A GRAPHICAL ALTERNATIVE TO DIRECT
SQL BASED QUERYING

by

Johnita Beasley

Project/Report submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

Computer Science and Applications

APPROVED:

‘===::::::::;::::::Z:;ﬁ-";faj:jfjfsz\\\\ﬁan‘

y 744

C.J. Egyhazy, Chaéihan

W.B. Frakes L.H. Crawford

May, 1993
Blacksburg, Virginia

LD
5058
V5t
/993

15937

1.0 EXECUTIVE SUMMARY

SQL provides a fairly straightforward means of querying database data.
However, as with all command languages, SQL can get very complicated, even for
experienced programmers. This complexity can be intimidating to the novice or
intermediate user who needs to access data from a database with complex SQL
statements, especially when users don’t want to know or even become familiar
with a command oriented query language like SQL.

One application that has been developed to simplify database querying is
Query-by-Example (Zloof, 1975). Query-by-Example is a database front-end that
applies direct manipulation to database tables on the user display in a text-based
format. The idea behind direct manipulation is to make objects and actions of
interest visible and to replace complex command-language syntax with direct
manipulation of the objects of interest (Shneiderman, 1992).

Graphical Query Language (Andyne, 1992) is another application that has
been developed to simplify database querying. It applies direct manipulation for
database querying in a graphical environment.

The goal of this project/report is to design a database front-end application
based on techniques similar to those used in Query-by-Example and Graphical
Query Language(GQL). This database front-end will be used for querying a SQL
based database - An application that acts as an interface to SQL querying. This
application is geared is toward novice or intermediate users. Novice and
intermediate uses can be classified as non-programmer user types. Their interaction
with a computer is in an operational capacity. The difference between the novice
and intermediate user is the intermediate users familiarity with various application
operations. Therefore, the application interface needs to be simple. Applying
graphical direct manipulation techniques, like those used in GQL, is the key in
creating a simple interface. This report also discusses GQL and how the proposed
system addresses some of the inadequacies of this application.

The proposed database front-end application is called QUERI-EZ. Direct
manipulation concepts are applied to the design of QUERI-EZ’s interface to

ii

provide a visually simple means of querying the database, while the behavior of the
back-end of the application is expressed by applying structured design
techniques/concepts. The proposed means of testing the QUERI-EZ application

interface is also established.

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARYttt ittt e et eeaennn ii
2.0 INTRODUCTION ...ttt it ettt et et ee et et e 1
3.0 SQL BASED QUERYING ittt i e it e e 2
3.1 Brief History of SQLot e e 2
3.2 OVEIVIEW . . ittt e e e e e e e e e e e e 3
3.3 Advantages and Disadvantages of Direct SQL Based Querying 4
4.0 HUMAN FACTORSottt ettt e e et e e et e e e e e e 6
4.1 The User-Centered Design Processc.uiiiitiimnnneeenenan 6
4.2 Direct Manipulation i 9
5.0 EXISTING SYSTEMS ittt ettt ee e e 11
5.1 Query-by-Examplet e 11
5.1.1. Commentaryoiui ittt et e e e 12
5.2 Visual Query Languagettt inenenn. 12
521 Commentaryttt e et 13
5.3 Graphical Query Languagettt 14
5.3.1 Commentary e e e e 17
6.0 PULLING IT ALL TOGETHERttt 19
7.0 APROPOSED SYSTEM DESIGNttt ittt 21
Tl Introduction e e e 21
7.2 System Specification L. e 21
8 e o T O 21
722 Requirementsttt e e 21
7.2.2.1 Functional Description 21
7.2.2.2 Interface Definition ittt 22
T.23 Characteristicsttt it 22
7.3 Software Requirements Specification 24
8= 70 S 7o o T 24
7.3.2 Functional Requirements 24
7.3.2.1 Descriptionof Function, 24
7.3.3 User Interface Requirements 25
7.3.3.1 Descriptionof Interface iien... 25
734 User Requirements 0ttt rnennennnn.. 25

7.4 System Designttt e e e e 26
7.4.1 User Interface Design0 .. 26
7.4.1.1 Interface Presentation0 iiienn... 26
T4.1.2 8CeNarioso vi ittt ittt e et 30
7.4.1.2.1 The "Suppliers-Parts" Database 30
7.4.1.2.2 Scenario 1: Creatinga Simple Query 31
7.4.1.2.3 Scenario 2: Retrieving an Existing Query 39
7.4.1.2.4 Scenario 3: Creatinga Complex Query 42
7.4.1.3 State Transition Diagram 0. 47
7.4.1.4 User Action Notations 49
7.4.1.5 User Interface Verification/Evaluation 56

iv

7.42 Software Designttt e e 62

7.4.2.1 Context Diagramttt tieneneneneneeann. 62
7422DataFlow Diagramttt tiininnnnnnn. 62
7.4.2.3 Pseudocode Algorithms 64
7.4.2.3.1. General Pseudocode Algorithms 64
7.4.2.3.2 Pseudocode Algorithms for the Requirements 69

8.0 CONCLUSIONS it et e e ettt 76
8.1 SUMIMATY . . vttt ittt it it et ettt e e e e 76
8.2 Evaluation of the Application Design 76
9.0 BIBLIOGRAPHYttt ittt ettt e e e e eeeee 81

2.0 INTRODUCTION

This project/report is a combination of three very significant areas in the
computer science/information science industry. These areas include Database
Management Systems (particularly, the means of accessing the data within them),
Human-Computer Interaction (HCI), and Software Engineering.

The means by which database data is accessed is the targeted problem area. It
is a very common and necessary operation performed by users at all levels.
However, most current database access applications ignore the needs and abilities
of a very important group of users - the novice/intermediate users. The concepts of
HCI allow the system designer to remember the user when designing interactive
applications. In particular, HCI concepts concentrate on the user interface and
interactive features of an application.

This project/report discusses the advantages and disadvantages of accessing
data through direct SQL based querying, and addresses the concepts of HCI as they
apply to the problems surrounding direct SQL based querying. This project/report
also presents some current systems that are attempting to address the problem area
and comments on why it is felt that they do or do not resolve the areas of
complexity. Given the concepts of HCI and the inadequacies of some current
systems , interface engineering and software engineering techniques are applied to
the direct SQL based querying to propose a database front-end application that is a
graphical alternative to this querying approach.

3.0 SQL BASED QUERYING

Data is the basis of information systems and it is crucial that data is easily
accessible. Many of today’s information systems are developed for users whose
knowledge and understanding of computers is basic. Therefore, the application
with which they interact to retrieve data must be intuitive and easy to understand
and operate.

Relational Database Management Systems (RDBMS’s) are popular for storing
data, and SQL is the means by which relational database data is created, accessed,
and manipulated. SQL acts as an interface between the user and the data. Hence,
the question arises: Does direct SQL based querying provide the
novice/intermediate user with an easily understandable means of accessing database
data? This section provides a brief history of SQL, a high level overview of the
language, and a discussion of the advantages and disadvantages of direct SQL based

querying, in order to address this question.

3.1 Brief History of SQL

SQL is the relational language on which most of today’s Relational Database
Management Systems (RDBMSs) are based. The language was first defined in San
Jose, California by D.D. Chamberlain and others at the IBM Research Laboratory.
The first prototype implementation was known under the name "System R", and it
was built at the IBM San Jose Laboratory. Based on a stern set of usability and
performance tests that were performed both inside and outside of IBM, the decision
was made to develop a family of products based on the technology of System R.
Today, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) have both standardized a dialect of SQL.

This dialect is the "official" interface to relational systems.

3.2 Overview
SQL is a data sub-language which consists of two distinct parts: a Data

Definition Language (DDL) and a Data Manipulation Language (DML).

The DDL is used to define the structure of a database, and the principle
statements associated with it are as follows: CREATE TABLE, CREATE VIEW,
CREATE INDEX, ALTER TABLE, DROP TABLE, DROP VIEW, DROP INDEX.

The DML is used to access and manipulate data within a database. There are
four DML statements provided by SQL: SELECT, UPDATE, DELETE and INSERT.

There is also another aspect of SQL that doesn’t fall under the DML or the
DDL which is related to data security. There are two statements provided by SQL
for this purpose: GRANT and REVOKE. These statements apply to user data access
privileges.

In terms of data retrieval, the SELECT statement of the DML is its
supporting construct. The general form of the SQL SELECT statement that this
project/report will focus on is shown in Figure 3.2.1.

Figure 3.2.1. General Form of SQL
SELECT Statement

The brackets indicate optional clauses of the statement, and the capitalized words
are SQL keywords applicable to the SELECT statement (not exhaustive). As can be
seen from Figure 3.2.1, the SELECT statement allows:

1) Simple retrievals,

2) Qualified retrievals (WHERE and HAVING clauses),

3) Retrieving with ordering (ORDER BY clause),

4) Retrieving with grouping (GROUP BY clause), and

5) Retrievals involving table joins (Two or more tables).
Less apparent from the general form of Figure 3.2.1, is the fact that sub-querying
with multiple levels of nesting is also provided. This project/report refers to queries

of this type as complex queries.

3.3 Advantages and Disadvantages of Direct SQL Based Querying

With all of the capabilities provided in the SELECT statement alone, the
robustness of SQL in retrieving data is apparent. Many variations of the SELECT
statement clauses can be combined to obtain desired results. Obviously, the fewer
clauses utilized, the simpler the statement is to construct. Similarly, the more
clauses applied to a SELECT statement, the more complex the SQL statement
becomes. And, because many relational database structures can be fairly large and
therefore complex, the SELECT statements required to retrieve data tend to be
large and confusing. In effect, the more complex the database, the more complex
the queries become.

