Effects of Acute Nutritional Deprivation on Lymphocyte Subsets and Membrane Function in Cats

Kimberly A. Freitag

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Human Nutrition, Foods, and Exercise

Elizabeth A. Thomas, Co-chair
Korinn E. Saker, Co-chair
William Barbeau

April 10, 1998
Blacksburg, Virginia

Keywords: CD4, CD8, starvation, calcium

Copyright 1998, Kimberly A. Freitag
Effects of Acute Nutritional Deprivation on Lymphocyte Subsets and Membrane Function in Cats

Kimberly A. Freitag

(ABSTRACT)

Identification of patients with suboptimal nutritional status allows for early treatment intervention. Currently, no definitive test of nutritional status exists. Therefore, this study was conducted to identify possible functional indicators of acute nutritional deprivation. The effects of total nutritional deprivation and subsequent refeeding on lymphocyte functions and subpopulations were examined in 23 healthy cats. Peripheral blood samples were analyzed at various times during fasting and refeeding periods. During the fasting period, decreases were observed in leukocyte number (day 4; p < 0.04), lymphocyte number (p < 0.02), CD4+ cells (day 4; p < 0.06), CD4:CD8 ratio (0 hours; p < 0.004), and mitogen stimulated CD4:CD8 ratio (72 hours; p < 0.15) during the fasting period as compared to baseline. Increases were seen in CD4+ cells (day 7; p < 0.09), CD8+ cells (day 7; p < 0.04) and intracellular calcium (day 4; p < 0.02) as compared to baseline. During the refeeding period increases (p < 0.05) were observed in leukocyte number, CD4+ cells, CD8+ cells, lymphocyte proliferation (p < 0.07) and lymphocyte number (p < 0.004) as compared to day 7. These findings suggest that 7 days starvation had immunosuppressive effects on cats which were alleviated during 7 days refeeding. The use of CD4:CD8 ratio in conjunction with intracellular calcium flux may be useful as indices of nutritional status.
ACKNOWLEDGMENTS

I would like to thank Dr. Elizabeth Thomas and Dr. Korinn Saker for allowing me to explore the interactions between nutrition and the immune system. First, I would like to thank Dr. Elizabeth Thomas for taking me under her wing and giving me the opportunity to work with her. Without this opportunity I would have not been introduced to an area in which I become very interested in and would like to further explore in the future. I would also like to thank them for the support and guidance that was needed to complete this project.

I would also like to thank Dr. Korinn Saker and Joan Kalnitsky for their invaluable assistance during seemingly endless lab sessions. I appreciate their answers to the multitude of questions and problems that I encountered through this project, as well as their encouragement. I would also like to thank Dr. Korinn Saker and Denise for conducting never ending blood collections. I also wish to thank David Burt for his assistance in the statistical analysis.

I wish to thank all of my friends who have given me the strength and support I needed to complete this project, especially James Stitzel who got to know this project better than he had ever anticipated. Finally I would like to thank my family for their love, support, and encouragement to complete my goals and strive for new ones.
TABLE OF CONTENTS

LIST OF TABLES... v
LIST OF FIGURES ... viii
LIST OF ABBREVIATIONS ... ix

CHAPTER I INTRODUCTION .. 1
 Specific Aims .. 3

CHAPTER II LITERATURE REVIEW ... 4
 Nutritional assessment .. 4
 Acute nutritional deprivation and the immune system .. 7
 Cell Membrane Fluidity .. 10

CHAPTER III MANUSCRIPT ... 13
 Abstract .. 13
 Introduction .. 14
 Methods and Materials .. 15
 Results .. 18
 Discussion .. 23
 Literature Cited .. 29

CHAPTER IV DISCUSSION ... 33
 Conclusions .. 40

LITERATURE CITED .. 41

APPENDIX A ... 47
APPENDIX B ... 58
APPENDIX C ... 59
APPENDIX D ... 61
APPENDIX E ... 63
APPENDIX F ... 65
APPENDIX G ... 70
LIST OF TABLES

Table 1. Weight and Serum Albumin During a 7-Day Fast/7-Day Refeeding Study in Cats: Mean ± SEM .. 19

Table 2. Peripheral Blood Leukocyte and Lymphocyte Counts and Percentages During a 7-Day Fast/7-Day Refeeding Study in Cats: Mean ± SEM 19

