>
<td>-0.015289</td>
<td>-0.007961</td>
<td>-0.002212</td>
</tr>
<tr>
<td></td>
<td>-0.000122</td>
<td>0.002490</td>
<td>0.008369</td>
<td>-0.000067</td>
<td>0.002490</td>
<td>-0.000122</td>
</tr>
<tr>
<td></td>
<td>0.000352</td>
<td>0.000379</td>
<td>-0.000272</td>
<td>0.006683</td>
<td>0.000379</td>
<td>0.000352</td>
</tr>
<tr>
<td></td>
<td>0.002212</td>
<td>0.007961</td>
<td>0.012180</td>
<td>0.015289</td>
<td>0.008053</td>
<td>0.002027</td>
</tr>
<tr>
<td></td>
<td>0.006306</td>
<td>0.000509</td>
<td>0.001418</td>
<td>0.013134</td>
<td>0.000427</td>
<td>0.006566</td>
</tr>
</tbody>
</table>

Under Ang's Set (First Iteration)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.000701</td>
<td>-0.000020</td>
<td>-0.000350</td>
<td>-0.002063</td>
<td>-0.000072</td>
<td>-0.000619</td>
</tr>
<tr>
<td></td>
<td>0.000514</td>
<td>0.001954</td>
<td>0.003362</td>
<td>0.002464</td>
<td>0.001815</td>
<td>0.000587</td>
</tr>
<tr>
<td></td>
<td>-0.000010</td>
<td>0.000644</td>
<td>0.002576</td>
<td>0.000006</td>
<td>0.000644</td>
<td>-0.000010</td>
</tr>
<tr>
<td></td>
<td>0.000028</td>
<td>0.000031</td>
<td>-0.000041</td>
<td>0.006195</td>
<td>0.000031</td>
<td>0.000028</td>
</tr>
<tr>
<td></td>
<td>-0.000587</td>
<td>-0.001815</td>
<td>-0.003362</td>
<td>-0.002464</td>
<td>-0.001954</td>
<td>-0.000514</td>
</tr>
<tr>
<td></td>
<td>0.000619</td>
<td>0.000073</td>
<td>0.000350</td>
<td>0.002063</td>
<td>0.000020</td>
<td>-0.000701</td>
</tr>
</tbody>
</table>

Under Ang's Set (Final Iteration)

EXAMPLES AND RESULTS
Table 9. Final Deflection Values For Case II

<table>
<thead>
<tr>
<th>MEMBER</th>
<th>Initial Defl</th>
<th>Final Defl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7011</td>
<td>0.5000</td>
</tr>
<tr>
<td>2</td>
<td>2.2854</td>
<td>-1.0000</td>
</tr>
<tr>
<td>3</td>
<td>-0.5746</td>
<td>-0.3000</td>
</tr>
<tr>
<td>4</td>
<td>-0.3740</td>
<td>-0.3000</td>
</tr>
<tr>
<td>5</td>
<td>-2.2854</td>
<td>1.0000</td>
</tr>
<tr>
<td>6</td>
<td>-1.7011</td>
<td>-0.5000</td>
</tr>
</tbody>
</table>
Table 10. Final Design Values For Case IV

<table>
<thead>
<tr>
<th>Member</th>
<th>A</th>
<th>I</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANG</td>
<td>TRAY</td>
<td>ANG</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
<td>10.97</td>
<td>464.09</td>
</tr>
<tr>
<td>2</td>
<td>12.76</td>
<td>12.06</td>
<td>756.23</td>
</tr>
<tr>
<td>3</td>
<td>11.3</td>
<td>9.82</td>
<td>593.09</td>
</tr>
<tr>
<td>4</td>
<td>12.76</td>
<td>12.06</td>
<td>756.15</td>
</tr>
<tr>
<td>5</td>
<td>10.0</td>
<td>10.97</td>
<td>464.28</td>
</tr>
</tbody>
</table>
Table 11. Deflection Values—Case IV (Small Initial Sec. Prop.)

<table>
<thead>
<tr>
<th>MEMBER</th>
<th>Initial Defl.</th>
<th>Final Defl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.1471</td>
<td>0.6499</td>
</tr>
<tr>
<td>2</td>
<td>-25.8166</td>
<td>-0.3000</td>
</tr>
<tr>
<td>3</td>
<td>-44.6449</td>
<td>0.6299</td>
</tr>
<tr>
<td>4</td>
<td>-25.8166</td>
<td>-0.3000</td>
</tr>
<tr>
<td>5</td>
<td>-45.1474</td>
<td>-0.6499</td>
</tr>
</tbody>
</table>
5.0 CONCLUSION

The four cases represented in this investigation have been used to study the following:

5.1 CONVERGENCE CHARACTERISTICS

As shown in the examples, the convergence rate depends on the structure size for large initial values and gives almost the same numbers of iteration for small initial values. Some experience with allowable deflection and the structural behavior is required to get a fast convergence rate.

For most cases, the displacement sensitivity matrix gave a fairly accurate estimate for the final matrix after the third iteration. The sensitivity matrix is not only used as a convergence indicator but also gives valuable information about the structural behavior.

The allowable deflection has the most important effect on the convergence rate and a background of experience is required; i.e., the allowable column deflection should be prescribed so that the higher floors allow more deflection than the lower floors.
5.2 COMPARISON BETWEEN TRAYNOR'S EQUATIONS AND ANG'S EQUATIONS

As shown in Table 3, the system tends to converge faster under Traynor's equations. However, this is only true for small structures (up to two story) because these sets of equations are apparently no longer valid for larger structures or even under heavy loads, because the size of the members may have to exceed those in the range defined for which the equations were developed. Analyzing this problem through this study, the main reason for nonconvergence condition under Traynor's equations for large structures is that the upper bound limit causes the convergence indicator to oscillate about one point when it reaches the limit. In other words, this limit does not permit the design variable increment, \(\Delta X \), to change freely as dictated by the behavior constraints. Therefore, when the size of the structure is large, Ang's equations are preferable because this set of equations does not have any limit and allows the design variable increment, \(\Delta X \), to change freely with each iteration.

This algorithm differs from others primarily in the way in which the design improvement \(\Delta X \) is computed. However, using Newton's Method has one disadvantage; the method has some difficulties in adjusting itself in the first few iterations, which slows the convergence rate but only in the beginning of the iterative procedure.

CONCLUSION
The next step in the complete structural design algorithm is to combine the stress constraints and displacement constraints into one so that the final design does not violate either. In the final design state, the stresses should be as close as possible to their allowable stress values while satisfying the displacement constraints.

The other factor in the complete design is to check the final structure for the optimum conditions (minimum weight). Modifications could be made to approach the minimum weight criterion if necessary [9]. This algorithm would combine stress constraints, displacement constraints, and minimum weight.

It would be useful to study the displacement sensitivity and stress sensitivity coefficients for a frame structure to obtain some insight, and to compare their physical and computational characteristics.
REFERENCES

13. Class Notes, CE 4001, Matrix Structural Analysis, Fall Quarter, 1984.

A.1 Matrix Displacement Method

In the matrix displacement method [7] the unknowns are the joint displacements. Each joint is considered to have three degrees of freedom. The relation between the element-end forces and element-end displacements is represented by stiffness matrix.

A typical element is modeled as a beam-column. Equation A.1 represents the form of the model and equation A.2 is the matrix form of equation A.1. Figure A.1 shows the beam-column element model.

\[f_i = k_i \cdot d_i \]

(A.1)

where

- \(f_i \) = element-end forces
- \(d_i \) = element-end displacements
- \(k_i \) = local element stiffness matrix
- \(i = \text{ith element} \)

\[
\begin{bmatrix}
 f_1 \\
 f_2 \\
 f_3 \\
 f_4 \\
 f_5 \\
 f_6 \\
\end{bmatrix} = \begin{bmatrix}
 0 & 0 & 0 & -\beta & 0 & 0 \\
 0 & 12 & 6L & 0 & -12 & 6L \\
 0 & 6L & 4L^2 & 0 & -6L & 2L^2 \\
 -\beta & 0 & 0 & \beta & 0 & 0 \\
 0 & -12 & -6L & 0 & 12 & -6L \\
 0 & 6L & 2L^2 & 0 & -6L & 4L^2 \\
\end{bmatrix}
\begin{bmatrix}
 d_1 \\
 d_2 \\
 d_3 \\
 d_4 \\
 d_5 \\
 d_6 \\
\end{bmatrix}
\]

(A.2)
where
\[\alpha = \frac{E I}{L^3} \]
\[\beta = A \frac{L^3}{I} \]

A.2 Global Frame Element

The local element model (equation A.1) is transformed into a global element through the coordinate transformation matrix A.3 and A.4.

\[F^i = K^i \cdot D^i \quad (6,1) \quad (6,6) \quad (6,1) \]
\[\{d\} = \{A\} \cdot \{D\} \]
\[\{F\} = [A^T] \cdot \{f\} \]

The expanding equation for equation A.3 is equation A.6.

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3 \\
F_4 \\
F_5 \\
F_6
\end{bmatrix} = \alpha
\begin{bmatrix}
g_1 & g_2 & g_4 & -g_1 & -g_2 & g_4 \\
g_2 & g_3 & g_5 & -g_2 & -g_3 & g_5 \\
g_4 & g_5 & g_6 & -g_4 & -g_5 & g_7 \\
-g_1 & -g_2 & -g_4 & g_1 & g_2 & -g_4 \\
-g_2 & -g_3 & -g_5 & g_2 & g_3 & -g_5 \\
g_4 & g_5 & g_7 & -g_4 & -g_5 & g_6
\end{bmatrix}
\begin{bmatrix}
D_1 \\
D_2 \\
D_3 \\
D_4 \\
D_5 \\
D_6
\end{bmatrix} \quad (A.6)
\]
A.3 System Model

The system stiffness matrix is formed by a contribution from each global element stiffness matrix. The procedure is as follows:

1. Each element obtains its global element stiffness matrix, k^i as in equation A.4 imposing conditions of compatibility, which can be expressed by the member code matrix M, which describes the type and ordering number of degrees of freedom.

2. k^i for each member is transformed into an $n \times n$ generalized global stiffness matrix, where n is the number of degrees of freedom for the system. Thus, the generalized global stiffness matrix coefficient is only for the entries in k^i which have a corresponding degree of freedom. The sum of all generalized global stiffness matrices is the final system stiffness which is represented by equation A.7.

$$K = \sum_{i}^{ne} k^{(i)}_{(n,n)} \quad (A.7)$$

where

$n = \text{number of degrees of freedom}$

Using the same format as in equation A.1, the system model is

$$K \cdot q = Q \quad (A.8)$$

$(n,n) \quad (n,1) \quad (n,1)$
a. Local Beam-Column Element Model

b. Global Element Model

Figure 11. Beam-Column Model
where

\[K = \text{system stiffness matrix} \]
\[q = \text{generalized displacement vector} \]
\[Q = \text{equivalent joint load vector} \]

The system model represents a set of simultaneous equations; solving for the unknown yields the generalized displacement vector \(q \).
| \(g_1 \) & \(\frac{E_c^2}{L} \) & \(g_1 = 12 \frac{E_c^2}{L^3} \) \\
| \(g_2 \) & \(\frac{E_c c_2}{L} \) & \(g_2 = -12 \frac{E_c c_2}{L^3} \) \\
| \(g_3 \) & \(\frac{E_c^2}{L} \) & \(g_3 = 12 \frac{E_c^2}{L^3} \) \\
| \(g_4 \) & 0 & \(g_4 = -6 \frac{E_c}{L^2} \) \\
| \(g_5 \) & 0 & \(g_5 = 6 \frac{E_c}{L^2} \) \\
| \(g_6 \) & 0 & \(g_6 = 4 \frac{E}{L} \) \\
| \(g_7 \) & 0 & \(g_7 = 2 \frac{E}{L} \) \\

where:

\[
\begin{align*}
 g_1 &= \alpha (\beta c_1^2 + 12 c_2^2) \\
 g_2 &= \alpha c_1 c_2 (\beta - 12) \\
 g_3 &= \alpha (\beta c_2^2 + 12 c_1^2) \\
 g_4 &= -\alpha 6 L c_2 \\
 g_5 &= \alpha 6 L c_1 \\
 g_6 &= \alpha 4 L^2 \\
 g_7 &= \alpha 2 L^2
\end{align*}
\]

and

\[
\begin{align*}
 \alpha &= \frac{E I}{L^3} \\
 \beta &= \frac{A L^2}{I}
\end{align*}
\]
Figure 12. PROGRAM STRUCTURE
INITIALIZE PARAMETERS MX, MXNEQ
READ, ECHO NE, NG, NEG, NJ, NLC, NTS, LX
DO FOR I = 1 TO NG
 READ, ECHO AD(I)
THEN
 NE ≤ MX AND NJ ≤ MX AND NLC ≤ LX ELSE
THEN
 NTS = 1 PRINT ERROR MESSAGE: DIMENSION LIMITS EXCEEDED
ELSE
 CALL ANALYS CALL DESIGN
END IF

MAIN PROGRAM

DO FOR LC = 1 TO NLC
 CALL DATA
DO FOR I = 1 TO NE
 DO FOR J = 1 TO 6
 FF(J,I,LC) = F(J,I)
 END DO
 DO FOR K = 1 TO NEO
 QQ(K,LC) = Q(K)
 END DO
 DO FOR I = 1 TO NE
 DO FOR J = 1 TO NG
 READ, T(I,J)
 END DO
 END DO
 CALL DESITR

