
Mathematical Expression Detection and

Segmentation in Document Images

Jacob R. Bruce

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State

University in partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

A. Lynn Abbott, Committee Chair
Jianhua J. Xuan, Co-Chair

Michael S. Hsiao

February 12, 2014

Blacksburg, VA

Keywords: document layout analysis, optical character recognition,

mathematical expression detection and segmentation, document image, type-

specific layout analysis

Mathematical Expression Detection and Segmentation in Document Images

Jacob R. Bruce

Abstract
Various document layout analysis techniques are employed in order to enhance

the accuracy of optical character recognition (OCR) in document images. Type-specific

document layout analysis involves localizing and segmenting specific zones in an

image so that they may be recognized by specialized OCR modules. Zones of interest

include titles, headers/footers, paragraphs, images, mathematical expressions,

chemical equations, musical notations, tables, circuit diagrams, among others. False

positive/negative detections, oversegmentations, and undersegmentations made

during the detection and segmentation stage will confuse a specialized OCR system

and thus may result in garbled, incoherent output. In this work a mathematical

expression detection and segmentation (MEDS) module is implemented and then

thoroughly evaluated. The module is fully integrated with the open source OCR

software, Tesseract, and is designed to function as a component of it. Evaluation is

carried out on freely available public domain images so that future and existing

techniques may be objectively compared.

Acknowledgments
I would like to thank Dr. Abbott for his helpful insights. I'd also like to thank my

lab-mates Sherin Aly, Sherin Ghannam, Ahmed Ibrahim, Mahmoud Sobhy, and Amira

Youssef for keeping me company, teaching me a thing or two about their rich culture,

and letting me try some great foods. I'd also like to thank the Virginia Tech Assistive

Technology director, William Holbach, and coordinator, Hal Bracket, for their feedback

and encouragement in the early stages of this project. Last but not least, I'd like to

express my gratitude for my family and their unconditional support.

iii

Table of contents
1 Introduction...1
1.1 Enhancing Information Accessibility...1
1.2 Introduction to OCR and Document Analysis: A Brief History....................................5
1.3 Google Books Initiative...8
1.4 Contributions of this Thesis..10
1.5 Organization of Thesis..11

2 Literature Review..13
2.1 The Beginnings of OCR...13
2.1.1 Fixed-font...13
2.1.2 Omnifont..15

2.2 Pattern Recognition Techniques in OCR..16
2.2.1 Text Line Finding...17
2.2.2 Character Feature Extraction..21
2.2.3 Character Classification...28
2.2.4 Detection of Merged or Broken Characters...30
2.2.5 Word Recognition and Linguistic Analysis...30

2.3 Document Layout Analysis Techniques...31
2.3.1 Introduction to Document Layout Analysis...31
2.3.2 Preprocessing...35
2.3.3 Document Structure Analysis...37

3 Method..75
3.1 Introduction..75
3.1.1 Purpose...75
3.1.2 Problem Statement and Project Scope...76
3.1.3 Definitions and Acronyms..77
3.1.4 Tesseract Document Layout Analysis Framework Overview..............................77
3.1.5 Overview..79

3.2 System Overview...79
3.3 System Architechture...79
3.4 Component Design...82
3.4.1 Groundtruth Dataset Generation..82
3.4.2 MEDS Module...88
3.4.3 Evaluation Module...123

4 Experimental Results...132
4.1 Detector Parameter Selection and Training..132
4.2 Final Evaluation..134

5 Conclusion and Future Work...146

Bibliography...148

iv

List of Figures
Figure 1: This illustration, taken from a 1933 patent entitled “Statistical Machine” P. W.

Handel, "Statistical Machine," United States Patent Office. 1,915,993, Jun. 27, 1933.,

depicts one of the earliest OCR devices ever invented. Used under fair use, 2014.......5

Figure 2: This excerpt from a 1901 New York Times article was optically recognized by

ABBY Fine Reader 8. The “New York Times” heading at the very top, the “Furniture and

Home Furnishings” label embedded in the illustration, and the layout of the three

columns at the bottom right were all incorrectly recognized by the commercial system.

Contributor: Bob Stein (uploaded to http://archive.org), "New York Times August

September 1901 Collection,"

Internet:http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_T

imes_August_September_1901_Part_7_text.pdf, Date Accessed: 2013.Used under fair

use, 2014... 7

Figure 3: The above text includes excerpts from two different pages taken from a scan

of an old textbook. On the left is a table followed by a paragraph of text, while on the

right is a larger table. These images were extracted from a PDF which was digitized by

Google and then made available under public domain at http://www.archive.org. R.

Griffin, Statistics. London: Macmillon and Co., 1913, pp. 121-122. Used under fair use,

2014... 9

Figure 4: Above is the text from Figure 3 after having been labeled by Tesseract's table

detection software. The text within the blue rectangles was identified as belonging to

a table while the text within red rectangles was not. The green rectangle should

encompass the entire table figure. As can be seen there are both false negatives and

false positives...9

Figure 5: Example of OCR results on text excerpt. On the left is an example of text that

was scanned at 300 dpi from a calculus text book. To the right is the output generated

by the leading open source OCR engine, Tesseract..10

Figure 6: An image of RCA's 1949 OCR system: M. Martin, "Reading Machine Speaks

Out Loud," Popular Science, vol. 154, no. 2, Feb 1949, pp. 125-127. Used under fair

use, 2014. The system was discontinued prior to completion due to its high costs14

Figure 7: The IBM 1401 System (Optical Character Reader not shown here). From left

to right, the punch card reader/writer, mainframe, printer, and magnetic tape units.

The IBM 1401 Demo Lab and Restoration Project Computer History Museum, "IBM

1401 Archive Pics," Internet: http://ibm-1401.info/IBM1401_ArchivePics.html, Date

Accessed: 2014. Used under fair use, 2014...15

v

Figure 8: Original image in correct alignment (a) and skewed by 5 degrees (b). J. J.

Hull, and S. L. Taylor. "Document Image Skew Detection: Survey and Annotated

Bibliography," World Scientific, 1998, pp. 40-64. Used under fair use, 2014...............18

Figure 9: For printed text, a given character often has a precise position within the text

line which can be useful for classification purposes. R. Smith, "Apparatus and Method

for Use in Image Processing," United States Patent Office. 5,583,949, Dec 10, 1996.

Used under fair use, 2014..19

Figure 10: Mapping from (x,y) to Hough space...20

Figure 11: An example of skewed and slightly curved text. Close inspection shows that

the cyan/gray line is curved relative to the straight black line above it. R. Smith. "An

Overview of the Tesseract OCR Engine," Proc. Int. Conf. Document Analysis

Recognition, 2007, pp. 629-633. Used under fair use, 2014..21

Figure 12: Comparison of a prototype for “o” to an unknown character by template

matching. R. Smith. "Tesseract OCR Engine: What It Is, Where It Came From, Where It

Is Go-.. 22

Figure 13: (a) Example of chain-code. (b) Chain-code directions. S. Mori, C. Y. Suen,

and K. Yamamoto, "Historical Review of OCR Research and Development," Proceedings

of the IEEE, vol. 80, no. 7, Jul 1992, pp. 1029-1058. Used under fair use, 2014..........23

Figure 14: (top) The polygonal approximation features of a “1” followed by those same

features after normalization with respect to the prototype of “1” to the right. (bottom)

Features of an “integral,” a character for which there is currently no valid template in

Tesseract. To the right is the integral after normalization with respect to the prototype

of “/”. For both normalized pictures, the solid lines represent the prototypes while the

dotted lines represent the normalized unknown character. Lines are colored from best

to worst match: white, green, red, blue. These images were taken from Tesseract's

debugger..25

Figure 15: Red outlines represent convex hulls of the white regions. Aforge.NET, "Blobs

Processing," Internet:

http://www.aforgenet.com/framework/features/blobs_processing.html, Date Accessed:

2013. Used under fair use, 2014..26

Figure 16: Example of merged letters with candidate chop points (denoted by

triangles). R. Smith. "Tesseract OCR Engine: What It Is, Where It Came From, Where It

Is Going," OSCON, 2007. Used under fair use, 2014..30

Figure 17: Two document images with complex layouts. On the left, an intricate

background as well as complex column structure is observed. On the right is a

vi

newspaper article with a complex layout of titles and columns along with imagery and

captions. Both document images will require sophisticated image processing and

layout analysis techniques in order to achieve both OCR accuracy as well as efficient

data storage and indexing within computer systems. A. M. Namboodiri, and A. Jain.

"Document Structure and Layout Analysis," Advances in Pattern Recognition, Springer-

Verlag, London 2007. Used under fair use, 2014..32

Figure 18: The five most important inter-dependent components of document analysis

involve preprocessing, document structure analysis, document content representation

(not illustrated here), training set development (ground truth), and performance

evaluation. Each module is described as interdependent because the performance of

the overall system really depends on each component. For instance, if preprocessing

is not effective, then structure analysis will likely fail. If the document content

representation is not consistent, then ground truth and performance evaluation will

yield insignificant results. A. M. Namboodiri, and A. Jain. "Document Structure and

Layout Analysis," Advances in Pattern Recognition, Springer-Verlag, London 2007. Used

under fair use, 2014...34

Figure 19: An example of a halftone image. Notice that, when looking at the image

from a distance, the illusion is created that the image is in grayscale, when, in fact, it

is actually printed with only black dots of varying sizes. R. Miller, "Ink-Jet Basics,"

Internet: http://www.thetonesystem.com/inkjet_basics.html, Date Accessed: 2013.

Used under fair use, 2014..36

Figure 20: (Left) Part of a document image with complex background. (Right) The

same image with foreground separated from background. A. M. Namboodiri, and A.

Jain. "Document Structure and Layout Analysis," Advances in Pattern Recognition,

Springer-Verlag, London 2007. Use under fair use, 2014..37

Figure 21: An example of an arbitrary physical layout wherein blocks of text are fit to

the shape of a pie chart. A layout analysis system should ideally be able to segment

text blocks into the appropriate shape, which sometimes may be more complicated

than simple rectangular layouts. For this figure, a document layout analysis system

which can only handle rectangles would be insufficient, and would likely result in a

mangled output. A. Gourdol, "CSS3 Regions: Rich Page Layout With HTML And CSS3,"

Internet: http://www.adobe.com/devnet/html5/articles/css3-regions.html, Date

Accessed: 2013. Used under fair use, 2014...40

Figure 22: A possible result of the X-Y Cut algorithm (done manually) on an article page

(citation below). Here the entire page is cut vertically (red) and then each sub-region

vii

is cut horizontally (green). The splitting order from this point becomes rather complex

but is color coded as follows: orange, yellow, blue, and pink. Notice that a single node

may have more than two children, which is the case for sections with multiple

paragraphs, columns, etc. G. Nagy, S. Seth, and M. Viswanathan, "A Prototype

Document Image Analysis System for Technical Journals," Computer, vol. 25, no. 1, Jan

1992, pp. 10-22. Used under fair use, 2014...42

Figure 23: On the left is a map, and on the right is the map's extracted text. Notice

there are some dependencies where the foreground text was confused with the

imagery of the map. For instance one of the “f's” in the word “Post Office” is missing

because it overlaps with a road. J. P. Bixler. "Tracking Text in Mixed-Mode Document,"

Proc. ACM Conference on Document Processing System, 1998, pp. 177-185. Used

under fair use, 2014...45

Figure 24: On the left is a document image and on the right is its corresponding

Document Spectrum representation. L. O'Gorman, "The Document Spectrum for Page

Layout Analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11,

Nov 1993, pp. 162-173. Used under fair use, 2014..47

Figure 25: Illustration of an ordinary Voronoi diagram. Wikipedia, "Voronoi Diagram,"

Internet: http://en.wikipedia.org/wiki/Voronoi_diagram, Date Accessed: 2013. Used

under fair-use 2014..48

Figure 26: The process of segmenting an image into an area Voronoi diagram as

illustrated by Kise et al. K. Kise, A. Sata, and M. Iwata, "Segmentation of Page Images

Using the Area Voronoi Diagram," Computer Vision and Image Understanding, vol. 70,

no. 3, Jun 1998, pp. 370-382. Used under fair use, 2014...49

Figure 27: From left to right: (1) The original image. (2) Vertically run length smeared

image. (3) Horizontally run length smeared image. (4) The logical AND of (2) and (3).

F. Wahl, K. Wong, and R. Casey, "Block Segmentation and Text Extraction in Mixed

Text/Image Documents," Graphical Models and Image Processing, vol. 20, no. 1, Jan

1982, pp. 375-390. Used under fair use, 2014...51

 Figure 28: 6x13 structural element used by Bloomberg in detecting italics. The open

circles on the left represent “OFF” pixels, the closed circles represent “ON” pixels, and

the empty squares are “don’t care” pixels. D. S. Bloomberg. "Multiresolution

Morphological Approach to Document Image Analysis," 1st International Conference of

Document Analysis and Recognition, 1991, pp. 963-971. Used under fair use, 2014.. 52

Figure 29: Bloomberg’s italics detection. Original text is on the left and on the right is

(a) the intermediate seed image, (b) the final seed image, (c) the word mask, and (d)

viii

the final italic word selection mask for the image. D. S. Bloomberg. "Multiresolution

Morphological Approach to Document Image Analysis," 1st International Conference of

Document Analysis and Recognition, 1991, pp. 963-971. Used under fair use, 2014.. 53

Figure: 30: An example image illustrating different steps of the whitespace-cuts

algorithm. Left to right: whitespace cover of the page background, extracted vertical

separators and borders, extracted horizontal separators, extracted page segments. F.

Shafait. "Geometric Layout Analysis of Scanned Documents," PhD thesis, University of

Kaiserslautern, 2008. Used under fair use, 2014..55

Figure 31: Regions detected by the method of Kacem et al. as belonging to

expressions are shown above bounded by rectangles. Note that, although most of the

regions are over-segmented with various symbols being missed altogether,

subtraction of the above labeled regions will result in improved accuracy for most

commercial OCR engines which would otherwise be confused by the presence of the

various mathematical expressions. A. Kacem, A. Belaid, B. M. Ahmed, "Automatic

Extraction of Printed Mathematical Formulas using Fuzzy Logic and Propagation of

Context," International Journal of Document Analysis and Recognition, vol. 4, no. 2,

December 2001, pp. 97-108. Used under fair use, 2014...66

Figure 32: A connected component's possible topography features on text line j based

upon vertical location in reference to line j's upper and lower central bands. A. Kacem,

A. Belaid, B. M. Ahmed, "Automatic Extraction of Printed Mathematical Formulas using

Fuzzy Logic and Propagation of Context," International Journal of Document Analysis

and Recognition, vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.

... 67

Figure 33: A result of Kacem's expression segmentation technique. Note that the theta

symbol is only segmented for the cases when context propagation dictates that it

should be. When it is by itself it is missed entirely, while when it is wrapped in a

parenthesis or has a subscript it is segmented. A. Kacem, A. Belaid, B. M. Ahmed,

"Automatic Extraction of Printed Mathematical Formulas using Fuzzy Logic and

Propagation of Context," International Journal of Document Analysis and Recognition,

vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.........................68

Figure 34: On the left is a document image and on the right is debug output from

Tesseract showing how that image is blurred during physical segmentation...............78

Figure 35: (Top-left) Portion of input image. (Top-right) Manually generated

groundtruth. Segments outlined with red rectangles are individual displayed

expressions. (Bottom-left) Output of Tesseract's default MEDS module. Segments

ix

outlined with red rectangles are individual displayed expressions, segments outlined

with green rectangles are individual embedded expressions, and segments outlined

with blue rectangles are normal text. (Bottom-right) Pixel-accurate evaluation results

for displayed expressions found in Tesseract's default module after comparing it to the

groundtruth. False negative pixels are colored green, false positive pixels are colored

blue, true positive pixels are colored red, and true negatives are orange. All

background pixels are colored black. Notice that the true positive region at the bottom

is undersegmented (a single region should correspond to the three regions).The

commas and asterisk are false positives since they are not logically part of the

mathematical expressions..80

Figure 36: High-level UML-based system architecture overview...................................81

Figure 37: UML diagram to depict the trainer, classifier, and feature extractor

interfaces used in the detection module (and also the data BlobInfoGrid data from

which features are extracted to be explained in Section 3.4). Compile-time

polymorphism is utilized in order to facilitate experimentation with and comparison of

various combinations of training, classification and feature extraction........................82

Figure 38: A screenshot of the GUI used to manually generate the groundtruth dataset

used for this study..84

Figure 39: Groundtruth dataset segmentation example. Segments that are colored red

are considered displayed while those which are blue are considered embedded. The

choice of which regions are displayed vs. embedded is made based on the convention

that all expressions that are part of a normal sentence structure and not placed on

their own line are embedded, whereas all other expressions are displayed.................85

Figure 40: Result of existing groundtruth dataset segmentation technique. Notice that

the uppermost region is over-segmented (i.e. the set of expressions should correspond

to one entity but here they correspond to two so that the comma is not incorrectly

considered part of the expression and segmented regions cannot be isothetic). Red

segments are displayed while blue ones are embedded..86

Figure 41: The correct segmentation which is not currently implemented in the

existing groundtruth generation technique. Notice that the top expression region is

now properly segmented as one entity even though the comma causes the region to

be a more complex isothetic shape than a simple rectangle. Red segments are

displayed regions while blue ones are embedded..86

Figure 42: A segment of an image taken from the manually generated groundtruth

dataset. All segments here are segmented as displayed expressions..........................87

x

Figure 43: A segment of the groundtruth dataset. All blue segmented regions are

considered embedded expressions. Notice that on the second line of text, the comma

which follows the ellipsis is functionally part of the sentence in which the expression

resides, whereas the can be interpreted as a single mathematical series and is thus

segmented as one region...88

Figure 44: The GridBase datastructure is used extensively within the Tesseract

framework to facilitate fast nearest neighbor access among various components on

the image. The above image is a Doxygen-generated inheritance diagram showing

many of the different classes which are derived from the GridBase class. Being a

template container class, it's core functionality of nearest neighbor search can be

utilized for any number of data structures ranging from CP's, recognized blobs

(BLOBNBOX), unrecognized blobs (C_BLOBS), and has been utilized to build a custom

grid data structure in this project...89

Figure 45: (Top center) The input image. (Bottom-left) The CPGrid of the image which

is the input to the MEDS module. (Bottom-right) The result of converting the CPGrid

back into a BlobGrid. Each rectangle on the image represents a blob. Blobs colored

cyan are ones for which the hybrid analysis was unable to determine whether the blob

represents part of text or part of an image. Yellow blobs have been labeled as “vertical

text”... 91

Figure 46: Both the bottom left and bottom right images correspond to the

mathematical expression region shown in the upper image. The left image shows the

symbols remaining after OCR by Tesseract. Notice that many of the symbols were

ruled out as junk or improperly merged to their nearest neighbors. On the right is the

same expression region after the new MEDS module noticed that the blobs in the

region did not belong to valid words, split them back up, and reinserted them into the

grid for proper analysis...92

Figure 47: Above is a page from a training image. After the BlobInfoGrid was

generated for this image, each blob in the grid was automatically assigned a binary

label (math or non-math) based upon the blob's location in reference to any entry

within the page's manually generated groundtruth. For debugging purposes, the

foreground of blobs which are labeled by the groundtruth as math were automatically

colored red while those which were not were colored blue..96

Figure 48: Illustration of the soft-margin, C formulation (C-SVC) of the SVM binary

classifier [0]. The omega vector and beta give the optimal hyperplane within the

higher dimensional feature space specified by the kernel function, psi. The xi values

xi

are deviation measurements of each sample from the hyperplane's expected minimal

margin specified by the support vectors. The soft-margin SVM's C parameter specifies

the total deviation that can be tolerated..99

Figure 49: When the integral symbol is analyzed in the above expression, it is

measured to have three horizontally adjacent vertically overlapping elements to its

right. The red and blue bounding boxes were drawn manually a for illustration

purposes, where the red box “covers” the blue boxes...102

Figure 50: When the fraction bar in the above expression is analyzed it is found to

have one vertically adjacent horizontally overlapping element above and four below.

The red and blue bounding boxes were manually added for illustration purposes,

where the red box “covers” the blue boxes..102

Figure 51: The square root in the above expression contains 8 elements nested within

it... 103

Figure 52: Results of the nested character feature on a training image demonstrated

through foreground region coloring. The red blobs are inside the bounding box of a

nested blob. The square-root in the expression labeled as alpha was filtered out by

Tesseract as noise prior to running the MEDS module. The other three missed square

roots were broken into two blobs and thus have no nested characters. The integrals,

parenthesis, and plus sign were all mis-recognized by Tesseract as containing more

than one character...103

Figure 53: Result of sub/superscript detection on a training image depicted by

foreground region coloring in order to illustrate the feature's reliability. The red blobs

were detected to have a sub/superscript, the green blobs are superscripts, and the

blue blobs are subscripts. Due to the page's spacing, the d in second derivative was

not found to have a square since the bottom of the 2 is above d's center. The large

parenthesis were also found to have sub/superscripts based upon the criteria and

since it is not known that they are themselves punctuation due to improper

recognition... 104

Figure 54: The word “Simpson's” was mis-recognized by Tesseract, resulting in the

apostrophe being mistaken for a super-script..104

Figure 55: The word, “right-” was mis-recognized by Tesseract, resulting in the bottom

of the “g” being mistaken for a subscript, the left part of the “h” mistaken as a

superscript, and the “-” being mistaken for a subscript of the right part of the “h” and

the “t” which were improperly combined into a single character...............................105

xii

Figure 56: The baselines found during Tesseract's layout analysis were automatically

drawn on a training image in order to gauge the effectiveness of the VDARB feature.

From the above example it is can be seen that, while Tesseract's quadratic spline line

detection algorithm is highly effective on normal text, results are somewhat

unpredictable in the presence of mathematical expressions.....................................106

Figure 57: Fractions are an example of mathematical notation that is often two

dimension-ally more complex than is normal language text. For the left side of the

equation, both of the d symbols have 2 as their stacked count features. The minus

signs and exponents are the exceptions as they are assigned 0. The fraction bars are

also assigned 0 because their height is very low so that no nearest neighbors can be

vertically adjacent..107

Figure 58: Results of using the described stacked feature algorithm on the same

expression shown in Figure 53. Dark blobs have a stacked feature of 0, red blobs have

a stacked feature of 1, and green blobs have a stacked feature of 2.........................108

Figure 59: Results of using the described stacked feature algorithm. Dark blobs have a

stacked feature of 0, red blobs have a stacked feature of 1, green blobs have a stacked

feature of 2, and blue blobs have a stacked feature of 3 or more..............................108

Figure 60: Results of Tesseract's italic and bold text assignment. Blobs colored red

were detected as italic, green as bold, and blue as both bold and italic....................109

Figure 61: An excerpt from a training image. For debugging purposes, each blob has

been automatically colored according to the sentence to which it is assigned. The first

sentence is red, the second blue, the third green, the fourth is red, etc. Leptonica [0] is

utilized in this work for pixel coloring...114

Figure 62: Result of normal/abnormal row classification technique. The blue foreground

regions are part of rows classified as “abnormal” while the red foreground regions are

part of “normal” ones...119

Figure 63: The above expressions were taken from the groundtruth dataset used in this

work. The summations, limits, and fractions illustrate the need for vertical merging of

fraction and non-fraction elements alike..121

Figure 64: An expression taken from the training set which includes a determinate.

Determinates and matrices include multiple vertically stacked elements which must

be merged into a single math segment..122

Figure 65: Debug output from Tesseract's default MEDS module. Red regions were

classified as displayed expressions, green regions classified as embedded, and blue

regions are non-math...124

xiii

Figure 66: The same image as shown in Figure 53 except with the foreground regions

colored for the math expression bounding boxes found by Tesseract's default MEDS

module. The blue regions here were labeled as part of an embedded expression region

while the red regions were labeled as part of a displayed expression region.............125

Figure 67: The same image as shown in Figures 53 and 54 but with the foreground

regions of the bounding boxes from the manually generated groundtruth automatically

colored using the same convention as in Figure 54..126

Figure 68: Graphical depiction of the overall average detection results on the four

classifiers which were tested. The classifier trained without the italic feature (MEDS4)

is shown to give the lowest false positive detection rate...136

Figure 69: Graphical representation of the results shown in Table 9..........................137

Figure 70: Graphical representation of the results shown in Table 10........................139

Figure 71: MEDS4 final results on a page randomly pulled from D. Sloughter,

Difference Equations to Differential Equations: An Introduction to Calculus. Furman

University, Greenville, SC: Creative Commons, 2000. Used under fair use, 2014......142

Figure 72: MEDS4 results on a page randomly pulled from A. S Kompaneyets,

Theoretical Physics. Osmania University: Foreign Languages Publishing House, 1961.

Used under fair use, 2014..143

Figure 73: On the left are some pixel-accurate evaluation results of the Tesseract 3.02

experimental equation detector and on the right are some results for the

detection/segmentation module implemented in this work.......................................144

xiv

List of Tables
Table 1: The textbooks utilized in manually generating the groundtruth dataset for this

study.. 83

Table 2: N-gram Profile automatically generated from 7 of the 15 training images used

in this work. 75 math and 34 non-math sentences were used to generate this profile.

All matching non-math n-grams are subtracted from the math n-gram counts after

being weighted by the math/non-math word ratio to result in the above profile........116

Table 3: The seven pixel-accurate metrics which are found to measure the validity of a

hypothesis in comparison to a groundtruth along with measurements of

oversegmentations and undersegmentations..128

Table 4: Region-wide statistics for Tesseract default equation detector.....................130

Table 5: Over/under-segmentation statistics for Tesseract default equation detector.

... 130

Table 6: Pixel count statistics for Tesseract default equation detector........................131

Table 7: Pixel accurate metrics for Tesseract's default equation detector..................131

Table 8: All of the features extracted in this work. The feature extractor named F_Ext1

uses all 22 features while the other three extractors tested use a subset of these.. .133

Table 9: The four classifiers which were trained and tested in this work along with the

features on which they were trained..134

Table 10: Each classifiers' optimal parameter combination, TPR, and TNR found

through coarse to fine grained parameter selection using repeated 10-fold cross-

validation.. 134

Table 11: The four tests which were carried out. Fifteen pages of the corresponding

textbook was used in each test..135

Table 12: Results of detection averaged over all four tests..135

Table 13: Detection results after post-processing step is carried out to filter out

obvious false positives. This also causes a slight decrease in true positive rate, but still

results in an increase in overall accuracy...137

Table 14: Final pixel-accurate results of detection, post-processing, and segmentation.

... 138

Table 15: Region segmentation statistics for each MEDS module tested averaged over

all four test sets. Avg. Overseg/Underseg refers to the average number of

over/undersegmentationed regions per page. The severity is the average degree to

xv

which each such region is over/undersegmented (i.e., how many regions an

oversegmented groundtruth region is split into by the hypothesis image)................138

Table 16: Region-wide statistics for each MEDS module tested, averaged over all four

test sets. The Correct Segmentation % is the ratio of groundtruth regions that had no

overlapping false positive hypothesis pixels. Completely missed % is the ratio of

groundtruth regions that had no overlapping true positive hypothesis pixels. The

average falsely detected count is the average number of regions per page which have

no true positive pixels..139

Table 17: Pixel color codes used to keep track of pixels during evaluation................140

Table 18: Average Detection results for MEDS4 on each individual test.....................145

xvi

1 Introduction
Basically, our goal is to organize the world's information
and to make it universally accessible and useful.

Larry Page – Co-founder of Google

1.1 Enhancing Information Accessibility
Never, since the invention of the printing press, has society seen such a radical

change in its means of information distribution. Armed with powerful search engines

roaming the vast expanse of the World Wide Web, nearly everyone in the world has, at

their very fingertips, access to archives full of information. This enhanced information

accessibility is having profound implications for society and could lead to a fruitful age

of enlightenment.

The global effects of high speed Internet access are seen daily as hundreds of

millions browse for information/multimedia, look up map directions, interact through

email/social networks/video games, shop remotely, video chat, etc. Corporations like

Google, Microsoft, Facebook, eBay, and Amazon continue building and extending the

capacity of their server farms as the growth of user demand shows no signs of slowing

down. By mid-2012, it was reported that nearly an eighth of the world's population

was on the popular social networking site, Facebook [1]. As such figures continue to

grow, studies are showing that technology is even affecting the manner in which we

think and behave at the most fundamental levels. Whether or not the long-term

effects of this relatively nascent medium of interaction prove to be largely positive or

negative remains to be seen. One remaining certainty, however, is that continuing

innovation is, for better or for worse, altering the manner in which we live out our daily

lives.

It was Benjamin Franklin who once said that “genius without education is like

silver in the mine.” One would be hard-pressed in arguing that, throughout history, all

people have been able to realize their full potential to succeed and make a difference

in the world. If that were true, many would argue that our knowledge would, by now,

have long since surpassed its current state. In fact it was just under five hundred years

ago, that Europeans were finally emerging from an age of intellectual darkness which

had lasted for roughly a millennium. If we look back to the spread of knowledge

throughout written history, starting from the earliest true writing systems developed in

ancient Egypt/Mesopotamia circa 3000 BC to the origins of philosophy, math, science,

and theater in ancient Greece, all the way to the birth of the “modern era” which

culminated itself in the scientific revolution of the sixteenth century AD, we notice a

1

general trend of small bursts of knowledge spreading repeatedly, each time with

greater strength than before, each one improving upon on its predecessor. Sir Isaac

Newton exemplified this trait of humanity with his statement that “if I have seen

further, it is by standing on the shoulders of giants.”

Although much of what defines us from a cultural perspective may indeed be

passed from generation to generation through word of mouth, our tremendous

advancements in math, science, art, and literature since the dawn of the modern era

can be largely attributed to Johannes Gutenberg's invention of the printing press,

which made mass distribution of books possible in Late-Medieval Europe. Prior to this

key event in history, the stage was set in Europe for an age of scientific inquiry and

revelation when the religious leader, Thomas Aquinas, embraced the separation

between the purely theological and purely scientific schools of thought. Also of vital

importance was the translation and recurrence of ancient Greek writings which had

been studied and further developed by Arabic scholars. The first universities built in

Medieval Europe were initially centered around classical Greek and religious studies

and helped to lead Europe out of its age of darkness. This collaborative environment of

scholastic endeavor helped set the framework for an age of enlightenment which

would move humanity a step forward. Archaic ideas such as bloodletting were soon

supplanted by discoveries leading to modern medicine and the commonly held

geocentric model of our earth was replaced by a heliocentric one. Major breakthroughs

were made in every field to foster the spread of knowledge which took society to

where it is today. Without this ideal of scientific thinking combined with the means to

distribute information, society would have never seen such tremendous

improvements.

Moving forward to the present day, society has recently made technological

breakthroughs which make the world's knowledge and information more accessible

than ever before. In fact, many have suggested that the widely used search engine,

Google, will go down in history as rivaling in importance with Gutenberg's printing

press. It was only about a decade and a half ago that two Stanford Ph.D. students

decided that they would like to take a shot at downloading and categorizing the entire

internet. These two graduate students are of course the founders of Google [2], a now

successful multinational corporation which, during the late nineties, left its search

engine competitors far behind. Google is unique in that its employees facilitate a

diverse range of interesting projects ranging from cataloging the human genome,

building autonomous vehicles, developing smart homes of the future, to developing

augmented reality eye glasses, among many others. It is, however, in Google's core

mission of finding ways to make the world's information “more universally accessible

2

and useful,” that the company has had its greatest impact on the world at large. It was

in keeping with this mission that, in 2005, in collaboration with HP Labs and the

Information Science and Research Institute at UNLV, Google revived and open sourced

an optical character recognition engine that had been developed as a Ph.D. project for

HP Labs between 1985 to 1995. Although optical character recognition (OCR), the

autonomous conversion of printed documents into digital formats, is a very mature

area of research [3], development in this area continues in order to increase

recognition support for the broad spectrum of languages, formats, and subject matter

of printed documents. HP's OCR engine, named “Tesseract,” had proven itself as one

of the industry's leading engines during UNLV's Fourth Annual Test of OCR Accuracy

[4]. Eventually, however, HP subsequently went out of the OCR business, leaving the

software to basically collect dust for about a decade.

Meanwhile, by around 2004, Google had begun its Google Books Initiative [5], a

large-scale library digitization project. This initiative began with the lofty goal of

digitizing all of the world's printed documents such that they may be indexed and

searched online. By around 2005, Google hired Ray Smith, the former lead developer

of Tesseract, to return to his long-abandoned, yet ground-breaking, Ph.D. work and

also brought Tesseract into the open source domain. In so doing, Google helped to

spur further research interest into efficient and accurate document recognition1. In the

roughly eight years since the project was revived, support has been added for

recognition of over fifty languages. Advanced page layout analysis techniques have

been implemented in order to detect various types of documents ranging from novels,

magazines, newspapers, images, textbooks, sheet music, etc. Language and script

detection modules have also been implemented in order to autonomously determine

what processing should be carried out for any given world document [6]. If Google's

endeavor is successful, then the resulting implications to society will be extraordinary,

possibly similar to the impact that Arabic scholars had on Europe when sharing and

translating ancient Greek literature. If Google is successful in the autonomous

digitization and recognition of any printed document regardless of its origin, then it

will not be long before information from all of the world's documents become instantly

accessible in every language and to everyone around the world. Such a development

would certainly speed up the world's already significant progress toward an era of far

greater enlightenment and wisdom than has yet been seen.

1 The term, recognition, is herein used to describe a machine's extraction of a document's
contents. This requires both the document page layout analysis as well as algorithms which
subsequently convert the page layout contents into a machine-understandable form. The field
of document layout analysis is further discussed in Section 1.2.

3

The autonomous recognition of all printed documents would not only expedite

the global advancement of knowledge and wisdom, but would also have tremendous

implications toward every individual in society. Such a breakthrough would be

especially significant toward the endeavor of Assistive Technology. With many devices

being developed and studies being carried out on ways to enhance human computer

interaction (HCI) for visually or physically handicapped individuals, digital access to

all printed documents could make finding information, not only more convenient, but

also possible for many who would not otherwise have access. Global autonomous

document recognition could also help open the doors toward breaking down language

barriers in information accessibility.