Table 3. Lymphocyte Proliferation During a 7-Day Fast/7-Day Refeeding Study in Cats: Mean ± SEM .. 21

Table 4. Correlations of weight with albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium ... 47

Table 5. Correlations of albumin with weight, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium ... 47

Table 6. Correlations of leukocyte number with weight, albumin, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium ... 48

Table 7. Correlations of percent lymphocytes with weight, albumin, leukocyte number, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium ... 48

Table 8. Correlations of lymphocyte number with weight, albumin, leukocyte number, percent lymphocytes, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium ... 49
Table 9. Correlations of CD4+ cells at time zero with weight, albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium	49
Table 10. Correlation of CD8+ cells at time zero with weight, albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium	50
Table 11. Correlation of CD4+ cells (72 hours) with weight, albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium	50
Table 12. Correlation of CD8+ cells (72 hours) with weight, albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium	51
Table 13. Correlation of lymphocyte proliferation with weight, albumin, leukocytes, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), intracellular calcium	51
Table 14. Correlation of CD4:CD8 (0 hours) with weight, albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (72 hours), lymphocyte proliferation, intracellular calcium	52
Table 15. Correlation of CD4:CD8 (72 hours) with weight, albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), lymphocyte proliferation, intracellular calcium	52
Table 16. Correlation of intracellular calcium with weight, albumin, leukocyte number, percent lymphocytes, lymphocyte number, CD4+ cells (0 hours), CD8+ cells (0 hours), CD4+ cells (72 hours), CD8+ cells (72 hours), CD4:CD8 (0 hours), CD4:CD8 (72 hours), lymphocyte proliferation .. 53

Table 17. The mean difference ± SEM of weight between treatment days 54

Table 18. The mean difference ± SEM of albumin between treatment days............... 54

Table 19. The mean difference ± SEM of leukocyte number between treatment days. ... 54

Table 20. The mean difference ± SEM of percent lymphocytes between treatment days. ... 54

Table 21. The mean difference ± SEM of lymphocyte number between treatment days. ... 55

Table 22. The mean difference ± SEM of CD4+ cells (0 hours) between treatment days. ... 55

Table 23. The mean difference ± SEM of CD8+ cells (0 hours) between treatment days. ... 55

Table 24. The mean difference ± SEM of CD4+ cells (72 hours) between treatment days. ... 55

Table 25. The mean difference ± SEM of CD8+ cells (72 hours) between treatment days. ... 56

Table 26. The mean difference ± SEM of lymphocyte proliferation between treatment days. ... 56

Table 27. The mean difference ± SEM of CD4:CD8 (0 hours) between treatment days. ... 56

Table 28. The mean difference of CD4:CD8 (72 hours) between treatment days. ... 56

Table 29. The mean difference ± SEM of intracellular calcium flux between treatment days. ... 57
LIST OF FIGURES

Figure 1. Percent Expression of CD4+ and CD8+ Lymphocyte Cell Membrane Markers at Time Zero During a 7-Day Fast/7-Day Refeeding Study in Cats: Mean ± SEM. ... 20

Figure 2. Percent Expression of CD4+ and CD8+ Lymphocyte Cell Membrane Markers at 72 Hours During a 7-Day Fast/7-Day Refeeding Study in Cats: Mean ± SEM. ... 21

Figure 3. CD4:CD8 ratios at Time Zero and 72 Hours During a 7-Day Fast/7-Day Refeeding Study in Cats: Mean ± SEM... 22

