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Abstract

Various document layout analysis techniques are employed in order to enhance
the accuracy of optical character recognition (OCR) in document images. Type-specific
document layout analysis involves localizing and segmenting specific zones in an
image so that they may be recognized by specialized OCR modules. Zones of interest
include titles, headers/footers, paragraphs, images, mathematical expressions,
chemical equations, musical notations, tables, circuit diagrams, among others. False
positive/negative detections, oversegmentations, and undersegmentations made
during the detection and segmentation stage will confuse a specialized OCR system
and thus may result in garbled, incoherent output. In this work a mathematical
expression detection and segmentation (MEDS) module is implemented and then
thoroughly evaluated. The module is fully integrated with the open source OCR
software, Tesseract, and is designed to function as a component of it. Evaluation is
carried out on freely available public domain images so that future and existing

techniques may be objectively compared.
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1 Introduction

Basically, our goal is to organize the world's information
and to make it universally accessible and useful.

Larry Page - Co-founder of Google

1.1 Enhancing Information Accessibility

Never, since the invention of the printing press, has society seen such a radical
change in its means of information distribution. Armed with powerful search engines
roaming the vast expanse of the World Wide Web, nearly everyone in the world has, at
their very fingertips, access to archives full of information. This enhanced information
accessibility is having profound implications for society and could lead to a fruitful age
of enlightenment.

The global effects of high speed Internet access are seen daily as hundreds of
millions browse for information/multimedia, look up map directions, interact through
email/social networks/video games, shop remotely, video chat, etc. Corporations like
Google, Microsoft, Facebook, eBay, and Amazon continue building and extending the
capacity of their server farms as the growth of user demand shows no signs of slowing
down. By mid-2012, it was reported that nearly an eighth of the world's population
was on the popular social networking site, Facebook [1]. As such figures continue to
grow, studies are showing that technology is even affecting the manner in which we
think and behave at the most fundamental levels. Whether or not the long-term
effects of this relatively nascent medium of interaction prove to be largely positive or
negative remains to be seen. One remaining certainty, however, is that continuing
innovation is, for better or for worse, altering the manner in which we live out our daily
lives.

It was Benjamin Franklin who once said that “genius without education is like
silver in the mine.” One would be hard-pressed in arguing that, throughout history, all
people have been able to realize their full potential to succeed and make a difference
in the world. If that were true, many would argue that our knowledge would, by now,
have long since surpassed its current state. In fact it was just under five hundred years
ago, that Europeans were finally emerging from an age of intellectual darkness which
had lasted for roughly a millennium. If we look back to the spread of knowledge
throughout written history, starting from the earliest true writing systems developed in
ancient Egypt/Mesopotamia circa 3000 BC to the origins of philosophy, math, science,
and theater in ancient Greece, all the way to the birth of the “modern era” which
culminated itself in the scientific revolution of the sixteenth century AD, we notice a



general trend of small bursts of knowledge spreading repeatedly, each time with
greater strength than before, each one improving upon on its predecessor. Sir Isaac
Newton exemplified this trait of humanity with his statement that “if 1 have seen
further, it is by standing on the shoulders of giants.”

Although much of what defines us from a cultural perspective may indeed be
passed from generation to generation through word of mouth, our tremendous
advancements in math, science, art, and literature since the dawn of the modern era
can be largely attributed to Johannes Gutenberg's invention of the printing press,
which made mass distribution of books possible in Late-Medieval Europe. Prior to this
key event in history, the stage was set in Europe for an age of scientific inquiry and
revelation when the religious leader, Thomas Aquinas, embraced the separation
between the purely theological and purely scientific schools of thought. Also of vital
importance was the translation and recurrence of ancient Greek writings which had
been studied and further developed by Arabic scholars. The first universities built in
Medieval Europe were initially centered around classical Greek and religious studies
and helped to lead Europe out of its age of darkness. This collaborative environment of
scholastic endeavor helped set the framework for an age of enlightenment which
would move humanity a step forward. Archaic ideas such as bloodletting were soon
supplanted by discoveries leading to modern medicine and the commonly held
geocentric model of our earth was replaced by a heliocentric one. Major breakthroughs
were made in every field to foster the spread of knowledge which took society to
where it is today. Without this ideal of scientific thinking combined with the means to
distribute information, society would have never seen such tremendous
improvements.

Moving forward to the present day, society has recently made technological
breakthroughs which make the world's knowledge and information more accessible
than ever before. In fact, many have suggested that the widely used search engine,
Google, will go down in history as rivaling in importance with Gutenberg's printing
press. It was only about a decade and a half ago that two Stanford Ph.D. students
decided that they would like to take a shot at downloading and categorizing the entire
internet. These two graduate students are of course the founders of Google [2], a now
successful multinational corporation which, during the late nineties, left its search
engine competitors far behind. Google is unique in that its employees facilitate a
diverse range of interesting projects ranging from cataloging the human genome,
building autonomous vehicles, developing smart homes of the future, to developing
augmented reality eye glasses, among many others. It is, however, in Google's core

mission of finding ways to make the world's information “more universally accessible



and useful,” that the company has had its greatest impact on the world at large. It was
in keeping with this mission that, in 2005, in collaboration with HP Labs and the
Information Science and Research Institute at UNLV, Google revived and open sourced
an optical character recognition engine that had been developed as a Ph.D. project for
HP Labs between 1985 to 1995. Although optical character recognition (OCR), the
autonomous conversion of printed documents into digital formats, is a very mature
area of research [3], development in this area continues in order to increase
recognition support for the broad spectrum of languages, formats, and subject matter
of printed documents. HP's OCR engine, named “Tesseract,” had proven itself as one
of the industry's leading engines during UNLV's Fourth Annual Test of OCR Accuracy
[4]. Eventually, however, HP subsequently went out of the OCR business, leaving the
software to basically collect dust for about a decade.

Meanwhile, by around 2004, Google had begun its Google Books Initiative [5], a
large-scale library digitization project. This initiative began with the lofty goal of
digitizing all of the world's printed documents such that they may be indexed and
searched online. By around 2005, Google hired Ray Smith, the former lead developer
of Tesseract, to return to his long-abandoned, yet ground-breaking, Ph.D. work and
also brought Tesseract into the open source domain. In so doing, Google helped to
spur further research interest into efficient and accurate document recognition?. In the
roughly eight years since the project was revived, support has been added for
recognition of over fifty languages. Advanced page layout analysis techniques have
been implemented in order to detect various types of documents ranging from novels,
magazines, newspapers, images, textbooks, sheet music, etc. Language and script
detection modules have also been implemented in order to autonomously determine
what processing should be carried out for any given world document [6]. If Google's
endeavor is successful, then the resulting implications to society will be extraordinary,
possibly similar to the impact that Arabic scholars had on Europe when sharing and
translating ancient Greek literature. If Google is successful in the autonomous
digitization and recognition of any printed document regardless of its origin, then it
will not be long before information from all of the world's documents become instantly
accessible in every language and to everyone around the world. Such a development
would certainly speed up the world's already significant progress toward an era of far
greater enlightenment and wisdom than has yet been seen.

! The term, recognition, is herein used to describe a machine's extraction of a document's
contents. This requires both the document page layout analysis as well as algorithms which
subsequently convert the page layout contents into a machine-understandable form. The field
of document layout analysis is further discussed in Section 1.2.



The autonomous recognition of all printed documents would not only expedite
the global advancement of knowledge and wisdom, but would also have tremendous
implications toward every individual in society. Such a breakthrough would be
especially significant toward the endeavor of Assistive Technology. With many devices
being developed and studies being carried out on ways to enhance human computer
interaction (HCI) for visually or physically handicapped individuals, digital access to
all printed documents could make finding information, not only more convenient, but
also possible for many who would not otherwise have access. Global autonomous
document recognition could also help open the doors toward breaking down language
barriers in information accessibility.

As research and development continues to enhance the accurate translation of
discourse between various languages [7], the successful recognition of printed
documents could eventually allow them to be machine-translated according to the
language preference of a given user. With instant access to all of the world's
information, regardless of its language or origin, at one's disposal, collaboration and
learning among individuals across the world will be significantly enhanced. All people
in the world regardless of their language preference, geographical location, and
physical ability will have access to the world's stores of knowledge, and the
opportunity to have a profound impact on society through the medium of the World
Wide Web. Enhanced document analysis and recognition capabilities will make a
significant contribution toward this end. The following section will discuss the
background as well as some of the fundamental problems faced in the fields of

document analysis and recognition.



1.2 Introduction to OCR and Document Analysis: A

Brief History

From Herbert Shantz's The History of OCR [3], it is clear that the OCR of printed
documents has been studied extensively over the last century. In one of the earliest
OCR patents [8] (Figure 1), a mechanical apparatus was used to measure the
incidence of light reflected back from a printed character when illuminated through a
set of character templates. A character detection would occur when the light emitted
from the template overlapped the character (assumed to be in dark print) sufficiently
to prevent light from being reflected upon the medium. Despite requiring a significant

amount of human intervention to ensure proper alignment and being largely inefficient
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Figure 1: This illustration, taken from a 1933 patent entitled “Statistical Machine” P. W. Handel,
"Statistical Machine," United States Patent Office. 1,915,993, Jun. 27, 1933., depicts one of the

earliest OCR devices ever invented. Used under fair use, 2014.
at best, the fundamental ideas which motivated this early initiative are seen

repeatedly throughout the century, and even now, albeit on a much larger scale.



Although some of the first commercial OCR systems were released during the
1950's, their applicability was limited in that, by and large, they were only capable of
handling a single font type with very strict rules on character spacing. It was not until
the mid-late 1970's, with the invention of both the charge-coupled device (CCD)
flatbed scanner and the “Kurzweil Reading Machine” [9] that it became possible for a
computer to read a variety of documents with reasonable accuracy. Although the
training process for a particular font would take several hours and multi-column page
layouts or images had to be specified by the user manually, Kurzweil's software
showed significant improvement over the state-of-the-art technologies of the time.

In the 1980's, a company called Calera Recognition Systems [10] introduced an
omnifont system that could read pages containing a mixture of fonts while also
locating pictures and columns of text without any user intervention or extra training.
The progress of the state-of-the-art in document recognition will be further discussed
in the Chapter 2 Literature Review. More recent commercial OCR systems such as
ABBYY FineReader [11], OmniPage Professional [12], and Readiris [13], are all quite
accurate, not only in recognizing individual words or characters, but also in
understanding and reproducing document layout structure. A magazine or newspaper
page may, for instance, contain an intricate heading structure followed by multiple
columns of text, pull-out quotes, in-set images, and/or graphs as demonstrated in the
historical New York Times article shown in Figure 2 [14].

In order to understand and recognize content of such a document, it is essential
to first carry out document layout analysis techniques which will determine how the
document is partitioned. The text will be recognized with an understanding of where
the columns of text are, which portions of text indicate headings or quotes, and which
segments correspond to images, tables, captions, etc. If the text is not partitioned
appropriately prior to recognition then the textual output will become unpredictable.
With columns, paragraphs, or other structures merged together incorrectly, the text
will lose much of its intended meaning and become far less readable to the human
eye. For these reasons, sophisticated page layout analysis algorithms are of the
utmost importance, not only for document recognition accuracy, but also in ensuring
that the generated output is formatted correctly.
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Figure 2: This excerpt from a 1901 New York Times article was optically recognized by ABBY
Fine Reader 8. The “New York Times” heading at the very top, the “Furniture and Home
Furnishings” label embedded in the illustration, and the layout of the three columns at the
bottom right were all incorrectly recognized by the commercial system. Contributor: Bob
Stein (uploaded to http://archive.org), "New York Times August September 1901 Collection,"
Internet:http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York Times_
August September 1901 Part 7 text.pdf, Date Accessed: 2013.Used under fair use, 2014.

Although most publishers keep digital copies of their more recent documents,
there is also great demand for older documents which, unless they are digitized, will
largely become forgotten by society. This would be unfortunate in that it is often
surprising how pertinent older information and ideas can be. For companies such as
Google who would like to make the world's information more readily available and
accessible as well as to the Assistive Technology community, this is of the utmost
importance. For this reason, a standard OCR output format called hOCR, which
embeds OCR output within well-defined and widely available HTML and CSS structures
has been put into place [15]. In order to ensure the quality of textual output generated
by OCR for the wide variety of possible document layout structures, sophisticated
document layout techniques are critical.


http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_August_September_1901_Part_7_text.pdf
http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_August_September_1901_Part_7_text.pdf

1.3 Google Books Initiative

There are various languages, dialects, and page layout formats for which
Google's Tesseract software is being developed. Among them are mathematical
equations, tables, graphs, and other figures which can be found in any standard
science or math text book. While Smith's original work was optimized solely for the
recognition of English newspaper formats, Google's continued efforts are aimed at
recognizing page formats from a much broader scope [5]. Much of Google's ideas
regarding document recognition are essentially in their infancy, and have a long way
to go before being fully realized. Although an experimental equation detector has
been added to the Tesseract software, its results, although showing significant
promise, have been tested to have fairly limited accuracy. A table detector
implemented by Google has also been tested on some sample images [16] (Figure 3)
to show that, it too, could use significant improvement (Figure 4). Notice that, in the
left-most table in Figure 4, the software failed to indicate the years as either belonging
to the table or the normal text. They were simply disregarded. Also, the software was
unable to determine where exactly the table boundaries are (which should be labeled
green). In the right-most table, notice that although a better job was done, while the
bottom portion of the text consists of footnotes, it is therein incorrectly labeled as part
of the table. Also, the second line of all column labels are not recognized as part of the
table when they clearly should be.