As research and development continues to enhance the accurate translation of

discourse between various languages [7], the successful recognition of printed

documents could eventually allow them to be machine-translated according to the

language preference of a given user. With instant access to all of the world's

information, regardless of its language or origin, at one's disposal, collaboration and

learning among individuals across the world will be significantly enhanced. All people

in the world regardless of their language preference, geographical location, and

physical ability will have access to the world's stores of knowledge, and the

opportunity to have a profound impact on society through the medium of the World

Wide Web. Enhanced document analysis and recognition capabilities will make a

significant contribution toward this end. The following section will discuss the

background as well as some of the fundamental problems faced in the fields of

document analysis and recognition.

4

1.2 Introduction to OCR and Document Analysis: A

Brief History
From Herbert Shantz's The History of OCR [3], it is clear that the OCR of printed

documents has been studied extensively over the last century. In one of the earliest

OCR patents [8] (Figure 1), a mechanical apparatus was used to measure the

incidence of light reflected back from a printed character when illuminated through a

set of character templates. A character detection would occur when the light emitted

from the template overlapped the character (assumed to be in dark print) sufficiently

to prevent light from being reflected upon the medium. Despite requiring a significant

amount of human intervention to ensure proper alignment and being largely inefficient

at best, the fundamental ideas which motivated this early initiative are seen

repeatedly throughout the century, and even now, albeit on a much larger scale.

5

Figure 1: This illustration, taken from a 1933 patent entitled “Statistical Machine” P. W. Handel,

"Statistical Machine," United States Patent Office. 1,915,993, Jun. 27, 1933., depicts one of the

earliest OCR devices ever invented. Used under fair use, 2014.

Although some of the first commercial OCR systems were released during the

1950's, their applicability was limited in that, by and large, they were only capable of

handling a single font type with very strict rules on character spacing. It was not until

the mid-late 1970's, with the invention of both the charge-coupled device (CCD)

flatbed scanner and the “Kurzweil Reading Machine” [9] that it became possible for a

computer to read a variety of documents with reasonable accuracy. Although the

training process for a particular font would take several hours and multi-column page

layouts or images had to be specified by the user manually, Kurzweil's software

showed significant improvement over the state-of-the-art technologies of the time.

In the 1980's, a company called Calera Recognition Systems [10] introduced an

omnifont system that could read pages containing a mixture of fonts while also

locating pictures and columns of text without any user intervention or extra training.

The progress of the state-of-the-art in document recognition will be further discussed

in the Chapter 2 Literature Review. More recent commercial OCR systems such as

ABBYY FineReader [11], OmniPage Professional [12], and Readiris [13], are all quite

accurate, not only in recognizing individual words or characters, but also in

understanding and reproducing document layout structure. A magazine or newspaper

page may, for instance, contain an intricate heading structure followed by multiple

columns of text, pull-out quotes, in-set images, and/or graphs as demonstrated in the

historical New York Times article shown in Figure 2 [14].

In order to understand and recognize content of such a document, it is essential

to first carry out document layout analysis techniques which will determine how the

document is partitioned. The text will be recognized with an understanding of where

the columns of text are, which portions of text indicate headings or quotes, and which

segments correspond to images, tables, captions, etc. If the text is not partitioned

appropriately prior to recognition then the textual output will become unpredictable.

With columns, paragraphs, or other structures merged together incorrectly, the text

will lose much of its intended meaning and become far less readable to the human

eye. For these reasons, sophisticated page layout analysis algorithms are of the

utmost importance, not only for document recognition accuracy, but also in ensuring

that the generated output is formatted correctly.

6

Although most publishers keep digital copies of their more recent documents,

there is also great demand for older documents which, unless they are digitized, will

largely become forgotten by society. This would be unfortunate in that it is often

surprising how pertinent older information and ideas can be. For companies such as

Google who would like to make the world's information more readily available and

accessible as well as to the Assistive Technology community, this is of the utmost

importance. For this reason, a standard OCR output format called hOCR, which

embeds OCR output within well-defined and widely available HTML and CSS structures

has been put into place [15]. In order to ensure the quality of textual output generated

by OCR for the wide variety of possible document layout structures, sophisticated

document layout techniques are critical.

7

Figure 2: This excerpt from a 1901 New York Times article was optically recognized by ABBY

Fine Reader 8. The “New York Times” heading at the very top, the “Furniture and Home

Furnishings” label embedded in the illustration, and the layout of the three columns at the

bottom right were all incorrectly recognized by the commercial system. Contributor: Bob

Stein (uploaded to http://archive.org), "New York Times August September 1901 Collection,"

Internet:http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_

August_September_1901_Part_7_text.pdf, Date Accessed: 2013.Used under fair use, 2014.

http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_August_September_1901_Part_7_text.pdf
http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_August_September_1901_Part_7_text.pdf

1.3 Google Books Initiative
There are various languages, dialects, and page layout formats for which

Google's Tesseract software is being developed. Among them are mathematical

equations, tables, graphs, and other figures which can be found in any standard

science or math text book. While Smith's original work was optimized solely for the

recognition of English newspaper formats, Google's continued efforts are aimed at

recognizing page formats from a much broader scope [5]. Much of Google's ideas

regarding document recognition are essentially in their infancy, and have a long way

to go before being fully realized. Although an experimental equation detector has

been added to the Tesseract software, its results, although showing significant

promise, have been tested to have fairly limited accuracy. A table detector

implemented by Google has also been tested on some sample images [16] (Figure 3)

to show that, it too, could use significant improvement (Figure 4). Notice that, in the

left-most table in Figure 4, the software failed to indicate the years as either belonging

to the table or the normal text. They were simply disregarded. Also, the software was

unable to determine where exactly the table boundaries are (which should be labeled

green). In the right-most table, notice that although a better job was done, while the

bottom portion of the text consists of footnotes, it is therein incorrectly labeled as part

of the table. Also, the second line of all column labels are not recognized as part of the

table when they clearly should be.

The problem of efficiently and accurately detecting equations, tables, graphs,

and other figures for the broad spectrum of possible document types is certainly no

easy one to solve. Although from a human's perspective, this problem may seem

trivial, programming a machine to sum up a document with the same accuracy as the

human eye proves to be a daunting task, as will be further discussed in the literature

review chapter of this paper. As the inventors of Google continue to work toward their

dream of creating an online “Library of Alexandria,” there is significant progress to be

made before such a large-scale endeavor can be fully realized. The Google Book

Search initiative has opened up many avenues for future research in document

understanding and recognition, of which, this project is certainly one of the many to

come.

8

9

Figure 4: Above is the text from Figure 3 after having been labeled by Tesseract's

table detection software. The text within the blue rectangles was identified as

belonging to a table while the text within red rectangles was not. The green rectangle

should encompass the entire table figure. As can be seen there are both false

negatives and false positives.

Figure 3: The above text includes excerpts from two different pages taken from a scan

of an old textbook. On the left is a table followed by a paragraph of text, while on the

right is a larger table. These images were extracted from a PDF which was digitized by

Google and then made available under public domain at http://www.archive.org. R.

Griffin, Statistics. London: Macmillon and Co., 1913, pp. 121-122. Used under fair use,

2014.

http://www.archive.org/

1.4 Contributions of this Thesis
This thesis introduces a novel approach to mathematical expression detection

and segmentation (MEDS) during the document layout analysis stage of OCR. The

focus of this thesis is toward enhancing the OCR quality of printed scientific

documents. The motivation for MEDS is illustrated by Figure 5. From Figure 5, it is clear

that, when presented with mathematical expressions as input, an OCR system trained

specifically for English will result in garbled output. With reliable MEDS, it becomes

possible to prevent this mangled output from occurring, and also allows existing

equation recognition algorithms, which have been extensively studied in the literature,

to be provided a properly segmented input. While state-of-the-art mathematical

symbol and structure recognition engines have been shown to attain near perfect

accuracy on properly detected and segmented mathematical regions [17], their highly

favorable results operate under the assumption that MEDS has already been carried

out either automatically or manually with perfect accuracy. For the mathematical

recognition studies observed in the literature, either manual or semi-automated

techniques are used in order to properly isolate all mathematical expressions from

normal text prior to any training or evaluation. The goal of this thesis is to produce and

evaluate a purely automated system which carries out this functionality as a

component within a larger document layout analysis framework, Tesseract [18].

10

Figure 5: Example of OCR results on text excerpt. On the left is an example of text that was

scanned at 300 dpi from a calculus text book. To the right is the output generated by the leading

open source OCR engine, Tesseract.

By utilizing and interfacing with the existing data structures and algorithms

present within Google's open source OCR engine, Tesseract, much of the more well-

studied areas of OCR / document analysis research are surpassed so that a study of

the relevant problem of MEDS can be explored in much greater detail than would be

possible otherwise. As the Tesseract software, much like commercial state-of-the-art

systems, is capable of partitioning a document into columns, paragraphs, headings,

etc., the software implemented in this work searches Tesseract's resulting partitions in

order to detect regions of interest. Greater document understanding is accomplished

through recognition of a variety of relevant features, many of which have yet to have

been explored in existing research. Relevant features are subsequently combined into

a binary classifier in order to detect regions of interest. These regions are then fed into

a segmentation module whose aim is to properly combine the detection areas into

properly segmented regions. The primary contributions of this work are briefly

summarized below:

• A freely available ground-truth dataset of manually segmented mathematical

expressions, taken from 75 randomly selected pages from 4

scientific/mathematical text books. Publications were chosen from the public

domain so that the dataset can be made freely available online for the objective

comparison with future or existing research endeavors.

• A novel evaluation framework which takes pixel-accurate measurements of a

MEDS module's true/false positive rate, precision, false discovery rate,

accuracy, specificity, and negative predictive value. Measurements are also

taken for the oversegmentations, and undersegmentations made on detected

regions. This framework and all of the data is freely available to help in

facilitating the objective comparison of existing or future MEDS modules.

• Development of a MEDS module which is fully integrated with Tesseract's layout

analysis framework. The developed MEDS module is designed so that various

combinations of detection and segmentation techniques can be easily

experimented with through compile-time polymorphism.

1.5 Organization of Thesis
The work to be discussed in this thesis is aimed toward moving the world a step

closer to realizing some of the lofty goals set by Google's engineers and scientists.

Chapter 2 presents a review of existing document analysis techniques with extra

emphasis on those involving mathematical/scientific documents. Although there are a

wide variety of problems which need to be tackled in the area of document

11

recognition, the primary focus is on enhancing equation detection accuracy through

the use of feature recognition and a support vector machine (SVM) classifier. Chapter

3, the method section, discusses the ground truth generation procedure, feature

recognition algorithms, classification technique, and result evaluation. Chapter 4, the

results section, will involve a discussion of all results and their significance. Chapter 5,

the conclusion, summarizes important points and discusses recommendations for

future work.

12

2 Literature Review
“We are like dwarfs sitting on the shoulders of giants. We
see more, and things that are more distant, than they did,
not because our sight is superior or because we are taller
than they, but because they raise us up, and by their great
stature add to ours.”

John Salisbury

2.1 The Beginnings of OCR

2.1.1 Fixed-font
Over the past century, Assistive Technology has been a primary incentive for

OCR research and development. While machine understanding was initially the most

commercially viable domain for OCR, several reading devices for the blind have been

implemented over the years. In 1914, one of the earliest reading devices, the

Optophone [19], could allow blind individuals to understand printed text without

relying on Braille. The device projected light upon a character of interest, focusing the

light's reflection upon a selenium photosensor. A sound with a frequency

corresponding to the reflected light would then be emitted to alert the reader of the

current character. A blind individual trained to use such a device, however, could only

expect to read at a mere one word per minute.

While there were some OCR patents released in subsequent years [20][8], it

was not until the late forties and early fifties that there was any commercial

development in the OCR industry. In 1949, RCA engineers were working on an OCR

system which used an early text-to-speech synthesis technology to read individual

characters out loud [21]. This system required the user to move a “eye” (a cathode

ray tube) across the letters of interest. The rays were then reflected upon a

photosensor connected to a complex processing unit (Figure 5). The project, however,

was discontinued prior to completion because it was not judged to be commercially

viable.

In 1953, David Shepard patented an OCR system, “Gismo”, which could read all

26 fixed-font letters of the English alphabet, understand musical notation, and

comprehend Morse Code [22]. Shepard founded Intelligent Machines Research

Corporation (IMRC) and released the world's very first commercial OCR systems. Credit

card reading, although now carried out through magnetic strip recognition, was one of

the first commercially successful applications of OCR. The Farrington B numeric font,

13

still widely used on the front of credit cards to this day, was invented by Shepard in

order to minimize recognition errors.

IBM utilized Shepard's patents over subsequent years while also improving the

accuracy of fixed-font OCR. The IBM 1408 Optical Character Reader [23] was packaged

with the IBM 1401 Data Processing System (Figure 6) in 1960. The entire system,

which included printer, optical reader, central processing unit, magnetic storage, etc.,

was sold for $146,600 [24], a price tag which, if sold by today's standards, would

amount to over a million dollars. The IBM 1418 Optical Character Reader could only

handle the ten numeric characters, the dash symbol, and the lozenge symbol. A later

model, however, the IBM 1428, was alphanumeric. The alphanumeric reader could be

programmed to read several document layout types assuming that they were printed

in the correct font and format. Recognizable documents included premium notices,

charge sales invoices, operations and route slips, payroll and dividend checks, and

mail orders [25]. Throughout the 1960's, fixed-font OCR continued to be utilized and

improved upon due to its usefulness in a variety of industrial applications. Some of the

devices from this era are, in fact, still used even to this day for applications such as

mail sorting and banking.

Although commercial OCR systems from the 1960's and early 1970's were

primitive by today's standards, they were quite successful during their time as

illustrated in Figure 7 [26]. Maintenance costs for word processing, an expensive

resource at the time, could be reduced significantly with ordinary typewriters used for

drafting and their OCR results used for final editing [27]. Fixed font OCR, although

14

Figure 6: An image of RCA's 1949 OCR system: M. Martin, "Reading Machine Speaks Out Loud,"

Popular Science, vol. 154, no. 2, Feb 1949, pp. 125-127. Used under fair use, 2014. The system

was discontinued prior to completion due to its high costs .

primitive, indeed proved to meet most of the requirements set by industry. For

purposes of Assistive Technology, however, it was of little to no use. The blind or

visually impaired community needed an optical reader to understand not only OCR-

specific fonts and layouts, but a wide variety of printed documents including books,

newspapers, magazines, text books, etc., just as the idea of OCR originated primarily

for the purpose of Assistive Technology, some of its most important breakthroughs

were driven by this same incentive.

2.1.2 Omnifont
A major commercial breakthrough in the field of OCR came with the introduction

of Ray Kurzweil's Reading Machine in 1976 [9]. Up until this time, all OCR systems

were tailored to a specific font, or perhaps a specific set of fonts. This font limitation

can be attributed to the template matching algorithms commonly used at the time,

which would compare each incoming character image to a library of bit-mapped

images. Although recognition of a larger set of fonts can be made possible through the

addition of more templates into the library, too many templates would cause the

processing speed of each character to decrease significantly. Although it would be

ideal to have a set of fonts which could encompass all possibilities in the template

15

Figure 7: The IBM 1401 System (Optical Character Reader not shown here). From left to right,

the punch card reader/writer, mainframe, printer, and magnetic tape units. The IBM 1401

Demo Lab and Restoration Project Computer History Museum, "IBM 1401 Archive Pics,"

Internet: http://ibm-1401.info/IBM1401_ArchivePics.html, Date Accessed: 2014. Used under fair

use, 2014.

library, this would prove unfeasible as there would be such a wide range of

possibilities.

Omnifont recognition is characterized primarily by its use of sophisticated

feature extraction techniques. As opposed to the brute force character-by-character

template matching algorithms utilized in earlier systems, feature extraction enables

recognition of characters irrespective of the font or typeset they are in. These

techniques find properties which are relatively invariant for the same character with

respect to the kinds of changes that occur across different typestyles. These

properties can often include line segments (vectors), concavities, and loops. For

example, the properties of a standard capital "B" include two loops on top of one

another. Although the number “8” has this same feature, it does not have a straight

edge on the left side as does the “B”. Furthermore, it is often that the two characters

can also be disambiguated based on contextual analysis. For instance, if a character

with the two vertically adjacent loops is detected at the beginning of a word, this

character is far more likely to be a letter than a number.

The Kurzweil Reading Machine used feature extraction and could be trained on

any number of fonts. Once the system was trained on a given font (a process taking

several hours), the knowledge would be stored on disk so that retraining would no

longer be required. The system could be trained to handle up to nine fonts

simultaneously [10]. If the page contained pictures or multiple columns, the user

would be required to specify their locations manually. While sophisticated techniques

have been developed to address the problems of document analysis, the following

subsection section will focus on work which has been done to prevent any retraining

from being required on new fonts. With the enhancements in processing speed and

more abundant memory attributed to the advent of microprocessors, it became

possible to implement much more intelligent systems utilizing complex pattern

recognition approaches, as will be discussed in the following section.

2.2 Pattern Recognition Techniques in OCR
As with all pattern recognition applications, in OCR some combination of feature

selection, extraction, and classification is essential. In general, a statistical classifier

will observe the features of its input and, based upon those features, choose the

optimal class label to which the input should be associated. For a given problem, there

are often many combinations of features and classifiers from which acceptable results

may be obtained. The choice of classifier and feature set is largely application

dependent, and, as of yet, no “one fits all solution” has been found. For OCR there are

many such combinations which have been proven to yield near perfect results. This, of

16

course, is to be expected, in that OCR is one of the most historically well-studied areas

in the field of Pattern Recognition. Not only are pattern recognition techniques

fundamental to character-by-character classification, but they are also essential for

the detection of merged or broken characters, text lines, word recognition and

linguistic analysis, and, as will be discussed in Section 2.3, document layout analysis.

While a broad overview of all techniques utilized for OCR would be outside of the

scope of this thesis, some of the most fundamental and important ones will briefly be

discussed.

2.2.1 Text Line Finding
Character and word classification algorithms typically operate under the

assumption that the unknown text to be recognized is already in the fully upright

position. This is an unrealistic assumption given the many possible angles of skew with

which the text may have been scanned. Skewed text, as illustrated in Figure 8 [28], is

commonly encountered by most OCR systems. Assuming that page layout analysis

has already extracted all of the columns and text blocks, it is then necessary to

recognize angle of skew for each block. This is essential, not only so that characters

may be rotated to their upright positions prior to classification, but also to prevent

words and characters in vertically adjacent rows from becoming mangled

inappropriately. Individual character classification algorithms will often utilize a

character's positional information within a row as a distinguishing feature. As

illustrated by Figure 9 [29], there is much information about a character which can be

derived from where it's top, middle, and bottom portions reside within a row. In order

to have access to such information, accurate text line finding algorithms are essential.

Some of the most important techniques are briefly discussed.

Horizontal Projection Profile. One of the most straightforward methods for

determining the skew angle of a document image uses horizontal projection profiles.

When the horizontal projection profile is applied to an M x N pixel image, a column

vector of size M x 1 is obtained. Elements of this column vector are the sum of pixel

values in each row of the image [30]. The contents of this vector are at maximum

amplitude and frequency when the text is skewed at zero degrees since the number of

co-linear black pixels is maximized in this condition. One way in which the horizontal

projection profile can be utilized is by rotating the input image through a range of

angles while calculating the projection profile for each one [31]. Each projection profile

is then compared to determine which one has the maximum amplitude and frequency.

Although much work has been done in order to optimize this approach, there are still

more efficient and accurate methods which can be utilized [28].

17

18

Figure 8: Original image in correct alignment (a) and skewed by 5 degrees (b). J. J. Hull, and S.

L. Taylor. "Document Image Skew Detection: Survey and Annotated Bibliography," World

Scientific, 1998, pp. 40-64. Used under fair use, 2014.

Hough Transform. The Hough transform, a well known feature extraction

technique in computer vision, can be utilized in order to detect, not only the skew

angle of a document image, but any mathematically tractable shape of interest. This

technique, when applied to 2D images, will take a series of coordinates (for the

case of document images this will likely correspond to groups of connected pixels) and

transform them into a new coordinate space. While the coordinate space will vary

depending upon the desired shape to be detected, for straight lines the x and y

coordinates will be converted to the coordinate space using the following

equation:

where is the distance of the point from the origin (usually at the upper left-

hand corner of the image), and varies between -90° and 90°. The parameter

uniquely represents a given line in the image by specifying its perpendicular angle and

distance with respect to the origin as shown in Figure 10.

19

Figure 9: For printed text, a given character often has a precise position within the text line

which can be useful for classification purposes. R. Smith, "Apparatus and Method for Use in

Image Processing," United States Patent Office. 5,583,949, Dec 10, 1996. Used under fair

use, 2014.

For each chosen coordinate within the image, the Hough transform

algorithm will calculate the values corresponding to some subset of the possible

values between -90° and 90°. There can be an infinite set of lines going through a

given point, thus the amount of lines required per point depends upon the desired

accuracy of the system as well as desired overall computational speed. The set of

chosen lines per point, each represented in Hough parameter space , is

represented by an accumulator array [32], each entry of which corresponds to a

unique line in the image. Each time that a line is found to go through an point of

interest, its corresponding entry in the accumulator array is incremented. When the

process is completed, the accumulator array entries with the highest increments will

correspond to the lines which intersect the most points in the image.

For OCR purposes, lines of text may be found within the image based upon this

operation. The coordinates of interest typically correspond to the centroids of

connected components (groups of connected foreground pixels which often

correspond to individual characters). When several parallel lines are found to have

very high entries in the accumulator array, this will often mean that the page was

scanned at the skew angle corresponding to these lines, and that they are likely to

represent individual lines of text within the document.

Geometric Distribution of Connected Components. The Hough Transform

has been utilized in various techniques to achieve accurate skew results. For a more

complete survey of past techniques the reader is referred to [28]. These techniques,

for the most part, vary, not by their use of the Hough Transform, but by their method

for determining connected components which are of interest and most likely to

correspond to rows of text. In [33], Smith utilizes an efficient and simple algorithm

20

Figure 10: Mapping from (x,y) to Hough space

which, unlike previous methods, finds lines of text independently of the page's skew.

The connected components of the image are extracted and filtered such that the

remaining components are most likely to represent a body of text. The connected

components are then sorted based on their positions in ascending order from left to

right and iterates through them. Each connected component is added to a row of text

to which it is most likely to belong based on vertical overlap. If no such row exists then

it is created. Based upon which connected components are added to which rows, a

running average is kept on the slope of the text rows. This process is continued in an

iterative fashion until all connected components have been associated with rows. This

algorithm has been found to achieve reasonably accurate results while proving to be

more efficient than corresponding Hough Transform based algorithms.

 Curved Text Line Detection. Even when text lines are accurately found, it is

often the case that the lines will need to be fitted to the text more precisely due to

scanning artifacts which may give the text a curved appearance as depicted in Figure

11. Among the techniques utilized for this problem are quadratic or cubic spline

modeling via least square fitting techniques [34] as well as active contour tracing via

snakes [35]. Smoothing techniques are often applied in order to simplify the input for

curved line detection. The optimal technique to be applied largely depends upon the

type of document fed into the OCR system. Thus document understanding at early

stages in the OCR process is of great importance in achieving accurate results. For a

more complete account of text line detection in various documents, the reader is

referred to [36].

2.2.2 Character Feature Extraction
The problem of feature extraction for optical character recognition, although a

difficult task, has been extensively studied in the literature. Techniques vary based

upon their application, with handwritten recognition often requiring different

techniques from printed character recognition. As with the rest of this thesis, the focus

21

Figure 11: An example of skewed and slightly curved text. Close inspection shows that the

cyan/gray line is curved relative to the straight black line above it. R. Smith. "An Overview of

the Tesseract OCR Engine," Proc. Int. Conf. Document Analysis Recognition, 2007, pp. 629-633.

Used under fair use, 2014.

here will be on techniques pertaining to printed character recognition. Techniques

utilized by Google's OCR System, Tesseract, will be emphasized and discussed

primarily since they are used within this thesis project.

Edge Extraction. After text lines have been located as discussed in the

previous section, the next task for a typical OCR system will be to perform some

image processing operations on the input in order to make features more easily and

efficiently recognizable. Tesseract [29] utilizes a novel edge operator which can take

advantage of grayscale values if they are available to achieve robust character

segmentation results. Text and non-text can often also be distinguished based on

contextual evidence as well as using basic height/width filters. Furthermore, the edge

extraction algorithm will inherently filter out a significant amount of noise since it will

disregard any portions of the image which do not form closed loops. The term “closed

loop” is used here to describe a contour which, after being followed a certain amount

of time will return to its starting position.

Also of importance is preserving the relationships between the inner and outer

portions of characters. Take, for instance, the character “o” depicted at the left on

Figure 12 [37]. Since the edge detector will find the inner and outer portions of this

character as separate, simple data structures must be implemented which store the

relationships among overlapping edges. In Tesseract, a 2D bucket sorting technique is

utilized in order to store all of the inner portions of characters as enclosures or “holes”

within them. The results of edge extraction are stored in chain code format as

illustrated by Figure 13 [38].

22

Figure 12: Comparison of a prototype for “o” to an unknown character by template matching.

R. Smith. "Tesseract OCR Engine: What It Is, Where It Came From, Where It Is Go-

ing," OSCON, 2007. Used under fair use, 2014.

Polygonal Approximation. In Tesseract, the process of polygonal

approximation is required in order to optimize the efficiency and accuracy of

subsequent feature extraction techniques. Polygonal approximation of a character

image, if done effectively, results in an output whose data is neither too fine or course

for purposes of feature extraction [39]. It becomes easier to detect global convexes

and concavities as well as character enclosures, which are very important features.

The process of polygonal approximation utilized by Tesseract analyzes the chain

code output of the edge extractor in order to locate simplifications which can be

made, which will enhance the robustness of subsequent feature extraction techniques.

The process begins by first breaking up the character into directional segments,

separated by 90° or two subsequent 45° transitions [29]. The second stage involves

further analysis of these segments and subsequent approximations being made

between the end points of each segment. The process is repeated iteratively until

certain criterion are met.

Normalization and Template Matching. After polygonal approximation and

prior to feature extraction, normalization is applied to the input in order to eliminate

some of the complexities which may come about from various font differences. For an

23

Figure 13: (a) Example of chain-code. (b) Chain-code directions. S. Mori, C. Y. Suen, and K.

Yamamoto, "Historical Review of OCR Research and Development," Proceedings of the IEEE,

vol. 80, no. 7, Jul 1992, pp. 1029-1058. Used under fair use, 2014.

in depth discussion on normalization techniques the reader is referred to Chapter 3 of

[39]. Normalization is very important in accounting for character font transformations

which may occur in terms of size, perspective, and rotation with respect to the

features of prototypes used in training the system. Normalization techniques can, in

general, be separated into categories using either linear or nonlinear methods. While

linear methods account for affine transformations often found in printed characters,

nonlinear techniques are generally geared more towards handwritten character

recognition wherein much more drastic variation is to be expected.

Normalization can be performed either before or after feature extraction. If done

after feature extraction, then the process is carried out within the feature space rather

than directly on the character's pixels. In the case of Tesseract, normalization is

carried out on the feature space of the character's polygonal approximation, which can

be viewed as a vector of 3D features, the dimensions of which are simply position,

position, and direction within the range of [40]. Figure 14 gives an example of

how Tesseract will normalize the features of unknown characters while matching them

to those of character prototypes.

24

25

Figure 14: (top) The polygonal approximation features of a “1” followed by those same

features after normalization with respect to the prototype of “1” to the right. (bottom)

Features of an “integral,” a character for which there is currently no valid template in

Tesseract. To the right is the integral after normalization with respect to the prototype of “/”.

For both normalized pictures, the solid lines represent the prototypes while the dotted lines

represent the normalized unknown character. Lines are colored from best to worst match:

white, green, red, blue. These images were taken from Tesseract's debugger.

As illustrated by Figure 13, Tesseract normalizes a feature vector by each

character prototype to which it is compared. For instance, assume that the character

“8” is fed into the system. Based upon a coarse shape analysis of the character a

subset of the the total prototypes may be chosen as potential candidates. For instance

“B” may be chosen since it has two enclosures, and “0” may also be chosen based

upon its convex top and bottom regions. Assuming that only these characters are

chosen as candidates, the feature vector for “8” will be subsequently normalized

based upon both of these prototypes prior to the respective template matching. The

process of normalization begins by isotropically scaling the bounding box to a fixed

height and width. The feature vector is then centered and scaled anisotropically based

upon the second moments of the prototype to which it is being compared [40].

Moment-based character normalization has been studied extensively in the literature

dating back to even before the advent of microprocessors. For some examples of in-

depth studies the reader is referred to [41] [42].

During Tesseract's classifier training, the training data is automatically grouped

into clusters based upon certain important features. These feature clusters are then

utilized during classification to reduce computation time with very little loss in

accuracy. The five most important features utilized by Tesseract will be herein briefly

discussed.

Concavities. One of the most important features in character recognition are

concavities. By definition, a concavity is part of an outline which does not lie on its

convex hull (the smallest convex region enclosing the outline as illustrated by Figure

15 [43]). In Tesseract, a concavities are characterized by the direction of their hull line,

their centroid [29], shape, skew, and area.

26

Figure 15: Red outlines represent convex hulls of the white regions. Aforge.NET, "Blobs Processing,"

Internet: http://www.aforgenet.com/framework/features/blobs_processing.html, Date

Accessed: 2013. Used under fair use, 2014.

Functional Closures. Character closures are common features which can be

useful in distinguishing characters regardless of their font. For instance the “e” and “o”

characters will both always consist of a single closure when properly drawn or printed.

The term functional closure is useful when a character's closure may be slightly

degraded somehow, such that there there may be an unintended opening. In Tesseract

[29], each concavity is tested for functional closure. Based open the location of the

concavity within the character (i.e. upward facing, downward facing, etc.) a threshold

is assigned for the maximum character to concavity width ratio expected for a

functional closure. If the ratio is below the appropriate threshold then a functional

closure will be detected.

Axes. Tesseract defines axis features only on characters for which no

concavities or closures are detected. Characters including commas, periods,

quotations, etc., fall under this category. The axis feature measures a character's

length to width ratio. The length of a character is determined by finding a point on the

outline whose distance from the character's centroid is maximum. The vector going

from the point to the centroid is said to be the character's major axis. The character's

width is then calculated as the sum of the maximum perpendicular distances from the

major axis to the character outline on either side of the axis. The major axis length to

character width ratio can be useful in disambiguating commas, periods, quotes, etc.

Lines. As illustrated by Figure 13, lines are useful features in template

matching. Line features are only used by Tesseract for unknown characters which

closely match more than one of the prototypes, as measured with concavities,

closures, and axes [29]. The degree to which a line in the unknown character matches

a line in a prototype is measured based upon the normalized position of the center of

the line, its quantized direction, and its scaled length.

Symmetry and Detection of Italicized Characters. Vertical as well as

horizontal symmetry can be a very useful measure in discriminating certain

characters. For instance, the character “C” and “G”, “j” and “/”, “j” and “]”, “T” and

“1”, etc. can often be disambiguated through their respective measurements of

symmetry. The main difficulty in symmetry measurement is not in measuring the

degree of symmetry about an axis, but rather in locating the axis of interest. While the

problem is trivial for vertical text (simply drawing a vertical line through the center will

suffice), italicized text is much more difficult since the axis is rotated slightly and may

be difficult to locate. Tesseract utilizes two methods to determine a character's axis of

symmetry. Once this axis is found it is then easy to determine whether or not the

character is italicized.

27

The first method used by Tesseract searches the character's outline for a vector

which passes from the bottom to the top half of the character's bounding box. The

direction of this vector may be a good indication for the direction of the axis of

symmetry. For round characters such as “o” and “e” and those which contain vertical

lines such as “H” and “p”, this method is useful. However, for angular characters such

as “X” or “8”, a valid result is not produced. The second method finds the rightmost

point on the outline then calculates the most clockwise line which can be drawn

through this point, without intersecting any other point on the outline. This operation

is repeated on the leftmost point of the outline as well. The line which was least

clockwise from the vertical becomes the axis of symmetry.

After the axis of symmetry found, the outline is searched around the axis for

points of reflection. Symmetry testing is commenced at a point where the axis

intersects the outline and works in opposite directions simultaneously. The points are

tested for being in the same locality of the point on the opposite side of the axis.

Symmetry is only measured for certain character candidates and typically only in one

direction (either vertical or horizontal).

2.2.3 Character Classification
The line finding, edge extraction, polygonal approximation, and feature

extraction techniques discussed thus far would be of little to no value without an

effective classifier. In pattern recognition, a classifier will take a set of feature

measurements as input and, using these measurements, choose from a finite set of

classes, the class to which the unknown input is mostly likely to belong. In the case of

OCR, the classes will often correspond to individual characters. Tesseract employs two

separate classifiers: one is termed the static classifier while the other is the adaptive

classifier. In order to save computational time, a class pruner is utilized first to narrow

down the number of candidate classes for an unknown character.

Tesseract Class Pruner. In the first stage of classification, Tesseract will

employ its class pruner in order to reduce the number of potential candidates to which

an unknown character is to be compared. The class pruner uses a fixed quantized

version of the 3D feature space wherein each of the 3 dimensions are

quantized into 24 cells. After the unknown character's features are quantized, they are

indexed to the quantized feature space in order to obtain a set of classes which allow

the given features. The number of feature hits for each class is summed and the best

few matching classes are then fed into the next stage of classification [40].

 Tesseract Static Classifier. Both Tesseract's adaptive and static classifiers are

unique when compared to more standard techniques in that they operate on a

28

variable number of features. While standard classifiers such as neural networks,

support vector machines, etc., will work in a feature space of fixed dimension,

Tesseract has a variable number of features for each class of interest. The classifer

can be regarded as an optimized K-Nearest-Neighbor (KNN) classifier where the

character class, , with minimum distance from the unknown character is computed

as follows:

where the variables are as follows: is the current feature dimension (either position,

 position, or); is the cluster; is the character class; and is the unknown's

feature. is the feature dimension (either position, position, or) of the unknown

character 's feature at index . is the total number of feature vectors in the

unknown character, (this varies depending upon the character of interest). is the

total number of character clusters which the training set was divided into. is the

mean feature value for the feature, cluster, and class calculated during

training.