SUBROUTINE DESIGN

INPUT ARGUMENTS: NE, NG, NEG, NJ, NLC, NTS, AD
OUTPUT ARGUMENTS: FF, QQ, T, F, Q, AREA, ZI, S, EMOD, CTE, ELENG, C1, C2, MCODE, JCODE, Mincy, NA, NEO, MBD, GCODE

Figure 13. MAIN PROGRAM & SUBROUTINE DESIGN
<table>
<thead>
<tr>
<th></th>
<th>M = 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>THEN</td>
<td>M < NTS</td>
<td>ELSE</td>
</tr>
<tr>
<td>DO FOR LC = 1 TO NLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DO FOR I = '1 TO NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO FOR J = 1 TO 6</td>
</tr>
<tr>
<td>F(J, I) = FF(J, I, LC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DO FOR K = 1 TO NEQ</td>
<td></td>
</tr>
<tr>
<td>Q(K) = QQ(K, LC)</td>
<td>CALL SYSTEM</td>
<td></td>
</tr>
<tr>
<td>CALL RESULT</td>
<td>CALL SENS</td>
<td></td>
</tr>
<tr>
<td>CALL SENSDF</td>
<td>CALL SOLVED</td>
<td></td>
</tr>
<tr>
<td>THEN</td>
<td>M = 1</td>
<td>ELSE</td>
</tr>
<tr>
<td>DO FOR K = 1 TO NEQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM = GCODE(IJ, I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG(IJ) = S(IM)</td>
<td>CALL CONVRG</td>
<td></td>
</tr>
<tr>
<td>ZIG(IJ) = ZI(IM)</td>
<td>CALL ASSGN</td>
<td></td>
</tr>
<tr>
<td>AG(IJ) = AREA(IM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INPUT ARGUMENTS: NE, NG, NEG, NJ, NLC, NTS, AD, FF, QQ, MD, T, F, P, Q, AREA, AI, S, EMOD, CTE, ELENG, C1, C2, MCODE, JCODE, MNC, NA, NEQ, GCODE

OUTPUT ARGUMENTS: SS, Q, MXNEQ, G, EM, A, E, DR, RM, IELC, DKGA, DKG, DAS, DIS, DKS, OS, OD, ODG, DE, DEM, DELM, DLTS, AG, ZIG, SG, ILC

Figure 14. SUBROUTINE DESITR

Appendix B.
SUBROUTINE DEFLE

Figure 15. SUBROUTINE DEFLE

Appendix B. 70
INPUT ARGUMENTS: Q, JCODE, GCODE, MINC, NG, NEG, LC, C2, NEQ, AD
OUTPUT ARGUMENTS: E, EM, DR, RM, ILC, IELC, A

<table>
<thead>
<tr>
<th></th>
<th>LC = 1</th>
<th>ELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM(I)=DR(I)</td>
<td>DR(I)>RM(I)</td>
<td>RM(I)=DR(I)</td>
</tr>
<tr>
<td>ILC(I)=LC</td>
<td>ILC(I)=LC</td>
<td></td>
</tr>
</tbody>
</table>

SUBROUTINE MAXDR

INPUT ARGUMENTS: LC, DR, NG
OUTPUT ARGUMENTS: ILC, RM

Figure 16. SUBROUTINE MAXDR

Appendix B.
DO FOR I = 1 TO NE
 CALL GDR
 CALL ASSEMK
 CALL QSENS
 CALL SPBSL
 DO FOR JK = 1 TO NEQ
 QD(JK,I) = 0.0
 END DO
 DO FOR JE = 1 TO NEQ
 QD(JE,I) = QS(JE)
 END DO

SUBROUTINE SENS

INPUT ARGUMENTS: C1, C2, EMOD, ELENG, NE, S, Q, NEQ, MXNEQ, SS, MCODE, JCODE, MINC, LC, MBD, ITEN, NC
OUTPUT ARGUMENTS: DKGA, DKGI, DAS, DIS, DKS, QS, QD

DIFFERENTIATE K W.R.T. A
DIFFERENTIATE K W.R.T. I
DIFFERENTIATE TRAYNOR'S EQU. W.R.T. S
DIFFERENTIATE ANG'S EQU. W.R.T. S

SUBROUTINE GDR

INPUT ARGUMENTS: C1, C2, EMOD, ELENGE, I, S, ITEN
OUTPUT ARGUMENTS: DKGA, DKGI, DAS, DIS

Figure 17. SUBROUTINES SENS & GDR

Appendix B.
SUBROUTINE ASSEMK

INPUT ARGUMENTS: N, NEQ, MCODE, DKGA, DKGI, DAS, MXNEQ, DIS
OUTPUT ARGUMENT: DKS

Figure 18. SUBROUTINE ASSEMK

Appendix B.
SUBROUTINE QSENS

INPUT ARGUMENTS: Q, DKS, NEQ, LC, MXNEQ, NEQ, I
OUTPUT ARGUMENTS: QS

```plaintext
DO FOR JU = 1 TO NEQ
    QS(JU) = 0.0
END DO

DO FOR I = 1 TO NEQ
    SV = 0.0
    SVE = 0.0
    DO FOR J = 1 TO NEQ
        SV = DKS(J,I) * Q(J)
        SVE = SVE + SV
    END DO
    QS(I) = - SVE
END DO
```

Figure 19. SUBROUTINE QSENS
Figure 20. SUBROUTINE SENSDW

INPUT ARGUMENTS: LC, NE, NG, NES, NEQ, T, A, MXNEQ, EM, GCODE, IELC, M
OUTPUT ARGUMENTS: DEM, QDG, DE

Appendix B. 75
DO FOR JE = 1 TO NG

<table>
<thead>
<tr>
<th>THEN</th>
<th>ELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM(JE) < 0</td>
<td></td>
</tr>
<tr>
<td>DLEM(JE) = AD(JE) - EM(JE)</td>
<td>DLEM(JE) = AD(JE) - EM(JE)</td>
</tr>
</tbody>
</table>

IDGT = 4
MM = 1
CALL LEQT2F

DO FOR J = 1 TO NG

DLTS(J) = DLEM(J)

SUBROUTINE SOLVED

INPUT ARGUMENTS: DEM, EM, NG, AD
OUTPUT ARGUMENTS: DLEM, DLTS

IC = 0
CALL EVALDE

<table>
<thead>
<tr>
<th>THEN</th>
<th>ELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC = 0</td>
<td>M = NTS + 1</td>
</tr>
</tbody>
</table>

CALL TRIAL CALL OUTDES

SUBROUTINE CONVRG

INPUT ARGUMENTS: RM, CP, NG, SG, M, ILC, DLTS, ITEN
OUTPUT ARGUMENTS: NTS, AG, ZIG, SG, M, IC

Figure 21. SUBROUTINES SOLVED & CONVRG

Appendix B. 76
\[
\begin{align*}
C &= 1 - CP \\
\text{DRMAX} &= \text{ABS}(\text{RM}(I) - C) \\
\text{DO FOR } I &= 1 \text{ TO } NG \\
\quad \quad A &= \text{ABS}(\text{RM}(I) - C) \\
\quad \quad \text{DRMAX} &= \text{MAX} (\text{DRMAX}, A) \\
\quad \quad \text{DRMAX} \leq CP &\quad \text{ THEN } \\
\quad \quad \quad \quad \quad \quad \quad \quad LC &= 1 \\
\end{align*}
\]

SUBROUTINE EVALDE

INPUT ARGUMENTS: RM, CP, IC, NG
OUTPUT ARGUMENT: IC

\[
\begin{align*}
\text{DO FOR } I &= 1 \text{ TO } NG \\
SG(I) &= SG(I) + DLTS(I) \\
\quad \quad \text{THEN } &\quad \quad SG(I) \leq 0 \\
\quad \quad \quad \quad \quad \quad \quad \quad SG(I) &= 20.0 \\
\quad \quad \quad \quad \quad \quad \quad \quad \text{ITEN} &= 2 \\
\quad \quad \quad \quad \quad \quad \quad \quad SG(I) &= 600.0 \\
AG(I) &= \text{PROPA}(\text{ITEN}, SG(I)) \\
ZIG(I) &= \text{PROP}(\text{ITEN}, SG(I)) \\
\end{align*}
\]

SUBROUTINE TRIAL

INPUT ARGUMENTS: SG, NG, DLTS, ITEN
OUTPUT ARGUMENTS: SG, AG, ZIG

Figure 22. SUBROUTINES EVALDE & TRIAL

Appendix B. 77
SUBROUTINE PROPA

INPUT ARGUMENTS: SG, ITEN
OUTPUT ARGUMENT: AG

SUBROUTINE PROPI

INPUT ARGUMENTS: SG, ITEN
OUTPUT ARGUMENT: ZIG

SUBROUTINE OUTDES

INPUT ARGUMENTS: AG, ZIG, SG, RM, ILC
OUTPUT ARGUMENT: NONE

Figure 23. SUBROUTINES PROPA, PROPI, & OUTDES
DO FOR J = 1 TO NG
 DO FOR IA = 1 TO NEG
 I = GCODE(J,IA)
 END DO FOR IA
 IF I = 0 THEN
 AREA(I) = AREA(J)
 ZI(I) = ZI(J)
 S(I) = S(J)
 ELSE
 END IF
END DO FOR J

INPUT ARGUMENTS: SG, AG, ZIG, NG, NEG, GCODE
OUTPUT ARGUMENTS: S, AREA, ZI

Figure 24. SUBROUTINE ASSIGN
PARAMETER LIST

MAXIMUM NUMBER OF ELEMENTS
MAXIMUM NUMBER OF EQUATIONS (DEGREES OF FREEDOM)
MAXIMUM NUMBER OF LOAD CONDITIONS

INPUT LIST

ALLOWABLE DEFLECTION FOR MEMBER I
MEMBER ACTION MAGNITUDE
AREA OF ELEMENT i
CONVERGENCE TOLERANCE
COEFFICIENT OF THERMAL EXPANSION
DISTANCE TO THE LOAD FROM THE A-END
DISTANCE TO THE LOAD FROM THE B-END
MODULUS OF ELASTICITY OF ELEMENT i
MAGNITUDE OF JOINT LOAD
DIRECTION OF JOINT LOAD
JOIN NUMBER OF JOINT LOAD APPLICATION
DEPENDENT SECTION PROPERTIES INDICATOR
MEMBER CODE MATRIX
MEMBER INCIDENCES
NUMBER OF ELEMENTS
NUMBER OF GROUPS
NUMBER OF ELEMENTS IN THE GROUP
NUMBER OF JOINTS
NUMBER OF LOAD CONDITIONS
NUMBER OF TRIAL STRUCTURES
MEMBER ACTION TYPE
MEMBER NUMBER
SECTION MODULUS OF ELEMENT i
DESIGN VARIABLE TRANSFORMATION MATRIX
MOMENT OF INERTIA OF ELEMENT i
GLOBAL 1, 2-COORDINATES OF JOINT J

MATRIX DISPLACEMENT METHOD VARIABLE LIST

DIRECTION COSINES OF ELEMENT i
GLOBAL ELEMENT DISPLACEMENT VECTOR
LENGTH OF ELEMENT i
INDEX MATRIX
LOCAL ELEMENT FORCE MATRIX
LOCAL ELEMENT FORCE VECTORS FOR ALL LOAD CONDITIONS
GLOBAL ELEMENT STIFFNESS COEFFICIENTS
JOINT CODE MATRIX
LOAD CONDITION
HALF BANDWIDTH
MEMBER CODE MATRIX
NA(I) NUMBER OF ACTIONS ON ELEMENT I
NEQ NUMBER OF EQUATIONS (DEGREES OF FREEDOM)
P(3, MX) JOINT FORCE MATRIX
Q(MXNEQ) JOINT LOAD, DISPLACEMENT, VECTOR
QQ(NEQ, LC) JOINT DISPLACEMENTS FOR ALL LOAD CONDITIONS
SS(MXNEQ, MXNEQ) SYSTEM STIFFNESS BAND MATRIX

FULLY DISPLACED DESIGN VARIABLE LIST

A(NG, NX) MEMBER DISPLACEMENT TRANSFORMATION MATRIX
E(I) DEFLECTION OF MEMBER I
EM(I) CONTROLLING (MAX.) DEFLECTION OF MEMBER I
DR(I) DEFLECTION RATIO FOR MEMBER I
RM(I) CORRESPONDING DEFLECTION RATIO TO EM(I)
IELC(I) INDICATOR WHICH IDENTIFIES THE LOADING
 CONDITION AT WHICH EM(I) OCCURS
ILC(I) INDICATOR WHICH IDENTIFIES THE LOADING
 CONDITION AT WHICH RM(I) OCCURS