The problem of efficiently and accurately detecting equations, tables, graphs,
and other figures for the broad spectrum of possible document types is certainly no
easy one to solve. Although from a human's perspective, this problem may seem
trivial, programming a machine to sum up a document with the same accuracy as the
human eye proves to be a daunting task, as will be further discussed in the literature
review chapter of this paper. As the inventors of Google continue to work toward their
dream of creating an online “Library of Alexandria,” there is significant progress to be
made before such a large-scale endeavor can be fully realized. The Google Book
Search initiative has opened up many avenues for future research in document
understanding and recognition, of which, this project is certainly one of the many to

come.
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right is a larger table. These images were extracted from a PDF which was digitized by
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Griffin, Statistics. London: Macmillon and Co., 1913, pp. 121-122. Used under fair use,
2014.
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Figure 4: Above is the text from Figure 3 after having been labeled by Tesseract's
table detection software. The text within the blue rectangles was identified as
belonging to a table while the text within red rectangles was not. The green rectangle
should encompass the entire table figure. As can be seen there are both false

negatives and false positives.
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1.4 Contributions of this Thesis

This thesis introduces a novel approach to mathematical expression detection
and segmentation (MEDS) during the document layout analysis stage of OCR. The
focus of this thesis is toward enhancing the OCR quality of printed scientific
documents. The motivation for MEDS is illustrated by Figure 5. From Figure 5, it is clear
that, when presented with mathematical expressions as input, an OCR system trained
specifically for English will result in garbled output. With reliable MEDS, it becomes
possible to prevent this mangled output from occurring, and also allows existing
equation recognition algorithms, which have been extensively studied in the literature,
to be provided a properly segmented input. While state-of-the-art mathematical
symbol and structure recognition engines have been shown to attain near perfect
accuracy on properly detected and segmented mathematical regions [17], their highly
favorable results operate under the assumption that MEDS has already been carried
out either automatically or manually with perfect accuracy. For the mathematical
recognition studies observed in the literature, either manual or semi-automated
techniques are used in order to properly isolate all mathematical expressions from
normal text prior to any training or evaluation. The goal of this thesis is to produce and
evaluate a purely automated system which carries out this functionality as a
component within a larger document layout analysis framework, Tesseract [18].

Thus, Theorem 9 gives Thus, Theorem 9 gives
Vil " . ‘ H(I! Y) 1 i . -
J| flx »dxdy = || f(rcos 6, rsin 6) £ }9) dr do |Uf(x, y) dx dy = Hf(rcos 0, rsin 6) Qi dr d9
: | (. R Sav, @>
e e, .
= L flrcos 6, rsin 6) r dr d = f*f*f{f¢0s 0, fsin 0) rdrdd
which is the same as Formula 15.4.2. which is the same as Formula 15 .4.2.

Figure 5: Example of OCR results on text excerpt. On the left is an example of text that was
scanned at 300 dpi from a calculus text book. To the right is the output generated by the leading
open source OCR engine, Tesseract.
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By utilizing and interfacing with the existing data structures and algorithms
present within Google's open source OCR engine, Tesseract, much of the more well-
studied areas of OCR / document analysis research are surpassed so that a study of
the relevant problem of MEDS can be explored in much greater detail than would be
possible otherwise. As the Tesseract software, much like commercial state-of-the-art
systems, is capable of partitioning a document into columns, paragraphs, headings,
etc., the software implemented in this work searches Tesseract's resulting partitions in
order to detect regions of interest. Greater document understanding is accomplished
through recognition of a variety of relevant features, many of which have yet to have
been explored in existing research. Relevant features are subsequently combined into
a binary classifier in order to detect regions of interest. These regions are then fed into
a segmentation module whose aim is to properly combine the detection areas into
properly segmented regions. The primary contributions of this work are briefly
summarized below:

- A freely available ground-truth dataset of manually segmented mathematical
expressions, taken from 75 randomly selected pages from 4
scientific/mathematical text books. Publications were chosen from the public
domain so that the dataset can be made freely available online for the objective
comparison with future or existing research endeavors.

+ A novel evaluation framework which takes pixel-accurate measurements of a
MEDS module's true/false positive rate, precision, false discovery rate,
accuracy, specificity, and negative predictive value. Measurements are also
taken for the oversegmentations, and undersegmentations made on detected
regions. This framework and all of the data is freely available to help in
facilitating the objective comparison of existing or future MEDS modules.

- Development of a MEDS module which is fully integrated with Tesseract's layout
analysis framework. The developed MEDS module is designed so that various
combinations of detection and segmentation techniques can be easily
experimented with through compile-time polymorphism.

1.5 Organization of Thesis

The work to be discussed in this thesis is aimed toward moving the world a step
closer to realizing some of the lofty goals set by Google's engineers and scientists.
Chapter 2 presents a review of existing document analysis techniques with extra
emphasis on those involving mathematical/scientific documents. Although there are a
wide variety of problems which need to be tackled in the area of document

11



recognition, the primary focus is on enhancing equation detection accuracy through
the use of feature recognition and a support vector machine (SVM) classifier. Chapter
3, the method section, discusses the ground truth generation procedure, feature
recognition algorithms, classification technique, and result evaluation. Chapter 4, the
results section, will involve a discussion of all results and their significance. Chapter 5,
the conclusion, summarizes important points and discusses recommendations for

future work.
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2 Literature Review

“We are like dwarfs sitting on the shoulders of giants. We
see more, and things that are more distant, than they did,
not because our sight is superior or because we are taller
than they, but because they raise us up, and by their great
stature add to ours.”

John Salisbury

2.1 The Beginnings of OCR

2.1.1 Fixed-font

Over the past century, Assistive Technology has been a primary incentive for
OCR research and development. While machine understanding was initially the most
commercially viable domain for OCR, several reading devices for the blind have been
implemented over the years. In 1914, one of the earliest reading devices, the
Optophone [19], could allow blind individuals to understand printed text without
relying on Braille. The device projected light upon a character of interest, focusing the
light's reflection upon a selenium photosensor. A sound with a frequency
corresponding to the reflected light would then be emitted to alert the reader of the
current character. A blind individual trained to use such a device, however, could only
expect to read at a mere one word per minute.

While there were some OCR patents released in subsequent years [20][8], it
was not until the late forties and early fifties that there was any commercial
development in the OCR industry. In 1949, RCA engineers were working on an OCR
system which used an early text-to-speech synthesis technology to read individual
characters out loud [21]. This system required the user to move a “eye” (a cathode
ray tube) across the letters of interest. The rays were then reflected upon a
photosensor connected to a complex processing unit (Figure 5). The project, however,
was discontinued prior to completion because it was not judged to be commercially
viable.

In 1953, David Shepard patented an OCR system, “Gismo”, which could read all
26 fixed-font letters of the English alphabet, understand musical notation, and
comprehend Morse Code [22]. Shepard founded Intelligent Machines Research
Corporation (IMRC) and released the world's very first commercial OCR systems. Credit
card reading, although now carried out through magnetic strip recognition, was one of
the first commercially successful applications of OCR. The Farrington B numeric font,
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still widely used on the front of credit cards to this day, was invented by Shepard in
order to minimize recognition errors.

PHOTO ELECTRIC

ﬂ'.

CATHOCE
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How machine reads: Electric eye looks at letter and reports its shape to electronic “brain.”

Figure 6: An image of RCA's 1949 OCR system: M. Martin, "Reading Machine Speaks Out Loud,"
Popular Science, vol. 154, no. 2, Feb 1949, pp. 125-127. Used under fair use, 2014. The system
was discontinued prior to completion due to its high costs .

IBM utilized Shepard's patents over subsequent years while also improving the
accuracy of fixed-font OCR. The IBM 1408 Optical Character Reader [23] was packaged
with the IBM 1401 Data Processing System (Figure 6) in 1960. The entire system,
which included printer, optical reader, central processing unit, magnetic storage, etc.,
was sold for $146,600 [24], a price tag which, if sold by today's standards, would
amount to over a million dollars. The IBM 1418 Optical Character Reader could only
handle the ten numeric characters, the dash symbol, and the lozenge symbol. A later
model, however, the IBM 1428, was alphanumeric. The alphanumeric reader could be
programmed to read several document layout types assuming that they were printed
in the correct font and format. Recognizable documents included premium notices,
charge sales invoices, operations and route slips, payroll and dividend checks, and
mail orders [25]. Throughout the 1960's, fixed-font OCR continued to be utilized and
improved upon due to its usefulness in a variety of industrial applications. Some of the
devices from this era are, in fact, still used even to this day for applications such as
mail sorting and banking.

Although commercial OCR systems from the 1960's and early 1970's were
primitive by today's standards, they were quite successful during their time as
illustrated in Figure 7 [26]. Maintenance costs for word processing, an expensive
resource at the time, could be reduced significantly with ordinary typewriters used for
drafting and their OCR results used for final editing [27]. Fixed font OCR, although
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primitive, indeed proved to meet most of the requirements set by industry. For
purposes of Assistive Technology, however, it was of little to no use. The blind or
visually impaired community needed an optical reader to understand not only OCR-
specific fonts and layouts, but a wide variety of printed documents including books,
newspapers, magazines, text books, etc., just as the idea of OCR originated primarily
for the purpose of Assistive Technology, some of its most important breakthroughs
were driven by this same incentive.

Figure 7: The IBM 1401 System (Optical Character Reader not shown here). From left to right,
the punch card reader/writer, mainframe, printer, and magnetic tape units. The IBM 1401
Demo Lab and Restoration Project Computer History Museum, "IBM 1401 Archive Pics,"
Internet: http://ibm-1401.info/IBM1401_ArchivePics.html, Date Accessed: 2014. Used under fair
use, 2014.

2.1.2 Omnifont

A major commercial breakthrough in the field of OCR came with the introduction
of Ray Kurzweil's Reading Machine in 1976 [9]. Up until this time, all OCR systems
were tailored to a specific font, or perhaps a specific set of fonts. This font limitation
can be attributed to the template matching algorithms commonly used at the time,
which would compare each incoming character image to a library of bit-mapped
images. Although recognition of a larger set of fonts can be made possible through the
addition of more templates into the library, too many templates would cause the
processing speed of each character to decrease significantly. Although it would be
ideal to have a set of fonts which could encompass all possibilities in the template
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library, this would prove unfeasible as there would be such a wide range of
possibilities.

Omnifont recognition is characterized primarily by its use of sophisticated
feature extraction techniques. As opposed to the brute force character-by-character
template matching algorithms utilized in earlier systems, feature extraction enables
recognition of characters irrespective of the font or typeset they are in. These
techniques find properties which are relatively invariant for the same character with
respect to the kinds of changes that occur across different typestyles. These
properties can often include line segments (vectors), concavities, and loops. For
example, the properties of a standard capital "B" include two loops on top of one
another. Although the number “8” has this same feature, it does not have a straight
edge on the left side as does the “B”. Furthermore, it is often that the two characters
can also be disambiguated based on contextual analysis. For instance, if a character
with the two vertically adjacent loops is detected at the beginning of a word, this
character is far more likely to be a letter than a number.

The Kurzweil Reading Machine used feature extraction and could be trained on
any number of fonts. Once the system was trained on a given font (a process taking
several hours), the knowledge would be stored on disk so that retraining would no
longer be required. The system could be trained to handle up to nine fonts
simultaneously [10]. If the page contained pictures or multiple columns, the user
would be required to specify their locations manually. While sophisticated techniques
have been developed to address the problems of document analysis, the following
subsection section will focus on work which has been done to prevent any retraining
from being required on new fonts. With the enhancements in processing speed and
more abundant memory attributed to the advent of microprocessors, it became
possible to implement much more intelligent systems utilizing complex pattern
recognition approaches, as will be discussed in the following section.

2.2 Pattern Recognition Techniques in OCR

As with all pattern recognition applications, in OCR some combination of feature
selection, extraction, and classification is essential. In general, a statistical classifier
will observe the features of its input and, based upon those features, choose the
optimal class label to which the input should be associated. For a given problem, there
are often many combinations of features and classifiers from which acceptable results
may be obtained. The choice of classifier and feature set is largely application
dependent, and, as of yet, no “one fits all solution” has been found. For OCR there are
many such combinations which have been proven to yield near perfect results. This, of
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course, is to be expected, in that OCR is one of the most historically well-studied areas
in the field of Pattern Recognition. Not only are pattern recognition techniques
fundamental to character-by-character classification, but they are also essential for
the detection of merged or broken characters, text lines, word recognition and
linguistic analysis, and, as will be discussed in Section 2.3, document layout analysis.
While a broad overview of all techniques utilized for OCR would be outside of the
scope of this thesis, some of the most fundamental and important ones will briefly be
discussed.

2.2.1 Text Line Finding

Character and word classification algorithms typically operate under the
assumption that the unknown text to be recognized is already in the fully upright
position. This is an unrealistic assumption given the many possible angles of skew with
which the text may have been scanned. Skewed text, as illustrated in Figure 8 [28], is
commonly encountered by most OCR systems. Assuming that page layout analysis
has already extracted all of the columns and text blocks, it is then necessary to
recognize angle of skew for each block. This is essential, not only so that characters
may be rotated to their upright positions prior to classification, but also to prevent
words and characters in vertically adjacent rows from becoming mangled
inappropriately. Individual character classification algorithms will often utilize a
character's positional information within a row as a distinguishing feature. As
illustrated by Figure 9 [29], there is much information about a character which can be
derived from where it's top, middle, and bottom portions reside within a row. In order
to have access to such information, accurate text line finding algorithms are essential.
Some of the most important techniques are briefly discussed.