With SQL acting as the interface for the user to the database, the user
(experienced programmer or novice user) is faced with the challenge of constructing
very complex SQL statements to access the data needed. For the experienced
programmer, this challenge may be welcomed. However, for the novice or
intermediate user who simply wants to see results and is not interested in what the
SQL statement looks like, this challenge is by no means welcomed. This is the
essence of the "good and bad" of direct SQL based querying. SQL based querying
can be relatively simple however, it can also be extremely complex. Even in its
simplest form, it is not intuitive because it requires the user to remember or have
access to command names and command syntax. Therefore, direct SQL based
querying does not always provide the novice/intermediate user with an intuitive and
easily understandable means of accessing database data. Hence, the challenge to a

systems designer is to provide a means by which the user can produce SQL data

retrieval statements (both simple and complex) without directly interfacing with
SQL. |

Table 3.3.1 summarizes the advantages and disadvantages of direct SQL based
querying. It is impotant to note that the advantages and disadvantages of direct
SQL based querying cited in this project/report are based on uncontrolled
observations of a small group of novice/intermediate users and the opinions of the

author.

Table 3.1.1. Summary of SQL Advantages and Disadvantages

Advantages Disadvantages
Robust not intuitive
Can be simple command names and syntax to learn

level of difficulty of command is based

on the underlying database structure.

4.0 HUMAN FACTORS

As seen in the previous section, direct SQL based querying does not take into
account the human factors related to interactive applications. These factors include
an individual’s ability to perceive concepts, solve problems, make decisions, recollect,
and learn. "The remarkable diversity of human abilities, background, motivations,
personalities, and work styles challenge the interactive system designers."10 The
interactive interface provides the means by which an end-user will interact with an
application. Therefore, regardless of the abundance of functionality provided in an
application, if the user cannot understand how to use the application, or is
intimidated by the application, the application will not be successful. This brings
about another point in interface and system design. Generally, the designer is
thinking that the more functionality provided in a system, the easier it is to use. As
a result, the interface becomes more complex. Further, personal capabilities vary
and therefore, a system that is user-friendly to one person, may not be user-friendly
to another; pleasing everyone is virtually impossible. A designer is, however, more

likely to design a well received system if the design is centered around the user.

4.1 The User-Centered Design Process

User-Centered design (Norman, 1986) implies that the user is the focal point in
the interactive system design. The user-centered design process is an iterative
process as is the software development lifecycle, and the key to its success is the
user.

The first step is to understand what the user requires from the system. Once
an understanding has been obtained, an initial design of the system can be
formulated, and a prototype can be produced. It is the prototype of the interactive
interface which gives the user a clear understanding of the system and initiates the
iterative behavior of the design process.

A common way for a prototype to be presented to the user is in the form of a

usability lab. In a usability lab, the user interacts with the system and is studied

by an observer or a group of observers who analyze the user’s reaction to the
system. Quantitative areas such as time required to complete a task, the number of
keystrokes that are required, the number of errors that are generated, the number
of mouse clicks that are required, etc. can be used to evaluate the usability of a
system when compared to expected values. This data can be used as feedback as
changes are made to the interface to meet the user’s needs.

The usability lab not only allows the designer to analyze the user’s reaction to
the system but, it gives the user the ability to visualize what was requested and how
well the designer understood the request. This lends itself to the fact that the user
is not always sure of what he/she wants. Therefore, as the user becomes more
familiar with the system and what he/she wants, the user interface changes. And
since the interface may change many times, it becomes apparent that there needs to
be a means of separating (i.e. giving independence to) each major entity within the
software system; in particular, separating the interface from the functional
implementation. This would assist in a better design of the system interface
because changes are not directly tied to the underlying software. The result is easier
interface modification.

The idea of independence has been implemented with respect to DBMS’s and
the concept of data independence. Paralleling this concept is the User Interface
Management System (UIMS) and the concept of user interface independence or
dialogue independence. In DBMS’s, data independence is a major objective and can
be thought of as the ability of an application to be unconcerned with particular
storage structures or access techniques. Similarly, in UIMSs, the goal is to separate
the logical design of the user interface and the interface itself from the
implementation of the application.

Another prevalent entity used in the user-centered design process is the
Guidelines Document. This document is a means by which the user interface
architect defines the standards/principles that application developers are to follow to
ensure consistency in design across all products.

In all, a successful user interface design is based on a design process centered

around the system users. As discussed, this process is supported by usability labs,
UIMS’s, and Guidelines Documents. Ben Schneiderman refers to these areas of
support as pillars that rest on the foundation of controlled experimental research
and the theories and models of human-computer interaction. Figure 4.1.1 (from
Schneiderman, 1992) graphically depicts this concept.

Even when a design is centered around the user, there still must exist concern
for the method of presentation of the associated system interface. There are many
types of well designed interactive systems whose interfaces can be classified as:

forms based, menu driven, command driven, and direct manipulation oriented. The

/\

Successful User Interfaces

M

Usability Lab & User Interface Guidelines

lterative Testing Management Documents
| Systems

Al

Controlled Experimental Research

Theories and Models of Human-Computer Interaction

Figure 4.1.1. Three Pillars of a Successful Interface

direct manipulation oriented systems are very popular across all user levels as

discussed in the following section.

4.2 Direct Manipulation

The promise of direct manipulation as it relates to the user is that interactive
interfaces graphically match the way the user thinks about a problem and/or the
user’s work style. The actions are performed by manipulating icons or pressing
buttons. There are no hidden operations and no syntax or command names to learn.

Ben Shneiderman coined the term "Direct Manipulation" (see Shneiderman,

1992), and he focuses on three principles of direct manipulation:

" 1) Continuous representation of the objects of interest
2) Physical actions or presses of labelled buttons instead of
complex syntax
3) Rapid incremental reversible operations whose effect on
the object of interest is immediately visible™®
Shneiderman goes on to say that if these three principles are applied, it is possible
to design systems that have the following benefits:
" 1) Novices can learn basic functionality quickly, usually through
a demonstration by a more experienced user.
2) Experts can work rapidly to carry out a wide range of tasks,
even defining new functions and features.
3) Knowledgeable intermittent users can retain operational
concepts.
4) Error messages are rarely needed.
5) Users can immediately see if their actions are furthering their
goals, and if the actions are counterproductive, they can simply
change the direction of their activity.
6) Users experience less anxiety because the system is
comprehensible, and because actions can be reversed so easily.
7) Users gain confidence and mastery because they are the

initiators of action, they feel in control, and the system

responses are predictable."

Clearly, these are reasons to apply direct manipulation concepts to interface design,

particularly when the user group is of the novice/intermediate level.

10

5.0 EXISTING SYSTEMS
Today, there are many of applications that provide an alternative to direct
SQL based querying and in some cases, applying direct manipulation to the
interactive interface. This section describes three such systems and gives a

subjective evaluation for each.

5.1 Query-by-Example

Query-by-Example (QBE) was proposed by Zloof (see Zloof, 1975) as a means
of allowing the user to directly manipulate relations on the screen (Figure 5.1.1).
The user is presented with table skeletons and is able to make

Juery:
SKI-RESCRTS | NAME | CITY : STATE LIFTS | VERTICAL
P, P I NY I P. >1200
1 i i |
Response:
SKI-RESCRTS | NAME i CITY 1 VERTICAL
| BELLEAYRE | HIGHMOUNT I 1340
i GORE | NORTH CREEK | 2120
| HUNTER I BRUNTER {1600
| SKI WINDHAM | WINDHAM I 1580
| WHITEFACE | WIMLINGTON : 3216

Figure 5.1.1. Zloof’s Query-by-Example

literal entries in the tables as opposed to writing linear statements. The user of a
QBE system can also specify fields to be printed, as well as specify variables to link

between relations.

11

5.1.1. Commentary

Query-by-Example is a good first step towards the application of direct
manipulation. However, it overlooks many of the human factors that should be
considered when designing the interface.

First, the user’s ability to memorize the keywords used to supplement the
direct manipulation style is a major factor (i.e. remembering that the code ’P.’ is
required to print the attribute or field). This should not be a factor in the user’s
ability to efficiently use an application; however with QBE, it is necessary.

Second, because the display is text-based as opposed to graphical, the goal of
being immediately intuitive is never reached. When a user sits down in front of a
relational table skeleton, it is not intuitive that entering information into that table
is equivalent to defining retrieval commands.

Finally, as the user’s need to perform more complex functions increases, so
do the associated operations. The goal of hiding complex functionality is not
achieved because the user is required to have knowledge of the associated syntactic

structures.

5.2 Visual Query Language
Most commercial RDBMS’s provide a 4GL database access application
bundled with their toolsets. Such RDBMS’s include, but are not limited to, Oracle,
Ingres, DB2, Rdb, and Sybase.
Visual Query Language (VQL) is a database front-end bundled with Sybase’s
SQL Toolset. It provides a menu-based method for generating and executing SQL
queries. The VQL window is shown in Figure 5.2.1.
Just about every operation in VQL requires a menu. The VQL menu bar
contains the following actions:
Use lets the user choose tables and construct expressions and
functions.
Add lets the user add columns and expressions to queries.

Open lets the user display the information in a window so that

12

a query can be reviewed and/or edited.