DISPLACEMENT SENSITIVITY VARIABLE LIST

x(i) DESIGN VARIABLE OF ELEMENT i
DKGA(1-7) DERIVATIVES OF GLOBAL STIFFNESS COEFFICIENTS
 W.R.T. AREA
DKGI(1-7) DERIVATIVES OF GLOBAL STIFFNESS COEFFICIENTS
 W.R.T. MOMENT OF INERTIA
DAS DERIVATIVES OF DEPENDENT SECTION PROPERTIES
 EQUATIONS FOR AREA W.R.T. SECTION MODULUS, S
DIS DERIVATIVES OF DEPENDENT SECTION PROPERTIES
 EQUATIONS FOR MOMENT OF INERTIA W.R.T.
 SECTION MODULUS, S
DKG(1-7) COMBINED DERIVATIVE STIFFNESS COEFFICIENTS
DKS(NEQ, NEQ) DERIVATIVE OF STIFFNESS MATRIX W.R.T.
 SECTION MODULUS, S
QS(NEQ) DERIVATIVE LOAD VECTOR FOR ELEMENT i W.R.T.
 DESIGN VARIABLE, S
QD(NEQ) DERIVATIVE SOLUTION (UNKNOWN) VECTOR FOR
 ELEMENT i W.R.T. DESIGN VARIABLE, S
X(I) DESIGN VARIABLE OF MEMBER I
QDG(NEQ) DERIVATIVE SOLUTION (UNKNOWN) VECTOR FOR
 MEMBER I W.R.T. DESIGN VARIABLE, SG
DE(NG, NG) SENSITIVITY MATRIX (DERIVATIVE OF E W.R.T
 SECTION MODULUS, SG)
DEM(NG, NG) SENSITIVITY MATRIX CORRESPONDING TO THE
 CONTROLLING LOAD CONDITIONS
AG(I) AREA OF MEMBER I
SG(I) SECTION MODULUS OF MEMBER I
ZIG(I) MOMENT OF INERTIA OF MEMBER I
DLEM(NG) VECTOR OF DESIGN DISPLACEMENT CHANGES
DLTS(NG) VECTOR OF DESIGN VARIABLE CHANGE

Appendix B. 81
C** PROGRAM MENU **
C** LIST-DIRECTED INPUT **
C INPUT UNITS: KIP, INCH, RADIANS, FAHRENHEIT
C
1. ENTER DATE IN THE FORM '12/19/85'(IN MAIN)
 DATE
2. ENTER NUMBER OF ELEMENTS, NUMBER OF GROUPS, NUMBER
 OF ELEMENTS IN THE GROUP, NUMBER OF JOINTS,
 NUMBER OF LOAD CONDITIONS AND NUMBER OF TRAIL
 STRUCTURE(IN MAIN)
 NE, NG, NEG, NJ, NLC, NTS
3. ENTER THE ALLOWABLE DEFLECTION FOR EACH MEMBER
 (IN MAIN)
 AD(I)
4. ENTER MEMBER INCIDENCES(IN STRUCT)
 MINC(1,I), MINC(2,I) I=1,NE
5. ENTER FOR EACH JOINT CONSTRAINT(IN STRUCT)
 JNUM, JDIR
 AFTER LAST JOINT CONSTRAINT ENTER
 0, 0
6. ENTER GCODE (IN CODES)
 GCODE(NG, NG)
7. ENTER JOINT COORDINATES(IN PROP)
 X(1,J), X(2,J) J=1,NJ
8. ENTER MEMBER PROPERTIES(IN PROP)
 AREA(I), ZI(I), EMOD(I), CTE(I), S(I), I=1,N
9. DO FOR EACH LOAD CONDITION
 IF THERE ARE JOINT LOADS ENTER(IN JLOAD)
 JNUM, JDIR, FORCE
 AFTER LAST JOINT LOAD ENTER
 0, 0, 0.
 ELSE ENTER
 0, 0, 0.
END IF
 IF THERE ARE MEMBER ACTIONS ENTER(IN MACT)
 MN, MAT, ACT, DIST1, DIST2
 AFTER LAST MEMBER ACTION ENTER
 0, 0, 0, 0, 0.
 ELSE ENTER
 0, 0, 0, 0, 0.
END IF

Appendix B. 82
C END DO
C 10. ENTER T MATRIX (IN DESIGN)
C T(NE, NG)
C 11. ENTER DESIGN CONVERGENCE PARAMETER AND
C DEPENDENT SECTION PROPERTY INDICATOR (IN DESITR)
C CP, IETN
C=---MAIN PROGRAM---C
C FUNCTION- TO SERVE AS THE HIGHEST LEVEL MANAGEMENT ROUTINE
C FOR BOTH ANALYSIS AND DESIGN:
C A) ESTABLISH ALL ARRAY DIMENSIONS.
C B) MAKE DECISION FOR ANALYSIS OR DESIGN
C C) INPUT CONTROL PARAMETERS;
C INITIALIZE PARAMETERS MX, MXNEQ, LX; READ AND ECHO
C NE, NJ, NLC, NT IF NE AND NJ ARE LESS THAN OR EQUAL
C TO MX AND NLC LESS THAN 0 EQUAL TO LX THEN IF
C NTS 1 THEN CALL FOR ANALYSIS ELSE CALL DESIGN
C AND STOP ELSE PRINT ERROR MESSAGE AND STOP.
C
CHARACTER *(*) TITLE, UNITS, DATE*8
PARAMETER (MX=40, MXNEQ=3*(MX-1), LX=4,
$ TITLE='PLANE FRAME ANALYSIS',
$ UNITS='UNITS: KIP, INCH, RADIAN, FAHRENHEIT')
DIMENSION F(6,MX), P(3,MX), SS(MXNEQ, MXNEQ), Q(MXNEQ),
$ AREA(MX), ZI(MX), EMOD(MX), CTE(MX), ELENG(MX),
$ C1(MX), C2(MX), S(40), MCODE(6, MX), JCODE(3, MX),
$ MINC(2, MX), NA(MX), FF(6, 40, 40), AD(40), G(7),
$ DKGA(7), DKGI(7), DKG(7, MXNEQ, MXNEQ), QS(MXNEQ),
$ ILC(40), QD(MXNEQ, MX), QDG(MXNEQ, 40), EM(40),
$ ZIG(40), T(MX, 40), DLTS(40), DE(40, 40), SC(40),
$ DEM(40, 40), RM(40), DLEM(40), GCODE(40, 10),
$ IELC(40), E(40), DR(40), AG(40), A(40, MXNEQ),
$ QQ(60, 40)
C
READ(5, *) DATE
PRINT 10, TITLE, 'DATE; ', DATE, UNITS
10 FORMAT('1', T10, 68(' '*)/ T10, ' '* , T34, A, T77,
$ ' '*/ T10, 68(' '*)/ T64, 2(A)/ T10, A/)
READ(5, *) NE, NG, NEG, NJ, NLC, NTS
DO 20 I=1, NG
 READ(5, *) AD(I)
20 CONTINUE
PRINT 30, 'NUMBER OF ELEMENTS', NE, 'NUMBER OF GROUPS',
$ NG, 'MAX. NUMBER OF ELEMENTS IN A GROUP', NEG,
$ 'NUMBER OF JOINTS', NJ, 'NUMBER OF LOAD CONDITIONS',
$ NLC, 'TOTAL NUMBER OF TRIAL STRUCTURES', NTS
30 FORMAT(1X, 6(T10, A, T46, I4/))
IF (NE .LE. MX .AND. NJ .LE. MX .AND. NLC .LE. LX) THEN IF (NTS .LE. 1) THEN
 CALL ANALYS(F, P, Q, SS, GCODE, NG, NEG, AREA, ZI, S, EMOD,
$ CTE, ELENG, E, DR, C1, C2, MCODE, JCODE, MINC,
$ NA, ILC, NE, NJ, NEQ, MBD, NLC, MXNEQ, MX, EM,
$ IELC, RM, A, G, AD)
 ELSE
 CALL DESIGN(FF, QQ, F, Q, SS, AREA, ZI, S, EMOD, DKGA,

Appendix B.
END IF
ELSE
 PRINT 40, 'ERROR MESSAGE; DIMENSION LIMITS EXCEEDED'
 40 FORMAT(1X,T10,A/)
END IF
STOP
END
SUBROUTINE ANALYS(F,P,Q,SS,GCODE,NG,NEG,AREA,ZI,S,$
EMOD,CTE,ELENG,C1,C2,MCODE,$
JCODE,MINC,NA,ILC,NE,NJ,NEQ,MBD,NLC,$
MXNEQ,MX,EM,IELC,RM,A,G,AD)
DIMENSION F(6,*),P(3,*),SS(MXNEQ,*),Q(*),AREA(*),E(*),$
ZI(*),EMOD(*),CTE(*),ELENG(*),C1(*),C2(*),$ MCODE(6,*),JCODE(3,*),MINC(2,*),NA(*),S(*),$
EM(*),ILC(*),IELC(*),A(NG,*),AD(*),G(*),$
GCODE(NG,*),RM(*),DR(*)

IF(NE .LE. MX .AND. NJ .LE. MX) THEN
 DO 10 LC=1,NLC
 CALL DATA(F,P,Q,AREA,ZI,EMOD,CTE,ELENG,C1,C2,$
 MCODE,NA,JCODE,MINC,NE,NJ,NEQ,MBD,LC,S,$
 GCODE,NG,NEG)
 CALL SYSTEM(SS,Q,AREA,ZI,EMOD,ELENG,C1,C2,MCODE,$
 NE,NEQ,MBD,LC,MXNEQ,G)
 CALL RESULT (F,P,Q,AREA,ZI,EMOD,ELENG,C1,C2,$
 MCODE,JCODE,EM,A,MINC,NE,NJ,ILC,LC,$
 GCODE,NG,NEG,E,DR,RM,IELC,NEQ,AD)
 10 CONTINUE
ELSE
 PRINT 20, ' ERROR MESSAGE ;'
 PRINT 20, 'AT LEAST NE OR NJ EXCEEDS MX;'$ 'INCREASE VALUE OF MX.'
20 FORMAT(1X,T10, A/ T25, A/)
END IF
RETURN
END

Appendix B. 86
C***
C* SUBROUTINE DATA
C***
C FUNCTION— FOR THE FIRST LOAD CONDITION, LC=1, CALL STRUCT
C AND LOAD, FOR SUBSEQUENT LOAD CONDITIONS, L>1,
C CALL LOAD.
C
SUBROUTINE DATA (F, X, Q, AREA, ZI, EMOD, CTE, ELENG, C1, C2,
 $ MCODE, NA, JCODE, MINC, NE, NJ, NEQ, MBD, LC,
 $ S, GCODE, NG, NEG)
DIMENSION F(6, *), X(3, *), Q(*), AREA(*), ZI(*), EMOD(*),
 $ ELENG(*), C1(*), C2(*), MCODE(6, *), JCODE(3, *),
 $ MINC(2, *), NA(*), S(*), GCODE(NG, *), CTE(*)
C
IF (LC .EQ. 1) THEN
 CALL STRUCT (X, AREA, ZI, EMOD, CTE, ELENG, C1, C2, MCODE,
 $ JCODE, MINC, NE, NJ, NEQ, MBD, S, GCODE, NG, NEG)
END IF
CALL LOAD (AREA, EMOD, CTE, ELENG, C1, C2, MCODE, JCODE, NE,
 $ NEQ, F, Q, NA, LC)
RETURN
END
SUBROUTINE STRUCT

FUNCTION - READ AND ECHO THE MEMBER INCEDENCES, MINC(L);
INITIALIZE THE ELEMENTS OF THE JOINT CODE MATRIX JCODE, TO UNITY, READ AND ECHO
FOR EACH JOINT CONSTRAINT, THE JOINT NUMBER, JNUM, AND JOINT DIRECTION, JDIR, AND STORE A
ZERO IN THE CORRESPONDING LOCATION OF JCODE (END OF DATA MARKER JNUM=0).