Horizontal Projection Profile. One of the most straightforward methods for
determining the skew angle of a document image uses horizontal projection profiles.
When the horizontal projection profile is applied to an M x N pixel image, a column
vector of size M x 1 is obtained. Elements of this column vector are the sum of pixel
values in each row of the image [30]. The contents of this vector are at maximum
amplitude and frequency when the text is skewed at zero degrees since the number of
co-linear black pixels is maximized in this condition. One way in which the horizontal
projection profile can be utilized is by rotating the input image through a range of
angles while calculating the projection profile for each one [31]. Each projection profile
is then compared to determine which one has the maximum amplitude and frequency.
Although much work has been done in order to optimize this approach, there are still
more efficient and accurate methods which can be utilized [28].
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Figure 8: Original image in correct alignment (a) and skewed by 5 degrees (b). J. J. Hull, and S.
L. Taylor. "Document Image Skew Detection: Survey and Annotated Bibliography," World
Scientific, 1998, pp. 40-64. Used under fair use, 2014.
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Figure 9: For printed text, a given character often has a precise position within the text line

which can be useful for classification purposes. R. Smith, "Apparatus and Method for Use in
Image Processing," United States Patent Office. 5,583,949, Dec 10, 1996. Used under fair
use, 2014.

Hough Transform. The Hough transform, a well known feature extraction
technique in computer vision, can be utilized in order to detect, not only the skew
angle of a document image, but any mathematically tractable shape of interest. This
technique, when applied to 2D images, will take a series of (z,y) coordinates (for the
case of document images this will likely correspond to groups of connected pixels) and
transform them into a new coordinate space. While the coordinate space will vary
depending upon the desired shape to be detected, for straight lines the x and y
coordinates will be converted to the (p,f) coordinate space using the following
equation:

p = zcos(f) + ysin(0)
where p is the distance of the (x,y) point from the origin (usually at the upper left-
hand corner of the image), and 6 varies between -90° and 90°. The (p, §) parameter
uniquely represents a given line in the image by specifying its perpendicular angle and
distance with respect to the origin as shown in Figure 10.
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Figure 10: Mapping from (x,y) to Hough space

For each chosen (z,y) coordinate within the image, the Hough transform
algorithm will calculate the p values corresponding to some subset of the possible 6
values between -90° and 90°. There can be an infinite set of lines going through a
given point, thus the amount of lines required per point depends upon the desired
accuracy of the system as well as desired overall computational speed. The set of
chosen lines per point, each represented in Hough parameter space (p,0), is
represented by an accumulator array [32], each entry of which corresponds to a
unique line in the image. Each time that a line is found to go through an (z,y) point of
interest, its corresponding entry in the accumulator array is incremented. When the
process is completed, the accumulator array entries with the highest increments will
correspond to the lines which intersect the most points in the image.

For OCR purposes, lines of text may be found within the image based upon this
operation. The (z,y) coordinates of interest typically correspond to the centroids of
connected components (groups of connected foreground pixels which often
correspond to individual characters). When several parallel lines are found to have
very high entries in the accumulator array, this will often mean that the page was
scanned at the skew angle corresponding to these lines, and that they are likely to
represent individual lines of text within the document.

Geometric Distribution of Connected Components. The Hough Transform
has been utilized in various techniques to achieve accurate skew results. For a more
complete survey of past techniques the reader is referred to [28]. These techniques,
for the most part, vary, not by their use of the Hough Transform, but by their method
for determining connected components which are of interest and most likely to
correspond to rows of text. In [33], Smith utilizes an efficient and simple algorithm
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which, unlike previous methods, finds lines of text independently of the page's skew.
The connected components of the image are extracted and filtered such that the
remaining components are most likely to represent a body of text. The connected
components are then sorted based on their positions in ascending order from left to
right and iterates through them. Each connected component is added to a row of text
to which it is most likely to belong based on vertical overlap. If no such row exists then
it is created. Based upon which connected components are added to which rows, a
running average is kept on the slope of the text rows. This process is continued in an
iterative fashion until all connected components have been associated with rows. This
algorithm has been found to achieve reasonably accurate results while proving to be
more efficient than corresponding Hough Transform based algorithms.

Curved Text Line Detection. Even when text lines are accurately found, it is
often the case that the lines will need to be fitted to the text more precisely due to
scanning artifacts which may give the text a curved appearance as depicted in Figure
11. Among the techniques utilized for this problem are quadratic or cubic spline
modeling via least square fitting techniques [34] as well as active contour tracing via
snakes [35]. Smoothing techniques are often applied in order to simplify the input for
curved line detection. The optimal technique to be applied largely depends upon the
type of document fed into the OCR system. Thus document understanding at early
stages in the OCR process is of great importance in achieving accurate results. For a
more complete account of text line detection in various documents, the reader is
referred to [36].

Yolune 69._pages 872=0879.

Figure 11: An example of skewed and slightly curved text. Close inspection shows that the
cyan/gray line is curved relative to the straight black line above it. R. Smith. "An Overview of
the Tesseract OCR Engine," Proc. Int. Conf. Document Analysis Recognition, 2007, pp. 629-633.

Used under fair use, 2014.

2.2.2 Character Feature Extraction

The problem of feature extraction for optical character recognition, although a
difficult task, has been extensively studied in the literature. Techniques vary based
upon their application, with handwritten recognition often requiring different
techniques from printed character recognition. As with the rest of this thesis, the focus
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here will be on techniques pertaining to printed character recognition. Techniques
utilized by Google's OCR System, Tesseract, will be emphasized and discussed
primarily since they are used within this thesis project.

Edge Extraction. After text lines have been located as discussed in the
previous section, the next task for a typical OCR system will be to perform some
image processing operations on the input in order to make features more easily and
efficiently recognizable. Tesseract [29] utilizes a novel edge operator which can take
advantage of grayscale values if they are available to achieve robust character
segmentation results. Text and non-text can often also be distinguished based on
contextual evidence as well as using basic height/width filters. Furthermore, the edge
extraction algorithm will inherently filter out a significant amount of noise since it will
disregard any portions of the image which do not form closed loops. The term “closed
loop” is used here to describe a contour which, after being followed a certain amount
of time will return to its starting position.

Also of importance is preserving the relationships between the inner and outer
portions of characters. Take, for instance, the character “0” depicted at the left on
Figure 12 [37]. Since the edge detector will find the inner and outer portions of this
character as separate, simple data structures must be implemented which store the
relationships among overlapping edges. In Tesseract, a 2D bucket sorting technique is
utilized in order to store all of the inner portions of characters as enclosures or “holes”
within them. The results of edge extraction are stored in chain code format as
illustrated by Figure 13 [38].

00 O
U (L

Prototype Character Extracted Match of Match of
to classify Features Prototype Features To
To Features Prototype

Figure 12: Comparison of a prototype for “0” to an unknown character by template matching.
R. Smith. "Tesseract OCR Engine: What It Is, Where It Came From, Where It Is Go-
ing," OSCON, 2007. Used under fair use, 2014.
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Figure 13: (a) Example of chain-code. (b) Chain-code directions. S. Mori, C. Y. Suen, and K.

Yamamoto, "Historical Review of OCR Research and Development," Proceedings of the IEEE,
vol. 80, no. 7, Jul 1992, pp. 1029-1058. Used under fair use, 2014.

Polygonal Approximation. In Tesseract, the process of polygonal
approximation is required in order to optimize the efficiency and accuracy of
subsequent feature extraction techniques. Polygonal approximation of a character
image, if done effectively, results in an output whose data is neither too fine or course
for purposes of feature extraction [39]. It becomes easier to detect global convexes
and concavities as well as character enclosures, which are very important features.

The process of polygonal approximation utilized by Tesseract analyzes the chain
code output of the edge extractor in order to locate simplifications which can be
made, which will enhance the robustness of subsequent feature extraction techniques.
The process begins by first breaking up the character into directional segments,

separated by 90° or two subsequent 45° transitions [29]. The second stage involves
further analysis of these segments and subsequent approximations being made
between the end points of each segment. The process is repeated iteratively until
certain criterion are met.

Normalization and Template Matching. After polygonal approximation and
prior to feature extraction, normalization is applied to the input in order to eliminate
some of the complexities which may come about from various font differences. For an
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in depth discussion on normalization techniques the reader is referred to Chapter 3 of
[39]. Normalization is very important in accounting for character font transformations
which may occur in terms of size, perspective, and rotation with respect to the
features of prototypes used in training the system. Normalization techniques can, in
general, be separated into categories using either linear or nonlinear methods. While
linear methods account for affine transformations often found in printed characters,
nonlinear techniques are generally geared more towards handwritten character
recognition wherein much more drastic variation is to be expected.

Normalization can be performed either before or after feature extraction. If done
after feature extraction, then the process is carried out within the feature space rather
than directly on the character's pixels. In the case of Tesseract, normalization is
carried out on the feature space of the character's polygonal approximation, which can
be viewed as a vector of 3D features, the dimensions of which are simply x position, y
position, and direction within the range of [0,2x] [40]. Figure 14 gives an example of
how Tesseract will normalize the features of unknown characters while matching them

to those of character prototypes.
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Figure 14: (top) The polygonal approximation features of a “1” followed by those same
features after normalization with respect to the prototype of “1” to the right. (bottom)
Features of an “integral,” a character for which there is currently no valid template in
Tesseract. To the right is the integral after normalization with respect to the prototype of “/”.
For both normalized pictures, the solid lines represent the prototypes while the dotted lines
represent the normalized unknown character. Lines are colored from best to worst match:

white, green, red, blue. These images were taken from Tesseract's debugger.
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As illustrated by Figure 13, Tesseract normalizes a feature vector by each
character prototype to which it is compared. For instance, assume that the character
“8"” is fed into the system. Based upon a coarse shape analysis of the character a
subset of the the total prototypes may be chosen as potential candidates. For instance
“B” may be chosen since it has two enclosures, and “0” may also be chosen based
upon its convex top and bottom regions. Assuming that only these characters are
chosen as candidates, the feature vector for “8” will be subsequently normalized
based upon both of these prototypes prior to the respective template matching. The
process of normalization begins by isotropically scaling the bounding box to a fixed
height and width. The feature vector is then centered and scaled anisotropically based
upon the second moments of the prototype to which it is being compared [40].
Moment-based character normalization has been studied extensively in the literature
dating back to even before the advent of microprocessors. For some examples of in-
depth studies the reader is referred to [41] [42].

During Tesseract's classifier training, the training data is automatically grouped
into clusters based upon certain important features. These feature clusters are then
utilized during classification to reduce computation time with very little loss in
accuracy. The five most important features utilized by Tesseract will be herein briefly
discussed.

Concavities. One of the most important features in character recognition are
concavities. By definition, a concavity is part of an outline which does not lie on its
convex hull (the smallest convex region enclosing the outline as illustrated by Figure
15 [43]). In Tesseract, a concavities are characterized by the direction of their hull line,

their centroid [29], shape, skew, and area.

Figure 15: Red outlines represent convex hulls of the white regions. Aforge.NET, "Blobs Processing,"
Internet: http://www.aforgenet.com/framework/features/blobs_processing.html, Date
Accessed: 2013. Used under fair use, 2014.
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Functional Closures. Character closures are common features which can be
useful in distinguishing characters regardless of their font. For instance the “e” and “0”
characters will both always consist of a single closure when properly drawn or printed.
The term functional closure is useful when a character's closure may be slightly
degraded somehow, such that there there may be an unintended opening. In Tesseract
[29], each concavity is tested for functional closure. Based open the location of the
concavity within the character (i.e. upward facing, downward facing, etc.) a threshold
is assigned for the maximum character to concavity width ratio expected for a
functional closure. If the ratio is below the appropriate threshold then a functional
closure will be detected.

Axes. Tesseract defines axis features only on characters for which no
concavities or closures are detected. Characters including commas, periods,
quotations, etc., fall under this category. The axis feature measures a character's
length to width ratio. The length of a character is determined by finding a point on the
outline whose distance from the character's centroid is maximum. The vector going
from the point to the centroid is said to be the character's major axis. The character's
width is then calculated as the sum of the maximum perpendicular distances from the
major axis to the character outline on either side of the axis. The major axis length to
character width ratio can be useful in disambiguating commas, periods, quotes, etc.

Lines. As illustrated by Figure 13, lines are useful features in template
matching. Line features are only used by Tesseract for unknown characters which
closely match more than one of the prototypes, as measured with concavities,
closures, and axes [29]. The degree to which a line in the unknown character matches
a line in a prototype is measured based upon the normalized position of the center of
the line, its quantized direction, and its scaled length.

Symmetry and Detection of Italicized Characters. Vertical as well as
horizontal symmetry can be a very useful measure in discriminating certain
characters. For instance, the character “C” and “G”, “j” and “/”, “j” and “]”, “T"” and
“1”, etc. can often be disambiguated through their respective measurements of
symmetry. The main difficulty in symmetry measurement is not in measuring the
degree of symmetry about an axis, but rather in locating the axis of interest. While the
problem is trivial for vertical text (simply drawing a vertical line through the center will
suffice), italicized text is much more difficult since the axis is rotated slightly and may
be difficult to locate. Tesseract utilizes two methods to determine a character's axis of
symmetry. Once this axis is found it is then easy to determine whether or not the

character is italicized.
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The first method used by Tesseract searches the character's outline for a vector
which passes from the bottom to the top half of the character's bounding box. The
direction of this vector may be a good indication for the direction of the axis of
symmetry. For round characters such as “0” and “e” and those which contain vertical
lines such as “H” and “p”, this method is useful. However, for angular characters such
as “X” or “8”, a valid result is not produced. The second method finds the rightmost
point on the outline then calculates the most clockwise line which can be drawn
through this point, without intersecting any other point on the outline. This operation
is repeated on the leftmost point of the outline as well. The line which was least
clockwise from the vertical becomes the axis of symmetry.

