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(ABSTRACT)
This research studies the process of acquiring knowledge from experts; that is,
studies knowledge-acquisition methods to acquire expert knowledge. Forty subjects
used a machine-aided knowledge-acquisition tool to model a word processing task.
By using the tool, the subjects developed models that were on average 72.8%

accurate with a baseline model of the task and 88.5% consistent among themselves.

This research makes four contributions: 1) a complete review of thirty-one
knowledge-acquisition methods from manual to machine learning, 2) an evaluation
methodology and metrics to evaluate knowledge-acquisition methods, 3) an
evaluation of an automated knowledge-acquisition tool called Cognitive Analysis
Tool (CAT) developed for this research, and 4) suggested improvements to the

current version of the tool.

This research describes, develops a taxonomy of, and evaluates thirty-one
knowledge-acquisition methods to determine which method matches a defined set of
criteria. A method is chosen, extended, and automated in the form of a machine-
aided knowledge-acquisition tool. The method is chosen based on five criteria
including a connection between the chosen method and the information processing

model of problem solving as defined by Newell and Simon (1972).



This research evaluates the performance of the tool in terms of the accuracy and
consistency of the knowledge bases generated by using the tool. A baseline is derived
from this study to which other knowledge-acquisition tools’ performance can be
compared. The evaluation methodology and metrics developed in this research can

be used to evaluate other knowledge-acquisition tools.

From this research, four groups of changes to the automated knowledge-acquisition
tool are suggested to improve the usability and performance of the tool. The

changes are suggested for the user interface and the modes of operation of the tool.
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PREFACE - PURPOSE OF THIS DOCUMENT

This document defines the problem and its setting (Chapter 1), the review of the
related literature (Chapter 2), the methodology for evaluation and validation of
the developed tool (Chapter 3), discussion of the results from the experiment

(Chapter 4), and conclusions with further research topics (Chapter 5).



CHAPTER 1 - THE PROBLEM AND ITS SETTING

1.1 Purpose of this Chapter

This chapter parallels the process used to define the research to be performed.

The following summarizes each section in this chapter:

Section
Problem Statement

Research Question

Operationalized
Research Question
Conceptual Model
and Delimitation

Research
and Objective

Sub-Problems

Outputs

Premises

This Research

and the NPR Grant
Type of Research

Research Hypotheses

Research Methodology

Description
Describes what the problem this research is
attempting to solve (Leedy, 1989).

The question motivating the research.

Puts the motivating question in practical terms,
a question we can do business with.

Picture of how key elements of the problem fit
together or affect each other. Identifies what the
problem is not, limits imposed on the study.

Answers the question, "why are we doing this research
project?" Describes what the tangible results of this
research are.

Components of the research which partition the
problem into pieces, partition of the conceptual
model.

Tangible results relating one-to-one to sub-problems.
What tangible results come from addressing sub-
problems.

Propositions offered as fact used to define, support, or
put boundaries around the problem statement.

Describes how this research is related to the NPR
grant.

Describes and justifies the type of research to be
done.

A statement about the expected relationships between
two or more constructs in a theory or an explanation
for a behavior, phenomenon, process, or event.

Describes the overall process to be followed in doing
this research.



Definition of Terms Definitions of terms relevant to the study.



1.2 Problem Statement

This research aims to design, develop, and test a knowledge-

acquisition tool which performs knowledge acquisition by employing

a cognitive task analysis, an extended version of GOMS, to

construct problem spaces.
To support problem solving, decision making, and planning we need to first
develop a means for diverse knowledge Sources to be related and integrated.
Managers need to have the right knowledge at the right time to reach the right
decision. No longer is all the knowledge contained in a single source. Groups of
individuals with their own special knowledge and agendas are working together on
complex problems which are comprised of many issues. Many people keep
knowledge about each issue in their minds; and each person may know something
different about each issue. By having these knowledge sources integrated, all the
available knowledge can be brought to bear on the problem. This knowledge can
then be stored and retrieved at the most appropriate time for use in making
decisions leading to a planned strategy or problem solution. The chain of
decisions represents a problem solution. A structured process to extract,

integrate, store, and retrieve this knowledge must be implemented (Weber, Liou,

Chen, & Nunamaker, 1990).

Problem solving, decision making, and planning are difficult today due to the
complex business environment. When making decisions about major programs,
such as Apollo in the past, and the space station and nuclear production reactors
today, managers must consider many issues, e.g., quality, schedule, cost, critics,

legislation, environment, safety, facilities, technical, personnel, and past and

1. A distinction of data, information, and knowledge is made. A datum is a specific fact plus meaning and a
unit of information is data or information compared to a reference. Knowledge is more than one piece of
information in a pattern from which inferences and predictions can be made.



present strategies. Figure 1 displays this complex environment in which managers

must make decisions.



Issues in the Complex Business Environment

-Problem solution
— Managers —» -Decision
-Planned strategy

Figure 1. A complex business environment generates complex decision making.




1.3 Research Question
How can we extend and automate GOMS in such a way that we
can use this type of cognitive task analysis for knowledge acquisition
for problem solving?
Managers and experts solve problems to make decisions and formulate plans.
Problem solving is the overriding process by which decisions and plans are made.
Problem solving is modeled by the information processing model of problem

solving. Problem solving involves identifying the problem, building a problem

space, and evaluating moves through the problem space to the solution.

To solve problems and make decisions, managers need knowledge. This
knowledge makes up a problem space. The problem space includes: the goal
and subgoals, possible states, operators that move the problem solver from state
to state, and constraints on the problem (Voss, Tyler, & Yengo, 1983). Figure 2
is an abstract view of a problem space from which problem solvers make
inferences. The top node is the starting point or initial state. The nodes are a

subgoal or state?

. The links are the operators to move from node to node.
These operators can be viewed as an action or decision that allows the problem
solver to move to the next state. The bottom node is the accomplished goal.
Each goal/subgoal (node) and its set of operators (links) collectively represent a
chunk of knowledge. At each state (node) a decision is being made based on the
problem state and the knowledge available. The problem solver moves through
the problem space to solve the problem. This movement involves making

decisions about all alternatives described in the problem space. The chain of

decisions represents a problem solution or a planned strategy to achieve a goal.

2. A state is defined as the set of accomplished goals or subgoals, goals and subgoals to be achieved, and
the operators available to achieve a goal or subgoal.



The problem space "consists of the information known or potentially available to
the solver that may be useful in solving the problem" (Voss, Greene, Post, &
Penner, 1983, p. 167). It represents all the knowledge that can be brought to
bear in solving the problem. In fact, the problem space is a knowledge base, the
"core rules and data that make up the domain knowledge" (Dym & Levitt, 1991,
p- 113). A datum is a specific fact plus meaning and a unit of information is data
or information compared to a reference (Berube, 1990). Knowledge is more than
one piece of information in a pattern from which inferences and predictions can

be made.

Both problem spaces and knowledge bases represent or model knowledge as
production rules. A production rule takes the form of: If <conditions> then
<action> (Kieras & Polson, 1985). The <action> is performed after the
<conditions> are met. A condition is to an action as an operator is to a subgoal
or as a subgoal is to a goal in the problem-solving model. For example, the goal
is achieved after its subgoals are achieved: if <subgoals> achieved then <goal>

achieved and at a lower level, if <operators> achieved then <subgoal> achieved.



Figure 2. Abstract view of a problem space.
(Abstracted from the ideas presented by Voss, Tyler, & Yengo, 1983; Williams,
1991.)3

3. The following convention is used to reference a figure or table: unreferenced signifies ideas of this
author not attributable to a single source; taken from signifies a figure or table is taken from the source as
is; abstracted from signifies the figure or table was developed from ideas presented by the source(s); and
adapted from signifies the figure or table was adapted by this author, the adaption is noted.



The problem space is the foundation of problem solving because 1) it represents
the generation of all possible alternatives from which decisions must be made and
2) it shows the impact of a decision on other decisions which must be made
(Simon, 1960). To increase the efficiency and effectiveness of problem solving,
tools must be built to elicit or extract and integrate the problem-space knowledge
from experts and managers. This knowledge needs to be extracted, integrated,
stored, and retrieved to aid problem solving. The knowledge represented as rules
will determine what actions or decisions need to be made under a given set of

conditions.

The extracted and integrated knowledge is the knowledge base. Knowledge
acquisition is the extraction of an expert’s knowledge. Knowledge acquisition is
knowledge seeking. Gathering this knowledge is the most difficult and time-
consuming process of developing a knowledge-based application. Knowledge
acquisition is the bottleneck of knowledge-based system development (Dauer,
1990; Gaines, 1988; Grefenstette, Ramsey, & Schultz, 1990; Mockler, 1990; Olson
& Rueter, 1987; Rowley, 1990). This bottleneck precludes the wide-spread
application of knowledge-based technology. Automated knowledge acquisition

can assist in overcoming this bottleneck.

Benefits of using an automated knowledge-acquisition tool include increased
productivity of the knowledge engineer, reduced skill level required for knowledge
acquisition, and extended use of knowledge-based systems (Trippi & Turban,

1990).

10



1.4 Operationalized Research Question
How can we elicit expert knowledge from a group of managers,
each with their own special knowledge, to support problem solving
and decision making about a set of complex and difficult problems
such as those encountered in planning?
In solving planning problems such as those encountered in government programs
a diverse set of knowledge is needed. There are many people involved in the
process and each have their own knowledge. The planning and construction of a

new production reactor is an example of such a problem involving many people

with a diverse knowledge base.

Each manager has his or her own special knowledge (e.g., safety and quality,
environment, business management, construction management, support systems,
design, and facilities and equipment) to influence a decision (U. S. Department of
Energy: Office of New Production Reactors, 1990). We need to extract, organize,
store, retrieve, and integrate their expertise to support decision making now for

New Production Reactors (NPR) and in future endeavors similar to NPR.

For managers to make decisions specific to the new production reactor, they must
either formally or informally in their minds make a representation of the problem
space. This representation is an organization of all the knowledge that can be
brought to bear in defining the problem. Specifically, the representation is made
of initial conditions, potential intermediate subgoals that must be achieved, kinds
of moves that allow one to accomplish these intermediate subgoals, constraints in
terms of limiting conditions, and the desired end state or goal (Kieras, 1988;
Voss, Greene, Post, & Penner, 1983; Voss, Tyler, & Yengo, 1983; Williams,
1991). With this problem space, managers identify all the decisions they will

11



make. Each node in the problem space is a decision to be made about which
link or operator should be performed to achieve the given goal or subgoal.
These decisions must take into consideration such constraints as cost, schedule,

quality, and critics.

The integration and portrayal of knowledge consisting of the problem space
employed by experts to generate a solution is necessary to formulate a planned
strategy. A mechanism supporting the integration and portrayal of knowledge will
aid decision makers in the non-routine, uncertain aspects of their decision-making
responsibilities. A structured methodology guiding the knowledge-acquisition
process to construct the problem space needs to be developed and implemented

(Weber, Liou, Chen, & Nunamaker, 1990).

12



1.5 Conceptual Model and Delimitation

This research will focus on a knowledge-acquisition tool that guides

experts through the presently intuitive steps of conducting a

cognitive task analysis, performing the knowledge-acquisition

process, and eliciting a problem space, all leading to solving and

identifying problems.
To increase the efficiency and effectiveness of problem solving, tools must be
built to help experts identify problems and then elicit the problem space
knowledge from them. This knowledge needs to be extracted, related, stored,
and retrieved to aid problem solving. The knowledge-acquisition tool will extract
and relate the knowledge by performing the knowledge-acquisition process using
a cognitive task analysis technique. As a result of the knowledge acquisition, a

representation of the problem space is constructed. This problem space is used

to guide managers in developing solutions or plans to solve a problem.

By having the problem-space knowledge integrated and stored, the knowledge can
be retrieved to help monitor and verify decisions made. Measurement, data
gathering, and analysis in the monitoring and verification process will provide
information and knowledge about new more-specific problems in accomplishing
the goal. The recursive problem-solving cycle repeats itself until the goal has
been achieved and all sub-problems have been solved. Figure 3 is the conceptual

model of this research.

This research will focus on designing, developing, and testing a knowledge-
acquisition tool which performs the knowledge-acquisition process by employing
an extended GOMS cognitive task analysis to construct a problem-space
representation. The dotted box of Figure 3 shows the area of the conceptual

model the research will focus on.

13
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Figure 3. Conceptual model with the research delimitation.
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1.6 Research Purpose and Objective

The purpose of this research is to further the development of

automated knowledge-acquisition techniques for knowledge-based

representations as they may be used in problem-solving activities.

The objective of this research is to design, develop, and test an

automated knowledge-acquisition tool using a cognitive task analysis

process for guiding individuals in organizing their knowledge to

formulate problem spaces from which decisions and plans can be

made.
Benefits of using knowledge-based systems range from internal cost savings to
consistency in decision making to preserving high-valued organization expertise
(Feigenbaum, McCorduck, & Nii, 1990). The wide-spread use of this technology
has been hampered by the high cost of the knowledge-base development process.
The development process involves eliciting, organizing, representing, refining, and
verifying the domain knowledge elicited from an expert or group of experts. The
process is time consuming and inefficient. The two most common ways to
develop the required knowledge base are:

1) a knowledge engineer works with an expert, or

2) a knowledge engineer becomes an expert (Olson & Rueter, 1987).

In the first case, eliciting the knowledge from the expert is the task. However,
this is easier said than done. Numerous existing techniques help the process. In
the second case, the knowledge engineer becomes an expert, which is time
consuming because the learned expertise takes time and resources. There is a
need to facilitate 1) the knowledge engineer’s interaction with the expert and/or

2) the expert’s capability as a knowledge engineer.

A cognitive task analysis is a process of constructing an explicit representation or

model of a person’s knowledge (Kieras, 1988). A cognitive task analysis process

15



can be used to elicit from the expert the knowledge needed to develop the
problem space. Knowledge is a collection of information in a pattern from which
inferences can be made. An automated knowledge-acquisition tool for conducting
a cognitive task analysis will facilitate knowledge acquisition for problem spaces
by providing a structured, systematic methodology to elicit, organize, represent,
refine, and verify the knowledge. This knowledge can support an individual or
group of individuals in solving problems by identifying knowledge needs and

decisions they need to make.

By developing and implementing an automated tool, the domain expert can easily
transfer his or her knowledge; thus, the knowledge-acquisition bottleneck can be

removed.

16



1.7 Sub-Problems

This section partitions my research problem into components. The following

three sub-problems partition my conceptual model:

1. Understand current knowledge-acquisition methods.
2. Understand problem solving and problem spaces.
3. Understand cognitive task analysis.

17



1.8 Outputs

This section defines the tangible results relating one-to-one to the sub-problems.

The following are my three outputs of the sub-problems:

1. A taxonomy of current knowledge-acquisition methods.
2. A conceptual framework of problem solving.
3. A conceptual framework of cognitive task analysis.

18



1.9 Premises

This section defines the propositions offered as fact to define, support, or put
boundaries around the problem statement. The following premises are used to
state the source of the problem-space description is valid.

1. The information processing model of problem solving is a valid model.

2. The information processing model of problem solving is valid for both
individuals and groups (Prietula, Beauclair, & Lerch, 1990).

19



1.10 This Research and the NPR Grant
This research focuses on designing, developing, and testing a
knowledge-acquisition tool which is used for integrating and
portraying information and knowledge in a grand strategy system.
This research will design, develop, and test an intelligent management tool to aid
problem solving, decision making, and planning in a grand strategy system. A
grand strategy system is used to manage and plan for the future by understanding

the past, present, and future activities; internal and external forces; and plans of

the organization. The grand strategy system is an iterative process of

documenting and evaluating past strategies; analyzing internal and external forces;

formulating planned strategy; and administering, implementing, and verifying
status. Each of these steps involves eliciting and integrating information and
knowledge. The tool will be used as the "brains" for "Integrating and Portraying

Information and Knowledge" as displayed in the dynamic process model of the

grand strategy system (Management Systems Laboratories & Virginia Productivity

Center, 1992). Figure 4 shows the integration of the research conceptual model

with delimitation and the dynamic process model of the grand strategy system.
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Figure 4. This research and the NPR grant.

(Adapted from Management Systems Laboratories & Virginia Productivity Center,
1992, by adding the conceptual model to the "Integrating and Portraying
Information and Knowledge" box.)
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1.11 Type of Research
This research is exploratory development research because it will
identify the important issues and concepts to be used in designing
and developing an automated knowledge-acquisition tool for
problem-space knowledge.
The research to be conducted is exploratory development research. Exploratory
development is "research and development toward a specific problem.” It is "the
exploration of new technologies or concepts that hold promise for application to

specific” needs (Driskell & Olmstead, 1989, p. 51).

This research is exploratory research because a tool to elicit the problem-space
knowledge has not been developed. Other researchers have attempted, but did
not reach the full potential of such a tool because their methods were not based
upon theoretical and/or empirical evidence. This research will be integrating
basic theoretical and empirical evidence as the foundation of the design and

development of the tool.

This research is also a design problem. The goal of this research is to design and
develop a knowledge-acquisition tool. Design involves studying, analyzing,
evaluating, and integrating the sub-components for a system (Saunders, 1982).
This research will study, analyze, and evaluate problem solving, cognitive task
analysis, and knowledge acquisition. The results from the above will used in

designing an automated knowledge-acquisition tool.
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1.12 Research Hypothesis

This section describes the expected relationships between two or more constructs
of this research. The following represents the overall supposition of this study:
A knowledge-acquisition tool employing an extended GOMS

cognitive task analysis process will generate consistent and accurate
knowledge bases.
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1.13 Overall Research Plan

The following seven steps will be the used in guiding the overall completion of

this research.

1. Understand current knowledge acquisition. (Review body of knowledge.)
a. Classify methods based on characteristics.
b. Develop criteria to analyze methods.
c. Conduct a comparative analysis of methods based on criteria.
2. Understand problem solving. (Review body of knowledge.)
a. Research problem solving and a problem-solving model.
b. Identify components of the problem-solving model, e.g., problem
representation and space.
3. Understand cognitive task analysis. (Review body of knowledge.)
a. Research a model of cognitive task analysis.
b. Identify components of a cognitive task-analysis method, e.g.,
GOMS.
4. Select method to use in tool.
a. Match characteristics of knowledge-acquisition or cognitive task-
analysis methods with the problem-solving model.
3. Work with the design team of Kent4Williams and John Deighan
(programmer) to design constraints.
a. Integrate results from 1, 2, 3, and 4.
b. Develop process flow diagrams.
6. Refine design and tool.
7. Evaluate and validate tool. This is discussed in greater detail in Chapter 3.

4. I have contributed to the design and development of the tool in the following ways: 1) completed
flowcharts of the process, 2) integrated design characteristics from the literature into the tool, 3) developed
the prompt strings and help files, 4) developed and employed a testing plan to debug the system, and 5)
iteratively used and tested the tool which provided feedback on the tool itself. The tool was designed by
Kent Williams, John Deighan, and myself. John Deighan completed the actual coding of the tool. A
description of the tool is given in Appendix 8.
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1.14 Definition of Terms

Cognitive Task Analysis - constructing an explicit representation or model of a

person’s knowledge (Kieras, 1988).

Datum - a specific fact plus meaning.

Decision Making - choosing an alternative.

Domain Knowledge - "knowledge specific to the domain or field in which the
problem is defined" (Dym & Levitt, 1991, p. 15).

Expert - person with special knowledge.

Information - data or information compared to a reference (Berube, 1990).
Knowledge - more than one piece of information in a pattern from which explicit
inferences and predictions can be made. This knowledge is represented using if

<conditions> then <action> production rules.

Knowledge Base - "the core rules and data that make up the domain knowledge"
(Dym & Levitt, 1991, p. 113).

Knowledge-Based System - "a computer representation that uses knowledge and
problem-solving paradigms on a skill level comparable to that of human experts"

(Abdul-gader & Kozar, 1990, p. 61).
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Knowledge Engineer - "the person who designs and builds expert systems"
(Feigenbaum, McCorduck, & Nii, 1990, p. 319).

Knowledge Acquisition - "the process that extracts knowledge from a source (e.g.
a domain expert or textbook) and incorporates it into a knowledge-based system

that solves some problem" (Bylander & Chandrasekaran, 1988, p. 65).

Problem Space - "consists of the information known or potentially available to the
solver that may be useful in solving the problem" (Voss, Greene, Post, & Penner,

1983, p. 167).

Solution/Planned Strategy - a means to solve a problem, chain of decisions

leading to the solution.

State - the set of accomplished goals or subgoals, goals and subgoals to be

achieved, and the operators available to achieve a goal.
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CHAPTER 2 - BODY OF KNOWLEDGE

2.1 Relevance of the Body of Knowledge
Today national wealth arises from knowledge, expertise, innovation,
and intellectual capital.
(Feigenbaum, McCorduck, & Nii, 1990, p. 3).

Managers and experts solve problems and make decisions and plans. Problem
solving involves identifying the problem, building a problem space, and evaluating
moves through the problem space to the solution. Managers need knowledge to
solve problems and make decisions and plans. To increase the efficiency and
effectiveness of problem solving, tools must be built to elicit the knowledge from
groups of experts and managers. This knowledge needs to be extracted,

integrated, stored, and retrieved to aid problem solving.

The following literature review describes problem-solving and knowledge-
acquisition methods. Problem solving is investigated because we must understand
the problem-solving process before we can help managers find solutions. We
must first know the components of problem solving before we can elicit these
components. Knowledge-acquisition methods were reviewed because they
describe how the knowledge which represents a problem is elicited and organized.
This review was used to determine the method used to acquire the problem-space

knowledge.
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2.2 Problem Solving

Problem solving is investigated because it must be understood before tools can be
made to help managers find solutions. The components of problem solving must

first be known before the components can be elicited.

2.2.1 Problem Solving Model

Solving problems is a part of life. How people solve problems, the problem-
solving process, must be understood before aids to problem solving can be
constructed. The Newell and Simon (1972) information processing model of

problem solving provides a model to define this process.

According to this model, problem solving has two stages: 1) a representation
stage and 2) a solution stage. In the representation stage, the problem solver
interprets the problem, develops a problem representation, and develops a
problem space. In the solution stage, the problem solver uses an evaluation

function to move through the problem space to a solution.