Clear lets the user erase one or more query parts, the query, or
the query and all of the tables displayed in the VQL window.
Go To SQL lets the user add to or complete a query in SQL.
Run Query lets the user run the query and display, print, or
save the results.

Edit lets the user modify the tables and expression lists in the
VQL window.

As apparent from the menu bar description, there are several options

vaL
§ U dd Qren Cleor (o ToSU' B Qury Edit

SOL Statesent

Figure 5.2.1. Visual Query Language Window

available under each menu selection, some with several levels of sub-menus.
As queries are generated, they are displayed in the bottom area of the screen
labelled SQL statement.

5.2.1 Commentary

VQL is an improvement over QBE in that VQL saves the user the effort of

having to memorize any syntax or keywords, and it eliminates the need to type the

13

same words over and over again. However, what VQL makes up for in terms of user
memory requirements, it gives up in deep levels of nesting of menu options. Such
levels of nesting can cause the user to get lost in menus. Further, it challenges the
user to remember where a particular menu option lies if the user doesn’t want to
have to traverse the menu hierarchy to find it.

Another .problem with VQL is that it prevents the user from utilizing the
mouse to the fullest. Every single operation requires a mouse click. It does not
suffice to slide the mouse over the option the user wants and release the mouse
button, the user must click the mouse. This is extremely cumbersome since there
are so many levels in the menu hierarchy, and the user must click through every
step. Choosing not to use the mouse at all may be faster. There are also times
when the user must use the keyboard because the mouse does not provide an
acceptable response . This violates the rule of consistency within the interface. It
should be the user’s choice to switch between the keyboard and the mouse when
entering information, not something the user is forced to do by the system.

Another limitation of VQL is that the user can’t create sub-queries (nested
queries) with it; the user is forced to use joins.

And finally, as new windows are opened in VQL, the underlying windows are
visually lost. This, in conjunction with the deep menu hierarchy, can get
confusing, causing anxiety in the user. This is something direct manipulation can

reduce, if not alleviate.

5.3 Graphical Query Language

Graphical Query Language (GQL) is a custom application and uses the
concept of a data model to represent the target database. The querying
environment is actually presented to the user when the desired data model has been
indicated. Figure 5.3.1 shows GQL’s data model window. The icons represent
database tables, and the diamonds represent the relationships between those tables.
The "Executive Buttons" operate on pre-defined queries. By selecting the report

icon, the user can indicate to GQL that they want to generate a report in a pre-

14

defined format. The executive buttons can be defined by the user so that common
operations can be performed by simply pressing the appropriate button.

When generating Ad Hoc queries, table objects can be selected by double-
clicking on the table icons. GQL then displays another window to the user which
shows all of the attributes in the active database table. The user now has the ability
to specify the attributes he/she wants to appear in the Ad Hoc query. When an
attribute is selected, it changes to boldface and a bullet appears in front of it. Once
the attribute is selected, the user can specify the aggregate function to be applied to
it, the conditions to be applied to it, whether or not the attribute will be used in
grouping the output, and what role the attribute will play, if any, in sorting the
output. Figure 5.3.2 shows the GQL attribute window.

15

Ornaments

d hoc Queries

salesperson works of

Ardye "\

‘GQL for W'mdowsl
Version 3.0

Executive Bullons

Relationships

Figure 5.3.1. GQL Data Model Window.

Figure 5.3.2. GQL Attribute Window.

16

The parent window of GQL is a window with several menu options across the
menu bar at the top of the window. The menu options provide the user with the
ability to manage such things as the system windows, generated queries, and report

specifications.

5.3.1 Commentary

Graphical Query Language (GQL) is an excellent example of applying direct
manipulation to relational database access operations. It far exceeds the efforts of
QBE and VQL; however, windows are used to allow the user to specify and/or view
every operation. This results in numerous windows all over the screen. This can
get confusing when the user needs to see several things simultaneously.

Another area of concern with GQL is the amount of effort required to
customize the application interface to several different database systems. The data
model representing the target database is not only a graphical view of the database
structure, but it is the means by which the user indicates what tables he/she wants
to use when generating Ad Hoc queries. It follows that the underlying association
between query generation and the visual data model is very tightly coupled. At first
glance this seems to be appropriate; however, think about the possible need of a
DBA to add a table to a database. If this new table is not reflected in the data
model, the user doesn’t have access to it. This then limits the users ability to access
database data. And, considering the effort required in designing this graphical
representation, the time required to bring the application up to date is fairly
significant.

The ability to perform join operations on database tables can get complex
because of the number of windows involved in creating queries. If the Data Model
window is visible there isn’t much of a problem; however, if the Data Model window
manages to get nested under many layers of windows and the user needs to specify a
table join, the process can become exhaustive.

Lastly, GQL makes it very inconvenient to transfer between databases. This

is going to be a major factor since many if not all of today’s RDBMS’s allow the user

17

the ability to create several different databases within the DBMS. Hence the desire
to utilize different databases may arise, and the application should allow for this.
With GQL, the user must exit the system and upon re-entry specify the new
database he/she wants to be the target database.

18

6.0 PULLING IT ALL TOGETHER

Data access is a crucial operation. It is the means by which users are able to
retrieve, view and manipulate system data. And, since software systems are data
based, and many of the users interacting with these systems are not experienced
programmers, the need also arises for a simplistic and intuitive means of accessing
the data. More specifically, in many systems that are based on data, the data is
stored in and managed by a DBMS; the most popular being the RDBMS. And the
standard that is used to provide access to RDBMS data is SQL. Therefore, the
question arises as to whether direct SQL based querying provides the
novice/intermediate user with an easily understandable means of accessing RDBMS
data. The answer is no because although SQL can be simplistic it is not intuitive
and it’s complexity is tightly tied to the underlying structure of the database. Since
many of today’s systems are large and complex, the SQL retrieval statements are
also complex. It therefore follows that there needs to be an alternative to direct
SQL based querying. But, what techniques needs to be applied to ensure that a
proposed alternative addresses the targeted problem area? The answer is the
concepts of HCI. That is, understanding that the means by which an individual
communicates with a system is provided by some type of interface, and that the
human factors that are tied to interactive systems are directly related to the
capabilities of an individual. Everyone’s abilities are different, so how does a
designer determine the best way to have such diverse individuals interact with a
particular system? The answer is using a user- centered design process. If the
design of the system is such that the actual user or users are the center of focus, the
designer doesn’t get caught up in attempting to please everyone, but he/she does
focus on pleasing the user who is the most important aspect of the system and the
system design.

The next question that arises is what techniques should be applied in the
formulation of the interface? Direct Manipulation has become the overwhelming
choice of designers because of it’s ability to make the user feel as though they are in

control of the system, as opposed to the system being in control of them.

19

That said, are there any systems in existence today that attempt to address
the targeted problem area? The answer is yes, and the goal in designing an
alternative to direct SQL based querying, as it relates to these systems, is to

improve on the inadequacies of them.

20

7.0 A PROPOSED SYSTEM DESIGN

7.1 Introduction

This section will walk through the design of a system which is a proposed
alternative to direct SQL based querying. The system is called QUERI-EZ. The
interface is presented, as well as the underlying software organization. In order to
logically represent the steps taken in the software design, structured design
techniques have been applied. These techniques are by no means meant to be
exhaustive; however, they do serve as a clear means of describing the evolution of
QUERI-EZ.

Short format stubs have been taken from suggested document formats
(General Electric Company, 1986) to produce a System Specification and a Software
Requirements Specification, each of which has been modified to highlight the

features of QUERI-EZ, in terms of system operation.

7.2 System Specification
7.2.1 Scope
This System Specification (SS) indicates the overall functional and

operational characteristics of the QUERI-EZ system.

7.2.2 Requirements
This section contains a descriptive definition of QUERI-EZ’s functional and

interface requirements, as well as the characteristics of the system.

7.2.2.1 Functional Description

QUERI-EZ is a Graphical User Interface (GUI) based application which shall
be used to provide an intuitive means of querying a database. It is not intended to
be a data manipulation application and shall, therefore, be designed to act as a
supplement to a larger database system.

QUERI-EZ shall allow the user to input data by means of a mouse and a

keyboard. Output shall be available to the user on the display screen or an on-line

21

printer. Figure 7.2.2.1.1 provides a conceptual view of QUERI-EZ.

Figure 7.2.2.1.1. Conceptual View of QUERI-EZ

7.2.2.2 Interface Definition

QUERI-EZ is not intended to be a replacement for SQL. However, it shall
provide an alternative for interfacing with SQL directly when querying a database.
It shall run on top of an Interactive SQL (ISQL) application. Figure 7.2.2.2.1
depicts the way QUERI-EZ shall interface with other system elements.
7.2.3 Characteristics

QUERI-EZ shall be run in a windowing environment and must interface with
a SQL based relational database. The user group to which QUERI-EZ will be

focused is the novice/intermediate user group.

22

ASCII Text File

i

ASCII Text File

Reques

Figure 7.2.2.2.1. QUERI-EZ interface/operation.

23

7.3 Software Requirements Specification
7.3.1 Scope

This Software Requirements Specification (SRS) establishes detailed
requirements for the design of QUERI-EZ.