After the axis of symmetry found, the outline is searched around the axis for
points of reflection. Symmetry testing is commenced at a point where the axis
intersects the outline and works in opposite directions simultaneously. The points are
tested for being in the same locality of the point on the opposite side of the axis.
Symmetry is only measured for certain character candidates and typically only in one

direction (either vertical or horizontal).

2.2.3 Character Classification

The line finding, edge extraction, polygonal approximation, and feature
extraction techniques discussed thus far would be of little to no value without an
effective classifier. In pattern recognition, a classifier will take a set of feature
measurements as input and, using these measurements, choose from a finite set of
classes, the class to which the unknown input is mostly likely to belong. In the case of
OCR, the classes will often correspond to individual characters. Tesseract employs two
separate classifiers: one is termed the static classifier while the other is the adaptive
classifier. In order to save computational time, a class pruner is utilized first to narrow
down the number of candidate classes for an unknown character.

Tesseract Class Pruner. In the first stage of classification, Tesseract will
employ its class pruner in order to reduce the number of potential candidates to which
an unknown character is to be compared. The class pruner uses a fixed quantized
version of the 3D feature space wherein each of the 3 dimensions (z,y,0) are
quantized into 24 cells. After the unknown character's features are quantized, they are
indexed to the quantized feature space in order to obtain a set of classes which allow
the given features. The number of feature hits for each class is summed and the best
few matching classes are then fed into the next stage of classification [40].

Tesseract Static Classifier. Both Tesseract's adaptive and static classifiers are
uniqgue when compared to more standard techniques in that they operate on a
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variable number of features. While standard classifiers such as neural networks,
support vector machines, etc., will work in a feature space of fixed dimension,
Tesseract has a variable number of features for each class of interest. The classifer
can be regarded as an optimized K-Nearest-Neighbor (KNN) classifier where the
character class, k, with minimum distance from the unknown character is computed

as follows:

min(l-c)ﬁka ; (i — Mijk) 24 Jz; (@i — Mz‘jk)2

where the variables are as follows: 7 is the current feature dimension (either = position,
y position, or #); j is the cluster; k is the character class; and [ is the unknown's
feature. x;; is the feature dimension (either z position, y position, or ) of the unknown
character x's feature at index [. M is the total number of feature vectors in the
unknown character, x (this varies depending upon the character of interest). Ji is the
total number of character clusters which the training set was divided into. ;5 is the
mean feature value for the i'" feature, j** cluster, and k! class calculated during
training.

While the left-most summation measures the distance between each feature
dimension and its corresponding average clustered prototype value, the right-most
summation measures the distance between the average value in each cluster to the
corresponding feature dimension. The result of these summations is then divided by
the total number of features in the unknown character and training set. A key
advantage to this approach is its symmetry. The nearest matching features between
both the unknown and prototype and the prototype and the unknown are effectively
found. Say, for instance that the unknown character is “e” and the prototype to which
it is compared is “c”. Since most of the features in “c” are allowed by “e”, it becomes
possible that the “e” will be misclassified as “c” if only the distance between the “e”
and “c” is computed. When the distance between the “c” and “e” is added into the
classification, the lack of crossbar in the “c” will incur a penalty, thus lowering the risk
of misclassification.

Tesseract Adaptive Classifier. After word recognition, as will be briefly
discussed in section 2.2.5, a second pass is made by Tesseract's classifier. This time
the classification is considered to be adaptive in that it utilizes the extra information
obtained after word recognition in order to better train the classifier to the current
font. After word recognition is carried out, there may be several characters which can
be disambiguated and thus used to better train the classifier on the second pass and
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increase accuracy. The adaptive classifier is essentially the same as the static one
except that it applies a different type of normalization to the unknown character prior
to comparing it to the prototype. While, for the static classifier, the centroid of the
unknown character is centered in the feature space and then scaled anisotropically to
normalize the second moments of the outlines, the adaptive classifier will normalize
the unknown by centering the horizontal centroid of the outline and scaling
isotropically to normalize the x-height of the character. This normalization retains font
differences, which, at this stage of OCR, is very important [40].

2.2.4 Detection of Merged or Broken Characters

While some of the first OCR systems would only recognize each individual
character independently, more sophisticated systems such as Tesseract, Omnipage,
and Abby Fine Reader, Readlris, etc., [11][12][13] analyze inter-character relationships
in order to increase their systems' robustness in the presence of noise. In Tesseract,
while the results of word recognition (described in Section 2.2.5) are found to be
unsatisfactory, a character merger/segmenter module is utilized in order to test the
word on new potential character candidates in areas with low character recognition
confidence. The merger/segmenter module will locate concave vertices of a
questionable character's polygonal approximation and attempt to separate the
character in those locations to test for a possible merged character as illustrated by
Figure 16. Likewise, potentially broken characters are attached to their neighbor and
tested if their combined width is within an acceptable range.

%

Figure 16: Example of merged letters with candidate chop points (denoted by triangles). R. Smith.
"Tesseract OCR Engine: What It Is, Where It Came From, Where It Is Going," OSCON, 2007. Used

under fair use, 2014.

2.2.5 Word Recognition and Linguistic Analysis

Individual words within Tesseract are detected based upon the distribution of
space between characters found on a text line. Characters which are within an
appropriate horizontal distance parallel to the text line are considered to be within the
same words, while groups of such characters are considered to be separate words. The
word recognition module looks up candidate words in a dictionary to make sure they
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are valid. This information is also vital to detecting broken or merged characters and
training the adaptive character classifier.

Some basic linguistic information can be important for increasing accuracy. For
instance, in Tesseract's English word recognition module, numeric characters are not
allowed to exist in alphabetic words, uppercase characters cannot follow lower case
ones, and the only punctuation allowed within a word are apostrophes. Markov
methods are also very useful in OCR due to spelling conventions (such as u following
gq) and the need for words to be pronounceable (i.e., g is unlikely to follow j). By
modeling each individual character as a possible state and each character occurence
as the next element in a Markov chain, it is possible to use a transition matrix (whose
width and height are 26, the number of characters in the English alphabet) to help in
selecting a word's next character [29]. While it is possible to make choices based upon
multiple characters, the transition matrix for making a choice based upon the previous

m - 1 characters would require a transition matrix of size 26(M1)x26(m-1), Rather than
using large values for m, Tesseract employs dictionary methods.

Strings of characters can be reduced into words which are either in a dictionary
or can be generated through the use of various production rules [44]. For each string
of characters a set of candidate words are derived using the dictionary. The word
which has the highest overall rating based upon the recognition confidence of its
individual characters is chosen. The word recognition result can then be utilized in
order to boost the adaptive character classifier's accuracy since certain characters
which had low confidence in the static classifier may now be confirmed.

2.3 Document Layout Analysis Techniques

2.3.1 Introduction to Document Layout Analysis

The improvements made in the field of commercial OCR throughout the 80's
and early 90's are primarily attributed to enhanced processor and digitizer
technologies rather than to improved classification techniques for individual patterns
[45]. By the early 90's there had been significant progress already made toward the
study of OCR and pattern recognition techniques which are still largely in use to this
day. A significant amount of the more recent progress made in the state-of-the-art has
been due to improvements in document layout analysis and understanding as
opposed to the much more mature character-by-character feature extraction and
classification algorithms.

While inflexible hardwired classification engines once dominated the market for
OCR, the computational advancements of the 70's and 80's allowed for more
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intelligent systems to take hold. While systems became robust against multiple fonts,
merged/broken characters, and document skew as discussed in the previous section,
the need also arose for systems which could recognize pages from a wide variety of
document types. While an OCR system may be predominantly exposed to documents
like newspapers, magazines, letters, etc., it is also often necessary to process such
“special” documents as electronic circuit diagrams, envelopes, checks, tax return
forms, music notations, etc. [46].

The importance of document layout analysis techniques is made apparent in
the presence of both the former and latter document types as they may contain
complex backgrounds, lines with drop-caps, mathematical formulas, various symbols,
imagery, tables, graphs, multiple columns, titles, headings/subheadings, etc.
Therefore, it becomes important, not only to recognize the individual words and
characters, but to also interpret and preserve the layout and spatial context of a
document's components. Such details as spatial context and document structure are
vital in conveying a document's message as it is intended to be perceived, as well as
for understanding how exactly the document needs to be processed in order to
achieve the optimal recognition accuracy. Figure 17 [47] shows two examples of

document images with complex layouts.
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Figure 17: Two document images with complex layouts. On the left, an intricate background as
well as complex column structure is observed. On the right is a newspaper article with a
complex layout of titles and columns along with imagery and captions. Both document images
will require sophisticated image processing and layout analysis techniques in order to achieve
both OCR accuracy as well as efficient data storage and indexing within computer systems. A.
M. Namboodiri, and A. Jain. "Document Structure and Layout Analysis," Advances in Pattern

Recognition, Springer-Verlag, London 2007. Used under fair use, 2014.
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Document layout analysis is a very important design component for any OCR
system and has been extensively studied [46][471[48][49][50][511[52][53]. Not only is
document layout analysis often essential for obtaining correct OCR results, it can also
provide the means for computer systems to use logical information such as titles,
footers, authors, captions, abstracts, page numbers, etc., to more efficiently store and
index a document image's information [54]. This contextual information is also
essential for Assistive Technology purposes, in enabling blind individuals to have an
understanding of the same spatial and logical cues afforded by the document's visual
layout [55]. This section will discuss how the field of document analysis is divided into
various sub-problems by existing literature and then compare and contrast various
techniques which address these problems. The problem of document analysis can be
broadly divided into its five most important interdependent components: image
preprocessing, document structure analysis, document content representation,
training set development, and finally performance evaluation as illustrated by Figure
18 [47]. After a brief overview of what each stage entails along with some introduction
of terminology, various techniques found in the literature for each stage will be
discussed.
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Figure 18: The five most important inter-dependent components of document analysis involve
preprocessing, document structure analysis, document content representation (not illustrated
here), training set development (ground truth), and performance evaluation. Each module is
described as interdependent because the performance of the overall system really depends on
each component. For instance, if preprocessing is not effective, then structure analysis will
likely fail. If the document content representation is not consistent, then ground truth and
performance evaluation will yield insignificant results. A. M. Namboodiri, and A. Jjain.
"Document Structure and Layout Analysis," Advances in Pattern Recognition, Springer-Verlag,
London 2007. Used under fair use, 2014.

Firstly, the most common problems addressed by image preprocessing (Section
2.3.2) in document analysis involve noise removal, separation of background and
foreground regions, and skew correction. Secondly, after any necessary preprocessing
is carried out on the document image, the modified image is fed into the system's
document structure analysis module. From a broad perspective, document structure
analysis involves first extracting the document's geometric structure and then
mapping that structure into a valid logical one which can be understood by computer
systems. A document is thus considered as having both a physical (geometric-based)
structure and a logical (content-based) structure. Thus document structure analysis is
commonly divided into two distinct phases: physical layout analysis and logical layout
analysis. Each distinct phase of document structure analysis will be further discussed
in Section 2.3.3.
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2.3.2 Preprocessing

The most common problems addressed by image processing involve noise
removal, separation of background and foreground regions, and skew correction. Since
skew correction was already covered in great detail by Section 2.2.1, it will not be
further discussed in this section. Noise removal in image processing is a well studied
field and advanced techniques have been developed to cope with white noise, salt and
pepper noise, quantization artifacts, etc. Such noise sources are often compensated
for by using techniques such as median filtering, dithering, low pass filtering, etc. [52].
An in depth overview of noise reduction methods in image processing can be found in
[56]. For purposes of document layout analysis, one of the more important noise
removal tasks involves the detection and filtering of half-tones. This discussion will be
followed by a brief overview of preprocessing tasks for background and foreground

separation.

Noise Removal: Dealing with Half-tones
Halftones, as illustrated by Figure 19 [57], utilize variably sized or spaced dots

in order to create the optical illusion of an infinite range of colors while, in actuality,
only printing a limited amount. Half-tones are utilized by color and grayscale printers
in order to reproduce imagery while requiring few colors of ink. Figure 19, for instance,
creates the illusion of grayscale while only requiring black dots. When scanned at high
resolution, the halftones in a document become a significant noise artifact, as an
image's connect components clearly should not be divided into such small dots for
document analysis purposes. Halftones can be detected through the use of various
filtering techniques [58], whose accuracy often depends upon the dot sizes and
spaces of the halftone in question. Once detected, the halftones can be converted into
continuous grayscale by applying an appropriate low-pass filter to smooth out all of
the dots, followed by a sharpening technique which will reduce the blur.
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Figure 19: An example of a halftone image. Notice that, when looking at the image from a
distance, the illusion is created that the image is in grayscale, when, in fact, it is actually
printed with only black dots of varying sizes. R. Miller, "Ink-Jet Basics," Internet:
http://www.thetonesystem.com/inkjet_basics.html, Date Accessed: 2013. Used under fair use,
2014.

Background and Foreground Separation

Although the problem of foreground detection is often very simple in the case of

the most typical black text on white background, the problem becomes much more
complex when faced with intricate backgrounds which are overlayed with text in
varying color, size, and font as depicted in Figure 20. In the former case it is possible
to use thresholding techniques like Otsu's method [59]. An alternative method which
could work for varying background and foreground color schemes would be to find the
outline of characters through edge detection [29]. In the presence of complex
backgrounds, however, more sophisticated background and foreground separation
techniques may be required. A common approach is to compute statistical properties
of image patches and assign them as either foreground or background using a trained
classifier such as a neural network [47]. Through a combination of edge detection and
a trained classifier it becomes possible to detect foreground text of varying colors on a
complex background with a certain degree of confidence as demonstrated in Figure
20.
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Figure 20: (Left) Part of a document image with complex background. (Right) The same image

with foreground separated from background. A. M. Namboodiri, and A. Jain. "Document
Structure and Layout Analysis," Advances in Pattern Recognition, Springer-Verlag, London
2007. Use under fair use, 2014.