SUBROUTINE STRUCT (X, AREA, ZI, EMOD, CTE, ELENG, C1, C2,
$ MCODE, JCODE, MINC, NE, NJ, NEQ, MBD, S,
$ GCODE, NG, NEG)
DIMENSION X(3,*), AREA(*), ZI(*), EMOD(*), CTE(*),
$ C1(*), GCODE(NG,*), C2(*), MCODE(6,*),
$ MINC(2,*), JCODE(3,*), ELENG(*), S(*)

PRINT *, 'MINC :'
DO 10 I=1, NE
 READ(5, *) MINC(1, I), MINC(2, I)
 PRINT *, MINC(1, I), MINC(2, I)
10 CONTINUE
DO 30 J=1, NJ
 DO 20 L=1, 3
 JCODE(L, J) = 1
20 CONTINUE
30 CONTINUE
PRINT 40
40 FORMAT (1X, 'JOINT COSTRAINTS: ', 4X, 'JNUM', 4X, 'JDIR')
 READ(5, *) JNUM, JDIR
50 IF (JNUM .NE. 0) THEN
 PRINT 60, JNUM, JDIR
60 FORMAT (1X, T22, I3, T29, I3)
 JCODE(JDIR, JNUM) = 0
 READ(5, *) JNUM, JDIR
 GO TO 50
END IF
CALL CODES(JCODE, MINC, NE, NJ, MCODE, NEQ, GCODE, NG, NEG)
MBD = MBAND(MCODE, NE)
CALL PROP(MINC, NE, NJ, X, AREA, ZI, EMOD, CTE, ELENG, C1, C2, S)
RETURN
END
SUBROUTINE CODES

SUBROUTINE CODES(JCODE, MINC, NE, NJ, MCODE, NEQ, GCODE, NG, NEG)
DIMENSION JCODE(3,*), MINC(2,*), MCODE(6,*), GCODE(NG,*)

PRINT *, 'J CODE:
NEQ = 0
DO 20 J = 1, NJ
 DO 10 L = 1, 3
 IF(JCODE(L,J) .NE. 0) THEN
 NEQ = NEQ + 1
 JCODE(L,J) = NEQ
 ENDIF
10 CONTINUE
20 CONTINUE
DO 30 I = 1, 3
 PRINT *, (JCODE(I,J), J = 1, NJ)
30 CONTINUE
DO 50 I = 1, NE
 J = MINC(1,I)
 K = MINC(2,I)
 DO 40 L = 1, 3
 MCODE(L,I) = JCODE(L,J)
 MCODE(L+3,I) = JCODE(L,K)
40 CONTINUE
50 CONTINUE
PRINT *, 'M CODE:
DO 70 I = 1, 6
 PRINT 60, (MCODE(I,J), J = 1, NE)
60 FORMAT(1X,T10,20I5)
70 CONTINUE
PRINT *, 'G CODE:
DO 80 JJ = 1, NG
 READ(5,*) GCODE(JJ,1), GCODE(JJ,2)
 PRINT *, GCODE(JJ,1), GCODE(JJ,2)
80 CONTINUE
RETURN
END

Appendix B.
C* FUNCTION MBAND *
C**FUNCTION- COMPUTE THE HALF BANDWIDTH,MBAND,BY EQ. 6.2: IN
C EACH COLUMN OF MCODE, THE FIRST AND LAST NONZERO
C INTEGERS ARE THE SMALLEST AN LARGEST NONZERO
C INTEGERS, RESPECTIVELY, OF THAT COLUMN. MBAND
C IS THE MAXIMUM DIFFERENCE OF THE NONZERO
C INTEGERS IN ANY COLUMN OF MCODE.
C
FUNCTION MBAND(MCODE,NE)
DIMENSION MCODE(6,*)
C
MBAND=0
DO 70 I=1,NE
 L=1
10 IF(MCODE(L,I).EQ.0)THEN
 L=L+1
 GO TO 10
END IF
20 IS=MCODE(L,I)
30 L=6
40 IF(MCODE(L,I).EQ.0)THEN
 L=L-1
 GO TO 40
END IF
50 IL=MCODE(L,I)
60 IDIF=IL-IS
 IF(IDIF.GT.MBAND)THEN
 MBAND=IDIF
 END IF
70 CONTINUE
PRINT *, ' MBAND : '
PRINT *, MBAND
RETURN
END

Appendix B. 90
SUBROUTINE PROP

READ AND ECHO THE JOINT COORDINATES, X(L,J);

COMPUTE FOR EACH ELEMENT BY EQ.C.21 THE LENGTH, ELENG(I), AND THE DIRECTION COSINES, C1(I), C2(I);

READ FOR EACH ELEMENT The CROSS SECTION AREA,AREA(I), THE MOMENT OF INERTIA ABOUT THE LOCAL Z(3)-AXIS.

SUBROUTINE PROP (MINC,NE,NJ,X,AREA,ZI,EMOD,CTE,ELENG, C1,C2,S)
DIMENSION MINC(2,*),X(3,*),AREA(*),ZI(*),EMOD(*),
$ C1(*),C2(*),S(*),ELENG(*),CTE(*)

PRINT *, 'J O I N T C O O R D I N A T E S :
DO 10 J=1,NJ
READ(5,*) X(1,J),X(2,J)
PRINT *, X(1,J),X(2,J)
10 CONTINUE
PRINT *
PRINT 20
20 FORMAT(1X,T4,'I',T10,'ELENG',T23,'AREA',T33,'ZI',T42,
C. $ 'emod',T52,'CTE',T62,'C1',T70,'C2',T77,'S'//)
DO 40 I=1,NE _ J=MINC(1,I)
K=MINC(2,I)
EL1=X(1,K)-X(1,J)
EL2=X(2,K)-X(2,J)
ELENG(I)=SQRT(EL1**2+EL2**2)
C1(I)=EL1/ELENG(I)
C2(I)=EL2/ELENG(I)
READ(5,*) AREA(I),ZI(I),EMOD(I),CTE(I),S(I)
PRINT 30, I,ELENG(I),AREA(I),ZI(I),EMOD(I),CTE(I),
$ C1,C2(I),S(I)
30 FORMAT(1X,T3,I2,T6,F10.2,T17,F10.3,T25,F10.2,T38,
$ E7.2,T48,E7.2,T58,F5.2,T66,F5.2,T72,F8.2/)
40 CONTINUE
RETURN
END
SUBROUTINE LOAD

FUNCTION - INITIALIZE TO ZERO THE JOINT LOAD VECTOR, Q, THE LOCAL ELEMENT (MEMBER) FORCE VECTOR, F, AND THE NUMBER OF ACTIONS VECTOR, NA CALL JLOAD AND MACT.

SUBROUTINE LOAD (AREA, EMOD, CTE, ELENG, C1, C2, MCODE, JCODE, NE, NEQ, F, Q, NA, LC)

DIMENSION AREA(*), EMOD(*), ELENG(*), C1(*), MCODE(6,*), JCODE(3,*), F(6,*), Q(*), NA(*), CTE(*), C2(*)

DO 10 K=1,NEQ
 Q(K)=0
10 CONTINUE
DO 20 I=1,NE
 DO 20 L=1,6
 F(L,I)=0
 NA(I)=0
20 CONTINUE
CALL JLOAD(Q, JCODE, LC)
PRINT 30
30 FORMAT(1X, 'ACTUAL JOINT LOAD: '

DO 50 K=1,NEQ
 PRINT 40, K, Q(K)
40 FORMAT(1X, T20, 'Q(', I2, ')=' , F11.4)
50 CONTINUE
CALL MACT(F, Q, AREA, EMOD, CTE, ELENG, C1, C2, MCODE, NA, NE, NEQ)
RETURN
END
SUBROUTINE JLOAD(Q, JCODE, LC)
DIMENSION Q(*), JCODE(3, *)

PRINT 10, LC
10 FORMAT(1X, 'LOAD CONDITION = ', I3/)
READ(5, *) JNUM, JDIR, FORCE
IF(JNUM.NE.0) THEN
 PRINT *, 'JNUM JDIR FORCE'
 K = JCODE(JDIR, JNUM)
 Q(K) = FORCE
 GO TO 20
ELSE
 PRINT *, 'NO JOINT LOAD'
END IF
20 IF(JNUM.NE.0) THEN
 PRINT *, JNUM, JDIR, FORCE
 GO TO 20
END IF
RETURN
END
SUBROUTINE MACT

WHILE MN.NE.0 PRINT MN, MAT, ACT, DIST, INCREMENT THE ACTION COUNTER, COMPUTE AND ACCUMULATE THE FIXED-END FORCES, AND READ MN, MAT, ACT, DIST; CALL ASSEMF.

SUBROUTINE MACT(F, Q, AREA, EMOD, CTE, ELENG, C1, C2, MCODE, NA, NE, NEQ)

DIMENSION F(6,*), Q(*), AREA(*), EMOD(*), CTE(*), ELENG(*), $ C1(*), C2(*), MCODE(6,*), NA(*)
REAL L

READ(5,*) MN, MAT, ACT, DIST1, DIST2
IF(MN.NE.0) THEN
 PRINT 10
10 FORMAT(1X, 'MEMBER ACTIONS:', T22, 'MN', 6X, 'MAT', 6X, 'ACT', 6X, 'DIST1', 6X, 'DIST2')
ELSE
 PRINT 20
20 FORMAT(1X, 'NO MEMBER ACTIONS')
ENDIF

IF(MN.NE.0) THEN
 PRINT 40, MN, MAT, ACT, DIST1, DIST2
40 FORMAT(1X, T21, I2, 6X, I2, 6X, F6.2, 5X, F5.2, 5X, F6.2)
NA(MN) = NA(MN) + 1
P = ACT
L = ELENG(MN)
S1 = DIST1/L
S2 = DIST2/L
A1 = S2**2 + S2*S1 + S1**2
B1 = S2**3 + S2**2*S1 + S2*S1**2 + S1**3
C = 3*S2**2 + 2*S2*S1 + S1**2
D1 = 4*S2**3 + 3*S2**2*S1 + 2*S2*S1**2 + S1**3
ENDIF

IF(MAT.EQ.1) THEN
 F2 = P*(-1 - S1**2*(2*S1 - 3))
 F3 = P*(-L*S1*(1 - S1)**2)
 F5 = P*S1**2*(2*S1 - 3)
 F6 = P*L*S1**2*(1 - S1)
 F(2, MN) = F(2, MN) + F2
 F(3, MN) = F(3, MN) + F3
 F(5, MN) = F(5, MN) + F5
 F(6, MN) = F(6, MN) + F6
ENDIF

ELSE IF(MAT.EQ.2) THEN
 F2 = P*L*(-0.5*(1 - S1**4 + 2*S1**3 - 2*S1))
 F3 = P*L*(-(L/12)*(1 - 3*S1**4 + 8*S1**3 - 6*S1**2))
ENDIF
\[F_2 = P \times L \times (-0.5 \times (1+S1**4-2*S1**3)) \]
\[F_3 = P \times L \times (L/12) \times (1+3*S1**4-4*S1**3) \]
\[F(2,MN) = F(2,MN) + F_2 \]
\[F(3,MN) = F(3,MN) + F_3 \]
\[F(5,MN) = F(5,MN) + F_5 \]
\[F(6,MN) = F(6,MN) + F_6 \]

\[
\begin{align*}
C & \\
\text{ELSE IF (MAT.EQ.3) THEN} & \\
F_1 &= -P \times (1-S1) \\
F_4 &= -P \times S1 \\
F(1,MN) &= F(1,MN) + F_1 \\
F(4,MN) &= F(4,MN) + F_4 \\
C & \\
\text{T=P} & \\
\text{ELSE IF (MAT.EQ.4) THEN} & \\
F_1 &= \text{EMOD}(\text{MN}) \times \text{AREA}(\text{MN}) \times \text{CTE}(\text{MN}) \times P \\
F_4 &= \text{EMOD}(\text{MN}) \times \text{AREA}(\text{MN}) \times \text{CTE}(\text{MN}) \times (-P) \\
F(1,MN) &= F(1,MN) + F_1 \\
F(4,MN) &= F(4,MN) + F_4 \\
C & \\
\text{ELSE IF (MAT.EQ.5) THEN} & \\
F_2 &= -(P \times L/2) \times (S2-S1) \times (2-2*A1+B1) \\
F_3 &= -(P \times L**2/12) \times (S2-S1) \times (6*(S2+S1)-8*A1+3*B1) \\
F_5 &= -(P \times L/2) \times (S2-S1) \times (2*A1-B1) \\
F_6 &= (P \times L**2/12) \times (S2-S1) \times (4*A1-3*B1) \\
F(2,MN) &= F(2,MN) + F_2 \\
F(3,MN) &= F(3,MN) + F_3 \\
F(5,MN) &= F(5,MN) + F_5 \\
F(6,MN) &= F(6,MN) + F_6 \\
C & \\
\text{ELSE IF (MAT.EQ.6) THEN} & \\
F_2 &= -(P \times L/20) \times (S2-S1) \times (10-5*C+2*D1) \\
F_3 &= -(P \times L**2/60) \times (S2-S1) \times (10 *(2*S2+S1)-10*C+3*D1) \\
F_5 &= -(P \times L/20) \times (S2-S1) \times (5*C-2*D1) \\
F_6 &= (P \times L**2/60) \times (S2-S1) \times (5*C-3*D1) \\
F(2,MN) &= F(2,MN) + F_2 \\
F(3,MN) &= F(3,MN) + F_3 \\
F(5,MN) &= F(5,MN) + F_5 \\
F(6,MN) &= F(6,MN) + F_6 \\
C & \\
\text{ELSE IF (MAT.EQ.7) THEN} & \\
F_1 &= -P \times L/2 \\
F_4 &= -P \times L/2 \\
F(1,MN) &= F(1,MN) + F_1 \\
F(4,MN) &= F(4,MN) + F_4 \\
\end{align*}
\]

END IF
READ(5,*) MN,MAT,ACT,DIST1,DIST2
GO TO 30
END IF
CALL ASSEMF(F,Q,C1,C2,MCODE,NA,NE,NEQ)
RETURN
END

Appendix B. 95
SUBROUTINE ASSEMF

FUNCTION - TRANSFORMATION AND ASSEMBLE THE LOCAL FIXED-END FORCES \(F(L,I) \), TO PRODUCE THE EQUIVALENT JOINT LOAD VECTOR \(Q \), BY EQUATIONS 2.34, 2.37, 3.92, 3.94 AND THE FORCE TRANSFORMATION (Sec. 2.4).