7.3.2 Functional Requirements
This section describes the functional requirements of QUERI-EZ.

7.3.2.1 Description of Function
The following list specifies the functionality QUERI-EZ shall provide. The
system shall :
1) Provide the user with the ability to generate simple queries.
2) Provide the user with the ability to apply mathematical expressions to
output columns to retrieve computed values.
3) Provide the user with the ability to place conditions on queries.
4) Provide the user with the ability to order rows of output by column(s).
5) Provide the user with the ability to group rows of output by
column(s).
6) Provide the user with the ability to join two or more tables together.
7) Provide the user with the ability to specify the following aggregate
functions: COUNT, MAX, MIN, SUM, and AVG.
8) Provide the user with the ability to construct conditions using wild
card characters for string matching.
9) Provide the user with the ability to generate subqueries with multiple
levels of nesting (complex queries).
10) Provide the user with a two mode results window which shall allow
the user to tell the system whether the output fields will be formatted or
tabular.
11) Provide the user with the ability to rename output fields.

12) Provide the user with the ability to retrieve existing queries.

24

13) Provide the user with the ability to save queries.

14) Provide the user with the ability to view generated SQL.

15) Provide the user with the ability to clear results from the results screen.
16) Provide status messages to the user.

17) Provide the user with the ability to quit the creation of a query and

start over without having to restart the system.

18) Provide the use with the ability to switch between databases without

having to exit the system.

7.3.3 User Interface Requirements

The following section describes the user interface.

7.3.3.1 Description of Interface

The QUERI-EZ user interface shall be a graphical user interface. It shall be
prototyped using a User Interface Management System. The interface shall be
simplistic and intuitive, and it shall allow the user to perform all of the functions

listed in section 7.3.2.1.

7.3.4 User Requirements
The user shall be able to provide input to QUERI-EZ using the keyboard
and/or the mouse. Further, the user will not be required to memorize syntax or

command names.

25

7.4 System Design

The design of QUERI-EZ is presented in two phases: (1) the User Interface
Design, and (2) the Software Design. As required, the proposed design adds two
additional layers on top of ISQL. These layers provide the user interface and the
processing of the data received from that interface to be sent to the ISQL

application. Figure 7.4.1 shows the current concept versus the proposed concept.

7.4.1 User Interface Design
The user interface design includes a presentation of the interface based on
the system and software requirements specifications, as well as scenarios, state

transition diagrams, and the corresponding user action notations.

7.4.1.1 Interface Presentation

Figure 7.4.1.1.1 shows the interactive interface of QUERI-EZ. There are four
major areas to the interface: (1) the Main Menu, (2) the Query Generator Window,
(3) the Results Window, and (4) the Data Structure Window.

Upon first entering the QUERI-EZ application, the only thing available to
the user is the main menu. The "HELP" button provides a scrollable document
which explains how to use the system. The "EXIT" button removes the user from
the QUERI-EZ application. The "QUERY" button actually starts providing the user
with functionality. When pressed, it initiates the display of the "QUERY
GENERATOR" and "REPORTS" windows.

The "QUERY GENERATOR" window is where the user selects the
appropriate database, database tables, and table column names, as well as
constructs expressions and functions. It is based on the hierarchical structure of
database entities. The "QUIT" button near the bottom of the window allows the
user to stop the creation of a query, and the "RETRIEVE" button is used to retrieve
existing queries. The status bar at the bottom of the window is the application’s

way of keeping the user informed about the queries being

26

au
nna)g J3le] pasodosg Jo map femdaduo) 1p L andiyg

r))

27

JdejINU] 1S} ZA

&

H4N0

1L dandiy

AAOTdNA
svd

SASSV"

ST

1)

28

generated.

The "RESULTS" window is where the results of the user’s queries are
displayed. The user can change the mode of this window using the "TABULAR" and
"REPORT" buttons near the top of the window. "TABULAR" is the default mode,
and in this mode the user is able to change the name of fields for output purposes.
The layout of the results will be tabular and will not be modifiable. However, by
placing the window in "REPORT" mode, in addition to changing the field names, the
user can format the results as desired. Simply by using the mouse to select a field,
and dragging it to the appropriate area on a screen, the user is able to dictate the
layout of the results.

The buttons near the bottom of the results window apply to the query results
and/or the SQL which created the results. The "SAVE" button allows the user to
save a SQL query that produced the results displayed in the results window. The
"SHOW SQL" button allows the user to view the generated SQL. The "CLEAR"
button allows the user to clear the results window, and the "PRINT" button allows
the user to print the results in the "RESULTS" window to a printer. The "DO IT"
button initiates execution of a SQL statement. Finally, the status bar at the bottom
of the window gives the user status on the results of the current query.

The "DATABASE STRUCTURE" window is a scrollable window that displays
the current structure of the active database. When the user enters QUERI-EZ and
selects the "QUERY" button, this window is not yet displayed. It is first displayed
when a database is selected in the "QUERY GENERATOR" window. Its contents
change as table names are selected to show the relationships a particular table has
to other tables in the database.

Any three of the windows can be closed at any time. However, closing the
"QUERY GENERATOR" window is equivalent to exiting out of the system because
nothing can be done without it. In addition, each window has maximize and
minimize features so that they may be closed to icons or enlarged to engulf the

entire work space.

29

7.4.1.2 Scenarios

A scenario is a series of interactive screen states that show the way the
display looks as the user performs various functions. In this section, three scenarios
will be shown, and a sample database is defined to make the scenarios more

realistic.

7.4.1.2.1 The "Suppliers-Parts" Database
Figure 7.4.1.2.1.1 shows the E-R diagram for the "Suppliers-Parts" database (Date,
1991), and Figure 7.4.1.2.1.2 shows the structure of the tables of the database.

Suppliers-Parts Database

Figure 7.4.1.2.1.1. E-R Diagram for Suppliers-Parts Database

30

S S# SNAME STATUS CITY sp S¢ P! QTY
S1 Saith 20 London S1 P1 1300
$2 Jcnes 10 Paris 81 P2 200
S3 Blake J0 Paris S1 P3 400
S4 Clark 20 London S1 P4 200
S5 Adanms 30 Athens S1 PS 100
S1 P6 100
- S2 P1 300
P P$¢ PNAME COLOR WEIGHT CITY S2 P2 400
= eceoee S3 P2 200
Pl Nut Red 12 London S4 P2 200
P2 Bolt Green 17 Paris sS4 P4 300
P3 Screwv Blue 17 Rome 84 PSS 400
P4 Screw Red 14 London
PS5 Cam Blue 12 Paris
P6§ Cog Red 19 London
Figure 7.4.1.2.1.2. Suppliers-Parts Database Structure.

7.4.1.2.2 Scenario 1: Creating a Simple Query

This query involves creating a single level query and formatting the results.

Figures 7.4.1.2.2.1a through 7.4.1.2.2.1g show the stages the interface goes through

as the user implements this task.

31

‘pakerdsip 103{qo

ATuo a3 st nuaw urew 9y ‘ZF-TYNQ) SIAIUI JISN Y} UIYAA “NUdW uiew Z4-TYAN0 1T OHBUIS BT 77 ['p'L NI

32

"sauanb o1erouad 01 mFaq ued 1asn ay) pue ‘pakedsSIp are SMOPUIM ISAY) ‘NUSW UTBW

a3 woiy uondo XJYANO,, Y} S199]38 1350 9y} UYM “SMopuim THOJAY PUE JOLVHANAD AYAND AT T Ty L dandiy

!

JRVEVERETTEVEINVTE ¥V

&:S.mﬁ
AOIS1D ‘

33

"aseqelep 9y} ur sa[qel Yyl Jo e Suowe sdiysuonedx
A Suimoys weiderp Y-g ue Yiim pake[dsip St mopuIm 2INIONLS BIRP) e oy .
e1ep 193181 93 SuIp[Oy Iseqelep ay) 19313s 03 st A1anb ¢ Suneiouad ur dais 1S1y Sy [, ‘UOHIIAS Iseqele(] I T L 'Y L N1

[3

Pa109]as ST AWBU ISEQEIEP B UIYM JBY) OTION

PN

Ad 408D

A HAQHO ;
INI0D |

“FUVAAO

AAAOTdAT
_ svd

34

31qe1 4§ 2y woy uwnjod X 1.0
91 109[9s 03 uaxe) st dais swres Ay I, "sasned WO Pue IDATIS 241 paierouad sey mou 1osn 9y, ‘sesodind indino 105 mopurm

S1[NSaX 9y} Ut paKe[dSIp SI T ‘PAId[as ST SWBU UINJOD AY) UIY A "9[qe) PAJO3[3s Ay A[uo 0} sdiysuone]al ayl moys o3 parepdn
SI MOPUIM 2INJONAS BIRP Y] ‘Q[qEB) PIIISIP Y} SIOJ[AS JISN Y] USYAA "UOI}II[IS dWIBU ULLNJOD PUR dqRL, ‘P T T I b L 21N

4d10¥Y
4 Y4qH0
IN10D |

A
LY

35

asne[d LDHTAS TOS Y Ul APUaLIND I8 Jey) SUWIN[OD WOIJ 19[S
o} Anfiqe 9y sey Jasn 9y1‘Aq dnoid 01 suwnjod oy Sunos[as UsYA ISNeP (A4 dNOUD,, Y) SWIZi) 3¢ T T'H L NS

36

apowl [OJHY urind sem mopuim ay3 A1anb

sty u "A1onb e Jo uonerauag ay) Aentul A3y) 210J3q MOPUIM Y} JO IPOW Y] 138 01 1SN Y1 SMO[[8 ZH-THHAND “SINS2I Y] JLULIO)

0} I9pI0 UI Sp[ay Indino ay3 aa0w 01 AN[Iqe 9Y) SBY Jasn Y, "MopuIM S)[nsat 3y} u jndno Sunewnnoy] Je 7 7 1 L 33

LN10D
TAVAIAO!