When solving a problem, a person is first presented with a task under a given set
of circumstances representing the problem statement. The problem solver
interprets the problem statement to construct a problem representation and from
this the problem space. The problem representation contains the initial states
and goal of the task. The problem space includes the initial states, goal and
subgoals, possible intermediate states, operators which move the problem solver

from state to state, and constraints on the problem.
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In the solution stage, the problem solver moves through the problem space
evaluating each state-to-state move and identifying operators to perform the
movement. An evaluation function determines which move from state to state
should be taken to lead to the goal (Simon, 1975). This choice is based upon the

knowledge available at the time of decision.

2.2.2 Problem Solving Content and Process

Problem solving can be divided into the content and the process which acts on

the content. The content is the problem space represented as production rules
and a database of facts. A production rule takes the form of: If <conditions>
then <action> (Kieras & Polson, 1985). The <action> is performed after the

<conditions> are met. The database is a set of facts relevant to the problem.

The problem solving process is a production system process by which inferences
are made by comparing the production rules and database (Simon, 1975). The
process involves comparing the production rules to the database to see if the
conditions of a production are satisfied. If a production’s conditions are satisfied
then it is fired, the <action> is performed. If more than one production’s
conditions are satisfied, then a conflict resolution function is used to choose the
appropriate production to fire. An inference is made when a rule is fired, and
this firing adds facts to the database. This cycle is repeated until the problem is

solved or no more inferences can be made.
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2.3 Knowledge Acquisition

Knowledge acquisition is "the process that extracts knowledge from a source (e.g.,
a domain expert or textbook) and incorporates it into a knowledge-based system
that solves some problem" (Bylander & Chandrasekaran, 1988, p. 65).
Knowledge acquisition is the iterative process by which knowledge is: 1) elicited,
2) organized, 3) represented, 4) refined, and 5) verified for use in a knowledge-
based system to solve problems. Current methods of knowledge acquisition are

considered the bottleneck to further use of knowledge-based systems.

Knowledge elicitation is the first step to knowledge acquisition. Knowledge
elicitation involves acquiring or drawing the knowledge from sources (e.g., expert,
case examples, or reference books). This step is mainly concerned with what
knowledge a source has and how to best acquire the knowledge. Knowledge
elicitation, the first step, is knowledge seeking. Knowledge organization, the
second step, takes the elicited knowledge and organizes it to show the
relationships between large clusters of the knowledge. The goal is to take the
elicited knowledge and group it as the expert typically does. Knowledge
representation, the third knowledge-acquisition step, structures and formats or
encodes the organized knowledge into a form such as a production rule
acceptable by a specific knowledge-based system. The fourth step, knowledge
base refinement, involves checking for inconsistencies, gaps in logic, conflicts,
contradictions, and completeness in the knowledge base. Verification, the final
step, is done to determine if the knowledge base can yield accurate inferences in

solving real world problems within the domain being modeled.
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Knowledge acquisition is the bottleneck of knowledge-base development. It is
time-consuming, tedious, and prone to error (Abrett & Burstein, 1988; Boose &
Bradshaw, 1988; Cleaves, 1988; Cooke & McDonald, 1988; Dauer, 1990; Gaines,
1988; Garg-Janardan & Salvendy, 1988; Grefenstette, Ramsey, & Schultz, 1990;
Gruber & Cohen, 1988; LaFrance, 1988; Littman, 1988; Mockler, 1990; Moore &
Agogino, 1988; Olson & Rueter, 1987; Regoczei & Plantinga, 1988; Rowley,
1990). An efficient, systematic, structured approach to performing the
knowledge-acquisition process is unavailable (Di Piazza, 1990; Hayward,

Woelinga, & Breuker, 1988).
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2.4 Knowledge-Acquisition Methods

Knowledge-acquisition methods were reviewed because they describe how the
knowledge which represents a problem is elicited and organized. This review was

used to determine the method used to acquire the problem-space knowledge.

Based upon this research and analysis, three categories of knowledge-acquisition
methods were defined: 1) manual, 2) machine aided, and 3) machine learning.
This is done based upon the level of the knowledge engineer’s interaction in the

knowledge-acquisition process.

Knowledge-acquisition methods were investigated because they provide the means
to capture an expert’s knowledge (i.e., problem-space representation). A single
complete source of information of the knowledge-acquisition methods does not
exist. Books, journal articles, proposals, and proceedings on knowledge
acquisition were collected. The methods were analyzed with respect to five
criteria. 1) The method must be general purpose and not constrained by the
requirement for a pre-existing domain knowledge base prior to the
commencement of knowledge acquisition, making it applicable to a variety of
differing domains of application. 2) The method must produce a set of
procedural units which lend themselves to processing via a production system,
since a production system process is the most widely employed architecture for
processing cognitive activities. 3) The method must be systematic to the extent
that a process can be formulated and codified for computer implementation. 4)
The method must be compatible with the manner in which procedural knowledge

is typically recalled. This should supply the element of simplicity to the
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knowledge-acquisition process. 5) The method must be valid in terms of its being
empirically grounded in experimental research attesting to its compatibility with
the human information processing system. These criteria provide a means to

evaluate and compare the different knowledge-acquisition methods.

Figure 5 presents the taxonomy of knowledge-acquisition methods which was
created as a result of the review and subsequent analysis. The first level (manual,
machine aided, and machine learning) depicts the required level of a knowledge
engineer’s interaction. The lower levels group the methods by the specific means

they employ to elicit the knowledge.

Manual methods require the knowledge engineer (KE) to be directly involved in
the complete process. The knowledge must first be elicited and then manually
organized. Once the knowledge is represented, the KE must manually encode
the knowledge in a form acceptable to a specific knowledge-base system. Finally,
the refinement and verification is done by a manual step-by-step examination of
the knowledge base and the inferences derived from the knowledge base. Figure

6 provides an abstract view of the manual knowledge-acquisition process.
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Figure 6. Abstract view of manual knowledge acquisition.
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Machine-aided methods elicit, organize, represent, and refine the knowledge
interactively with the expert. As the elicitation process proceeds, the machine
implicitly organizes and represents the knowledge. Most machine-aided tools
provide facilities to interactively refine the knowledge base. Figure 7 provides an
abstract view of machine-aided knowledge acquisition. Machine-aided methods
are typically automated versions of the manual methods. The automation aides

in the organization, representation, and refinement phases.

The machine-learning methods require very little direct interaction on the part of
the expert or KE. He or she is responsible for providing or gathering the data to
be used by the machine-learning method. Machine-learning methods generate
the knowledge from data. These methods automatically organize, represent, and
refine the knowledge base. Machine learning is the epitome of knowledge
acquisition. Figure 8 provides an abstract view of the machine-learning

knowledge-acquisition process.

35



Tool

Tool
Organizes
Knowledge
Tool Elicits '};C)’(Ole‘rgt‘ Expert
Knowledge > ReIf)ine Verifies
from Exper Knowledge Knowledge
Tool
Represents
Knowledge
Figure 7. Abstract view of machine-aided knowledge acquisition.
Tool
Tool
Organizes
Knowledge
Tool
TOOl Expert
I((;::;l{:ctizi > Refines | o Verifies
from Data Knowledge Knowledge
Tool
Represents
Knowledge

Figure 8. Abstract view of machine-learning knowledge acquisition.
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2.4.1 Manual Methods
Manual knowledge-acquisition methods, the first major set of knowledge-
acquisition methods, require the KE and expert to complete the knowledge
engineering process with very little aid from a machine. In most cases, the KE
must manually construct the representation and then enter it in a specific format
of the software system shell. The manual methods can be classified as Interview,
Observation, Interface Design, and Document Examination. These methods are

distinguished by the nature of the task the KE and expert performs.

2.4.1.1 Interview Methods

Interviews are conducted between a KE and an expert or group of experts
(O’Leary & Watkins, 1990). The basic process is a question and answer
session(s) between the KE and expert. This method can be very time consuming
(Dauer, 1990; Olson & Rueter, 1987). Interviewing is also limited by the expert’s
ability to express himself in a meaningful way to the KE. The KE’s knowledge of
the domain can also restrict the detail of the knowledge acquired. The more the
KE knows about a domain the more detailed questions can be asked and the
answers understood. Typically, the KE’s domain knowledge grows during the
knowledge-acquisition process. The KE reviews earlier portions of the interview

to enhance the level of detail elicited.

There are two major categories of methods used for interviewing. They are
Structured and Unstructured methods. This categorization is based upon the

presence or lack of explicit structure placed on the interviewing process.
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2.4.1.1.1 Structured-Interview Methods
Structured-interview methods use closed questions in a structured, planned
sequence to elicit domain knowledge (Welbank, 1990). A closed question asks
for a specific answer. The following is an example of a closed question: What is
the next step of the process? Structured-interview methods include the subclasses

of Prompted Interview, Object Classification, and Cognitive Task Analysis.

2.4.1.1.1.1 Prompted Interview
Prompted-interview methods use a "prompt" to guide the expert’s response. The
structure is in the method chosen to prompt the expert. Examples of prompted

interview are: Case-based, Questionnaires, and Twenty Questions.

2.4.1.1.1.1.a Case-Based Interview
When using a case-based interview, the expert is asked to solve a domain case
developed by another expert or taken from knowledge of past problems in the
domain. For example, a diesel mechanic would be given the case of a faulty
generator which precludes starting the engine. As the mechanic solves the
problem, the KE would record the knowledge used and the order in which the
mechanic used it. The KE gets an understanding of the underlying reasoning
process and tactics used to solve the example case (Welbank, 1990). The KE
needs to have a good understanding of the case and domain so he or she can
follow the expert’s process and minimize distractions to the expert (Dauer, 1990).
The level of detailed knowledge is dependent upon the example’s detail. The
more specific the case, the more specific the gathered knowledge. By having
many experts solve the same case, the conclusions can be verified before being

used in a final application.
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2.4.1.1.1.1.b Questionnaires
Questionnaires are the second form of a prompted-interview method. These can
be completed by the expert at his or her convenience. They do not necessarily
require face-to-face interaction between the expert and KE. Olson and Rueter
(1987) give an example of a questionnaire used to uncover the objects of a
domain. They use index cards each of which asks the expert to describe a
domain variable, the type of values the variable may be assigned, and the range
of values. Next, the expert is asked to draw the relationship among the variables.
This method is good for uncovering the important domain objects or concepts,
but the reasoning of the expert can’t be traced. Therefore, the level of detail is
low. The results are limited by the expert’s ability to explicitly describe the
domain in terms of variables. Considerable knowledge on the part of the KE is

required in the design of the questionnaire.

2.4.1.1.1.1.c Twenty Questions
Twenty questions is the third example of a prompted-interview method. The KE
chooses a domain problem and the expert asks "twenty" yes-no questions trying to
diagnose the problem. This is useful for mapping and paring down the search
space in diagnostic-classification problems. The KE needs a good understanding
of the domain because it might be difficult for him or her to answer the expert’s
questions, a major difficulty with this method. Additionally, the line of reasoning
employed by the expert to generate his questions is not made explicit (Welbank,
1990).

2.4.1.1.1.2 Object Classification
Object classification, the second group of structured-interview methods, is used to

classify or group objects or concepts. Object classification methods include:



General Weighted Networks, Hierarchical Clustering, Ordered Trees from Recall,
Inferential Flow, Closed Curves, and Card Sorting. Each of these methods
provide structure to the interviewing process by asking specific questions about
domain objects or items. The expert is asked to describe relations among objects
and this information is analyzed to produce a classification of the objects. These
methods are used to elicit the way in which the expert clusters, relates, or
organizes the domain objects. Top-level detail with little insight into the detailed

reasoning process concerning a domain is abstracted from using these methods.

2.4.1.1.1.2.a General Weighted Networks
General weighted networks develop a network of objects and their relationships.
The expert gives symmetric distance judgments (e.g., A is to B as B is to A) on
all possible pairs of objects. The distance is a judgment call by the expert which
says how closely two items are related. These distances form a half-distance
matrix used for further analysis. Table 1 shows a half-distance matrix for an

example general weighted-network problem.

From the half-distance matrix a minimal connected network (MCN) is constructed
by connecting only the items that are most closely related. The MCN is made by
first connecting the two items closest to each other as determined by the shortest
distance between these two items in the matrix. For example, from Table 1, the
goat and sheep or goat and cow would first be joined. For the example

presented, the goat and sheep are selected to be joined first. Next, an item not
yet on the network with the shortest distance to any item on the network is added
to the network. The cow and then the pig would be added to the network next

because these are the next two shortest distances in the table from an object
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already on the network to an object that is not. This step iterates until all items
are part of the network. Figure 9 shows the MCN for the matrix given in Table
1.

Next, a minimal elaborated network (MEN) is constructed by adding a link to the
network if and only if it is shorter than any path between the two not directly
linked objects (Olson & Rueter, 1987). Figure 10 shows the MEN for the
example given in Table 1. The dotted lines represent the added links. For
example, the shortest path from the MCN (Figure 9) between the goat and horse
is five:

{ 1 (goat-sheep) + 1 (sheep-cow) + 3 (cow-horse) }.
However, from Table 1, the distance between the goat and horse is four,

therefore the link is added.

These networks are analyzed for dominating concepts and members of cycles
(items linked into circles) or fully related objects (Olson & Rueter, 1987). A
dominating concept has more links to other concepts than any other one. This
can reveal how the expert structures objects and the strengths of the
relationships. This process could be difficult when there are a significant number

of objects to analyze.

41



Table 1

Half-Distance Matrix for Example General Weighted Network Problem

(Taken from Olson & Rueter, 1987.)

Goat —— Sheep
1 \
/ Dog
Cow 5
3 / |
Rabbit
Horse

Goat Cow Sheep Pig Horse Dog Rabbit
Goat 1 1 3 4 10 11
Cow 1 3 3 9 12
Sheep \ 2 4 6 10
Pig 8 8
Horse 6
Dog
Rabbit

Pig

Figure 9. MCN for example general weighted network problem.
(Taken from Olson & Rueter, 1987.)

42



2
1
, Goat —— Sheep 6
4 ’, 1\\\ 1 \

. 7 Dog
’ Cow __—" 2
.. 3/ 6 _--7" l

N '___——" 6 __ Rabbit

Figure 10. MEN for example general weighted network problem.
(Taken from Olson & Rueter, 1987.)
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2.4.1.1.1.2.b Hierarchical Clustering

Hierarchical clustering is used to construct clusters and classifications of objects.
Hierarchical clustering uses the distance between objects as the basis for
comparison by grouping items with the smallest distances between them. From a
half-matrix of distances as previously shown in Table 1, items with the smallest
distance between them are joined into a cluster(s) forming a level of the
hierarchy. A new matrix is computed by using each clustered item as a new
"combined item." The distances from a "combined item" to other combined or
un-combined items is computed using one of the following rules:

Min (distance from object to each object in an object-cluster),

Max (distance from object to each object in an object-cluster), or
Avg (distance from object to each object in an object-cluster).

For example, cow, sheep, and goat are closest and, therefore, form a cluster.
Next, the new distance matrix is computed by using the minimum rule given
above, the distance from the new cow-sheep-goat cluster or combined item to the
pig is computed as: min { 3 (goat-pig), 3(cow-pig), 2(sheep-pig)} which is 2.
Table 2 shows the matrix after the first iteration using the minimum rule. If all
items are not connected, then a new higher level of the hierarchy is created and
the process continues. The second iteration of this process begins with the values
of the matrix shown in Table 2. From the values shown in Table 2, pig would be
joined with the cluster cow-sheep-goat in the second level. Dog and rabbit would

also be joined in the second level. This can be seen in Figure 11.

As each iteration is performed a level of the hierarchy is being formed. The first

clusters form the lower level and each additional cluster is getting closer to the
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top of the hierarchy. Figure 11 shows the completed hierarchy. The numbers to
the left of the hierarchy represent the distances at which the clusters were

combined.

The detail of the resultant hierarchical classification depends upon the number of
individual clusters, data items, and hierarchy levels. The process assumes an item
is or isn’t a member of a cluster based upon the value of the distance between
items of the cluster, that is, the more similar two items are the closer they are in

a cluster at some level of the hierarchy (Olson & Rueter, 1987). As with the
other object classification methods, hierarchical clustering is limited by the
number of distance values needed to be supplied. As more objects are used, the
number of distances increases. For each item, n(n-1)/2 distance relations are

needed to fill the half-matrix of distances.
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Table 2

Revised Matrix for Hierarchical Clustering Example after Using Minimum Rule
(Taken from Olson & Rueter, 1987.)

Cow

Sheep-
Cow Goat Pig Horse Dog Rabbit
Sheep-
Goat 2 3 6 10

Pig ~—_ 8 8 9

Horse 6 6
Dog 2

Rabbit

[ o BE VS IR N . B« N

Goat Sheep Cow Pig Horse Dog Rabbit

Figure 11. Completed hierarchy for hierarchical clustering problem.
(Taken from Olson & Rueter, 1987.)



2.4.1.1.1.2.c Ordered Trees from Recall
Ordered trees from recall assumes items in a cluster are recalled before items
from another cluster are recalled (Olson & Rueter, 1987). The expert is asked to
recall a list of items ten to twenty times with the KE providing the first item on
various trials. The results from the trials are analyzed for clusters of items which
are consistently recalled together. Items that are consistently recalled together
are grouped into a cluster. As shown in the recall trials of Figure 12, cow and
horse; goat, sheep, and pig; and dog and rabbit are consistently grouped. These
groups each form the lowest level of the hierarchy. The order in which the items
are recalled also indicates groupings. The groups horse and cow; and goat,
sheep, and pig are consistently recalled "next" to each other and thus form the
next level of the hierarchy. From this analysis an ordered tree is constructed
(Olson & Rueter, 1987). Figure 12 displays the recall trials and resulting ordered

tree.

The method is limited by the number of items that can be recalled. As with all
object classification methods, there is very little, if any, detail regarding the

explicit reasoning process employed by the expert.
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Recall Trials

Ordered Tree

Horse

< > -
Cow Horse Goat Sheep Pig Dog Rabbit

Rabbit Dog%oat Sheep Ii;ig Cow Horse

< —>>
Pig Sheep Goat Cow Horse Rabbit Dog

>
Horse Cow Pig Sheep Goat Dog Rabbit

Cow Goat Sheep Pig Dog

Rabbit

Figure 12. Recall trials and ordered tree example.

(Taken from Olson & Rueter,

1987.)
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2.4.1.1.1.2.d Inferential Flow
The inferential flow method yields a network expressing cause-and-effect relations
among concepts or objects. Starting with a list of key domain objects, the KE
questions the expert about the cause-and-effect relationships between two objects.
A standard weight between 0.0 and 1.0 is assigned between two objects the first
time they are mentioned in a relationship. A network is constructed by assigning
these strengths to the links between objects (Olson & Rueter, 1987). Each
subsequent time two objects are mentioned together in the expert’s reply, the
strength is updated to some value between its current value and 1.0. The
strengths could be positive or negative for representing direct and inverse
relationships, respectively. A complete network is constructed from the
combination of objects and strengths between them. Figure 13 depicts an

example of an inferential flow network.

2.4.1.1.1.2.e Closed Curves
The closed curve method is used to find the relationships of objects that are
encoded in a physical space (Olson & Rueter, 1987). The expert is given a
spatial representation of items. He or she then draws a closed curve around the
group of objects which belong together physically. This is limited by the

interpretation of the closed curves and the ability to draw the relationships.
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Figure 13. Inferential flow network.

(Taken from Olson & Rueter, 1987.)
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2.4.1.1.1.2.f Card Sorting
Card sorting is used as a prompting device for initial knowledge acquisition
(Dauer, 1990; Welbank, 1990). The expert is given a deck of index cards
prepared by the KE, each card contains a basic domain object or concept. The
expert sorts through the cards, placing related concepts in a category based upon
his or her domain knowledge (Welbank, 1990). He or she then describes to the
KE the interrelationships among the categories (Dauer, 1990). The expert could
also be given three cards with concepts written on them to describe how the two
are related and the third concept differs. Card sorting is limited by the ability of

the expert to explicitly group and describe the relationship of the items.

2.4.1.1.1.3 Cognitive Task Analyses
Cognitive task analyses, the third group of structured-interview methods, are used
to construct an explicit model of a persons procedural knowledge used in
performing a task (Kieras, 1988, p. 135) and how one models knowledge related
to the workings of complex physical systems (Miyake, 1986). Examples of
cognitive task analysis methods are GOMS (goals, operators, methods, and

selection rules) and Constructive Interaction.

2.4.1.1.1.3.a GOMS
GOMS was developed by Card, Moran, and Newell to construct models of text-
editing. GOMS is a hierarchical goal decomposition method. It has been used to
analyze manuscript editing (Card, Moran, & Newell, 1983) and human-computer
interaction (Kieras, 1988; Kieras & Polson, 1985).
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A GOMS model has four sets of components: 1) goals, 2) operators, 3) methods,
and 4) selection rules. A goal defines a state to be achieved. An operator is an
elementary specific effort or act. A method is a set of steps used to accomplish a
goal. A selection rule is used to choose among alternative methods towards

achieving a goal. The relationship of these components is shown in Figure 14.

The GOMS process involves specifying the goal to be accomplished. The list of
steps needed to be performed to accomplish the goal is specified. This list of
steps makes up a method. If more than one method exists for accomplishing a
specific goal, then a selection rule is specified. The selection rule describes the
condition(s) that determines which method of the alternatives should be used to
accomplish the goal. From Figure 14, method-1 or method-2 can be used to
achieve subgoal-1. Which method is chosen is based on conditions specified by
the selection rule. The process continues in a top-down breadth-first expansion
of goals. Each step of a method becomes a new sub-goal; and the process
continues until all steps have been expanded. For example, in Figure 14, step 1-1
is made a goal and operator-1 and operator-2 need to be achieved to achieve
step 1-1. An operator is a step which cannot be further decomposed (i.e., a
primitive step). When all steps are defined as operators/primitives the process
stops. A set of production rules used in performing the task is generated from

the methods and selection rules.
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Alternative Methods

Steps

Operators

Figure 14. An example of a GOMS hierarchy.

(Abstracted from ideas of Card, Moran, & Newell, 1983; Kieras, 1988; Kieras &

Polson, 1985; Williams, 1991.)
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2.4.1.1.1.3.b Constructive Interaction
Constructive interaction is a framework which describes the iterative process of
understanding. Miyake (1986) developed the method based upon verbal
protocols she collected from subjects discussing how a complex physical device
works. She found that people proceed in a top-down, breadth-first fashion
progressing from one level of understanding to the next level of understanding.
In a sense, people continue to ask why or how something works until they fully

understand the smallest and deepest sub-components of a system.

