EFFECTS OF SOIL FUNGI
ON TREE SEEDLING ESTABLISHMENT
IN A SOUTHEASTERN COASTAL PLAIN FOREST

Lee West

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
in
Biology

Approval:

Robert H. Jones
Chair
Associate Professor
Biology

________________ ______________ _______________
O.K. Miller B.R. Pohlad P. Mou
Professor Professor of Biology Assistant Professor
Biology Ferrum College Forestry

November 22, 1998
Blacksburg, Virginia

Key words: advance regeneration, upland hardwood, fungi, mycorrhizae, tree seedlings

Copyright 1998, Lee West
Effects of fungi and overstory composition on tree seedling survival and growth were investigated in closed canopy upland forests in the coastal plain of South Carolina. Seedlings of *Quercus alba*, *Cornus florida* and *Pinus taeda* were planted in the understory of two forest types—naturally regenerated hardwood and planted pine. Fungal species composition and biomass were experimentally manipulated with a treatment of the fungicide captan.

In contrast with other studies conducted in different systems (sand dune, grassland, and old field), the effects of soil fungi were minor in a closed canopy forest. Only *Q. alba* showed a significant response to the fungicide ($p < 0.05$) treatment with increased growth.

Overstory composition had no significant effect on growth or survival for any of the species. Both of the commercially desirable species (*Q. alba* and *P. taeda*) had reasonable survival ($\approx 60\%$). Both also maintained positive, though modest, growth. This suggests that an advance regeneration pool could be established successfully by artificial regeneration.

Support for this research was provided by USDA Forest Service Savannah River Station, Graduate Research Development Project (GRDP), and the Virginia Tech Biology Department.

I would also like to acknowledge the valuable assistance lent to this research by Cathie Aime, David Koechlein, Shawn Semones, Glen Stevens, Jodi Stiles, and John Walker.
Table of Contents

I. Introduction 1

II. Review of Plant-Fungi Interactions 2
 - Indirect Inhibitory Interactions 2
 - Direct Inhibitory Interactions 3
 - Indirect Facilitative Interactions 5
 - Direct Facilitative Interactions 7

III. Objectives and Hypotheses 9

IV. Materials and methods 10
 - Site Description 10
 - Plot Design and Treatments 11
 - Tree Species 11
 - Measurements 12
 - Pre-Planting harvest data and regression 12
 - Fungal Assessments 12
 - Seedling Responses 13
 - Statistical Analysis 14

V. Results 15
 - Fungal Community Responses 15
 - Seedling Responses 15

VI. Discussion 16

VII. References 20