Figure 4. Intracellular Calcium Flux of Fluo-3-Stimulated Cells During a 7-Day Fast/7-Day Refeeding Study in Cats: Mean ± SEM. ... 23
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Cluster Differentiation</td>
</tr>
<tr>
<td>TSF</td>
<td>Tricep Skinfold Thickness</td>
</tr>
<tr>
<td>MAC</td>
<td>Mid-arm Circumference</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BIE</td>
<td>Bio-electrical Impedance</td>
</tr>
<tr>
<td>TLC</td>
<td>Total Lymphocyte Count</td>
</tr>
<tr>
<td>DH</td>
<td>Delayed Hypersensitivity</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic lymphocytes</td>
</tr>
<tr>
<td>Con-A</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>VMRCVM</td>
<td>Virginia-Maryland Regional College of Veterinary Medicine</td>
</tr>
<tr>
<td>CBCD</td>
<td>Complete Blood Count with Differential</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Mononuclear Cells</td>
</tr>
<tr>
<td>PMNC</td>
<td>Polymorphonuclear Cells</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s Balanced Salt Solution</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis for Social Sciences</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>([Ca^{2+}]_i)</td>
<td>Intracellular Calcium Concentration</td>
</tr>
<tr>
<td>PEM</td>
<td>Protein Energy Malnutrition</td>
</tr>
<tr>
<td>WBC</td>
<td>White Blood Cell</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein Kinase C</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>TCR</td>
<td>T Cell Receptor</td>
</tr>
<tr>
<td>CRF</td>
<td>Corticotrophin Releasing Factor</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic Hormone</td>
</tr>
<tr>
<td>DHEA</td>
<td>Dehydroepiandrosterone</td>
</tr>
<tr>
<td>IP$_3$</td>
<td>Inositol Triphosphate</td>
</tr>
</tbody>
</table>

ix
CHAPTER I

INTRODUCTION

Patients often are malnourished as well as critically ill when admitted to a hospital. Whether the critically ill patient requires surgery or treatment of disease, or is post traumatic or septic, assessing nutritional status is important for identifying nutritional risk (Manning and Shenkin 1995). Incidence of sepsis (Chandra 1983), prolonged ventilation, and increased mortality have been associated with malnutrition in the critically ill (Reinhardt et al. 1980). The primary goal of nutritional status assessment is to identify nutritional insufficiencies so that the nutritional status of a patient can be improved to enhance the body’s capability to fight infection and/or illness. Nutritional assessment can be defined as a systematic method of gathering data on individual patients, classifying the degree of malnutrition and instituting appropriate treatment and intervention techniques (Gilbride et al. 1984).

Current methods for nutritional status assessment include anthropometric, biochemical, dietary and clinical evaluation. As of yet, no definitive test of nutritional status exists due to the complexity of the human diet and the multiple effects that nutrients have on various tissues, organs and physiological functions (Manning and Shenkin 1995). A nonnutritional aspect of the response to illness affects many of these assessment tests. It has been proposed that tests of immunological function would be indicative of nutritional status and would be sensitive to overall nutritional status as opposed to deficiencies of individual nutrients (Puri et al. 1985).

The purpose of the proposed research was to identify indicators of an acute nutrient deprivation in cats. Specifically, the quantification of CD4 and CD8 markers in T lymphocytes (pre and post-stimulation), lymphocyte proliferation, and intracellular calcium flux of mononuclear cell membranes as a measure of membrane function, were examined in cats before, during and after a 7-day period of acute food deprivation. The adult neutered cat was chosen as an animal model in this study for several reasons. As a species they; 1) have less variation in their metabolic rate due to a more uniform adult body size,
2) are less tolerant of energy and protein deficiencies due to their general inability to regulate enzymes and utilize alternative metabolic pathways and substrates, and 3) are a better representation of a human being’s anatomy than other available animals (Walker 1982). This type of animal model allows for more control with regard to dietary intervention as well as environmental and physical variables that may affect the immune system. Although results from this study cannot be directly applied to humans, the data will provide information about relationships among dietary restriction and measures of immune status. These findings could provide pilot data that will serve as a basis for human studies.
Specific Aims

The objectives of this research were:

1. To determine the response of CD4 and CD8 differentiation and monocyte and lymphocyte membrane function to acute nutrient deprivation in healthy cats.

2. To investigate the relationships among days of acute nutrient deprivation, CD4 and CD8 differentiation and lymphocyte and monocyte membrane function.

3. To determine the relationships among CD4 and CD8 differentiation, lymphocyte and monocyte membrane function, body weight, CBCD and serum albumin following acute nutrient deprivation in healthy cats.

4. To determine the response of CD4 and CD8 differentiation and monocyte and lymphocyte membrane function to refeeding after acute nutrient deprivation in healthy cats.

5. To investigate the relationships among days of refeeding, CD4 and CD8 differentiation and lymphocyte and monocyte membrane function.

6. To determine relationships among CD4 and CD8 differentiation, lymphocyte and monocyte membrane function and body weight, serum albumin and CBCD following refeeding.