While the left-most summation measures the distance between each feature

dimension and its corresponding average clustered prototype value, the right-most

summation measures the distance between the average value in each cluster to the

corresponding feature dimension. The result of these summations is then divided by

the total number of features in the unknown character and training set. A key

advantage to this approach is its symmetry. The nearest matching features between

both the unknown and prototype and the prototype and the unknown are effectively

found. Say, for instance that the unknown character is “e” and the prototype to which

it is compared is “c”. Since most of the features in “c” are allowed by “e”, it becomes

possible that the “e” will be misclassified as “c” if only the distance between the “e”

and “c” is computed. When the distance between the “c” and “e” is added into the

classification, the lack of crossbar in the “c” will incur a penalty, thus lowering the risk

of misclassification.

Tesseract Adaptive Classifier. After word recognition, as will be briefly

discussed in section 2.2.5, a second pass is made by Tesseract's classifier. This time

the classification is considered to be adaptive in that it utilizes the extra information

obtained after word recognition in order to better train the classifier to the current

font. After word recognition is carried out, there may be several characters which can

be disambiguated and thus used to better train the classifier on the second pass and

29

increase accuracy. The adaptive classifier is essentially the same as the static one

except that it applies a different type of normalization to the unknown character prior

to comparing it to the prototype. While, for the static classifier, the centroid of the

unknown character is centered in the feature space and then scaled anisotropically to

normalize the second moments of the outlines, the adaptive classifier will normalize

the unknown by centering the horizontal centroid of the outline and scaling

isotropically to normalize the -height of the character. This normalization retains font

differences, which, at this stage of OCR, is very important [40].

2.2.4 Detection of Merged or Broken Characters
While some of the first OCR systems would only recognize each individual

character independently, more sophisticated systems such as Tesseract, Omnipage,

and Abby Fine Reader, ReadIris, etc., [11][12][13] analyze inter-character relationships

in order to increase their systems' robustness in the presence of noise. In Tesseract,

while the results of word recognition (described in Section 2.2.5) are found to be

unsatisfactory, a character merger/segmenter module is utilized in order to test the

word on new potential character candidates in areas with low character recognition

confidence. The merger/segmenter module will locate concave vertices of a

questionable character's polygonal approximation and attempt to separate the

character in those locations to test for a possible merged character as illustrated by

Figure 16. Likewise, potentially broken characters are attached to their neighbor and

tested if their combined width is within an acceptable range.

2.2.5 Word Recognition and Linguistic Analysis
Individual words within Tesseract are detected based upon the distribution of

space between characters found on a text line. Characters which are within an

appropriate horizontal distance parallel to the text line are considered to be within the

same words, while groups of such characters are considered to be separate words. The

word recognition module looks up candidate words in a dictionary to make sure they

30

Figure 16: Example of merged letters with candidate chop points (denoted by triangles). R. Smith.

"Tesseract OCR Engine: What It Is, Where It Came From, Where It Is Going," OSCON, 2007. Used

under fair use, 2014.

are valid. This information is also vital to detecting broken or merged characters and

training the adaptive character classifier.

Some basic linguistic information can be important for increasing accuracy. For

instance, in Tesseract's English word recognition module, numeric characters are not

allowed to exist in alphabetic words, uppercase characters cannot follow lower case

ones, and the only punctuation allowed within a word are apostrophes. Markov

methods are also very useful in OCR due to spelling conventions (such as u following

q) and the need for words to be pronounceable (i.e., g is unlikely to follow j). By

modeling each individual character as a possible state and each character occurence

as the next element in a Markov chain, it is possible to use a transition matrix (whose

width and height are 26, the number of characters in the English alphabet) to help in

selecting a word's next character [29]. While it is possible to make choices based upon

multiple characters, the transition matrix for making a choice based upon the previous

m - 1 characters would require a transition matrix of size 26(m-1)x26(m-1). Rather than

using large values for m, Tesseract employs dictionary methods.

Strings of characters can be reduced into words which are either in a dictionary

or can be generated through the use of various production rules [44]. For each string

of characters a set of candidate words are derived using the dictionary. The word

which has the highest overall rating based upon the recognition confidence of its

individual characters is chosen. The word recognition result can then be utilized in

order to boost the adaptive character classifier's accuracy since certain characters

which had low confidence in the static classifier may now be confirmed.

2.3 Document Layout Analysis Techniques

2.3.1 Introduction to Document Layout Analysis
The improvements made in the field of commercial OCR throughout the 80's

and early 90's are primarily attributed to enhanced processor and digitizer

technologies rather than to improved classification techniques for individual patterns

[45]. By the early 90's there had been significant progress already made toward the

study of OCR and pattern recognition techniques which are still largely in use to this

day. A significant amount of the more recent progress made in the state-of-the-art has

been due to improvements in document layout analysis and understanding as

opposed to the much more mature character-by-character feature extraction and

classification algorithms.

While inflexible hardwired classification engines once dominated the market for

OCR, the computational advancements of the 70's and 80's allowed for more

31

intelligent systems to take hold. While systems became robust against multiple fonts,

merged/broken characters, and document skew as discussed in the previous section,

the need also arose for systems which could recognize pages from a wide variety of

document types. While an OCR system may be predominantly exposed to documents

like newspapers, magazines, letters, etc., it is also often necessary to process such

“special” documents as electronic circuit diagrams, envelopes, checks, tax return

forms, music notations, etc. [46].

The importance of document layout analysis techniques is made apparent in

the presence of both the former and latter document types as they may contain

complex backgrounds, lines with drop-caps, mathematical formulas, various symbols,

imagery, tables, graphs, multiple columns, titles, headings/subheadings, etc.

Therefore, it becomes important, not only to recognize the individual words and

characters, but to also interpret and preserve the layout and spatial context of a

document's components. Such details as spatial context and document structure are

vital in conveying a document's message as it is intended to be perceived, as well as

for understanding how exactly the document needs to be processed in order to

achieve the optimal recognition accuracy. Figure 17 [47] shows two examples of

document images with complex layouts.

32

Figure 17: Two document images with complex layouts. On the left, an intricate background as

well as complex column structure is observed. On the right is a newspaper article with a

complex layout of titles and columns along with imagery and captions. Both document images

will require sophisticated image processing and layout analysis techniques in order to achieve

both OCR accuracy as well as efficient data storage and indexing within computer systems. A.

M. Namboodiri, and A. Jain. "Document Structure and Layout Analysis," Advances in Pattern

Recognition, Springer-Verlag, London 2007. Used under fair use, 2014.

Document layout analysis is a very important design component for any OCR

system and has been extensively studied [46][47][48][49][50][51][52][53]. Not only is

document layout analysis often essential for obtaining correct OCR results, it can also

provide the means for computer systems to use logical information such as titles,

footers, authors, captions, abstracts, page numbers, etc., to more efficiently store and

index a document image's information [54]. This contextual information is also

essential for Assistive Technology purposes, in enabling blind individuals to have an

understanding of the same spatial and logical cues afforded by the document's visual

layout [55]. This section will discuss how the field of document analysis is divided into

various sub-problems by existing literature and then compare and contrast various

techniques which address these problems. The problem of document analysis can be

broadly divided into its five most important interdependent components: image

preprocessing, document structure analysis, document content representation,

training set development, and finally performance evaluation as illustrated by Figure

18 [47]. After a brief overview of what each stage entails along with some introduction

of terminology, various techniques found in the literature for each stage will be

discussed.

33

Firstly, the most common problems addressed by image preprocessing (Section

2.3.2) in document analysis involve noise removal, separation of background and

foreground regions, and skew correction. Secondly, after any necessary preprocessing

is carried out on the document image, the modified image is fed into the system's

document structure analysis module. From a broad perspective, document structure

analysis involves first extracting the document's geometric structure and then

mapping that structure into a valid logical one which can be understood by computer

systems. A document is thus considered as having both a physical (geometric-based)

structure and a logical (content-based) structure. Thus document structure analysis is

commonly divided into two distinct phases: physical layout analysis and logical layout

analysis. Each distinct phase of document structure analysis will be further discussed

in Section 2.3.3.

34

Figure 18: The five most important inter-dependent components of document analysis involve

preprocessing, document structure analysis, document content representation (not illustrated

here), training set development (ground truth), and performance evaluation. Each module is

described as interdependent because the performance of the overall system really depends on

each component. For instance, if preprocessing is not effective, then structure analysis will

likely fail. If the document content representation is not consistent, then ground truth and

performance evaluation will yield insignificant results. A. M. Namboodiri, and A. Jain.

"Document Structure and Layout Analysis," Advances in Pattern Recognition, Springer-Verlag,

London 2007. Used under fair use, 2014.

2.3.2 Preprocessing
The most common problems addressed by image processing involve noise

removal, separation of background and foreground regions, and skew correction. Since

skew correction was already covered in great detail by Section 2.2.1, it will not be

further discussed in this section. Noise removal in image processing is a well studied

field and advanced techniques have been developed to cope with white noise, salt and

pepper noise, quantization artifacts, etc. Such noise sources are often compensated

for by using techniques such as median filtering, dithering, low pass filtering, etc. [52].

An in depth overview of noise reduction methods in image processing can be found in

[56]. For purposes of document layout analysis, one of the more important noise

removal tasks involves the detection and filtering of half-tones. This discussion will be

followed by a brief overview of preprocessing tasks for background and foreground

separation.

 Noise Removal: Dealing with Half-tones
Halftones, as illustrated by Figure 19 [57], utilize variably sized or spaced dots

in order to create the optical illusion of an infinite range of colors while, in actuality,

only printing a limited amount. Half-tones are utilized by color and grayscale printers

in order to reproduce imagery while requiring few colors of ink. Figure 19, for instance,

creates the illusion of grayscale while only requiring black dots. When scanned at high

resolution, the halftones in a document become a significant noise artifact, as an

image's connect components clearly should not be divided into such small dots for

document analysis purposes. Halftones can be detected through the use of various

filtering techniques [58], whose accuracy often depends upon the dot sizes and

spaces of the halftone in question. Once detected, the halftones can be converted into

continuous grayscale by applying an appropriate low-pass filter to smooth out all of

the dots, followed by a sharpening technique which will reduce the blur.

35

 Background and Foreground Separation
Although the problem of foreground detection is often very simple in the case of

the most typical black text on white background, the problem becomes much more

complex when faced with intricate backgrounds which are overlayed with text in

varying color, size, and font as depicted in Figure 20. In the former case it is possible

to use thresholding techniques like Otsu's method [59]. An alternative method which

could work for varying background and foreground color schemes would be to find the

outline of characters through edge detection [29]. In the presence of complex

backgrounds, however, more sophisticated background and foreground separation

techniques may be required. A common approach is to compute statistical properties

of image patches and assign them as either foreground or background using a trained

classifier such as a neural network [47]. Through a combination of edge detection and

a trained classifier it becomes possible to detect foreground text of varying colors on a

complex background with a certain degree of confidence as demonstrated in Figure

20.

36

Figure 19: An example of a halftone image. Notice that, when looking at the image from a

distance, the illusion is created that the image is in grayscale, when, in fact, it is actually

printed with only black dots of varying sizes. R. Miller, "Ink-Jet Basics," Internet:

http://www.thetonesystem.com/inkjet_basics.html, Date Accessed: 2013. Used under fair use,

2014.

2.3.3 Document Structure Analysis
A primary component of any document analysis system is the document

structure analysis stage itself. As previously indicated in Figure 18, however, the steps

of preprocessing, document content representation, training set development, and

performance evaluation also play a crucial role. In this section the term “document

structure analysis” is used to refer to the broad class of both physical and logical

document structure analysis methods which will be explored in this section. In

general, physical layout analysis techniques are one of the first steps of an OCR

system and will initially divide the document image into areas perceived as text and

non-text, as well as splitting multi-column text into columns [18]. In this literature

review an important distinction between physical and logical layout analysis

techniques is made such that, while logical layout analysis techniques make final

classification decisions on blocks, physical layout analysis techniques extract and

evaluate the geometry of blocks without necessarily reaching any final conclusions on

their syntactic meaning. While the physical layout analysis stage looks for geometric

patterns, the logical layout analysis stage will utilize this and other information in

37

Figure 20: (Left) Part of a document image with complex background. (Right) The same image

with foreground separated from background. A. M. Namboodiri, and A. Jain. "Document

Structure and Layout Analysis," Advances in Pattern Recognition, Springer-Verlag, London

2007. Use under fair use, 2014.

order to infer a document's meaning from a syntactic perspective (i.e., the type of

document and the location and functional purpose of its “zones” which may include

titles, headers, footers, math equations, imagery, etc.). This logical understanding is

very important both for indexing and storage purposes as well as for Assistive

Technology applications as previously mentioned.

A document analysis system must be able to understand not only how a

document can best be partitioned into its logical sections, but also the role that

physical geometry plays in conveying information effectively. It is important for a

document recognition system to move back and forth between physical and logical

analysis in an intelligent manner which may vary significantly depending upon the

aspects of what is being recognized. This concept is illustrated by the bidirectional

arrows seen in Figure 18. Although it is possible for a very specific physical layout to

match to only a single logical structure (i.e. in the case of a very complex and unique

form), there is never a guaranteed one-to-one mapping between any physical and

logical layout or vice versa. In creating a system that can generalize to a wide variety

of document structures while minimizing overfit, it is thus important not to make

assumptions too early based solely upon geometric information. A system may require

to make “fuzzy” decisions which, in later steps, can be further refined to reach an

appropriate solution. For instance, if text is found to be centered within a column this

could open up many distinct possibilities based upon the contents of the text itself as

well as its context within the entire page. It could, for instance, be the title of a new

subsection, new chapter, a mathematical formula, a quote, image caption, or any

number of other possibilities. Thus, while an understanding of the geometric structure

of a block of text is important, there is more information required in order to

understand the block's logical structure. If an OCR algorithm yields results with low

enough confidence then various alternatives can be tested (i.e. for mathematical

formulas, musical notation, other languages, etc.).

 Document Physical Structure Analysis
Physical layout analysis, an essential step for all OCR and document analysis

systems, localizes individual blocks of text and imagery while leaving assignment of

logical meaning of these blocks as well as final classification of text/nontext regions to

later stages in processing which will be discussed in the Document Logical Structure

Analysis Section. Methods for physical layout analysis fall into roughly three

categories: top-down, bottom-up, and hybrid, each of which will be discussed in turn

by this section. An important distinction between algorithms involves the types of

physical layouts which they can handle. The following three types of physical layout

38

patterns are commonly defined: these include Manhattan, rectangular, and arbitrary

layouts [60]. A document's Manhattan layout can be viewed as the document divided

into a grid, which may be horizontally or vertically split recursively into smaller

components in any given region. For a Manhattan layout, if a region overlaps another

then it must be entirely covered by that region (i.e., there is no partial overlap).

Rectangular layouts consist of several rectangles arbitrarily spaced apart or which

could be partially overlapping. Arbitrary layouts, on the other hand, are formed by

unconstrained polygonal shapes as demonstrated by Figure 21 [61].

Top-down physical layout analysis techniques recursively segment the

document into smaller rectangles which are expected to correspond with image,

column, paragraph, or other text block boundaries [54]. Bottom-up techniques, on the

other hand, analyze individual pixels or connected components, recursively merging

them together into larger regions. While bottom-up techniques can handle arbitrary

physical layouts, top-down methods are constrained to only handling rectangular

regions. A disadvantage of bottom-up techniques, however, is that they may result in

over-fragmented regions. For instance, a bottom-up technique will be more likely to

properly segment small structures like individual paragraphs of text than to properly

segment entire columns. Due to these trade-offs it is often that hybrid techniques,

which combine top-down and bottom-up ideas, are employed [62]. Starting with top-

down methods, variants of each broad category of physical layout analysis will be

reviewed by this section.

39

 Top-Down Physical Structure Analysis

The first physical layout analysis technique to be reviewed here is the “top-

down” method. Top-down strategies segment blocks based upon interpretations of the

document from a high level (i.e., by first looking at a representation of the entire

document and recursively splitting it into smaller components). Top-down strategies

will then typically attempt to verify each segmentation by visiting each node down the

to the terminals (the lowest levels, corresponding to individual connected components

or pixels) [63]. For documents having a complex layout, top-down methods are often

more robust but slower than bottom-up ones. Typical bottom-up algorithms are faster,

but can be less reliable since they may greedily over-segment blocks without regard to

all of the available contextual information.

X-Y Cut Algorithm. The X-Y cut algorithm [64] is a top-down approach which

has been utilized extensively over the past several decades. The technique analyzes

40

Figure 21: An example of an arbitrary physical layout wherein blocks of text are fit to the

shape of a pie chart. A layout analysis system should ideally be able to segment text blocks

into the appropriate shape, which sometimes may be more complicated than simple

rectangular layouts. For this figure, a document layout analysis system which can only handle

rectangles would be insufficient, and would likely result in a mangled output. A. Gourdol,

"CSS3 Regions: Rich Page Layout With HTML And CSS3," Internet:

http://www.adobe.com/devnet/html5/articles/css3-regions.html, Date Accessed: 2013. Used

under fair use, 2014.

vertical and horizontal projection profiles of the image to find regions of low pixel

density, often termed as “valleys” [46][47]. Assuming that the document has a white

background and Manhattan layout, its X and Y valleys are likely to correspond with

horizontal and vertical text block boundaries respectively. For instance, these could be

divisions between paragraphs and columns. The X-Y cut algorithm will start with the

horizontal and vertical projection profiles of the entire image and use the largest

valley (or valleys) in either direction as the first splitting point. After having made the

first split(s), the algorithm will then recursively make further splits within each sub-

region using the same methodology. The document's physical layout is represented by

an X-Y tree data structure wherein each node represents a split region. If the algorithm

is correct, then the terminal nodes of the tree will correspond to the individual text

blocks. Once the terminal nodes have been located, the algorithm will backtrack

through the tree structure to ensure that the physical structure is appropriate based

upon some preconceived notions of expected document structure. A possible result of

the algorithm is illustrated by Figure 22. In order for the X-Y cut algorithm to work

correctly, it is vital that the document first has its skew corrected. If, for instance, the

horizontal projection profile is taken for a document that has been rotated by several

degrees, then many of the “valleys” will not be found correctly and thus the algorithm

will fail.

41

42

Figure 22: A possible result of the X-Y Cut algorithm (done manually) on an article page

(citation below). Here the entire page is cut vertically (red) and then each sub-region is

cut horizontally (green). The splitting order from this point becomes rather complex but

is color coded as follows: orange, yellow, blue, and pink. Notice that a single node may

have more than two children, which is the case for sections with multiple paragraphs,

columns, etc. G. Nagy, S. Seth, and M. Viswanathan, "A Prototype Document Image

Analysis System for Technical Journals," Computer, vol. 25, no. 1, Jan 1992, pp. 10-22.

Used under fair use, 2014.

Run-Length Smoothing Algorithm (RLSA). It is typically unnecessary to

perform processing on all pixels of the document image. For the top-down algorithms

previously described, which use either maximal white space rectangles or projection

profiles, the document image is usually reduced in size during a preprocessing stage.

By reducing the size and complexity of the input image, both the efficiency and

accuracy can be enhanced assuming that only insignificant data is reduced. For

instance, when detecting entire columns of text, the spacing between individual

characters, words, and lines is unnecessary. One way to reduce the amount of data is

to use a run-length smoothing algorithm (RLSA) [65] which will be discussed further in

the Bottom-up Physical Structure Analysis section. This method can merge characters

into words, words into text lines, and text lines into paragraphs by “smearing” the text

to join characters into blobs. This is done by inspecting white spaces between

foreground pixels and, if their width is below some threshold, setting them to black.

Template Techniques. “Template” techniques which have been observed in

the literature [66][67], are labeled as top-down even though they often rely on a

combination of both logical and physical document structure analysis [50]. These

methods require a significant amount of knowledge about the expected document

structure on which they are trained and may not generalize well to new types of

documents. An effective way in which document structure can be described is through

the use of a Form Description Language (FDL) [66]. The basic concept of FDL is that

both the logical and physical structures of a document can be described in terms of a

set of rectangular regions. The FDL specifies how a document should be processed

based upon various aspects of its physical layout. Systems which utilize an FDL

typically operate on a limited assortment of document types, thus its use is very

application specific.

Dengel et al. present a technique which they call “Discriminating Attribute

Values in uncertain Object Sets (DAVOS) [67]. By “object sets”, Dengel et al. are

referring to sets of regions on a document image along with their appropriate logical

labels. The attributes (geometric features) of these objects may not be limited to

single values but could cover a range of possible values and are thus considered as

“uncertain.” The DAVOS system analyzes business letters and builds a decision tree

where each level corresponds with an increasing level of document type specificity.

The terminals on the tree specify the entire logical layout of the document. Just as

with FDL, the ability of the DAVOS system to generalize to new document types is

limited. DAVOS was only tested on business letters and was evaluated against a

bottom-up technique (which utilized merging of connected components) and shown to

43

have similar but “more balanced” results (i.e. logical labeling errors were more

distributed among the various labels).

 Bottom-Up Physical Structure Analysis

While top-down approaches start with the complete document image,

repeatedly splitting it into smaller regions, bottom-up approaches carry out the

inverse operation. Starting with the document image's primitives (i.e. individual pixels,

connected components, words, etc., depending upon the application) bottom-up

techniques repeatedly merge smaller regions into larger ones. While allowing more

flexibility over top-down techniques, bottom-up techniques often result in greedy over-

segmentation of regions. Bottom-up physical layout analysis techniques all utilize

connected component analysis and may also make use of Veronoi diagrams, run

length smoothing, mathematical morphology, neural networks [68], as well as

communication theory (Document Image Decoding) [69]. This section will briefly

review work that has been done for bottom-up techniques, starting with a discussion

of connected component analysis.

Connected Component Analysis. As discussed previously, connected

components are sets of foreground pixels such that a four or eight-connected path

exists between every pixel pair in the the set. While text usually consists of connected

components with a relatively consistent size and spacing, graphics generally tend to

consist of larger connected components with more sparsely distributed positions. By

analyzing these spatial properties of connected components, it becomes possible to

identify and group text and graphics separately. Connected component generation

involves grouping all four or eight-connected foreground pixels together in the

document image. The components are then grouped based upon their bounding box

location. The output of a connected component (cc) generation algorithm is a list of

cc's where each entry contains the bounding box coordinates, shape of the region,

number of black pixels, an image of the region itself, etc. The cc's are typically sorted

by their bounding box position, and can be then filtered based upon height and width

to determine regions more likely to be text vs those which are more likely to be

graphics [46].

An example of a bottom-up physical analysis technique is Bixler et al.'s text

extraction algorithm [70]. Bixler demonstrates his algorithm by extracting and

recognizing the text from a map as shown in Figure 23. His technique first uses a

standard recursive (stack-based) flood fill algorithm in order to find the connected

components [71]. After finding an initial starting foreground pixel, the flood fill

algorithm can be described simply as follows: (1) If the current pixel is not foreground

44

then return, (2) Set the current pixel to a replacement color in order to mark it as

processed, store it in memory (3) Recurse to the function in each direction in turn (4)

Return from the function. The aforementioned algorithm is then repeated for each

unmarked foreground pixel of the image in turn, until all connected components are

found and all marked pixels grouped into their constituent connected components are

stored in memory, along with their bounding boxes, and any other relevant

information.

With the connected components found, Bixler then determines which ones are

text and which are graphics based on a simple height and width thresholding

technique. Once the components have been segmented into text and graphics, those

identified as graphics are subtracted from the image to leave only the text. The

resolution of the image is then reduced based upon the size of the character

components. A connected component tracking algorithm is then utilized in order to

find words which could be potentially in any direction (i.e. vertical, diagonal,

horizontal, etc.). The algorithm scans the reduced document image from left to right,

45

Figure 23: On the left is a map, and on the right is the map's extracted text. Notice there are

some dependencies where the foreground text was confused with the imagery of the map. For

instance one of the “f's” in the word “Post Office” is missing because it overlaps with a road. J.

P. Bixler. "Tracking Text in Mixed-Mode Document," Proc. ACM Conference on Document

Processing System, 1998, pp. 177-185. Used under fair use, 2014.

top to bottom looking for a starting connected component, then does a nearest

neighbor search in each direction to find the closest character. Information about the

spacing and direction between the first two characters is then utilized to track the

location of the next character until entire words are detected. The procedure is

repeated for each unique starting point until all words are found. The technique

achieved near perfect results for a complex map, with only those words which

significantly overlapped graphics being missed.

Document Spectrum Analysis (“Docstrum”). The Document Spectrum

(Docstrum) proposed by O’Gorman [72], is a representation of a document which

describes global structure features and can be useful for page analysis. The technique

takes the document's connected components and utilizes a k-nearest-neighbor

clustering technique in order to segment the document into words, text lines,

paragraphs, etc. The algorithm recognizes five nearest neighbors for each connected

component, where closeness is measured by Euclidean distance in the image. Each

nearest neighbor pair is described by a 2-tuple, , which is the distance and angle

between the centroids of the two connected components. The “Docstrum” is the plot

of for all nearest neighbor pairs in the image as illustrated by Figure 24. The

text's spacing between characters and words as well as the line angles can be

estimated by summing up the distance and angle values in the docstrum plot. The

distances and angles are converted to respective histogram representations. The

nearest neighbor angle histogram is smoothed and the peak found. The angle of the

peak value gives a rough estimate of the text line orientation. This rough estimate is

then used to determine intra-line and inter-line spacing by analyzing two histograms

of the nearest-neighbor distance values. The first histogram is for intra-line spacing

and filters out all distance values that are not within a tolerable range of the textline

orientation estimate. This histogram thus represents the distribution of inter-character

and word spacing within each text line. The second distance histogram filters out all

values outside of a tolerable range of the textline orientation estimate's perpendicular.

This histogram, therefore, represents the distribution of the document's inter-line

spacing.

46

Nearest neighbors on each line are merged into words and then a regression fit

is made to the centroids of the words in order to locate text lines. A straight line is

fitted to the centroids in each group by minimizing the sum of square errors between

centroids and the line. From these text lines a final estimate is made of the page's

skew. An issue with this method is that text line descenders and noise could reduce

the accuracy of the initial estimate and cause problems with reaching the right

conclusions. It is important to have the correct threshold values and to smooth the

histograms appropriately in order to get successful results. After the text lines are

estimated, larger structures (like paragraphs or other text blocks) are then detected.

The blocking technique examines pairs of text lines to determine whether or not they

meet certain criteria to be considered part of the same text block. If the two lines are

approximately parallel, close enough in perpendicular distance, and/or horizontally

overlap to some degree then they are said to meet the criteria of belonging to the

same block.

47

Figure 24: On the left is a document image and on the right is its corresponding Document

Spectrum representation. L. O'Gorman, "The Document Spectrum for Page Layout Analysis,"

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11, Nov 1993, pp. 162-173.

Used under fair use, 2014.

One of the benefits of this algorithm is that it does not assume that each

component of the document has the same skew angle. Thus it is possible to

indiscriminately segment lines and/or blocks of text in any direction. This may be

useful for a variety of circumstances including analysis of magazines or journals with

sporadically appearing vertical text, scans of several credit cards or business cards

each on the same page but at arbitrary angles, maps with text overlayed over

imagery in arbitrary directions, etc. The technique was tested on hundreds of scanned

journal pages, however no comprehensive performance evaluation is given.

Voronoi Diagram. Given a set of points and a subset of these points called

sites (or generators), the Voronoi diagram is the partition of the entire set into convex

cells, such that each cell is the region consisting of all points that are closer to a

particular site than to any other. Voronoi diagrams are among the most fundamental

and well-studied objects in computational geometry [73]. An ordinary Voronoi

diagram, as illustrated by Figure 25 [74], is one which uses Euclidean distance as its

metric and can be described as the set of Voronoi regions which correspond to the

convex shapes created by the partition.

An area Voronoi diagram is a generalization of the ordinary Voronoi diagram

depicted by Figure 25 which uses the Euclidean distance between the areas of

connected components as a metric rather than the distance between points. The area

Voronoi diagram for a document image can be found by the following procedure: (1)

Sub-sample every connected component in the image such that all that remains is a

subset of the points on the outer edge; (2) generate an ordinary Voronoi diagram

using this subset of points in the image; (3) remove all edges of the Voronoi diagram

48

Figure 25: Illustration of an ordinary Voronoi diagram. Wikipedia, "Voronoi Diagram," Internet:

http://en.wikipedia.org/wiki/Voronoi_diagram, Date Accessed: 2013. Used under fair-use 2014.

which both belong to points of the same connected component. This process is

illustrated by Figure 26 [75].

Kise et al. formulate the problem of physical page as that of determining which

edges of a document's area Voronoi diagram best represent the boundaries of

document components. By analyzing various features in the document image,

superfluous edges of the area Voronoi diagram can be removed, thereby leaving only

the edges corresponding to document boundaries. Superfluous edges would, for

instance, correspond to the space between characters, words, text lines, etc., when a

division of the page into separate paragraphs, columns, imagery, title, etc., is

required. For each edge, all of its line segments are evaluated in order to determine

the minimum distance between the two points on the connected component which

were used to generate the Voronoi line segments in the first place. If this minimum

49

Figure 26: The process of segmenting an image into an area Voronoi diagram as illustrated by

Kise et al. K. Kise, A. Sata, and M. Iwata, "Segmentation of Page Images Using the Area Voronoi

Diagram," Computer Vision and Image Understanding, vol. 70, no. 3, Jun 1998, pp. 370-382.

Used under fair use, 2014.

distance is below a given threshold for any line segment of the edge, then the entire

edge removed. Likewise, the area of connected components are divided by these

edges are compared and if the distance between the connected components is small

enough in relation to the area ratio of the two connected components, then the

corresponding edge is removed.

Kise et al. evaluate their algorithm on 16 document images at two resolutions,

90 DPI and 300 DPI, having a non-Manhattan layout each at 4 different skew angles to

test for robustness (thus a total of 128 with non-Manhattan layout when counting the

resolutions and skew). In order to test the applicability with Manhattan layouts, the

algorithm was also evaluated on 98 images from the University of Washington

database (UW1) all at 300 DPI. In evaluating the algorithm on these datasets, the

percentage of the “body” text, “auxiliary” text, and “non-text” document zones which

were over and under fragmented is evaluated respectively. The algorithm performed

best on the body text of the non-Manhattan documents scanned at higher resolution

where only 2.1% of zones were over-fragmented and only .4% under-fragmented. The

algorithm faired poorly for the segmentation of non-text zones of all document types,

but especially poorly for Manhattan documents where it resulted in a 98% over-

fragmentation rate.

Run Length Smearing Algorithm (RLSA). Proposed originally in 1974 by

Johnston [76] in order to separate text blocks from graphics, the Run Length Smearing

Algorithm (RLSA) has been frequently used to obtain basic features for document

analysis [46]. RLSA, in its most basic form, transforms a binary image as follows: (1)

For each background pixel, if the number of neighboring foreground pixels is above a

certain threshold, then the pixel is changed to foreground; (2) all foreground pixels are

left unchanged. When applied horizontally or vertically to the rows or columns of an

image respectively, RLSA has the effect of linking together neighboring background

pixels that are separated by a number of pixels below the given threshold (illustrated

by Figure 27 [65]). With an appropriate choice of threshold, it is possible for the linked

areas to correspond with separate document zones. The threshold is typically set

based upon the character height, gap between words, and interline spacing [46].

50

Multiresolution Morophology. Bloomberg [77] discusses an approach to

document image analysis which uses morphological operations at multiple resolutions.

For an in-depth overview of morphological image processing (including definitions for

terms such as structuring element, dilation, erosion, opening, and closing) the reader

is referred to [78]. While connected component based techniques are effective on

pages with only characters, they can exhibit practically unbound time and memory

requirements when presented with pages consisting of halftones, graphics, and/or

handwritten notes. While, in connected component analysis, a region's shape is

primarily dictated by the configuration of its “ON” pixels, Bloomberg considers a

region's shape based upon relationships between adjacent “ON” and “OFF” pixels and

then considers texture to be the statistical distribution of such shapes in an image.

Bloomberg describes a morphological image processing operation called the

“generalized opening,” based upon the hit-or-miss transformation [79], which is useful

for localizing shapes and textures of interest within an image. The rationale behind

carrying out operations at multiple resolutions is that a single document image

typically will contain shapes and textures of various sizes. While it may be more

advantageous to process smaller regions at a higher resolution, larger regions

generally require only a course view (lower resolution). Multiresolution image

processing exploits such size differences such that regions can be processed in their

most appropriate resolutions. Bloomberg describes a solution to the problem of half-

tone segmentation which closes the image (performs a dilation followed by an

erosion) with a large structural element, followed by an opening (erosion followed by

51

Figure 27: From left to right: (1) The original image. (2) Vertically run length smeared image.

(3) Horizontally run length smeared image. (4) The logical AND of (2) and (3). F. Wahl, K. Wong,

and R. Casey, "Block Segmentation and Text Extraction in Mixed Text/Image Documents,"

Graphical Models and Image Processing, vol. 20, no. 1, Jan 1982, pp. 375-390. Used under fair

use, 2014.

dilation) in order to only keep the half-tone regions while removing the text ones.

Since using large structural elements on a high resolution image ends up being very

costly, Bloomberg instead carries out the same functionality by carrying out a cascade

of openings and closings using a 2x2 structural element while subsampling the image

in between these operations.

Bloomberg further goes on to illustrate how multiresolution morphology can be used

for the detection of italicized words (and also a separate technique for detecting bold

words). To detect italics, Bloomberg looks for edges inclined at about 12 ° from the

vertical. A 6x13 structural element is used which consists of 4 “OFF” pixels on top of

one another aligned at an approximately 12° angle followed by 4 “ON” pixels in the

same configuration. The aforementioned pixel sequences are separated by “don’t

care” pixels in between and to the sides as shown in Figure 28.