Constructive interaction yields a function-mechanism hierarchy. The highest-level
function describes the physical system in terms of "what happens" and the
mechanism describes the "how it happens". A mechanism is an explanation or set
of connected functions. The constructive interaction process iteratively breaks
down a system into lower subsystems each of which performs a specific function
which is accomplished by a specific mechanism. The mechanism at one level
becomes the function to be explained at the next lower level. For example, the
function at level n is described by the mechanism at level n+1. The mechanism
at level n+1 then becomes the function to be explained by the mechanism at
level n+2. There may be alternative mechanisms for enabling a specific function.
In this respect, the structure of a function-mechanism hierarchy is similar to that
of the goal-subgoal hierarchy and the associated methods hierarchy of the GOMS

task-analysis process for modeling procedural tasks.

2.4.1.1.2 Unstructured Interview
The unstructured interview, as its name implies, uses very general and open-

ended questions (Welbank, 1990). Open-ended questions ask for general
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information. Examples of open-ended questions are: How does this process
work? How do you perform the process? This method eventually leads into a
structured interview as the KE learns more about the domain. It is useful for

initial knowledge acquisition.

2.4.1.2 Observation

Observation is the second set of manual knowledge-acquisition methods. The
expert performs the task while the KE watches and/or videotapes the process. A
transcript is created from the observations. A number of techniques can then be
used to analyze the transcript (e.g., a GOMS analysis, discourse analysis,
coherence analysis, etc.). Observation methods are useful for identifying problem-
solving strategies, studying motor skills, and verifying experts’ task descriptions
(Welbank, 1990). Observation methods include Protocol Analysis and

Interruption Analysis.

2.4.1.2.1 Protocol Analysis

Protocol analysis is used to catch the expert in the act of performing the task
being analyzed (Ericson & Simon, 1984). As the expert performs the task, he or
she describes aloud what comes into consciousness. The expert actually thinks
aloud. The KE transcribes the expert’s verbalizations and, on occasion, may
prompt the expert by reminding him or her to continue verbalizing. The KE then
analyzes his or her notes, the videotape, and the transcription of the videotape to
draw inferences about the expert’s thought process. By using protocol analysis,

very detailed information can be gathered.
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2.4.1.2.2 Interruption Analysis

Interruption analysis follows the same basic process as protocol analysis.
However, the expert performs the task without verbalizing aloud what he or she
is doing until the KE doesn’t understand the task (Olson & Rueter, 1987). At
which time the KE interrupts and asks the expert to describe what he or she is
doing. This method is useful for verification of a developed system. The KE

needs to have a good understanding of the domain.

2.4.1.3 Interface Design

Interface design is the third set of manual knowledge-acquisition methods.
Interface design methods include Prototype Development and Prototype Review
(Welbank, 1990). These methods have the KE and expert work together to

describe and evaluate prototype knowledge-based systems.

2.4.1.3.1 Prototype Development
Prototype development is used to gather an initial description of the knowledge-

based system. The KE and expert work together to design the knowledge-based
system’s interface. In the course of this prototype development process, different
kinds of information are abstracted: 1) information the system will prompt the
user to enter, 2) the order in which the information is requested, and 3) the
semantics to use in the prompts. This is a high-level acquisition method. A

detailed thought and reasoning process is not acquired.

2.4.1.3.2 Prototype Review
Prototype review is used to verify and extend a developed knowledge-based

system. The prototype is shown frame-by-frame and the expert comments on

how to improve or change the system. Prototype review is used for knowledge
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base refinement, the fourth step of the knowledge-acquisition process.
Corrections and/or clarifications to the system are noted. Prototype review
should not be done early in the development process because credibility of the
project could be decreased due to a mismatch between the expert’s expectations

of the system and the system’s capabilities at the time of review.

2.4.1.4 Document Examination

Document examination is the fourth set of manual knowledge-acquisition
methods. This is very useful for both initial and detailed knowledge acquisition of
domain theory and principles. Reference books such as troubleshooting manuals
provide a wealth of information to start system development. Some document
examination should be done before working with experts so the KE can gain a

good initial understanding of the domain.
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2.4.2 Machine-Aided Methods
Machine-aided methods are the second of the three categories of knowledge-
acquisition methods. These methods automatically and interactively elicit,
organize, represent, and refine knowledge from KEs or domain experts. The
organization and representation steps are implicit within the tool’s process.
Machine-aided methods guide the knowledge-acquisition process by using the
manual structured-interview methods in an automated form of a computer
program. By using these methods experts can directly transfer their knowledge
independent of a KE (Diederich, Ruhmann, & May, 1988). These systems are
typically referred to as automated knowledge-acquisition or knowledge-elicitation
tools. The methods these machine-aided tools employ have been further divided
into Object Classification, Decomposition, Prompted Case, Iterative Design, and

Cover-and-Differentiate.

2.4.2.1 Object Classification

Object-classification methods involve, as in the manual object-classification
methods, eliciting from the expert knowledge about relationships among objects.
Two such machine-aided object-classification tools are Multi-Dimensional Scaling

and Repertory Grids.

2.4.2.1.1 Multi-Dimensional Scaling
Multi-dimensional scaling (MDS) has its origins in experimental psychology. The
purpose of MDS is to reveal whatever pattern or structure may otherwise lie
hidden in a matrix of empirical data (Shepard, 1972). The output of MDS is a

spatial model showing the relationship between items relative to some number of

dimensions.
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The empirical data are given by the expert as a half-matrix of similarity
judgments (e.g., A is to B as B is to A) between objects. The similarity
judgments are then analyzed using multi-dimensional scaling analysis, which
organizes the data to determine the best clusters of objects according to the user
supplied similarity matrix. Objects that are more similar (i.e., a large similarity
value) should be closer to each other in a multi-dimensional space than objects
that are less similar (i.e., small similarity value). The analysis determines the
number of dimensions that best account for the similarity judgments between all
pairs of objects. A plot representing where objects fall on these dimensions is

created. The expert then provides the names for the dimensions.

Figure 15 shows the results of MDS for career or job titles. The two dimensions
for the plot are dependency on others to do the job (horizontal axis) and prestige
of the job (vertical axis). From the plot, the jobs "physician" and "psychologist"

are less dependent and more prestigious than the job of "laborer" or "clerk."

This method is limited by the interpretation of the plot and the number of
similarity judgments the expert is expected to provide, n(n-1)/2 judgments are

needed for n objects.
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PHYSICIAN *
PSYCHOLOGIST *

SOCIAL WORKER *

(dependency)

* LAWYER
* CHEMIST

* STOCKBROKER

* BANK TELLER

BARBER *

FISHERMAN *

COAL MINER *

* MECHANIC

(o3nsad)

* LABORER

* CLERK

Figure 15. Example plot from MDS.

(Adapted from Burton, 1972, by not placing all occupations from original plot. A
simplified version is presented.)
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2.4.2.1.2 Repertory Grids
The repertory grid method is based upon Kelly’s (1955) personal construct theory.

This technique is generally used for classification-diagnosis problems (Boose &

Bradshaw, 1988).

The expert is first asked to provide a list of the items to be compared. The
expert is then presented with three items. The expert tells which item is different
from the other two. He or she is then asked how it is different or what
characteristic of the items makes the two similar to each other and different from
the third. What makes the two items similar and the third item different defines
a dimension. He or she assigns a name to the distinguishing dimension along
with a scale, indicating a high and low range. The two similar items are each
given a value representing where they fall on the dimension. For example, as
shown in Figure 16, items Building Expert Systems and Logic Programming are
similar to each other by being multiple authored and are different from Winston’s
Al which is single authored. Number of authors is the dimension (Shaw &
Gaines, 1988). The remaining items are then rated on the same dimension by the
expert. This process continues until all items are rated on all of the dimensions

identified. Figure 16 is an example of a repertory grid.
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Building Expert Systems

Logic Programming

Knowledge-Based Systems in Al Ttems
Winston and Horn LISP

Al Applications for Business

Winston's Al
Handbook of Al

Figure 16. Example of a repertory grid.
(Taken from Shaw & Gaines, 1988.)
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The machine automatically and implicitly organizes and represents the knowledge.
Based on a machine-calculated half-matrix, the hierarchical clustering method (as
reviewed in the manual structured interview object classification section) is
applied to form a hierarchy of the items (Olson & Rueter, 1987). From these
groups, inheritance networks are generated. Boose and Bradshaw use this
method in their Aquinas and Axotl knowledge-acquisition tools (Boose &
Bradshaw, 1988; Bradshaw & Boose, 1990). The level of detail depends upon the

objects, dimensions, and interactions of objects and dimensions.

2.4.2.2 Decomposition

Machine-aided decomposition attempts to decompose an object or concept into
its components. Two such methods of machine-aided decomposition include Task

Modeling and Functional Decomposition.

2.4.2.2.1 Task Modeling
The task modeling method is used in the Logic Aids Program (LAP) developed

by Di Piazza (1990). The tool interviews the expert about assumptions and goals
of the expert system. The tool develops and organizes domain rules by

employing a structured-interview technique.

The process begins by interviewing the expert for the overall goal of the system
for which the knowledge being elicited will be used. This goal is used as the
starting point for the following set of questions iteratively asked by LAP of the

c:xpcrt5 :

5. For this dialogue and others in the machine-aided section, the following convention is used to help
distinguish between machine and expert inputs and outputs: bold is used for machine dialogue, bold-
underline is used for values the expert provided and are being used as part of the system’s dialogue, and
italics are used for the expert’s current input.
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1) The expert is asked for the conditions under which the expert would

perform an action. The goal or action is corrective-action = pump-
ftt-to-sea.

It =
corrective-action = pump-ftt-to-sea

becomes

If _trim-condition = heavy-forward
corrective-action = pump-fitt-to-sea

2) The expert is asked (by one or more of eight methods) if the
condition is necessary to performing the task. Can the action be
completed under different conditions? For example,

Will trim-condition = heavy-forward always lead to corrective-action =
pump-ftt-to-sea?

If the answer is yes, then the process continues with step 3. If the
answer is no, then the process returns to step 1 to have the expert
define another condition for the action by asking:

What is an alternative conclusion?

3) Is the condition given in step 2 the new goal?
Is_trim-condition = heavy-forward your new goal?
If the answer is yes, then the process begins with step 1 again and
the new goal is the condition. If the answer is no, then the process
continues until all goals or actions have conditions which describe
when an action should be taken.
As a result of this top-down, goal-decomposition method a set of production rules

are created modeling the expert’s domain knowledge.

2.4.2.2.2 Functional Decomposition
The functional decomposition method is employed by Pugh and Price (1990) in

their Functional Reasoner tool which interviews an expert about the composition
of a system, its components, and their interrelated states. This functional-
decomposition tool is based on the generic task described by Bylander and

Chandrasekaran (1988).
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The following set of questions taken from Pugh and Price (1990) are iteratively

asked by the system of the expert:

1)

2)

3)

4)

3)

6)

The expert is asked for the name of the object.
What is the name of the device you are building? circuir 1

The expert is asked for the preconditions of the object to work
properly.

Please give the general preconditions for [circuit 1] to function
properly:

1. power supply working correctly

2. bulbs working correctly

The expert is asked for the list of possible states the device can be
in.

Please give the list of states that [circuit 1] can be in:
1l.on

2.0ff

The expert is asked for the causes of a state change for the object.

Given that the [circuit 1] is in the following state: [on]
If <what happens> to [circuit 1] to cause a change of state and/or
a side effect to occur.
Causes:
1. power supply switched off

The expert is asked for the new state the object enters after a cause
has acted upon it.

Given that [power supply switched off] has acted upon [circuit 1]
Which of the following states does the [circuit 1] enter?

1. [on]

2. [off

The expert is asked for any side effects which might occur due to
the state change.

Please list any side effects that occur.
Side Effect:

1. bulb 1 goes out

2. bulb 2 goes out
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7)

8)

9

10)

The expert is asked if there are any more conditions which might
facilitate a state change given the object’s current state.

Are there any other causes (or list of causes) which facilitate:
1. a state change and/or
2. a side effect when the [circuit 1] is in state [on]? (y/n)

If the answer is yes, then the process continues with step 4 using
the current state. If the answer is no, then the process continues
with step 8.

For this example, the process would continue for state "off" of
component "circuit 1" and continues from step 4. If all the states
have been defined for the object, then the process continues with
step 9.

The expert is then asked for any sub-devices for the device.

Please give the list of sub-devices for the [circuit 1] (if any):
1. power supply

2.wirea

3.wireb

4.wirec

S.bulb 1

6. bulb 2

The expert is asked for the possible states of the sub-devices given

in step 9.

Please give the list of states that [power supply] can be in:
1l.on

2.0ff

Please give the list of states that [wire a] can be in:
1. conducting

2. nonconducting

This step continues for each sub-device identified in step 9.
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11)

12)

The expert is asked for the state of the sub-devices given the higher
level object’s state

Given that the [circuit 1] is in the following state: [on]
Please input the state of each of the sub-devices.

[power supply]
1. [on]
2. [off]

[wire a]
1. [conducting]
2. [nonconducting]

This process continues for the remaining sub-devices defined in step
9 (i.e., wire b, wire c, bulb 1, and bulb 2) and every state of the
higher level object (i.e., on and off).

The expert is then asked for the effects of interaction between sub-
devices.

Given that the [circuit 1] is in the following state: [on]
And that the states of the sub-devices are:

1. [power supply]  State:[on]

2. [wire a] State:[conducting]
3. [wire b] State:[conducting]
4. [wire c] State:[conducting]
5. [bulb 1] State:[lit]
6. [bulb 2] State:[lit]

When the cause [power supply switched off] on the device [circuit
1] occurs, which of the following sub-devices is affected?

. [power supply]

re
ulb
ulb

el
EE
o
o

=d|=2
N | |O

The expert chooses an object and answers the following question for
each object selected:

Which of the states does the [power supply] enter?
States
1. [on]
2. [off]

This step iteratively occurs until the complete set of potential
interactions is elicited. Each iteration displays the state change for
each sub-device. After every interaction is done for a given state of
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the higher level object, the next state of the higher level object is
performed for this step.

13)  The process begins again at step 9 with each sub-device becoming a
device. The process stops when no more sub-devices are defined.
In summary, the overall process involves eliciting the object, preconditions for
proper object functioning, a list of states for the object, causes for changes of
states, related state changes, sub-devices of the object, states of a sub-device,
state status of sub-device given object’s state, and the effect of an object state

change on sub-devices.

The result of this process is a functional description, a representation of a device
described in terms of the function and interaction of each of its components
(Pugh & Price, 1990). The level of detail is solely determined by the user in

specifying the sub-devices.

2.4.2.3 Prompted Case

The prompted-case method uses an expert case description interactively adapting
this case description to solve a problem. Two examples of systems employing this

method include KNACK and SIZZLE.

2.4.2.3.1 KNACK
KNACK builds a knowledge base for developing reports. KNACK requires: a
sample report, a domain model, and strategies for acquiring knowledge to aid
report writing (Klinker, 1988; Klinker, Bentolila, Genetet, Grimes, & McDermot,
1988; McDermot, 1988). The sample report is a skeleton or case example of the

desired report. The domain model contains a description of the domain’s
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concepts, terms, and their interdependencies (Klinker, 1988). Strategies define

ways to acquire pieces of information for use in a report.

The expert gives KNACK a sample report which is created in a text editor. An
example section of a sample report is given in Figure 17, taken from Klinker
(1988). Next, the expert inputs the domain model. The domain model consists
of the key concepts used in the report (e.g., enclosure). Each concept is

described in terms of attribute-value pairs, as seen in Figure 18.
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1.  Evaluation of EMP Hardness
1.1 Summary of the System Description

e system Communications Unit is designed to resist EMP threat. It consists
of a Computer, a Modem, a Radio, and a Motor Generator. Power is
supplied from the Motor Generator to the Computer, Modem, and Radio by
the Power Cable.

The Computer, Modem, and Radio are protected by a S-280C enclosure. The
Motor Generator is protected by a Metal Box enclosure.

The S-280C enclosure has the following apertures: Window and Cable Entry
Panel.

1.2 Shielding Requirements for the S-280C Enclosure

1.2.1 Diffusion through the Skin of the Enclosure

The S-280C enclosure is made of aluminum and is 30 mils thick. Aluminum
has a relative conductivity of 0.15mhos/m. A plate of aluminum must be at

least 20 mils thick to reduce the diffusion factor to a negligible level.
Therefore, the diffusion factor can be neglected.

Figure 17. Example of a sample report for KNACK.
(Taken from Klinker, 1988.)

ENCLOSURE concept
Attribute Value(s)
Name S-280C, Metal Box
Material Aluminum
Thickness number
Relative-Conductivity number
Minimum Thickness number

Figure 18. Example of a concept definition used in KNACK.
(Taken from Klinker, 1988.)
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The relationships between the concepts are also defined by naming the
relationship, e.g., comprises or connected with. For example, a system is
comprised of an enclosure and the enclosure is comprised of seams and

apertures.

KNACK constructs a skeletal report by fragmenting the sample report. KNACK
fragments the sample report by looking for key words and formatting. Key words
such as Chapter or Section and formatting such as "1. title" or "1.1 title" are used
in the fragmentation. From the example sample report given earlier, the

fragments would include those shown in Figure 19.
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1. Evaluation of EMP Hardness

1.1 Summary of the System Description

1.2 Shielding Requirements for the S-280C Enclosure

1.2.1 Diffusion through the Skin of the Enclosure

The S-280C enclosure is made of aluminum and is 30 mils thick. Aluminum
has a relative conductivity of 0.15mhos/m. A plate of aluminum must be at
least 20 mils thick to reduce the diffusion factor to a negligible level.
Therefore, the diffusion factor can be neglected.

Figure 19. Example of report fragments made by KNACK.
(Taken from Klinker, 1988.)
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Next, KNACK generalizes each fragment. The report is generalized by searching
for values of a concept’s attribute in the report and replacing the attribute values

with a variable name. For example,

"The S-280C enclosure is made of aluminum and is 30 mils thick.
Aluminum has a relative conductivity of 0.15mhos/m. A plate of
aluminum must be at least 20 mils thick to reduce the diffusion
factor to a negligible level. Therefore, the diffusion factor can be
neglected.”

would become

"The <enclosure.name > is made of <enclosure.material> and is
<enclosure.thickness> thick. <enclosure.material> has a relative
conductivity of <enclosure.conductivity> mhos/m. A plate of
<enclosure.material> must be at least <enclosure.minimum-
thickness > mils thick to reduce the diffusion factor to a negligible
level. Therefore, the diffusion factor can be neglected (Klinker,
1988, p. 145)."

Next, the expert defines strategies to acquire information or values of a concept.
Strategies include question, inference, table, menu, graphics, formulas, or
database. For example, to elicit how to determine the enclosures of a system
KNACK would ask the expert the following:
Which strategy can be used to determine the ENCLOSURES of a
SYSTEM?

The strategies are:
[question, inference, table, menu, graphics, formulas, database,

postpone, quit].
guestion text Please list the enclosures
possible answers  [incomplete-set, S-280C, Metal Box]

default answer unknown
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In the above example dialogue, the expert is specifying the "how to get a value"
strategy for a system enclosure. The expert is telling KNACK to ask for the
enclosure with the question "Please list the enclosures.”" The expert gives possible
responses (e.g., incomplete set, S-280C, or metal box), and, if appropriate, a
default answer. The strategies are generalized by replacing specific attribute
values defined in the strategy with the variable representing the concept. For
example, the above strategy "Please list enclosures" becomes "Please list the

enclosures of the <system.name > system."

After the strategies have been defined, the report is interactively checked with the
expert. KNACK takes a fragment and replaces the concept variables with its
values. The fragment is shown to the expert and the expert makes any changes

necessary.

Next, the knowledge base built by the sample report, domain model, and
strategies is refined. Two of the heuristics used by KNACK to refine the
knowledge base are: 1) each domain model concept must have a strategy for
gathering its value and 2) each concept or attribute must be used in a report or

strategy.

The output from KNACK is called a WRINGER. A WRINGER is an expert
system which acts on the knowledge base created by KNACK. A WRINGER

uses the information such as strategies to gather information to write reports.

In summary, KNACK uses the following process: 1) from the domain model and

sample report, a generalization of the report is created interactively with the
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expert; 2) from this generalization the possible values of a concept are placed in
the report; 3) strategies to get those possible values are also given; and 4) the
knowledge is analyzed for completeness of strategies, concept inclusion, and
possible concepts and values. KNACK uses an acquire-and-present problem-
solving strategy to search through the report and domain model (McDermot,
1988). The sample report is acquired, generalized, and presented to the expert

for revisions.

2.4.2.3.2S1Z71E
SIZZLE uses past cases and extrapolation knowledge to solve a sizing problem
(Offutt, 1988). A sizing problem is one of finding the minimum acceptable
capacities some system must have, given information about the uses to which that
system will be put. SIZZLE solves a problem by acquiring, representing, and
applying knowledge to make solution recommendations. SIZZLE extrapolates
from a past similar case (i.e., the source) to a target case by taking the source
solution and adjusting it to fit the target case. A case is represented as a

description-solution pair.

The process begins with the expert inputting the characteristics or uses for the
target case. The input or target case description is a set of attributes and values.
The expert is presented with a set of prompts for a value of an attribute which
describes the case. From the following example shown in Figure 20, the initial
attribute is industries. Based upon the expert’s response, further attribute-value
pairs are requested. For the initial attribute, industries, the expert has assigned

the value banking. The expert is then asked for the value of the attribute
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department of banking. This series of identifying the values for attributes builds

the case description used by SIZZLE to find a solution.

From the target case, SIZZLE searches for a source case that matches the target
case the closest. The source case is found by matching the attributes and values
for each case. The source case with the most similar attribute-value pairs is
selected. After the source case is found, SIZZLE adjusts the source’s solution to
fit the description of the target case. The solution is adjusted by use of rates
defined by the expert. The rate encodes the amount of a resource needed by an
attribute (e.g., disk space needed per accountant). SIZZLE presents the adapted
solution to the expert. Figure 21 shows the source case description and solution

SIZZLE used to construct a solution to the target.
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Industries
Banking
Insurance

Banking
Banking Loan Department

Banking Collection Department

Banking Loan Department
Accountants

Analysts
Managers

How many Accountants are there? 4

Banking Loan Department
Accountants

Analysts
Managers

How many Analysts are there? 2

Banking Loan Department
Accountants

Analysts
Managers

How many Managers are there? 7

Figure 20. Example target case used by SIZZLE.