2.3.3 Document Structure Analysis

A primary component of any document analysis system is the document
structure analysis stage itself. As previously indicated in Figure 18, however, the steps
of preprocessing, document content representation, training set development, and
performance evaluation also play a crucial role. In this section the term “document
structure analysis” is used to refer to the broad class of both physical and logical
document structure analysis methods which will be explored in this section. In
general, physical layout analysis techniques are one of the first steps of an OCR
system and will initially divide the document image into areas perceived as text and
non-text, as well as splitting multi-column text into columns [18]. In this literature
review an important distinction between physical and logical layout analysis
techniques is made such that, while logical layout analysis techniques make final
classification decisions on blocks, physical layout analysis techniques extract and
evaluate the geometry of blocks without necessarily reaching any final conclusions on
their syntactic meaning. While the physical layout analysis stage looks for geometric
patterns, the logical layout analysis stage will utilize this and other information in
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order to infer a document's meaning from a syntactic perspective (i.e., the type of
document and the location and functional purpose of its “zones” which may include
titles, headers, footers, math equations, imagery, etc.). This logical understanding is
very important both for indexing and storage purposes as well as for Assistive
Technology applications as previously mentioned.

A document analysis system must be able to understand not only how a
document can best be partitioned into its logical sections, but also the role that
physical geometry plays in conveying information effectively. It is important for a
document recognition system to move back and forth between physical and logical
analysis in an intelligent manner which may vary significantly depending upon the
aspects of what is being recognized. This concept is illustrated by the bidirectional
arrows seen in Figure 18. Although it is possible for a very specific physical layout to
match to only a single logical structure (i.e. in the case of a very complex and unique
form), there is never a guaranteed one-to-one mapping between any physical and
logical layout or vice versa. In creating a system that can generalize to a wide variety
of document structures while minimizing overfit, it is thus important not to make
assumptions too early based solely upon geometric information. A system may require
to make “fuzzy” decisions which, in later steps, can be further refined to reach an
appropriate solution. For instance, if text is found to be centered within a column this
could open up many distinct possibilities based upon the contents of the text itself as
well as its context within the entire page. It could, for instance, be the title of a new
subsection, new chapter, a mathematical formula, a quote, image caption, or any
number of other possibilities. Thus, while an understanding of the geometric structure
of a block of text is important, there is more information required in order to
understand the block's logical structure. If an OCR algorithm yields results with low
enough confidence then various alternatives can be tested (i.e. for mathematical
formulas, musical notation, other languages, etc.).

Document Physical Structure Analysis

Physical layout analysis, an essential step for all OCR and document analysis

systems, localizes individual blocks of text and imagery while leaving assignment of
logical meaning of these blocks as well as final classification of text/nontext regions to
later stages in processing which will be discussed in the Document Logical Structure
Analysis Section. Methods for physical layout analysis fall into roughly three
categories: top-down, bottom-up, and hybrid, each of which will be discussed in turn
by this section. An important distinction between algorithms involves the types of
physical layouts which they can handle. The following three types of physical layout
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patterns are commonly defined: these include Manhattan, rectangular, and arbitrary
layouts [60]. A document's Manhattan layout can be viewed as the document divided
into a grid, which may be horizontally or vertically split recursively into smaller
components in any given region. For a Manhattan layout, if a region overlaps another
then it must be entirely covered by that region (i.e., there is no partial overlap).
Rectangular layouts consist of several rectangles arbitrarily spaced apart or which
could be partially overlapping. Arbitrary layouts, on the other hand, are formed by
unconstrained polygonal shapes as demonstrated by Figure 21 [61].

Top-down physical layout analysis techniques recursively segment the
document into smaller rectangles which are expected to correspond with image,
column, paragraph, or other text block boundaries [54]. Bottom-up techniques, on the
other hand, analyze individual pixels or connected components, recursively merging
them together into larger regions. While bottom-up techniques can handle arbitrary
physical layouts, top-down methods are constrained to only handling rectangular
regions. A disadvantage of bottom-up techniques, however, is that they may result in
over-fragmented regions. For instance, a bottom-up technique will be more likely to
properly segment small structures like individual paragraphs of text than to properly
segment entire columns. Due to these trade-offs it is often that hybrid techniques,
which combine top-down and bottom-up ideas, are employed [62]. Starting with top-
down methods, variants of each broad category of physical layout analysis will be
reviewed by this section.
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Figure 21: An example of an arbitrary physical layout wherein blocks of text are fit to the
shape of a pie chart. A layout analysis system should ideally be able to segment text blocks
into the appropriate shape, which sometimes may be more complicated than simple
rectangular layouts. For this figure, a document layout analysis system which can only handle
rectangles would be insufficient, and would likely result in a mangled output. A. Gourdol,
"CSS3 Regions: Rich Page Layout With HTML And CSS3," Internet:
http://www.adobe.com/devnet/html5/articles/css3-regions.html, Date Accessed: 2013. Used

under fair use, 2014.

Top-Down Physical Structure Analysis

The first physical layout analysis technique to be reviewed here is the “top-
down” method. Top-down strategies segment blocks based upon interpretations of the
document from a high level (i.e., by first looking at a representation of the entire
document and recursively splitting it into smaller components). Top-down strategies
will then typically attempt to verify each segmentation by visiting each node down the
to the terminals (the lowest levels, corresponding to individual connected components
or pixels) [63]. For documents having a complex layout, top-down methods are often
more robust but slower than bottom-up ones. Typical bottom-up algorithms are faster,
but can be less reliable since they may greedily over-segment blocks without regard to
all of the available contextual information.

XY Cut Algorithm. The X-Y cut algorithm [64] is a top-down approach which
has been utilized extensively over the past several decades. The technique analyzes
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vertical and horizontal projection profiles of the image to find regions of low pixel
density, often termed as “valleys” [46][47]. Assuming that the document has a white
background and Manhattan layout, its X and Y valleys are likely to correspond with
horizontal and vertical text block boundaries respectively. For instance, these could be
divisions between paragraphs and columns. The X-Y cut algorithm will start with the
horizontal and vertical projection profiles of the entire image and use the largest
valley (or valleys) in either direction as the first splitting point. After having made the
first split(s), the algorithm will then recursively make further splits within each sub-
region using the same methodology. The document's physical layout is represented by
an X-Y tree data structure wherein each node represents a split region. If the algorithm
is correct, then the terminal nodes of the tree will correspond to the individual text
blocks. Once the terminal nodes have been located, the algorithm will backtrack
through the tree structure to ensure that the physical structure is appropriate based
upon some preconceived notions of expected document structure. A possible result of
the algorithm is illustrated by Figure 22. In order for the X-Y cut algorithm to work
correctly, it is vital that the document first has its skew corrected. If, for instance, the
horizontal projection profile is taken for a document that has been rotated by several
degrees, then many of the “valleys” will not be found correctly and thus the algorithm
will fail.
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to the various components to construe a
valid graphic “sentence.”

Although we use compiler tools de-
veloped primarily for formal languages,
the syntactic analysis of document im-
ages exhibits many of the difficulties of
parsing natural language. Layout con-
ventions may be insufficient to identify
every document component. For in-
stance, text lines with equations buried
in them may radically alter the expected
line spacing. We must therefore ensure
that minor deviations have only local
effects. Furthermore, the grammar for a
modern programming language is estab-
lished from the start, while document
grammars must be inferred indirectly, as
later discussed. (A never-ending task:
Journals frequently put on new faces.)

Block grammars. The document gram-
mar for a specific journal consists of a
set of block grammars. Each block gram-
mar subdivides a block horizontally or
vertically into a set of subblocks. The
net result of applying the entire docu-
ment grammar is therefore a subdivi-
sion of the page into nested rectangular
blocks. Such a subdivision can be repre-
sented efficiently in a data structure

called the X-Y tree® (Figure 2). The
block grammars themselves are also
organized in the form of a tree: The
block grammar to be used to subdivide
each block is determined recursively by
the results of the parse at the level above.

Syntactic attributes

14

A (horizontal/vertical) block pro-
file is a binary string that contains a
zero for each horizontal or vertical
scanline that contains only white
pixels; otherwise it is a one.

A black atom is a maximal all-one
substring. It is the smallest indivisi-
bie partition of the current black
profile. A white atom is an all-zero
substring.

A black molecule is a sequence
of black and white atoms followed
by a black atom. A white molecule
is a white atom that separates two
black molecules.

An enlity 1s a molecule that has
been assigned a class /abel (title,
authors, figure caption). it may de-
pend on an ordering relationship.

This approach effectively transforms the
difficult two-dimensional segmentation
into a set of manageable one-dimen-

sional segmentation problems.

The syntactic formalism is theoreti-
cally well understood, and sophisticat-
ed software is available for lexical anal-
ysis and parsing of strings of symbols.
Eachblock grammar is therefore imple-
mented as a conventional string gram-
mar that operates on a binary string
called a block profile. The block profile
is the thresholded vertical or horizontal
projection of the black areas within the
block. Zeros in the block profile corre-
spond to white spaces that extend all
the way across the block and are there-
fore good candidates for the locations

Representing the structure of an en-
tire page in terms of block grammars
simplifies matters considerably. Buteach
block grammar itself is a complex struc-
ture. It must accommodate many alter-
native configurations. For instance, to
divide the title block from the byline
block, the block grammar must provide
for a varying number of title lines and
bylines, and for changes in spacing
caused by the ascenders and descenders
of the letters. To simplify the design
process, each block grammar is con-
structed in several stages, in terms of
syntactic attributes extracted from pro-
file features.’

Syntactic attributes. The first stage of
a block grammar operates on the ones
and zeros of the block profilc. Strings of
ones or zeros are called aroms. Atoms
are divided into classes according to
theirlength. A string of aiternating black
and white atoms is a molecule. The class
of a molecule depends on the number
and kind of atoms it contains. Finally,
molecules are transformed into entities
depending on the order of their appear-
ance. The words atom, molecule, and
entity were chosen because they are not
specific to a particular publication or
subdivision. (See the sidebar on syntac-
tic attributes.)

The syntactic attributes that deter-
mine the parse are the size and number
of atoms within an entity, and the num-
ber and order of permissible occurrenc-
es of entities on a page. Table 1 shows
the expected variation in the horizontal
profile of a page fragment that includes
the title and byline. The assignment of
symbolsintolarger units is accomplished
by rewriting rules or productions. These

COMPUTER

Figure 22: A possible result of the X-Y Cut algorithm (done manually) on an article page
(citation below). Here the entire page is cut vertically (red) and then each sub-region is
cut horizontally (green). The splitting order from this point becomes rather complex but
is color coded as follows: orange, yellow, blue, and pink. Notice that a single node may
have more than two children, which is the case for sections with multiple paragraphs,
columns, etc. G. Nagy, S. Seth, and M. Viswanathan, "A Prototype Document Image
Analysis System for Technical Journals," Computer, vol. 25, no. 1, Jan 1992, pp. 10-22.
Used under fair use, 2014.

42




Run-Length Smoothing Algorithm (RLSA). It is typically unnecessary to
perform processing on all pixels of the document image. For the top-down algorithms
previously described, which use either maximal white space rectangles or projection
profiles, the document image is usually reduced in size during a preprocessing stage.
By reducing the size and complexity of the input image, both the efficiency and
accuracy can be enhanced assuming that only insignificant data is reduced. For
instance, when detecting entire columns of text, the spacing between individual
characters, words, and lines is unnecessary. One way to reduce the amount of data is
to use a run-length smoothing algorithm (RLSA) [65] which will be discussed further in
the Bottom-up Physical Structure Analysis section. This method can merge characters
into words, words into text lines, and text lines into paragraphs by “smearing” the text
to join characters into blobs. This is done by inspecting white spaces between
foreground pixels and, if their width is below some threshold, setting them to black.

Template Techniques. “Template” techniques which have been observed in
the literature [66][67], are labeled as top-down even though they often rely on a
combination of both logical and physical document structure analysis [50]. These
methods require a significant amount of knowledge about the expected document
structure on which they are trained and may not generalize well to new types of
documents. An effective way in which document structure can be described is through
the use of a Form Description Language (FDL) [66]. The basic concept of FDL is that
both the logical and physical structures of a document can be described in terms of a
set of rectangular regions. The FDL specifies how a document should be processed
based upon various aspects of its physical layout. Systems which utilize an FDL
typically operate on a limited assortment of document types, thus its use is very
application specific.

Dengel et al. present a technique which they call “Discriminating Attribute
Values in uncertain Object Sets (DAVOS) [67]. By “object sets”, Dengel et al. are
referring to sets of regions on a document image along with their appropriate logical
labels. The attributes (geometric features) of these objects may not be limited to
single values but could cover a range of possible values and are thus considered as
“uncertain.” The DAVOS system analyzes business letters and builds a decision tree
where each level corresponds with an increasing level of document type specificity.
The terminals on the tree specify the entire logical layout of the document. Just as
with FDL, the ability of the DAVOS system to generalize to new document types is
limited. DAVOS was only tested on business letters and was evaluated against a
bottom-up technique (which utilized merging of connected components) and shown to
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have similar but “more balanced” results (i.e. logical labeling errors were more
distributed among the various labels).

Bottom-Up Physical Structure Analysis

While top-down approaches start with the complete document image,
repeatedly splitting it into smaller regions, bottom-up approaches carry out the
inverse operation. Starting with the document image's primitives (i.e. individual pixels,
connected components, words, etc., depending upon the application) bottom-up
techniques repeatedly merge smaller regions into larger ones. While allowing more
flexibility over top-down techniques, bottom-up techniques often result in greedy over-
segmentation of regions. Bottom-up physical layout analysis techniques all utilize
connected component analysis and may also make use of Veronoi diagrams, run
length smoothing, mathematical morphology, neural networks [68], as well as
communication theory (Document Image Decoding) [69]. This section will briefly
review work that has been done for bottom-up techniques, starting with a discussion
of connected component analysis.