SUBROUTINE ASSEMF(F,Q,C1,C2,MCODE,NA,NE,NEQ)

DIMENSION F(6,*),Q(*),C1(*),C2(*),MCODE(6,*),NA(*)

DFG(C1I,C2I,FLX,FLY)=C1I*FLX+C2I*FLY

DO 20 I=1, NE
IF (NA(I) .NE.0) THEN
 DO 10 L=1, 6
 K= MCODE(L,I)
 IF (K .NE.0) THEN
 IF (L .EQ. 1) THEN
 Q(K) = Q(K)-FG(C1(I),-C2(I),F(1,I),F(2,I))
 ELSE IF (L .EQ. 2) THEN
 Q(K) = Q(K)-FG(C2(I),C1(I),F(1,I),F(2,I))
 ELSE IF (L .EQ. 3) THEN
 Q(K) = Q(K)-F(3,I)
 ELSE IF (L .EQ. 4) THEN
 Q(K) = Q(K)-FG(C1(I),-C2(I),F(4,I),F(5,I))
 ELSE IF (L .EQ. 5) THEN
 Q(K) = Q(K)-FG(C2(I),C1(I),F(4,I),F(5,I))
 ELSE
 Q(K) = Q(K)-F(6,I)
 END IF
 END IF
 10 CONTINUE
 20 CONTINUE

PRINT *, ' LOCAL FIXED-END FORCES'
PRINT 30
30 FORMAT(1X,T2,'ELE.',T14,'F1',T26,'F2',T39,'F3',T52,'F4',T65,'F5',T78,'F6'/)
DO 50 I=1,NE
 PRINT 40, I,(F(L,I),L=1,6)
40 FORMAT(1X,T2,T10,5(G12.3,5X),G12.3/)
50 CONTINUE

PRINT *, ' EQUIVALENT JOINT LOAD VECTOR '
DO 70 K=1, NEQ
 PRINT 60, K,Q(K)
60 FORMAT(1X,'Q(',I2,')=',G11.4)
70 CONTINUE
RETURN
END
C**
C* SUBROUTINE SYSTEM
C**
C FUNCTION- FOR THE FIRST LOAD CONDITION , LC=1, CALL STIFF
C AND SOLVE FOR SUBSEQUENT LOAD CONDITIONS, LC>1,
C CALL SOLVE.
C
SUBROUTINE SYSTEM(SS,Q,AREA,ZI,EMOD,ELENG,C1,C2,MCODE,
$ NE,NEQ,MBD,LC,MXNEQ,G)
 DIMENSION SS(MXNEQ,*),Q(*),AREA(*),ZI(*),EMOD(*),
$ C1(*),C2(*),MCODE(6,*) ,G(*),ELEMG(*)

C IF(LC.EQ.1) THEN
 CALL STIFF(AREA,ZI,EMOD,ELENG,C1,C2,MCODE,NE,NEQ,
$ MBD,MXNEQ,SS,G)
END IF
CALL SOLVE(SS,Q,NEQ,MBD,LC,MXNEQ)
RETURN
END
C**
C* SUBROUTINE STIFF *
C**
C FUNCTION- INITIALIZE THE SYSTEM STIFFNESS MATRIX, SS TO ZERO; FOR EACH ELEMENT CALL ELEMS AND ASSEMS.
C**

SUBROUTINE STIFF(AREA,ZI,EMOD,ELENG,C1,C2,MCODE,NE,$
 NEQ,MBD,MXNEQ,SS,G)
DIMENSION AREA(*),ZI(*),EMOD(*),ELENG(*),C1(*),C2(*),
 SS(MXNEQ,*),MCODE(6,*),G(*)

C
MO=MBD+1
DO 20 I=1,MO
 DO 10 J=1,NEQ
 SS(I,J)=0
10 CONTINUE
20 CONTINUE
DO 40 N=1,NE
 CALL ELEMS(AREA,ZI,EMOD,ELENG,C1,C2,N,G)
 PRINT 30, (I,G(I),I=1,7)
30 FORMAT(1X,' G',I2,'=',F12.4/)
 CALL ASSEMS(SS,G,MCODE,MBD,MXNEQ,N)
40 CONTINUE
 PRINT *, 'CHECK FOR BANDED STIFFNESS MATRIX :
 DO 60 K=1,MO
 PRINT 50, (SS(K,J), J=1,NEQ)
50 FORMAT(1X,T3,9F12.4/)
60 CONTINUE
RETURN
END

Appendix B. 98
SUBROUTINE ELEMS

FUNCTION FOR ELEMENT N, COMPUTE THE GLOBAL STIFFNESS COEFFICIENTS, g(7).

SUBROUTINE ELEMS(AREA,ZI,EMOD,ELENG,C1,C2,N,G)
DIMENSION AREA(*),ZI(*),EMOD(*),ELENG(*),C1(*),C2(*), G(*)

A = EMOD(N)*ZI(N)/ELENG(N)**3
B = AREA(N)*ELENG(N)**2/ZI(N)
PRINT *, '
G(1) = A*(B*C1(N)**2+12*C2(N)**2)
G(2) = A*C1(N)*C2(N)*(B-12)
G(3) = A*(B*C2(N)**2+12*C1(N)**2)
G(4) = -A*6*ELENG(N)*C2(N)
G(5) = A*6*ELENG(N)*C1(N)
G(6) = A*4*ELENG(N)**2
G(7) = A*2*ELENG(N)**2
RETURN
END
Subroutine ASSEMS

SUBROUTINE ASSEMS

FUNCTION - INITIALIZE INDEX BY EQ. 7.4; ASSIGN STIFFNESS COEFFICIENTS, G(L), OF ELEMENT N TO THE SYSTEM STIFFNESS BAND MATRIX, SS, BY INDEX, MCODE, EQ. 6.7.

SUBROUTINE ASSEMS(SS, G, MCODE, MBD, MXNEQ, N)

DIMENSION SS(MXNEQ, *), G(*), MCODE(6, *), INDEX(6, 6)

DATA INDEX /1, 2, 4, -1, -2, 4, 2, 3, 5, -2, -3, 5, 4, 5, 6, -4, -5, 7, -1, -2, -4, 1, 2, -4, -2, -3, -5, 2, 3, -5, 4, 5, 7, -4, -5, 6/

IF(N.EQ.1)**THEN**

PRINT *, 'CHECK INDEX MATRIX :'

DO 10 J = 1, 6

PRINT *, (INDEX(J, I), I = 1, 6)

PRINT *,

10 **CONTINUE

END IF

DO 30 JE = 1, 6

J = MCODE(JE, N)

IF(J.NE.0)**THEN**

DO 20 IE = 1, JE

I = MCODE(IE, N)

IF(I.NE.0)**THEN**

K = I - J + MBD + 1

L = INDEX(IE, JE)

IF(L.GT.0)**THEN**

SS(K, J) = SS(K, J) + G(L)

ELSE

SS(K, J) = SS(K, J) - G(-L)

END IF

20 **CONTINUE

END IF

30 **CONTINUE

RETURN

END
C***SUBROUTINE SOLVE***
CFUNCTION—FOR THE FIRST LOAD CONDITION, LC=1, CALL SPBFA
CAND SPBSL; FOR SUBSEQUENT LOAD CONDITION, LC>1,
C CALL SPBSL.

SUBROUTINE SOLVE (SS,Q,NEQ,MBD,LC,MXNEQ)
DIMENSION SS(MXNEQ,*),Q(*)

IF(LC.EQ.1) THEN
 CALL SPBFA(SS,MXNEQ,NEQ,MBD,INFO)
 IF (INFO.NE.0) THEN
 PRINT *, 'ERROR MESSAGE; SINGULARITY;' STOP
 END IF
END IF
CALL SPBSL(SS,MXNEQ,NEQ,MBD,Q)
PRINT *, 'DISPLACEMENT VECTOR'
PRINT 10,(I,Q(I),I=1,NEQ)
10 FORMAT(1X,'Q',I2,'=',F11.5/)
RETURN
END
SUBROUTINE SAXPY(N, SA, SX, INCX, SY, INCY)

C CONSTANT TIMES A VECTOR PLUS A VECTOR.

C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.

C JACK DONGARRA, LINPACK, 3/11/78.

REAL SX(1), SY(1), SA

INTEGER I, INCX, INCY, IX, IY, M, MP1, N

C IF(N.LE.0)RETURN

IF (SA .EQ. 0.0) RETURN

IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL TO 1

IX = 1

IY = 1

IF(INCX.LT.0)IX = (-N+1)*INCX + 1

IF(INCY.LT.0)IY = (-N+1)*INCY + 1

DO 10 I = 1,N

SY(IY) = SY(IY) + SA*SX(IX)

IX = IX + INCX

IY = IY + INCY

10 CONTINUE

RETURN

C CODE FOR BOTH INCREMENTS EQUAL TO 1

C CLEAN-UP LOOP

20 M = MOD(N,4)

IF(M .EQ. 0) GO TO 40

DO 30 I = 1,M

SY(I) = SY(I) + SA*SX(I)

30 CONTINUE

IF(N .LT. 4) RETURN

40 MP1 = M + 1

DO 50 I = MP1,N,4

SY(I) = SY(I) + SA*SX(I)

SY(I + 1) = SY(I + 1) + SA*SX(I + 1)

SY(I + 2) = SY(I + 2) + SA*SX(I + 2)

SY(I + 3) = SY(I + 3) + SA*SX(I + 3)

50 CONTINUE

RETURN

END

REAL FUNCTION SDOT(N, SX, INCX, SY, INCY)

C C FORMS THE DOT PRODUCT OF TWO VECTORS.

Appendix B. 102
USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
JACK DONGARRA, LINPACK, 3/11/78.

REAL SX(1),SY(1),STEMP
INTEGER I,INCX,INCY,IX,IY,M,MP1,N

SDOT = 0.0E0
STEMP = 0.0E0
IF(N.LE.0)RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
NOT EQUAL TO 1

IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
STEMP = STEMP + SX(IX)*SY(IY)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
SDOT = STEMP
RETURN

CODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-UP LOOP

20 M = MOD(N,5)
IF(M .EQ. 0) GO TO 40
DO 30 I = 1,M
STEMP = STEMP + SX(I)*SY(I)
30 CONTINUE
IF(N .LT. 5) GO TO 60
40 MP1 = M + 1
DO 50 I = MP1,N,5
STEMP = STEMP + SX(I)*SY(I) + SX(I + 1)*SY(I + 1)
 SX(I+2)*SY(I+2)+SX(I+3)*SY(I+3)+SX(I+4)*SY(I+4)
50 CONTINUE
60 SDOT = STEMP
RETURN
END

SUBROUTINE SPBFA(ABD,LDA,N,M,INFO)
INTEGER LDA,N,M,INFO
REAL ABD(LDA,1)

SPBFA FACTORS A REAL SYMMETRIC POSITIVE DEFINITE
MATRIX STORED IN BAND FORM.

SPBEA IS USUALLY CALLED BY SPBCO, BUT IT CAN BE CALLED DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.

ON ENTRY

ABD REAL(LDA, N)
THE MATRIX TO BE FACTORED. THE COLUMNS OF THE UPPER TRIANGLE ARE STORED IN THE COLUMNS OF ABD AND THE DIAGONALS OF THE UPPER TRIANGLE ARE STORED IN THE ROWS OF ABD. SEE THE COMMENTS BELOW FOR DETAILS

LDA INTEGER

N INTEGER
THE ORDER OF THE MATRIX A.

M INTEGER
THE NUMBER OF DIAGONALS ABOVE THE MAIN DIAGONAL 0 .LE. M .LT. N.

ON RETURN

ABD AN UPPER TRIANGULAR MATRIX R, STORED IN BAND FORM, SO THAT A = TRANS(R)*R.

INFO INTEGER
= 0 FOR NORMAL RETURN.
= K IF THE LEADING MINOR OF ORDER K IS NOT POSITIVE DEFINITE.

BAND STORAGE

IF A IS A SYMMETRIC POSITIVE DEFINITE BAND MATRIX, THE FOLLOWING PROGRAM SEGMENT WILL SET UP THE INPUT.

M = (BAND WIDTH ABOVE DIAGONAL)
DO 20 J = 1, N
 I1 = MAXO(1, J-M)
 DO 10 I = I1, J
 K = I-J+M+1
 ABD(K, J) = A(I, J)
 10 CONTINUE
20 CONTINUE

LINPACK. THIS VERSION DATED 08/14/78.
CLEVE MOLER, UNI. OF NEW MEXICO, ARGONNE NATIONAL LAB.
C SUBROUTINES AND FUNCTIONS
C
C BLAS SDOT
C FORTRAN MAXO, SQRT
C
C INTERNAL VARIABLES
C
REAL SDOT, T
REAL S
INTEGER IK, J, JK, K, MU
C
BEGIN BLOCK WITH ... EXITS TO 40
C
DO 30 J = 1, N
INFO = J
S = 0.0EO
IK = M + 1
JK = MAXO(J-M, 1)
MU = MAXO(M+2-J, 1)
IF (M .LT. MU) GO TO 20
DO 10 K = MU, M
T = ABD(K, J) - SDOT(K-MU, ABD(IK, JK), 1, ABD(MU, J), 1)
T = T / ABD(M+1, JK)
ABD(K, J) = T
S = S + T*T
IK = IK - 1
JK = JK + 1
10 CONTINUE
20 CONTINUE
S = ABD(M+1, J) - S
C EXIT
IF (S .LE. 0.0EO) GO TO 40
ABD(M+1, J) = SQRT(S)
30 CONTINUE
INFO = 0
40 CONTINUE
RETURN
END
C
SUBROUTINE SPBSL(ABD, LDA, N, M, B)
INTEGER LDA, N, M
REAL ABD(LDA, 1), B(1)
C
SPBSL SOLVES THE REAL SYMMETRIC POSITIVE DEFINITE
BAND SYSTEM A*X = B
USING THE FACTORS COMPUTED BY SPBCO OR SPBFA.
C
ON ENTRY
C
ABD REAL(LDA, N)
THE OUTPUT FROM SPBCO OR SPBFA.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY ABD.