(Taken from Offutt, 1988.)
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Your sizing task reminds me of the Valley Bank Case.

The source sizing solution:
Secretaries 1
Managers 1
Accountants 1

Source Solution:
vax 11/780 equivalents 0.9
megabytes of physical memory 5§

Your posed sizing problem:
Accountants4
Analysts 2
Managers 1

Solution to your sizing problem:
vax 11/780 equivalents 1.7
megabytes of physical memory 12

Figure 21. Example source case used and solution constructed by SIZZLE.
(Adapted from Offutt, 1988, by presenting a simplified solution.{



After the expert is presented the solution, he or she is to determine if the
proposed solution is appropriate. If the solution is accepted, then the session is
over. However, if the solution isn’t accepted, then the expert adjusts the solution
and SIZZLE saves the case description and solution. Figure 22 shows the dialog

used when the proposed solution needs to be edited by the expert.

In summary, the expert inputs the problem characteristics to help remind the
system of possible past cases to extrapolate from. Once the system is given these
characteristics, it searches for a case that can directly solve the problem or can be
extrapolated. The user can either accept the solution or modify it. If he or she
accepts the solution, then the session ends, otherwise the solution can be
modified. The knowledge base is interactively and continuously being constructed
and refined during a session. Knowledge added by each case can immediately be

used to solve another case.
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Please correct my proposed solution:
What is a better value for megabytes of physical memory? [12]: 20
What is a better value for vax 11/780 equivalents? [1.7]: 2.3

Please give me a unique name for this case [1): Morgan Bank

I will remember your sizing problem and its solution. If I encounter the same
or similar problem, I will use your sizing case as a source analogue.

Figure 22. Example of the expert adjusting a solution with SIZZLE.
(Adapted from Offutt, 1988, by presenting a simplified solution.)
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2.4.2.4 Iterative Design
Iterative design methods aid the expert in the design process by eliciting,

organizing, representing, and refining the gathered design knowledge. SALT is

one such example of an iterative design tool.

2.4.2.4.1 SALT
SALT uses a propose-and-revise problem-solving strategy to aid in the design-
constraint satisfaction process (Marcus, 1988a; Marcus, 1988b). SALT proposes a
solution and then revises it to meet constraints. Constraint satisfaction tasks
involve allocating requirements or resources within specified constraints (e.g.,

scheduling or design).

SALT elicits knowledge about design parameters, constraints, and fixes to violated
constraints (McDermot, 1988). The expert is interactively interviewed for the
parameters, constraints, and fixes. Parameters are a set of values for variables
which define a design alternative. A constraint is a limit on the value of a
parameter. A fixis a procedure for altering a parameter when a constraint is

violated. SALT elicits, refines the knowledge, and generates rules.

Design parameters are elicited by having the expert fill in a form. A design °
parameter is defined by specifying its name, procedure for getting a value,
precondition to using the parameter, and justification. Procedures include
formula calculation and database lookup. The precondition specifies when a
parameter should be used. The justification is text to comment on the

parameter. Figure 23 is an example of a formula calculation procedure.
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1. Name: Car-Jamb-Return

2. Precondition: Door-Opening = Center

3. Procedure: Calculation

4. Formula: [Platform-width - Opening-Width ] /2

5. Justification:  Center-Opening doors look best when centered on the
platform

Figure 23. Example of a parameter definition in SALT.
(Taken from Marcus, 1988a.)
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A constraint for a parameter is defined the same way a parameter is, by filling in
a form. When defining a constraint, the expert identifies: the parameter to be
constrained, the type of constraint, name of the constraint, precondition,
procedure, and justification. The name, precondition, and justification represent
the same things as in the parameter definition form. The type of constraint
includes such limits as the maximum, minimum, or member of a chosen set. The

procedure determines how the value to be associated with the parameter is to be

achieved. In Figure 24, the maximum (constraint type) value of Car-Jamb-Return

(constrained value) is Panel-Width multiplied by Stringer-Quantity (formula

procedure) when Door-Opening equals Side (precondition).

Next, fixes or remedies to violated constraints are elicited from the expert. A
constraint definition includes the name of the constraint violated, the parameter
or value to change, how to change the value, the preference for the change, and
the reason for preference. The constraint violated is the name of the constraint
the fix is attempting to correct. The value to change specifies the parameter and
value the fix is going to change. How to change the parameter value specifies
the procedure used to change the value. The preference rating is used to
distinguish between alternative fixes to the same violated constraint. The lower
the value of the preference rating, the more it is preferred. In Figure 25, the
parameter Stringer-Quantity is increased by a value of 1 every time the
Maximum-Car-Jamb-Return constraint is violated, if this fix is preferred over

other fixes.
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1. Constrained value: Car-Jamb-Return
2. Constraint type: Maximum
3. Constraint name: Maximum-Car-Jamb-Return

4. Precondition: Door-Opening = Side

5. Procedure: Calculation

6.Formula: Panel-Width * Stringer-Quantity

7. Justification: This procedure is taken from installation

manual I, p. 12b.

Figure 24. Example of a constraint definition in SALT.
(Taken from Marcus, 1988a.)

1.Violated Constraint: Maximum-Car-Jamb-Return
2.Value to change: Stringer-Quantity

3. Change type: Increase

4. Step type: By-Step

5. Step size: 1

6. Preference rating: 4

7.Reason for preference: Changes minor equipment sizing

Figure 25. Example of a fix definition in SALT.
(Taken from Marcus, 1988a.)
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When the expert is finished defining procedures, constraints, and fixes, the system
refines the knowledge base for completeness, compilability, and convergence.
Completeness is assessed by making sure every parameter has a procedure and
constraint, and every constraint has a fix. Compilability is assessed by checking
for overlaps in preconditions that produce counter-productive rules, the ability to
find at least one path to a solution, and checking for loops or self referencing
procedures. Convergence is assessed by checking the interaction of fixes to
ensure violated constraints can be fixed so a solution can be reached. The
purpose is to make sure the system doesn’t stop because the interactions won’t

allow a solution to be designed.

The knowledge base can be used to aid designers in developing a design
description. This design description is represented using a dependency network
with a node representing a parameter and with links for the relations (e.g.,
contributes to, constrains, suggests revision of) between nodes. An example of a

model built by SALT is given in Figure 26.
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Figure 26. Example of a design model built by SALT.
(Taken from Marcus, 1988a.)
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2.4.2.5 Cover and Differentiate

Cover and differentiate is a problem-solving process in which the expert specifies:
1) candidates to cover a potential problem solution and 2) information used to
differentiate the candidates (Eshelman, 1988). MOLE is an example of a

machine-aided method which uses a cover-and-differentiate process.

2.4.2.5.1 MOLE
MOLE is an automated knowledge-acquisition tool that employs the cover-and-
differentiate strategy to diagnose problems (Eshelman, 1988). MOLE is the
improvement of an earlier tool, MORE, which followed the same strategy (Kahn,
1988). MOLE interviews the expert for complaints, explanations for the
complaints, and knowledge to differentiate the explanations (Eshelman, Ehret,
McDermot, & Tan, 1988; McDermot, 1988). The knowledge is refined

dynamically by evaluating system performance in solving cases.

The following steps are used by MOLE to implement the knowledge-acquisition

process. The process and examples are taken from Eshelman (1988).
1. The expert inputs a list of possible complaints or symptoms to be
explained. Attribute-value pairs are used to describe a complaint.

List possible complaints or symptoms that might need to be

diagnosed:

Complaint:

> > loss-in-gas

Status: new
Method: ask
Default Value: none
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Complaint:

> > high-fly-flash-flow
Status: new
Method: ask
Default Value: none

MOLE asks for covering knowledge: states or events which
explain/cover the symptoms from 1, this is done until every
symptom has an explanation.

List possible explanations for loss-in-gas:
Possible explanation for loss-in-gas:

low-heat-transfer

Status: new
Method: infer
Default Value: none

excess-air high

Status: new
Method: infer
Default Value: none

MOLE asks for covering knowledge for an explanation. The
explanations from step 2 become the next level of "complaints" and
explanations for these are elicited by returning to step 2. This
process continues until all complaints are explained and the expert
says a complaint doesn’t need to be explained. The following
represents how this occurs.

List possible explanations for low-heat-transfer:
Possible explanation for low-heat-transfer:

misbalance-of-convection

Status: new
Method: infer
Default Value: none
low-radiation

Status: new
Method: infer
Default Value: none
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MOLE asks for differentiating knowledge. Differentiating
knowledge is knowledge which distinguishes candidate explanations
for a symptom, that is, what explanation works under a given
condition.

Indicate which of the following tends to rule out excess-air high as
the explanation for loss-in-gas?

1. high-fly-flash-flow
2. dark-ash

MOLE asks for preferences of explanations. In the following
example, low-flame-temperature is preferred over the other two
explanations.

Given the presence of small-red-flame, rank the following
explanations of low-radiation:

low-flame-temperature [1]

low-moisture-content [1] 2
large-particles [1] 2

MOLE looks for weaknesses in the knowledge base (i.e., refines)

dynamlcally 6havmg the expert give a test case and correct
cgnosxs MOLE solves the case, if the diagnosis is wrong, then

LE tries to find and correct the error in the knowledge base

Dark-ash is explained by low-grindability-relative-to-setting.

Is this correct?

>>no

dark-ash is explained as follows:

1. dark-ash is explained by large-particles

2. large-particles is explained by low-grindability-relative-to-setting
Indicate the first incorrect step:

>>1

What is the correct explanation for dark-ash:

1. large-particles

2. excess-air high
>> none

In order to explain dark-ash some hypothesis must be accepted.
Enter the explanation for dark-ash:

excess-air low

excess-air low

Status: old

Method: infer
Default Value: none
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In summary, the overall process involves having the expert specify: 1) the list of
symptoms to be explained, 2) explanations for "symptoms" and "symptom-
explanations”, and 3) when an explanation is preferred. The elicitation and
refinement of the knowledge is interactive, while the organization and

representation are implicitly handied by the machine.
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2.4.3 Machine-I earning Methods

The third set of knowledge-acquisition methods are the machine-learning
methods. The machine does the majority of the knowledge-acquisition process, it
organizes, compiles, and refines automatically after it is given data. Very little
human interaction is required in comparison to manual and machine-aided
methods. One drawback of these methods is they are subject to noise and
fluctuations in the data. (Kodratoff, Manago, & Blythe, 1988; Pettit & Pettit,
1988). The four primary paradigms employed by machine-learning systems have
been classified by Carbonell (1990) as the inductive, the analytic, the genetic, and
the connectionist paradigms and are adopted for this review. A more elaborate
classification however has been offered by Michalski’s (1991) Inferential Learning
Theory.

2.4.3.1 The Inductive Paradigm

Induction generates rules by synthesizing a general concept description from a
sequence of positive and negative instances of the concept. The purpose is to
build a concept description so the positive examples can be later classified and
the negative examples not classified. The basic induction process starts with a
training set of examples which are concept instances and their descriptions
(Gennari, Langley, & Fisher, 1990; Trippi & Turban, 1990). Table 3 provides an
example of a data set used for inducing a concept. Induction can be incremental,
constructing a description one example at a time, or batch, when a description is
built by all examples at once. ID3 is an example of a batch-induction system

(Quinlan, 1983).
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Table 3

Example Induction Data Set
(Taken from Quinlan, 1983.)

Attributes

Class Height Hair Color Eye Color
a short blond blue

b tall blond brown

a tall red blue

b short dark blue

b tall dark blue

a tall blond blue

b tall dark brown

b short blond brown
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Clusterings that group the instances, definitions of each cluster, and a hierarchical
organization of clusters are sought by the algorithm (Gennari, Langley, & Fisher,
1990). A decision tree representing the hierarchy of objects in the concept results

from using an induction system (Broner, King, & Nevo, 1990; Quinlan, 1988).
ID3 constructs a decision tree by determining which attribute provides the most

information, that is, has the biggest impact on distinguishing between the different

instances. Table 4 gives the calculations used by ID3 to construct a decision tree.
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Table 4

Formulas Used for ID3 Induction Method

(Abstracted from Quinlan, 1983.)

Value Formula What value means or stands for
aj N/A attribute a; (e.g., height, hair color,
eye color)
ajVj N/A attribute value j of attribute aj
(e.g., short andtall of height;
blond, red, and dark of hair color;
and blue and brown of eye color)
Px # in class x proportion of examples in
total number of examples class x (e.g., 3/8 of the
examples are in class a and
5/8 of the examples are in class b)
Pxajv5 # in class x for an proportion of examples in
attribute-value pair class x (e.g., a or b) for
total number of examples attribute i value j
with attribute-value pair (e.g., for short height pa= 1/3
and pp=2/3; for tall height pa= 2/5
x = the total number of and pp=3/5)
classes
(e.g., 1 to 2 for a or b);
i = the number of attributes
(e.g., 1 to 3 for height,
hair color, eye color);
j = the number of attribute
values for attribute i,
(e.g., 1 to 2, for values short
and tall of attribute height)
M(C) -sum(px * logz px) the information content of the
classes a and b
IC(ajvy) | - sum(pyajv4 * logz Pxajvj) | information content for each given
attribute-value pair
B(C,a;) sum(pyajvi * IC(ajv4)) expected information content
for each attribute
IG(aj) B(C,a;) - M(C) information gained by using

attribute a; of the set of C objects
as a test
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The process for developing a decision tree used by induction is to calculate the
values given in Table 4 and choose the attribute with the greatest information
gained value to be the next attribute test. The first attribute is the root. Each
subsequently-selected attribute is the test for the subsequent level of the tree.
This process continues until all attributes are accounted for or all examples have

been classified.

Using the formulas given in Table 4 and the data in Table 3, the following values
are computed. There are two classes, a and b. The proportion, py, for each
class is p;= 3/8 and pp=5/8. M(C) is equal to 0.9544 = - (3/8 * logp 3/8) - (5/8

* logy 5/8). The information content for the attribute values is given in Table S.

Next, the information gained by using a given attribute is calculated based upon
the results of the information content. The results of the information gained for

the example given in Table 3 are given in Table 6.

Based on the results of Table 6, hair color is the first attribute used because it
has the highest information gained. Next, eye color is used. Attributes are
chosen to be a test until all examples are clustered in the hierarchy. Figure 27
shows the resulting hierarchy using the ID3 induction algorithm on the data set
given in Table 3. The nodes represent a test of an attribute and the branches the
possible results or values of the test. For example from Figure 27, the top node
tests the hair attribute. If the instance has blond hair, then it is traced to the

right branch or side of the tree.
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Table 5

Information Content Values for Induction Example

Attribute | # of Examples | pg | pp | Information Content
Value | with Attribute IC(ajvj)= - sum(pxajvj * log2 pxajvj)
Value

short 3 1/3(2/3]0.918 = -(1/3 * logy 1/3) - (2/3 * logy 2/3)

tall 5 2/5]3/5|0.971 = -(2/5 * logp 2/5) - (3/5 * logy 3/5)

blond 4 2/412/4| 1.0 = -(2/4 * logy 2/4) - (2/4 * logy 2/4)

red 1 1/110/1] 0.0 = -(1/1 * logp 1/1) - (0/1 * logy 0/1)

dark 3 0/3(3/3[{0.0 = -(0/3 * logp 0/3) - (3/3 * logy 3/3)

blue 5 3/512/5]0.971 = -(3/5 * logy 3/5) - (2/5 * logyp 2/5)

brown |3 0/3|3/310.0 = -(0/3 * logp 0/3) - (3/3 * logy 3/3)
Table 6

Information Gained Values for Induction Example

Attribute | B(C,a;) IG

Height 951 = 3/8(.918) + 5/8(.971) | .0034 = .9544 - 951
Hair Color| .5 = 4/8(1) + 1/8(0) + 3/8(0) | .4544 = 9544 - .5
Eye Color | .606 = 5/8(.971) + 3/8(0) 3487 = .9544 - .606
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DARK RED BLOND

Figure 27, Induction hierarchy created by ID3.
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Induction is used primarily for classification due to the decision-tree hierarchy
created and is limited by the need to interpret the results of the decision tree
(Cendrowska, 1988; Quinlan, 1988). The quality of the results depends upon the
order of presented examples and number of distinguishing examples. Induction
algorithms differ in the ways the instances are sorted and the decision tree is

constructed.

2.4.3.2 Genetic Algorithms Paradigm and Classifier Systems

Genetic algorithms model the biological behavior of genes and their chromosomes
and are used to increase the performance of classifier systems by discovering
rules. Classifier systems are most useful when there is a continuous stream of
environmental data, need for real time action, inexactly defined goals, and little
reinforcement (Holland, Holyoak, Nisbett, & Thagard, 1987). Classifier systems
have three levels of activities: 1) a performance system that interacts with the
environment; 2) a credit assignment system used to determine which rules are
effective; and 3) a rule discovery system. These components and their

relationships are shown in Figure 28.
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Figure 28. Components of a genetic algorithm system.
(Abstracted from Holland, Holyoak, Nisbett, & Thagard, 1987.)
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The performance system has four basic parts: 1) an input interface, that
translates the current environmental state into a message; 2) classifiers, which are
the rules used by the system to process messages; 3) a message list containing all
current messages; and 4) an output interface, which translates some messages into
actions which modify the environmental state. The performance system receives
the messages from the input interface, processes the messages, and produces a
message for the output interface. Messages are processed by the following steps:
1) all messages are compared to all conditions of classifiers and matches are
recorded, 2) for each match, messages are posted as specified in the action part
of the matching classifiers replacing the old message list, and 3) the messages on
the new messages list are translated to requirements of the output interface.
Messages are posted based on the strength of their associated classifier as

determined by the credit assignment system.

The credit assignment system uses the bucket brigade algorithm to assign a
strength to each classifier. The strength represents the usefulness of a classifier
to the system. This strength is used to determine which messages get posted to
the message list for the next recursive step. The strength is adjusted every time-

cycle of the process.

The gcncﬁc component takes the strongest classifiers given by the bucket brigade
to make new, more-effective rules. The rules are represented by vectors of
detectors and reactions in the form of 0 (no, otherwise), 1(yes), or #(don’t care)
(e.g., (detectors/reactions) or (1,1,0,0,1,#,# /0,0,1,1) ). The detectors are the

conditions and the reactions are the actions of a production rule form. Detectors
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are counted from the right (e.g. dgd5dqd3dpdq). Table 7 is an example of
detectors taken from Booker, Goldberg, and Holland (1990) to simply show the

relationship between a detector, its value, and a message from the input interface.

101



Table 7

Example Detectors and Their Values for a Genetic Algorithm System

(Taken from Booker, Goldberg, & Holland, 1990.)

Detector Value & Its Meaning
d& 1 = object is moving; 0 = otherwise
2,d3 0,0) = object centered in vision field

d2,d3§ 1,0% = object left of center in vision field

dp,d3 0,1) = object right of center in vision field
dg = system adjacent to the object; 0 = otherwise
ds 1 = object is large; 0 = otherwise
dg 1 = object is striped; 0=otherwise
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From Table 7, when the message is received that a large, moving, striped object
is adjacent and right of center, the input interface forms a detector, which is
111011. The detector is matched by the performance system against the
classifiers in the system. For each match of the detector vector, the reactor
vector, of the classifiers is posted to the message list. A reactor might be to

move to the left and avoid contact with the object.

New rules are created by applying genetic operators such as cross over, mutation,
and inversion to the existing strong rules (Pettit & Pettit, 1988). Cross over
involves interchanging conditions and actions between rules, 1001/111 and
0101/010 become 1001/010 and 0101/111. Mutation occurs by changing a random
detector value, 1001/000 could become 1101/000. Inversion is the swapping of
random detector values, 1110/010 could become 1011/010. The weakest rules are
replaced by the new rules created with the genetic algorithms. Refinement is
continually performed by a rule’s strength being computed by the bucket brigade

component.

2.4.3.3 Analytic Paradigm

Analytic machine-learning methods improve the efficiency of a system by using
past problem-solving examples and/or domain theory (Carbonell, 1990). Analytic
methods include: Explanation-Based Learning, Learning by Derivational Analogy,
and Case-Based Learning.
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2.4.3.3.1 Explanation-based learning

Explanation-based learning (EBL) uses domain theory and a concept example to
acquire search control rules from a problem solving trace to improve problem
solving (Minton, Carbonell, Etzioni, Knoblock, & Kuokka, 1987). Minton,
Carbonell, Etzioni, Knoblock, and Kuokka (1987) define the inputs of an EBL
system as
Target concept: A concept to be learned
Training example: An example of the target concept
Domain theory: A set of rules and facts to be used in explaining
how the training example is an example of the target concept
Operationality criterion: A predicate over descriptions, specifying
the form in which the learned description must be expressed.
The domain theory is organized as "<fact> IF <conditions>." The fact is true if
the conditions are met. The fact is represented as a predicate and the conditions

as one or more conjunctive predicates. The operationality criteria is the set of

predicates specifying when the learning process should stop (Adeli & Yeh, 1990).

A predicate is a rule for establishing a fact or relationship. A predicate is true if
the fact or relationship described by the predicate is true, otherwise it is false.
For example, if julie is a girl then male(julie) would be false. Figure 29 provides
an example of the inputs. From Figure 29, the predicate is_elder_brother_of
(B,A) is true if the conjunctive of conditions or predicates

[have_same_parent(B,A), and male(B), and older_than(B,A)] is true.
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Target Concept
Is_elder_brother_of(_, )

Training Example
1.is_elder_brother_of(john, tom)

2. is_parent_of(dan, john)
3. is_parent_of(dan, tom)
4. born_in(john, 1960)

5. born_in(tom, 1970)

6. male(john)

7. has_brown_hair(john)

Domain Theory
1. is-elder-brother-of(B, A) if

have_same_parent(B, A), and male(B), and older_than(B, A).
2.is_elder_sister_of(B, A) if

have_same_parent(B, A), and female(B), and older_than(B, A).
3. have_same_parent(M, N) if

4. older_than(X, Y) if
born_earlier_than(X, Y).
5. born_earlier_than(U, V) if
born_in(U, Yearl), and born_in(V, Year2), and less(Yearl, Year2).

Operationality criterion
1. born_in(_,_)
2.is_parent_of(_, )
3.1less(_, )

4. same_person(_, )
5. male()

6. female( )

is_parent_of(X, M), and is_parent_of(Y, N), and same_person(X, Y).

Figure 29. Example inputs to an EBL system.
(Taken from Adeli & Yeh, 1990.)
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EBL is a two-step process: 1) explaining and 2) generalizing (Adeli & Yeh,
1990). The explanation stage involves constructing a proof tree. The
generalization stage is done to generate the final output or operational

description.