94 O‘,E@:m_

37

"usmoys are £1anb srdws ayj Jo synsar Ay, JuawAL)s [OS parerouald

3} 2INd3X3 01 Apear a1k A3 uoym

L1 O, S199]3S 1asn Y, *S)NSII Y}1A MOPUIM PIJeurio ‘3 aangi

E

AR

b3

b
R
AAAARRA N ARRARANARE,

o

|3

GO0 AP0

THAOTdNA

e e R e

A A

38

7.4.1.2.3 Scenario 2: Retricving an Existing Query
This scenario will involve retrieving and executing the query generated in the

scenario of section 7.4.1.2.2.

Figures 7.4.1.2.3.1a through 7.4.1.2.3.1b show the stages the interface goes through

as the user implements this task.

39

W)SAS 9y paralud Isnf 1SN Y} JBY) SIAUNSSE IIBIINUL Y} JO MIIA SIY T, "peo] 01 Juem Koy Kxanb oy SunySiySiy pue ‘vonng

Suraainar oy Surssaxd £q sauanb Funsixa 2AaLna1 03 9[qe St 1asn Ay I, *A1anb Jurysixa ue Juiaduapy

ey

4

.

(4

.

I

"p*L N1y

A 410¥L
A4 ¥AAHO

SV
SASSY

40

"K1anb papeo[9yl 21n29X3 01 MOpUTM
SINSIY dyi ur uonnq , L10d,, Y1 193[3S MOU UED JASN Y, "[eAdILI}dI £13nb 0) dsuodsas ZF-TYAND AT T 1Y L d4ndig

e

Add10¥0
A HIA¥O

IN100
TAVAINO)

'NNN.'.J‘AvM’Ag

ZEITETUERIRVEVTRVEIC PR e Prrrs

AN AN
£

Bt SUAITd NS

41

7.4.1.2.4 Scenario 3: Creating a Complex Query

This scenario will involve creating a query using multiple levels of nesting,

viewing the generated SQL, and saving the SQL statement for future use.

Figures 7.4.1.2.4.1a through 7.4.1.2.3.1d show the steps the user would take in
generating this query.

42

‘pareadar are sdais paquiosap A[snoraaxd

oyl uaWARIS “TOS 9y} JO I9PUIRWIAL 3Y) 1eIUT O, ‘uonng ,NO,, 24 Sunoajas £q pasopd 3q ueds mopuim uostredwod oy
‘pa109]as st 101e13do SI.SIXH LON,, 2l 20UQ 11 JO 9PIS ISYID UO SudwleIs [DFTHAS 241 are 101e1ado | S1.SI1XH LON,,
ay1 Joj spuerado ay) ‘K1anb paisau & SI SIY) 90UIG "SOLIBUIIS SNOTAAID Y} UL SB UIBS 3Y) 9T SOUIRU UINOD PUB ‘9[qE)
aseqelep ayi jo uoneoyroads ay) ‘Aranb xajdwos styy Juneao ug asnepP ANAHM,, SUIAYIAAS e 7 7 Tp"L 9andiy]

3

. >Oq._mﬂam”
+)N10D k L E
um».crrm;] SHASSVID
K SHAVTLdir

A R T e S R S

43

pake[dsIp a1 S3[NSAX Y} puB ‘MOPUIM SI[NSAI Y} UL UOKING

PaINOIX3 ST IQuawAeIS TOS 2Y1 Jo uonerduasd oyr saya[dwod 1asn 9y 3duQ *A19nb e Junndaxy

q¢

arrHLM OQ»@

(4

oy Surssaxd £q

[4

"Tp°L dan3iy

§
3

A4d410¥8D
A ¥AQAO

INI0D
YVdIAOD

JT4VL

AOTdIKA
Svd
e

ASVAVLVa

4

‘uonnq "10S MOHS.,
oY) 3unods[as £q TOS Y1 MIIA URD 135N JY) ‘paterauad uaaq sey A1anb oy 20uQ TS PIreIdUIT SUIMIIA I¢ T T TP L 2]

T

((#dd = #d ANV
#S'S = #S TYTHM
dS WO

» 10d73S)

SLSIXd LON HddHM
d NO¥d
» 1DITAS)

SLSIXd .LON HJdHM

S WOdd

HINVNS 1OdTdS

T0S @ALVIANAD

A4.d10¥D
: Ad 4AQYO
IN10D
FAVANOD
4dX3

45

uonnq (HAVS,,

oy 3uno9fas £q TOS 2y SABS UBD IIsn 3y ‘pajeIauad uaaq sey Axanb ayy 95uQ TOS PIeIdudd Suiaes peTT T b L NS

dweN £19n)

A d10¥9
A 4AQYO

LN10D
JAVdINOD

46

7.4.1.3 State Transition Diagram

Normally, there would be a state transition diagram for each scenario.
However, in the case of QUERI-EZ, the interface is very simple, and most actions
are fairly repetitive. Therefore, the various states for the application, at any one
instant in time, can be depicted in one diagram as shown in Figure 7.4.1.3.1. Each
"bubble" represents a state of the interface, and the arrows represent the user
action/selection which caused the state change. A state change is defined as any

major alteration in the appearance of the QUERI-EZ interface.

47

“OK”

‘RETRIEVE”
STABLE NAME”

“HELP” “QUIT”

Li OK”

“QUERY.

“COMPAR
FCT”

“COLUMN_
NAME”

FRINT,
CLEAR,
DOIT
TABULAR,
REPORT

Figure 7.4.1.3.1. QUERI-EZ State Transition Diagram.

7.4.1.4 User Action Notations

The user action notation is a "notation for behavioral representation of
asynchronous, direct manipulation interface designs."” It combines notation for
representing user actions, interface states, interface feedback, and computation
connections to describe the user’s interaction with the interface and the interface
responses to those actions.

Table 7.4.1.4.1 (Hartson, 1990) provides a summary of the UAN symbols.
Only a select group of the provided notations are used in the specifications for the
QUERI-EZ interface. A notation is provided for each of the three scenarios
presented in Sections 7.4.1.2.2 through 7.4.1.2.4.

Table 7.4.1.4.1 Summary of UAN Symbols

A - Meanung
- mosve tne cursor
X the context of object X. the “handle” by which X i1s manipulated
~- X, move cursor :nto context of object X
~x move the cursor to (arbitrarvi potnt r. » outside any object
~'x vin A move the cursor to ‘arbitrarv) point within object A
~XinY] move to object X within object Y re.g.. {OK _icon in dialogue __box]|»
‘X, ~ move cursor out of context of object X
v depress
A release
Xv depress button. key. or switch called X
Xa release button. key. or switch X
Xav idiom for clicking button. kev. or switch X
X abe” enter Literal string. adc. via device X
X vz enter value for vanable xrvz via device X
o grouping mechanism
. iterative closure. task is performed zero or more times
- task is performed one or more times
v enclosed task is optional (performed zero or one time)
AB sequence: perform A, then B (sameif A and B are on separate. but adjacent. lines)
OR disjunction. choice of tasks (used to show alternative wavs to perform a taskt
& order independ ¢ d tasks must ail be performed. but relauve order 13
immatenal
- interieavability: performance of connectad tasks can be interieaved in ime

i concurrency: connected tasis can be performed simuitaneously
task interrupt symbol. used to indicate that user may interrupt the current task at
this potnt (the effect of this interrupt 13 specified as well. otherwise 1t s
undefined, 1.¢.. as though the user never performed the previous actions)
v for all

¢ separstor between condition and sction or feedback
Feedbacx Meaning
highlight object
deh:ighlight object
same as '. but use an alternative highlight
bhink highlight
A blink highlight n umes
a x. 3 at point x. v
@ X at object X
dispias (X0 dusplay object X
erase X erase object X
N>~ object X follows 1s dragged bv) cursor
N>~ object X 13 rubber-banded as its follows cursor

sutiine + X0 outline of object X

49

Table 7.4.1.4.1 shows that the way to represent clicking a button, key, or switch of a object
X is XVA. In the following UANS, the object is the mouse and is represented by the symbol
M. Therefor clicking the mouse is represented as MVA,

7.4.1.4.2. UAN Describing Scenario: Creating a Simple Query

In this scenario, the user is going to create a query that gets the part number and the total
shipment quantity for that part, for each part supplied.

When first entering QUERI-EZ, the main menu is displayed, and in order to generate queries,
the user must pull up the QUERY GENERATOR and RESULTS windows by selecting the
QUERY button.

Task: Select “QUERY"”’ main menu option
User Action Interface Feedback Interface State Connection to Computation

~[QUERY_menu_item]MV* | QUERY_menu_item-!:
QUERY_menu_item!

display(QUERY_GENERATOR_
window)
display(RESULTS_window)

Task: Select mode of Results window

User Action Interface Feedback Interface State Connection to Computation
~[REPORT_button in display (report mode in status area) create text file for fiormat
Results window]MVA

Now the user needs to select the database to use in generating the query.

Task: Select the “Suppliers-Parts™ database

User Action Interface Feedback Interface State Connection to Computation
~[Suppliers-Pans_database | Supplier-Parts_database_item-!: selected = Supplier-Parts_ ASCII text file updated with
_item in Query Generator | Supplier-Pants_database_item! database_item database name
Window]MVA Vdatabase_item’!:

Vdatabase_item’-!
display(Database_Structure _
Window]
display[Supplier-Pans_tables]

Task: Select table “SP”

User Action Interface Feedback Interface State Connection to Computation
~[SP_table_item in Query | SP_table_item-!: selected - SP_table_item
Generator window]MVA SP_iable_item!