N INTEGER
THE ORDER OF THE MATRIX A.

M INTEGER
THE NO. OF DIAGONALS ABOVE THE MAIN DIAGONAL.

B REAL(N)
THE RIGHT HAND SIDE VECTOR.

ON RETURN
B THE SOLUTION VECTOR X.

ERROR CONDITION

A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR
CONTAINS A ZERO ON THE DIAGONAL. TECHNICALLY THIS
INDICATES SINGULARITY BUT IT IS USUALLY CAUSED BY
IMPROPER SUBROUTINE ARGUMENTS. IT WILL NOT OCCUR IF
THE SUBROUTINES ARE CALLED CORRECTLY AND INFO.EQ.0.

TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX
WITH P COLUMNS
CALL SPBCO(ABD,LDA,N,RCOND,Z,INFO)
IF (RCOND IS TOO SMALL .OR. INFO .NE. 0) GO TO..C
DO 10 J = 1, P
 CALL SPBSL(ABD,LDA,N,C(1,J))
10 CONTINUE

LINPACK. THIS VERSION DATED 08/14/78.
CLEVE MOLER, UNI. OF NEW MEXICO, ARGONNE NATIONAL LAB.

SUBROUTINES AND FUNCTIONS

BLAS SAXPY, SDOT
FORTRAN MINO

INTERNAL VARIABLES

REAL SDOT, T
INTEGER K, KB, LA, LB, LM

SOLVE TRANS(R)*Y = B

DO 10 K = 1, N
 LM = MINO(K-1,M)
 LA = M + 1 - LM

Appendix B. 106
LB = K - LM
T = SDOT(LM, ABD(LA, K), 1, B(LB), 1)
B(K) = (B(K) - T)/ABD(M+1, K)

10 CONTINUE

C
C SOLVE R*X = Y
C
DO 20 KB = 1, N
 K = N + 1 - KB
 LM = MINO(K-1, M)
 LA = M + 1 - LM
 LB = K - LM
 B(K) = B(K)/ABD(M+1, K)
 T = -B(K)
 CALL SAXPY(LM, T, ABD(LA, K), 1, B(LB), 1)

20 CONTINUE
RETURN
END
SUBROUTINE RESULT

SUBROUTINE RESULT (F, P, Q, AREA, ZI, EMOD, ELENG, C1, C2, MCODE, JCODE, EM, A, MINC, NE, NJ, ILC, LC,
DIMENSION F(6,*), Q(*), AREA(*), ZI(*), EMOD(*), ELENG(*),
M_CODE(6,*), JCODE(3,*), MINC(2,*), P(3,*),
GCODE(NG,*), E(*), DR(*), RM(*), IELC(*), AD(*),
C1(*), C2(*), EM(*), A(NG,*), ILC(*)

DO 20 J=1,NJ
 DO 10 L=1,3
 P(L,J)=0
 10 CONTINUE
20 CONTINUE
CALL FORCES (F, P, Q, AREA, ZI, EMOD, ELENG, C1, C2, MCODE,
 MINC, NE)
CALL DEFLE(Q, JCODE, GCODE, MINC, NG, NEG, E, DR, LC, C2, ILC,
 RM, IELC, EM, A, NEQ, AD)
CALL OUTPUT(F, P, Q, JCODE, NE, NJ)
RETURN
END
SUBROUTINE FORCES

SUBROUTINE FORCES(F,P,Q,AREA,ZI,EMOD,ELENG,C1,C2,
$ MCODE,MINC,NE)
$ DIMENSION F(6,*),P(3,*),Q(*),AREA(*),ZI(*),ELENG(*),
$ C1(*),C2(*),MCODE(6,*),MINC(2,*),EMOD(*)

DO 10 I=1,NE
 CALL ELEMF(F,Q,AREA,ZI,EMOD,ELENG,C1,C2,MCODE,I)
 CALL JOINTF(F,P,C1,C2,MINC,I)
10 CONTINUE
RETURN
END
C* SUBROUTINE ELEMF *
C FUNCTION- COMPUTE THE LOCAL FORCES OF I, F(6,I): DETERMINE
C THE GLOBAL ELEMENT DISPLACEMENTS, D(6), FROM THE
C JOINT DISPLACEMENTS VECTOR, Q, VIA MCODE; COMPUTE
C THE LOCAL FORCES AT THE A-END OF THE ELEMENT BY
C Eqs. 2.34, 2.36, 3.59; USE EQUILIBRIUM TO COMPUTE
C THE LOCAL FORCES AT THE B-END OF THE ELEMENT AND
C EQ. 3.95 TO COMPUTE THE ACTUAL ELEMENT FORCES .
C
SUBROUTINE ELEMF(F,Q,AREA,ZI,EMOD,ELENG,C1,C2,MCODE,I)
DIMENSION F(6,*),Q(*),AREA(*),ZI(*),EMOD(*),ELENG(*),
$ C1(*),C2(*),MCODE(6,*),D(6)
C
DO 10 L=1,6
K=MCODE(L,I)
 IF(MCODE(L,I).EQ.0) THEN
 D(L)=0
 ELSE
 D(L)=Q(K)
 END IF
10 CONTINUE
A=(EMOD(I)*ZI(I))/(ELENG(I)**3) .
B=AREA(I)*(ELENG(I)**2)/ZI(I) '
D11=C1(I)*D(1)+C2(I)*D(2)
D12=-C2(I)*D(1)+C1(I)*D(2)
D13=D(3)
D14=C1(I)*D(4)+C2(I)*D(5)
D15=-C2(I)*D(4)+C1(I)*D(5)
D16=D(6)
F1=A*B*(D11-D14)
F2=A*(12*(D12-D15)+6*ELENG(I)*(D13+D16))
F3=A*(6*ELENG(I)*(D12-D15)+2*ELENG(I)**2*(2*D13+D16))
F(1,I)=F(1,I)+F1
F(2,I)=F(2,I)+F2
F(3,I)=F(3,I)+F3
F(4,I)=F(4,I)-F1
F(5,I)=F(5,I)-F2
F(6,I)=F(6,I)+F2*ELENG(I)-F3
RETURN
END
SUBROUTINE JOINTF

C FUNCTION- TRANSFORM THE LOCAL FORCES OF ELEMENT I, F(6,I) TO GLOBAL FORCES AND ASSIGN THEM TO THE JOINT FORCES MATRIX, P, BY Eqs. 2.29, 2.34, 2.37, AND MINC.

SUBROUTINE JOINTF(F,P,C1,C2,MINC,I)
DIMENSION F(6,*),P(3,*),C1(*),C2(*),MINC(2,*)
FG(C1I,C2I,FLX,FLY)=C1I*FLX+C2I*FLY

J= MINC(1,I)
K= MINC(2,I)
P(1,J)= P(1,J)+FG(C1(I),-C2(I),F(1,I),F(2,I))
P(2,J)= P(2,J)+FG(C2(I),C1(I),F(1,I),F(2,I))
P(3,J)= P(3,J)+F(3,I)
P(1,K)= P(1,K)+FG(C1(I),-C2(I),F(4,I),F(5,I))
P(2,K)= P(2,K)+FG(C2(I),C1(I),F(4,I),F(5,I))
P(3,K)= P(3,K)+F(6,I)
RETURN
END
SUBROUTINE DEFLE

FUNCTION- GENERATE THE RELATIONSHIP MATRIX BETWEEN JOINTS DISPLACEMENTS AND MEMBERS DEFLECTIONS, THEN COMPUTE THE MEMBER DEFLECTION AND DEFLECTION RATIO FOR EACH LOAD CONDITION. SAVE THE CURRENT LARGEST DEFLECTION EM(I) AND KEEP A RECORD OF CORRESPONDING LOAD CONDITION INDICATOR, IELC(I)

CALL MAXDR.

SUBROUTINE DEFLE(Q,JCODE,GCODE,MINC,NG,NEG,E,DR,LC,C2, ILC,RM,IELC,EM,A,NEQ,AD)

DIMENSION Q(*),JCODE(3,NG),GCODE(NG,NEG),MINC(2,NEG),E(*), ILC(*),RM(*),IELC(*),A(NG,NEG),AD(*), C2(*)

 IF(LC.EQ.1) THEN
 DO 20 I=1, NG
 E(I)=0.0
 DR(I)=0.0
 DO 10 J=1, NEQ
 A(I,J)=0
 10 CONTINUE
 20 CONTINUE
 END IF

 DO 40 JE=1, NG
 IF(GCODE(JE,NEG).EQ.0) THEN
 I=GCODE(JE,1)
 J=MINC(1,I)
 K=MINC(2,I)
 L=JCODE(1,J)
 N=JCODE(1,K)
 IF(C2(I).GE.0) THEN
 A(JE,N)= 1
 A(JE,L)=-1
 E(J)=Q(N)-Q(L)
 ELSE
 A(JE,N)=-1
 A(JE,L)= 1
 E(JE)=Q(L)-Q(N)
 END IF
 DR(JE)=ABS(E(JE)/AD(JE))
 ELSE
 DO 30 M=1, NEG
 I=GCODE(JE,M)
 J=MINC(1,I)
 K=MINC(2,I)
 L=JCODE(2,J)
 N=JCODE(2,K)
 IF(M.NE.NEG) THEN
 END IF

Appendix B. 112
A(JE,L) = -0.5
A(JE,N) = 1
EE = Q(N) - 0.5*Q(L)

ELSE
A(JE,N) = -0.5
E(JE) = EE - 0.5*Q(N)
DR(JE) = ABS(E(JE)/AD(JE))
EE = 0.0

END IF

30 CONTINUE

END IF

IF(LC.EQ.1) THEN
EM(JE) = E(JE)
IELC(JE) = LC
ELSE
IF(ABS(E(JE)).GT.ABS(EM(JE))) THEN
EM(JE) = E(JE)
IELC(JE) = LC
END IF

END IF

40 CONTINUE

PRINT 50

50 FORMAT(1X, // 'A (NG , NEQ) ' /)
IF(LC.EQ.1) THEN
DO 70 IN = 1, NG
PRINT 60, (A(IN,J), J = 1, NEQ)
60 FORMAT(1X, T3, 9F4.1/)
END IF
70 CONTINUE

CALL MAXDR(LC, ILC, DR, NG, RM)

 IF(LC.EQ.3) THEN
PRINT 80
80 FORMAT(1X, 'MEMBER DEFLE', T35, 'MAX. DEFLE', T60, $ 'IELC(I)'/)
DO 100 I = 1, NG
PRINT 90, I, E(I), I, EM(I), I, IELC(I)
90 FORMAT(1X, 'E(', I2, ')=', F12.4, T35, 'EM(', I2, ')=', $ F12.4, T60, 'IELC(', I2, ')=', I2)
100 CONTINUE

PRINT *, 'DEFLE RATIO', T35, 'MAX. DEFLE RATIO', T60, $ 'ILC(I)'/)
DO 130 I = 1, NG
PRINT 120, I, DR(I), I, RM(I), I, ILC(I)
120 FORMAT(1X, 'DR(', I2, ')=', F12.4, T35, 'RM(', I2, ')=', $ F12.4, T60, 'ILC(', I2, ')=', I2)
130 CONTINUE

END IF
RETURN

END
C***
C SUBROUTINE MAXDR *
C***
C FUNCTION- SAVE THE CURRENT LARGEST VALUE AS THE CURRENT
C DESIGN DEFLE. RATIO DR(I) AND KEEP A RECORD OF
C CORRESPONDING LOAD CONDITION INDICATOR(ILC(I)).
C
SUBROUTINE MAXDR(LC,ILC,DR,NG,RM)
DIMENSION ILC(*),DR(*),RM(*)
C
DO 10 I=1, NG
 IF(LC.EQ.1) THEN
 RM(I)=DR(I)
 ILC(I)=LC
 ELSE
 IF(DR(I).GT.RM(I)) THEN
 RM(I)=DR(I)
 ILC(I)=LC
 END IF
 END IF
10 CONTINUE
RETURN
END
C* SUBROUTINE OUTPUT
C**
C FUNCTION- USE THE JOINT DISPLACEMENT VECTOR, Q, AND JCODE
C TO PRINT THE JOINT DISPLACEMENTS (INCLUDING
C JOINT CONSTRAINTS); PRINT THE LOCAL ELEMENT
C FORCES, F(6,NE); PRINT THE JOINT FORCES, P(3,NJ).