The explanation stage constructs an explanation or proof that the target concept
is valid (Minton, Carbonell, Etzioni, Knoblock, & Kuokka, 1987). An explanation
or proof tree is built by using the domain theory necessary to prove the target
concept. The domain theory is searched for the target concept or predicate
is_elder_brother_of(_, ). Next, the conditions necessary to proving the target
concept predicate are found. For example, from the domain theory to prove
is_elder_brother_of(john, tom), the following must first be proved:
have_same_parent(john, tom), and male(john), and older_than(john, tom). These
conditions represent the second level of the tree found in Figure 30. Each
condition needs to be proved true. From the domain theory, to prove
have_same_parent(john, tom), the following must first be proved:
is_parent_of(dan, john), is_parent_of(dan, tom), and same_person(dan, dan). To
prove older_than(john, tom), born_earlier_than(john, tom) must be proved true.
Next, born_earlier_than(john, tom) is proven by born_in(john, 1960), born_in(tom,
1970), and 1960<1970. This process continues with each of the conditions for
each subsequent proof as long as each predicate can be further proven; that is,

the predicate has conditions to be proven before the predicate can be accepted

as true. The final proof tree built in the explanation stage is given in Figure 30.
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is_elder_brother_of(john, tom)

I 1 |
male(john) have_same_parent(john, tom) older_than(john, tom)
I ] I
is_parent_of is_parent_of same_person . .
(dan, john) (dan, tom) (dan, dan) born_earlier_than(john, tom)
| [ 7

born_in(john, 1960)  born_in(tom, 1970) 1960<1970

Figure 30. EBL proof tree for example given in Figure 29.
(Taken from Adeli & Yeh, 1990.)
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The first step to generalization is variable substitution. For example, from the
tree constructed in Figure 30, john would be replaced by X, tom by Y, 1960 by
yearl, 1970 by year2, and dan by P1/P2. The second and final step of
generalization is to take the leaf nodes of the tree shown in Figure 30 and
combine them to form the operational description. For the example given in
Figures 29 and 30, the operational description is:
is_elder_brother_of(X,Y) if

male(x), and

is _parent_ongl,X; and born ingx,Yearlg and

is_parent_of(P2,Y) and born_in(Y,Year2) and
same_person(P1,P2) and less(Year1,Year2).

The purpose of EBL is to find the important characteristics of an event (Pazzani,
1988). Explanation-based learning is limited by the ability to accurately describe

the domain and example in the same predicates.

2.4.3.3.2 | earning by Derivational Analo
Derivational analogy uses top-down decomposition to conduct a new plan based
upon previous designs. A design plan is "replayed” to solve the new plan by
selecting and adapting the old plan to fit the new. A design plan is an executable
record of decisions made in the course of solving the original design problem
(Mostow, 1990) and is represented by goals, preconditions, justifications,

alternatives, and selection criteria.
The process begins with "recognition” of a candidate design plan which is close to

the target. The source is "adapted” to the target. The adaptation is then

"evaluated" to validate the results. Finally, the design plan is "consolidated" to
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integrate the results into memory (Bhansali & Harandi, 1990). Figure 31

provides a conceptual framework for derivational analogy.

Recognition is the process of retrieving a source plan which is "close" to the
target plan. Bhansali and Harandi (1990) use the following heuristics in their

system for recognition:

- the target and source are of the same functional class
- the inputs and outputs are the same or similar
- structure of the processes are the same, (e.g., recursive)

- arguments are of the same type.

Plan adaptation involves identifying violated constraints, deciding which steps to
modify, changing the plan’s steps to fit the new problem, and propagating the
results to identify any other violated constraints (Mostow, 1990). The purpose of

this step is to use an adapted version of the source plan to solve the target plan.

Evaluation of the adapted plan is done to validate the results of the adaptation
stage. Mostow (1990) provides four overall criteria to validate an adapted plan:
executable, correct, successful, and desirable. A plan is executable if it is
syntactically correct. A plan is correct if it meets the specification given in the
target plan. Success of a plan is judged by the plans ability to achieve its original
purpose. Finally, a plan is desirable if it satisfies the criteria used in selecting it
in the recognition stage. If any of these four criteria are not met, then the

adapted plan is re-adapted or a new source plan is selected.
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Figure 31. Derivational analogy conceptual framework.
(Abstracted from Mostow, 1990; Bhansali & Harandi, 1990.)
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The recognition, adaptation, and evaluation stages recursively occur on the main
goal and subgoals of the target and source plans. Consolidation is done to save
the adapted plan for future use. The results of the adaptation are integrated into
the system’s memory to be used on other plans. Derivational analogy assumes
"good" previous plans exist to use and learn from. Consequently, the initial cases

need to be developed.

2.4.3.3.3 Case-Based

Case-based methods explain why previous knowledge or expectations failed to
apply and correct failed expectations (Schank, 1986; Schank & Leake, 1990). The
case-based process consists of anomaly detection, search, accepting, tweaking, and
integration. An anomaly is something that is abnormal or out of the ordinary, a
deviation from the expected or common rule, a failed expectation. Previous cases
or explanations are represented using explanation patterns (XP). XPs have 6

components:

1) a representation of the anomaly that the pattern explains,

2) a set of states of the world under which the pattern is likely to be a
valid explanation, :

3) a set of states of the world under which the pattern is likely to be
useful, even if it isn’t immediately applicable,

4) a pattern of beliefs, with relationships between them, that show why the
event being explained might have been explained,

5) a proverb or rule of thumb that summarizes the situation for use in
planning,

6) a set of prior episodes that have been explained by the pattern (Schank

& Leake, 1990).

Table 8 is an example of an XP.
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Table 8

Example of an Explanation Pattern Used in Case-Based Learning
(Taken from Schank & Leake, 1990.)

world XP is valid

Component Example Value
Anomaly untimely death
States of the untimely death or death heavily insured with

relatives who didn’t love him or
beneficiary is suspicious character

States of the deceased was rich; relatives who didn’t

world XP is love him or beneficiary is suspicious

useful character

Pattern of beliefs| - beneficiary dislikes policy holder
- dislike makes beneficiary want to harm policy-holder
beneficiary has goal to get a lot of money
- inheriting is a plan for getting inheritance
- insurance means that inheritance will include a lot of
money
- inheriting requires that the policy-holder dies
beneficiary kills the insured to harm him and to get money

Rule of thumb |a good way to get rich and get rid of someone you don’t
like at the same time

Prior episodes deaths seen in movies, mafia killings

explained by XP
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The following is a five-step process used in SWALE, a case-based program:

1) Anomaly Detection

Anomaly detection occurs when the system attempts to place a new fact into its
memory and the input doesn’t fit with existing knowledge. The input won’t
integrate with existing knowledge because: it doesn’t satisfy an existing
expectation, it can’t be accepted in terms of known patterns, other circumstances
do not make the fact more likely, or its role-fillers aren’t reasonable. Existing

XPs can not directly explain each fact of the input.

The anomaly is classified or indexed according to its type; for example, the
anomaly could be role-filler of wrong category, premature event, planning
problems, or novel causal connection. This anomaly index describes the type of

anomaly detected and is used in subsequent steps.

2) XP Search

Existing explanations are searched to use as possible explanations for the anomaly
detected in step 1. Three searches are used: routine, unusual features, and
folkloric explanation. A routine search uses the type of anomaly found in step 1
to search existing XPs. If no XP can be found based on type, then the XPs are
searched based on unusual or extraordinary features of the input case. Finally,
SWALE attempts to find a folkloric explanation which might explain the case.
Folkloric explanations are "unbelievable" explanations classified only by the type

of event to be explained.
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3) XP Accepting

This step determines if the XP retrieved from step 2 is acceptable to the case
being explained. An explanation of an expectation failure must show a flaw in
the reasoning that led to the expectation. An XP is accepted if it is relevant,
believable, and provides the level of detail needed. An XP is relevant if it
answers or addresses the question raised by the anomaly detection. An XP is
believable if it fits into the understanding of the world known by SWALE, the XP
could be confirmed, assumed, or unacceptable. The level of detail for an XP is

evaluated based upon the need for the level of detail.

4) XP Tweaking

Tweaking is done to adapt XPs that are inapplicable to current anomalies.
Tweaking is done by matching the anomaly index to a strategy. Strategies
attempt to create new explanations by finding XPs that don’t have the problem
making the original explanation to be unacceptable. Four strategies are: abandon
belief, substitute alternate theme, substitute anticipation, and find connecting XP
(Kass, Leake, & Owens, 1986). The abandon-belief strategy eliminates the
problematic belief because the belief is irrelevant. The substitute-alternate-theme
strategy replaces the action described in the anomaly by the possible action
described in XPs. The substitute-anticipation strategy is used when the anomaly
is detected because the anomaly event occurred before it was supposed to. This
strategy substitutes the belief that the role player was thinking about the event
and this thought caused the anomaly. The find-connecting-XP strategy attempts
to find a causal chain between beliefs that appear to be unrelated. New

explanations are then checked to see if they are acceptable.
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5) XP Integration

A new XP is integrated into memory by generalization and indexing. An XP is
generalized by substituting general purpose variables (e.g., x and y) in the chain
of XPs that explained the anomaly. Indexing of an XP is done by determining
the category of anomaly explained (type and major role player) and the

conditions under which the anomaly occurred.

This paragraph summarizes the process used in case-based machine learning.
Anomaly detection occurs when an expectation consistent with existing memory
fails. Explanation patterns are searched for an explanation which accounts for
the failed expectation. An attempt to apply the explanation pattern is made. If
it is successful with or without revision, then the memory is updated with the new
explanation pattern. However, if the pattern was not accepted, then strategies
are applied to revise a potential explanation pattern to fit the anomaly.
Integration occurs when a new explanation pattern is accepted (Schank & Leake,
1990). Figure 32 provides the top-level process-flow diagram for cased-based

machine learning.
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Figure 32. Case-based high-level process-flow diagram.

(Abstracted from Schank, 1986; Schank & Leake, 1990; Kass, Leake, & Owens,

1986.)
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2.4.3.4 Connectionist Paradigm

The connectionist paradigm uses neural networks to develop rules for pattern
recognition (McClelland, Rumelhart, & Hinton, 1986). Neural networks have
input, hidden, and output layers. The input layer receives signals from sources
external to the system and the output layer outputs signals out of the system.

The input and output layers are coded to define what each of its signals represent
(Caudill, 1990). The hidden layer are units whose inputs and outputs are internal

to the system.

An input unit translates a signal from the external environment to an output
which it sends to the other units in the system. Each of the units receives an
input and produces an output. The relationships of the units determine what the
system knows, how it responds to an input, and the output signal given by the
output layer. For example, if a system having two units, uq (input) and
up(output) receives an input, then uq sends a "message" to up, which then outputs

a signal depending upon the signal it received from uj.

Rumelhart, Hinton, and McClelland (1986) formally define eight major
components of a neural network:
1) set of processing units, u;j: represents the domain concepts or
characteristics which are used to classify or recognize patterns of the inputs
2) state of activation, A(t): represents the state of the system at time ¢ and
is represented by a vector of a;(t)’s which are the activations for the
individual units

3) output function for each unit, f;: produces an output o;(t) based upon
the units activation at time ¢
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4) pattern of connectivity among units, matrix W(t): represents how the
different units are related, noted by wj;, if wjj is positive then unit j excites
unit j if wj; is negative then unit j inhlfaits umit 4 if it is zero then unit j has
no direct rélationship with unit 7

5) propagation rule for propagating activation through the network: takes
the output vector and connectivity matrices and combines them to form
the net; which is the net input to unit j

6) activation rule: combines the inputs impinging on a unit with the current
state of that unit to produce a new level of activation for the unit, a
function F takes the net input to the unit and the unit’s activation state to
produce a new state of activation

7) learning rule: modifies patterns of connectivity by experience, this is
done in one of three ways: develop new connections, loss of existing
connections, or modification of connection strengths, Wij of units.

8) environment: defines the environment within which the system must
operate.

Figure 33 is an example of an abstract neural network.

A pattern-association learning goal of neural networks is to find a set of
connections so whenever a particular pattern reappears on the input set of units,
the associated pattern will appear on the output set of units (Rumelhart, Hinton,
& McClelland, 1986). The idea is to develop the connections so when an input

pattern is given a predetermined or learned output pattern results.

Learning in a neural network can occur by three methods: supervised,
reinforcement, or unsupervised. Supervised learning takes place by specifying the
desired output vector, reinforcement uses a scalar evaluation of the output, and

unsupervised constructs patterns based on the input pattern only (Hinton, 1990).
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Figure 33. Abstract neural network.
(Abstracted from Hinton, 1990; Rumelhart, Hinton, & McClelland, 1986.)
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The overall process for supervised learning in a neural network begins with the
definition of the input layer through which the input pattern will be received.

The input layer is defined by assigning a unit to each possible characteristic of the
input pattern. Next, the output layer is defined by matching the output layer
units with the desired output pattern. The network is "activated" by calculating
the state of activation using the propagation rule, pattern of connectivity, output
functions, and activation rules. The output pattern of the network is compared to
the desired output pattern. If the patterns match, then the process stops, else the
interconnection weights are adjusted by the learning rule. Hinton (1990) provides
an example of a learning rule based on the error between the desired and
produced. The error between desired and produced patterns is used to
determine the change in the interconnection weights of the units. This process is
iteratively done until stability is reached in the network. Figure 34 portrays this

learning process.
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Figure 34. Abstract representation of the connectionist paradigm learning process.

(Abstracted from Hinton, 1990.)
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2.5 Analysis, Conclusions, and Recommendations

The methods are analyzed to determine which method should be used to perform
the knowledge acquisition of problem spaces. The analysis of the methods
reviewed shall progress through a process of elimination of methods that do not

meet each of the five design criteria defined at the outset.

The methods were analyzed and eliminated with respect to five design criteria.
1) The method must be general purpose and not constrained by the requirement
for a preexisting, domain, knowledge base prior to the commencement of
knowledge acquisition, making it applicable to a variety of differing domains of
application. 2) The method must produce a set of procedural units which lend
themselves to processing via a production system, since a production system
process is the most widely employed architecture for processing cognitive
activities. 3) The method must be systematic to the extent that a process can be
formulated and codified for computer implementation. 4) The method must be
compatible with the manner in which procedural knowledge is typically recalled.
This should supply the element of simplicity to the knowledge-acquisition process.
5) The method must be valid in terms of its being empirically grounded in
experimental research attesting to its compatibility with the human information

processing system.

Based on this review, the methods are classified into manual, machine aided, and

machine learning. The analysis begins with the machine learning category.
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The machine learning methods (except induction and connectionist paradigms)
are knowledge intensive requiring some base domain knowledge prior to the
commencement of knowledge acquisition. It is difficult to imagine how either the
induction or connectionist paradigm can be interfaced for the user to simplify the

users recall of knowledge.

Next, machine-aided methods are analyzed. None of the machine-aided methods
meet the five criteria defined earlier. KNACK and SIZZLE were eliminated
because they are knowledge intensive, requiring preexisting domain knowledge
prior to their application as knowledge-acquisition tools. Each was designed for

specific tasks.

Multi-Dimensional Scaling (MDS) and the Repertory Grid methods are
eliminated since these methods apply primarily to object classification. They do

not produce a hierarchy of procedural units for modeling process knowledge.

MOLE and SALT are not general purpose although each appears as if it could
be extended to cover a variety of applications. The major concern with these

methods is their incompatibility with the recall of procedural knowledge.

The methods implemented in LAP and Functional Reasoner employ a top-down
decomposition of a task or physical system respectively. Functional Reasoner is
eliminated because it was designed to model the functioning of components and

their interactions, and is not procedurally based. It is not apparent that LAP
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facilitates the recall of procedural knowledge with simplicity due to the formal

logical structure of its interface.

Manual methods are analyzed against the criteria. The methods described in
"Unstructured Interview", "Observation", "Interface Design", and "Document
Examination" are eliminated. These methods are not systematized to the extent
that a process can be formulated and codified for computer implementation,
given the state of the art in intelligent systems. The "Object Classification"
methods are eliminated because they are designed to yield a network of objects
and their relations as opposed to procedural knowledge. "Prompted Interviews"

are eliminated because they require background, domain knowledge to perform

the knowledge-acquisition process.

The remaining manual methods are classified as cognitive task analysis. These
methods are Constructive Interaction and GOMS. The constructive interaction
method yields a top-down breadth first decomposition of the function of a
complex device. It appears as if it could be automated as a general-purpose
method for knowledge acquisition in that it serves to decompose any device into a
function-mechanism hierarchy. The method was developed from protocols of how
individuals understand complex physical devices as opposed to task procedures,

therefore it is eliminated from consideration.
The GOMS analysis technique shares similarities with that method employed by

LAP in that it is general purpose, yields production rules and employs a

production-system process for execution and refinement of the knowledge
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acquired. GOMS has not yet been implemented as an automated aid for
knowledge acquisition. However, Kieras (1988) has developed a rather systematic
manual interview technique which lends itself to automation. The GOMS analysis
technique is also compatible with the recall of procedural knowledge since it is
based upon the production theory of learning and memory which has received
substantial empirical support in the research literature (Klahr, Langley, & Neches,
1987; Anderson, 1981 and 1983). Consequently, GOMS meets all criteria
specified for the design of a knowledge-acquisition tool that can model knowledge
of procedural domains with a reasonable degree of ease in terms of user
interaction. It is intuitively quite simple for a user to recall the goals he or she
wishes to achieve in the conduct of a procedural task and to specify the steps
required to achieve the goal. This recall paradigm integrated with a top-down
breadth first decomposition of steps is the simple heuristic employed in
conducting a GOMS cognitive task analysis. Since most if not all task-related
knowledge can be proceduralized in this way, GOMS has an extremely broad
range for potential application. Therefore, the GOMS cognitive task analysis
technique was selected for the development of an automated knowledge-

acquisition tool.
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Three conclusions are made from this review of the body of knowledge:

1) A means to capture the problem-space knowledge needs to be
developed because the current knowledge-acquisition methods do
not directly map the problem space as defined by the information
processing model of problem solving.

2) A cognitive task analysis method, i.e. GOMS, will map the problem
space knowledge.

3) Machine-aided tools provide the most benefit to the knowledge-
acquisition process because the elicitation and refinement steps are
interactively performed with the expert and the organization and
representation steps are automatically performed by the machine.
Therefore, the dependence on the KE is lessened.

The following recommendation for achieving the purpose of this research is made
from these conclusions:

Automation of the GOMS cognitive task analysis method in a
machine-aided tool.

GOMS has been primarily used for interface design, however it could be adjusted
to fit other needs. In fact, GOMS could be used to map the knowledge used in
solving a problem. A relationship between the GOMS model and the

information processing model of problem solving is developed.

The components of a problem space are: initial states; goals and subgoals;
possible intermediate states; operators, which move the problem solver from state
to state; constraints on the problem; and the evaluation function. The
components of a GOMS model are: goals, operators, methods, and selection

rules. The goal of the problem-solving model and GOMS are the same. A
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subgoal of problem solving is the same as a step of a method in GOMS. The
problem-solving evaluation function is represented by the selection rules in
GOMS. Finally, the operators of problem solving are represented in GOMS as
the accomplishment of a subgoal because the accomplishment of a subgoal moves
the state of the problem from one node to the next. At the lowest level of the
problem-solving model, the operators are the same as the operators of the

GOMS model because the operator represents a specific action to be taken.
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CHAPTER 3 - TESTING AND EVALUATION METHODOLOGY

This chapter details the process and procedures employed in testing and
evaluating the developed knowledge-acquisition tool called Cognitive Analysis
Tool (CAT).

Overview and Purpose

There are several iterative phases to developing a tool such as the one tested.
The first phase included conceptual analysis, requirements analysis and definition,
system design, and system development. The second phase was the evaluation of
the tool. This evaluation gave insight into the tool’s performance and
consequently into how to improve the tool. The information and knowledge
gained from this evaluation was used to iterate through the design cycle and
improve the tool. The evaluation phase focused upon investigating if accurate
and consistent knowledge bases can be generated by using the tool. Therefore, a
highly-proceduralized task such as interacting with a device that has only one
correct way to accomplish a goal was modeled. The primitive level of the goal
hierarchy defined the actions required to interact with the device to accomplish
the various subgoals. The high-level goal and sub-goals were used to structure

and segment the elementary, primitive actions.

The tool’s purpose is to help people solve problems by eliciting, organizing, and
representing their knowledge; that is, developing a problem space. This problem
space is a knowledge base. Developing a knowledge base at this initial evaluation
will give insight into the tool’s ability to generate accurate and consistent

representations of well-structured domains. If the tool can generate accurate and
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consistent knowledge bases in well-structured domains, then, by analogy, the
inference can be made that the tool can be used to generate knowledge bases in
ill-structured domains. However, the tool must be tested at the well-structured

domain level to determine if the tool can represent well-structured domains.

The purpose of the evaluation methodology is to investigate the tool’s
performance relative to meeting the research objective. That is, can an
automated knowledge-acquisition tool using an extended GOMS process guide
individuals in organizing their knowledge to formulate problem spaces from which
decisions and plans can be made? To determine if the tool works, the knowledge
bases generated by using the tool must be evaluated. The tool works if the
developed knowledge bases are accurate with a baseline model and consistent

between subjects.

Since this research is exploratory development, a baseline is established to
investigate the feasibility and practicality of the tool (Driskell & Olmstead, 1989).
This baseline will also serve as a benchmark to evaluate future improvements to
this tool. Current literature does not contain adequate metrics to evaluate the

effectiveness of a knowledge-acquisition method (Mitta, 1989).

3.1 Questions to be Answered

The following are the questions answered by this experiment.

1) How accurate and consistent are the knowledge bases developed
using the knowledge-acquisition tool?

2) How can the tool be improved or changed to facilitate the
knowledge-acquisition process?
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The results of the first question will indicate the degree to which the research
question has been answered. The results of the second question will provide

suggested improvements to the tool.