Viable_item’!:

Vtable_item’-!

display (SP_table_relationship in
Database Structure window)
display (SP_table_col_items)

50

Now the column names are selected.

Task: Select table “Part Number (P#)”

display(P#_col_item in results
window);

User Action Interface Feedback Interface State Connection to Computation
~[SP_table_item in P#_col_item-1: selecetd = P#_col_item SELECT and FROM clauses
Query Generator P#_col_jtem! updataed in ASCII text file
window]MVA col_item’!:

col_item’-!

Task: Select the “QTY™ column and use the SUM function on it

display (Sum applied in status area)

User Action Interface Feedback Interface State Connection to Computation
~[QTY_col_item in QTY_col_item-!: selected = QTY_col_item SELECT Clause wriiten to text
Query Generator QTY_col_item! file
Window]MVA Vcol_item'!:
Veol_item’-1
display (QTY_col_item in Results
window)
~[SUM_fct in Query SUM_fct-1:
Generator window]MVA | SUM_fa! selected = SUM_fet Update SELECT Clause
Vfunction'!:
Vfunction’-!

Now the user has to indicate that the results are to be grouped by part number.

Task: Select Group from the function list

User Action Interface Feedback Interface State Connection to Computation
~[GROUP_BY _fet in display (pulldowm_menu_list)

Query Generator ‘

window]MVA

~[P#_col_item in pulldowm display (“Group by Status” in selected = P#

menu_list]MVA Status area)

~[GROUP_BY fct i ;

Q[uery Gener alorc‘ n erase (pulldowm_menu_item ASCII file updated
window]MVA

51

Task: Format Results

User Action Interface Feedback Interface State Connection to Computation
~[P#_col_item in Results P#_col_item-1: selected = P#_col_item
windo w] I:/IV P#_col_item!
col_item’!:
col_item’-!
~[x,y in Results .
window]* outline-1
MA .
P#_col_item-! x,y coordinates of P#_col_item

updated to format file.

This task is also completed for the QTY column.

7.4.1.4.2 UAN Describing Scenario: Retrieving an Existing Query

In order to retrieve an existing query, the user must select the”’RETRIEVE” button in the
Query Generator window.

Task: Retrieve “Query_JB"”

list]MVA

User Action Interface Feedback Interface State Connection to Computation
~[RETRIEVE_button in display(Query list)
Query Generator
window]MVA
~[QUERY_JB_item in Query_JB_item-1: selected = Query_JB_item
Query list]MVA Query_JB_item!
VQuery_item'1:
VQuery_item’-!
~[OK_batton in Query erase (Query List)

retrieve Query_JB_file

display (“query loaded” in status
arca

Task: Execute “Query_JB"

User Action Interface Feedback Interface State Connection to Computation
~[DO_IT_button in ASCI file sent to ISQL
Results_window]MVA

display (Query Resulis)

52

7.4.1.4.3. UAN Describing Scenario: Creating a Complex Query

When first entering QUERI-EZ, the main menu is dis
queries, the user must pull up the QUERY GENERA

laged, and in order to generate
OR and RESULTS windows by

selecting the QUERY button. As with scenario 2, it is assumed that the
user as already entered the application.

The user needs to select the database to use in generating the query.

Task: Select the “Suppliers-Parts” database

User Action

Interface Feedback

Interface State

Connection to Computation

~[Suppliers-Parts_database
_item in Query Generator
Window]MVA

Supplier-Parts_database_item-!:
Supplier-Parts_database_itemn!
Vdatabase_item"!:
Vdatabase_item’-1
display(Database_Structure_
Window]
display[Supplier-Parts_tables]

selected = Supplier-Parts_
database_item

ASCII text file updated with
database name

Task: Select table “S™

display(S-table_col_items)
display(S_table_relationships in
Database Structure Window)

User Action Interface Feedback Interface State Connection to Computation
~[S_lable_ilem in Qucry S_lable_i[e;n-l: selected = S_mble_itcm
Generator Window]MVA | S_table_item!

Viable_itemn’!:

Viable_item’-!

Now the user selects the name of the table that they want to select columns from.

Task: Select the “SNAME"

column

User Action

Interface Feedback

Interface State

Connection 1o Computation

~[SNAME_col_item in
Query Generator Window]

M

SNAME_col_item-!:
SNAME _col_item!
Veol_item’!:

Veol_item’-!
display(SNAME_col_item in
Results window)

selected = SNAME _col_item

FROM and SELECT clauses
added to the ASCII text file

Since the user needs to know the names of suppliers, the SNAME column needs to be
selected to indicate that it is part of the output.

Task: Select the “SNAME” column

User Action

Interface Feedback

Interface State

Connection to Computation

-[SNAME_col_item in
IQuery Generator Window}
IMVA

SNAME_col_item-!:
SNAME_col_item!
Veol_item'!:

Veol_item’-!
display(SNAME_col_item in
Results window)

selected = SNAME_col_item

FROM and SELECT clauses
added to the ASCII text file

53

Since the user is asking for suppliers, such that there doesn’t exist a part that they do

not supply, a nested query must be formed with multiple levels. The user can indicate
the conditions by selecting the comparisons from the function list, and then selecting
the “NOT EXISTS” operator from the comparison window.

Task: Select the “NOT EXISTS" operator

display(compare_Window)

User Action Interface Feedback Interface State Connection to Computation
~[compare_fct in Query compare_fct-1: selected = compare_fct
Generator window]MVA | compare_fct!

Vfunction'!:

Vfunction’-!

~[op_pulldowm_menu
in compare
window]MVA

display(pulldown_menu_list)

~[NOT_EXISTS_op in
pulldowm_menu_list]MV4

NOT_EXISTS_op-!:
NOT_EXISTS_op!
Voperator'!:
Voperator'-!

selected = NOT_EXISTS_op

~[OK_button in compare
window]MVA

erase(compare window)

WHERE clause added to ASCII
text file

Nest level incremented

Now the selection from the parts table needs to be done. This can be done by
repeating the tasks performedabove for selecting the table and column names.
The same is true for the last portion of the SQL statement.The only thing left to
do is specify the WHERE clause.

Task: Generate the condition where the supplier and part numbers in the “SP"table are equal to the corresponding supplier and
part numbers in the suppliers and parts tables, respectively.

~[AND_button in compare
window]MVA

User Action Interface Feedback Interface State Connection to Computation
~[compare_fct in Query compare_fct-1: selected = compare fct
Generator window]MVA compare_fct!
Vfunction'l:
Vfunction®-!
display(compare window)
Compound Stmt Clause:

~[left_operand_field in
compare window]MVA

Cursor!!

left_operand_field “S#”

54

Task: Generate the condition where the supplier and part numbers in the “SP"table are equal to the corresponding supplier and
part numbers in the suppliers and parts tables, respectively. (Con't)

User Action Interface Feedback Interface State Connection to Computation

~[op_pulldown_list in display(pulldown_menu_list)

compare window]MVA

~[equal_op in pulldown_ equal_op-1: selected = equal_op

menu_listtMVA equal_op!

Voperator'!:
Voperator’-!

~[right_operand_field in

compare window]MVA Cursorl!

right_operand_field “S.S#"

. WHERE clause added to ASCII
~[OK_button in compare indow) text file
window]MVA erase{compare window
This task is repeated for the compound WHERE clause.
Task: Execute SQL statement
User Action Interface Feedback Interface State Connection to Computation
~[DO_IT_button in Results ASCI text file updated, closed
Window]MVA and sent top ISQL
display (Query Results)

Task: View generated SQL
User Action Interface Feedback Interface State Connection to Computation

~[ShowSQL_butlon in display (SQL window)

Results window]MVA

~[OK_button in SQL Cursor!!

window]MVA
Task: Save generated SQL
User Action Interface Feedback Interface State Connection to Computation

~[Save_button in Results
window]MVA

display(save window)

~|[filename field in Save
window]MVA

cursor!!

filename field “Query_JB”

~[OK_botton in Save
window]MVA

erase(save window)

query saved to file Query_JB

55

7.4.1.5 User Interface Verification/Evaluation

As discussed in Section 4, in order to determine if the user is comfortable
with the system and in particular, the system interface, a prototype of the user
interface is presented in the form of a usability lab. This section describes the way
in which the usability lab will be organized to evaluate QUERI-EZ.

Evaluating the user interface requires the generation of Benchmark Tests, a
Usability Specification, and a Subjective Evaluation, each of which is utilized in the
Usability Lab. The Benchmark Tests are specified system tasks that the user is
required to perform during system use. For each task, there is a corresponding
usability specification which documents objective quantities like the expected
number of steps to perform a specific task. When the tasks are complete, the
designer can compare the specified results with the actual results to determine if the
tasks were performed as expected. Once the user has completed the benchmark
tests, the subjective evaluation is administered to the user to give him/her an
opportunity to rate the system in the areas of: (1) general feeling, (2) the screen, (3)
terminology and system information, (4) learning, and (5) system capabilities. After
all of these phases are complete, the designer can pull all of the information
together to perform a statistical analysis and formative evaluation. This evaluation
results in recommended changes to the interface which would increase the user’s
acceptance of the system. Once these changes are implemented, the usability labs
are re-opened, and the cycle is repeated. The entire process is repeated until the
optimal interface is produced, yielding optimal system usability.