As illustrated by Figure 29 (a), the “generalized opening” operation (hit or miss

transform followed by dilation) is carried out on the image using the structure element

shown in Figure 28 in order to find which regions of the text contain italics. The

resulting “ON” pixels of the generalized opening are considered the “seed” pixels for

italicized words. A closing operation followed by an opening as carried out on the seed

pixels in order to, respectively, merge the correct seed pixels, and then get rid of

noise. After performing a small vertical dilation on the result, the final seed image,

52

 Figure 28: 6x13 structural element used by Bloomberg in detecting italics. The open circles

on the left represent “OFF” pixels, the closed circles represent “ON” pixels, and the empty

squares are “don’t care” pixels. D. S. Bloomberg. "Multiresolution Morphological Approach to

Document Image Analysis," 1st International Conference of Document Analysis and

Recognition, 1991, pp. 963-971. Used under fair use, 2014.

Figure 29 (b), is ready. Next, a word mask, Figure 29 (c), is created by sub-sampling

the image by a factor of 4 and using a cascade of openings and closings as was done

for the half-tone segmentation problem, followed by a small horizontal dilation. The

final italics selection mask, Figure 29 (d), is then created by keeping only those words

in the word mask which overlap the seed pixels in the final seed image, thus resulting

in a mask which only keeps the italicized words in the image.

 Hybrid Physical Structure Analysis

Hybrid structure analysis can simply be regarded as any mixture of the top-

down and bottom-up approaches previously described. Several of the hybrid

segmentation algorithms found in the literature utilize a combination of “splitting and

merging” strategies [62] [80] [81]. Such algorithms will begin by carrying out a top-

down methodology in order to first split the page into regions which appear

homogeneous, usually based upon horizontal or vertical projection profile

measurements. Liu et al. [80], for instance, utilize an algorithm which operates as

follows: If a region is found to be in-homogeneous based upon certain critieria then it

is split into 4 rectangular sub-regions using an adaptive thresholding technique to

choose the line positions. If two regions within the previously split region are then

found to be homogeneous based upon the same criteria then they are merged. This is

continued recursively until there are no more splits and merges to be made. There are

also various hybrid techniques which operate based upon measuring the space

between text areas, referred to as “maximal white space calculation.” Such

techniques such as those of Okamoto et al. [82] and Bruel [83] are derived from

53

Figure 29: Bloomberg’s italics detection. Original text is on the left and on the right is (a) the

intermediate seed image, (b) the final seed image, (c) the word mask, and (d) the final italic

word selection mask for the image. D. S. Bloomberg. "Multiresolution Morphological Approach

to Document Image Analysis," 1st International Conference of Document Analysis and

Recognition, 1991, pp. 963-971. Used under fair use, 2014.

Baird’s “Shape-directed Cover Algorithm” [84]. This subsection will first discuss Baird’s

shape directed cover algorithm as well as a newer algorithm which is in the same

spirit. Two notable open source systems which perform document layout analysis are

Tesseract [18] and OCR-Opus [85]. Both systems utilize a combination of bottom-up

and top-down physical layout analysis techniques and will briefly be discussed as well.

Shape-directed Cover Algorithm. In an attempt to combine the strengths of

top-down and bottom-up methods (i.e. faster run time for the more greedy bottom up

methods but more global knowledge for top-down), Baird et al. [84] proposed a

“global-to-local” strategy which first finds the rectangular coordinates of all foreground

connected components and then finds all of the maximal white space rectangles

surrounding them. A white space rectangle is considered maximal if it contains only

white pixels and cannot be further expanded while staying entirely white. The white

space rectangles are then sorted into a binary tree structure where the right-most

white space rectangles are at the root, and the left-most are the leaves. Multi-way

branches which occur when there is more than one maximal white space rectangle at

a given X coordinate, are handled using singly linked lists as entries in the binary tree.

Unlike most of the previous top-down physical layout analysis research, Baird focuses

intently on algorithmic complexity. When he denotes the number of maximal white

space rectangles as m and the number of foreground rectangles as n, he found his

algorithmic complexity for sorting the white space rectangles to be .

Once the rectangles are sorted, a subset of these rectangles denoted as the

“cover set” is chosen. Any regions of the image not covered by the union of this cover

set will define the segmented text blocks. In order to speed up processing time, the

rectangles in the cover set are chosen in a greedy fashion using the high level

information available in the binary tree. In terms of processing speed, this can prove

advantageous over the X-Y Cut algorithm which uses extensive backtracking. The

cover space is chosen based upon domain specific information. For instance, in

Manhattan layouts, the white space rectangles between columns will typically have a

high (but not too high) aspect ratio. Baird et al. thus assigns shape scores to the

rectangles in order to favor the most significant and choose the cover space based

upon these scores. Experiments were run on over 100 Manhattan layouts which

included typewritten and printed pages from letters, magazines, books, journals, and

newspapers, which included complex layouts consisting of headers, footers,

embedded mathematical equations, graphs, multiple columns, etc. The authors

reported near perfect results for large column structures but would observe errors for

smaller blocks of text especially in the presence of noise.

54

White space cover algorithm by Breuel. Breuel presents a variation of

Baird's white space analysis algorithm which is simpler to implement (requires less

than 100 lines of Java code) [83]. The algorithm starts by picking one of the black

rectangles, called the “pivot”, toward the center of the image. Since the maximal

white rectangle cannot contain the pivot, there are now four distinct possibilities for

the maximal rectangle's location: above, below, to the right, and to the left of the

pivot. Each sub-rectangle is then evaluated using a quality measure to determine

which is most likely to contain the maximal rectangle. After the sub-rectangles and

their respective quality measures are inserted into a priority queue, the above steps

are repeated. This process continues until a fully white-space region is detected. The

rectangle corresponding to this region is the optimal solution. The results of this

algorithm were described as favorable when run on the same dataset as Baird (the

UW3 Database [86]), with no errors observed on 223 pages. An in-depth evaluation,

however, was not provided. Figure 30 illustrates a more recent technique called “the

White Space Cuts Algorithm,” [87] which combines Baird and Bruel’s approaches.

OCRopus Open Source OCR System. Bruel, who was discussed previously

for his novel variation of Baird’s white space cover technique, is the project lead for

OCRopus, an open source Google-sponsored project which addresses various problems

in Document Analysis through the use of large scale machine learning. All of the

project’s modules are written in Python and the project emphasizes modularity, easy

extensibility, and reuse. OCRopus is aimed at both the research community as well as

large scale commercial document conversions [85]. The system includes overridable

55

Figure: 30: An example image illustrating different steps of the whitespace-cuts algorithm.

Left to right: whitespace cover of the page background, extracted vertical separators and

borders, extracted horizontal separators, extracted page segments. F. Shafait. "Geometric

Layout Analysis of Scanned Documents," PhD thesis, University of Kaiserslautern, 2008. Used

under fair use, 2014.

modules including, but not limited to, noise removal, skew detection, text/image

segmentation, layout analysis, textline recognition, optical character recognition, and

statistical language modeling. For more details on the architecture as well as

algorithms implemented by this system, the reader is referred to [88].

Tesseract Layout Analysis Module. Tesseract, another Google-sponsored

project as described earlier, utilizes a hybrid page layout analysis algorithm [18] which

starts by utilizing bottom-up techniques in order to locate “tab-stops” on each text

line. These “tab-stops” can represent the left and right edges of columns at that

particular vertical location of the page. Each left and right tab stop is connected to

form a “column partition,” a vertical slice of a column at the given text line. A “column

partition set” is the group of all “column partitions” at a vertical position of the page

(i.e. stretching from the left of the page to the right). The column partition sets are

then iterated in order to derive the column structure that makes the most sense for

the entire page. Once the column structure of the page has been derived, this

structure is applied in a top-down fashion in order to derive the page’s reading order.

 Document Logical Structure Analysis
While the physical layout analysis step of a document analysis system generally

divides an image into areas of text and non-text while determining an initial estimate

of the page’s basic columnar structure, the logical layout analysis step will further

investigate the resulting structure in order to determine where splits or merges may

need to be made based upon the perceived syntactic meaning of the document’s

components. The document analysis system may then iteratively transition back and

forth from physical to logical analysis based upon further document understanding

until some criteria is met. Once all of the document’s components have been fully

classified and segmented, the result of the logical analysis will be an increased

understanding of the page’s components. The page may, for instance, be composed of

the chapter name at the very top, a page number to the top right, and several

columns of text. The columns may consist of imagery, half tones, mathematical

equations, block quotations, as well as various other components.

In the literature, document logical layout analysis research can be most broadly

split into three main categories: (1) type-specific detection, (2) zone classification, and

(3) page classification [89]. Type-specific logical layout analysis techniques, which are

the primary focus of this thesis, emphasize the use of separate algorithms to detect

possible components (i.e., text, image, math, half-tone, chemical equation, etc.) and

make no assumptions about whether or not these components have already been

correctly segmented. The input to a type-specific logical analysis algorithm may, for

56

instance, consist of a single block which should really be logically separated into

multiple separate blocks, and/or various blocks which actually need to be merged.

Zone classification techniques, on the other hand, assume that the document has

already been properly segmented into type specific zones and all that needs to be

determined is what these types are. Such techniques will extract features from the

zones and then use these in order to directly classify the zone type as one of a finite

set of types (i.e., normal text, mathematics, imagery, etc.). Page classification layout

analysis research is geared toward classifying an entire page based upon the type of

its content. A page may, for instance, be categorized as a title page, table of contents,

appendix, glossary, regular page, etc.

Although page classification is an important component of document

understanding, such a region-wide generalization should only be made after an in-

depth analysis of the page is carried out to gain an understanding of all of its zones. It

would not make sense to segment the page into logical zones based upon an ill-fitted

estimate of what contents the page is expected to have. Likewise, zone classification

may be an important step in logical layout analysis but it misses the important point

that no physical layout analysis technique done prior to logical analysis is perfect. A

full understanding of the under and over segmentations made by the initial physical

layout analysis algorithm may rely upon the type of content in question. If, for

instance, a table element is detected by the logical analysis module, it may make the

most sense to then check for oversegmentations that could have been made by the

physical analysis module. All of the elements that are clearly part of a larger table

should be merged such that the table is then segmented appropriately. Likewise, there

may be a block of text which has actually been undersegmented by the physical

analysis module. An example of an undersegmentation is seen when there are inline

mathematical expressions within a paragraph of text. While the entire paragraph may

have been correctly segmented by the physical layout module, it is very important for

the mathematical expressions within it to be segmented from the normal text in order

to avoid subsequent recognition errors. In such an instance, it is then the logical layout

analysis module’s job to detect candidate mathematical expression regions and then

utilize the appropriate physical layout techniques necessary to segment them from

the normal text.

Since proper physical segmentation and page classification are dependent upon

the type of content in question, type-specific detection is the primary focus of this

thesis. After a brief overview of some of the page and zone classification techniques

found in the literature, type-specific detection techniques, the focal point of this work,

will be discussed in greater detail. The focus will be primarily on type-specific

57

detection of mathematical expressions. Detection of other zones such as tables, logos,

and music scores will also be briefly discussed.

 Page Classification

The motivation for page classification research is two-fold. Firstly, it is important

in facilitating faster document processing. If a page's specific type can be known then

the corresponding type-specific layout analysis techniques may be employed to

reduce processing time. Secondly it is important to facilitate faster indexing of page

types. For instance if the title page is known, it will be very fast to do a document wide

search to find the author of the work. When a user is searching for a specific

document, knowing the class under which the document resides may allow for a

quicker and more fruitful query experience. Page classification techniques found in the

literature utilize a wide range of feature and classifier types in order to categorize an

entire page. Although some methods utilize the output of a commercial OCR engine

[90], the majority of techniques only use features taken directly from the document

image [91] [92]. Page classification can be carried out at various stages in the

document layout analysis process. The stage at which a final decision regarding the

page type is made may vary based upon the type of document fed into the system, its

physical and logical layout, etc. For an in-depth overview of how the problem of page

classification has been previously approached, the reader is referred to [93].

 Zone Classification

Zone classification techniques are employed in order to logically label regions

independently of physical segmentation. Such techniques operate under the

assumption that whatever physical layout technique was carried out prior to logical

analysis has already properly segmented the page into logically independent zones

(i.e., normal text, equation, table, image, etc.). In the literature these techniques vary

based upon feature extraction methods, classification techniques, and the number of

zone types to choose from. While earlier works [94] [95] may only distinguish between

2-3 zone types, more recent work [96] [97] is observed to distinguish a wider variety

of zone types (i.e., 9-10).

The work done in [95] employs features based on the zone's spatial distribution

of pixels to train a binary decision tree classifier that distinguishes text from non-text.

Fan et al. [94] use pixel density features to first segment text from non-text and then

use a “pixel connectivity histogram” in order to classify nontext as either photographic

imagery or vectorized graphics. The pixel connectivity histogram takes into account

every foreground pixel of the given zone, measures the number of other foreground

pixels connected to it (the connectivity measurement), and gives the number of such

58

foreground pixels that fall under each connectivity measurement found. The

classification algorithm utilized was not specified by this work. Wang et al. [96] use a

25 dimensional vector composed of run-length, spatial, and background features in

order to train an optimized decision tree to classify a zone as one of nine zone types.

Abd-Almageed et al. [97] extract features of the zones based on the run-length and

spatial distribution of foreground pixels. The partial least squares algorithm is then

carried out on these features in order to reduce their dimensionality. A novel hybrid

classification approach which combines the benefits of a one-against-all classification

scheme with those of a one-against-one scheme is used to determine the zone type

from the reduced feature space. An SVM is used as the underlying binary classifier.

Zones are classified into one of 10 logical types (chemical drawing, small text and

symbols, drawing, halftone, logo or seal, map, math, ruling, table and large text). Both

[96] and [97] are evaluated on the University of Washington III (UWIII) data-set [86].

 Type-specific Classification

Type specific classification techniques make no assumption about the accuracy

of any physical segmentation carried out prior to logical analysis. Thus a type specific

technique will, not only detect the type of a given region, but also choose what further

physical layout analysis may be required in order to ensure that the given region is

properly segmented (i.e., table regions, for instance, may require a different

segmentation technique than what would be required to segment normal text

regions). The primary focus for this thesis is in type-specific classification: specifically,

the proper detection and segmentation of mathematical equations. After an in depth

overview of mathematical equation detection and segmentation techniques found in

the literature, type-specific classification of other types will also be very briefly

discussed.

 Mathematical Expression Detection

Only a dozen independent studies related to the type-specific segmentation of

mathematical expressions from document images were observed in the literature [98]

[99][100][101][102][103][104][105][106][107][108][109]. Although the research of

math detection in document images may be largely uncharted, it is no mystery that

there are a wide variety of mathematical expressions prevalent in text books, journals,

and technical papers. Such documents are often desired to be viewed through

portable devices, desktop computers and/or screen reading software for general

convenience as well as assistive technology purposes. Even for “digitally-born” PDF

documents, it is rare that mathematical regions of text end up being properly viewable

by most software. For scanned documents this problem is even worse. Most

59

commercial OCR modules employed typically have no understanding of mathematical

expressions and become confused by their presence. A common result of the presence

of mathematical expressions during OCR is garbled output, not only of the

mathematical expression regions, but even nearby normal text regions which would

otherwise be recognized correctly. One of the early motivations for mathematical

expression detection was, not necessarily to properly recognize these regions, but

rather to ensure that their presence does not reduce the accuracy of normal

commercial OCR software [104].

While there has been a relatively small amount of work found in the literature

geared toward the logical and physical segmentation of mathematical regions, the

OCR of these regions is a relatively mature field of study [110][17]. In mathematical

OCR, however, it is typically assumed that all regions are perfectly segmented prior to

recognition, either manually or automatically. In the literature, these regions are most

often manually segmented prior to evaluation such that the recognition problem is

evaluated independently of the segmentation problem. The only commercial

mathematical OCR software found in the literature to date, “Infty” [111], implements

an expression detection module, however no detailed evaluation of it is provided

[100]. Their most thorough evaluations are thus carried out on regions which were

manually segmented beforehand. Since the type-specific logical and physical layout

analysis of mathematical expressions is a largely uncharted area of study while

mathematical OCR has been studied extensively, the primary focus of this thesis is on

layout analysis rather than recognition. While mathematical OCR is certainly a very

important processing step, it is outside of the scope of this work. For a recent in-depth

literature survey on mathematical OCR the reader is referred to [17].

Before discussing the existing literature on expression detection, it is important

to first specify some common notation and practices. Mathematical expressions found

in printed text can either be located on a separate line from normal text or be mixed in

with the text. Expressions falling under the first category are commonly termed as

either displayed/isolated by the literature while those which fall under the second are

termed as embbeded/inline. Expression detection techniques most often operate in

several steps referred to as passes. The first pass often consists of locating initial

expression candidates referred to as seed regions. These regions are then either

removed or grown in further passes based upon various heuristics. The term, “digital-

born document” refers to a document which was created directly from a computer

rather than being scanned in. The dozen independent studies found in the literature

each consist of either one or more conference or journal papers and will be briefly

reviewed in the chronological order of their first publication.

60

Lee et al. [99] (1995). While this study is primarily geared towards

mathematical expression recognition, the system also included an expression

detection module. Bayes decision rules are employed in order to locate displayed

expression regions. If a displayed region is detected then the entire line on which it

resides is labeled as an expression region. No detailed analysis of the detection

accuracy is provided. Similar work was also later carried out in [112].

Inoue et al. [100] (1998). An early study carried out by the authors of the

“Infty” commercial OCR software, this work explains the software's underlying

expression segmentation module. The module recognizes normal text and segments it

from mathematical text in the same step by using information obtained from a

commercial OCR engine along with a dynamic programming algorithm. Experiments

are run on 50 pages of Japanese text, of which detection errors are reported to have

occurred on every page. No thorough evaluation is provided.

Fateman [101] (1999). The technique described operates in three separate

passes and includes an interactive system which allows the user to manually correct

any segmentation errors which may have been made. During the first pass, each

connected component in the image is separated into one of two “bags”: one for

normal text, the other for mathematical text. The math bag initially contains all

italicized letters, Roman digits, punctuation, special symbols, and horizontal lines.

These are considered as the seed regions. The second pass will then group the math-

bag components into zones and, according to horizontal and vertical proximity, grow

the seed regions by relabeling nearby text components as belonging to the math bag.

On the third pass, remaining punctuation connected components in the math bag that

are still isolated are moved to the text bag. Remaining isolated Greek letters, Roman

numbers, etc. are kept in the math bag. Text components that are close in proximity

to the math bag, and could be considered as math such as “sin”, “cos”, etc., are

moved to the math bag. Finally, the results are then shown to a human for interactive

editing and correction.

Toumit et al. [102] (1999). A specialized top-down physical segmentation

technique operating on the entire image with image reductions to segment math

regions is briefly described but no specific details are provided. Displayed expressions

are located under the assumption that they are always centered and on their own line.

No further specific details are given. Embedded expressions are located by first finding

special characters (i.e., “+”, “=”, “>”, etc.) and propagating around these using rules

specific to the given symbol. Various concepts and heuristics are defined and utilized

for mathematical expression detection, primarily: atomic structures are single

mathematical symbols; composite structures are logical groupings of atomic

61

structures; implicit structures have no graphical representation (i.e., the multiplication

operator when representing the multiplication of with as simply). To represent

mathematics, a tree structure is used which allows each node to have more than two

children. It is argued that mathematics is not inherently a binary recursive data

structure, but simply a recursive one. While can be represented by a binary

tree, matrices, integrals, and vectors cannot necessarily be represented in this way.

No detailed evaluation was carried out in this work.

Garain et al. [103] (2000). Four relavent works from Garain and his advisor,

Chaudhuri, will be herein briefly reviewed. Garain's earliest technique first segments

all text lines (this includes those of displayed expressions) by measuring horizontal

projection profiles and denoting the boundary between two lines as local minima of

these profiles. Next, each text line is separated into its constituent connected

components. The mean and standard deviation is calculated for the distance of the

bottom of the text line to the bottom of each connect component. Since math

expressions may contain elements whose distance from the baseline varies more than

normal text, this metric can, in some cases, be very helpful. If the standard deviation

is above a predefined threshold then the line is expected to contain an expression. If

such a line is also observed to be vertically separated from normal text lines

significantly then it is labeled as a displayed expression region.

Embedded regions are then found by first looking at remaining normal text lines

to find mathematical characters (i.e. “+”, “=”, etc.). When such characters are found,

they are considered as seeds for the expression region and are recursively merged

with their neighbors based upon the following criteria: (1) if the seed region is just a

binary operator then the immediate left and right “words” are merged with the seed

operator, (2) “words” adjacent to the seed region on the immediate left and right are

merged if they contain one or more mathematical symbols, superscripts/subscripts,

single dots/ellipsis, or numbers. Their detection algorithm is tested on 120 pages

containing a total of 140 mathematical expression zones. Of these 120 pages, 20 are

taken from the UWIII dataset. 132/140 expression zones were properly detected, with

eight of them being entirely missed and three entirely false detections. No partially

correct detections are presented in the results (i.e., either the detection is completely

correct or completely wrong based upon their evaluation technique).

In 2003 a morphological technique was proposed by Chowdhury [113] in order

to segment displayed expression regions from all other regions in the text. A

morphological approach is first carried out to segment table, text, and graphic zones.

Further segmentation is then carried out on the result in order to find the displayed

expression regions. Such regions are categorized into the three basic types: those

62

which contain large horizontal lines, those which contain a long vertical separator (as

is often seen in matrices or determinants) and all others. In order to segment the

regions which fall under the “all others” category, the page is first closed with a

horizontal structuring element in order to locate the text lines. Subscripts and

superscripts (localized based on proximity and size relationship) are associated with

their text lines. Features such as number of subscripts and superscripts, vertical

overlaps, presence of tall symbols, and horizontal positioning of connected

components are used by a decision tree classifier to locate the displayed regions.

Similar techniques are used to localize regions containing horizontal or vertical lines.

The techniques are evaluated on a set of 197 images. While roughly 97% of the

displayed regions were reported to have been correctly segmented, no measurement

was given of false positives. The technique was tested on embedded expression

regions and found to have a 68% true positive rate. Again, no indication was given of

false positive rate.

In 2004, Garain and Chaudhuri propose a technique for segmenting embedded

expressions from document images [114]. n-grams are utilized in order to spot

sentences output from a commercial OCR that are likely to contain embedded

expressions. Sentences containing phrases like “such that”, “note that”, “denote”,

etc., were shown to have a higher probability of containing embedded expressions

than those which did not. A dataset containing 400 scanned pages of scientific

documents including various science books, journals, conference proceedings, etc., is

utilized by this study for evaluation [115]. Words recognized by the commercial OCR

are evaluated as possible embedded expression candidates based upon the

probability of their sentence to contain embedded expressions based on n-grams, the

commercial OCR's confidence rating for constituent letters within the word in question,

italic/bold/normal type style detection, inter-character spacing within the word in

question, and variance of the bottom y coordinates for the constituent symbols within

the word in question.

Experiments were carried out on the 400 scanned pages from the dataset which

contained over 3000 embedded expressions. Evaluation includes a count of the true

positives, false negatives, and false positives. Also included in the evaluation are

partially recognized regions. The evaluation scheme strives to combine all of these

measurements into one single metric/score. Partial recognitions are weighted based

upon how many components were supposed to be identified as math in the region vs

how many were actually identified2. The false negative count is weighted by zero for

2 This may prove problematic since components with a large number of pixels will be
weighted just the same as components that are very small. For this reason, pixel-

63

some reason, and thus does not factor into the score. Based upon their scoring

technique, ranging from 0 to 1, an average score of .963 was obtained for all 400

pages.

In 2009, Gerain experiments with methods for detecting both displayed and

embedded expressions in document images [116]. Gerain approaches the problem by

first extracting features for displayed and then embedded expressions from the

document image and then experimenting with various averaging techniques on the

respective features in order to see which has the best discrimination power for the

given problem. Features are first extracted in order to classify an entire line of text as

either being a displayed expression or not. In this study, the tendency of displayed

expressions to also contain normal text seperators which don't belong to the

expression (i.e., commas, periods, phrases like “and”, “therefore”, etc.) is not

accounted for. The features used to detect displayed expressions include a

measurement of the vertical space above and below the text line in question, the

vertical scatter of the bottom coordinates of the connected components on the line

in question, the pixel height of the text line in question relative to the average pixel

height of all the lines on the page, and the number of mathematical symbols on the

text line. Each of these features is normalized to a value between 0 and 1 by using the

following exponential expression, , where is the feature value. The

exponential allows for slight changes in the quantities being measured to have a large

impact on the feature values.

After text lines are labeled as either displayed or normal, embedded

expressions are then sought out for the remaining normal text lines. Individual words

within sentences are classified as either displayed or normal based upon the following

features. As in the previous study, linguistics is incorporated in order to detect

sentences which are likely to contain embedded expressions. Other features

incorporated for embedded expression detection include the commercial OCR

confidence rating of each word of the sentence, the typestyle of the given word (i.e.,

italic, bold, etc.), the scatteredness of the connected components within the word

about the textline, and the average horizontal gap between characters within the the

word in question. After normalizing these features, they are used to classify every

word of a sentence as either normal text or embedded expression text3. The features

accurate methods of evaluation are utilized in this work, as will be explained in a
later section.
3 Garrain relies on commercial OCR engines to segment his words within sentences,
prior to classification. He makes no corrections to improper segmentations made by
the commercial OCR. Thus in the situation where a word is improperly segmented by
the commercial OCR as containing part of an expression and part of a normal text all
in one block, Garrain's algorithm will always either result in false positives or false

64

for displayed text lines are each combined into a single scalar value through one of

the following averaging techniques: arithmetic mean, geometric mean, harmonic

mean, and weighted mean. Lines are chosen as displayed text or not by comparing

the resulting feature value to a scalar feature value found empirically which varies

depending upon the averaging technique used. A very similar approach is used to

detect words segmented by the commercial OCR engine that are embedded

expressions.

Experiments are carried out on 200 scanned pages. 150 of the pages were

taken from Garrain's corpus [115] and the other 50 were taken from the INFTY

database [117] which only contains manually segmented displayed expression

images. Training to determine thresholds is carried out on 50 of the images, and

evaluation carried out on the other 150. Tests using the weighted average method

wherein the weights are determined through a gradient descent algorithm showed the

best results. Using their specialized efficiency metric which takes into account false

negative, false positives, true positives, and partial recognitions, [114] a score of 87%

is achieved for embedded expression extraction while a score of 88% is achieved for

displayed expression extraction.

Kacem et al. [104] (2001). As illustrated by Figure 31, the primary motivation

of this work is not to properly segment all mathematical regions for mathematical

recognition purposes, but rather to only segment those regions which may interfere

with a normal commercial OCR engine (i.e., that could result in errors). The proposed

technique identifies various mathematical symbols in the document without the use of

any commercial OCR engine. These symbols include product, summation, integrals,

roots, fraction bars, large brackets (i.e., that surround horizontally overlapping

expressions on different lines), small delimiters (i.e., normal paranthesis/brackets),

and binary operators such as plus, subtraction and equals. These symbols are

identified based on a measurement of their connected component's aspect ratio, area,

and pixel density. Using a training set which contains various appearances of these

symbols in printed text, a histogram is created for all measurements in order to know

their distribution. Based upon these histograms, upper and lower bounds are set on

these measurements for each symbol. When identifying a new connected component,

a label is assigned to it based upon the intersection of all three measurements. Rather

than doing an immediate binary label based upon this information, a “membership

degree” is assigned to the connected component for each of the possible symbol

types. If any of the membership degrees are within the upper and lower bounds, the

symbol type with the highest degree is assigned to the connected component. This

negatives.

65

method was evaluated on a test database of 460 mathematical symbols and 95.3% of

connected components were found to be well-labeled. It was not indicated whether or

not there were false positives.

Once the connected components are labeled as indicated above, the text lines

are determined by grouping all the connected components based upon proximity. The

specific algorithm used is not specified. Math symbols found within text lines are often

used as heuristics to dictate whether or not lines should be merged. For instance, in

the case of a large fraction bar, it is clear that there should be both a numerator and

denominator. This may require vertically merging part of the two text lines together.

Once the lines are extracted, their aspect ratios and position in relation to other lines

is measured in order to determine whether or not they are likely to be a displayed

equation. Further measurements are then made on each connected component's

vertical position within its corresponding line and its height in relation to the average

66

Figure 31: Regions detected by the method of Kacem et al. as belonging to expressions are

shown above bounded by rectangles. Note that, although most of the regions are over-

segmented with various symbols being missed altogether, subtraction of the above labeled

regions will result in improved accuracy for most commercial OCR engines which would

otherwise be confused by the presence of the various mathematical expressions. A. Kacem, A.

Belaid, B. M. Ahmed, "Automatic Extraction of Printed Mathematical Formulas using Fuzzy

Logic and Propagation of Context," International Journal of Document Analysis and

Recognition, vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.

connected component height for the line. For every line, all of the connected

components are labeled as one of the following topography features: overflowing,

ascending, descending, centered, high, or deep as illustrated by Figure 32.

The topography features are used to help determine the type of a symbol. For

instance subscripts would be descending or deep, while superscripts would be

ascending or high. Radicals would be overflowing, and fraction bars would be

centered. Subscripts and superscripts are found by comparing the relative size and

position of two adjacent connected components. Training is carried out on these

measurements using a histogram approach similar to the one described for math

symbol identification. Next, rule-based context is propagated based upon the specific

math symbols in question (for instance, each connected component inside a radical

symbol). Since summations, products, or integrals are often accompanied by limits,

these are sought out above and below such symbols.

The technique was evaluated on 100 pages with roughly 93% of the equations

reported as being properly segmented. While the technique was reported to be fairly

reliable for extracting displayed expression regions, it faced problems with embedded

expressions. Greek or italic symbols which should have been labeled as expressions

were often ignored as illustrated by Figure 33.

67

Figure 32: A connected component's possible topography features on text line j based upon

vertical location in reference to line j's upper and lower central bands. A. Kacem, A. Belaid, B.

M. Ahmed, "Automatic Extraction of Printed Mathematical Formulas using Fuzzy Logic and

Propagation of Context," International Journal of Document Analysis and Recognition, vol. 4,

no. 2, December 2001, pp. 97-108. Used under fair use, 2014.

Jin et al. [105] (2003). Isolated expressions are extracted based on a Parzen

window classifier and embedded expressions are extracted based on 2-D structure

analysis and various heuristics. The technique is evaluated on a dataset consisting of

93 pages from technical journals. 10% of the pages in this set are used for training

and the other 90% for evaluation. The results are reported as favorable, however no

thorough evaluation or specific results are provided.

Drake and Baird [106] (2005). Drake and Baird utilize a technique based

upon Kise's bottom-up Area Veronoi Diagram-based physical segmentation method

68

Figure 33: A result of Kacem's expression segmentation technique. Note that the theta

symbol is only segmented for the cases when context propagation dictates that it

should be. When it is by itself it is missed entirely, while when it is wrapped in a

parenthesis or has a subscript it is segmented. A. Kacem, A. Belaid, B. M. Ahmed,

"Automatic Extraction of Printed Mathematical Formulas using Fuzzy Logic and

Propagation of Context," International Journal of Document Analysis and Recognition,

vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.

[75]. For each line of text, the Area Veronoi Diagram is calculated and then each

vertex and edge is classified as either normal text or mathematical. All of the results

for the line are then combined in order to classify the line as normal text or as a

displayed expression. A strength of this technique is that the Veronoi diagram is

invariant to skew of the page. Thus an expression could be detected by this technique

regardless of its angle in reference to the rest of the page. The input to both training

and evaluation are images of isolated text lines which were cut out of page images

manually or synthesized in isolation using Latex. The dataset contains roughly 4,400

connected components labeled as math, with about half used for training and the

other half used for testing. The Veronoi diagram's edges were also labeled in the

dataset, with roughly 4,000 used for both training and testing purposes respectively.

From reviewing the confusion matrices provided it was found that the true positive

rate for math connected component detection was 88% and false positive rate was

~7%. The algorithm was not tested on any lines that contained a mixture of math and

normal text.

Tian et al. [107] (2005). Tian et al. propose a technique aimed at segmenting

both displayed and embedded expressions. Displayed expressions are found by

calculating the average distance of the center of all connected components on a line

from the line's center. If this measure is above an empirically determined threshold,

then the line is declared as a displayed expression candidate. To confirm whether or

not the candidate is truly a displayed expression region, the line's connected

components are run through a recognizer specifically designed from mathematical

symbols. If any mathematical symbols are found then the text line is confirmed to be a

displayed expression region. Embedded formulas are found by analyzing the spatial

orientations of connected components on the text line, recognizing mathematical

symbols, and employing propagation rules based upon these symbols. The technique

is evaluated on more than 100 pages of technical documents to achieve a true

positive rate of 95.19% for displayed expressions and 90.12% for embedded

expressions. False positive rates are not reported.

Yamazaki et al. [108] (2011). Yamazaki et al. describe a technique which

they have integrated into OCRopus [85]. The technique only detects displayed

expressions and uses features very similar to those proposed by Garain. Also included

are the following features: standard deviation of symbol aspect ratio within a text line,

and left indentation measurement. Rather than using the averaging techniques

employed by Garain, a SVM is used. The system is tested on an unspecified number of

pages containing 542 displayed expressions, of which, 531 are identified correctly. No

further evaluation is provided.

69

Lin and Baker et al. [109] (2012). X. Lin from Peking University and J. Baker

from University of Birmingham collaborated in developing novel techniques for

expression segmentation in digitally-born PDF documents [118][119]. In 2012, Lin

proposed a technique for segmenting embedded expressions in digitally-born PDF

documents (the displayed expressions segmentation is not evaluated in this work).

Since the documents used in this study are digitally-born it is assumed that all

typesetting information and text is available within the PDF's on which the

experiments are run. In order to detect embedded expressions, text lines are

evaluated each in turn (no OCR is required). First the words on the text line are

segmented by using an adaptive thresholding technique on the PDF's image. A

histogram is created which gives the frequency of horizontal gap lengths throughout

the line. The second most frequent gap length is used for determining the word gap

threshold (the first most frequently occurring gap is typically the distance between

individual characters within words). Characters such as parenthesis, equals signs,

sums, etc., are segmented as words regardless of their left and right horizontal gaps,

assuming that their unicode is available within in the file.