Connected Component Analysis. As discussed previously, connected
components are sets of foreground pixels such that a four or eight-connected path
exists between every pixel pair in the the set. While text usually consists of connected
components with a relatively consistent size and spacing, graphics generally tend to
consist of larger connected components with more sparsely distributed positions. By
analyzing these spatial properties of connected components, it becomes possible to
identify and group text and graphics separately. Connected component generation
involves grouping all four or eight-connected foreground pixels together in the
document image. The components are then grouped based upon their bounding box
location. The output of a connected component (cc) generation algorithm is a list of
cc's where each entry contains the bounding box coordinates, shape of the region,
number of black pixels, an image of the region itself, etc. The cc's are typically sorted
by their bounding box position, and can be then filtered based upon height and width
to determine regions more likely to be text vs those which are more likely to be
graphics [46].

An example of a bottom-up physical analysis technique is Bixler et al.'s text
extraction algorithm [70]. Bixler demonstrates his algorithm by extracting and
recognizing the text from a map as shown in Figure 23. His technique first uses a
standard recursive (stack-based) flood fill algorithm in order to find the connected
components [71]. After finding an initial starting foreground pixel, the flood fill
algorithm can be described simply as follows: (1) If the current pixel is not foreground
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then return, (2) Set the current pixel to a replacement color in order to mark it as
processed, store it in memory (3) Recurse to the function in each direction in turn (4)
Return from the function. The aforementioned algorithm is then repeated for each
unmarked foreground pixel of the image in turn, until all connected components are

found and all marked pixels grouped into their constituent connected components are

stored in memory, along with their bounding boxes, and any other relevant

information.
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Figure 23: On the left is a map, and on the right is the map's extracted text. Notice there are
some dependencies where the foreground text was confused with the imagery of the map. For
instance one of the “f's” in the word “Post Office” is missing because it overlaps with a road. J.
P. Bixler. "Tracking Text in Mixed-Mode Document," Proc. ACM Conference on Document
Processing System, 1998, pp. 177-185. Used under fair use, 2014.

With the connected components found, Bixler then determines which ones are
text and which are graphics based on a simple height and width thresholding
technique. Once the components have been segmented into text and graphics, those
identified as graphics are subtracted from the image to leave only the text. The
resolution of the image is then reduced based upon the size of the character

components. A connected component tracking algorithm is then utilized in order to
find words which could be potentially in any direction (i.e. vertical, diagonal,

horizontal, etc.). The algorithm scans the reduced document image from left to right
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top to bottom looking for a starting connected component, then does a nearest
neighbor search in each direction to find the closest character. Information about the
spacing and direction between the first two characters is then utilized to track the
location of the next character until entire words are detected. The procedure is
repeated for each unique starting point until all words are found. The technique
achieved near perfect results for a complex map, with only those words which
significantly overlapped graphics being missed.

Document Spectrum Analysis (“Docstrum”). The Document Spectrum
(Docstrum) proposed by O'Gorman [72], is a representation of a document which
describes global structure features and can be useful for page analysis. The technique
takes the document's connected components and utilizes a k-nearest-neighbor
clustering technique in order to segment the document into words, text lines,
paragraphs, etc. The algorithm recognizes five nearest neighbors for each connected
component, where closeness is measured by Euclidean distance in the image. Each
nearest neighbor pair is described by a 2-tuple, (d, 9), which is the distance and angle
between the centroids of the two connected components. The “Docstrum” is the plot
of (d, 9) for all nearest neighbor pairs in the image as illustrated by Figure 24. The
text's spacing between characters and words as well as the line angles can be
estimated by summing up the distance and angle values in the docstrum plot. The
distances and angles are converted to respective histogram representations. The
nearest neighbor angle histogram is smoothed and the peak found. The angle of the
peak value gives a rough estimate of the text line orientation. This rough estimate is
then used to determine intra-line and inter-line spacing by analyzing two histograms
of the nearest-neighbor distance values. The first histogram is for intra-line spacing
and filters out all distance values that are not within a tolerable range of the textline
orientation estimate. This histogram thus represents the distribution of inter-character
and word spacing within each text line. The second distance histogram filters out all
values outside of a tolerable range of the textline orientation estimate's perpendicular.
This histogram, therefore, represents the distribution of the document's inter-line

spacing.
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Figure 24: On the left is a document image and on the right is its corresponding Document
Spectrum representation. L. O'Gorman, "The Document Spectrum for Page Layout Analysis,"

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11, Nov 1993, pp. 162-173.
Used under fair use, 2014.

Nearest neighbors on each line are merged into words and then a regression fit
is made to the centroids of the words in order to locate text lines. A straight line is
fitted to the centroids in each group by minimizing the sum of square errors between
centroids and the line. From these text lines a final estimate is made of the page's
skew. An issue with this method is that text line descenders and noise could reduce
the accuracy of the initial estimate and cause problems with reaching the right
conclusions. It is important to have the correct threshold values and to smooth the
histograms appropriately in order to get successful results. After the text lines are
estimated, larger structures (like paragraphs or other text blocks) are then detected.
The blocking technique examines pairs of text lines to determine whether or not they
meet certain criteria to be considered part of the same text block. If the two lines are
approximately parallel, close enough in perpendicular distance, and/or horizontally

overlap to some degree then they are said to meet the criteria of belonging to the
same block.
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One of the benefits of this algorithm is that it does not assume that each
component of the document has the same skew angle. Thus it is possible to
indiscriminately segment lines and/or blocks of text in any direction. This may be
useful for a variety of circumstances including analysis of magazines or journals with
sporadically appearing vertical text, scans of several credit cards or business cards
each on the same page but at arbitrary angles, maps with text overlayed over
imagery in arbitrary directions, etc. The technique was tested on hundreds of scanned
journal pages, however no comprehensive performance evaluation is given.

Voronoi Diagram. Given a set of points and a subset of these points called
sites (or generators), the Voronoi diagram is the partition of the entire set into convex
cells, such that each cell is the region consisting of all points that are closer to a
particular site than to any other. Voronoi diagrams are among the most fundamental
and well-studied objects in computational geometry [73]. An ordinary Voronoi
diagram, as illustrated by Figure 25 [74], is one which uses Euclidean distance as its
metric and can be described as the set of Voronoi regions which correspond to the
convex shapes created by the partition.

Figure 25: lllustration of an ordinary Voronoi diagram. Wikipedia, "Voronoi Diagram," Internet:

http://en.wikipedia.org/wiki/\Voronoi_diagram, Date Accessed: 2013. Used under fair-use 2014.

An area Voronoi diagram is a generalization of the ordinary Voronoi diagram
depicted by Figure 25 which uses the Euclidean distance between the areas of
connected components as a metric rather than the distance between points. The area
Voronoi diagram for a document image can be found by the following procedure: (1)
Sub-sample every connected component in the image such that all that remains is a
subset of the points on the outer edge; (2) generate an ordinary Voronoi diagram
using this subset of points in the image; (3) remove all edges of the Voronoi diagram
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which both belong to points of the same connected component. This process is
illustrated by Figure 26 [75].

Document Image
Processing

(a) image

(b) sample points

(c) point Voronoi diagram

Dobwm!em“? Imw <e
Prdqe

(d) area Voronoi dzagram

Figure 26: The process of segmenting an image into an area Voronoi diagram as illustrated by
Kise et al. K. Kise, A. Sata, and M. Iwata, "Segmentation of Page Images Using the Area Voronoi
Diagram," Computer Vision and Image Understanding, vol. 70, no. 3, Jun 1998, pp. 370-382.
Used under fair use, 2014.

Kise et al. formulate the problem of physical page as that of determining which
edges of a document's area Voronoi diagram best represent the boundaries of
document components. By analyzing various features in the document image,
superfluous edges of the area Voronoi diagram can be removed, thereby leaving only
the edges corresponding to document boundaries. Superfluous edges would, for
instance, correspond to the space between characters, words, text lines, etc., when a
division of the page into separate paragraphs, columns, imagery, title, etc., is
required. For each edge, all of its line segments are evaluated in order to determine
the minimum distance between the two points on the connected component which
were used to generate the Voronoi line segments in the first place. If this minimum
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distance is below a given threshold for any line segment of the edge, then the entire
edge removed. Likewise, the area of connected components are divided by these
edges are compared and if the distance between the connected components is small
enough in relation to the area ratio of the two connected components, then the
corresponding edge is removed.

Kise et al. evaluate their algorithm on 16 document images at two resolutions,
90 DPI and 300 DPI, having a non-Manhattan layout each at 4 different skew angles to
test for robustness (thus a total of 128 with non-Manhattan layout when counting the
resolutions and skew). In order to test the applicability with Manhattan layouts, the
algorithm was also evaluated on 98 images from the University of Washington
database (UW1) all at 300 DPI. In evaluating the algorithm on these datasets, the
percentage of the “body” text, “auxiliary” text, and “non-text” document zones which
were over and under fragmented is evaluated respectively. The algorithm performed
best on the body text of the non-Manhattan documents scanned at higher resolution
where only 2.1% of zones were over-fragmented and only .4% under-fragmented. The
algorithm faired poorly for the segmentation of non-text zones of all document types,
but especially poorly for Manhattan documents where it resulted in a 98% over-
fragmentation rate.

Run Length Smearing Algorithm (RLSA). Proposed originally in 1974 by
Johnston [76] in order to separate text blocks from graphics, the Run Length Smearing
Algorithm (RLSA) has been frequently used to obtain basic features for document
analysis [46]. RLSA, in its most basic form, transforms a binary image as follows: (1)
For each background pixel, if the number of neighboring foreground pixels is above a
certain threshold, then the pixel is changed to foreground; (2) all foreground pixels are
left unchanged. When applied horizontally or vertically to the rows or columns of an
image respectively, RLSA has the effect of linking together neighboring background
pixels that are separated by a number of pixels below the given threshold (illustrated
by Figure 27 [65]). With an appropriate choice of threshold, it is possible for the linked
areas to correspond with separate document zones. The threshold is typically set
based upon the character height, gap between words, and interline spacing [46].
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Figure 27: From left to right: (1) The original image. (2) Vertically run length smeared image.
(3) Horizontally run length smeared image. (4) The logical AND of (2) and (3). F. Wahl, K. Wong,
and R. Casey, "Block Segmentation and Text Extraction in Mixed Text/Image Documents,"
Graphical Models and Image Processing, vol. 20, no. 1, Jan 1982, pp. 375-390. Used under fair
use, 2014.

Multiresolution Morophology. Bloomberg [77] discusses an approach to
document image analysis which uses morphological operations at multiple resolutions.
For an in-depth overview of morphological image processing (including definitions for
terms such as structuring element, dilation, erosion, opening, and closing) the reader
is referred to [78]. While connected component based techniques are effective on
pages with only characters, they can exhibit practically unbound time and memory
requirements when presented with pages consisting of halftones, graphics, and/or
handwritten notes. While, in connected component analysis, a region's shape is
primarily dictated by the configuration of its “ON” pixels, Bloomberg considers a
region's shape based upon relationships between adjacent “ON” and “OFF” pixels and
then considers texture to be the statistical distribution of such shapes in an image.
Bloomberg describes a morphological image processing operation called the
“generalized opening,” based upon the hit-or-miss transformation [79], which is useful
for localizing shapes and textures of interest within an image. The rationale behind
carrying out operations at multiple resolutions is that a single document image
typically will contain shapes and textures of various sizes. While it may be more
advantageous to process smaller regions at a higher resolution, larger regions
generally require only a course view (lower resolution). Multiresolution image
processing exploits such size differences such that regions can be processed in their
most appropriate resolutions. Bloomberg describes a solution to the problem of half-
tone segmentation which closes the image (performs a dilation followed by an
erosion) with a large structural element, followed by an opening (erosion followed by
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dilation) in order to only keep the half-tone regions while removing the text ones.
Since using large structural elements on a high resolution image ends up being very
costly, Bloomberg instead carries out the same functionality by carrying out a cascade
of openings and closings using a 2x2 structural element while subsampling the image
in between these operations.

Bloomberg further goes on to illustrate how multiresolution morphology can be used
for the detection of italicized words (and also a separate technique for detecting bold

words). To detect italics, Bloomberg looks for edges inclined at about 12° from the
vertical. A 6x13 structural element is used which consists of 4 “OFF” pixels on top of
one another aligned at an approximately 12° angle followed by 4 “ON” pixels in the

same configuration. The aforementioned pixel sequences are separated by “don’t
care” pixels in between and to the sides as shown in Figure 28.

Figure 28: 6x13 structural element used by Bloomberg in detecting italics. The open circles

on the left represent “OFF” pixels, the closed circles represent “ON” pixels, and the empty
squares are “don’t care” pixels. D. S. Bloomberg. "Multiresolution Morphological Approach to
Document Image Analysis," 1st International Conference of Document Analysis and
Recognition, 1991, pp. 963-971. Used under fair use, 2014.