The QUERI-EZ usability lab will be administered to a group of two hundred
users with abilities that range from those of a novice user to those of an
intermediate user. There will be 100 novice and 100 intermediate users tested., In
order to properly categorize the users, interviews will be conducted to determine the
level of understanding of a graphical user interface as well as the mouse usability.
From each user, during benchmark testing, the following objective measures will be

taken:

56

1) The number of steps to complete the specified tasks. A step
will be considered a mouse click (except when specifying
operations in the Results window that require a double-click).
Due to the fact that every users typing ability may vary, the
number of keystrokes required when typing field names is not

taken into account.

2) The amount of time it takes to complete a task.

3) The number of mistakes that were made in carrying out the
task.

From each of these measures, for each user, the mean and standard deviation from
the mean will be computed. In addition to the standard deviation from the mean,
the standard deviation from the expected number of steps is also computed. These
objective measures will be analyzed over time (i.e. multiple usability lab sessions).
The goal is for the difference between the statistical measure for each user and the
expected values to continually decrease until the difference is as small as possible.
Tables 7.4.1.5.2.1 and 7.4.1.5.2.2 show the forms that will be used to capture the
objective statistics. Figure 7.4.1.5.3.1 shows the form that will be used to capture
the subjective responses of each user. It is expected that there will be a distinct
correlation between the subjective evaluations and the objective statistics. As the
user becomes more familiar with the system, the simpler system operation should
become. Over time, this theory should be supported by the objective and subjective
measures taken from the user. Future enhancements of the QUERI-EZ application
will be evaluated based on these results. Table 7.4.1.5.1.1 shows a sample

Benchmark Test form.

57

7.4.1.5.1 Benchmark Tests

During the iterative testing phase, the user is presented with the form provided below
(Table 7.4.1.5.1.1) which walks the user through the steps to be performed.

Table 7.4.1.5.1.1. QUERI-EZ Benchmark Test

Instructions:
Perform each of the tasks listed below.

You are not under any time constraints therefore, do not rush through execution of the
tasks.

If helpful, talk yourself through the steps you are taking.
Verbally express areas of confusion.

TASKS: All tasks are based on the Suppliers-Parts Database.
1) Get the supplier numbers for suppliers in Paris with a status less than 20.

2) Retrieve all combinations of suppliérs and part information such that, the supplier and
part in question are located in the same city.

3) Determine the names of the suppliers who supply at least one read part.
4) View the SQL generated in task 3.

5) Save the SQL generated in task 3.

6) Repeat task 1, renaming the S# field to the supplier number.

7) Repeat task 2, grouping the output by the supplier number.

8) Determine the total quantity of part P2 supplied.

9) Repeat task 8, doubling the total quantity output.

Hint: Use the EXPR function against the quantity column. When the Expression
window appears, enter an expression that would double the quantity value.

10) Get all parts whose name begins with the letter C.

58

7.4.1.5.2 Usability Specifications

The Usability Specification for QUERI-EZ is comprised of the
expected measure values for user performance and a form which is used

to document actual user performance for each of the specified tasks in the
Benchmark Testing. Tables 7.4.1.5.2.1 and 7.4.1.5.2.2 show the forms used

to document this data.

Table 7.4.1.5.2.1. QUERI-EZ Usability Specification - Performance Expectation

1) Get the supplier numbers for suppliers in Paris with a status less than 20.

2) Retrieve all combinations of suppliers and part information such that, the supplier
and part in question are located in the same city.

3) Determine the names of the suppliers who supply at least one read part.
4) View the SQL generated in task 3.

5) Save the SQL generated in task 3.

6) Repeat task 1, renaming the S# field to the supplier number.

7) Repeat task 2, grouping the output by the supplier number.

8) Determine the total quantity of part P2 supplied.

9) Repeat task 8, doubling the total quantity output.

10) Get all parts whose name begins with the letter C.
ification of ntitative M res:
Task Number Expected Number of Steps Expected Time to Complete

1

2

3 . .

4 TBD TBD

g by désigner using by d§51gner using
7 actual prototype actua} prototype
8

9

10

59

Table 7.4.1.5.2.2. QUERI-EZ Usability Specification - Actual Performance
Measures. There is a one-to-one relationship between this form and an
individual task in the Benchmark Test.

Date of Test:
QUERI-EZ Version:

Task#1

Subject Number of Steps Time Number of Mistakes
A-N

B-N
C-N
D-N

E-N

Average

Standard
Dev. from Mean

Standard
Dev. from Expected

A-l

B-1
C-I
D-1

E-1

Average

Standard
Dev. from Mean

Standard
Dev. from Expected

Key: 1) N = Novice User/Non-Windows Users
2) I = Intermediate User/Windows Knowlegable

60

7.4.1.5.3 Subjective Evaluation
After completing the Benchmark Test, the user is required to fill out the

evaluation in Ta%le 7.4.1.5.3.1.This will give the designer a feel for the user’s
appreciation of the system. The questions that comprise the questionnaire

is a subset of those found in the QUIS questionnaire (Shneiderman, 1992).

Date of Test:
QUERI-EZ Version:

Please answer the following questions about QUERI-EZ, in order for us

to evaluate your satisfaction with the system. In addition, please provide any)
additional comments you mighthave so that QUERI-EZ can be tailored to best suit
your needs.

(1) General Feeling (3) Terminology and Information
1. Overall reactions to the system 9. Use of terminology?
tcrnb&e wonderful . inconsistent consistent
123456789 123456789
2. frustratin satisfyin
123856780 08
3. dull timulati
123456780 a8
4. difficult easy (4) Learning
123456789 _ lO.d%fgrnlng to operate the system?
5. rigid . ult easy
rigd) , 4 s ¢ - ggXible Bl 4 567 85

6. Exploration of features by trial and error?

discouragin encouragin
123456789 Ene

(2) The Screen (5) System Capabilities
7 Wi 9 11. inadequate power adequate power
Were screen layouts héal}}ll)ful s 2q3 4 g’ AP

1 v
123456789
8. The sequence of screens?

confusing clear
123456789

Additional Comments:

61

7.4.2 Software Design

This section includes a context diagram and a data flow diagram which are
intended to depict the organization of the software. Also included is pseudocode for
each of the processes in the application. The pseudocode is provided to express the
purpose each process is intended to serve in the QUERI-EZ application and not
specific coding details.

Here is a good point to reiterate that this is by no means intended to be a
complete attempt at software design. It is merely a compact means of expressing
the operation of the software at a high level.

The GUI environment forces an event driven application. This means that
particular areas of the software are executed because of some action the user has
taken at the interface level. In other words, there is a direct connection between
the object of interest on the interface and the action(s) performed by the software.
The event driven nature of the GUI basically forces a more object-oriented type of
behavior such that the structured concepts apply to the way the software behaves in
relation to a user action.
7.4.2.1 Context Diagram

The context diagram shown earlier, in Figure 7.2.2.1.1, depicts the QUERI-
EZ application from a conceptual point of view.
7.4.2.2 Data Flow Diagram

The data flow diagram of Figure 7.4.2.2.1 shows the processes of QUERI-EZ
and the data that flows between them. The dashed lines represent control flows.
These flows indicate the order in which processing between two processes must
occur. The lines going into and out of the processes are labelled with the type of
data they receive and/or produce.

Each of the processes exists at the same level of the application. That is,
none of the processes are comprised of subprocesses. They are leaf processes with
no children processes, and they may communicate with each other.

The pseudocode algorithms presented in section 7.4.2.3 describes the

behavior of these processes.

62

wieSerq ML B1eq ZA-THAND "T'TT'L 2By

BlRp J[Nsay .

3y 1X3) [IDSV

o

TjeuLiojyeie(
/

/
/
/

31y 1X3) [IDSV

apowr MOpYAm

A

aureu 3y X33 [[DSV

i’

]

!
sHnsay IPSI

i

J

'

JU3A3 JI3sn

3y 1%31_TIDSV

amaleIs YOS

ejep s YO

P

]
_ i

ejep Juns YIOs

~

*

A}
Y IX3) NIDSV

/
pwbu
13 1%9) [IDSV /

/
/ ®ep s /108

31y 1X3) ISV

63

7.4.2.3 Pseudocode Algorithms

This section contains two levels of pseudocode algorithms that are provided
to give a better understanding of how QUERI-EZ operates behind the interactive
interface. The first level is a general view of QUERI-EZ and contains a high level
algorithm for each of the processes identified in the Data Flow Diagram of Figure
7.4.2.2.1. The second level provides algorithms for each of the requirements listed

in the Software Requirements Specification (Section 7.3.2.1).

7.4.2.3.1. General Pseudocode Algorithms

The pseudocode algorithms provided in Figure 7.4.2.3.1 through 7.4.2.3.12
describe the processing that needs to occur in each of the processes shown in Figure
7.4.2.2.1. The lowest level of the figure numbers correspond to the process numbers

in the Data Flow Diagram.

64

Figure 7.4.2.3.1.1. Generate (SQL)

65

Figure 7.4.2.3.1.2. Retrieve (Existing Query)

Figure 7.4.2.3.1.3. Execute (SQL)

Figure 7.4.2.3.1.4. Read Results

66

2
Figure 7.4.2.3.1.5. Format (Results)

Figure 7.4.2.3.1.6. Clear (Results Window)

Figure 7.4.2.3.1.7. Save (Generated Quer

67

Figure 7.4.2.3.1.8. Print (Results Window)

Figure 7.4.2.3.1.11. Display Interface

68

Figure 7.4.2.3.1.12. Help

7.4.2.3.2 Pseudocode Algorithms for the Requirements

The pseudocode algorithm provided in Figures 7.4.2.3.2.1 through
7.4.2.3.2.12 describe the way in which the software will satisfy the Functional
Requirements of Section 7.3.2.1. For areas where various requirements overlap, the

algorithm is provided only once.