Once the words are segmented, 12 features are calculated for each individual

word. These include 7 geometric layout features, 3 character features, and 2 context

features. The geometric layout features include the variance of font size of the

symbols within a word based on the PDF's typesetting information, variance of the -

coordinates of the symbols, variance of inter-character gap, variance of the bounding

box width and height, a measure of the degree to which all the symbols in the word

correspond to the same language (i.e., English or Non-English), and percentage of

English characters found within the word. The character features include the amount

of mathematical characters in the word, recognition result of the leftmost character,

and recognition result of the rightmost character. The recognition result of the left

most and right most characters give an indication as to whether or not the words in

between or to the left or right are mathematical. For instance, if the right-most

character of the word is an “=” then it can be inferred that whatever is directly to the

left must also be mathematical. Context features include result of the right most

symbol of the previous word (word to the left), and type of the left-most symbol of the

next word (word to the right). Continuing with the “=” example, if the right-most

symbol of the word to the left is an “=” sign, then it can be inferred that the current

word is in some form mathematical in that it is part of the equation. All of the

aforementioned features are normalized to some value between [-1,1]. The features

are then fed into a binary SVM classifier which has been trained on labeled datasets.

70

Experiments are carried out on 50 journal papers and 5 mathematical text

books. 2 pages from each paper and 20 pages from each textbook are randomly

selected, thus experiments are carried out on 200 pages in total. The 200 pages are

divided into 5 equal subsets and 5-fold cross-validation is carried out. In each round a

single subset is used for evaluation and the 4 others are used for training. This is

repeated 5 times such that all 5 subsets are evaluated in this manner. The precision

(positive predictive value) and recall (true positive rate) measurements are made for

each of the 5 evaluations and then averaged to get the final result: 86.94% precision

and 84.29% recall4.

Also in 2012, Lin et al. proposed a new technique for the evaluation of

expression segmentation methods [120]. A new evaluation metric is proposed which

takes into account oversegmentations, false positives, merges, etc. Weights of various

error types can be set based on specific application scenarios by changing parameters

of the evaluation tool implemented. For instance, in document information retrieval of

a math equation, a false negative should typically be weighted much higher than a

false positive. Either area-based evaluation or symbol-based evaluation is offered but

no pixel-level accuracy is achieved.

The dataset and groundtruth are claimed to be publicly available but truly are

not since the documents used are not in the public domain. The dataset has 194

digitally generated PDF pages. In total, 400 document pages were carefully selected

with an aim to be statistically representative of a wide variety of documents. Sources

for these documents range from conference proceedings, journals, books, and reports.

For each source document at least 1 and at most 8 pages are selected and added to

the dataset. Documents are selected with publication years ranging from 1977 to

2010. Domain topics include mathematics, computer science, biology, and physics.

65% of the document pages are single column and the remainder are multicolumn.

PDFs are also included that are generated by different PDF-writers (i.e. AFPL

Ghostscript, Acrobat Distiller, Acrobat PDFWriter, ESP Ghostscript, GNU Ghostscript,

Miktex PdfTex, etc.). The number of displayed and embedded formulas in each page is

counted and selected so that there is a wide variety of both counts.

Lin et al. Lin et al. [118] collaborated with Baker et al. with the goal of

improving mathematical expression segmentation accuracy for digitally-born PDF

documents. In this work, it is argued that improper initial physical segmentation of

text lines that contain math causes significant problems in formula identification. The

authors describe various cases of commonly mis-segmented mathematical

4 It should be noted that this segmentation technique suffers similar problems to Garain's
2009 approach, in that the initial word segmentation is never fixed, regardless of how incorrect
the adaptive thresholding technique may be.

71

expressions separated into three basic categories. The first category describes a text

line containing expressions that are oversegmented into two vertically overlapping

lines (occurs with fractions, sums/integrals when upper/lower bounds are present,

etc.). The second category describes matrices and other grid-like expressions which

results in similar difficulties. The third category describes a single expression which is

covered by multiple lines. This occurs when an expression on the left side of an

equation is set equal to multiple expressions where each subsequent expression after

the first is covered by a new line. It is argued that, for identification and recognition

purposes, it is best that each new line of such an expression is merged during physical

segmentation as opposed to keeping each expression on the right of the equals as a

separate segment.

To address these problems, a learning-based text-line merging technique is

utilized. The technique utilizes one classifier to find the first two categories of mis-

segmented expressions and a second classifier for the third category. First the text

body is segmented from the header/footer regions. The text lines and columns are

then found using projection profile cuts. Next, for each line, the decision is made as to

whether or not the current line should be merged with the next line, based on the first

two improperly segmented categories. For this purpose, several features are utilized.

Features include vertical space between the text lines, the relative horizontal width of

the textlines, the difference of indentations between the two text lines, ratio of

average textline character widths and heights, ratio of main font sizes used in the

lines (for digitally-born PDF's the font sizes are typically available), 2 features

describing existence of fraction signs, the existence of a large operator in either line,

features describing whether or not the text line ends with a binary operator, and if the

lower line ends with a formula index. Then some of the aforementioned features are

employed just to describe the individual textlines themselves rather than the relation

between two consecutive ones.

The classification task is separated into two stages: the first aims at properly

segmenting all individual expressions and the second aims at merging single

expressions that span multiple lines. When training for both of these stages,

performance is compared on 7 machine learning algorithms: SVM, MLP, Decision Tree,

Random Forest, Bayesian Network, Bootstrap Aggregating (Bagging), and Adaboost.

Bagging and Adaboost were reported to obtain the best performance during training

for the first and second stage of segmentation, respectively, and were thus adopted

for evaluation. The technique is evaluated on 600 document pages. 100 of these

pages are used for training while the other 500 are used for evaluation. Precision and

recall are reported on both stages for 100 of the the images tested, and then for the

72

remaining 400 accuracy is only reported. The precision, recall, and accuracy were, for

the most part, all reported to be above 90%. False positive rates are not reported.

Baker et al. Baker et al. [119] introduced a tool, Maxtract [121] which uses

projection profile cutting to segment the mathematical expressions but is reported to

not be very accurate. An improved segmentation technique is described and its

effects on the accuracy of Maxtract are reported. A histogram-based approach is

described for line segmentation. The approach is to first extract all of the connected

components on the page, and then determine initial lines based on grouping the

connected components based on vertical proximity. A histogram is then constructed

for the entire page which captures the horizontal distance between each adjacent

component on each text line. Two local minimums are commonly observed in a similar

location on the histograms of their pages. These local minimums are used to represent

the minimum and maximum distance expected of a “principal” text line. Principal text

lines are those that would correspond to either normal lines or the main lines in big

math expressions (for instance, ones that contain summations, integrals, etc). The

“non-principal” lines are the ones which may correspond to limits or upper and lower

bounds, and thus may need to be merged with their nearest principal line. Such lines

tend to be more sparsely distributed horizontally than the principal lines. Any

characters having a distance observed outside of the aforementioned range for

“principal” lines is considered a candidate for being part of a “non-principal” line.

A second pass is then used to correct any lines which may have been

mistakenly labeled as non-principal, the heights of the non-principal lines are

compared with the height of their next line. If the maximum connected component

height of the non-principal line is greater than that of the principal line divided by

some threshold then the non-principal line is re-labeled as principal. The threshold

value is determined empirically on a small sample set. A third pass then checks that

the lines that were considered as principal truly are principal. This is done by making

sure that all of the principal lines have a height greater than the maximum height of

the non-principal lines. The resulting non-principal lines are then merged with their

adjacent horizontally overlapping principal lines. If a non-principal line has no adjacent

horizontally overlapping principal line then it will be converted to a principal line.

The technique is evaluated on 200 pages comprising a mixture of technical

journals and text books. 96.9% accuracy is reported. The technique was then further

manually evaluated on a larger dataset of 1000 pages from more than 60

mathematical papers and an accuracy of 98.6% was reported. The most common error

was reported as that of incorrectly classifying a non-principal line as principal. This

occurs when the horizontal distance between characters on a non-principal line is

73

similar to that of the principal line. The authors then carry out a further experiment

which integrates the aforementioned segmentation technique into their Maxtract

software. Note that the aforementioned technique does not necessarily go so far as to

logically segment the entire mathematical expression regions, it only serves to ease

the physical segmentation task prior to logical labeling. Unfortunately this also results

in some errors which wouldn't occur with normal segmentation techniques. For

instance, footer regions were sometimes mistaken for non-principal lines and

incorrectly merged with their preceding line. A technique similar to that reported in

the earlier literature [109] is then employed after the aforementioned segmentation

step to identify mathematical zones.

The modified Maxtract software is evaluated on two datasets. The first dataset

has 184 document pages and the second has only 10 pages. On the first dataset, the

math expression identification technique was reported to have, for displayed

expressions, a true positive rate of 73.18%, 7.85% false positive rate, and 1.26% false

negative rate. 6.56% of the regions were reported as being oversegmented while

12.41% of the region were reported as undersegmented. No results were reported for

embedded expressions in the first dataset however. In the second smaller dataset

which contains only ten images, results were reported for both displayed and

embedded expressions. While the isolated expressions have a true positive rate of

78.85% and false positive rate of 1.92%, the embedded expression only have a true

positive rate of 35.6% and false positive rate of 26.08%, and thus appear to require

significant improvement.

Detection of Other Zone Types

 While type-specific detection of mathematical expressions is the primary focus in

this work, there are many other aspects to type-specific layout analysis that also need

to be worked on. These may include, for instance, the segmentation of tables [122],

musical scores [123], chemical equations [124], circuit diagrams [125], etc. Although

these will not be studied for this work, they remain as important challenges in the

field.

74

3 Method

3.1 Introduction

3.1.1 Purpose
The goal of this project is to enhance the quality of document layout analysis

and OCR for printed (non-handwritten) technical/scientific public domain documents

which may contain displayed/inline equations, matrices, illustrations, graphs, etc.

Automated processing of printed documents requires both physical and logical layout

analysis techniques to be employed in order to segment and classify zones of interest

for correct processing. After physical layout analysis is carried out, regions

corresponding to illustrations, plain text, musical notation, and mathematical formulas

all must be classified so that they can be processed correctly. The application of this

project is in automated processing of digitized public domain documents (or non

public domain documents with author/publisher consent and due legal permission).

Automated document processing has seen widespread use in industrial settings (i.e.,

automated processing of bank notes or postage envelopes) as well as for Assistive

Technology in aiding the blind and/or visually impaired in their accessibility to

information. Document layout analysis and OCR has also found use in the “Google

Books Initiative” whose founders have envisioned a veritable online “Library of

Alexandria” from which all of the world's knowledge could be acquired.

This project aims to achieve its goal by developing and evaluating a

mathematical expression detection and segmentation (MEDS) module fully integrated

with Google's existing document layout analysis software [18], compare this module's

accuracy to that of a default implementation provided with the software, and to

evaluate performance under a wide variety of inputs. Since a significant problem

observed in the existing literature is a lack of objective performance comparison

among MEDS modules, this work is tested on a dataset of public domain documents

that will be made available to others. The groundtruth dataset, MEDS implementation,

and evaluation tools are made publicly available [126] in the hopes that the

performance of the current technique may more easily and objectively be compared to

previous and/or future techniques.

While the general layout analysis framework of Tesseract is utilized for this

work, a new MEDS module implementation overrides Tesseract’s default one through

run-time polymorphism. The performance of Tesseract’s document layout analysis

75

framework will be evaluated both under the default MEDS module and the newly

implemented one, the results compared, and experiments carried out on printed text

from a variety of sources in order to gain insight into how best to increase accuracy

over a wide variety of documents while avoiding the problems of overtraining to the

largest extent possible.

3.1.2 Problem Statement and Project Scope
Currently, the commercial OCR system best suitable in handling scientific

documents is Masakazu Suzuki's “Infty Reader” which can accurately recognize a wide

variety of complex mathematical equations as well as matrices, assuming that they

are first properly isolated from other, non-math, regions of text. While some of the

system's reported shortcomings are attributed to the merging or breaking of

characters during image scanning, many of the system's errors observed in practice

were caused to the improper isolation of the math regions from non-math regions. The

Infty Reader system isolates regions of interest based solely upon analysis of the

output of a commercial OCR system, Abby Fine Reader. Regions which appear to be

“junk output” are deemed as candidates for math recognition. Infty Reader effectively

sidesteps the problem of physical and logical layout analysis, relying solely upon

whatever physical and logical layout analysis is performed by the proprietary Abby

Fine Reader system utilized. The system's degree of document understanding prior to

recognition, therefore, is entirely at the mercy of false positive recognition and/or

layout analysis errors made by Abby Fine Reader, which, in and of itself, was not even

designed with the layout analysis of scientific/mathematical documents in mind.

Meanwhile, the “Google Books Initiative” project has spurred a great amount of

interest in the automated processing of a wide variety of documents ranging from

ancient texts, magazines, articles, to scientific/mathematical textbooks, dissertations,

etc. in over fifty languages. An experimental equation detector was implemented as

part of Google’s 2011 release of their open source OCR engine, Tesseract. Upon

performing a preliminary evaluation of the equation detector on several pages of a

public domain calculus text book [127] it was found that fewer than a fourth of the

equation zones were fully segmented. Of all of these fully segmented equation zones,

none of them were without at least some false positive pixels and/or under/over-

segmentations. The overall problem statement of this project can thus be described

as designing and evaluating a new MEDS module which can detect and segment math

expressions correctly on a range of document types. In the literature, the problem of

layout analysis for documents with formulas has either been that of properly detecting

and then segmenting the regions for math recognition or to detect all of the regions so

76

they can be discarded and thus not hinder normal OCR output. It is important to stress

that the former of these two problems is the one being addressed in this work.

3.1.3 Definitions and Acronyms
Various acronyms and terms which will be used throughout the remainder of

this work are italicized and briefly explained in this section. The problem being

addressed in this work is that of both detecting and properly segmenting regions of

mathematical text in a document image from those of non-mathematical text, so that

overall document recognition accuracy may be improved. The problem is herein given

the title of mathematical expression detection and segmentation (MEDS). The MEDS

module implemented in this work operates as a component of Tesseract's larger

document layout analysis system which is still under development by Google [18]. The

overall program operates in two major phases: detection and then segmentation. The

initial connected components found during detection, referred to as the seed regions,

are then merged into surrounding regions based upon various heuristics during the

segmentation phase.

3.1.4 Tesseract Document Layout Analysis Framework
Overview

Since the MEDS module implemented in this work is fully integrated with and

utilized as a component of Google's open source document layout analysis and OCR

software, Tesseract, this section gives a brief overview of some of the layout analysis

software's inner workings and introduces some associated terminology. While the bulk

of Tesseract's layout analysis software is geared toward physical layout analysis (i.e.,

segmenting columns of text, filtering out noise, and segmenting image regions) some

logical layout analysis for detecting math equations and table regions is also

observed. The MEDS module implemented in this work overrides Tesseract's default

equation detection implementation through run-time polymorphism. Run-time

polymorphism is used to facilitate performance comparisons of the new and default

modules.

Prior to initiating the MEDS module, Tesseract's layout analysis system

segments image regions from normal text on the page and also filters out noise. The

page is then divided into regions referred to as Column Partitions. Each Column

Partition (CP) represents a region of text which should be physically and logically

segmented from its neighboring regions (i.e., an individual row of text within a column,

a displayed expression, etc.). These regions are initially segmented through a

projection blurring technique as illustrated by Figure 34 which blurs all connected

77

components in the direction of their nearest neighbor. Each blurred region in Figure 34

is thus effectively treated as an initial CP by Tesseract's physical layout analysis

system pending further processing. A Column Partition Set (CPset) is a division of a

horizontal slice of the page into column partitions at a given vertical location. Upon

completion of Tesseract's document layout analysis the page is represented as a list of

CPSets, where each entry of the list represents all of the text at a horizontal slice of

the page. While a page with only one column will consist of a list of one element

CPsets, a more complex page layout may consist of a title (one element CPSet)

followed by three columns of text (several three element CPSets). In Figure 34, for

instance, while much of the page consists of one element CPSets, the CPSet

corresponding to the image captions on the lower half of the page and the heading at

the top of the page would both ideally consist of two elements. More information on

the algorithms used by Tesseract to determine which CPSets are the best fit for a page

layout can be found in [18].

78

Figure 34: On the left is a document image and on the right is debug output from Tesseract

showing how that image is blurred during physical segmentation.

3.1.5 Overview
The method section of this thesis is organized as follows. The System Overview

section gives a general top-down description of the system and then the System

Architecture section discusses how the main modules function together in a

meaningful way. The Component Design section then gives in depth details on how all

of the modules are designed and what data structures and algorithms are used. The

Component Design section is then followed by a brief conclusion which gives some

ideas for future work.

3.2 System Overview
The MEDS software component described here is designed such that it may be

used in coordination with other components to produce a full-fledged document layout

analysis system. While the document layout analysis system, as a whole, is geared

toward the proper segmentation and detection of all zones (i.e. normal text, image,

halftones, mathematical expressions, musical notation, logos, chemical equations,

etc.) in an arbitrary printed document image, the MEDS subsystem is geared toward

only the proper detection and segmentation of mathematical expression regions. This

subsystem is fully integrated with an existing layout analysis system, Tesseract

(version 3.02) [18], and its results compared to those of a default MEDS component

supplied with the software. The subsystem is then evaluated on a ground truth data

set which includes 75 images all taken from public domain texts. The overall system is

divided into three primary components: groundtruth generation, evaluation technique,

and MEDS implementation. The evaluation method objectively gauges performance by

calculating true positive rate, precision, accuracy, false positive rate, false discovery

rate, specificity, and negative predictive value all down to pixel-level [87]. The

dataset, evaluation tools and groundtruth generation tools are made freely open to the

public [126] in hopes that they may be useful for the objective comparison of the

subsystem's performance to any future or existing techniques.

3.3 System Architechture
As mentioned previously, the system consists of three primary components: the

ground truth generation module, mathematical expression detection and

segmentation (MEDS) module, and the evaluation module. Together, these three

modules effectively comprise a test-driven development environment wherein MEDS

modules may be interchanged and evaluated against one another for objective

performance comparison. All MEDS modules which can be evaluated by this system

are fully integrated with Tesseract's document layout analysis software [18], and are

79

instantiated by overriding Tesseract's EquationDetectBase class [128]. Tesseract

utilizes a hybrid physical layout analysis approach to locate initial CP candidates on

the page which are then corrected through further type-specific document layout

analysis techniques (i.e., segmentation algorithms for table, music, math, etc.). While

Tesseract provides a default MEDS module, a preliminary evaluation of the module's

accuracy demonstrated in Section 3.4.3 shows a need for improvement. Figures 35

and 36 illustrate how the groundtruth generation, MEDS, and evaluation modules

collaborate in order to foster a test-driven development environment for the

enhancement of MEDS accuracy.

The system is first fed multiple document image pages (in formats such as

.png) from which the groundtruth is manually generated. The groundtruth will contain

the bounding box coordinates for all displayed and embedded math expressions (and

80

Figure 35: (Top-left) Portion of input image. (Top-right) Manually generated groundtruth.

Segments outlined with red rectangles are individual displayed expressions. (Bottom-left) Output

of Tesseract's default MEDS module. Segments outlined with red rectangles are individual

displayed expressions, segments outlined with green rectangles are individual embedded

expressions, and segments outlined with blue rectangles are normal text. (Bottom-right) Pixel-

accurate evaluation results for displayed expressions found in Tesseract's default module after

comparing it to the groundtruth. False negative pixels are colored green, false positive pixels are

colored blue, true positive pixels are colored red, and true negatives are orange. All background

pixels are colored black. Notice that the true positive region at the bottom is undersegmented (a

single region should correspond to the three regions).The commas and asterisk are false positives

since they are not logically part of the mathematical expressions.

may also contain the coordinates of all displayed expression labels) as further

explained in Section 3.4. Both the input document image and the groundtruth are fed

into the evaluation module which subsequently triggers Tesseract's document layout

analysis software as illustrated in Figure 36. The MEDS module to be evaluated is

embedded in Tesseract's layout analysis software such that it is called after initial

CPSet estimates have been made through Tesseract's hybrid physical segmentation

technique [18]. Either Tesseract's default MEDS module can be evaluated or any new

MEDS module may override Tesseract's default one so that it can be evaluated. Once

the layout analysis software is finished being run on the document image (or multiple

images if desired), the results of the MEDS module are evaluated against the

groundtruth to obtain various evaluation metrics as specified in Section 3.4.3. The

resulting metrics for different MEDS modules evaluated on the same input data may

then be objectively compared.

The MEDS module implementation is divided into two primary components:

detection and segmentation. The detection subsystem uses a trained binary classifier

to predict whether each connected component of the image is math or non-math. The

binary classifier takes as input a feature vector found from the feature extractor as

illustrated in Figure 37. Once trained, the classifier can carry out a prediction on new

data assuming the input data is a feature vector generated from the same feature

extractor it was trained with. The segmentation module uses various heuristics to then

merge detected math regions with neighboring ones (i.e., a + operator should have

both left and right operands, a fraction bar should have upper and lower operands,

etc.). Compile-time polymorphism is utilized here for both the Detector and

81

Figure 36: High-level UML-based system architecture overview.

Segmentor so that different MEDS modules can be effectively interchanged for

comparison and testing purposes without any significant performance overhead. The

detection module consists of training, feature extraction, and binary classifier

implementations. The Segmentor currently uses no supervised training and operates

purely on heuristic analysis, however the use of supervised training for this stage is

considered a goal for future work.

3.4 Component Design
The design of the three primary components: groundtruth dataset generation,

MEDS, and the performance evaluation are each discussed in this section.

3.4.1 Groundtruth Dataset Generation
In designing the MEDS module it is important to first have a proper

understanding the problem domain. Mathematical recognition modules require that

their input be properly segmented a priori in order to obtain good accuracy. The

definition of “properly segmented” often depends on the type of mathematical

expression being analyzed as well as its context. In this work, a groundtruth dataset is

manually generated to define the correct segmentations of mathematical regions in a

set of 75 images extracted at random pages from the five text books shown in Table 1

(all of which are in the public domain).

82

Figure 37: UML diagram to depict the trainer, classifier, and feature extractor interfaces used in

the detection module (and also the data BlobInfoGrid data from which features are extracted

to be explained in Section 3.4). Compile-time polymorphism is utilized in order to facilitate

experimentation with and comparison of various combinations of training, classification and

feature extraction.

Table 1: The textbooks utilized in manually generating the groundtruth dataset for this study

Textbook Total Pages Used

E. Bidwell, Advanced Calculus. (1911) [127] 30

A. S. Kompaneyets, Theoretical Physics.

(1961) [129]

15

A. C. Lunn, The Differential Equations of

Dynamics. (1909) [130]

15

D. Sloughter, Difference Equations to

Differential Equations: An Introduction to

Calculus. (2000) [131]

15

In generating the groundtruth dataset, three types of math expressions are

defined: displayed expressions, embedded/inline expressions, and (optionally)

displayed expression labels. A displayed expression is any expression which resides on

its own line of text separated from normal non-math text whereas an embedded/inline

expression is one which resides as a part of a normal text line. The displayed

expression labels are numbers, letters, or symbols that are used to label and refer to a

displayed expression. A displayed expression may, for instance, reside on its own line

and then to either the right or left may have a separate label such as (1), (a), etc. The

label may then refer back to that expression within the text. Although the labels were

manually segmented during the groundtruth generation, the current work will only

strive to segment displayed and embedded regions, with the segmentation of

displayed labels being left as a goal for future work.

In order to manually segment the expressions, a Qt Graphical User Interface

(GUI) implemented in a previous undergraduate independent study [132] was tweaked

so that boxed regions of an image can be manually specified, assigned a type

(displayed, embedded, or label) and then printed to a file. The GUI used to manually

generate the groundtruth dataset is shown in Figure 38.

83

In manually generating the groundtruth dataset, certain conventions were

adopted in order to ensure that the dataset is consistent. In some instances it

becomes unclear as to whether a mathematical expressions should be considered

displayed or whether it should be considered embedded. In Figure 39, for instance,

each of the mathematical expressions could possibly pass as being considered

displayed since they comprise most of the text lines, with the lines being spatially

separated more than in most normal text. The convention adopted in this work is that,

if math expressions appear as part of a line with normal sentence structure and are

not intentionally moved down to a separate line, then these expressions are

considered embedded. If the expression is moved down a line from a normal sentence

then it is called displayed, even if it still obeys normal sentence structure conventions.

84

Figure 38: A screenshot of the GUI used to manually generate the groundtruth dataset used for

this study.

Segmenting Numbers. Another rule adopted in this work is that numbers

should be labeled as math or non-math based upon their context. While quantities can

be interpreted as mathematical since they inherently involve multiplication, such

entities as section numbers, parts of section headings, and dates/years. should not be

regarded as mathematical. False detection of such cases harms overall document

analysis performance in that it may result in the improper interpretation of the

document's contents.

Extending Displayed Expressions to New Lines. Since the current manual

groundtruth dataset generation procedure can only segment rectangular regions,

expressions cannot extend to new lines unless the resulting segment would be a

rectangle. Extending the groundtruth generation procedure to allow for isothetic

blocks of text is left as an idea for future work. This problem is illustrated by Figures 40

and 41.

85

Figure 39: Groundtruth dataset segmentation example. Segments that are colored red are

considered displayed while those which are blue are considered embedded. The choice of which

regions are displayed vs. embedded is made based on the convention that all expressions that are

part of a normal sentence structure and not placed on their own line are embedded, whereas all

other expressions are displayed.

86

Figure 40: Result of existing groundtruth dataset segmentation technique. Notice that the

uppermost region is over-segmented (i.e. the set of expressions should correspond to one entity

but here they correspond to two so that the comma is not incorrectly considered part of the

expression and segmented regions cannot be isothetic). Red segments are displayed while blue

ones are embedded.

Figure 41: The correct segmentation which is not currently implemented in the existing

groundtruth generation technique. Notice that the top expression region is now properly

segmented as one entity even though the comma causes the region to be a more complex

isothetic shape than a simple rectangle. Red segments are displayed regions while blue ones are

embedded.

Expressions Embedded in Images. Mathematical expressions embedded

within images or other non-normal text as illustrated in Figure 42, are considered

displayed expressions based upon the convention adopted by this work.

Expressions Separated by Commas. Expressions separated by commas are

only joined as a single element if there is an ellipsis prior to the last element as

illustrated by Figure 43. This decision is made because any group of expressions that

includes an ellipsis can mathematically be interpreted as a series, which, itself, is a

single expression. When lists of expressions do not include an ellipsis they are not

merged and the commas are interpreted as part of the sentence wherein the

expressions are embedded as opposed to being part of the expression.

87

Figure 42: A segment of an image taken from the manually generated groundtruth dataset. All

segments here are segmented as displayed expressions.

3.4.2 MEDS Module
The MEDS module operates by first detecting regions of interest on the page

which, based upon a trained classifier, are considered strongly likely to be

mathematical in nature. Segmentation is then carried out using rationale based upon

the segmentation rules discussed in the groundtruth generation section. An idea for

iteratively searching for missed regions based on segmentation results is left as a goal

for future work. This would require either a math symbol recognizer or using a

Hausdorff distance metric to find other symbols on the page matching to those which

were found during segmentation. The process would then iteratively continue until no

more new math symbols are found on the page. Due to time constraints this is kept as

an idea for future work. Once the detection and segmentation steps are complete, the

final step ideally involves searching for displayed expression labels (i.e., the number,

letter, or other symbol which is used to refer back to a displayed expression). The

label, assuming it is recognizable by the language OCR engine, would then be found in

the recognized text and mapped to its location on the image. Again, due to time

constraints the searching for displayed expression labels is not implemented in this

work, but kept as an idea for future work.

 Detection Subsystem
The design starts in a bottom up fashion and makes no assumptions about the

correctness or incorrectness of how CP's were formed by the Tesseract framework

from which it is instantiated. The module does, however, utilize the results of

language-specific OCR (while the default language is English, other languages may

also be employed) in order to quickly rule out most normal regions of text from

possibly being mathematically oriented. A goal in the design of this module is that it

88

Figure 43: A segment of the groundtruth dataset. All blue segmented regions are considered

embedded expressions. Notice that on the second line of text, the comma which follows the

ellipsis is functionally part of the sentence in which the expression resides, whereas the

can be interpreted as a single mathematical series and is thus segmented as one region.

should still work all the same even if the underlying Tesseract framework from which it

is instantiated were to be altered.

The input to the MEDS module is a grid of CP objects (CPGrid) and the list of

CPsets determined to best represent the entire page by the hybrid layout analysis

technique described in [18]. The grid template container class is used within the

Tesseract framework for fast neighborhood access to bounding box classes as

illustrated in Figure 44. The grid provided to the MEDS module has, as its contained

object, CP objects determined through the previous hybrid layout analysis. Since one

of the design goals for this module is to ensure the MEDS results are as independent

of previous hybrid layout analysis as possible, the CPGrid is first converted to a

BlobGrid. While the CPGrid allows for nearest neighbor access among the CP's, the

BlobGrid allows for nearest neighbor access among all of the connected components5

in the image as illustrated in Figure 45.

While the BlobGrid is desirable for proper understanding of mathematical

expression regions, it contains no understanding of normal text regions. Easily

recognizable symbols which consist of multiple connected components (i.e. “i” and

5 The terms “connected component”, “blob”, and “character” are used interchangeably in this
work to describe either a single group of connected pixels or a character recognized by
Tesseract which may consist of one or more groups of connected pixels as is the case for
characters like “i” or “=”.

89

Figure 44: The GridBase datastructure is used extensively within the Tesseract framework to

facilitate fast nearest neighbor access among various components on the image. The above

image is a Doxygen-generated inheritance diagram showing many of the different classes

which are derived from the GridBase class. Being a template container class, it's core

functionality of nearest neighbor search can be utilized for any number of data structures

ranging from CP's, recognized blobs (BLOBNBOX), unrecognized blobs (C_BLOBS), and has

been utilized to build a custom grid data structure in this project.

“=”) are kept as separate blobs within the grid. Running Tesseract's language specific

OCR on these separated symbols proved to be largely inaccurate. For instance an “=”

symbol run through Tesseract's character recognizer would consist of a recognition

being made for each horizontal line in the “=”. Surprisingly, in one trial the individual

horizontal lines were often not recognized as dashes but instead as “j”'s. Similar

problems were observed on various other characters. For instance periods were often

mis-recognized as “o”'s.

In order to mitigate such problems, a new GridBase data structure, the

BlobInfoGrid, is implemented in this work, which contains a combination of the

information in the BlobGrid and information attained from running OCR on each

previously determined column partition on the page. The grid's objects contain

information on both the symbols which were recognized during OCR and those which

were not. If information is available from OCR for a given symbol, then the recognized

word to which the symbol belongs as well as its confidence rating are stored within the

object. The object also contains the symbol's bounding box and the sentence to which

it belongs (if applicable). Since, during the recognition stage, some blobs may be

improperly merged into symbols, a second pass is made by the MEDS module in order

to detect all blobs belonging to invalid words, and improperly merged blobs are thus

split into separate objects in order to facilitate proper analysis of potential

mathematical expression regions as illustrated in Figure 46.

90

91

Figure 45: (Top center) The input image. (Bottom-left) The CPGrid of the image which is the

input to the MEDS module. (Bottom-right) The result of converting the CPGrid back into a

BlobGrid. Each rectangle on the image represents a blob. Blobs colored cyan are ones for which

the hybrid analysis was unable to determine whether the blob represents part of text or part of

an image. Yellow blobs have been labeled as “vertical text”.

The new grid data structure, called the BlobInfoGrid is used as input to all

subsequent feature extraction, classification, and segmentation techniques. The

detection module utilizes a supervised machine learning approach in order to predict

which non-noise connected components on a page are most likely to belong with

printed mathematical expressions. Detected regions are considered as the initial

seeds to mathematical expression segmentation carried out in the second stage. The

primary motivation is not necessarily to maximize detection accuracy on the

groundtruth data set, but rather to allow for generalized prediction accuracy on

unforeseen pages. While perfect accuracy is not expected, it is important that at least

a single component for each mathematical expression zone is detected at this stage

since these components may then be merged with their nearest neighbors in a later

step for proper segmentation. Thus, for regions wherein a single component has

already been detected, false negatives may be of very little importance. False

positives, however, will likely be impossible to account for in later stages without

92

Figure 46: Both the bottom left and bottom right images correspond to the mathematical

expression region shown in the upper image. The left image shows the symbols remaining

after OCR by Tesseract. Notice that many of the symbols were ruled out as junk or improperly

merged to their nearest neighbors. On the right is the same expression region after the new

MEDS module noticed that the blobs in the region did not belong to valid words, split them

back up, and reinserted them into the grid for proper analysis.

harming MEDS accuracy. The goal of the detection step is thus to detect at least a

single connected component of each expression zone while minimizing false positives.

The remainder of each detected zone can then be combined with its neighbors using

various heuristics during the segmentation stage of the MEDS module.

 A problem observed with the resulting BlobInfoGrid structure is that certain

mathematical characters would, in some instances, be missing. Tesseract's framework

had, in fact, discarded the characters as noise prior to running the MEDS module or

performing any sort of recognition. Although this problem occurs rarely, it certainly

occurs often enough to be a significant problem. Since resolving such an issue would

require modification to the Tesseract framework external to the MEDS module it is

outside of the scope for the current work. An idea for future work however, is to

modify Tesseract's framework to be less harsh on discarding perceived noise prior to

running any math detection/segmentation modules.

There are two primary components to the detection module: (1) training and (2)

prediction. The training step extracts chosen features from a small subset of the

groundtruth, runs and evaluates the binary classifier on these features multiple times

in order to learn classifier and feature specific parameters. These parameters are then

later used by the classifier to make decisions about unforeseen data during prediction.

Accuracy is evaluated by testing the prediction accuracy on the non-training subset

the groundtruth dataset, and then subsequently evaluated through visual inspection

on random unforeseen data which are completely unrelated to the groundtruth.

 Training and Classification

This section discusses various classifier optimization and design techniques

which have been considered, discusses how training is carried out in the Detection

subsystem, then discusses the SVM binary classifier used for this implementation.

Classifier Design and Model Selection Techniques Considered

Cross validation. A labeled training set is randomly divided into m disjoint

sets of equal size n/m, where n is the total number of labels in the training set. The

classifier is trained m times, each time with a different set held out as a validation set.