As illustrated by Figure 29 (a), the “generalized opening” operation (hit or miss
transform followed by dilation) is carried out on the image using the structure element
shown in Figure 28 in order to find which regions of the text contain italics. The
resulting “ON” pixels of the generalized opening are considered the “seed” pixels for
italicized words. A closing operation followed by an opening as carried out on the seed
pixels in order to, respectively, merge the correct seed pixels, and then get rid of
noise. After performing a small vertical dilation on the result, the final seed image,
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Figure 29 (b), is ready. Next, a word mask, Figure 29 (c), is created by sub-sampling
the image by a factor of 4 and using a cascade of openings and closings as was done
for the half-tone segmentation problem, followed by a small horizontal dilation. The
final italics selection mask, Figure 29 (d), is then created by keeping only those words
in the word mask which overlap the seed pixels in the final seed image, thus resulting
in @ mask which only keeps the italicized words in the image.

renf place indicator [Macro]

This removes from the property list stored in place the property with an indicator
eq to indicator. The property indicator and the corresponding value are removed
by destructively splicing the property list. remf returns nil if no such property
was found, or some non-nil value if a property was found. The form place may
be any generalized variable acceptable to setf. See remprop. () Intermediate seed. (b) Final seed.

get-properties place indicator-list [Function) e e P A e s e e o et
S A W & e . e 2 o

get-properties is like getf, except that the second argument is a list of indi-
cators. get-properties searches the property list stored in place for any of the
indicators in indicator-list until it finds the first property in the property list whose

(c) Word mask. (d) Final selection mask.

Figure 29: Bloomberg’s italics detection. Original text is on the left and on the right is (a) the
intermediate seed image, (b) the final seed image, (c) the word mask, and (d) the final italic
word selection mask for the image. D. S. Bloomberg. "Multiresolution Morphological Approach
to Document Image Analysis," 1st International Conference of Document Analysis and
Recognition, 1991, pp. 963-971. Used under fair use, 2014.

Hybrid Physical Structure Analysis

Hybrid structure analysis can simply be regarded as any mixture of the top-
down and bottom-up approaches previously described. Several of the hybrid
segmentation algorithms found in the literature utilize a combination of “splitting and
merging” strategies [62] [80] [81]. Such algorithms will begin by carrying out a top-
down methodology in order to first split the page into regions which appear
homogeneous, usually based upon horizontal or vertical projection profile
measurements. Liu et al. [80], for instance, utilize an algorithm which operates as
follows: If a region is found to be in-homogeneous based upon certain critieria then it
is split into 4 rectangular sub-regions using an adaptive thresholding technique to
choose the line positions. If two regions within the previously split region are then
found to be homogeneous based upon the same criteria then they are merged. This is
continued recursively until there are no more splits and merges to be made. There are
also various hybrid techniques which operate based upon measuring the space
between text areas, referred to as “maximal white space calculation.” Such
techniques such as those of Okamoto et al. [82] and Bruel [83] are derived from
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Baird’'s “Shape-directed Cover Algorithm” [84]. This subsection will first discuss Baird’s
shape directed cover algorithm as well as a newer algorithm which is in the same
spirit. Two notable open source systems which perform document layout analysis are
Tesseract [18] and OCR-Opus [85]. Both systems utilize a combination of bottom-up
and top-down physical layout analysis techniques and will briefly be discussed as well.

Shape-directed Cover Algorithm. In an attempt to combine the strengths of
top-down and bottom-up methods (i.e. faster run time for the more greedy bottom up
methods but more global knowledge for top-down), Baird et al. [84] proposed a
“global-to-local” strategy which first finds the rectangular coordinates of all foreground
connected components and then finds all of the maximal white space rectangles
surrounding them. A white space rectangle is considered maximal if it contains only
white pixels and cannot be further expanded while staying entirely white. The white
space rectangles are then sorted into a binary tree structure where the right-most
white space rectangles are at the root, and the left-most are the leaves. Multi-way
branches which occur when there is more than one maximal white space rectangle at
a given X coordinate, are handled using singly linked lists as entries in the binary tree.
Unlike most of the previous top-down physical layout analysis research, Baird focuses
intently on algorithmic complexity. When he denotes the number of maximal white
space rectangles as m and the number of foreground rectangles as n, he found his
algorithmic complexity for sorting the white space rectangles to be O(n logn + m)

Once the rectangles are sorted, a subset of these rectangles denoted as the
“cover set” is chosen. Any regions of the image not covered by the union of this cover
set will define the segmented text blocks. In order to speed up processing time, the
rectangles in the cover set are chosen in a greedy fashion using the high level
information available in the binary tree. In terms of processing speed, this can prove
advantageous over the X-Y Cut algorithm which uses extensive backtracking. The
cover space is chosen based upon domain specific information. For instance, in
Manhattan layouts, the white space rectangles between columns will typically have a
high (but not too high) aspect ratio. Baird et al. thus assigns shape scores to the
rectangles in order to favor the most significant and choose the cover space based
upon these scores. Experiments were run on over 100 Manhattan layouts which
included typewritten and printed pages from letters, magazines, books, journals, and
newspapers, which included complex layouts consisting of headers, footers,
embedded mathematical equations, graphs, multiple columns, etc. The authors
reported near perfect results for large column structures but would observe errors for
smaller blocks of text especially in the presence of noise.
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White space cover algorithm by Breuel. Breuel presents a variation of
Baird's white space analysis algorithm which is simpler to implement (requires less
than 100 lines of Java code) [83]. The algorithm starts by picking one of the black
rectangles, called the “pivot”, toward the center of the image. Since the maximal
white rectangle cannot contain the pivot, there are now four distinct possibilities for
the maximal rectangle's location: above, below, to the right, and to the left of the
pivot. Each sub-rectangle is then evaluated using a quality measure to determine
which is most likely to contain the maximal rectangle. After the sub-rectangles and
their respective quality measures are inserted into a priority queue, the above steps
are repeated. This process continues until a fully white-space region is detected. The
rectangle corresponding to this region is the optimal solution. The results of this
algorithm were described as favorable when run on the same dataset as Baird (the
UW3 Database [86]), with no errors observed on 223 pages. An in-depth evaluation,
however, was not provided. Figure 30 illustrates a more recent technique called “the
White Space Cuts Algorithm,” [87] which combines Baird and Bruel’s approaches.

*
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Figure: 30: An example image illustrating different steps of the whitespace-cuts algorithm.
Left to right: whitespace cover of the page background, extracted vertical separators and
borders, extracted horizontal separators, extracted page segments. F. Shafait. "Geometric
Layout Analysis of Scanned Documents," PhD thesis, University of Kaiserslautern, 2008. Used

under fair use, 2014.

OCRopus Open Source OCR System. Bruel, who was discussed previously
for his novel variation of Baird’s white space cover technique, is the project lead for
OCRopus, an open source Google-sponsored project which addresses various problems
in Document Analysis through the use of large scale machine learning. All of the
project’s modules are written in Python and the project emphasizes modularity, easy
extensibility, and reuse. OCRopus is aimed at both the research community as well as
large scale commercial document conversions [85]. The system includes overridable
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modules including, but not limited to, noise removal, skew detection, text/image
segmentation, layout analysis, textline recognition, optical character recognition, and
statistical language modeling. For more details on the architecture as well as
algorithms implemented by this system, the reader is referred to [88].

Tesseract Layout Analysis Module. Tesseract, another Google-sponsored
project as described earlier, utilizes a hybrid page layout analysis algorithm [18] which
starts by utilizing bottom-up techniques in order to locate “tab-stops” on each text
line. These “tab-stops” can represent the left and right edges of columns at that
particular vertical location of the page. Each left and right tab stop is connected to
form a “column partition,” a vertical slice of a column at the given text line. A “column
partition set” is the group of all “column partitions” at a vertical position of the page
(i.e. stretching from the left of the page to the right). The column partition sets are
then iterated in order to derive the column structure that makes the most sense for
the entire page. Once the column structure of the page has been derived, this
structure is applied in a top-down fashion in order to derive the page’s reading order.

Document Logical Structure Analysis

While the physical layout analysis step of a document analysis system generally

divides an image into areas of text and non-text while determining an initial estimate
of the page’s basic columnar structure, the logical layout analysis step will further
investigate the resulting structure in order to determine where splits or merges may
need to be made based upon the perceived syntactic meaning of the document’s
components. The document analysis system may then iteratively transition back and
forth from physical to logical analysis based upon further document understanding
until some criteria is met. Once all of the document’s components have been fully
classified and segmented, the result of the logical analysis will be an increased
understanding of the page’s components. The page may, for instance, be composed of
the chapter name at the very top, a page number to the top right, and several
columns of text. The columns may consist of imagery, half tones, mathematical
equations, block quotations, as well as various other components.

In the literature, document logical layout analysis research can be most broadly
split into three main categories: (1) type-specific detection, (2) zone classification, and
(3) page classification [89]. Type-specific logical layout analysis techniques, which are
the primary focus of this thesis, emphasize the use of separate algorithms to detect
possible components (i.e., text, image, math, half-tone, chemical equation, etc.) and
make no assumptions about whether or not these components have already been
correctly segmented. The input to a type-specific logical analysis algorithm may, for
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instance, consist of a single block which should really be logically separated into
multiple separate blocks, and/or various blocks which actually need to be merged.
Zone classification techniques, on the other hand, assume that the document has
already been properly segmented into type specific zones and all that needs to be
determined is what these types are. Such techniques will extract features from the
zones and then use these in order to directly classify the zone type as one of a finite
set of types (i.e., normal text, mathematics, imagery, etc.). Page classification layout
analysis research is geared toward classifying an entire page based upon the type of
its content. A page may, for instance, be categorized as a title page, table of contents,
appendix, glossary, regular page, etc.

Although page classification is an important component of document
understanding, such a region-wide generalization should only be made after an in-
depth analysis of the page is carried out to gain an understanding of all of its zones. It
would not make sense to segment the page into logical zones based upon an ill-fitted
estimate of what contents the page is expected to have. Likewise, zone classification
may be an important step in logical layout analysis but it misses the important point
that no physical layout analysis technique done prior to logical analysis is perfect. A
full understanding of the under and over segmentations made by the initial physical
layout analysis algorithm may rely upon the type of content in question. If, for
instance, a table element is detected by the logical analysis module, it may make the
most sense to then check for oversegmentations that could have been made by the
physical analysis module. All of the elements that are clearly part of a larger table
should be merged such that the table is then segmented appropriately. Likewise, there
may be a block of text which has actually been undersegmented by the physical
analysis module. An example of an undersegmentation is seen when there are inline
mathematical expressions within a paragraph of text. While the entire paragraph may
have been correctly segmented by the physical layout module, it is very important for
the mathematical expressions within it to be segmented from the normal text in order
to avoid subsequent recognition errors. In such an instance, it is then the logical layout
analysis module’s job to detect candidate mathematical expression regions and then
utilize the appropriate physical layout techniques necessary to segment them from
the normal text.

Since proper physical segmentation and page classification are dependent upon
the type of content in question, type-specific detection is the primary focus of this
thesis. After a brief overview of some of the page and zone classification techniques
found in the literature, type-specific detection techniques, the focal point of this work,

will be discussed in greater detail. The focus will be primarily on type-specific
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detection of mathematical expressions. Detection of other zones such as tables, logos,
and music scores will also be briefly discussed.

Page Classification

The motivation for page classification research is two-fold. Firstly, it is important
in facilitating faster document processing. If a page's specific type can be known then
the corresponding type-specific layout analysis techniqgues may be employed to
reduce processing time. Secondly it is important to facilitate faster indexing of page
types. For instance if the title page is known, it will be very fast to do a document wide
search to find the author of the work. When a user is searching for a specific
document, knowing the class under which the document resides may allow for a
quicker and more fruitful query experience. Page classification techniques found in the
literature utilize a wide range of feature and classifier types in order to categorize an
entire page. Although some methods utilize the output of a commercial OCR engine
[90], the majority of techniques only use features taken directly from the document
image [91] [92]. Page classification can be carried out at various stages in the
document layout analysis process. The stage at which a final decision regarding the
page type is made may vary based upon the type of document fed into the system, its
physical and logical layout, etc. For an in-depth overview of how the problem of page
classification has been previously approached, the reader is referred to [93].

Zone Classification

Zone classification techniques are employed in order to logically label regions
independently of physical segmentation. Such techniques operate under the
assumption that whatever physical layout technique was carried out prior to logical
analysis has already properly segmented the page into logically independent zones
(i.e., normal text, equation, table, image, etc.). In the literature these techniques vary
based upon feature extraction methods, classification techniques, and the number of
zone types to choose from. While earlier works [94] [95] may only distinguish between
2-3 zone types, more recent work [96] [97] is observed to distinguish a wider variety
of zone types (i.e., 9-10).

The work done in [95] employs features based on the zone's spatial distribution
of pixels to train a binary decision tree classifier that distinguishes text from non-text.
Fan et al. [94] use pixel density features to first segment text from non-text and then
use a “pixel connectivity histogram” in order to classify nontext as either photographic
imagery or vectorized graphics. The pixel connectivity histogram takes into account
every foreground pixel of the given zone, measures the number of other foreground
pixels connected to it (the connectivity measurement), and gives the number of such
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foreground pixels that fall under each connectivity measurement found. The
classification algorithm utilized was not specified by this work. Wang et al. [96] use a
25 dimensional vector composed of run-length, spatial, and background features in
order to train an optimized decision tree to classify a zone as one of nine zone types.
Abd-Almageed et al. [97] extract features of the zones based on the run-length and
spatial distribution of foreground pixels. The partial least squares algorithm is then
carried out on these features in order to reduce their dimensionality. A novel hybrid
classification approach which combines the benefits of a one-against-all classification
scheme with those of a one-against-one scheme is used to determine the zone type
from the reduced feature space. An SVM is used as the underlying binary classifier.
Zones are classified into one of 10 logical types (chemical drawing, small text and
symbols, drawing, halftone, logo or seal, map, math, ruling, table and large text). Both
[96] and [97] are evaluated on the University of Washington Il (UWIII) data-set [86].