3.2 Experimental Plan

3.2.1 Overview of the Methodology

The methodology involves comparing each subjects’ knowledge base as generated
by the tool with 1) a baseline knowledge base and 2) the knowledge bases of the
other subjects. The baseline knowledge base is taken from Kieras (1988) and
adapted to facilitate testing of the tool. To determine the accuracy of the
knowledge bases, the baseline is used as the basis of comparison for the
knowledge bases constructed by domain experts who interact with the knowledge-
acquisition tool. To determine the consistency of the knowledge bases, the
knowledge base generated by each subject is compared with each of the other
subjects’ knowledge bases. Consistency is a measure of the variation in the
knowledge bases generated. The tool must be able to generate similar models
from different experts on the same well-structured domain. The consistency
measure is calculated to determine if a common knowledge base can be
generated from multiple experts in a domain in which a baseline knowledge base
is not available. If a common knowledge base can be generated in this instance,
then the inference can be made that an accurate knowledge base is being

generated. Figure 35 displays the conceptual model of the methodology.
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Figure 35. Conceptual model of the methodology.
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3.2.2 Possible Sources of Variance for this Experiment

This section describes six possible sources of variance for this experiment. Each
variance source will be described in terms of how it could influence the
experiment, its different value levels (when appropriate), and how it was

controlled and accounted for in the experiment.

1. Method for knowledge-acquisition.

The method used to acquire knowledge from the expert is a source of variance
because the method used can influence the knowledge bases that are generated.
There are any number of levels for this source of variance; that is, any of the
methods identified by the analysis and classification of existing methods given in
Chapter 2 could be employed for eliciting knowledge. The knowledge-acquisition
method was controlled for variance by selecting one method for automation as a

result of the analysis relative to the design criteria specified.

Given the purpose of this experiment is to test the tool’s performance, the
knowledge-acquisition tool was the only level to the knowledge-acquisition method

variable.

2. Knowledge-acquisition tool.
The knowledge-acquisition tool is a major source of variance for this experiment
because the tool is what is being tested and evaluated. The tool was controlled

by using one design of the tool in the evaluation.

The tool’s design characteristics that could influence the variance of the

knowledge acquired were the process used to elicit the goal structure, interface,
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and prompts used. The process used to elicit the goal structure is top-down,
breadth-first expansion of goals into subgoals. There are other processes such as
bottom-up or depth-first. However, Miyake (1986) provided empirical evidence
that people decompose their understanding employing a top-down, breadth-first
process. In designing the tool, the interface and prompts were developed
following the guidelines of brevity, consistency, flexibility, compatibility, and
responsiveness as specified by Williges and Williges (1984) and evaluated by
Williams, Hamel, and Shrestha (1987).

3. Type of experimental task.
The type of task is a source of variance because different task types could affect
the ease with which knowledge can be elicited in a structured manner. This

variance was controlled by using a well-structured task.

There are two high-level categories of tasks for which knowledge can be elicited:
1) well-structured tasks and 2) ill-structured tasks. A well-structured task such as
the one described in 3.5 Task Definition provides a task that is performed in a
highly proceduralized manner. A well-structured task will facilitate the evaluation
of the knowledge bases generated by the tool and subsequently the tool itself. A
well-structured task will facilitate the evaluation because there is little, if any,
variation in how the task should be performed. That is, the task must be
completed by a defined set of actions. Knowing these defined actions will allow
the accuracy of the models to be calculated. An ill-structured task may not have
any one correct knowledge base and will not allow accuracy calculations of the

generated knowledge bases.
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4. Source of baseline knowledge base for experimental task.
The source of the baseline model is used in the calculation of the accuracy
measure and therefore is a variance source. This variable was controlled by using

a single model defined in Kieras (1988).

The baseline knowledge base was used to compare the tool-generated knowledge
bases. The baseline knowledge base provides a reference to investigate if the
tool can be used to generate accurate models. The Kieras (1988) baseline
knowledge base was chosen because it is a well-published and accepted model of
how to perform the task. This model was also created using the GOMS cognitive
task analysis method which provided the framework from which the tool was

designed.

S. Subjects used as experts.

The subjects used as experts for the experiment are an obvious source of
variance. The subjects’ expertise is a significant source of variation.
Homogeneity of variance between subjects was partially controlled for by their
ability to perform the task to be modeled. That is, subjects’ expertise was
assessed by a screening task. If a potential subject could not perform the

screening task, then he or she was not used as a subject for the experiment.

A subject can be characterized by his or her ability to perform the task, ability to
recall knowledge on how to do the task, and how he or she structures knowledge
about the task. Each subject was screened for his or her ability to perform the

task. How a subject recalls his or her knowledge cannot be manipulated and was
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assumed to be the same for every subject. How each subject structured his or
her knowledge was assessed by the data reduction procedures described in 3.7

Data Collection and Reduction.

6. Experimental procedures.

How the experiment was conducted is also a major source of variance. The
experimental procedures were designed to minimize any variation in the conduct
of the experiment. The procedures employed for each session are presented in
Appendices 2-4. Each step was performed for each subject and checked off
when performed. Any deviation from these procedures was noted. Possible

deviations were open-ended questions asked by the subject for clarification

purposes.

3.2.3 Assumptions

One assumption made relative to potential sources of variation between subjects

was that:

Each subject had the same ability to recall their knowledge on how
to perform the task given that they could successfully complete the
screening task.

This assumption is necessary since the tool was designed to capture expertise

across a large population of experts independent of nuances in their recall

capabilities.
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3.2.4 Research Model
The research model for this experiment was developed by defining the ideal
experiment, removing variables which were infeasible due to the
constraints/practicalities, and integrating the overall purpose of the evaluation.
The ideal experiment would use various levels of how the knowledge is acquired,
various versions of the tool, different levels of tasks, and different sources of the
baseline knowledge base. However, the practicalities impose the following
constraints: 1) there are too many methods to evaluate and 2) an ill-structured
task would not have a single knowledge base, therefore, not allowing reliable
comparisons to be made. The overall purpose of this experiment was to test the
current version of the developed knowledge-acquisition tool to gain insight into its
performance and generate potential improvements. By controlling the other
sources of variance, the performance measure values reflect the tool’s ability to

elicit knowledge.
Based on the above discussion, the research model is given in Figure 36. The

dependent variables are the performance measures. The independent variable is

the knowledge-acquisition tool.
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Figure 36. Research model.
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3.2.4.1 Performance Measures

The performance measures for this experiment were used to assess the
capabilities of the tool to elicit accurate and reliable knowledge bases. The
precise methods for calculating the performance measures are given in section
3.8.1 Calculation Procedures for Performance Measures. There were two
dependent measures based upon what each knowledge base was compared to: 1)
subject model versus the baseline model and 2) subject model versus other
subject models. The subject-versus-baseline comparison described how accurate
the models were relative to the baseline. The subject-versus-subject comparison
described how consistent the knowledge bases were across all subjects. A
variability measure was calculated for each performance measure. The variability
measures were calculated as the standard deviation of the performance measures.
The following are the performance measures:

Primitive Method Accuracy (PMA): Primitive Method Accuracy is calculated as
the percent match between a subject generated primitive method and the
corresponding baseline primitive method.

Primitive Method Consistency (PMC): Primitive Method Consistency is
calculated as the percent match between a subject generated primitive step of a

given primitive method and the corresponding primitive step of a given primitive
method across all subjects.
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3.3 Experimental Subjects

3.3.1 Subjects - Who They Are
The subjects were chosen based upon their ability to perform the task to be

modeled. Secretaries, typists, information officers, and students from
Management Systems Laboratories and the Industrial and Systems Engineering

Department were the primary source of subjects.

3.3.2 Sample Size
The subjects were chosen based upon their ability to perform the task to be

modeled. The sample size was forty (40). A total of forty-two (42) subjects were
run. One subject’s data was not used due to the subject being in a hurry and not
being representative of a typical subject. Another subject’s data could not be

collected due to a fault in the tool during the experimental session.

3.3.3 Criteria for Selection
The subjects were selected based upon their ability to perform the task to be
modeled. Prospective subjects had to perform the task before being selected as a
subject for the experiment. If a prospective subject was able to perform the task,
then he or she was selected as a subject for the experiment. The criteria for

homogeneity in the sample is the subject’s ability to perform the screening task.
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3.4 Experimental Apparatus
For the screening of subjects, the following hardware and software were used:

Apple Macintosh

System Software 7

Mouse

Microsoft Word version 5.0.

For the machine-aided session of the experiment the machine-aided tool,
Cognitive Analysis Tool (CAT) version 0.02, was run with the following hardware

and software:

DOS version 5.0

Microsoft Windows version 3.0
Two button mouse

Win 386 IBM compatible
VGA color monitor

8 mb ram.

Appendix 8 contains a description of CAT.
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3.5 Definition of Task to be Modeled

The task modeled for this experiment was moving text in a word-processing file
by using the cut and paste commands. The task as defined by Kieras (1988) is to
move a specified piece of text which is either a word or arbitrary text. The task

is complete when the text is moved.

3.5.1 Baseline Knowledge Base of Task
The baseline model is taken from Kieras (1988). This model was constructed

using the GOMS analysis technique. A model of the knowledge base is shown in
Figure 37. The rule base is given in Appendix 1. The model was adapted by
adding the methods for cutting and pasting text using the command keys and by
removing the method for selecting a word by double-clicking on the word with the
mouse. These changes were made to facilitate the evaluation of the tool. By
adding the command methods, the tool’s process for eliciting alternative methods
could be investigated. The double-clicking method was removed because most

people don’t know this method.
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3.6 Experimental Procedure

The experimental session was conducted in three stages: 1) subject performance
of the screening task, 2) machine-aided tool familiarization, and 3) machine-aided
tool knowledge acquisition. Session one was performed to verify the subject’s
ability to perform the task being modeled. Session two, the familiarization
session, was needed to allow the subject to become familiar with the tool before
using it for the machine-aided knowledge-acquisition session. Session three was
the interaction of experimental subjects with the tool. A checklist for the
procedure used for each session is given in Appendices 2-4. Figure 38 contains
the overall flowchart used for this experiment. Figure 39 contains the detailed
flowchart used for processing subjects. A pilot study was run to test and change
the procedures for the experiment. Appendix 6 contains the results of the pilot:
study.
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Figure 38. Flowchart of experimental procedure.
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3.6.1 Subject Performance of the Screening Task

The purpose of this session was to screen test subjects relative to their level of
expertise. Only those who could perform the task to be modeled at a given level
of performance were chosen as subjects for the experiment. The subject passed
the screening task if the subject could perform each step of the screening task as
defined in Appendix 2 without using the help facility or user manual; that is, if

the subject could retrieve from memory the knowledge to perform all the
alternative methods described in the baseline model. A checklist was used to
determine if the subject performed the task as specified. Appendix 2 contains the

procedure, task sheet, and subject performance scoring sheet for this session.

This session was also used to explain the overall process for the experiment and
to have the subject sign the consent form. The consent form is given in

Appendix 5.

3.6.2 Machine-Aided Familiarization Session
This session consisted of explaining the functions and commands of the tool. The
session had three parts: 1) explanation of the tool by the experimenter, 2) guided
example completed by the experimenter, and 3) subject use of the tool with an
example problem and feedback from the experimenter. The purpose of this
session was to provide the subject the "how to use it" knowledge of the tool.
Appendix 3 contains the explanation of the tool and the sample tasks employed
for demonstrating the tool. Any critical incidents, such as the subject asking the
experimenter for help or an observation by the experimenter of the subject

having difficulty, were noted by the experimenter. These observations gave
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insight into possible tool improvements. The results from these observations are

presented in section 4.3 as suggested changes to be made to the tool.

3.6.3 Machine-Aided Knowledge-Acquisition Session
The machine-aided tool was used by each subject to guide the knowledge

acquisition process on the task defined in section 3.5 Task Definition. The task
explanation for this session is given in Appendix 4. Any critical incidents, such as
the subject asking the experimenter for help or an observation by the
experimenter of the subject having difficulty, were noted by the experimenter.
These observations gave insight into possible tool improvements. The results
from these observations are also presented in section 4.3 as suggested changes to

be made to the tool.

The following facilitations were made by the experimenter to help each subject

understand how to use the tool when the subject was having difficulty:

1) if the subject started to define primitive steps for accomplishing the

top level goal, then the following was said: "You are probably
starting at too low a level of detail. Think about the high-level
steps necessary to accomplish the top-level goal. You will be able
to define the primitive steps for each high-level goal later on. You
can look at the models used in the previous session to help you."

2) if the subject defined two primitive actions per step, then the

following was said: "You should define only one primitive action
per step. There is a way to define concurrent actions."

3.6.4 Logistic Issues

The sessions were done in the Pointe West Commons conference room in one
sitting. The subjects were paid five dollars ($5.00) for participating in the

experiment.
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3.7 Data Collection and Reduction

The data collected were the knowledge bases elicited from the subjects about the
experimental task. The first step to data collection was the construction of the
rules generated from the knowledge-acquisition sessions. The rules were
automatically generated by the machine in the machine-aided sessions. The
second step to data collection was to have each subject match each primitive he
or she defined with a primitive from the baseline model. This comparison and
matching was done to ensure the user-generated semantics were consistent with
the names ascribed to each primitive in the baseline model. Instead of having
the experimenter make judgments about semantic similarity or dissimilarity, the
subjects were asked to make this judgment since they would understand how the

terms they generated were to be interpreted.

The first step of data reduction was to gather the primitive methods generated by
each subject. The primitive methods contain the collection of primitive steps
enacted to accomplish a goal. Primitive methods are needed because this
collection of primitive steps determines how the task is to be completed and

represents the knowledge units that define how to do the task.

148



The following procedure was employed to construct the list of rules containing
primitive steps:

1) Print the text output developed by the tool from an experimental
session. The tool output consists of: a) a list of rules containing
the goal/subgoal names, method names, selection rules (if
appropriate), and steps; and b) a list of primitives.

2) Select a primitive from the primitive list.

3) Search each rule or method to see if the rule contains the primitive
as a step. If the rule contains the primitive, then highlight the rule.

4) Do steps 2 and 3 until there are no more primitives.
5) Collect the highlighted rules or methods. This set makes up the list

of rules that contain primitives. These rules can contain both
primitives and non-primitives as steps.

The second data reduction step was to transform each subjects’ list of rules into
baseline methods. The six baseline methods were: select text, cut text with
menu, cut text with keys, new position, paste text with menu, and paste text with
keys. The second data reduction step was done to allow the comparison of each
subject’s knowledge base to baseline primitive methods. The primitive methods
define the set of primitive steps or elementary actions required to complete the
task. The construction of this primitive method list was done because subjects
had different goal hierarchies. Subjects composed and decomposed rules
differently.
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Decomposition occurs when one method in the baseline knowledge base is
decomposed into two or more sub-goals by the subject. The following shows an
example of a decomposed method:

GOAL "cut text with menu"
1. "move cursor to edit"
2. "press mouse button down"
3. "select cut"

GOAL "select cut"
3a. "move cursor to cut”
3b. "release mouse button".

The above two methods are really just the one method below:

GOAL "cut text with menu"
1 "move cursor to edit"
Press mouse button down"
move cursor to cut"
3b "release mouse button"

In this case, the subject decomposed the one baseline method of "cut text with
menu" into the two subgoals "cut text with menu" and "select cut".
An example of a composed method is the following:

GOAL "put text in new position"

locate new position of text
click the mouse button
press apple key

press v key

release v key

release apple key.

SUA LR

In this case, the subject chunked or combined the following two baseline methods
into one method:

GOAL "new position"
1. locate new position of text
2. click the mouse button

GOAL "paste text with keys"
press apple key
press v key
release v key
release apple key.

AP W
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As a matter of convenience in calculating the performance measures, the subject-
generated methods were composed and decomposed into baseline methods. The
experimenter composed two subject generated methods into a single baseline
method and decomposed a single subject method into two baseline methods as
required to compare a subject’s methods to the baseline methods. Knowledge
composition and decomposition can at occur at different stages in the
development of a knowledge base (Anderson, 1983). Knowledge composition and
decomposition do not reflect any inaccuracies in the subject generated knowledge

base.
3.8 Data Analysis

Data analysis occurred in two stages. The first stage of data analysis was to
calculate the performance measure values. The second stage was to calculate the

variability scores (i.e., standard deviation) of the performance measures.

3.8.1 Calculation Procedures for Performance Measures
The primitive-method accuracy was calculated for each given primitive method of
each subject across all methods. Each primitive step of a primitive method
generated by each subject was compared to the primitive steps of the
corresponding primitive method identified in the baseline model. The baseline
primitive methods were: select text, cut text with menu, cut text with keys, new
position, paste text with menu, and paste text with keys. Each one of these
primitive methods had a set of primitives as defined in the baseline model to
accomplish the method. The primitive method accuracy was calculated by
comparing each primitive step in a subject’s primitive method to the steps of the

corresponding baseline primitive method. The number of baseline primitive steps
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of a given method that the subject defined in his or her corresponding primitive
method was counted, as was the number of steps in the primitive baseline
method. The accuracy for a given method of a subject was computed by dividing
the number of baseline primitive steps of the given method that the subject
defined in his or her corresponding primitive method by the number of steps in
the primitive baseline method. This process was completed for each baseline
method for each subject. The primitive method accuracy for each subject was
calculated by taking the average accuracy for the subject across the six baseline
primitive methods. The unit of analysis for the accuracy measure was a method.
A method represents a knowledge chunk or rule. Table 9 is an example of the

accuracy calculations.

Primitive method consistency was calculated for each primitive step of a given
method across all subjects. Consistency describes how consistent subjects were in
including or excluding a primitive step in a given method. The first step was to
construct a list of all the primitives each subject defined for a given primitive
method. This list of primitives was generated for each primitive method across
all methods, that is, all of the primitives defined by all of the subjects for a given
method were part of this list. Each primitive step of a primitive method
generated by each subject was analyzed in terms of its presence or absence in the
given method across all subjects. The number of subjects who had the primitive
step in the given method was counted, as was the number of subjects who didn’t
have the primitive in their model for the given method. The consistency of a
primitive step of a given method was calculated by dividing the maximum of

either the number of subjects who had the primitive step in the given method or
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the number of subjects who didn’t have the primitive step in the given method by
the total number of subjects. This process was completed for each primitive step
of a primitive method across all methods. Table 10 is an example of consistency
calculations. Appendix 7 contains the actual data reduction sheets used in

calculating the performance measure values.
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Table 9

Example Calculations for the Accuracy Performance Measure

Method: new position Subject

Primitive Method Steps #1 #2 #3 #4
determine new position 1 0 0 1
move cursor to new position 1 1 1 0
click mouse button 1 0 1 1
# of baseline primitives defined by subject

for this given method 3 1 2 2
# of baseline primitives in this given method| 3 3 3 3
Accuracy 3/3 1/3 2/3 2/3
Method: paste text with keys Subject

Primitive Method Steps #1 #2 #3 #4
press command 1 0 1 1
press V 1 0 1 1
release V 1 0 0 1
release command 1 0 0 0
# of baseline primitives defined by subject

for this given method 4 0 2 3
# of baseline primitives in this given method| 4 4 4 4
Accuracy 4/4 0/4 2/4 3/4
Primitive Method Accuracy 3%@ 13:+04 2034214 U3+34

Note: Table values: "0" = subject didn’t define the primitive in this method, "1" =

subject did define the primitive in this method.
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Table 10

Example Calculations for the Consistency Performance Measure

# of # of Subject
subjects | subjects | Generated
who had | who did | Primitive
step for | not have| Method
this step for | Consistency
method | this

Method: new position Subject method

Primitive Method Steps #1| #2 #3 #4

determine new position 1100 (1 (2 2 0.500

move cursor to new position| 1 |1 [1 |0 |3 1 0.750

click mouse button 110(1(1]3 1 0.750

verify have correct position |0 |1 (0 [0 |1 3 0.750
# of # of Subject
subjects | subjects | Generated
who had | who did | Primitive
step for | not have| Method
this step for | Consistency
method | this

Method: paste text with keys Subject method

Primitive Method Steps #1 #2 #3 #4

press command 1(1(11]0]3 1 0.750

press V 111(1(0]3 1 0.750

release V 1{0|0 (0|1 3 0.750

release command 1{1]10(0]2 2 0.500

verify text is inserted 0|00 (1|1 3 0.750

Note: Table values: "0" = subject didn’t define the primitive in this method, "1"

subject did define the primitive in this method.
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3.8.2 Statistical Analysis

The statistical analysis used for this experiment was to establish the mean and the
standard deviation of the measures. The analysis yields the variability of the

models generated with the tool. Two statistical analyses were performed:

1. variability of the accuracy as compared to the baseline, and
2. variability of models between subjects, independent of the baseline
model.

From these standard deviations the confidence of predicting the sample standard
deviation as being representative of the true population was determined. By
using a sample size of 40, the standard deviation calculated is 17% within the true
population value with a confidence of 90% (Greenwood & Sandomire, 1950, p.
258).
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CHAPTER 4 - ANALYSIS OF RESULTS AND
INTERPRETATION

This chapter describes and interprets the analysis of the data from the

experiment.
4.1 Analysis of Results

The knowledge bases generated by the subjects were analyzed for accuracy and
consistency. Accuracy measures were computed by comparing the primitive-level
methods and their corresponding steps to the baseline model’s primitive-level
methods for each method and each subject. Consistency measures were
computed by comparing the primitive-level methods generated by each subject to

the corresponding primitive-level methods generated by every other subject.

4.1.1 Baseline Comparison--Accuracy

The results from the analysis of the accuracy of the knowledge bases are given in
Table 11. The accuracy analysis was conducted on three sets of measures based
on the type of primitive within a method: mental, physical, and combined mental
and physical. Mental primitives are the cognitive processes enabled while doing a
task, or the implicit mental actions. For example, "determine position of the
beginning of text" and "verifying correct text is selected" are mental primitives.
Physical primitives are the observable physical or explicit overt behaviors
activated to accomplish a task. For example, "press a key" is a physical primitive.
The combined measure includes both the physical and mental primitives. The
primitives used for the accuracy analysis were only the primitives defined in the
baseline model, any other primitive defined by a subject that was not part of the

baseline model was not included in the accuracy calculations. The non-baseline
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primitives are accounted for in the consistency measures, that is, between-subject

comparisons.

The average number of physical primitive steps defined for a given method as
compared to the baseline model was 82.7%. The average number of mental
primitive steps defined for a given method as compared to the baseline model
was 28.3%. The average number of combined steps (i.e., both mental and
physical) defined for a given method as compared to the baseline model was
72.8%. Across all methods, mental and physical primitive accuracy was
significantly different with a paired t-test (t = -14.433, df1 = 39, df2 = 39,

at p < 0.0001).