The average of the m validation errors is considered as the classifier's performance.

By adjusting parameters so as to minimize this error, it is hoped that the classifier's

accuracy will generalize better to new data.

Jackknife. Train the classifier n times (n is the total number of labels in the

set), each time using the entire training set from which a different single training point

has been deleted. Each resulting trained classifier is then tested on the single deleted

93

point and overall accuracy is estimated as the mean of all test results. Jackknife is

especially good for comparing two classifiers, to see if the difference in accuracy

between them is statistically significant. Jacknife is essentially the same as leave-one-

out cross-validation.

Bootstrap. Samples of any size less than that of the training set are randomly

pulled from the labeled training set with replacement (i.e., the same label may be

used multiple times). The classifier is trained on all of the samples and tested on the

others. The average of all of the accuracies is measured. Classifier parameters can be

adjusted during training in order to minimize the average error.

Bootstrap with Aggregation (Bagging). Results of multiple classifiers

trained on the bootstrap dataset are pooled together in some fashion to get the final

result during prediction. The multiple classifiers are typically all the same type (i.e.

SVM, neural net, decision tree, etc) but have different parameters due to being trained

on different sets. The results of all of the classifiers are typically combined through a

voting mechanism.

Boosting. Multiple weak learners (classifiers with accuracy only slightly better

than chance) are combined in order to achieve arbitrarily high accuracy on the

training set. A subset of labels of some size less than the total number of labels is

randomly selected without replacement and the first classifier is trained on this

subset. A second training set is then selected so that half of the patterns in it are

correctly classified by the first classifier then half are incorrectly classified by it.

Boosting techniques vary based upon how this second and subsequent training

subsets are chosen. An example boosting technique in order to train three classifiers

described in [133] involves flipping a fair coin to decide between the following:

(1) Select remaining labels from the dataset (not in the already extracted

subset) presenting them one by one to the existing classifier until it misclassifies one

of them. The misclassified label is added to the new subset.

(2) Add a pattern that the first classifier classifies correctly.

This is continued until no more patterns can be added in this manner. Thus half

of the patterns in the new subset are correctly classified by the first classifier and the

other half are not. The second classifier is then trained on this new dataset. A third

dataset is then found by presenting remaining labels (not in either of the first two

sets) to the first two classifiers. If the two classifiers disagree, then the label is added

to the third dataset, otherwise it is ignored. Finally the third classifier is trained on the

third dataset.

Adaptive Boosting (AdaBoost). Each label receives a weight that determines

its importance for training new classifiers. If a label is accurately classified, then its

94

chance of being used again in subsequent classifiers is reduced, while if it is not

accurately classified its chance of being used again is raised. The algorithm starts by

assigning a uniform weight to each label in the training set. On each iteration a subset

is drawn according to the weights (initially at random since they are uniform) and a

classifier is trained on the subset. Next the weights of misclassified labels are

increased and correctly classified label weights are decreased. Labels chosen based

upon these new weights are then used to train the next classifier and the process is

repeated until the desired number of classifiers are trained. During prediction, the

weighted output of all classifiers are combined and the final classifier decision is made

using the sigmoid function on this summed output.

Training Process

Training samples are first automatically generated by running the feature

extractor on all BlobInfo objects on the grid. Each BlobInfo object then stores a feature

vector of floating point values, each element of which is normalized between [0,1]. For

each BlobInfo element on the grid, a training sample is created which consists of the

blob's feature vector, it's binary label (math/non-math), and the blob's bounding box

on the image. A label is automatically assigned to each blob by comparing its

bounding box to those of bounding boxes in the manually generated groundtruth

described in Section 3.4.1. Any blob that intersects with a groundtruth box is labeled

as math while all others are labeled as non-math in their corresponding samples as

illustrated in Figure 47.

95

Once each blob is assigned to a label, the labels are fed into whatever training

module is being utilized. The DLib Machine Learning Library [134] is used extensively

in this work for training and binary classification purposes. The library includes several

versions of the Support Vector Machine classifier (SVM), Multilayer Perceptron (MLP),

and Bayesian Networks and also includes a cross validator implementation useful for

optimal parameter selection.

Training Data Selection. With a groundtruth only available for 75 images,

there are not very many options for selecting training pages. In this work, 15 randomly

96

Figure 47: Above is a page from a training image. After the BlobInfoGrid was generated for this

image, each blob in the grid was automatically assigned a binary label (math or non-math)

based upon the blob's location in reference to any entry within the page's manually generated

groundtruth. For debugging purposes, the foreground of blobs which are labeled by the

groundtruth as math were automatically colored red while those which were not were colored

blue.

selected pages from one text book [127] are used for training purposes. Since it is

desired to prove that the classification techniques outlined here can generalize well it

was decided to not use data from more than one book, especially since there are

currently only five books to choose from in the entire groundtruth dataset. Since the

15 pages used for training belong to the same book from which 30 of the total

groundtruth images belong (the other four books each have 15 randomly selected

images which were added to the dataset), testing is carried out both with and without

the other 15 pages from the same book. If accuracy is significantly higher for the

dataset with the 15 pages from the same book then low generalization and

overtraining will become a major concern.

Binary Classification

For purposes of detecting mathematical connected components, a Support

Vector Machine (SVM) is utilized in this work. Each character or connected component

of the image is first assigned a normalized feature vector by the Feature Extraction

sub-module to be described in the next section. This feature vector is then fed into a

SVM binary classifier in order to determine whether the component is math or non-

math. The SVM classification technique, first proposed in 1992 by Vapnik et al. [135],

non-linearly maps a feature vector to a higher dimensional space where a linear

decision surface is constructed. During training the SVM finds a hyperplane in the

higher dimensional feature space with maximal margin between the vectors of the two

classes as illustrated in Figure 48 [136]. The optimal hyperplane is constructed using

the support vectors. The support vectors are a subset of the training samples which

are closest to the decision plane while also maximally separating the two classes

(labeled as -1 and +1 as shown in Figure 48).

Determining this optimal hyperplane involves first choosing the non-linear

kernel function which will map the input feature vectors into a higher dimensional

feature space suitable for the SVM's application. Although the dimensional space of

the transformed feature vector is potentially infinite after the kernel is applied, little

computational complexity is added since the optimal hyperplane algorithm (see

Appendix A.1 in [137] for the mathematical details) uses the scalar results of inner

products from the increased feature space rather than carrying out any of its

computations in that space. The kernel function chosen must satisfy Mercer's

Condition, meaning that any resulting matrix from applying the kernel to all of the

feature vectors must be guaranteed to always be positive semi-definite (i.e.

 for all where is the resulting matrix and is any vector, and

where is the number of rows in the matrix). Mercer's Condition guarantees that a

higher dimensional feature space does indeed exist for any possible set of feature

97

vectors to be kernelized (see p. 283 of [137] for the definition of Mercer's Condition).

Standard kernel techniques such as the Radial Basis Function (RBF), Polynomial, and

Linear have all been proven to satisfy Mercer's Condition.

While, for some situations, a linear decision boundary may be possible with the

unaltered input feature space, the RBF (Gaussian) kernel is often cited as the most

standard kernel function for this task, and is used for the SVM in this work. The RBF

kernel replaces the inner product of the feature vector with the following operation

repeated over every combination of values in the vector during the quadratic

hyperplane optimization algorithm:

The value for gamma is one that needs to be fine-tuned through one of the

aforementioned parameter selection techniques. For purposes of this work, cross

validation is used in order to fine-tune the parameter as the C parameter explained

in the following paragraph.

While the original SVM algorithm proposed in 1992 was implemented for the

restricted case where the training data can be separated without any errors, the

technique was extended in 1995 [137] to work on training data on which some

labeling errors are to be expected. The resulting SVM formulation, often referred to as

the soft margin, C formulation, or the C-Support Vector Classifier (C-SVC), has become

the most widely used in practice and is illustrated in Figure 48. The C-SVC introduces a

slack variable, , for each vector which quantifies margin error (i.e. deviation from the

expected minimum hyperplane distance based upon the support vectors). Each error,

, is added up to give a metric for the total amount of margin error for the given

hyperplane. The constant, C, is a parameter set by the user which specifies how much

total margin error can be tolerated while still achieving the optimal hyperplane. This

parameter, like , is chosen through cross-validation in this work. Through cross-

validation, the combination of and C which gives the best results on the training

data can be chosen.

98

Fine Tuning of SVM Parameters

As previously mentioned, the parameters C and need to be fine-tuned during

training. Among parameter selection techniques that were considered for this purpose

are cross-validation, jack-knife (leave one out cross-validation), bootstrap, and

boosting as described at the beginning of this section. A potential problem with the

bootstrap technique for parameter selection is that the entire training set may or may

not be used since samples are drawn with replacement. Depending upon the nature of

the training set and possibly random chance this may or may not prove to be an

effective mechanism for parameter selection. Bootstrapping with Aggregation

(bagging) involves combining the decisions of several classifiers trained on different

bootstrapped datasets during prediction. Bagging has been observed to increase the

accuracy of unstable classifiers (i.e. classifiers for which small changes in the training

set lead to significant changes in classifier output) [133]. Utilizing an ensemble of

SVM's through bagging has been shown to greatly increase classifier performance for

99

Figure 48: Illustration of the soft-margin, C formulation (C-SVC) of the SVM binary classifier

[136]. The omega vector and beta give the optimal hyperplane within the higher dimensional

feature space specified by the kernel function, psi. The xi values are deviation measurements

of each sample from the hyperplane's expected minimal margin specified by the support

vectors. The soft-margin SVM's C parameter specifies the total deviation that can be tolerated.

handwritten digit recognition [138], and is thus considered as a potential avenue for

experimentation. Like bagging, boosting also operates by combining the output of an

ensemble of classifiers. Boosting, however is considered most effective for training an

ensemble of weak learners so that their combined decision is highly accurate. Since

the SVM is most certainly not a weak learner, the effectiveness of the boosting

technique may be limited for the current approach.

Cross validation is a useful parameter selection technique which has often been

observed to yield favorable results in practice. While 10-fold cross-validation has been

observed to give favorable performance in many scenarios, the decision of how much

to divide the training data is application dependent. If fold cross validation is

carried out where the training set size is (i.e. leave one out cross

validation/jackknife), the classifier yielding the best performance in cross-validation is

more likely to have too high of a variance, be too sensitive to and over-fit the training

set and thus may not generalize well to new data. If too small of an value is chosen,

on the other hand, the resulting classifier may not be sensitive enough to both the

training set and new data, have too much bias, and would be under-fit to the training

data.

In this work, the classifier parameters are fine-tuned using 10-fold cross-

validation. The 10-fold cross-validation model selection procedure is carried out by

running cross-validation on the training set with possible combinations of the model

parameters C and and then choosing the parameters that yield the best average

results. To enhance numerical stability during training, all training samples are each

subtracted by the training sample mean (for each individual feature value in each

sample) and then divided by the training sample standard deviation prior to training

being carried out. While this simple operation had no effect on classifier accuracy, it

was observed to significantly speed up the training procedure from taking several

hours (or even days) to taking less than or slightly more than one hour when training

with over 30,000 samples and using a separate CPU core for each cross-validation. As

recommended in [139], an initial starting point for C and parameters is found

through a coarse parameter selection technique which runs the cross-validation

initially at a low value for both parameters (1e-3 and 1e-7 for C and respectively)

and then exponentially increments each one in turn up to a maximum value (1,000

and 100 are the empirically chosen values used here for C and respectively). A total

of 10 possibilities are tested on each parameter (thus a total of 100 10-fold cross

validations). Whichever (C,) pair yields the highest sum of sensitivity (true positive

rate) and specificity (true negative rate) is the pair that is selected as the starting

point for subsequent finer-tuned parameter selection. The final parameters are then

100

found by feeding them into the Bound Optimization by Quadratic Approximation

(BOBYQA) algorithm [140], a C++ implementation of which is conveniently included in

the D-Lib Machine Learning Library [134]. As with the coarse parameter selection, the

finer-tuned BOBYQA parameter selection finds the (C,) pair which maximize the sum

of sensitivity and specificity.

 Feature Extraction

While the D-Lib Machine Learning Library [134] is utilized for both the training

and classification steps in this work, all of the feature extraction steps were

implemented in-house. To achieve desired results in binary classification it is of the

utmost importance that the features extracted for each character be highly

descriptive at distinguishing math from non-math. For this work, the features

implemented can be categorized as either “spatial” or “recognition-based”. While

spatial features describe a character's spatial relationship with regard to its

surrounding characters, recognition-based features are any features that can be

gleaned from OCR results. Both the spatial and recognition-based features

implemented in this work are described in this section. All feature values that are not

already scaled, are scaled between 0 and 1 using the normalization mapping of

, where is the un-scaled feature value. The rationale behind using this

normalization technique is for slight deviations in the quantities being measured to

result in a significant change to the feature as recommended in [116].

Spatial Features

Number of Horizontally or Vertically Aligned Characters. In many

mathematical equations there are seen elements which essentially “cover” multiple

adjacent elements that are either horizontally or vertically adjacent depending upon

the context as illustrated by Figures 49 and 50. If the center of a horizontally adjacent

character is within the vertical bounds of the current character's bounding box, then

that character is “covered” by the current one as shown in Figure 49. This also applies

when a vertically adjacent character's center is within the horizontal bounds of the

current character as shown in Figure 50.

101

For a character to be considered adjacent however, it has been empirically

found that it must be within half the character's height if looking for horizontally

adjacent neighbors and half the character's width if looking for vertically adjacent

neighbors. Each character is assigned a number of elements greater than or equal to

zero to which it “covers,” based upon the definition specified here, as a feature.

Number of Completely Nested Characters. Similar to the above feature,

however less often observed, are symbols which have multiple characters effectively

nested inside of their bounding box. This has primarily been observed for square roots

and is not very often observed otherwise in practice. If the number of characters

completely inside of the current character is greater than one, then the feature may

be useful as illustrated for the square root shown in Figure 51. Figure 52 demonstrates

results of the nested character feature on a training image.

102

Figure 49: When the integral symbol is analyzed in the above expression, it is measured to have

three horizontally adjacent vertically overlapping elements to its right. The red and blue

bounding boxes were drawn manually a for illustration purposes, where the red box “covers” the

blue boxes.

Figure 50: When the fraction bar in the above expression is analyzed it is found to have one

vertically adjacent horizontally overlapping element above and four below. The red and blue

bounding boxes were manually added for illustration purposes, where the red box “covers” the

blue boxes.

Subscripts or Superscripts. The presence of superscripts and subscripts can

often, but not always, infer presence of mathematical notation. An example of a

situation where mathematics cannot be inferred from superscripts and subscripts is

the presence of footnotes. Used as a single binary feature in conjunction with multiple

other features, the presence of super and subscripts can be informative, however. A

character is assigned four binary features (1 if true 0 otherwise) based upon whether

it has a superscript, has a subscript, is a superscript, or is a subscript. A character has

a superscript if a horizontally adjacent character to the right vertically overlaps at

least to some extent but also has a bottom that is around or above the character's

vertical center. Likewise, a character has a subscript if a horizontally adjacent

character to the right which vertically overlaps at least to some extent has a top that

103

Figure 52: Results of the nested character feature on a training image demonstrated through

foreground region coloring. The red blobs are inside the bounding box of a nested blob. The

square-root in the expression labeled as alpha was filtered out by Tesseract as noise prior to

running the MEDS module. The other three missed square roots were broken into two blobs

and thus have no nested characters. The integrals, parenthesis, and plus sign were all mis-

recognized by Tesseract as containing more than one character.

Figure 51: The square root in the above expression contains 8 elements nested within it.

is around or below the current character's vertical center. A character is a

super/subscript if its neighbor which is found to have a subscript assigns it as its own

super/subscript.

As demonstrated by Figures 53-55, the superscript/subscript feature can be

informative but also misleading in some circumstances. In Figure 53, for instance, a

fraction bar is seen as the superscript of part of an “=” symbol. Punctuation often

meets the previously mentioned requirements of being a subscript. In order to prevent

false detection of punctuation as subscripts, the feature extraction technique makes

sure that, for normal text, the last character is non-punctuation during subscript

detection. Furthermore when detecting a superscript or subscript the current blob

must be the rightmost on its word whereas the neighboring blob (the potential

superscript/subscript) must be the left-most blob on its word. When a blob belongs to

a mis-recognized word, as shown in Figures 53-55, this precaution is of little help

however. An area threshold is also employed in order to prevent noise from being

mistaken for sub/superscripts.

104

Figure 53: Result of sub/superscript detection on a training image depicted by foreground

region coloring in order to illustrate the feature's reliability. The red blobs were detected to

have a sub/superscript, the green blobs are superscripts, and the blue blobs are subscripts.

Due to the page's spacing, the d in second derivative was not found to have a square since the

bottom of the 2 is above d's center. The large parenthesis were also found to have

sub/superscripts based upon the criteria and since it is not known that they are themselves

punctuation due to improper recognition.

Figure 54: The word “Simpson's” was mis-recognized by Tesseract, resulting in the apostrophe

being mistaken for a super-script.

Character Height. Mathematical characters like integral signs, exponents,

square roots, etc. are observed to have heights which differ from the height of normal

text on a page. A distinguishing feature of some mathematical regions is thus their

difference from the average normal text height. Normal text is defined here as any

word for which a valid match is found in Tesseract API's dictionary as described in [29].

The height of all characters or connected components belonging to valid words is

averaged over the image to give the average normal text height. The character

feature is then measured for each character as where is the character height

and is the average normal text height on a page. If there is no normal text found on

the page then the character height feature is simply .

Character Width to Height Ratio. The width to height ratio feature is

primarily utilized in helping to detect fraction bars. Just as with the character height

feature, the average width/height ratio is first taken for all normal text on a page. The

width/height feature is then measured as where is the width/height ratio of the

character being measured and is the average width/height ratio for normal text on

the page. If there is no normal text on the page the width/height ratio is simply and a

flag is set on a separate binary feature to denote that there exists no normal text on

the page. This binary flag is set in order to prevent the classifier from being confused

by the new measurements it may receive for pages without normal text. In this work,

however, all pages tested will have at least some normal text.

Vertical Distance Above Row Baseline (VDARB). Fraction numerators,

fraction bars, and exponents in embedded expressions are positioned above the

baseline wherein normal text is expected to reside. The baseline for each row of text

found by Tesseract is computed by fitting a quadratic spline to groups of blobs using a

105

Figure 55: The word, “right-” was mis-recognized by Tesseract, resulting in the bottom of the

“g” being mistaken for a subscript, the left part of the “h” mistaken as a superscript, and the “-”

being mistaken for a subscript of the right part of the “h” and the “t” which were improperly

combined into a single character.

least squares technique as described in [34]. The fitted baseline can be useful for

detecting outliers on normal text lines, however it loses its meaning for non-normal

text lines like displayed expressions where the fitted baseline is often incorrectly

computed as shown in Figure 56. It was deemed that a row must therefore contain at

least one valid word in order for this feature to be meaningful. If a character resides on

a row which contains at least one valid word, then the difference between that

character's bottom- coordinate to the coordinate of the row's baseline at the

character's position is computed. Since normal characters like the character “p”

often have their bottom residing well below the baseline, all characters with a

negative distance from the baseline are assigned to for this feature, unless the top of

the character is below the baseline as well, in which case the absolute value of the

distance is used. The feature is then subtracted by the average vertical baseline

distance for the normal text on the given row, divided by the row's height, and then

normalized between [0,1] exponentially. If the character does not reside on a row with

at least one valid word then this feature is fixed to 0.

Count of Stacked Characters at Character Position. Mathematical regions

may have a two-dimensional layout that is more complex than what is observed in

106

Figure 56: The baselines found during Tesseract's layout analysis were automatically drawn on

a training image in order to gauge the effectiveness of the VDARB feature. From the above

example it is can be seen that, while Tesseract's quadratic spline line detection algorithm is

highly effective on normal text, results are somewhat unpredictable in the presence of

mathematical expressions.

normal text regions. If a character is observed to be part of a non-existent or non-valid

word after language recognition, then a vertical search is done above and below that

character at its horizontal position to count the total chain of adjacent nearest

neighbors that also belong to invalid or non-existent words. A neighbor is considered

adjacent only if its distance from the current character is less than or equal to half of

the initial character's height (height of the character at the position being measured).

The nearest neighbor search looks up first until all characters which meet the

aforementioned criteria are found and then does the same by looking down. The total

number of stacked characters does not include the current character itself because

the exponential normalization technique used (as described in [116]) yields much

better separation this way. The method is illustrated by Figure 57.

Examples of feature values found using this technique are shown in Figures 58

and 59. Words which are considered valid by Tesseract's dictionary method are

discarded for purposes of this feature in order to avoid false positives. Unfortunately,

this causes several blobs which should have a stacked feature of 1 or 2 to be fixed at 0

as can be observed in Figure 58. The at the bottom left of Figure 58, for instance, is

considered to be a valid word by Tesseract and thus has a stacked feature fixed at 0.

This also occurs for the , , , and . The is a somewhat unusual

circumstance because the word was misrecognized and improperly segmented into

three blobs by Tesseract: the “si”, the dot on the i, and the “n”. The “si” has one

stacked feature above it because the dot on the “i” is mistaken for a separate entity.

The “si”, “n”, as well as the however are at a distance from the fraction bar greater

than half of their heights and are thus not seen as adjacent to it. The , on the other

hand is seen to have two adjacent elements below it: the fraction bar and the closing

bracket. More results of this technique are demonstrated in Figure 59. Although by no

means perfect, this feature can give a good indication of the the “geometric

complexity” of a mathematical expression region as described in [115].

107

Figure 57: Fractions are an example of mathematical notation that is often two dimension-ally

more complex than is normal language text. For the left side of the equation, both of the d

symbols have 2 as their stacked count features. The minus signs and exponents are the

exceptions as they are assigned 0. The fraction bars are also assigned 0 because their height

is very low so that no nearest neighbors can be vertically adjacent.

Recognition-based Features

Recognized Math Symbols or Words. The language6 Tesseract OCR utilized

in this work allows for the instant detection of some basic mathematical characters

like “<”, “>”, “+”, “-”, “/”, “%”, etc. While using OCR trained specifically for

mathematics would increase accuracy significantly and allow for the detection of more

6 Here the language classification result indicates the result of a classifier that was trained for
a particular language. Although in the context of this work English is all that is tested, testing
of existing techniques in various languages is of interest for future studies.

108

Figure 58: Results of using the described stacked feature algorithm on the same expression

shown in Figure 53. Dark blobs have a stacked feature of 0, red blobs have a stacked feature

of 1, and green blobs have a stacked feature of 2.

Figure 59: Results of using the described stacked feature algorithm. Dark blobs have a stacked

feature of 0, red blobs have a stacked feature of 1, green blobs have a stacked feature of 2,

and blue blobs have a stacked feature of 3 or more.

complex symbols like integrals, greek letters, etc., training Tesseract for new symbols

is a very time consuming task that is kept as an idea for future work. For purposes of

this work a finite list of math words has been generated. If a character belongs to a

word or symbol on the list then its corresponding recognized math symbol feature is

set to 1, otherwise it is 0.

Italicized or Bold Text. Single italicized or bold characters among normal text

have often been observed to correspond to mathematical variables. Whether or not

the text is math often depends upon the context of the sentence to which they belong.

A helpful feature in further distinguishing math from non-math in a sentence is

linguistic analysis. If a sentence has n-grams that have been measured to extensively

belong to mathematical sentences then the likelihood of bold or italicized characters

in that sentence being mathematical increases. The n-gram feature used in this work

is discussed in a following section. Tesseract utilizes a technique described in [29]

which detects bold and/or italicized text. Unfortunately, however Tesseract's

assignment of bold/italics was found to be rather unstable as illustrated in Figure 60.

Since italics appear to be much more accurate than bold assignments, only italics are

utilized as a feature for purposes of this work. If a blob belongs to an italic word the

feature is assigned 1 otherwise it is fixed to 0.

OCR Confidence Rating. After language-specific OCR is carried out, normal

text can be largely distinguished from abnormal text based upon the OCR confidence

109

Figure 60: Results of Tesseract's italic and bold text assignment. Blobs colored red were

detected as italic, green as bold, and blue as both bold and italic.

rating assigned to each recognized character. This feature primarily serves to rule out

normal text from potentially mathematical text, and does not necessarily say anything

about whether or not a character should be considered mathematical. After carrying

out recognition on a character, Tesseract assigns to it a rating which specifies how

confident the OCR engine was in making its final decision. The rating which Tesseract

assigns to a character is a negative number which approaches zero for high

confidence but may be as low as -20 for characters recognized with extremely low

confidence. The confidence feature is computed as where is the current

character's confidence rating and is the average character confidence rating on the

page for characters which are part of valid words. If there are no valid words on the

page then the feature is simply and a separate feature, which indicates whether or

not a valid word is found on the page is set to 1 where it would normally be 0.

Linguistic Analysis (n-grams). Since the Tesseract OCR utilized in this work

can recognize normal text with near perfect accuracy, linguistic analysis can be

performed in order locate sentences of recognized text which are likely to contain

mathematical notation. In a 2005 project by Garain and Chaudhuri [115], an in-depth

statistical study was carried out on 297 document pages from books, journals, and

exam papers and 103 synthetically generated document pages (from Microsoft Word

and TEX). Among several other in-depth analyses, a linguistic analysis was carried out.

Linguistic analysis of sentences revealed that a word-level n-gram model could be of

great help in categorizing sentences into one of two categories: namely with or

without mathematical expressions. In the study, uni-grams, bi-grams, and tri-grams

are extracted for 870 sentences containing math and 2,655 not containing math. The

n-grams are ranked separately for each category based upon frequency of occurrence.

The top 150 n-grams for each class are used to generate an “n-gram Profile” for their

respective class.

In Garain's work, a classification technique utilized on 877 new test sentences

involved first finding the n-grams for that sentence and counting the number of the

found n-grams that exist in the math and non-math n-gram Profiles respectively. If

more of the sentence's n-grams were observed in the math category then the

sentence is categorized as math, otherwise if more n-grams were observed in the non-

math category the sentence is categorized as non-math. If the sentence has equal

amounts of math and non-math n-grams then it is considered indeterminate. Test

results showed that accuracy increased for sentences with more n-grams. Accuracy

ranged from 90.2% for sentences with up to 50 n-grams to 98.9% for sentences with

up to 150 n-grams.

110

In this work, n-grams are ranked by frequency of occurrence from the result of

Tesseract's OCR on 7 of the 15 pages which were taken from [127] and used for

training. The rationale behind not using all 15 pages to generate n-gram Profiles is to

avoid over-training of the classifier to this particular text, and, as previously

mentioned, only pages from a single text were chosen for training since only 5 texts

are currently available in the entire dataset. A sentence is, in this work, defined as a

sequence of words starting with a valid word having a capitalized first letter and

ending with either a “.” or a “?” (“!” is not used as a sentence ending due to the

presence of factorials). Sentences recognized by Tesseract are first automatically

separated into math and non-math by determining each sentence's region on the

image and comparing that region to the manually generated groundtruth. If a

sentence overlaps any groundtruth region then it is labeled as math otherwise it is

labeled as non-math. Next, n-gram profiles are generated for both the math and non-

math sentences. These profiles, including uni-grams, bi-grams, and tri-grams, are

ranked by frequency of occurrence, and are each placed in their own text file. The

matching n-grams in the non-math profile are then subtracted from matching n-grams

in the math profile so that the math profile gives the frequency of occurrence of the n-

grams most relevant to math sentences. If there are more math n-grams than non-

math n-grams then the count of matching non-math n-grams are upweighted by the

ratio math/non-math word ratio during subtraction. The updated frequencies are then

used to re-rank the math n-gram profile in descending order of updated frequency. The

updated math n-gram profile is then utilized in this work to generate an n-gram-based

feature for all characters belonging to a given sentence. After a brief discussion of how

individual characters are assigned to sentences within the context of this work, the

method used to assign the n-gram feature (i.e. probability that a sentence contains

math based on n-grams) to a sentence is discussed. Also the resulting n-gram profiles

for the limited dataset will briefly be covered.

Assigning Blobs to Sentences. In order to ensure that the right n-gram

feature is assigned to each blob within a sentence, it is important that each blob is

physically assigned to the correct recognized sentence to which it logically belongs.

Although tesseract does not store a mapping from the individual blob to the physical

row of text to which it belongs, it does inherently store a row of text which points

indirectly to all of the characters that reside on that line. The results of Tesseract's

page recognition are stored in a top-down fashion, starting with a small set of blocks

each of which contains one or more rows with the rows each containing one or more

words which each contain one or more individual blobs. During preparation of the

BlobInfoGrid, tesseract's OCR is carried out on the entire page for which the

111

BlobInfoGrid is being created. The result of Tesseract's OCR is a “page result” object

which points to the resulting blocks, rows, words, and blobs structured in the top-down

manner previously mentioned. In order to assign individual blobs to sentences, it is

necessary that the blobs also have access to the word and row to which they belong

which is not the case for the output of Tesseract. Since bidirectional access is not

given by Tesseract's page results, some very simple but convenient data structures

are implemented in this work. In order to give the BlobInfo objects access to the word

and row to which they belong, a “WordInfo” object pointer is assigned to each BlobInfo

object. This WordInfo object is created for each word recognized by Tesseract and

contains pointers to all BlobInfo objects which reside within it, a pointer to the row to

which the word belongs, a pointer to the word result from Tesseract, and sentence

start and ending flags which are only true if the given word is found to reside on a

sentence boundary. Likewise a “RowInfo” object pointer is assigned to each WordInfo

object. The RowInfo object contains pointers to all WordInfo objects contained in it, the

corresponding row result from Tesseract, a convenience function for concatenating the

recognized text of all words on the row, and also stores any other convenient

information: for instance the average distance of each of the row's blob's from the

row's baseline if that is needed for feature extraction. BlobInfo objects for which no

Tesseract recognition results are obtained are assigned to a NULL WordInfo pointer.

Although pointer access is both to and from each RowInfo object and its WordInfo

objects, the WordInfo objects are owned by the RowInfo object in which they reside

and are deallocated upon the RowInfo object's destruction. Each of the RowInfo objects

are stored in a vector belonging to the BlobInfoGrid.

Sentences are first found by iterating through the RowInfo vector in order to find

the words which signify sentence boundaries. The convention adopted here is that

only valid capitalized words, i.e., words which have been deemed as “valid” by

Tesseract's API and consist of a capitalized letter immediately followed by a lowercase

one, can be considered as sentence start boundaries. Likewise only valid words ending

with a period or question mark can be considered as sentence ending boundaries. The

exclamation point is not used as a sentence boundary in this work because factorial

symbols have been observed to cause otherwise valid sentences to end prematurely.

Once the first start boundary word is detected, the subsequent words are checked for

end boundaries. With the detection of an end boundary, the algorithm then seeks start

boundaries again for subsequent words repeating the previously mentioned pattern

until the last word on the page is reached. If the last word is reached and an end

boundary is still being sought then the final word is flagged as the sentence's end

boundary regardless of its content. Each time an end boundary of a sentence is found,

112

a Sentence object is instantiated to store the indices of its row and word boundaries

and the recognized text in the sentence. The Sentence object also stores the bounding

box coordinates of each of its rows as well as the n-grams found during feature

extraction. Each Sentence object is appended to a vector owned by the BlobInfoGrid.

The BlobInfo objects belonging to sentences are then each assigned an index

corresponding to the Sentence object to which they belong. In order to assign the

BlobInfo objects to their sentences the RowInfo vector is again iterated with the row

and word indices of each WordInfo object in each row being checked against the

corresponding row and word boundary indices for all of the Sentence objects. If the

current WordInfo object is found to belong to a sentence then all of the BlobInfo

objects which it points to, i.e., which were found to belong to the word during

Tesseract page recognition, are assigned to that same sentence. Determining which

sentence the WordInfo object belongs to involves iterating through each sentence

object and comparing the WordInfo object's word and row indices to the corresponding

sentence boundary indices as follows. If the row index is less than the Sentence start

row or greater than the sentence end row then word is not part of the sentence,

otherwise if blob's row index is in between the sentence's start and end row

boundaries then the word is assigned to that sentence. If the word is on a sentence

row boundary then the decision requires also comparing the word index as follows: if

the current sentence starts and ends on the same row then the word's index must be

>= the sentence start boundary and <= the sentence end boundary. If the sentence

starts and ends on different rows and the word is on the starting row then its word

index must be >= the sentence's start word boundary but the end word boundary

does not matter. Likewise when the sentence starts and ends on different rows and the

word is on the ending row of the sentence then the word's index must be <= the

sentence's end boundary but the start boundary does not matter. Results of this blob

sentence assignment technique are illustrated in Figure 61.

113

The Tesseract recognition results for the sentences shown in Figure 61 are as shown

below. It is observed that Tesseract often mistakes the lowercase “w” for a capital one

and of course the mathematical text primarily results in junk output except for the

and variables which are recognized perfectly in several cases.

Sentence 1: Wide variety of integrands integrable in terms of elementary functions.=

Sentence 2: The devices which Will be treated are:

Integration by parts, Resolution into partial fractions,

Various substitutions, Reference to tables of integrals.

Sentence 3: Integration by parts is an application of (61) when written as

fun’ = uv — fu’v.

114

Figure 61: An excerpt from a training image. For debugging purposes, each blob has been

automatically colored according to the sentence to which it is assigned. The first sentence is

red, the second blue, the third green, the fourth is red, etc. Leptonica [122] is utilized in this

work for pixel coloring.

Sentence 4: That is, it may happen that the integrand can be written as the product

uv’ of two factors, where v’ is integrable and where u’v is also integrable.

Sentence 5: Then uv’ is integrable.

Sentence 6: For instance, logo: is not integrated by the fundamental formulas ; but

floga:=flog2:-lzxloga:-—-fa:/:c=a:loga:-9:.

Sentence 7: Here log 3; is taken as u and 1 as 1:’, so that v is 2:, u’ is 1/9:, and u’v =

1 is immedi- A

ately integrable.

Sentence 8: This method applies to the inverse trigonometric and hyperbolic

functions.

Sentence 9: Another example is

fa: sina: =— 3: cosa; +fcos2: :- sina: — cc cosx.