SUBROUTINE OUTPUT(F,P,Q,JCODE,NE,NJ)
DIMENSION F(6,*),P(3,*),JCODE(3,*),U(3),Q(*)

C PRINT 10
10 FORMAT(1X,'JOINT DISPLACEMENTS: JOINT DIRECTION 1
$ DIRECTION2 DIRECTION3')
DO 40 J=1,NJ
 DO 20 L=1,3
 K=JCODE(L,J)
 IF(K.EQ.0) THEN
 U(L)=0
 ELSE
 U(L)=Q(K)
 END IF
 20 CONTINUE
 PRINT 30,J,(U(L),L=1,3)
30 FORMAT(1X,T2,I3,T28,G11.4,7X,G11.4,14X,G11.4)
40 CONTINUE
PRINT *, '
PRINT 50
50 FORMAT(1X,'ACTUAL LOCAL ELEMENT FORCES: ELE. F1',
$ 13X,'F2',12X,'F3',13X,'F4',14X,'F5',13X,'F6')
 DO 70 I=1,NE
 PRINT 60,I,(F(L,I),L=1,6)
60 FORMAT(1X,' ',T2,I2,T7,5(G11.4,4X),G11.4)
 70 CONTINUE
PRINT *, '
PRINT 80
80 FORMAT(1X,'JOINT FORCES: JOINT DIRECTION1
$ DIRECTION2 DIRECTION3')
 DO 100 J=1,N
 PRINT 90,J,(P(L,J),L=1,3)
90 FORMAT(1X,' ',T3,I3,T9,G11.4,6X,G11.4,6X,G11.4)
100 CONTINUE
PRINT 110
110 FORMAT(1X,/)
RETURN
END
SUBROUTINE DESIGN

FUNCTION - TO SET UP ALL DATA REQUIRED FOR THE DESIGN ITERATION PROBLEM (STRUCTURAL PROPERTIES AND LOADS), AND SET THE PERMANENT STORAGE LOCATIONS FOR FIXED END FORCES AND EQUIVALENT JOINT FORCES ONE SET FOR EACH LOAD CONDITION.

SUBROUTINE DESIGN(FF, QQ, F, P, Q, SS, AREA, ZI, S, EMOD, DKGA, £ DKGI, DAS, DIS, CTE, ELENG, C1, C2, MCODE, £ JCODE, MINC, NA, ILC, NE, NJ, NG, NEQ, MBD, £ NLC, MXNEQ, NTS, NEG, DKS, QS, QD, QDG, £ T, DE, GCODE, DEM, RM, EM, DLEM, DLTS, A, DR, £ IELC, ZIG, SG, AG, G, E, AD, ITEN)

DIMENSION SS(MXNEQ,*), QQ(6,*), F(6,*), F(3,*), Q(*), £ AREA(*), ZI(*), EMOD(*), CTE(*), ELENG(*), EM(*), £ AD(*), C1(*), C2(*), MCODE(6,*), JCODE(3,*), £ NA(*), SC(*), E(*), ILC(*), FF(6,40,*), DKGA(*), £ DKS(MXNEQ,*), DLTS(*), G(*), QD(MXNEQ,*), QS(*), £ T(NE, *), A(NG, *), DE(NG, *), ZIG(*), GCODE(NG,*), £ DEM(NG,*), IELC(*), DLEM(*), DKGI(*), RM(*), £ AG(*), DR(*), MINC(2, *), S(*), QDG(MXNEQ,*).

PRINT *, 'DESIGN'

PRINT *, ' ---'

DO 40 LC=1, NLC
 CALL DATA(F, P, Q, AREA, ZI, EMOD, CTE, ELENG, C1, C2, MCODE, £ JCODE, MINC, NA, NE, NJ, NG, NEQ, MBD, LC, S, GCODE,
 £ NG, NEG)
 DO 20 I=1, NE
 DO 10 J=1, 6
 FF(J, I, LC)=F(J, I)
 10 CONTINUE
 20 CONTINUE
 DO 30 K=1, NEQ
 QQ(K, LC)=Q(K)
 30 CONTINUE
40 CONTINUE

PRINT *, 'FIXED END FORCES, FF(J, I, LC)'

DO 50 LC=1, NLC
 PRINT 50, LC
50 FORMAT(1X, 'FIXED END FORCES FOR LOAD CONDITION=', I2/)

PRINT *, '---'

DO 70 I=1, NE
 DO 60 J=1, 6
 PRINT 55, J, I, LC, FF(J, I, LC)
70 CONTINUE
60 CONTINUE

Appendix B. 116
CONTINUE

PRINT *, 'APPLIED LOAD VECTOR, QQ(K, LC), ONE FOR EACH LC'
PRINT *, '---'
PRINT *, '
DO 110 LC = 1, NLC
 DO 100 K = 1, NEQ
 PRINT 90, K, LC, QQ(K, LC)
90 FORMAT (1X, T3, 'QQ(', I2, ',', I2, ') = ', F10.4)
100 CONTINUE
110 CONTINUE
 DO 130 I = 1, NE
 DO 120 J = 1, NG
 READ(5,*) T(I, J)
120 CONTINUE
130 CONTINUE
 PRINT *, ' T (NE , NG) :
 DO 150 I = 1, NE
 PRINT 140, (T(I, J), J = 1, NG)
140 FORMAT (1X, T3, 20F5.1)
150 CONTINUE
 CALL DESITR (FF, QQ, SS, P, AREA, ZI, S, EMOD, ELENG, C1, C2,
$ MCODE, GCODE, MINC, ILC, NE, NJ, NEQ, MBD, NLC,
$ MXNEQ, NTS, F, Q, DKG, dkgi, DAS, DIS, NG, DKS,
$ QS, QD, QDG, A, DE, ITEN, NEG, DEM, RM, DLEM,
$ DLTS, T, EM, DR, IELC, ZIG, SG, AG, G, E, AD, GCODE)
RETURN
END
C**
C* SUBROUTINE DESITR
C**
C FUNCTION- READ THE ITERATION PARAMETERS; FOR EACH TRIAL STRUCTURE SET UP
C TEMPORARY F, Q VECTORS FOR A PARTICULAR LOAD CONDITION AND COMPUTE THE SYSTEM
C SOLUTION AND RESPONSE THEN CALL SENS AND SEND
C TO COMPUTE THE SENSITIVITY DATA REQUIRED FOR DEPENDENT SECTION PROPERTIES COMPUTATIONS. CALL
C CONVERGE AND TEST STRUCTURE FOR CONVERGENCE, IF NOT COMPUTE NEW TRIAL STRUCTURE AND ASSIGN NEW
C MEMBER PROPERTIES TO EACH ELEMENT. ITERATION TERMINATES EITHER BY CONVERGENCE OR BY EXCEEDING
C THE NUMBER OF TRIAL STRUCTURES, NTS.
C
SUBROUTINE DESITR (FF, QQ, SS, P, AREA, ZI, S, EMOD, ELENG, C1,
 C2, MCODE, JCODE, MINC, ILC, NE, NJ, NEQ,
 MBD, NLC, MXNEQ, NTS, F, Q, DKGA, DKGI,
 DAS, DIS, NG, DKS, QS, QD, QDG, A, DE, ITEN,
 NEG, DEM, RM, DLEM, DLTS, T, EM, DR, IELC,
 ZIG, SG, AG, G, E, AD, GCODE)

DIMENSION FF(6,40,*), QQ(60,*), SS(MXNEQ,*), P(3,*), Q(*),
 S(*), F(6,*), EMOD(*), ELENG(*), C1(*), C2(*),
 MCODE(6,*), JCODE(3,*), MINC(2,*), ILC(*),
 DKS(MXNEQ,*), QS(*), QD(MXNEQ,*), QDG(MXNEQ,*),
 AG(*), T(NE,*), A(NG,*), DE(NG,*), GCODE(NG,*),
 RM(*), G(*), E(*), DEM(*), DLEM(*), DLTS(*), DR(*),
 IECL(*), DEM(NG,*), ZIG(*), DKGI(*), SG(*),
 AREA(*), ZI(*), DKGA(*), AD(*)

C
READ(5,*) CP, ITEN
PRINT 8
8 FORMAT(1X,/)
PRINT *, 'TRIAL STRUCTURES'
PRINT *, '===================================='
M=1
10 IF(M .LE. NTS) THEN
 DO 100 LC = 1, NLC
 DO 30 I = 1, NE
 DO 20 J = 1, 6
 F(J,I)=FF(J,I,LC)
 20 CONTINUE
 30 CONTINUE
 DO 40 K = 1, NEQ
 Q(K)=QQ(K,LC)
 40 CONTINUE
 IF(LC.EQ.3) THEN
 PRINT 50, M
50 FORMAT(1X,T17,'M(ITERATION COUNTER) = ',I3/T15,
 $ 32('='))
 PRINT 60, LC

Appendix B. 118
FORMAT(1X,T20,'LOAD CONDITION=',I2/T18,30('='))
PRINT 70
FORMAT(1X,T3,'ELE.',T14,'AREA(I)',T29,'S(I)',
T3,'ZI(I)')
$DO 90 I=1,NE
PRINT 80, I,AREA(I),S(I),ZI(I)
80 FORMAT(1X,T2,I3,T8,F15.4,T27,F15.4,T41,F15.4)
90 CONTINUE
END IF
CALL SYSTEM(SS,Q,AREA,ZI,EMOD,ELENG,C1,C2,MCODE,
NE,NEQ,MBD,LC,FXNEQ,G)
CALL RESULT(F;P,Q,AREA,ZI,EMOD,ELENG,C1,C2,
MCODE,JCODE,EM,A,MINC,NE,NJ,ILC,LC,
GCODE,NG,NEG,E,DR,RT,IELC,NEQ,AD)
CALL SENS(C1,C2,EMOD,ELENG,NE,DKGA,DKGI,DAS,S,
DIS,Q,NEQ,FXNEQ,SS,MCODE,JCODE,MINC,
NG,DKS,QS,QD,LC,MBD,ITEN)
CALL SENS(LC,NE,NG,NEQ,QD,QDG,T,A,DE,MXNEQ,DEM,
EM,NEG,GCODE,IELC,M)
100 CONTINUE
CALL SOLVED(DEM,EM,DLEM,NG,DLTS,AD)
IF(M.EQ.1) THEN
DO 120 IJ=1,NG
IM=GCODE(IJ,1)
SG(IJ)=S(IM)
ZIG(IJ)=ZI(IM)
AG(IJ)=AREA(IM)
PRINT 110,IJ,SG(IJ)
110 FORMAT(1X,T10,°SG(',I2,°',F10.4)
120 CONTINUE
END IF
CALL CONVRG(RM,AG,ZIG,SG,CP,NG,NTS,M,ILC,DLTS,ITEN)
CALL ASSIGN(AREA,S,ZI,NG,GCODE,NEG,ZIG,SG,AG)
GO TO 10
ELSE
STOP
END IF
RETURN
END
C SUBROUTINE SENS
C
C**
C
CFUNCTION- FOR EACH ELEMENT CALL DSM, ASSEMK, QSENS, AND
C SPBSL THEN STORE THE JOINT DISPLACEMENT
C DERIVATIVES W.R.T. ELEMENT DESIGN VARIABLES IN
C VECTOR (QD).
C
SUBROUTINE SENS(C1,C2,EMOD,ELENG,NE,DKGA,DKGI,DAS,S,DIS,Q,NEQ,MXNEQ,SS,MCODE,JCODE,MINC,
NG,DKS,QS,QD,LC,MBD,ITEN)
DIMENSION C
DO 50 I=1, NE
CALL GDR(C1,C2,EMOD,ELENG,I,DKGA,DKGI,DAS,DIS,S,ITEN)
CALL ASSEMK(I,NEQ,MCODE,DKGA,DKGI,DAS,DKS,MXNEQ,DIS)
CALL QSENS(Q,DKS,NEQ,QS,LC,MXNEQ,I)
CALL SPBSL(SS,MXNEQ,NEQ,MBD,QS)
PRINT 10
10 FORMAT(1X,//° Q D (NEQ,I)°/) 4
DO 20 JK=1,NEQ
QD(JK,I)=0.0
20 CONTINUE
40 JE=1, NEQ -
QD(JE,I)=QS(JE)
PRINT 30, JE,I,QD(JE,I)
30 FORMAT(1X,T10,°QD(°,I2,°,°,I2,')=°,F15.4)
40 CONTINUE
50 CONTINUE
RETURN
END
C***
C SUBROUTINE GDR
C***
C FUNCTION- DIFFERENTIATE THE SYSTEM STIFFNESS MATRIX, \(k \),
C W.R.T. AREA (DKGA) AND MOMENT OF INERTIA (DKGI). ALSO DIFFERENTIATE DEPENDENT SECTION
C PROPERTIES EQUATIONS W.R.T. SECTION MODULUS, \(S \)

SUBROUTINE GDR(C1,C2,EMOD,ELENG,I,DKGA,DKGI,DAS,DIS,S,$
 ITEN)
 DIMENSION C1(*),C2(*),EMOD(*),ELENG(*),DKGA(*),S(*),$%
 DKGI(*)

REAL L
L=ELENG(I)
C11=C1(I)
C22=C2(I)
E=EMOD(I)
S1=S(I)
DAS=0.0
DIS=0.0
DO 10 JS=1,7
 DKGA(JS)=0.0
 DKGI(JS)=0.0
10 CONTINUE
C DK/DA
 DKGA(1)=(E*C11**2)/L
 DKGA(2)=(E*C11*C22)/L
 DKGA(3)=(E*C22**2)/L
 DKGA(4)=0
 DKGA(5)=0
 DKGA(6)=0
 DKGA(7)=0
C DK/DI
 DKGI(1)=(12*E*C22**2)/L**3
 DKGI(2)=(-12*E*C11*C22)/L**3
 DKGI(3)=(12*E*C11**2)/L**3
 DKGI(4)=(-6*E*C22)/L**2
 DKGI(5)=(6*E*C11)/L**2
 DKGI(6)=(4*E)/L
 DKGI(7)=(2*E)/L
C DA/DS(DERIVATIVES OF TRAYNORS EQU.
 IF(ITEM.EQ.1) THEN
 IF(S1.LE.503) THEN
 DAS=0.0298025*(2*S1+580)/(S1**2+580*S1)**0.5
 DIS=(S1+290)/30.3
 ELSE
 DAS=0.072309
 DIS=18.5111
 END IF