4.1.2 Between-Subjects Comparison--Consistency
The results from the analysis of the consistency of the knowledge bases are given

in Table 12. The consistency analysis, as in the accuracy-measure case, was
divided into three sets of measures based on the type of primitive: mental,
physical, and combined mental and physical. All primitive steps defined in the

subjects’ knowledge bases were included in the analysis.

On average, 87.1% of the subjects were consistent in including a physical
primitive step of a primitive method across all methods of their models. On
average, 89.7% of the subjects were consistent in excluding the mental primitive
steps of a primitive method across all methods of their models. Overall, 88.5%
subjects were consistent in defining, including or excluding from their model, a
primitive step of any given method. That is, 88.5% of the primitive steps of a

method were consistently part of or not part of a subject’s method across all
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methods of their models. Table 13 contains confidence intervals for the accuracy

and consistency measures.

Further analysis was done to investigate the number of primitive steps a subject
defined in their model in addition to the primitive steps defined in the given
baseline method. On average, a subject added 0.046 physical primitive steps to a
given baseline method and 0.099 mental primitive steps to a given baseline
method. A subject, on average, added 0.079 primitive steps (i.e., both mental and
physical) to a given baseline method. These additional steps added further detail
to the models and were not incorrect actions to complete the task. Table 14

contains the results of this analysis.
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Table 11

Summary of Accuracy Results of Subject-Versus-Baseline Comparison - Number
of Baseline Primitive Steps of a Method a Subject Identified in Their Model

Method Primitive Average Standard

Type Deviation
Select Text

Mental 0.358 0.266

Physical 0.925 0.141

Both 0.682 0.131
Cut Text with Menu

Mental 0.100 0.304

Physical 0.900 0.276

Both 0.740 0.236
Cut Text with Keys

Mental NA NA

Physical 0.769 0.332

Both 0.769 0.332
New Position

Mental 0.650 0.483

Physical 0.700 0.389

Both 0.683 0.346
Paste Text with Menu

Mental 0.025 0.158

Physical 0.900 0.276

Both 0.725 0.225
Paste Text with Keys

Mental NA NA

Physical 0.769 0.332

Both 0.769 0.332
Across all Methods

Mental 0.283 0.207

Physical 0.827 0.177

Both 0.728 0.167

ote: NA (not applicable) 1s given for methods which did not contain mental

primitives as part of the given baseline primitive method.
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Table 12

Summary of Consistency Results of Subject-Versus-Subject Comparison

Method Primitive Average Standard

Type Deviation
Select Text

Mental 0.872 0.096

Physical 0.930 0.057

Both 0.894 0.085
Cut Text with Menu

Mental 0.922 0.070

Physical 0.910 0.034

Both 0.917 0.057
Cut Text with Keys

Mental 0.906 0.047

Physical 0.838 0.160

Both 0.865 0.128
New Position

Mental 0.750 0.141

Physical 0.783 0.191

Both 0.770 0.154
Paste Text with Menu

Mental 0.925 0.071

Physical 0.905 0.027

Both 0.917 0.057
Paste Text with Keys

Mental 0.875 0.000

Physical 0.838 0.160

Both 0.850 0.128
Across all Methods

Mental 0.897 0.083

Physical 0.871 0.120

Both 0.885 0.102
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Table 13

Confidence Intervals for Performance Measures

Measure Confidence Lower Upper

Level (%) Limit Limit
Physical Consistency

90 0.834 0.908

95 0.826 0.916

99 0.810 0.931
Mental Consistency

90 0.869 0.918

95 0.864 0.923

99 0.854 0.934
Both Consistency

90 0.861 0.904

95 0.857 0.909

99 0.849 0.917
Physical Accuracy

90 0.780 0.874

95 0.770 0.884

99 0.903 0.751
Mental Accuracy

90 0.228 0.339

95 0.217 0.350

99 0.194 0.372
Both Accuracy

90 0.683 0.773

95 0.674 0.782

99 0.656 0.800
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Table 14

Number of Steps Added to a Method in the Baseline Model by a Subject

Type of Average Variability (Standard Deviation)
Primitive

Physical 0.046 0.113

Mental 0.099 0.129

Combined 0.079 0.103
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4.2 Interpretation of Results

The accuracy of the models generated by subjects as compared to the baseline
model was 72.8%. For modeling physical or explicit actions, the tool is highly
accurate, 82.7%. The overall inaccuracy can be mostly accounted for by the
absence of mental primitives generated by test subjects. For any given method,
only 28.3% of the mental primitives identified in the baseline model were
generated by the test subjects. While using an expert and a knowledge engineer
the time to create one rule of a knowledge base has been estimated to take one
hour (Teknowledge, Inc., 1984). By having an expert use this tool, which is able
to generate 72.8% accurate models, there is a potential savings of three-quarters
of a knowledge engineer’s time. Accuracy depends on actions defined as
primitives and the baseline model used for the comparison. The ultimate
judgment as to what makes an accuracy score "good" or "bad" depends on the use

of the developed knowledge base.

In defining an action as a primitive, the subject or analyst is making a judgment
on the level of detail required to describe the task, as determined by the level at
which a step is made a primitive. The analyst makes a judgment as to what is a
primitive. One analyst’s primitive may be another’s subgoal. This judgment is an
interpretation of the level of detail needed to describe how to perform the task.

These interpretations will vary.
The judgments on the level of detail needed to describe the task depend on the

use of the developed knowledge bases. If the knowledge bases are to be used to

transfer knowledge to people naive in the domain, (that is, have very little
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domain knowledge) then the models need to be more detailed and the primitives

need to be defined at lower levels. If the knowledge bases are to be used to

communicate the knowledge to people with intermediate domain knowledge, then

the designation of primitives can be made at higher levels. That is, the lower
steps can be assumed to be known by the users. This is probably the case when

dealing with group problem-solving activities.

Also, for complementary actions such as pressing and releasing a key, the
releasing a key primitive was not defined as often as the pressing a key primitive.
The methods to "cut" and "paste" text with the "short-cut keys" has these
complementary actions as primitive steps:

GOAL "cut/paste text with keys"

1. press command
press x/v

2.

3. release x/v

4. release command
The "press" primitive describes the action of pushing the key down on the
keyboard and the "release" primitive describes the action of allowing the key to
return to its normal position. The primitives "press command" and "press x or v"
were each defined by 36 subjects. However, only 24 subjects included the
primitive step "release x or v and only 27 subjects included the primitive "release
the command key." The use of semantics could account for this. Some of the
steps were not further decomposed into lower level activities. For example, the
step "select edit" could have been broken down into lower level primitives of

"move cursor to edit” and "press mouse button down." Verification of the

knowledge base would catch the gaps in detail.
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The mental primitives as described by Kieras (1988) are "non-observed and
hypothetical, inferred by the theorist or analyst" and act as placeholders for
mental activities (p. 138). The mental primitives were the non-behavioral steps
taken to accomplish the task and were implicitly performed by the subjects.
Since the test subjects were not cognitive analysts, it is unlikely that they would
have defined many of the mental primitive implicit actions such as "determine
position of beginning of text" or the more cognitive-based primitives such as
"recall" and "store in long-term memory" or "store in short-term memory" as
prescribed by Kieras (1988). The use of mental primitives is especially important
when predicting the execution time of a cognitive task. For generating
computational models which simulate cognitive processes in terms of execution
time, a cognitive analyst would need to edit the models generated using this tool.
It may be possible to infer certain metal primitives given knowledge of overt
primitive actions and automatically insert the mental primitive steps. The
inference and insertion of mental primitives is a matter for further analysis and
research. However, the tool is quite capable of eliciting the explicit actions
necessary to accomplish a task. This is displayed by the higher accuracy in the

physical primitives.

A major issue to be addressed in evaluating the accuracy of automated aids for
generating cognitive models is the question of how one defines accuracy. For the
case at hand, the experimenter defined accuracy relative to a baseline model
generated by an authority in cognitive complexity analysis, Dr. David Kieras.

However, in the process of data reduction many questions arose relative to the
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accuracy of this model. For example, the method "issue paste command with the
menu" describes the following primitive steps:

1) move cursor to edit on menu bar,

2) press mouse button down,

3) move cursor to paste,

4) verify paste is selected, and

5) release mouse button.
One could legitimately modify this method to include the steps "locate edit on
menu bar in display” before step one of Kieras’s model and "verify cursor on edit
menu" immediately following step one of the Kieras model. Other primitive steps
also could be added. Would these additional steps improve the accuracy of the

baseline model?

It appears the accuracy of a model depends upon the use to which the model will
be put. If the model is to be used to simulate a cognitive process in terms of
execution time, a highly-detailed definition of all mental primitives or operators is
required. However, if one wishes to describe a task to a non-cognitive
psychologist, the explication of mental operators would more than likely be
confusing. Consequently, the level of detail of the model generated is ultimately
tied to accuracy, which in turn is conditional upon the use to which the model
shall be put. Accuracy of a model is therefore relative and a judgment call on
the part of the application developer. A strategy for evaluation of such machine-
aided systems must therefore take into consideration the application of the
models to be generated. Dependent upon the specific application, there may be
a minimal model that would contain the required steps to execute a task for a

given application. Many test subjects did define additional steps not included in
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the baseline model. These additional steps were not wrong, that is, the model

could still be executed correctly to perform the task.

The goal-methods hierarchy of GOMS is by analogy similar to the function-
mechanism hierarchy of constructive interaction developed by Miyake (1986).
The GOMS framework consists of a hierarchy of goals and methods to achieve a
goal, whereas, the constructive interaction framework consists of a hierarchy of
functions (what happens) and mechanisms (how it happens). Consequently, it is
quite possible that the process and framework employed to generate procedural
task models can be used to generate qualitative models of complex physical

devices.

The models developed were highly consistent, 88.5%. Consistency shows that the
models the subjects developed were on average 88.5% similar. That is, their
models contained 88.5% of the same primitive steps for any given primitive
method. The consistency measure was calculated to determine if a common
knowledge base can be generated from multiple experts in a domain in which a
baseline knowledge base is not available. From the consistency results, the
inference can be made that an accurate knowledge base can be generated in a
domain that does not have a baseline model for comparison. The inconsistencies
can be explained again by the way each subject interprets the level of detail
needed to define the task activities. For example, only one person defined the
activities of "move finger to the x key" and "press x." Other subjects simply
defined the step "press x." Each subject had the ability to perform the task. The
difference in the level of detail would be clarified during the verification stage.
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There are five stages to knowledge acquisition: 1) elicitation, 2) organization, 3)
representation, 4) refinement, and 5) verification. (See 2.3 Knowledge
Acquisition for discussion of these steps.) The purpose of this experiment was to
test the tool’s capability in eliciting the knowledge. The organization and
representation of the rules were automatically performed by the tool. The
knowledge bases were not reviewed and edited with the subjects. An automated
review and edit capability should be incorporated into the tool. This review and
edit process would increase the accuracy and consistency of the knowledge bases
generated. Also, the terms used at this primitive level are closely related, e.g.,
move cursor versus move mouse and pressing a key versus pressing and releasing
a key. Therefore, there is a need for verification to clarify the semantics used at
the most primitive level. A trained analyst will need to use and execute the

developed model to find any inaccuracies in the model.

This is the only evaluation of knowledge bases in terms of their accuracy and
consistency. This analysis needs to be done for other knowledge-acquisition
methods including machine-aided tools to determine which methods can be used

to generate the most accurate and consistent knowledge bases.

The subjects described the basic goals and subgoals to be achieved to accomplish
the task of moving a piece of text using cut and paste. The basic steps are 1)
select the text, 2) cut the text, 3) move cursor to the new location, and 4) paste
the text. However, in defining the primitive actions to be performed, the subjects

provided different levels of detail. The results show that the tool can be
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beneficial in eliciting an expert’s knowledge. The results from using the tool are
expected to increase by incorporating some changes into the tool. These changes
were based on observations of subjects using the tool and suggestions from the

subjects. These suggested changes are discussed next.
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4.3 Suggested Improvements to the Tool

The following suggestions for improvements to the knowledge-acquisition tool,
CAT, are based on the observation of and feedback from the subjects using the
tool. There are four categories of suggested changes. If these suggestions are
incorporated, the accuracy and consistency of the knowledge bases would be
improved. All usability problems of the tool as observed by the experimenter and
identified by subjects were addressed. The problems were not filtered by use of

an impact analysis.

1. Graphical Representation of Knowledge Base

As the user is building the knowledge base, a graphical representation is being
shown to the user. However, the current version of CAT displays only one goal-
subgoal level. The graph should be expanded to show more of the knowledge
base. For example, the graph could show the next one or two levels higher and
have the current goal highlighted. By showing more of the graph, the subject

would be able to see the context in which a step is defined.

A second issue with the graphical display is the matching of the graph with the
question being asked in a yes-no dialog box. For example, when the user is asked
"Do you wish to describe the steps necessary to accomplish the goal of x?", the
graph does not show the context in which x is used or described. That is, the
goal-subgoal level in which x is a step or subgoal is not shown. Again, the

context in which the goal was defined would facilitate the user being able to
answer the question more easily without having to remember "where did I define

this step?" or "what did I mean by the step?" One subject said, "I had a feeling I
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typed this twice." The matching of the graph and a dialog box should occur right
after the previous dialog box is exited and right before the next dialog box is

brought up.

A third issue with the graph is the use of symbols and colors to denote what a
node is: goal, method, defined step, undefined step, or primitive. The current
color codes do not mean anything to the user. Also, the colors are too close in
color to easily distinguish between them. One suggestion made by a subject was

to use a little icon next to the node to distinguish the type of node.

2. Modes of Operation

Currently, there are two modes of operation to the tool: non-guided and guided.
The non-guided mode does not provide any process for guiding the user in the
elicitation phase. This mode is used for reviewing and editing an existing
knowledge base. The non-guided mode allows the user to edit the knowledge
base by adding or renaming a goal, method, or steps; or navigate through the
knowledge base to check his or her model. One change to be made in the non-
guided mode is in the process to edit a defined goal. Currently, depending on
how the defined goal is edited, the results will be different. The goal can be
edited as a step of another goal or as the current goal. If the goal is edited as a
step, then after the goal is edited the steps to accomplish the goal will no longer
be associated with the goal. In essence, a new goal is created by changing the
name of a defined goal when it is edited as a step of another goal. In contrast, if
the goal is edited as a current goal, then just the name of the goal changes

wherever the goal is defined as a step and the goal’s steps are still associated with
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the goal. This is implicit in the workings of the tool. The results of an edit on a
goal should be made explicit to the user. That is, if the name is changed, then
the user should be explicitly asked if the substeps should be associated, if a new
goal should be created, or if the name should be changed everywhere or just for

this occurrence.

The guided mode, which was used in the experiment, provides the top-down,
breadth-first expansion of the goals to perform the knowledge elicitation. As part
of the guided mode, the user should have an option to stay in guided mode and
traverse the knowledge base at the same time. The ability to navigate the
knowledge base is related to the graphical representation issue discussed above.
The guided mode should also include a refinement process. The refinement
process should perform a process similar to the elicitation process, but the
refinement would ask the user for any changes or extensions to the current

model.

As part of the guided mode, the user should be forced to "consolidate" rules
which contain more than a given number of steps into higher-level goals. Some
of the subjects started defining the primitive actions without defining a goal
hierarchy for accomplishing the top-level goal. That is, they input primitive
actions for the method for the top-level goal. The experimenter made an
intervention (noted in 3.6.3 Machine-Aided K-nowledgc Acquisition Session) to
help the subject develop the first level of the goal hierarchy. It was easy for the
subject to tell the action but not necessarily to tell the groups or goals that

describe the primitive steps.
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For example, if a subject input the following method for a goal, then it should be
consolidated:

STEP 1 "determine position of piece of text to be cut",

STEP 2 "move cursor to beginning of piece of text",

STEP 3 "press mouse button down",

STEP 4 "move cursor to end of piece of text to be cut",

STEP 5 "verify correct text has been selected",

STEP 6 "release mouse button",

STEP 7 "press apple key down",

STEP 8 "press X key down",

STEP 9 "release X key",

STEP 10 "release apple key".
The user should be asked to divide the method into higher level goals. In this
case, steps 1-6 and steps 7-10 would be made into the higher-level goals "select
text" and "cut text." The current version of CAT has the process to consolidate
the steps, but consolidation is not part of the guided process. Consolidation

needs to be made a mandatory part of the guided mode.

3. Method Editor Dialog Box
The suggestions for changes to the method editor dialog box are being made to

make the tool easier for a person to use the tool.

Currently, in the method editor dialog box, which is used to define a method for
accomplishing a goal, the "enter" key on the keyboard is used to end the
definition of the method and “control-n" is used to define a new step. "Enter”
should be used to define a new step and a new means should be incorporated to
end the method editor dialog box. Users instinctively use the "enter” key for a
new line. Subjects continually hit "enter" to define a new step causing the

method editor dialog box being closed before the subject was done defining the

174



method. Also, the use of control-n for a new step is hard for a "ten-finger typist"
because he or she must remove their hand from the home position on the

keyboard to press the control and n keys.

When the user creates a method for a goal, he or she is presented with the
method editor dialog box. This dialog box has a field for the method name and
fields for the steps of the method. When the method editor dialog box is first
presented the cursor is in the field for the first step and not in the method name
field which is the first field in the layout of the method editor dialog box. The
cursor should be placed in the method name field when the method editor dialog
box is initially shown. This could also eliminate some problems in defining
alternative methods. Some subjects were confused on how to define alternative
methods. They would define the alternative methods as steps to the goal, instead

of each method having its own set of steps and method name.

While in non-guided mode, the user should have the option of editing the method
for a goal with the method editor dialog box not just one step of a method at a
time. Also, if a new step is inserted in the method editor dialog box, then the

new step should be inserted right after the location of the cursor and not at the
end of the list of steps. Cut and paste functions would also help the user in the
method editor dialog box. When a user describes a step that is longer than the
step-name field box and goes to the next step, the text description should be
returned to the beginning of the step-name field box so that the user can more

easily tell what steps have been defined.
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A pull-up box of primitives from which the user can select from a library of
primitives to use as a step in the current method could be added to the method
editor dialog box. Having a library of primitives would help the user determine
the level of detail needed in the knowledge base because it is difficult to
determine the primitive level. As one subject said it is "hard to figure how far to
breakdown" the steps. The primitives are usually defined by the analyst and are

dependent on the system being analyzed (Kieras, 1988).

4. Yes-No Dialog Boxes

Yes-no dialog boxes are used to ask the user if: 1) a goal is a primitive or not,

2) there are alternative methods to accomplish a goal, and 3) there are
alternative sets of conditions. These yes-no dialog boxes all look the same except
for the prompt string. The user must read each prompt completely to determine
the purpose of the dialog box. The yes-no dialog boxes should be distinguished in
some way so the user can visually distinguish the purpose of the yes-no dialog box
without reading the complete prompt. For example, the user is asked "Do you
wish to describe the steps necessary to accomplish the goal of x?" and the
available responses are yes or no. If the user chooses yes, then a method editor
dialog box is displayed for the goal. If the user choose no, then the goal is made
a primitive. The user chooses yes or no by clicking on a button in the yes-no
dialog box with yes or no written on it. Another way to do this is by having
"decompose" on the yes button and "primitive" on the no button. This way the
user can easily determine the purpose of the yes-no dialog box and make a

decision on what to do for the goal. Also, the goal that is being asked about by
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the yes-no dialog box should be highlighted and not in the same text format as

the prompt string.
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CHAPTER § - CONCLUSIONS AND RECOMMENDATIONS

5.1 Is the Problem Solved?

This section explicitly explains how the body of knowledge review and the
evaluation methodology are connected to the research question and purpose.
Figure 40 shows these connections. Each node represents a subgoal to be
achieved to accomplish the goal of solving the problem. This research is
attempting to solve a problem (to get knowledge from disparate sources). To
solve this problem, there is a question (How do we extend and automate GOMS
to elicit knowledge of a problem space from individuals?) and purpose (overcome
the knowledge-acquisition bottleneck via an automated knowledge-acquisition
tool). The solid lines show what is supported in the literature. The dotted lines

show what the evaluation methodology is supporting.

The problem was solved. A process, GOMS, for performing the knowledge
elicitation that corresponds to the components of the information processing
model of problem solving was found, extended, and automated in the form of a
machine-aided knowledge-acquisition tool, CAT. The tool was tested and
evaluated. The knowledge bases generated by using the tool were found to be
accurate and consistent. Further enhancements to the tool are expected to
increase the accuracy and consistency of the knowledge bases generated with the

tool.
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5.2 Recommendations for Further Research

The future research areas are divided into further testing of the tool, extension of

the tool, and knowledge-acquisition tool evaluation criteria.

Further testing of the tool involves the incorporation of the various sources of
variance as defined in 3.2.2 Possible Sources of Variance for this Experiment. An
obvious and beneficial experiment would be to compare the tool’s performance to
that of a knowledge engineer (KE). Different versions of the tool could also be
tested. For example, the sequence in which the prompts are asked could cause a
difference in system performance. After the suggested changes are incorporated,
the tool could be tested again to determine the effect of the changes. The tool
should be tested with other types of tasks. The "best" way to use the tool is an
important issue. What is the role of the KE with the tool? Should we use the

tool to build an initial knowledge base and use a KE to refine the initial

knowledge base?

Two major extensions to the tool need to be researched. The first extension is
the capability of the tool to semantically "understand" what the user is inputting
into the too], i.e., incorporation of a natural language processor. This would
probably allow the tool to better elicit the expert’s knowledge by looking for gaps
or missing steps, such as a mental primitive, or complementary physical

primitives, such as pressing and releasing a key.

The second tool extension is the incorporation of a derivational analogy system

(described in 2.4.3.3.2 Learning by Derivational Analogy). By having a
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derivational analogy system and understanding what the expert is inputting, the
following could be achieved:
1) past plans or models could be matched and adapted to the current
model being inputted,

2) past plans or models could be used to guide the expert in the
elicitation and refinement processes, and

3) comparison of knowledge bases could be made to determine the

correctness of a given knowledge base or rules within the knowledge
base.

Further research is needed in the development of techniques and measures used
to evaluate knowledge-acquisition tools. Formal techniques such as usability
studies can be done to determine how well the user-tool interaction is, but the
tool must also be evaluated against its purpose of generating knowledge bases.
The methodology used for this experiment seemed adequate for an initial
evaluation of the tool. The evaluation of the tool is based on the evaluation of
the knowledge bases. The measures used also were adequate, but the accuracy
measure could not be used if a baseline model was not available. Evaluation of
the knowledge bases built and the metrics used to evaluate the knowledge base
need to be rescarched. The research community will provide the evaluation on

the appropriateness of the methodology and measures used for this experiment.
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5.3 If I Did the Experiment over Again, What Would I Change?