Although some junk output is assigned a sentence with the current technique, a

largely useful n-gram Profile is made assuming that there is enough sentence content

to analyze.

N-gram Profile. After feeding 7 of the 15 available training images from [127]

into the n-gram Profile generator developed in this work, some interesting results were

obtained as shown in the below table. Of a total of a meager 75 math sentences and

34 non-math sentences the top 20 math n-grams found after subtracting matching

non-math n-grams (each matching non-math n-gram is weighted by the math to non-

math total word count ratio during subtraction) are shown in Table 2.

115

Table 2: N-gram Profile automatically generated from 7 of the 15 training images used in this

work. 75 math and 34 non-math sentences were used to generate this profile. All matching

non-math n-grams are subtracted from the math n-gram counts after being weighted by the

math/non-math word ratio to result in the above profile.

Tri-grams Counts Bi-grams Counts Uni-grams Counts

area under the 4 the function 10 = 47

under the curve 4 at the 7 + 18

equal to the 4 of a 6 f 16

mass of the 4 the area 5.6532 function 10.9596

be written as 3 the mass 5.6532 approach 9

written as the 3 the curve 5 y 8

limit of the 3 the density 5 area 7.6532

the rod to 3 equal to 5 sin 7

of the rod 3 it is 4.3064 rod 7

continuous at the 3 and if 4 density 7

is not continuous 3 be written 4 mass 6.6532

not continuous at 3 the product 4 values 6

exactly equal to 2 under the 4 value 6

than the original 2 if the 4 written 5

integration by parts 2 written as 4 between 5

as the product 2 the rod 4 variable 4

a function f 2 that the 3.3064 case 4

is integrable and 2 values of 3 product 4

it is necessary 2 function f 3 integrable 4

it is clear 2 integral of 3 intervals 4

As may be expected for such a limited amount of data, a lot of the n-grams are

largely specific to the particular document in which they are found. For instance the

word “mass” and “rod” are seen a significant amount of times for this limited amount

of sentences and are largely specific to the particular context in which the words are

used. tri-grams like “it is clear” or “it is necessary” however may be useful for a wider

116

range of documents. Adding more data to the groundtruth dataset would make the

coverage of these n-gram profiles much more powerful. For purposes of this study, a

short list of empirically determined stop-words is manually generated to specify uni-

grams which should likely be removed from the profile like “a”, “the”, “and”, etc.

N-gram Feature Assignment. All blobs belonging to a given sentence are

each assigned their own uni-gram, bi-gram, and tri-gram features. The n-grams are

first extracted from the sentence. The features each start at zero and are incremented

by the count of all matching n-grams to the n-gram Profile. The features are then

scaled to an interval from [0,5], with 0 being the lowest possible n-gram feature and 5

being the highest. The feature is then normalized to [0,1] using on the scaled

feature. The manner in which the scaling is carried out is decided empirically and

depends upon the nature of the n-gram Profile. If the highest counted object on the

profile has a count less than or equal to 5, then the total n-gram feature for that

sentence is kept as the original count but capped at 5. If the highest counted object on

the profile has a count greater than 5 then the feature is divided by 10, an empirically

chosen constant, and capped to 5 as the upper bound.

 Segmentation Subsystem
The segmentation subsystem takes as its input all regions that were recognized

as math by the detection subsystem previously explained (the seed regions), and

merges them with their neighbors to find all of the logical math zones on the image

with as few under-segmentations, over-segmentations, missed regions, and false

positives as possible. It is also decided within this subsystem whether an expression

should be labeled as displayed or embedded. The resulting math regions can then be

fed directly into a recognition module, assuming that the segmentation system has

made the proper decisions.

This step does not include a classifier and relies upon various heuristics in order

to make the appropriate decisions. Although no supervised learning is utilized in this

work, it would not be difficult to extend this module to handle supervised learning.

Training would involve assigning each blob the directions to which it should be

merged. For instance the fraction bar in the following expression should be merged

with its nearest neighbor above and below while should be merged with its nearest

neighbor left, right, and below. Four binary classifiers could be trained, each one

representing one of the following merge procedures: merge with nearest neighbor left,

right, above, and below. If any of the the four classifier outputs are 1 then the

corresponding merge operation would be carried out. If a seed region “covers”

multiple regions either horizontally or vertically as previously explained in the spatial

117

feature extraction section of this work entitled Number of Horizontally or Vertically

Aligned Characters, then all of the adjacent neighbors covered by the seed region in

the appropriate direction would be merged rather than just the nearest neighbor. If a

blob is already merged in a given direction then no action would be required during

the prediction stage. Although supervised learning of these four binary classifiers and

choosing the best features for them would be a productive avenue for

experimentation, it is kept as an idea for future work and is here replaced by a simpler

unsupervised heuristic approach to be described in this section.

During the segmentation process, a seed region can be merged in any

combination of the following directions: left, right, up, or down. The decision as to

which directions are appropriate for merging are based on various heuristics which are

enumerated in this section.

Classify as Displayed or Embedded. Each math blob is first classified as

either displayed or embedded. The classification technique employed here is simple: if

a blob belongs to a row that is deemed as “normal” then it is classified as embedded

otherwise it is classified as displayed. Normal rows have a good overall recognition

confidence and have a predictable vertical spacing. The width in normal text rows is

also predictable up to the last row of a paragraph which is expected to be less than or

equal to the width of its preceding rows. Specifically, the number of valid words is

counted on each individual row and then the mean and standard deviation of the valid

word count per row is calculated (only rows containing at least one valid word are used

in this measurement). Two passes are carried out in order to determine whether a row

should be considered “normal” or “abnormal” (abnormal rows end up being

considered as candidates for containing displayed expressions in this work). On the

first pass, rows are classified as “abnormal” if their valid word count negatively

deviates from the average by more than twice the standard deviation. On the second

pass, the average and standard deviation of the vertical space between rows are then

calculated (the top row is not included in this calculation since it is often a header). If

the vertical space above a row previously classified as “abnormal” is below the

standard deviation, then the row is considered to be a paragraph ending and assigned

back to “normal”. An example of results for this procedure is illustrated by Figure 62.

An improved classification technique for normal and abnormal rows would enhance

both detection and segmentation accuracy significantly but is kept as a goal for future

work.

118

Segmentation Algorithm. The segmentation algorithm works by iterating

through all of the BlobInfo elements in the grid, skipping them unless they are

mathematical and haven't already been processed. When an unprocessed

mathematical region is found, it is first flagged as processed in order to ensure it will

119

Figure 62: Result of normal/abnormal row classification technique. The blue foreground

regions are part of rows classified as “abnormal” while the red foreground regions are

part of “normal” ones.

only be processed once. A Merge Decision is made for each of the four directions as

specified in the Merge Decision subsection. The Merge Operation (as specified in the

Merge Operation subsection) is then carried out on whichever of the four directions

were decided for merging by the Merge Decision. The aforementioned operation is

recursively repeated for every merged blob until all merged blobs are processed and

no more merges are deemed necessary by the Merge Decision. The algorithm then

continues iterating the BlobInfo elements, repeating the aforementioned procedure for

each BlobInfo element. The final math zones are then set to the bounding box

represented by the top left and bottom right points of each resulting segmentation.

Data structures Utilized. Each BlobInfo element contains a Merge object

which specifies what merge operations are to be carried out. The Merge object

contains an initially NULL pointer for each direction (left, right, up, and down). If a

merge operation in the corresponding direction is not to be carried out then the

pointer will remain NULL, otherwise it will point to the merged BlobInfo element. The

Merge object also contains a flag which specifies whether or not the corresponding

BlobInfo element has already been processed so that each will only be processed

once. Each Merge object also contains a pointer to the bounding box which

corresponds to the entire segmentation to which it's BlobInfo element belongs.

Whenever a merge operation is carried out, this segment is modified if the new object

merged is outside of the bounds of it's segment's bounding box.

Merge Decision. For each unprocessed mathematical BlobInfo element, a

merge decision must be made for the four directions. The factors which underlie the

merge decision are dependent upon whether the merge direction is up/down or

right/left.

Vertical Merges. Fraction bars should typically be merged both up and down with the

elements that they “cover” as explained earlier in the Feature Extraction subsection.

Also of interest here are limits and intervals wherein characters below and/or above

need to be merged as illustrated by Figure 63.

120

Stacked elements at a position which satisfy the rules in the Stacked element

feature section are merged up/down. The features found during feature extraction are

useful here. If an element has a stack count greater than one, the stacked neighbors

are all immediately merged.

Once any tall element or stack of elements is merged, the entire merged region

in question immediately grows in size. Each element being merged is immediately

assigned to the box which represents the entire segment which it has joined and

required to grow the segment if it is outside of its bounds. The size of the segment to

which a blob belongs plays a role in merging new blobs when dealing with displayed

expression regions. If the current blob has been classified as part of a displayed

expression, belongs to a segment which vertically “covers” multiple objects adjacent

to it (the entire segmentation), and none of the adjacent blobs are separators

(periods, commas, phrases like “such that” “therefore” “thus” etc), then all of the

covered blobs are immediately merged. In Figure 64, for instance, the entire merged

region would start with just the |A|, then its right would be modified as the equivalent

operator is merged (as described in the following horizontal merging subsection), then

top and bottom bounds would be modified as the large vertical bar is merged, etc.

121

Figure 63: The above expressions were taken from the groundtruth dataset used in this work.

The summations, limits, and fractions illustrate the need for vertical merging of fraction and

non-fraction elements alike.

Horizontal Merges. As explained in the previous section, the vertical “coverage”

feature is made useful in order to horizontally merge multiple vertically overlapping

elements as shown in Figure 64. For displayed expressions, the rule employed here is

to continue merging right until either a significant space gap is found (empirically

decided as more than twice the maximum gap observed in the current segmentation)

or a separator is detected. For embedded expressions the merging is more

conservative. If the seed is a known binary operator then a merge takes place both to

the left and right. Merging to the right is obvious if the nearest adjacent neighbor is

math, otherwise it becomes tricky. This work will rely largely on the detector's

accuracy for embedded expressions. If the nearest neighbor to the right is part of an

invalid word but was not classified as math, then merging will only take place if either

the current blob is a known operator or if the adjacent blob is close enough to the

current one (an empirically chosen distance of less than half the width of the current

blob has been chosen for this task).

Merge Operation. Whenever a merge operation is carried out the pointer in

the corresponding direction will be set to the merged element, and then the merged

element's corresponding pointer in the opposite direction will be set as well. Thus if a

right merge is carried out then the current blob's right pointer is set to the blob on the

right while the merged blob's left pointer is set to the current blob. This operation

ensures that the blobs are logically linked to each other in each direction. As

previously mentioned, each blob has access to the bounding box which gives the

entire region currently under segmentation. If a merged blob is outside of this

boundary, then the boundary is modified to fit the blob during the merging process.

122

Figure 64: An expression taken from the training set which includes a determinate.

Determinates and matrices include multiple vertically stacked elements which must be

merged into a single math segment.

Final Output Preparation. Once all the math segmentations have been

prepared, the column partitions found by Tesseract are modified only in places wherein

mathematical partitions have been found (i.e. if a paragraph contains embedded

mathematical expressions, the regions corresponding to these expressions should be

understood as part of the paragraph however segmented from the normal text).

3.4.3 Evaluation Module
A significant problem observed in previous work for math detection and

segmentation has been that of objectively comparing the performance of one

technique to another. Difficulties in objective comparison of different works are a

result of each author using their own private datasets and evaluation techniques. In

this work the evaluation code as well as the dataset are made publicly available [126]

in order to encourage objective performance comparison of current, new, and existing

MEDS techniques. This section describes the design and functionality of this work's

pixel accurate evaluation module.

The evaluation module used in this work is designed to evaluate both the math

regions found by Tesseract's default MEDS module [141] as well as the math regions

found by any newly implemented MEDS module which overrides Tesseract's default

one. The output of Tesseract's default equation detector is automatically evaluated by

first writing the results to a “box file” which contains the left, bottom, top, and right

coordinates for each detected region as illustrated in Figure 65 and also coloring the

corresponding pixels in the image based on the result type of each box file entry as

illustrated in Figure 66.

123

124

Figure 65: Debug output from Tesseract's default MEDS module. Red regions were

classified as displayed expressions, green regions classified as embedded, and blue

regions are non-math.

The foreground regions are then also colored for the rectangles in the

corresponding image's manually generated groundtruth data as illustrated in Figure

67.

125

Figure 66: The same image as shown in Figure 53 except with the foreground regions

colored for the math expression bounding boxes found by Tesseract's default MEDS module.

The blue regions here were labeled as part of an embedded expression region while the red

regions were labeled as part of a displayed expression region.

Figures 66 and 67 illustrate the hypothesis and groundtruth (correct) results

respectively which are compared in this module in order to evaluate the correctness of

the hypothesis. The term hypothesis is used by this section to refer to any MEDS

results for a type of expression in a single image whereas the term groundtruth refers

to the expected/correct segmentation results for a type of expression in a single

image. Figures 66 and 67 are thus essentially representing two groundtruth/hypothesis

pairs since both embedded and displayed expressions are shown. A single

groundtruth/hypothesis pair is used to evaluate just one expression type (either

displayed, embedded or optionally displayed expression labels). Both the groundtruth

and hypothesis are represented by an image/file pair. The image is as shown in Figures

66 and 67 (except with only one color being observed) and allows for pixel accurate

evaluation while the file gives the bounding boxes of all segmented regions. While the

image allows for pixel-accurate comparisons, the file allows for the detection of over-

segmentations and under-segmentations. Over-segmentations occur when a single

126

Figure 67: The same image as shown in Figures 53 and 54 but with the foreground regions of

the bounding boxes from the manually generated groundtruth automatically colored using

the same convention as in Figure 54.

region in the groundtruth is incorrectly divided into multiple regions by the hypothesis,

while under-segmentations occur when multiple regions in the groundtruth are

incorrectly merged into one region by the hypothesis.

Pixel-by-pixel comparison of the foreground pixels of the groundtruth and

hypothesis images allow for the pixel accurate calculation of True Positive Rate (TPR),

Positive Predictive Value (PPV), Accuracy (ACC), False Positive Rate (FPR), False

Discovery Rate (FDR), True Negative Rate (TNR), and Negative Predictive Value (NPV).

All 7 of the aforementioned pixel accurate metrics are defined in Table 3 with the

following notation:

Positives (P). P pixels are the foreground pixels in the groundtruth that are of

the color being observed (i.e. red if evaluating displayed expressions and blue if

evaluating embedded expressions).

Negatives (N). N pixels are the total foreground pixels in the groundtruth that

are not of the color being observed (either black or the color of a different expression

type which is not currently being evaluated).

True Positive Pixels (TP). TP pixels that are colored in the groundtruth and

are also colored in the hypothesis. TP are thus pixels that are correctly labeled in the

hypothesis.

False Negative Pixels (FN). FN pixels are colored in the groundtruth but not

in the hypothesis. The FN and TP pixels should add up to the total positive pixels in

the groundtruth (P).

False Positive Pixels (FP). FP pixels are not colored in the groundtruth but

are colored in the hypothesis.

True Negative Pixels (TN): TN pixels are not colored in the hypothesis and

are also not colored in the groundtruth. The sum of the TN and FP pixels should be

equal to the total negative pixels in the groundtruth (N).

127

Table 3: The seven pixel-accurate metrics which are found to measure the validity of a

hypothesis in comparison to a groundtruth along with measurements of oversegmentations

and undersegmentations.

Metric Pseudonyms Definition

TPR Recall/Sensitivity/Hit Rate TP/(TP+FN) = TP/P

PPV Precision TP/(TP+FP)

ACC Accuracy (TP+TN)/(TP+FN+TN+FP) = (TP+TN)/(P+N)

FPR Fallout FP/(FP+TN) = FP/N

FDR False Discovery Rate FP/(FP+TP)

TNR Specificity TN/(FP+TN) = TN/N

NPV Negative Predictive Value TN/(TN+FN)

In order to calculate the metrics shown in Table 3 and to count the

oversegmentations and undersegmentations, a bipartite graph data structure is

utilized [87]. The bipartite graph data structure consists of two graphs, one

representing the hypothesis and the other representing the groundtruth. For each

graph, the vertices are first added, each one representing a segmented region. Edges

between the groundtruth and hypothesis graphs are then made to represent the

intersection of pixels between them. If a vertex is unmatched by the other image (i.e.

a segmented region in one graph has no overlapping region in the other) then it will

have no edges. Vertices may also have multiple edges if more than one region in the

other graph intersects the one in the current graph.

Once the bipartite graph structure is initialized with all of its vertices and edges,

it then becomes rather easy to measure over-segmentations, under-segmentations,

entirely missed regions, and entirely false positive regions. Over-segmentations occur

when one vertex in the groundtruth maps to many in the hypothesis and under-

segmentations occur when a single hypothesis vertex maps to multiple groundtruth

vertices. A region is entirely missed when a groundtruth vertex has no edges and a

region is entirely false positive when a hypothesis vertex has no edges. For each

hypothesis region, the number of overlapping groundtruth pixels gives the true

positives. These true positives aggregated over the entire image and then divided by

the total positives in the groundtruth then gives the TPR. Similar calculations are then

carried out for the remaining six metrics and aggregated for the entire image to yield

the final metrics. The metrics are then written to a file in the following format:

128

// region-wide statistics:

[# correctly segemented regions] / [total # regions]

[# regions completely missed (fn)]

[# regions completely wrongly detected (fp)]

// stats on oversegmentations and undersegmentations:

[# oversegmented regions]

[# total oversegmentations for all regions]

[# avg oversegmentations per oversegmented groundtruth region]

[# undersegmented regions]

[# total undersegmentations for all regions]

[# avg undersegmentations for undersegmented hypothesis region]

// pixel counts:

[# total foreground pix (tp+fp+tn+fn)]

[# total positively detected pix (tp+fp)]

[# total negatively detected pix (tn+fn)]

[# total true positive pix (tp)]

[# total false negative pix (fn)]

[# total true negative pix (tn)]

[# total false positive pix (fp)]

// metrics based on pixel counts (all between 0 and 1)

[TPR/Recall/Sensitivity/Hit_Rate = tp/(tp+fn)]

[Precision/Positive_Predictive_Value = tp/(tp+fp)]

[Accuracy = (tp+tn)/(tp+fn+tn+fp)]

[FPR/Fallout = fp/(fp+tn)]

[False_Discovery_Rate = fp/(fp+tp)]

[TNR/Specificity = tn/(fp+tn)]

[Negative_Predictive_Value = tn/(tn+fn)]

In the above format, the statistics on over-segmentations and under-

segmentation requires some explanation. The number of over-segmented regions

gives the number of vertices in the groundtruth which have more than one edge in the

hypothesis. The total over-segmentations for all regions gives the total number of

edges aggregated over each over-segmented groundtruth region. The average over-

segmentations per over-segmented groundtruth region gives the average number of

129

edges that an over-segmented groundtruth vertex has over the entire groundtruth

graph (i.e., the average severity of an oversegmentation). This is effectively a

measure of how badly split a typical over-segmented region is. The under-

segmentation statistics are very similar to the over-segmentation ones. Under-

segmentation, however, is found when a hypothesis vertex has more than one edge

pointing to the groundtruth. To illustrate the usefulness of the evaluation module,

evaluation of the default Tesseract MEDS module was carried out on the input image

shown in Figures 65-67 yielded the metrics shown in Tables 4-7 for displayed

expressions:

Table 4: Region-wide statistics for Tesseract default equation detector.

Region-wide Statistics Measurement

correctly segemented regions] / [total # regions] 4/16

regions completely missed (fn) 10

regions completely wrongly detected (fp) 0

Table 5: Over/under-segmentation statistics for Tesseract default equation detector.

Over/under-segmentation Statistics Measurement

oversegmented regions 0

total oversegmentations for all regions 0

avg oversegmentations per oversegmented groundtruth region 0

undersegmented regions 1

total undersegmentations for all regions 2

avg undersegmentations for undersegmented hypothesis region 2

130

Table 6: Pixel count statistics for Tesseract default equation detector.

Pixel Count Statistics Measurement

total foreground pix (tp+fp+tn+fn) 1,157,429

total positively detected pix (tp+fp) 140,878

total negatively detected pix (tn+fn) 1,016,551

total true positive pix (tp) 140,096

total false negative pix (fn) 130,031

total true negative pix (tn) 886,520

total false positive pix (fp) 782

Table 7: Pixel accurate metrics for Tesseract's default equation detector.

Pixel-accurate Evaluation Statistics Measurement

TPR/Recall/Sensitivity/Hit_Rate = tp/(tp+fn) 0.518630

Precision/Positive_Predictive_Value = tp/(tp+fp) 0.994449

Accuracy = (tp+tn)/(tp+fn+tn+fp) 0.886980

FPR/Fallout = fp/(fp+tn) 0.000881

False_Discovery_Rate = fp/(fp+tp) 0.005551

TNR/Specificity = tn/(fp+tn) 0.999119

Negative_Predictive_Value = tn/(tn+fn) 0.872086

131

4 Experimental Results
The math expressions of 75 images were manually extracted and placed into

“box files” which contain the image index, type of expression, and bounding box

coordinates as discussed in Section 3.4.1. Of these images and their corresponding

box files, 15 of them were used to train the math expression detector while the other

60 were used to then evaluate it. The following section first discusses the results of

the detector parameter selection and cross validation training technique as described

in Section 3.4.2's Fine Tuning of SVM Parameters. The results of Parameter Selection

and cross validation on the 15 training images are then followed by a presentation of

and discussion for all final evaluation results which were carried out on the remaining

60 images used in this work.

4.1 Detector Parameter Selection and Training
The D-Lib Machine Learning Library [134] was utilized in this work to train four

separate SVM classifiers, each of which uses the RBF kernel. While all four of the

classifiers are trained using the same procedure, they are done so on different

combinations of features extracted from each sample of the image, where a sample is

an individual element in the image's custom grid data structure as illustrated in Figure

46 of Section 3.4.2. The classifiers are named based upon the SVM kernel used for

training along with the name of the feature extractor combination employed. Each

feature extractor was simply named F_Ext (for feature extractor) followed by an

identifier. The feature extractor which extracts all of the features described in Section

3.4.2 is named F_Ext1. The full list of features used by F_Ext1 is shown in Table 8. The

remaining three feature extractors use a subset of the F_Ext1 features as shown in

Table 9.

132

Table 8: All of the features extracted in this work. The feature extractor named F_Ext1 uses all

22 features while the other three extractors tested use a subset of these.

Shorthand Name Feature Description

rhabc Rightward horizontally adjacent blobs covered

uvabc Upward vertically adjacent blobs covered

dvabc Downard vertically adjacent blobs covered

cn Number of completely nested characters

has_sup Has a superscript

has_sub Has a subscript

is_sup Is a superscript

is_sub Is a subscript

h Blob height

whr Blob width/height ratio

vdarb Vertical distance above row baseline

cosbabp Count of stacked blobs at blob position

imw Is blob in math word

is_italic Italicized text

ocr_conf OCR confidence rating

unigram Unigram Feature

bigram Bigram Feature

trigram Trigram Feature

in_valid_row Blob belongs to row with normal text (at least one valid word)

in_valid_word Blob belongs to normal text

bad_page Page doesn't have normal text

stop_word Blob belongs to stop word

133

Table 9: The four classifiers which were trained and tested in this work along with the features

on which they were trained.

Classifier Name Feature Combination

RBFSVM_F_Ext1 All Features

RBFSVM_F_Ext2 No “in_valid_word” feature

RBFSVM_F_Ext3 No “in_valid_row” feature or n-gram features

RBFSVM_F_Ext4 No italics feature

As discussed in Section 3.4.2's Fine Tuning of SVM Parameters, a coarse to

fine-grained parameter selection technique was carried out in order to determine what

SVM parameters gave the best 10-fold cross-validation results overall. This technique

was carried out on all four of the classifiers shown in Table 9 and yielded the results

shown in Table 10. In addition to the four RBF kernel SVM's tested, a linear SVM was

tested using the F_Ext1 features but could not achieve a true positive rate above 75%

during any cross validation and was thus the discarded in favor of the RBF kernel.

Table 10: Each classifiers' optimal parameter combination, TPR, and TNR found through coarse

to fine grained parameter selection using repeated 10-fold cross-validation.

Classifier Name Optimal (C,) TPR TNR

RBFSVM_F_Ext1 (123.88, 0.83020) 88.79% 97.87%

RBFSVM_F_Ext2 (133.34, 0.81802) 88.75% 97.86%

RBFSVM_F_Ext3 (7.0551, 7.65815) 87.54% 97.44%

RBFSVM_F_Ext4 (16.513, 2.66315) 89.79% 97.50%

4.2 Final Evaluation
While the parameter selection and training described in the previous section

was carried out on 15 images from the set of 75 images used in this work, the final

evaluation of the trained classifiers as well as the segmentation technique is carried

out on the remaining 60 images as was shown in Table 1 of Section 3.4.1. The 15

images used for training were taken from Bidwell's Advanced Calculus (1911) [127] .

The remaining 60 images are separated into test sets, each containing 15 images

from a separate book as illustrated in Table 11.

134

Table 11: The four tests which were carried out. Fifteen pages of the corresponding textbook

was used in each test.

Test Name Textbook from which 15 Pages are Used for Testing

Test1 D. Sloughter, Difference Equations to Differential Equations: An

Introduction to Calculus (2000) [131]

Test2 E. Bidwell, Advanced Calculus (1911) [127]

Test3 A. C. Lunn, The Differential Equations of Dynamics (1909) [130]

Test4 A. S. Kompaneyets, Theoretical Physics (1961) [129]

The second test (Test2) shown in Table 11 is carried out on different pages taken

from the same textbook which was used for training. Although performance was

generally observed to be slightly better on the same textbook on which the training

was carried out, overtraining is not a major concern since the results do not

significantly differ between the datasets. The average evaluation results for each of

the four detectors shown in Table 10, each averaged over all four tests shown in Table

11, are given in Table 12 and illustrated in Figure 68. The classifier names are here

replaced by the term MEDS (Mathematical Expression Detection and Segmentation)

followed by the corresponding number of the classifier used. Thus MEDS1 corresponds

to RBFSVM_F_Ext1, MEDS2 corresponds with RBFSVM_F_Ext2, etc. Although

segmentation is not being carried out yet at this stage, the MEDS modules that are

tested use the same detectors that are evaluated here.

Table 12: Results of detection averaged over all four tests.

Classifier TPR FPR ACC TNR PPV FDR NPV

MEDS1 82.77% 12.61% 87.36% 87.38% 63.94% 36.06% 94.03%

MEDS2 82.78% 12.57% 87.39% 87.43% 63.93% 36.06% 94.05%

MEDS3 83.12% 22.22% 80.88% 77.77% 59.46% 40.54% 89.15%

MEDS4 81.36% 10.35% 88.35% 89.65% 63.97% 36.03% 95.04%

135

After an analysis of the detection evaluation results, it was observed that many

of the false positive detections were small parts of valid words, or even stop-words like

“the”, “at”, “and”, etc. In an attempt to mitigate such false positive recognition a post-

processing step was employed after the detection which removes all blobs detected as

math that are within stop-words. If blob detected as math is observed in a valid, non-

math word that isn't a stop-word, then the ratio of math blobs to total blobs in that

word has to be above an empirically chosen threshold of .6. The detection results after

the post-processing step are shown in Table 13 and illustrated in Figure 69.

136

Figure 68: Graphical depiction of the overall average detection results on the four classifiers

which were tested. The classifier trained without the italic feature (MEDS4) is shown to give

the lowest false positive detection rate.

Table 13: Detection results after post-processing step is carried out to filter out obvious false

positives. This also causes a slight decrease in true positive rate, but still results in an increase

in overall accuracy.

Classifier TPR FPR ACC TNR PPV FDR NPV

MEDS1 80.40% 9.285% 89.53% 90.71% 69.97% 30.03% 95.07%

MEDS2 80.43% 9.255% 89.55% 90.74% 70.06% 29.94% 95.09%

MEDS3 81.56% 15.89% 85.31% 84.11% 66.09% 33.91% 94.40%

MEDS4 79.82% 7.676% 90.32% 92.32% 70.61% 29.39% 95.01%

After the detection and post processing was evaluated, the final results after the

segmentation algorithm described in Section 3.4.2. The recursive segmentation

algorithm employed here was observed to be very successful at minimizing the

occurrence of oversegmentations and undersegmentations in the results. However,

the algorithm was also observed to become rather time-consuming as the number of

137

Figure 69: Graphical representation of the results shown in Table 9.

blobs in a segment increases. Each time a segment's size is increased, all of the blobs

in that segment are required by the algorithm to be updated and rechecked for

possible merges in all four directions. Although the current implementation shows

significant potential for efficiency improvements, these are kept as ideas for future

work due to time constraints. The final results after the detection, post-processing,

and segmentation are carried out are given in Tables 14, 15, and 16 and illustrated by

Figure 70. While Table 14 gives the pixel accurate metrics, Tables 15 and 16 give the

region-wide statistics. The metrics from evaluating Tesseract's default equation

detector are also included.

Table 14: Final pixel-accurate results of detection, post-processing, and segmentation.

MEDS TPR FPR ACC TNR PPV FDR NPV

MEDS1 90.21% 15.32% 86.78% 84.68% 59.31% 40.69% 97.72%

MEDS2 90.26 15.35% 86.76% 84.65% 59.28% 40.72% 97.72%

MEDS3 91.99% 22.32% 82.15% 77.68% 54.85% 45.15% 97.52%

MEDS4 90.17% 13.40% 87.98% 86.60% 60.68% 39.32% 97.82%

Tesseract 34.14% 3.685% 86.50% 96.31% 62.18% 19.49% 87.13%

Table 15: Region segmentation statistics for each MEDS module tested averaged over all four

test sets. Avg. Overseg/Underseg refers to the average number of over/undersegmentationed

regions per page. The severity is the average degree to which each such region is

over/undersegmented (i.e., how many regions an oversegmented groundtruth region is split

into by the hypothesis image).

MEDS Avg Overseg. Overseg. Severity Avg. Underseg. Unserseg. Severity

MEDS1 9.88 3.75 1.32 4.16

MEDS2 9.90 3.75 1.32 4.16

MEDS3 10.28 3.78 1.37 4.06

MEDS4 9.90 3.63 1.28 4.09

Tesseract
0.27 0.27 2.42 2.27

138

Table 16: Region-wide statistics for each MEDS module tested, averaged over all four test sets.

The Correct Segmentation % is the ratio of groundtruth regions that had no overlapping false

positive hypothesis pixels. Completely missed % is the ratio of groundtruth regions that had no

overlapping true positive hypothesis pixels. The average falsely detected count is the average

number of regions per page which have no true positive pixels.

MEDS Correct Segmentation % Completely Missed % Avg. Falsely Detected Count

MEDS1 72.19% 11.28% 25.80

MEDS2 72.34% 11.14% 25.90

MEDS3 75.58% 9.595% 37.03

MEDS4 71.39% 11.26% 22.35

Tesseract
10.35% 76.67% 0.200

139

Figure 70: Graphical representation of the results shown in Table 10.

As illustrated by Table 14 and Figure 70, false detections are worsened

significantly by the segmentation stage since more false regions are often improperly

merged together. The true positive rate, however, is increased by nearly 10% during

segmentation. The importance of minimizing false positive detections while

maintaining an acceptable true positive rate is thus emphasized. Since nearly 10

oversegmented regions were observed on average per page, with an average severity

of around 3 oversegmenations per segmented region, the segmentation module is far

from perfect. Problems with undersegmentations can often be attributed to separators

like commas, periods, or phrases like “or” and “such that” being improperly merged to

a region. The results, however, are satisfactory for the scope of this current work.

After giving the numerical statistics for the evaluation, a more intuitive explanation of

the results is demonstrated by Figures 71-73. These images were automatically

generated during evaluation in order to keep track of each pixel as it is evaluated and

to help avoid duplicate pixel counts. Each foreground pixel in the binarized image can

be, upon evaluation, counted as a true positive, false positive, true negative, or false

negative. The pixels are color-coded as shown in Table 17. The rest of these images

can be viewed at [126].

Table 17: Pixel color codes used to keep track of pixels during evaluation

Pixel Type Color Code

True Positive Red

False Positive Blue

True Negative Orange

False Negative Green

The following images are some of the final results from the MEDS4

detector/segmentor with pixels color-coded as shown in Table 17. MEDS4 was

observed to have the highest accuracy. As mentioned previously, this particular

dector/segmentor differs from the others in that Tesseract's italics feature is not used.

This feature was observed not to be particularly accurate, having many false positives.

It is likely that the inconsistency of this feature may have confused the SVM classifier

during training. Other potential problems will be addressed in the conclusion/future

work section of this thesis. While the Tesseract equation detector results have a very

similar accuracy to the detector/segmentor implemented in this work, it has a highly

different specificity and sensitivity as can be seen in Figure 70. The Tesseract equation

detector succeeds in having a very false positive rate but unfortunately has a true

140

positive rate that could be argued as too low for practical purposes given the

evaluation results depending upon the intended application of course. The precision,

however, is slightly higher than the MEDS4 precision. The significant amount of false

positive detections and segmentations made by MEDS4 leaves room for improvement.

Some of the aspects that need improvement will be discussed in the conclusion/future

work section of this thesis.

141

142

Figure 71: MEDS4 final results on a page randomly pulled from D. Sloughter, Difference

Equations to Differential Equations: An Introduction to Calculus. Furman University,

Greenville, SC: Creative Commons, 2000. Used under fair use, 2014.

143

Figure 72: MEDS4 results on a page randomly pulled from A. S Kompaneyets, Theoretical

Physics. Osmania University: Foreign Languages Publishing House, 1961. Used under fair

use, 2014.

In order to illustrate the degree to which over-training to the specific textbook

from which the 15 training images were taken is a concern, the average results for

each individual dataset from the best performing detector/segmentor, MEDS4, is

shown in Table 18. These are the results of detection and do not include any post-

processing or segmentation. As was shown previously in Table 11, the Test2 images

are taken from the same textbook as were the training images. Thus a significant

improvement seen in the results of Test2 may be an indication that overtraining is a

concern.