69

Figure 7.4.2.3.2.1. Generating Simple Queries (con't)

70

Figure 7.4.2.3.2.2. Retrieving Computed Values

Figure 7.4.2.3.2.3. Placing Condition on queries

71

Figure 7.4.2.3.2.4. Ordering rows of Output by Column

Figure 7.4.2.3.2.5. Grouping rows of Output by Column

72

Figure 7.4.2.3.2.6. Joining tables together

—
Figure 7.4.2.3.2.7. Utilizing aggregate functions

73

Figure 7.4.2.3.2.8. Generating Subqueries with multiple levels of
nesting

Figure 7.4.2.3.2.9. Results window mode specification

.|
Figure 7.4.2.3.2.10. Renaming Output Fields

74

Figure 7.4.2.3.2.11. Providing the user with status

Figure 7.4.2.3.2.12. Re-Starting a Query

75

8.0 CONCLUSIONS

8.1 Summary

In review, this project/report has combined several major areas in the
computer science/information science industry to offer an improved alternative to
data access in relational database management systems.

It has been shown that direct SQL based querying can be a very intimidating
process for a user who does not posses strong technical abilities. Therefore, to
alleviate the anxiety produced by such an intimidating process, the designer is
presented with the challenge of applying the appropriate concepts to reduce, if not
eliminate this anxiety. It has also been shown that the concept of direct
manipulation is appealing to most users, particularly, the non-programmer type of
user, because it speeds up the learning process. The user can see the direct effect of
his/her actions, and as a result, the user feels more in control of the system. And
finally, it has been shown that there are some systems in existence today that
attempt to meet the challenge of providing simple and intuitive data access systems
that can be useful, to some degree, to all levels of users. And although these
systems have made good attempts, there is definite room for improvement. The way
to improve is to place the user to at the center of the design. If the designer starts
with this user-centered approach, he/ she ends up with a user that feels that the
world of the application revolves around him/her; thus, implying that he/she is

important and in control. The result is a successful user driven application.

8.2 Evaluation of the Application Design

Based on an initial review by the designer, QUERI-EZ meets the goals of a
successful application design because it is simple and intuitive. It gives the user
ample functionality with reduced anxiety - the user is in control. There are no
commands or language syntax to remember, and there is no deep menu hierarchy
to become familiar with. Everything the user wants and/or needs to do is
encompassed within the three windows which comprise the interactive interface, and
the exceptions are minimal. And although QUERI-EZ is designed for the
novice/intermediate user, it also lends itself to the experienced programmer.

QUERI-EZ is also designed to be an easily portable application because the

76

contents of the interactive interface is always done at run-time. In other words, a

dynamic database structure does not limit QUERI-EZ’s ability to provide the user

with access to the current database data or prohibit the user from accessing data

that doesn’t exist.

This reduces the need for the obvious types of error checking.

One good way to show the assets of QUERI-EZ, is to compare it to a

commercial system attempting to meet the same goals. Table 8.2.1 shows a
comparison of QUERI-EZ and GQL. Of the current systems evaluated, GQL is most

like QUERI-EZ.

Table 8.2.1. Comparison of QUERI-EZ and GQL

Graphical Query QUERI-EZ
Language
(GQL)
Generating Queries Simple Simple

Performing Joins

Can get cumbersome if
data model window

becomes nested

Simple; simply click on

the table names

Window Layers Possible

Many

None; only the three

windows on the interface

Use of graphics to

represent database tables

Good; This is a way to
avoid non-descriptive table

names

Not used; Does not allow
for unambiguous table

names

Promise of accurate

results

Only if there is a
guarantee that the
underlying database

structure does not change

Yes; database entity are
dynamically made

available to the user

Ease of database

switching

Cumbersome; must exit

the system and re-enter

Easy; simply click on the

new database name

77

The ability to easily add new functionality to QUERI-EZ, without changing
the appeal of the simple interface is also a promising feature of the application. The
following is a list of possible enhancements to the QUERI-EZ application:

1) The COMPARE and EXPR function windows could be modified to

to allow the user to enter as many constraints and/or expressions as

possible in one dialogue session by adding another button labelled

"APPLY" and changing the current button label to "CLOSE". This way

after each condition or expression has been entered, the associated SQL

text file would be updated when the "APPLY" button is pressed, and the

user would not be required to repeatedly bring up the dialogues.

2) The tables in the Data Structure window could be graphical icon

representations of the table content.

3) An "APPLY" and "CLOSE" button could be added to the SQL View
window to allow the user to update SQL statement data. This would

definitely appeal to programmer types.

4) The SAVE and RETRIEVE dialogues could include a list of the files

and directory structures to further reduce user memory requirements.

5) The REPORT mode of the RESULTS window could be enhanced to
allow the user to specify the FONT, SIZE, ALIGNMENT, and STYLE of
report titles, as well as specify the date and time the report was
produced.

As do most systems, QUERI-EZ does have drawbacks. First, because
QUERI-EZ is actually run on top of an interface (an ISQL application), the user will
definitely notice a performance hit. QUERI-EZ has to formulate the user’s request,
send it to the ISQL application to be processed, trap the returned results, and
format the results as specified by the user. The question becomes: Does the time
QUERI-EZ saves the user in formulating the request for data cover the additional
time required to allow QUERI-EZ to act as an indirect interface to the ISQL

78

application?

Another drawback of QUERI-EZ is that the user must understand
the organization of the data within the relational database. He/she must
understand what it is they want and where it lives in the database. In essence,
QUERI-EZ is only removing the ability for the user to have to know SQL. The
user’s understanding of what SQL operates on must exist.

Also, QUERI-EZ does not perform semantic validation on a user’s query. If
it does not make logical sense to the RDBMS, although it may be correct in terms of
the syntax, QUERI-EZ simply acts as the ISQL application acts. Semantically
incorrect queries do not return results in an ISQL application therefore, QUERI-EZ
does not return any results.

An area of discussion that arises with QUERI-EZ is its true ability to shield
the user from complex queries. In other words, does the user really have the ability
to construct a complex SQL query without having to understand the structure of
SQL? The answer is probably no. However, if the user is truly a non-programmer
type, would he/she attempt to formulate a query the caliber of the one presented in
section 7.4.1.2.2? Again the answer is probably no. Basically, what QUERI-EZ
provides the novice/intermediate user with is the ability to formulate simple queries,
and it provides the experienced user with the ability to formulate both simple and
complex queries. Regardless of the level of complexity of the query, the experienced
user is saved from a lot of typing mistakes and has direct visual reference to the
database structure. This is also the case for the novice user, but the later may or
may not be appreciated as much. So, should the user group focus be altered
because of the fact QUERI-EZ happens to provide positive assistance to the
experienced user group? The answer is no. The initial intent of QUERI-EZ was to
focus on the novice/intermediate user group and it does. It hides the extended
capabilities from the intended user, and as a result the intended user is not
overwhelmed with functionality that he/she does not need. Perhaps, the better

solution is to restate the problem statement to say that:

Novice/Intermediate users need the ability to
perform Ad-Hoc queries on database data which
typically amount to the equivalent of simple

SQL queries. However, a user at this level

79

simply wants to access the data, not learn a
query language. Therefore, there needs to be

an database front-end application that can shield
the user from the low level

command-language.

In essence, the simple SQL query is complex to the novice/intermediate user.

80

9.0 BIBLIOGRAPHY

1) Andyne Computing Limited, 1992. GQL/User V3.0 for Windows Demo Guide:
Canada.

2) Bolt, Richard A., 1984. The Human Interface - When People and Computers
Meet: Lifetime Learning Publications, California.

3) Booth, Paul A,, 1989. An Introduction to Human-Computer Interaction:
Lawrence Erlbaum associates Ltd.

4) Date, C.J., 1991. An Introduction to Database Systems, Volume 1, Fifth
Edition: Addison-Wessley Publishing Company, Inc.

5) Date, C.J., 1985. An Introduction to Database Systems, Volume 2: Addison-
Wessley Publishing Company, Inc.

6) General Electric Company, 1986. Software Engineering Handbook, McGraw-
Hill Book Company.

7) Hartson, Rex H., Siochi, Antonio C., and Hix, Deborah, 1990. The UAN: A
User-Oriented Representation for Direct Manipulation Interface Designs.
ACM Transactions on Information Systems, Volume 8, No.3.

8) Monk, Andrew, 1984. Fundamentals of Human-Computer Interaction:
Academic Press, Inc. (London) Ltd.

9) Norman, Donald A., and Draper, Stephen W., 1986. User Centered System
Design - New Perspectives on Human-Computer Interaction: Lawrence
Erlbaum Associates Ltd, New Jersey.

10) Shneiderman, Ben. 1992. Designing the User Interface: Strategies for

Effective Human-Computer Interaction, Second Edition: Addison-
Wessley Publishing Company, Inc.

11) Sybase, Inc., 1992. SYBASE SQL Toolset Release 5.0: Data Workbench User’s
Guide: Sybase Technical Publications Department.
12) SQL Standard ... (TBD)...

13) Understanding SQL/2(TBD)...

81

