ACKNOWLEDGEMENTS

First and foremost, I would like to thank my graduate committee for giving valuable suggestions and lending support and encouragement throughout my masters pursuit. I would like to thank my committee chairman Dr. Bruce Parker for his willingness to take a student who was interested in freshwater mussels and for his uncanny ability to push me when I needed it. I also would like to thank Dr. Richard Neves for developing a strong program of freshwater mussel research at Virginia Tech and for hours and hours of advice and manuscript revisions. Finally, I would like to thank Dr. Alan Heath for his willingness to provide sorely needed physiological expertise.

I would like to thank the United States Army Corps of Engineers-Louisville District, the Biological Resources Division of the United States Geological Survey, and the United States Fish and Wildlife Service for funding this project. I would like to thank Patty Morrison, Janet Butler, Mitch Ellis and all of the folks at the Ohio River Islands National Wildlife Refuge for assistance in collection and quarantine of unionids. Special thanks also go to Jim and Candy Dotson for their wonderful hospitality and willingness to work long hours at the quarantine facility. I would also like to thank Andrew Miller, Barry Payne and Mike Turner from the U.S. Army Corps of Engineers for their help in collection of mussels. Special thanks go to Dr. Daniel Kreeger. Without his advice and expertise, the 14C feeding experiment could have been a disaster. Thanks also go to Li-Yen Chen for his assistance in developing the glycogen assay.

Very special thanks go to Dr. Guenter Schuster, Ron Cicerello, and Ellis Laudermilk who revealed to me the excitement of freshwater mussels and aquatic biology.

Finally, I would like to thank my family for their love and willingness to expose me to the natural world as a young boy. Special thanks also to my loving wife Diana who makes everything in life a little more enjoyable.
TABLE OF CONTENTS

Introduction 1

Chapter 1: Effects of quarantine times on glycogen levels of native freshwater mussels (Bivalvia: Unionidae) previously infested with zebra mussels.
 Abstract 5
 Introduction 6
 Methodology 7
 Results 9
 Discussion 10

Chapter 2: Feeding interactions between native freshwater mussels (Bivalvia: Unionidae) and zebra mussels (Dreissena polymorpha) in the Ohio River.
 Abstract 17
 Introduction 18
 Methods 19
 Results 20
 Discussion 21

Chapter 3: Ingestion and assimilation of 14C labeled algae by the freshwater mussel, Villosa iris (Lea, 1829) at three cell concentrations.
 Abstract 31
 Introduction 32
 Methods 33
 Results 36
 Discussion 37

Chapter 4: Changes in unionid glycogen stores during starvation and controlled feeding in quarantine: Implications for relocation.
 Abstract 48
 Introduction 49
 Methods 50
 Results and Discussion 51
 Conclusions 58
 Vita 59
LIST OF TABLES AND FIGURES

Chapter 1
Figure 1: Glycogen levels of *A. plicata* and *Q. pustulosa* at 1, 7, 14, and 30 days of starvation in quarantine. 15

Figure 2: Glycogen levels of *F. ebena* at 1, 7, 14, 30, 100, and 150 days of quarantine. 16

Chapter 2
Table 1: Mean algal cell number and ash-free dry weight in guts of two species of unionids heavily infested vs. lightly infested with zebra mussels. 27

Table 2: Mean algal cell number and ash-free dry weight in guts of zebra mussels and two species of unionids heavily infested vs. lightly infested with zebra mussels. 27

Table 3: Table 3. Mean relative abundances (SD) of algae in guts of lightly (L) and heavily (H) infested unionids collected from the Ohio River, July-August 1996. A plus sign (+) indicates the presence (≤ 2%) of an algal genera in the gut sample. 28

Table 4: Mean relative abundances (SD) of algae in guts of zebra mussels and lightly (L) and heavily (H) infested unionids collected from the Ohio River, July-August 1997. A plus sign (+) indicates the presence (≤ 2%) of an algal genera in the gut sample. 29

Table 5: Mean relative abundances of algae at the water surface and just above the mussel bed in the heavily (H) and lightly infested (L) Ohio River. Water samples collected July-August 1997. A plus sign (+) indicates presence (≤ 2%) in the gut sample. 30

Chapter 3
Table 1: 14C budget components of 12 *Villosa iris* fed 14C-labelled *Neochloris oleoabundans* at 1 x 10^5 cells ml^-1. 45

Table 2: 14C budget components of 12 *Villosa iris* fed 14C-labelled *Neochloris oleoabundans* at 1 x 10^4 cells ml^-1. 46

Table 3: 14C budget components of 12 *Villosa iris* fed 14C-labelled *Neochloris oleoabundans* at 1 x 10^3 cells ml^-1. 47
Chapter 4

Figure 1: Glycogen levels of *A. plicata* and *Q. pustulosa* at 1, 7, 14, and 30 days of controlled feeding in quarantine 56

Figure 2: Glycogen levels of *A. plicata* and *Q. pustulosa* at 1, 7, 14, and 30 days of starvation in quarantine. 57