144

Figure 73: On the left are some pixel-accurate evaluation results of the Tesseract 3.02

experimental equation detector and on the right are some results for the

detection/segmentation module implemented in this work.

Table 18: Average Detection results for MEDS4 on each individual test.

Test TPR FPR ACC TNR PPV FDR NPV

Test1 80.45% 17.70% 81.26% 82.29% 56.02% 43.98% 92.91%

Test2 83.36% 6.50% 91.36% 93.50% 71.71% 28.29% 95.40%

Test3 81.73% 10.10% 89.08% 89.90% 61.38% 38.62% 95.03%

Test4 79.90% 7.077% 91.72% 92.92% 66.78% 33.22% 96.82%

From Table 18, it can be argued that, although there may be a small degree of

overtraining as indicated by the higher precision and true positive rate observed for

Test2, the overtraining is not a major concern since the numbers are not very drastic.

Test4 which is entirely unrelated to the dataset used for training (in fact the textbook

used in Test4 was published more than 40 years after the one for Test2!) even has a

slightly higher accuracy measurement than Test2.

Although the results of MEDS1 and MEDS2 (without the valid_word feature) are

very similar, a relatively significant change is observed for MEDS3 and MEDS4 results.

As indicated in Table 9, MEDS3 does not utilize the n-gram features or the valid_row

feature, while MEDS4 simply discards the italics feature. Although the current n-gram

Profile is generated only from a small amount of mathematical regions in the training

set and may not be statistically useful in a larger sense, the drastic increase in false

positive rate from MEDS1 to MEDS3 may indicate that the n-gram feature combined

with the valid_row feature prevents a significant amount of false detections from

taking place. If a more statistically significant n-gram profile were to be generated

from a larger dataset and then applied to this work, it may reduce false detections

even more greatly.

145

5 Conclusion and Future Work
The detection/segmentation technique utilized in this work can increase OCR

accuracy in document images by allowing for a higher degree of document

understanding prior to recognition. In order for mathematical regions to be properly

recognized during OCR and not mangled with normal language text it is important that

mathematical expression regions are detected and then properly segmented from

their surroundings. The evaluation technique utilized in this work counts the true

positive, false positive, true negative, and false negative pixels after detection and

segmentation is carried out in order to get a highly accurate and objective

understanding of performance. The count of oversegmentations, undersegmentations,

falsely detected segmentations, and falsely missed segmentations on a page can also

give a useful indication of performance. The mathematical detection and

segmentation module implemented in this work has potential for significant

improvement and also gives very favorable results overall.

There are many aspects of the mathematical detection and segmentation

module which, if improved, could make the results even more favorable. Firstly, the

feature extraction and segmentation code could be optimized for speed. During

segmentation, some of the methods from the feature extractor are used repeatedly,

and since these methods have not been optimized the speed of the program is

reduced significantly. This is especially true for larger segmentations where, each time

the segment's size is increased, all of the blob's inside of it need to be re-evaluated for

potential merges in all directions. The segmentation algorithm currently implemented

also needs to be modified for detecting separators and mathematical words to further

enhance the accuracy.

Perhaps the most important future work item for both increasing true positive

rate and decreasing false positive rate, would be ensuring the proper identification of

“abnormal” rows of text which are more likely to contain one or more displayed

expressions. While the current method can be satisfactory in some instances it is often

wrong. Implementing an accurate abnormal row detector is outside of the scope of this

work, but would improve the usefulness of several of the features which are extracted

only for abnormal rows. When a row is misclassified as abnormal, it can result in an

entire row of normal text being improperly segmented as a mathematical region. A

separate SVM for detecting abnormal rows may be a possible avenue for future work.

Header and footer rows need to have been found either prior to mathematical

expression detection/segmentation being carried out or as part of the overall process.

146

Knowing that a row is a header, and not part of normal sentence structure is

important. Math may occur in the header however, so it is still important that headers

are taken into consideration. The current implementation simply assumes that the first

row is the header. While this is often the case, it has been observed that the first row

or couple of rows may be noise, in which cases both the header and first row of normal

text are improperly seen as abnormal.

Incorporating the results of a mathematical OCR module would be helpful in

improving detector accuracy for the individual blobs. The occurrence of mathematical

blobs within words that were misrecognized as normal text by Tesseract currently

confuses the classifier during training. This results in parts of valid words and even

stop words being improperly detected as math. A more sophisticated technique of

ruling out obvious normal text from potential math text is required, one which not only

analyzes the normal OCR recognition result for the word but also analyzes

mathematical OCR results. All features need to be analyzed in great detail so that a

deeper numerical understanding of classifier performance may be obtained and

potential classification alternatives considered.

Another important future work item is to generate more data. The current

amount of pages, 75, is a very small amount of data, and makes it difficult to get a

truly objective understanding of the results. Getting data which is more statistically

significant is also important. Only 5 textbooks have been utilized in this work, which

although satisfactory for a small test set, are not as representative as would be

desired for practical applications. Adding a math symbol recognizer to the MEDS

module would be extremely useful. If math symbols could be recognized then it would

be possible to find regions that may have been missed by the detection phase during

segmentation. For any missed regions detected, the segmentation step could then be

repeated until no more missed regions are found. Support for detecting displayed

expression labels is also kept as an idea for future work. Detecting labels which refer

to displayed expressions would increase overall document understanding.

Improved italics and bold detection would also be extremely useful in making

the detector more robust. The italics and bold detection implemented as part of

Tesseract was used in feature extraction for this work but was found to not be very

accurate and was thus not used to train the final classifier. Implementing italic/bold

detection from scratch is outside of the scope of this work but would be very useful.

147

Bibliography

Bibliography
[1] K. Wilcox and A. Stephen. "Are Close Friends the Enemy? Online Social Networks,

Self-Esteem, and Self-Control," Forthcoming Columbia Business School Research Paper

No. 12-57, Date posted: October 3, 2012.

[2] D. A. Vise and M. Malsee, The Google Story. New York City: Dell Publishing, 2005.

[3] H. F. Shantz, The History of OCR, Optical Character Recognition. Manchester Cen-

ter: Recognition Technologies Users Association, 1982.

[4] S. V. Rice, F. R. Jenkins, and T. A. Nartker, "The Fourth Annual Test of OCR Accu-

racy," Technical Report 95-03, Information Science Research Institute, University of

Nevada, Las Vegas, July 1995.

[5] L. Vincent. "Google Book Search: Document Understanding on a Massive Scale,"

International Conference on Document Analysis (ICDAR), 2007, pp. 819 - 823.

[6] R. Unnikrishnan, and R. Smith. "Combined Script and Page Orientation Estimation

Using the Tesseract OCR Engine," International Workshop of Multilingual OCR, 25th

July 2009, Barcelona, Spain.

[7] Z. Huang, M. Cmejrek, and B. Zhou. "Soft Syntactic Constraints for Hierarchical

Phrase-Based Translation Using Latent Syntactic Distributions," Proceedings of the

2010 Conference on Empirical Methods in Natural Language Processing, 2010, pp.

138–147.

[8] P. W. Handel, "Statistical Machine," United States Patent Office. 1,915,993, Jun.

27, 1933.

[9] A. Kleiner, and R. Kurzweil, "A Description of the Kurzweil Reading Machine and a

Status Report on Its Testing and Dissemination," Bulletin of Prosthetics Research, vol.

27, no. 10, Spring 1977, pp. 72-81.

[10] M. Bokser, "Omnidocument Technologies," Proceedings of the IEEE, vol. 80, no. 7,

July 1992, pp. 1066-1078.

[11] ABBYY FineReader, "ABBYY FineReader for Personal Use," Internet: http://www.nu-

ance.com/for-business/by-product/omnipage/professional/index.htm, Date Accessed:

2013.

[12] Nuance Inc., "OmniPage Professional," Internet: :http://www.nuance.com/for-busi-

ness/by-product/omnipage/professional/index.htm, Date Accessed: 2013.

[13] Iris Products and Technologies, "Introducing the New Readiris 14," Internet:

http://www.irislink.com/c2-2115-189/Readiris-14--OCR-Software--Scan--Convert---Man-

age-your-Documents-.aspx, Date Accessed: 2013.

148

[14] Contributor: Bob Stein (uploaded to http://archive.org), "New York Times August

September 1901 Collection," Internet: http://archive.org/download/NewYorkTime-

sAugSept1901Collection/New_York_Times_August_September_1901_Part_7_text.pdf,

Date Accessed: 2013.

[15] T. M. Breuel, and U. Kaiserslautern. "The hOCR Microformat for OCR Workflow and

Results," Ninth International Conference on Document Analysis and Recognition (IC-

DAR), 2007, pp. 1063 - 1067.

[16] R. Griffin, Statistics. London: Macmillon and Co., 1913, pp. 121-122.

[17] R. Zanibbi and D. Blostein, "Recognition and Retrieval of Mathematical Expres-

sions," IJDAR, vol. 15, no. 4, December 2012, pp. 331-357.

[18] W. R. Smith. "Hybrid Page Layout Analysis via Tab-Stop Detection," Proceedings of

the 10th International Conference on Document Analysis and Recognition, 2009, pp.

241-245.

[19] F. d'Albe. "On a Type-Reading Optophone," Proc. Roy. Soc., Lond., 1914, pp. 373-

375.

[20] G. Tauschek, "Reading Machine," United States Patent Office. 2,663,758, Dec. 22,

1953.

[21] M. Martin, "Reading Machine Speaks Out Loud," Popular Science, vol. 154, no. 2,

Feb 1949, pp. 125-127.

[22] D. Shepard, "Apparatus for Reading," United States Patent Office. 2,663,758, Dec.

22, 1953.

[23] J. Leimer. "Design Factors in the Development of an Optical Character Recognition

Machine," IRE Transaction on Information Theory, 1962, pp. 167-171.

[24] M. H. Weik, "A Fourth Survey of Domestic Electronic Digital Computing Systems,"

Internet: http://ed-thelen.org/comp-hist/BRL64-i.html#IBM-1401, Date Accessed: 2013.

[25] IBM, "IBM Systems Reference Library," 1964.

[26] The IBM 1401 Demo Lab and Restoration Project Computer History Museum, "IBM

1401 Archive Pics," Internet: http://ibm-1401.info/IBM1401_ArchivePics.html, Date Ac-

cessed: 2014.

[27] L. O. Eikvil, "Optical Character Recognition," Norwegian Computing Center, 1993.

[28] J. J. Hull, and S. L. Taylor. "Document Image Skew Detection: Survey and Anno-

tated Bibliography," World Scientific, 1998, pp. 40-64.

[29] R. Smith, "Apparatus and Method for Use in Image Processing," United States

Patent Office. 5,583,949, Dec 10, 1996.

[30] S. Li, Q. Shen, and J. Sun, "Skew Detection Using Wavelet Decomposition and Pro-

jection Profile Analysis," Pattern Recognition Letters, vol. 28, no. 5, Jan 2007, pp. 555-

562.

149

[31] W. Postl. "Detection of Linear Oblique Structures and Skew Scan in Digitized Doc-

uments," Proc. 6th Int. Conf. Pattern Recognition, 1986, pp. 687-689.

[32] S. N. Srihari, and V. Govindaraju, "Analysis of Textual Images Using the Hough

Transform," Machine Vision and Applications, vol. 2, no. 1, Jan 1989, pp. 141-153.

[33] R. Smith, "A Simple and Efficient Skew Detection Algorithm via Text Row Accumu-

lation," Proc. of the 3rd Int. Conf. on Document Analysis and Recognition, vol. 2, no. 1,

Jan 1995, pp. 1145-1148.

[34] R. Smith. "An Overview of the Tesseract OCR Engine," Proc. Int. Conf. Document

Anal. Recognit., 2007, pp. 629-633.

[35] S. S. Bukhari, F. Shafait, and T. M. Breuel. "Coupled Snakelet Model for Curled

Textline Segmentation of Camera-Captured Document Images," Proc. 10th Int. Conf.

on Document Analysis and Recognition, 2009, pp. 33-53.

[36] L. Likforman-Sulem, A. Zahour, and B. Taconet, "Text Line Segmentation of Histor-

ical Documents: A Survey," International Journal of Document Analysis and Recogni-

tion, vol. 9, no. 2, Jan 2007, pp. 123-138.

[37] R. Smith. "Tesseract OCR Engine: What It Is, Where It Came From, Where It Is Go-

ing," OSCON, 2007.

[38] S. Mori, C. Y. Suen, and K. Yamamoto, "Historical Review of OCR Research and De-

velopment," Proceedings of the IEEE, vol. 80, no. 7, Jul 1992, pp. 1029-1058.

[39] S. Mori, N. Hirobumi, and Y. Hiromitsu, Optical Character Recognition. New York:

Wiley & Sons, Inc., 1999, pp. 193-367.

[40] R. Smith, "History of the Tesseract OCR Engine: What Worked and What Didn't.

How to Build a World-Class OCR Engine in Less Than 20 Years," SPIE-IS&T, vol. 8658,

no. 2, Feb 2013, p. 12.

[41] F. L. Alt, "Digital Pattern Recognition by Moments," Journal of Associated Comput-

ing Machinery, vol. 9, no. 1, Jan 1962, pp. 240-258.

[42] R. Casey. "Moment Normalization of Hand Printed Characters," IBM Journal of Re-

search and Development, 1970, pp. 548-557.

[43] AForge.NET, "Blobs Processing," Internet:

http://www.aforgenet.com/framework/features/blobs_processing.html, Date Accessed:

2013.

[44] M. D. Mcllroy, "Development of a Spelling List," IEEE Trans on Communications,

vol. 30, no. 1, Jan 1982, pp. 91-99.

[45] G. Nagy, "At the Frontiers of OCR," Proc. IEEE, vol. 80, no. 2, Jul 1992, pp. 1093-

1100.

150

[46] Y. Y. Tang, C. D. Yan, and C. Y. Suen, "Document Processing for Automatic Knowl-

edge Acquisition," IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 1,

Feb 1994, pp. 3-21.

[47] A. M. Namboodiri, and A. Jain. "Document Structure and Layout Analysis," Ad-

vances in Pattern Recognition, Springer-Verlag, London 2007.

[48] M. Nadler, "A Survey of Document Segmentation and Coding Techniques," Com-

puter Vision Image Graphics Process, vol. 28, no. 2, Nov 1984, pp. 240-262.

[49] R. Haralick. "Document Image Understanding: Geometric and Logical Layout,"

Proc. IEEE Conf. Computer Vision and Pattern Recognition. Seattle, 1994, pp. 385-390.

[50] Y. Y. Tang, S. W. Lee, and C. Y. Suen, "Automatic Document Processing: a Survey,"

Pattern Recognition, vol. 29, no. 12, Dec 1996, pp. 1931-1952.

[51] S. Mao, A. Rosenfeld, and T. Kanungo, "Document Structure Analysis Algorithms:

a Literature Survey," Document Recognition and Retrieval, vol. 5010, no. 10, Jan 2003,

pp. 197-207.

[52] N. Chen, and D. Blostein, "A Survey of Document Image Classification: Problem

Statement, Classifier Architecture and Performance Evaluation," International Journal

on Document Analysis and Recognition, vol. 10, no. 1, May 2007, pp. 1-16.

[53] S. Marinai. "Introduction to Document Analysis and Recognition," Machine Learn-

ing in Document Analysis and Recognition, Berlin, Germany: Springer, 2008, pp. 1-20.

[54] G. Nagy, S. Seth, and M. Viswanathan, "A Prototype Document Image Analysis

System for Technical Journals," Computer, vol. 25, no. 1, Jan 1992, pp. 10-22.

[55] Y. N. Elglaly, F. Quek, T. Smith-Jackson, and D. Dhillon. "Touch-Screens Are Not

Tangible: Fusing Tangible Interaction With Touch Glass in Readers for the Blind," ACM

International Conference on Tangible, Embedded and Embodied Interaction (TEI),

2013, pp. 245-252.

[56] F. Goudail, Statistical Image Processing for Noisy Images. New York: Klewer Aca-

demic Plenum Publishers, 2004.

[57] R. Miller, "Ink-Jet Basics," Internet: http://www.thetonesystem.com/inkjet_basic-

s.html, Date Accessed: 2013.

[58] O. G. Guleryuz, "A Multiresolutional Algorithm for Halftone Detection," Proc. SPIE

Image and Video Communications and Processing, vol. 5685, no. 1, Jan 2005, pp.

1098-1105.

[59] N. Otsu, "A Threshold Selection Method From Gray-Level Histograms," IEEE Trans.

Sys. Man. Cyber, vol. 9, no. 1, Jan 1979, pp. 62-66.

[60] B. Xie, and G. Agam, "Boosting Based Text and Non-Text Region Classification,"

Document Recognition and Retrieval Proc. SPIE, vol. XVIII, no. 1, Jan 2011, pp. 1-9.

151

[61] A. Gourdol, "CSS3 Regions: Rich Page Layout With HTML And CSS3," Internet:

http://www.adobe.com/devnet/html5/articles/css3-regions.html, Date Accessed: 2013.

[62] T. Pavlidis, and J. Zhou, "Page Segmentation and Classification," Graphical Models

and Image Processing, vol. 54, no. 1, Jan 1992, pp. 484-496.

[63] H. S. Baird, H. Bunke, and P. S. Wang. "Background Structure in Document Im-

ages," Document Image Analysis, World Scientific, 1994, pp. 17-34.

[64] G. Nagy, and S. Seth. "Hierarchical Representation of Optically Scanned Docu-

ments," Proc. of the 17th Conf. on Pattern Recognition, 1984, pp. 347-349.

[65] F. Wahl, K. Wong, and R. Casey, "Block Segmentation and Text Extraction in Mixed

Text/Image Documents," Graphical Models and Image Processing, vol. 20, no. 1, Jan

1982, pp. 375-390.

[66] J. Higashino, H. Fujisawa, Y. Nakano, and M. Ejiri. "A Knowledge-Based Segmenta-

tion Method for Document Understanding," Proc. 8th Int. Conf. on Pattern Recognition,

1986.

[67] A. Dengel, and F. Dubiel, "Computer Understanding of Document Structure," In-

ternational Journal of Imaging Systems and Technology, vol. 7, no. 1, Jan 1996, pp.

271-278.

[68] A.K. Jain, Y. Zhong, "Page Segmentation using Texture Analysis," Pattern Recogni-

tion, vol. 29, no. 5, May 1996, pp. 743–770.

[69] T. Tokuyasu and P. A. Chou, "Turbo Recognition: A Statistical Approach to Layout

Analysis," In Proceedings of the SPIE, vol. 4307, no. 1, Jan San Jose, CA, 2001, pp.

123-129.

[70] J. P. Bixler. "Tracking Text in Mixed-Mode Document," Proc. ACM Conference on

Document Processing System, 1998, pp. 177-185.

[71] T. Pavlidis, "Algorithms for Graphics and Image Processing," ZAMM - Journal of Ap-

plied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und

Mechanik, vol. 63, no. 8, Jan 1983, p. 395.

[72] L. O'Gorman, "The Document Spectrum for Page Layout Analysis," IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 15, no. 11, Nov 1993, pp. 162-173.

[73] S. Arya, T. Malamotos, and D. M. Mount. "Space-Efficient Approximate Voronoi Di-

agrams," Proc. 34th ACM Sympos. Theory Comput., 2002, pp. 721-730.

[74] Wikipedia, "Voronoi Diagram," Internet: http://en.wikipedia.org/wiki/Voronoi_dia-

gram, Date Accessed: 2013.

[75] K. Kise, A. Sata, and M. Iwata, "Segmentation of Page Images Using the Area

Voronoi Diagram," Computer Vision and Image Understanding, vol. 70, no. 3, Jun 1998,

pp. 370-382.

152

[76] E. G. Johnston, "Printed Text Discrimination," Computer Graphics and Image Pro-

cessing, vol. 3, no. 1, Mar 1974, pp. 83-89.

[77] D. S. Bloomberg. "Multiresolution Morphological Approach to Document Image

Analysis," 1st International Conference of Document Analysis and Recognition, 1991,

pp. 963-971.

[78] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper Saddle River NJ:

Prentice Hall, 2008, pp. 627-688.

[79] J. Serra, Image Analysis and Mathematical Morphology. New-York: Academic

Press, 1982.

[80] J. Liu, Y. Tang, Q. He, and C. Suen. "Adaptive Document Segmentation and Geo-

metric Relation Labeling: Algorithms and Experimental Results," Proc. 13th Int’l Conf.

Pattern Recognition, 1996, pp. 763-767.

[81] Esposito, D. Malerba, and G. Semeraro. "A Knowledge-Based Approach to the Lay-

out Analysis," Proc. Third Int’l Conf. Document Analysis and Recognition, 1995, pp.

466-471.

[82] M. Okamoto and M. Takahashi. "A Hybrid Page Segmentation Method," Proc. 2nd

Int. Conf. on Document Analysis and Recognition, 1993, pp. 743-748.

[83] T.M. Breuel. "Two Geometric Algorithms for Layout Analysis," Proceedings of the

5th International Workshop on Document Analysis Systems V, 2002, pp. 188–199.

[84] H.S Baird, S.E Jones, and S.J Fortune. "Image Segmentation by Shape-Directed

Covers," Proceedings 10th International Conference on Pattern Recognition, June,

1990, pp. 820–825.

[85] T. M. Breuel. "The OCRopus Open Source OCR System," Proc. IS&T/SPIE 20th

Annu. Symp., pp. 1 -15, 2008.

[86] I. Phillips, B. Chanda, and R. Haralick, "UW-III English/Technical Document Image

Database," Internet: http://www.science.uva.nl/research/dlia/datasets/uwash3.html,

Date Accessed: 2013.

[87] F. Shafait. "Geometric Layout Analysis of Scanned Documents," PhD thesis, Uni-

versity of Kaiserslautern, 2008.

[88] F. Shafait. "Document Image Analysis with OCRopus," Proc. IEEE Int’l Multitopic

Conf., 2009.

[89] W. Abd Almageed, M. Agrawal, W. Seo, and D. Doermann. "Document-zone Classi-

fication using Partial Least Squares and Hybrid Classifiers," Proc. Int'l Conf. on Patt.

Reco., 2008, pp. 1-4.

[90] F. Cesarini, M. Lastri, S. Marinai, and G. Soda. "Encoding of Modified X-Y Trees for

Document Classification," Int. Conf. on Document Analysis and Recognition (ICDAR),

2001, pp. 1131–1135.

153

[91] C. Shin and D. Doermann. "Classification of Document Page Images Based on Vis-

ual Similarity of Layout Structures," Proc. SPIE Conf. Document Recognition and Re-

trieval VII, 2000, pp. 182-190.

[92] F. Esposito, D. Malerba, and G. Semeraro, "Classification in Noisy Environments

using a Distance Measure Between Structural Symbolic Descriptions," IEEE Trans. on

PAMI, vol. 14, no. 3, March 1992, pp. 390–402.

[93] N. Chen and D. Blostein, "A Survey of Document Image Classification: Problem

Statement, Classifier Architecture and Performance Evaluation," International Journal

on Document Analysis and Recognition (IJDAR), vol. 10, no. 1, June 2007, pp. 1-16.

[94] K. Fan and L. Wang, "Classification of Document Blocks Using Density Feature and

Connectivity Histogram," Pattern Recognition Letters, vol. 16, no. 9, September 1995,

pp. 955-962.

[95] D. Chetverikov, J. Liang, J. Komuves, and R. Haralick. "Zone Classification Using

Texture Features," Proc. 13th Int’l Conf. Pattern Recognition, 1996.

[96] Y. Wang, R. Haralick and I. Phillips, "Document Zone Content Classification and its

Performance Evaluation," Pattern Recognition, vol. 39, no. 1, Jan 2006, pp. 57 -73.

[97] W. Abd Almageed, M. Agrawal, W. Seo, and D. Doermann. "Document-zone classi-

fication using partial least squares and hybrid classifiers," Proc. Int'l Conf. on Patt.

Reco., 2008, pp. 1-4.

[98] M. Okamoto and A. Miyazawa, An Experimental Implementation of a Document

Recognition System for Papers Containing Mathematical Expressions. Berlin: Springer,

1992.

[99] Hsi-Jian Lee and Jiumn-Shine Wang. "Design of a Mathematical Expression Recog-

nition System," Proceedings of the Third International Conference on Document Analy-

sis and Recognition, Aug 1995, pp. 1084-1087.

[100] K. Inoue, R. Miyazaki and M. Suzuki. "Optical Recognition of Printed Mathemati-

cal Documents," Proc. Third Asian Technology Conf. Math., 1998, pp. 280-289.

[101] R. J. Fateman. "How to Find Mathematics on a Scanned Page," Proc. SPIE 3967,

1999.

[102] J. Y. Toumit, S. Garcia-Salicetti, and H. Emtoz. "A Hierarchical and Recursive

Model of Mathematical Expressions for Automatic Reading of Mathematical Docu-

ments," Proceedings of Fifth International Conference on Document Analysis and

Recognition (ICDAR), 1999, pp. 119–122.

[103] B.B. Chaudhuri and U. Garain. "An Approach for Recognition and Interpretation

of Mathematical Expressions in Printed Document," Pattern Analysis and Applications,

vol. 3, 2000, pp. 120-131.

154

[104] A. Kacem, A. Belaid, B. M. Ahmed, "Automatic Extraction of Printed Mathemati-

cal Formulas using Fuzzy Logic and Propagation of Context," International Journal of

Document Analysis and Recognition, vol. 4, no. 2, December 2001, pp. 97-108.

[105] J. Jin, X. Han and Q. Wang. "Mathematical Formulas Extraction," Proc. of the 7th

Int'l Conf. Document Analysis and Recognition (ICDAR), Edinburgh, Scotland, 2003, pp.

1138-1141.

[106] D.M. Drake, H.S. Baird. "Distinguishing Mathematics Notation from English Text

Using Computational Geometry," Proceedings of the International Conference on Doc-

ument Analysis and Recognition, 2005, pp. 1270–1274.

[107] X. D. Tian, W. Z. Sun, M. H. Ha. "Research on Optical Formulas Extraction," Pro-

ceedings of the 4th International Conference On Machine Learning and Cybernetics ,

August 2005, pp. 4886-4890.

[108] S Yamazaki, F Furukori. "Embedding a Mathematical OCR Module into OCRopus,"

International Conference on Document Analysis and Recognition, 2011, pp. 880 - 884.

[109] X. Lin, L. Gao, Z. Tang, X. Hu, and X. Lin. "Identification of Embedded Mathemat-

ical Formulas in PDF Documents using SVM," Proc of Document Recognition and Re-

trieval XIX, 2012.

[110] K. Chan and D. Yeung, "Mathematical Expression Recognition: A Survey," Inter-

national Journal on Document Analysis and Recognition (IJDAR), vol. 3, no. 1, August

2000, pp. 3-15.

[111] C. D. Malon, S. Uchida, and M. Suzuki, "Mathematical symbol recognition with

support vector machines," Pattern Recognition Letters, vol. 29, no. 9, July 2008, pp.

1326–1332.

[112] Hsi-Jian Lee and Jiumn-Shine Wang, "Design of a Mathematical Expression Un-

derstanding System," Pattern Recognition Letters, vol. 18, no. 3, March 1997, pp.

289-298.

[113] Chowdhury, S.P., Mandal,S., Das, A.K., Chanda, B.. "Automated Segmentation of

Math-zones from Document Images," 7th International Conference on Document Anal-

ysis and Recognition vol. 2, 2003, pp. 755–759.

[114] U Garain, BB Chaudhuri, and A. R. Chaudhuri. "Identification of Embedded Math-

ematical Expressions in Scanned Documents," Int. Conf. Pattern Recognition, 2004,

pp. 384-387.

[115] U. Garain and B.B. Chaudhuri, "A Corpus for OCR of Printed Mathematical Ex-

pressions," Int’l. Journal of Document Analysis and Recognition (IJDAR), vol. 7, no. 4,

September 2005, pp. 241-259.

[116] U. Garain. "Identification of Mathematical Expressions in Document Images,"

Proc. Int’l Conf. on Document Analysis and Recognition, 2009, p. 1340.

155

A. S Kompaneyets, Theoretical Physics. Osmania University: Foreign Languages Pub-

lishing House, 1961.[117] S. Uchida, A. Nomura, and M. Suzuki, "Quantitative Analysis

of Mathematical Documents," IJDAR, vol. 7, no. 4, June 2005, pp. 211-218.

[118] X Lin, L Gao, Z Tang, J Baker, M Alkalai, V Sorge. "A Text Line Detection Method

for Mathematical Formula Recognition," 12th International Conference on Document

Analysis and Recognition, 2013, pp. 339-343.

[119] M Alkalai, J B Baker, V Sorge, X Lin. "Improving Formula Analysis with Line and

Mathematics Identificatio," 12th International Conference on Document Analysis and

Recognition, 2013, pp. 334-338.

[120] X Lin., L Gao, Z Tang, X Lin and X Hu. "Performance Evaluation of Mathematical

Formula Identification," 10th International Workshop on Document Analysis Systems,

2012, pp. 287-291 .

[121] J Baker, "Maxtract," Internet: http://www.cs.bham.ac.uk/research/groupings/rea-

soning/sdag/maxtract.php, Date Accessed: 2013.

[122] D. Bloomberg, "Leptonica ," Internet: http://www.leptonica.com/, Date Accessed:

2013.

[123] Marinai and Nesi. "Projection Based Segmentation of Musical Sheets," Interna-

tional Conference on Document Analysis and Recognition (ICDAR), Bangalore, India,

1999.

[124] J Baker, AP Sexton, V Sorge. "Comparing Approaches to Mathematical Document

Analysis from PDF," International Conference on Document Analysis and Recognition

(ICDAR), 2011.

[125] SS Bukhari, F Shafait, and TM Breuel. "Document Image Segmentation Using

Discriminative Learning Over Connected Components," 9th IAPR International Work-

shop on Document Analysis Systems, 2010, pp. 183-190.

[126] J. Bruce, "Isagoge," Internet: http://sourceforge.net/projects/projectisagoge/,

Date Accessed: 2013.

[127] E Bidwell, Advanced Calculus. Boston: The Athenum Press: Gin and Company

Proprieters, 1911.

[128] Z Liu, "EquationDetectBase.h," Internet: https://code.google.com/p/tesser-

act-ocr/source/browse/trunk/textord/equationdetectbase.h?r=842, Date Accessed:

2013.

[129] A. S Kompaneyets, Theoretical Physics. Osmania University: Foreign Languages

Publishing House, 1961.

[130] A. C. Lunn, The Differential Equations of Dynamics. Lancaster, PA: The New Era

Printing Company, 1909.

156

[131] D. Sloughter, Difference Equations to Differential Equations: An Introduction to

Calculus. Furman University, Greenville, SC: Creative Commons, 2000.

[132] J Grieves, "Open Scan and Read," Internet: http://sourceforge.net/projects/osr/,

Date Accessed: 2008.

[133] R. Duda, P. Hart, D. Stork, Pattern Classification (Second Edition). New York: A

Wiley-Interscience Publication, 2001.

[134] K Davis, "DLib C++ Library," Internet: http://dlib.net, Date Accessed: 2013.

[135] B. E. Boser, I. M. Guyon, and V. N. Vapnik. "A Training Algorithm for Optimal Mar-

gin Classifiers," 5th Annual ACM Workshop on COLT, Pittsburgh, PA, 1992.

[136] M. Varma, "The Standard SVM Formulation," Internet: http://research.microsoft.-

com/en-us/um/people/manik/projects/trade-off/svm.html, Date Accessed: 2013.

[137] C. Cortes and V. Vapnik, "Support Vector Networks," Machine Learning, vol. 20,

no. 3, September 1995, 273-297.

[138] H. Kim, S. Pang, H. Je, D. Kim, S.Y. Bang, "Support Vector Machine Ensemble with

Bagging," Lecture Notes in Computer Science, vol. 2388, no. 1, Feb 2002, 397-408.

[139] C.W. Hsu, "A Practical Guide to Support Vector Classification," Department of

Computer Science, Tech. Report National Taiwan University, 2003.

[140] Powell, MJD, "The BOBYQA Algorithm for Bound Constrained Optimization With-

out Derivatives," Technical Report NA2009/06, Department of Applied Mathematics

and Theoretical Physics, University of Cambridge, 2009.

[141] Z Liu, "equationdetect.h," Internet: https://code.google.com/p/tesseract-

ocr/source/browse/trunk/ccmain/equationdetect.h?r=840, Date Accessed: 2013.

157

	1 Introduction
	1.1 Enhancing Information Accessibility
	1.2 Introduction to OCR and Document Analysis: A Brief History
	1.3 Google Books Initiative
	1.4 Contributions of this Thesis
	1.5 Organization of Thesis

	2 Literature Review
	2.1 The Beginnings of OCR
	2.1.1 Fixed-font
	2.1.2 Omnifont

	2.2 Pattern Recognition Techniques in OCR
	2.2.1 Text Line Finding
	2.2.2 Character Feature Extraction
	2.2.3 Character Classification
	2.2.4 Detection of Merged or Broken Characters
	2.2.5 Word Recognition and Linguistic Analysis

	2.3 Document Layout Analysis Techniques
	2.3.1 Introduction to Document Layout Analysis
	2.3.2 Preprocessing
	Noise Removal: Dealing with Half-tones
	Background and Foreground Separation

	2.3.3 Document Structure Analysis
	Document Physical Structure Analysis
	Top-Down Physical Structure Analysis
	Bottom-Up Physical Structure Analysis
	Hybrid Physical Structure Analysis

	Document Logical Structure Analysis
	Page Classification
	Zone Classification
	Type-specific Classification

	3 Method
	3.1 Introduction
	3.1.1 Purpose
	3.1.2 Problem Statement and Project Scope
	3.1.3 Definitions and Acronyms
	3.1.4 Tesseract Document Layout Analysis Framework Overview
	3.1.5 Overview

	3.2 System Overview
	3.3 System Architechture
	3.4 Component Design
	3.4.1 Groundtruth Dataset Generation
	3.4.2 MEDS Module
	Detection Subsystem
	Training and Classification
	Feature Extraction

	Segmentation Subsystem

	3.4.3 Evaluation Module

	4 Experimental Results
	4.1 Detector Parameter Selection and Training
	4.2 Final Evaluation

	5 Conclusion and Future Work
	Bibliography