Appendix B. 121
C DI/DS
ELSE IF(ITEN.EQ.2) THEN
 DAS=0.119637-(19.41765E-05*S1)+(16.02478E-08*S1**2)
 IF(S1.LT.50.0) THEN
 DIS=7.98
 ELSE
 DIS=10.90819+(0.0368155*S1)-(3.228723E-5*S1**2)
 END IF
END IF
PRINT 20, DAS,DIS
20 FORMAT(1X,/T10,'DAS=',F10.4,T50,'DIS=',F10.4/)
DO 40 IE=1,7
 FORMAT(1X,T10,'DKGA(',I2,')=',F12.4,T50,'DKGI(',I2,')=',F12.4)
 CONTINUE
RETURN
END
SUBROUTINE ASSEMK

C FUNCTION— INITIALIZE INDEX, THEN COMPOSE THE DERIVATIVE
C STIFFNESS MATRIX W.R.T. SECTION MODULUS, S(DKS)

SUBROUTINE ASSEMK(N, NEQ, MCODE, DKGA, DKGI, DAS, DKS, MXNEQ, $ DIS)
DIMENSION MCODE(6,*), DKGA(*), DKGI(*), DKS(MXNEQ,*), $ INDEX(6,6), DKG(7)
DATA INDEX /1,2,4,-1,-2,4,2,3,5,-2,-3,5,4,5,6,-4,-5,7, $ -1,-2,-4,1,2,-4,-2,-3,-5,2,3,-5,4,5,7,-4,-5,6/

C DO 10 JG=1,7
 DKG(JG)=0.0
10 CONTINUE

DO 30 JE=1, 7
 DKG(JE)=DKGA(JE)*DAS+DKGI(JE)*DIS
20 PRINT 20, JE, DKG(JE)
20 FORMAT(1X,T10,°DKG(°,I2,')=°,F18.4)
30 CONTINUE

DO 50 II=1, NEQ
 DO 40 JJ=1, NEQ
 DKS(II,JJ)=0
40 CONTINUE
50 CONTINUE

DO 70 JE=1, 6
 J=MCODE(JE,N)
 IF(J.NE.0) THEN
 DO 60 IE=1, 6
 I=MCODE(IE,N)
 IF(I.NE.0) THEN
 L=INDEX(IE,JE)
 IF(L.GT.0) THEN
 DKS(I,J)=DKG(L)
 ELSE
 DKS(I,J)=-DKG(-L)
 END IF
 END IF
 END DO
60 CONTINUE
 END IF
70 CONTINUE
PRINT *, ' D K S (N E Q , N E Q) '
DO 90 I=1, NEQ
 PRINT 80, (DKS(I,J), J=1,NEQ)
80 FORMAT(1X,T3,9F12.4/)
90 CONTINUE
RETURN
END
C**
C SUBROUTINE QSENS
C**
C FUNCTION- COMPOSE THE LOAD VECTOR [DK/DX]. (Q) = (QS) FOR SENSITIVITY ANALYSIS COMPUTATIONS.
C
SUBROUTINE QSENS(Q, DKS, NEQ, QS, LC, MXNEQ, II)
DIMENSION Q(*), DKS(MXNEQ,*), QS(*)
C
DO 10 JU=1, NEQ
 QS(JU)=0.0
10 CONTINUE
DO 40 I=1, NEQ
 SV=0.0
 SVE=0.0
 DO 20 J=1, NEQ
 SV=DKS(I,J)*Q(J)
 SVE=SVE+SV
20 CONTINUE
 QS(I)=-SVE
 PRINT 30, I, QS(I)
30 FORMAT(1X, T10, 'QS(', I2, ')= ', F12.4)
40 CONTINUE
RETURN
END
SUBROUTINE SENSD

FUNCTION - COMPUTE THE JOINT DISPLACEMENT DERIVATIVES W.R.T MEMBER DESIGN VARIABLES AND THE DEFLECTION DERIVATIVES W.R.T. MEMBER DESIGN VARIABLE. ALSO, KEEP A RECORD FOR DEFLECTION DERIVATIVES THAT CORRESPOND TO THE CONTROLLING LOAD CONDITIONS.

SUBROUTINE SENSD(LC,NE,NG,NEQ,QD,QDG,T,A,DE,MXNEQ,DEM, EM,NEG,GCODE,IELC,M)

DIMENSION QD(MXNEQ,*),T(NE,*),A(NG,*),DE(NG,*),EM(*),
 DEM(NG,*),GCODE(NG,*),IELC(*),QDG(MXNEQ(*))

DO 30 JJ=1, NG
 DO 20 JEE=1, NEQ
 SM=0.0
 SN=0.0
 DO 10 IR=1, NE
 SN=QD(JEE,IR)*T(IR,JJ)
 SM=SM+SN
 10 CONTINUE
 QDG(JEE,JJ)=SM
 20 CONTINUE
30 CONTINUE

DO 60 I=1, NG
 DO 50 JE=1, NG
 DD= 0.0 · ·
 EE=0.0
 DO 40 J=1,NEQ
 EE=A(JE,J)*QDG(J,I)
 DD=DD+EE
 40 CONTINUE
 DE(JE,I)=DD
 50 CONTINUE
60 CONTINUE

IF(LC.EQ.3) THEN
 PRINT *, ' Q D G (NEQ,NG)'
 PRINT *,
 DO 80 II=1,NEQ
 PRINT 70, (QDG(II,JJ),JJ=1,NG)
 70 FORMAT(1X,T3,9F12.4/)
 PRINT *, ' D E (NG,NG)'
 PRINT *
 DO 100 IJ=1,NG
 PRINT 90, (DE(IJ,J),J=1,NG)
 90 FORMAT(1X,T3,9F12.4/)
100 CONTINUE
END IF
DO 120 JE=1, NG
IL=IELC(JE)
IF(IL.EQ.LC) THEN
 DO 130 I=1, NG
 DEM(JE,I)=DE(JE,I)
 CONTINUE
END IF
130 CONTINUE
IF(LC.EQ.3) THEN
 PRINT 140
 140 FORMAT(1X,/° DEM (NG , NG')/)
 JJ=1,NG
 DO 160 JJ=1,NG
 PRINT 150, (DEM(JJ,II),II=1,NG)
 150 FORMAT(1X,T3,9F10.6/)
 160 CONTINUE
END IF
RETURN
END
SUBROUTINE SOLVED

DIMENSION DEM(NG,*), EM(*), DLEM(*), DLTS(*),
$ WKAREA(1000), AD(*)

PRINT *, ' DLEM(NG) '
DO 20 JE=1, NG
 IF(EM(JE).LT.0) THEN
 DLEM(JE)=(-AD(JE)-EM(JE))
 ELSE
 DLEM(JE)=(AD(JE)-(EM(JE)))
 END IF
 PRINT 10, JE, DLEM(JE)
10 FORMAT(1X,T10,'DLEM(',I2,')=',F9.4)
20 CONTINUE

IDGT=4
MM=1
CALL LEQT2F(DEM, MM, NG, NG, DLEM, IDGT, WKAREA, IER)
PRINT *, ' DLTS (I) : '
DO 30 J=1, NG
 DLTS(J)=DLEM(J)
30 CONTINUE

DO 50 J=1, NG
 PRINT 40, J, DLTS(J)
40 FORMAT(1X,T10,'DLTS(',I2,')=',F18.4)
50 CONTINUE
RETURN
END
SUBROUTINE CONVRG

FUNCTION - MANAGE THE CONVERGENCE COMPUTATIONS AND CHECKS,
IF CONVERGENCE IS NOT ACHIEVED, DEVELOP A NEW
TRIAL STRUCTURE; IF CONVERGENCE IS ACHIEVED ,
PRINT OUT THE RESULTS OF THE FINAL DESIGNE.

SUBROUTINE CONVRG (RM, AG, ZIG, SG, CP, NG, NTS, M, ILC, DLTS, ITEN)
DIMENSION IC=0
CALL EVALDE(RM, CP, IC, NG)
IF(IC .EQ. 0) THEN
 M=M+1
 CALL TRIAL(AG, ZIG, SG, NG, DLTS, ITEN)
ELSE
 CALL OUTDES(AG, ZIG, SG, RM, M, NG, ILC, CP)
 M=NTS+1
END IF
RETURN
END
SUBROUTINE EVALDE
*
SUBROUTINE EVALDE(RM,CP,IC,NG)
DIMENSION RM(*)
C
C=1-CP
PRINT 10, CP
10 FORMAT(1X,'CP(TOLERANCE) = ',F6.3/)
DRMAX=ABS(RM(1)-C)
PRINT 15, DRMAX
15 FORMAT(1X,'DRMAX FOR MEMBER (1) = ',F20.8/)
DO 30 I=2, NG
A=ABS(RM(I)-C)
PRINT 20, I, A
20 FORMAT(1X,'A FOR MEMBER (',I2,') = ',F20.8)
DRMAX=MAX(DRMAX,A)
30 CONTINUE
PRINT 40, DRMAX
40 FORMAT(1X,'DRMAX = ',F20.8)
IF(DRMAX .LE. CP) THEN
 IC=1
ELSE
 PRINT *, 'NON CONVERGENCE'
END IF
RETURN
END
C***
C SUBROUTINE TRIAL *
C***
C FUNCTION- UNDER CONDITIONS OF NON CONVERGENCE, DEVELOP A
C NEW TRIAL STRUCTURE FOR THE NEXT ITERATION CYCLE
C
SUBROUTINE TRIAL(AG,ZIG,SG,NG,DLTS,ITEN)
DIMENSION AG(*),ZIG(*),SG(*),DLTS(*)
C
DO 30 I=1, NG
 ZZ=SG(I)+DLTS(I)
 SG(I)=ZZ
 ZZ=0.0
 IF(SG(I).LE.0) THEN
 SG(I)=20.0
 END IF
 IF(ITEN.EQ.2) THEN
 IF(SG(I).GT.110) THEN
 SG(I)=600.0
 END IF
 END IF
 END IF
 AG(I)=PROPA(ITEN,SG(I))
 ZIG(I)=PROPI(ITEN,SG(I))
30 CONTINUE
PRINT *, 'ITEN = ',ITEN
RETURN
END
C FUNCTION PROPA
C FUNCTION- COMPUTE NEW SEC. AREA VALUES (USED TWO SETS)
C
FUNCTION PROPA(N,X)
C
 IF(N .EQ. 1) THEN
 IF(X.LE.503) THEN
 TAREA=0.464*((290+X)**2-84100)/60.6)**0.5
 ELSE
 TAREA=(18.5111*X+1988.9336)/256
 END IF
 ELSE IF(N.EQ.2) THEN
 TAREA=3.62415+(0.119637)*X-(9.70882E-5)*X**2
 $(5.34160E-8)*X**3
 END IF
 PROPA=TAREA
 RETURN
END
C***
C FUNCTION PROPI
C***
C FUNCTION- COMPUTE NEW MOMENT OF INERTIA VALUES.
C
FUNCTION PROPI (N,SG)

IF(N.EQ.1) THEN
 IF(SG.LE.503) THEN
 TZI=((290+SG)**2-84100)/60.6
 ELSE
 TZI=18.5111*SG-311.0664
 END IF
ELSE IF(N.EQ.2) THEN
 IF(SG.LT.50) THEN
 TZI=(7.98)*SG
 ELSE
 TZI=(-191.3096)+(10.90819)*SG+(0.01840775)*SG**2-(1.076241E-5)*SG**3
 END IF
END IF
PROPI=TZI
RETURN
END
SUBROUTINE OUTDES(AG,ZIG,SG,RM,M,NG,ILC,CP)
DIMENSION AG(*),ZIG(*),SG(*),RM(*),ILC(*)

PRINT 10
10 FORMAT(1X,//"THE FINAL DESIGN VALUES ARE:"

PRINT 20

DO 40 I=1,NG
 PRINT 30, I, AG(I), ZIG(I), SG(I), RM(I), ILC(I), M, CP

40 CONTINUE
RETURN
END
SUBROUTINE ASSIGN

FUNCTION- ASSIGN MEMBER SECTION PROPERTIES TO EACH ELEMENT IN THE GROUP.

SUBROUTINE ASSIGN(AREA,S,ZI,NG,GCODE,NEG,ZIG,SG,AG)
DIMENSION AREA(*),S(*),ZI(*),GCODE(NG,*),ZIG(*),SG(*),
$ AG(*)

DO 20 J=1, NG
 DO 10 IA=1, NEG
 I=GCODE(J,IA)
 IF(I.NE.0) THEN
 AREA(I)=AG(J)
 ZI(I)=ZIG(J)
 S(I)=SG(J)
 END IF
 10 CONTINUE
20 CONTINUE
RETURN
END
The vita has been removed from the scanned document.