I would make these changes if I were to run the experiment again:

1. Establish the common meaning of the terms used to describe the task, for
example, to distinguish between press, hold, depress, release, and click a
key or mouse button.

2. Do two separate studies: first a usability study and then a knowledge-base-
development study. The results from this study could be improved if some
of the usability issues are addressed.

3. When the subjects are interpreting their primitives, a printout of the
complete knowledge base in the form of a graph would have facilitated the
comparisons because the subject would have been able to see the context
(i.e., goal-subgoal hierarchy) in which the primitives were used.

4. Videotape the training session to guarantee each subject receives the same
exact training.

5. Take better notes while observing the subjects by explaining the subject’s

action, conditions under which the action occurred, results of the actions,
and how the actions could be avoided or accounted for.

5.4 Summary of Major Outputs

The following is a list of the outputs of doing this research:

1) A complete review of thirty-one knowledge-acquisition methods
from manual to machine learning,

2) An evaluation methodology and metrics to evaluate knowledge-
acquisition methods,

3) An evaluation of a developed automated knowledge-acquisition tool
called Cognitive Analysis Tool (CAT), in terms of the accuracy and
consistency of the knowledge bases generated by using the tool, and

4) Suggested improvements to the current version of the tool.
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The following is the baseline knowledge base generated with the knowledge-
acquisition tool. The primitive method list is also given. The model is adapted
from Kieras (1988) by adding the rules for using the cut and paste key commands
and removing the rules for selecting a word by double-clicking on the word.

Baseline Knowledge Base
MAINGOAL "move text with cut and paste";

GOAL COMPLETE "move text with cut and paste",
METHOD "move text using cut and paste”;
STEP "cut te
STEP "paste tex "
END;
END;

GOAL COMPLETE "cut text";
METHOD "steps to cut text";
STEP "select text",
STEP "issue Cut command";
END;
END;

GOAL COMPLETE "paste text";
METHOD "steps to paste text";
STEP "select insertion point",
STEP "issue Paste command";
END;
END;

GOAL COMPLETE "select text",;

METHOD COMPLETE "select arbitrary text";
STEP "determine position of beginning of text"
STEP "move cursor to beginning of text",
STEP "press mouse button down",
STEP "determine position of end of text",
STEP "move cursor to end of text",
STEP "verify correct text is selected"”,
STEP "release mouse button";
END;

END;

GOAL COMPLETE "issue Cut command";
METHOD COMPLETE "cut command keys";
STEP "press command",
STEP "press x",
STEP "release command",
STEP "release x"
IF "know command keys"
TRY METHOD "cut command keys";
END;
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METHOD COMPLETE "use Cut menu command";
STEP "move cursor to Edit on menu bar",
STEP "press mouse button down",
STEP "move cursor to Cut",
STEP "verify Cut is selected",
STEP "release mouse button";
IF "don’t know cut command keys"
TRY METHOD "use Cut menu command";
END;
END;

GOAL COMPLETE "select insertion point";
METHOD "steps to select the insertion point";
STEP "determine position of insertion point",
STEP "move cursor to insertion point",
STEP "click mouse button";
END;
END;

GOAL COMPLETE "issue Paste command";

METHOD COMPLETE "paste command keys";
STEP "press command",

STEP "press v",
STEP "release command",
STEP "release v";
IF "know paste command keys"
TRY METHOD "paste command keys";
END;

METHOD COMPLETE "paste menu command";
STEP "move cursor to Edit on menu bar",
STEP "press mouse button down",

STEP "move cursor to Paste",
STEP '"verify Paste is selected",
STEP "release mouse button";
IF "don’t know Saste command keys"
TRY METHOD "paste menu command";
END;
END;
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Primitive Method List for Baseline Knowledge Base

GOAL COMPLETE "select text";

METHOD COMPLETE "select arbitrary text";
STEP "determine position of beginning of text",
STEP "move cursor to beginning of text",
STEP "press mouse button down",

STEP "determine position of end of text",
STEP "move cursor to end of text",

STEP "verify correct text is selected",
STEP "release mouse button";

GOAL COMPLETE "issue Cut command";
METHOD COMPLETE "cut command keys";
STEP "press command",
STEP "press x",
STEP "release command",
STEP "release x";

METHOD COMPLETE "use Cut menu command";
STEP "move cursor to Edit on menu bar",
STEP "press mouse button down",
STEP "move cursor to Cut",
STEP "verify Cut is selected",
STEP "release mouse button";

GOAL COMPLETE "select insertion point";

METHOD "steps to select the insertion point";
STEP "determine position of insertion point",
STEP "move cursor to insertion point",
STEP "click mouse button";

GOAL COMPLETE "issue Paste command";
METHOD COMPLETE “Paste command keys";
STEP "press command',
STEP "press v",
STEP "release command",
STEP "release v";

METHOD COMPLETE "paste menu command";
STEP "move cursor to ]I:?djt on menu bar”,
STEP "press mouse button down",

STEP "move cursor to Paste",
STEP "verify Paste is selected",
STEP "release mouse button";

199



APPENDIX 2 - PROTOCOL AND TASK SHEETS FOR
SCREENING SESSION
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_5
__6.
_ 17

Protocol for Screening Task Session
Prepare apparatus for the screening task.
a. Turn computer on.
b. Load Microsoft Word.
C. Load screening task file.

Give subject the informed consent form to sign.

Please read and sign the Informed Consent Form. If you have any
questions, please ask me and I will answer them for you.

Have subject sign consent form and fill out the questionnaire.

Explain nature of task.

The purpose of this session is to have you perform a task that you will
later be asked on how to perform. This is done to ensure that you can do
the task.

You will use Microsoft Word version 5.0 on the Macintosh to perform the
task defined on the piece of paper I will give to you. I will observe you
performing the task. If you do not complete the task as described, then
you will not be used for further parts of the experiment and you will be
paid $1.

Give subject written explanation of task.

Have subject perform task.

Observe subject perform task.

Check against criteria to see if subject performed task adequately, then do

next session. If subject didn’t perform task adequately, then terminate
process with subject.

Extraordinary Observations of Session
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Subject Information Questionnaire

Subject #
1. How long have you used a Macintosh?
3 months 6 months 9 months longer than a year

2. How long have you used Microsoft Word for the Macintosh?

3 months 6 months 9 months longer than a year

3. How often do you use Microsoft Word?

everyday once a week once a month
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Task Explanation for Screening Session
During this session you are to perform the following operations on the text
displayed on the computer screen.
FOLLOW THE STEPS EXACTLY AS DEFINED.

Operations to be done on the text.
1. Select the word "out" in line 6.

2. Cut the text with the cut menu command.

3. Move the cursor to the bottom of the paragraph and insert the text by
using the paste shortcut/command/keyboard equivalent/quick keys.

4. Select the text beginning in line 9 with "degrees" and ending in line 10 with

"Virginia.ll

5. Cut the text with the cut shortcut/command/keyboard equivalent/quick
keys.

6. Move the cursor to line 1.

7. Insert the text with the paste menu command.

Text to Perform Operations on:

Text Example

The College of Engineering has a reputation for offering an excellent
education for the student who desires to obtain a baccalaureate degree.
Today’s engineering freshman class has an average scholastic achievement
score of 1200 out of a possible 1600. This is significantly higher than the
mean national score of 906. By graduating more than 1,000 students each
year, the college consistently ranks among the top ten in the number of
baccalaureate degrees granted. The College of Engineering is the second
10  largest college at Virginia Tech. Graduate and undergraduate enroliment
11  has increased 44% from 1976 to 1988. The greatest increase has been in
12 graduate enrollment.
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Score Sheet for Subject Screening Session
Subject #

Select the word "out" in line 6.
Cut the text with the cut menu command.

Move the cursor to the bottom of the paragraph and insert the text by
using the paste shortcut/command keys.

Select the text beginning in line 9 with "degrees" and ending in line 10 with
"Virginia."

Cut the text with the cut shortcut/command keys.
Move the cursor to line 1.

Insert the text with the paste menu command.
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APPENDIX 3 - PROTOCOL AND TASK SHEETS FOR
FAMILIARIZATION SESSION
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Protocol for Familiarization Session

0. Prepare apparatus.
a. Turn computer on.
__b. Set CAT window to full screen.

1. Explain purpose of this session.

ose of this session is to familiarize you with a tool called CAT.

We will do three things in this session: 1) I will define the terms and
process used by CAT, 2) I will run through an example, and 3) you will do
an example on your own.

a.

b.

C.

2. Define keys terms used in CAT.

top-level goal the main task we are eliciting knowledge about, an
example is "prepare to drive a car"

goal - an action or task which is described by steps, an example is
"prepare to drive a car"

steps - action or task taken to accomplish a goal, examples are "sit
in seat"” and "put seat belt on"

method - a set of steps to accomplish a goal; used to describe or
group the steps

selection rule - specifies the conditions under which a given method
is used to accomplish a goal when have alternative methods; an
example is "the door is locked"

primitive - a step which is not decomposed into further substeps,
there are mental and physical primitives, examples of mental
primitives are "determine position of door handle” and "verify seat
belt is fastened", examples of physical primitives are "move handle
to door" and "remove the key‘P

Show picture of the example of mailing a letter and explain what each these key
words mean with respect to the example.

__3. Do a walk-through example

a.

top-level goal screen
1. explain dialog box help - move over each area of the screen
2. pressing the help button

. urpose of this screen - name the top-level goal
4. input the goal from the example - mail a letter
method editor
1. purpose - define the set of steps to accomplish a goal
2. parts of the dialog box
step name - describes the actions to be done to accomplish
the goal
method name - used as a description or name of the steps;
important especially when define alternative methods
moving between the parts - tab key or mouse button
defining a new step - New/Cntrl-N
do example - enter the steps of mail a letter
explain only one action per step

AW

L]
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C. order the steps
1. purpose - define the order the steps should be performed
2. parts of the dialog box
3. results of choosing each type
4. do example - both "As entered" and "Other"

d. define alternative methods
1. purpose - define another set of steps
2. parts of the dialog box
3. results of pressing Yes - takes to the method editor to define
another set of steps for the current goal; do this if there
alternative ways to accomplish the goal
4. results of pressing No

5. do example
6. show if hold left mouse down then can "hide" current dialog
box

e. definition of selection rule
1. purpose - get if defined alternative methods
2 parts of the dialog box

3. one condition per line
4. do example
f. alternative selection rules

1. purpose - allow you to specify another set of conditions
2. parts of the dialog box

3. results of pressing Yes

4. results of pressing No

g define a method for the goal of

1 purpose

2. parts of the dialog box

3. results of pressing Yes - define steps to accomplish the goal
4. results of pressing No - makes the step a primitive

S. do example

h. Complete the example problem

Show how to move through the graph with the clicking of a
goal/step and navigate commands.

4. Have subject do an example on his or her own. I will provide feedback on
what the subject is doing right and what subject is doing wrong with
specific advice on how to perform an activity the right way.

Give subject the "prepare an envelope" example task explanation sheet.
I now want you to use the tool with the following example. This example
contains both physical primitives such as "put stamp on envelope” and

mental primitives such as "determine position of..." and "verify..."
Extraordinary Observations of Session
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APPENDIX 4 - PROTOCOL AND TASK SHEET FOR MACHINE-
AIDED SESSION
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Protocol for Machine-Aided Session
0. Prepare apparatus before subject arrives.

a. Turn computer on.
b. Start CAT.

1. Explain nature of session.

The purpose of this session is to elicit your knowledge and develop a
model on how to perform the task I will describe. You will interact with a
tool called CAT which will guide you through a process of defining the
steps to accomplish a goal.

2. Give subject explanation of the task, exﬂlain the task, and explain the
example primitives for this experiment. Read and exPlain the task sheet.
Demonstrate the primitives and "move a file to trash.”

__3.  Record beginning time:

_ 4. Record ending time:

5. Make sure analysis is complete by using Guidance command.

__6. Save the file.

__7. Have subject interpret their primitive list. Print subject’s primitive list.
Give subject both the baseline and his or her primitive list.
I now want you to match the primitives you defined with the primitives I
will give you. For each primitive you defined, pick ONE primitive from
the comparison list I provide you which means the same as the primitive
you defined. Place the comparison primitive number next to the primitive
on your list.

__ 8. Exit process.

Thank you for participating in this experiment. Please do not talk to
anyone about this experiment, because they may be a subject. We can
talk about this experiment and the results at a later time.

9. Pay subject and have subject sign receipt.

Extraordinary Observations of Session
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Task Explanation for Machine-Aided Session
During this session you will use a tool called CAT. The tool will prompt you for
information about how to accomplish a goal.

Remember to describe both the physical and mental actions necessary to perform
the task.

The goal is:
Move a piece of text using cut and paste while using Microsoft Word for
the Macintosh.

You can begin this session by double-clicking the CAT icon and selecting a new
model with the top-level goal of "move a piece of text using cut and paste”

Assumptions

When defining the task you can assume the following:

the Macintosh computer is on,

Microsoft Word is loaded,

the text module is loaded, and

the following are examples of primitives for this session:

Physical primitives

moving the cursor
clicking the mouse button
double-clicking the mouse button
pressing a key
releasing a key

A

Mental Primitives
determining position of a word or text
verifying an action.

Example use of the primitives:

Goal: move a file to the trash
step 1. determine position of file
step 2. move cursor to file
step 3. press mouse button down
step 4. verify correct file is selected
step 5. move cursor to trash
step 6. release mouse button
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Comparison List of Primitives

determine position of beginning of word
determine position of beginning of text
determine position of end of text
determine position of insertion point

move cursor to beginning of word
move cursor to beginning of text
move cursor to end of text

move cursor to insertion point
move cursor to Edit on menu bar
move cursor to Cut

move cursor to Paste

press mouse button down
double-click mouse button
click mouse button

release mouse button

press command/apple
pressx
press v

release command/apple
release x
release v

verify correct text is selected
verify Cut is selected
verify Paste is selected.
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Informed Consent Form

This form constitutes informed consent by you to participate in this study. Please
read it in its entirety and then sign on the next sheet.

Project Title: Evaluation of an Automated Knowledge-Acquisition Tool

Purpose of Experiment:

The purpose of this research is to investigate the knowledge-acquisition process
which is the process by which knowledge is elicited, organized, represented,
refined and verified.

Procedure to be Followed in the Study:

Three sessions will be needed to conduct this experiment: 1) subject
performance of the screening task, 2) machine-aided tool familiarization, and 3)
machine-aided tool knowledge acquisition. Session one will be performed to
verify your ability to perform the task being modeled. If you perform this task
adequately then you will be used for the rest of the experiment. If you can’t
perform the task, then you will not be used for the rest of the experiment and
you will be paid $1. Session two, the familiarization session, is needed to allow
you to become familiarized with the tool before using it for the machine-aided
knowledge-acquisition session. Session three is the interaction of you with the
tool.

Discomforts and Risks for Participants in the Study:
The only discomforts will be from sitting and interacting with a computer for a
total time of approximately one(1) hour.

Expected Benefits:
You will gain a better understanding of how you store your knowledge.

Confidentiality of the Results:

All information gathered from your responses is intended for research purposes
only. Therefore, it will remain confidential and will have all indentifiers removed
as soon as all responses are combined. Once you have participated in the
experiment, you will be known only by a code number.

Freedom to Withdraw:

You are free to withdraw your consent to participate and discontinue
participation in the experiment at any time for any reason without forfeiting pay
for time spent up until withdrawal.

Use of Research Material:

The information accumulated by this research may be used for scientific or
educational purposes and information relating to your responses may be
presented at scientific meetings and/or published and republished in professional
journals or books, or used for any other purpose which is in the interest of
education, knowledge, or research.
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Approval of Research:
This research has been apé)roved by the Institutional Review Board of Virginia
Polytechnic Institute and State University.

Stated Permission From Subject:

1. I have read and understand the above description of the experiment, had
an opportunity to ask questions, and had them all answered, and hereby
acknowledge the above and give my voluntary consent for participation in
this study.

2. I understand that I am participating freely in full understanding that I need
not participate if I do not wish to, and if I participate I may withdraw at

any time without penalty.

3. I understand that should I have any questions about this research and its
conduct, I should contact any of the following.

Researcher: Tim Kotnour (231-2939)

Faculty Advisor:  Dr. K E. Williams (231-2955)

Name (Please Print) Date

Signature Student ID Number
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This appendix describes the results of the pilot study. The pilot study was used
to test and change the experimental procedures as necessary. The subject data
from the pilot studies were not integrated into the overall data. Five subjects

WETE TuIl.

There were several changes made to the procedures as a result of running the
pilot study. Changes included: a procedure for familiarization session, a
procedure for observation of subject-tool interaction, the wording of machine-

aided session task, and a procedure to interpret a subject’s primitives.

1. Familiarization session.

The first change was in the procedure to familiarize the subjects with the tool.

The original procedure was to have the subject interact with the tool based upon

a written script he or she was given. The procedure of using a script was

inadequate. The new familiarization session had three steps. The first step was

for the experimenter to explain the terms used in the tool with an example

model. In the second step, the experimenter used the tool with an example task,

explaining each step and dialog box as the model was keyed in. In the third step,

the subject was given an example task to use with the tool. The experimenter

provided feedback as the subject used the tool. This new procedure was used for

the last four subjects of the pilot study. The effect of this change was the subject

was able to more easily and directly understand how to use the tool.
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2 Observation of subject-tool interaction.

The observation of the subject-tool interaction was used to note critical incidents.
For example, a critical incident would be when the subject asks the experimenter
for help or when the experimenter sees the subject is having difficulties using the
tool. The experimenter would aid the subject and note these difficulties. The list
of difficulties was used to suggest revisions to the tool. The collection of critical
incidents was done during both the familiarization and the machine-aided
sessions. This change effected the experiment by having a more systematic
approach to collecting incidents from which suggestions for changes to the tool

could be made.

3. Wording of machine-aided session task.

Wording of tasks given to the subject was changed to emphasize parts of the
experiment. For example, the machine-aided goal was changed from "move a
piece of text using the cut and paste commands" to "move a piece of text using
cut and paste." The effect of this change was the subject was less biased to only

describe the cut and paste menu commands and not the short-cut key equivalents.

4. Procedure to interpret a subject’s primitives.

There was a need to interpret what a subject meant when he or she defined a
primitive because, as part of the data analysis, each subject’s primitive steps were
compared to the other subjects’ and the baseline’s primitive steps. The
interpretations were necessary because the subjects do not use the exact same

phrases and may even attach different meanings to words or phrases. For
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example, the following two primitive steps were developed by two different
subjects:

Subject #4
STEP "let go of the mouse"

Subject #5

STEP "release the mouse button".
Both of these steps accomplish the same action of releasing the mouse button,
but an experienced user such as the experimenter is interpreting what these rules
mean. The way to overcome this interpretation was to have the subject match
the primitives he or she defined in their model with primitives from the baseline
model. The effect of this change was an accurate interpretation of what the

subject meant when he or she defined the step.
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APPENDIX 7 - DATA REDUCTION SHEETS

This appendix contains the data reduction sheets used for the data analysis. Each
table corresponds to one of the six primitive methods (ie., select text, cut text
with menu, cut text with keys, new position, paste text with menu, and paste text
with keys) and contains the primitive steps of the given primitive method. Each
primitive step is described by its source (i.e., baseline or subject) and type (i.e.,
mental or physical). The values in the table are used to denote if the subject
defined the primitive in the given primitive method; 0 denotes the subject did not
define the primitive step for the given primitive method and 1 denotes the subject

did define the primitive step for the given primitive method.
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APPENDIX 8 - DESCRIPTION OF CAT
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Cognitive Analysis Tool (CAT) is the automated knowledge-acquisition tool
designed, developed, tested, and evaluated in this research. CAT is an
application which runs in the Microsoft Windows 3.0 environment on an IBM PC
or compatible. CAT is based on the GOMS model of describing cognitive task-
based (i.e., procedural) knowledge as proposed by Card, Moran, and Newell
(1983).

A practical implementation of the GOMS analysis technique begins in a top-down
breadth-first manner. That is, first a top-level goal is specified by the user as
something the user wishes to accomplish. Next, the user is requested to specify a
method consisting of a series of steps to be executed to accomplish the top-level
goal. At this point, the series of steps are of a high level and consequently this
top-level method must be decomposed further. Having specified a top-level
method, the user is requested to specify any alternative methods that would
accomplish the same goal. If an alternative method is specified, then the user
identifies the method’s steps as before. Following the specification of all
alternative methods for accomplishing the top-level goal, the user must then
develop a selection rule or a set of selection rules. Each selection rule identifies

a set of preconditions that discriminate between methods triggering which method

is to be selected under differing contextual conditions to accomplish the goal.

Having specified a top-level goal, a top-level method, its alternatives, and a
selection rule(s), the system then converts each step in the top-level method into
a subgoal. A set of steps comprising a method is then requested of the user for

each subgoal. If alternative methods for accomplishing a subgoal exist, then a
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selection rule must be specified as before. This process creates a goal-subgoal
hierarchy with appropriate selection rules. Method steps are continuously
transitioned to subgoals requiring lower-level methods and selection rules. The
process terminates when all steps for each method have been designated as
primitives. A primitive step can be identified by the user at any time indicating
that the step does not require any further decomposition as a subgoal. Upon
completion of this analysis a set of procedures (i.e. rules) have been defined that

can be executed by a production system.

CAT employs the structured interview method to guide the user through the
process of defining the procedural knowledge of a task. This structured-interview
technique is implemented through a series of dialog boxes that prompt the

user for specific information. The dialog boxes employed by CAT are: top-level
dialog box, used to define the top-level goal; method editor dialog box, used to
define the set of steps to accomplish a goal; selection rule editor dialog box, used
to define the selection rule for alternative methods; and yes-no dialog boxes, used
to ask the user if alternative methods or selection rules exist and if a goal is a

primitive or not.

The top-level goal, method editor, and selection rule editor dialog boxes each
have field boxes that allow the user to type text describing the required
information. These dialog boxes also have buttons that the user can select with
the mouse to activate a command such as "help." The yes-no dialog boxes use
buttons to capture the user’s response (i.e., yes, no, cancel, help) to the question

being asked by the yes-no dialog box. All of the dialog boxes cover part of the
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screen with the remaining screen section displaying a graphical representation of

the goal-subgoal hierarchy.
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