Type-specific Classification

Type specific classification techniques make no assumption about the accuracy
of any physical segmentation carried out prior to logical analysis. Thus a type specific
technique will, not only detect the type of a given region, but also choose what further
physical layout analysis may be required in order to ensure that the given region is
properly segmented (i.e., table regions, for instance, may require a different
segmentation technique than what would be required to segment normal text
regions). The primary focus for this thesis is in type-specific classification: specifically,
the proper detection and segmentation of mathematical equations. After an in depth
overview of mathematical equation detection and segmentation techniques found in
the literature, type-specific classification of other types will also be very briefly
discussed.

Mathematical Expression Detection

Only a dozen independent studies related to the type-specific segmentation of
mathematical expressions from document images were observed in the literature [98]
[991[100][101][102]1[103][104][105][106]1[107][108][109]. Although the research of
math detection in document images may be largely uncharted, it is no mystery that
there are a wide variety of mathematical expressions prevalent in text books, journals,
and technical papers. Such documents are often desired to be viewed through
portable devices, desktop computers and/or screen reading software for general
convenience as well as assistive technology purposes. Even for “digitally-born” PDF
documents, it is rare that mathematical regions of text end up being properly viewable
by most software. For scanned documents this problem is even worse. Most
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commercial OCR modules employed typically have no understanding of mathematical
expressions and become confused by their presence. A common result of the presence
of mathematical expressions during OCR is garbled output, not only of the
mathematical expression regions, but even nearby normal text regions which would
otherwise be recognized correctly. One of the early motivations for mathematical
expression detection was, not necessarily to properly recognize these regions, but
rather to ensure that their presence does not reduce the accuracy of normal
commercial OCR software [104].

While there has been a relatively small amount of work found in the literature
geared toward the logical and physical segmentation of mathematical regions, the
OCR of these regions is a relatively mature field of study [110][17]. In mathematical
OCR, however, it is typically assumed that all regions are perfectly segmented prior to
recognition, either manually or automatically. In the literature, these regions are most
often manually segmented prior to evaluation such that the recognition problem is
evaluated independently of the segmentation problem. The only commercial
mathematical OCR software found in the literature to date, “Infty” [111], implements
an expression detection module, however no detailed evaluation of it is provided
[100]. Their most thorough evaluations are thus carried out on regions which were
manually segmented beforehand. Since the type-specific logical and physical layout
analysis of mathematical expressions is a largely uncharted area of study while
mathematical OCR has been studied extensively, the primary focus of this thesis is on
layout analysis rather than recognition. While mathematical OCR is certainly a very
important processing step, it is outside of the scope of this work. For a recent in-depth
literature survey on mathematical OCR the reader is referred to [17].

Before discussing the existing literature on expression detection, it is important
to first specify some common notation and practices. Mathematical expressions found
in printed text can either be located on a separate line from normal text or be mixed in
with the text. Expressions falling under the first category are commonly termed as
either displayed/isolated by the literature while those which fall under the second are
termed as embbeded/inline. Expression detection techniques most often operate in
several steps referred to as passes. The first pass often consists of locating initial
expression candidates referred to as seed regions. These regions are then either
removed or grown in further passes based upon various heuristics. The term, “digital-
born document” refers to a document which was created directly from a computer
rather than being scanned in. The dozen independent studies found in the literature
each consist of either one or more conference or journal papers and will be briefly
reviewed in the chronological order of their first publication.
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Lee et al. [99] (1995). While this study is primarily geared towards
mathematical expression recognition, the system also included an expression
detection module. Bayes decision rules are employed in order to locate displayed
expression regions. If a displayed region is detected then the entire line on which it
resides is labeled as an expression region. No detailed analysis of the detection
accuracy is provided. Similar work was also later carried out in [112].

Inoue et al. [100] (1998). An early study carried out by the authors of the
“Infty” commercial OCR software, this work explains the software's underlying
expression segmentation module. The module recognizes normal text and segments it
from mathematical text in the same step by using information obtained from a
commercial OCR engine along with a dynamic programming algorithm. Experiments
are run on 50 pages of Japanese text, of which detection errors are reported to have
occurred on every page. No thorough evaluation is provided.

Fateman [101] (1999). The technique described operates in three separate
passes and includes an interactive system which allows the user to manually correct
any segmentation errors which may have been made. During the first pass, each
connected component in the image is separated into one of two “bags”: one for
normal text, the other for mathematical text. The math bag initially contains all
italicized letters, Roman digits, punctuation, special symbols, and horizontal lines.
These are considered as the seed regions. The second pass will then group the math-
bag components into zones and, according to horizontal and vertical proximity, grow
the seed regions by relabeling nearby text components as belonging to the math bag.
On the third pass, remaining punctuation connected components in the math bag that
are still isolated are moved to the text bag. Remaining isolated Greek letters, Roman
numbers, etc. are kept in the math bag. Text components that are close in proximity
to the math bag, and could be considered as math such as “sin”, “cos”, etc., are
moved to the math bag. Finally, the results are then shown to a human for interactive
editing and correction.

Toumit et al. [102] (1999). A specialized top-down physical segmentation
technique operating on the entire image with image reductions to segment math
regions is briefly described but no specific details are provided. Displayed expressions
are located under the assumption that they are always centered and on their own line.
No further specific details are given. Embedded expressions are located by first finding
special characters (i.e., “+”, “=", “>", etc.) and propagating around these using rules
specific to the given symbol. Various concepts and heuristics are defined and utilized
for mathematical expression detection, primarily: atomic structures are single

mathematical symbols; composite structures are logical groupings of atomic
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structures; implicit structures have no graphical representation (i.e., the multiplication
operator when representing the multiplication of a with b as simply ab). To represent
mathematics, a tree structure is used which allows each node to have more than two
children. It is argued that mathematics is not inherently a binary recursive data
structure, but simply a recursive one. While a + b+ ¢ can be represented by a binary
tree, matrices, integrals, and vectors cannot necessarily be represented in this way.
No detailed evaluation was carried out in this work.

Garain et al. [103] (2000). Four relavent works from Garain and his advisor,
Chaudhuri, will be herein briefly reviewed. Garain's earliest technique first segments
all text lines (this includes those of displayed expressions) by measuring horizontal
projection profiles and denoting the boundary between two lines as local minima of
these profiles. Next, each text line is separated into its constituent connected
components. The mean and standard deviation is calculated for the distance of the
bottom of the text line to the bottom of each connect component. Since math
expressions may contain elements whose distance from the baseline varies more than
normal text, this metric can, in some cases, be very helpful. If the standard deviation
is above a predefined threshold then the line is expected to contain an expression. If
such a line is also observed to be vertically separated from normal text lines
significantly then it is labeled as a displayed expression region.

Embedded regions are then found by first looking at remaining normal text lines
to find mathematical characters (i.e. “+”, “=", etc.). When such characters are found,
they are considered as seeds for the expression region and are recursively merged
with their neighbors based upon the following criteria: (1) if the seed region is just a
binary operator then the immediate left and right “words” are merged with the seed
operator, (2) “words” adjacent to the seed region on the immediate left and right are
merged if they contain one or more mathematical symbols, superscripts/subscripts,
single dots/ellipsis, or numbers. Their detection algorithm is tested on 120 pages
containing a total of 140 mathematical expression zones. Of these 120 pages, 20 are
taken from the UWIII dataset. 132/140 expression zones were properly detected, with
eight of them being entirely missed and three entirely false detections. No partially
correct detections are presented in the results (i.e., either the detection is completely
correct or completely wrong based upon their evaluation technique).

In 2003 a morphological technique was proposed by Chowdhury [113] in order
to segment displayed expression regions from all other regions in the text. A
morphological approach is first carried out to segment table, text, and graphic zones.
Further segmentation is then carried out on the result in order to find the displayed
expression regions. Such regions are categorized into the three basic types: those
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which contain large horizontal lines, those which contain a long vertical separator (as
is often seen in matrices or determinants) and all others. In order to segment the
regions which fall under the “all others” category, the page is first closed with a
horizontal structuring element in order to locate the text lines. Subscripts and
superscripts (localized based on proximity and size relationship) are associated with
their text lines. Features such as number of subscripts and superscripts, vertical
overlaps, presence of tall symbols, and horizontal positioning of connected
components are used by a decision tree classifier to locate the displayed regions.
Similar techniques are used to localize regions containing horizontal or vertical lines.
The techniques are evaluated on a set of 197 images. While roughly 97% of the
displayed regions were reported to have been correctly segmented, no measurement
was given of false positives. The technique was tested on embedded expression
regions and found to have a 68% true positive rate. Again, no indication was given of
false positive rate.

In 2004, Garain and Chaudhuri propose a technique for segmenting embedded
expressions from document images [114]. n-grams are utilized in order to spot
sentences output from a commercial OCR that are likely to contain embedded
expressions. Sentences containing phrases like “such that”, “note that”, “denote”,
etc., were shown to have a higher probability of containing embedded expressions
than those which did not. A dataset containing 400 scanned pages of scientific
documents including various science books, journals, conference proceedings, etc., is
utilized by this study for evaluation [115]. Words recognized by the commercial OCR
are evaluated as possible embedded expression candidates based upon the
probability of their sentence to contain embedded expressions based on n-grams, the
commercial OCR's confidence rating for constituent letters within the word in question,
italic/bold/normal type style detection, inter-character spacing within the word in
question, and variance of the bottom y coordinates for the constituent symbols within
the word in question.

Experiments were carried out on the 400 scanned pages from the dataset which
contained over 3000 embedded expressions. Evaluation includes a count of the true
positives, false negatives, and false positives. Also included in the evaluation are
partially recognized regions. The evaluation scheme strives to combine all of these
measurements into one single metric/score. Partial recognitions are weighted based
upon how many components were supposed to be identified as math in the region vs
how many were actually identified?. The false negative count is weighted by zero for

2 This may prove problematic since components with a large number of pixels will be
weighted just the same as components that are very small. For this reason, pixel-
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some reason, and thus does not factor into the score. Based upon their scoring
technique, ranging from 0 to 1, an average score of .963 was obtained for all 400
pages.

In 2009, Gerain experiments with methods for detecting both displayed and
embedded expressions in document images [116]. Gerain approaches the problem by
first extracting features for displayed and then embedded expressions from the
document image and then experimenting with various averaging techniques on the
respective features in order to see which has the best discrimination power for the
given problem. Features are first extracted in order to classify an entire line of text as
either being a displayed expression or not. In this study, the tendency of displayed
expressions to also contain normal text seperators which don't belong to the

u ”

expression (i.e., commas, periods, phrases like “and”, “therefore”, etc.) is not
accounted for. The features used to detect displayed expressions include a
measurement of the vertical space above and below the text line in question, the
vertical scatter of the bottom y coordinates of the connected components on the line
in question, the pixel height of the text line in question relative to the average pixel
height of all the lines on the page, and the number of mathematical symbols on the
text line. Each of these features is normalized to a value between 0 and 1 by using the
following exponential expression, 1—¢ %, where z is the feature value. The
exponential allows for slight changes in the quantities being measured to have a large
impact on the feature values.

After text lines are labeled as either displayed or normal, embedded
expressions are then sought out for the remaining normal text lines. Individual words
within sentences are classified as either displayed or normal based upon the following
features. As in the previous study, linguistics is incorporated in order to detect
sentences which are likely to contain embedded expressions. Other features
incorporated for embedded expression detection include the commercial OCR
confidence rating of each word of the sentence, the typestyle of the given word (i.e.,
italic, bold, etc.), the scatteredness of the connected components within the word
about the textline, and the average horizontal gap between characters within the the
word in question. After normalizing these features, they are used to classify every
word of a sentence as either normal text or embedded expression text3. The features

accurate methods of evaluation are utilized in this work, as will be explained in a
later section.

3 Garrain relies on commercial OCR engines to segment his words within sentences,
prior to classification. He makes no corrections to improper segmentations made by
the commercial OCR. Thus in the situation where a word is improperly segmented by
the commercial OCR as containing part of an expression and part of a normal text all
in one block, Garrain's algorithm will always either result in false positives or false
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for displayed text lines are each combined into a single scalar value through one of
the following averaging techniques: arithmetic mean, geometric mean, harmonic
mean, and weighted mean. Lines are chosen as displayed text or not by comparing
the resulting feature value to a scalar feature value found empirically which varies
depending upon the averaging technique used. A very similar approach is used to
detect words segmented by the commercial OCR engine that are embedded
expressions.

Experiments are carried out on 200 scanned pages. 150 of the pages were
taken from Garrain's corpus [115] and the other 50 were taken from the INFTY
database [117] which only contains manually segmented displayed expression
images. Training to determine thresholds is carried out on 50 of the images, and
evaluation carried out on the other 150. Tests using the weighted average method
wherein the weights are determined through a gradient descent algorithm showed the
best results. Using their specialized efficiency metric which takes into account false
negative, false positives, true positives, and partial recognitions, [114] a score of 87%
is achieved for embedded expression extraction while a score of 88% is achieved for
displayed expression extraction.

Kacem et al. [104] (2001). As illustrated by Figure 31, the primary motivation
of this work is not to properly segment all mathematical regions for mathematical
recognition purposes, but rather to only segment those regions which may interfere
with a normal commercial OCR engine (i.e., that could result in errors). The proposed
technique identifies various mathematical symbols in the document without the use of
any commercial OCR engine. These symbols include product, summation, integrals,
roots, fraction bars, large brackets (i.e., that surround horizontally overlapping
expressions on different lines), small delimiters (i.e., normal paranthesis/brackets),
and binary operators such as plus, subtraction and equals. These symbols are
identified based on a measurement of their connected component's aspect ratio, area,
and pixel density. Using a training set which contains various appearances of these
symbols in printed text, a histogram is created for all measurements in order to know
their distribution. Based upon these histograms, upper and lower bounds are set on
these measurements for each symbol. When identifying a new connected component,
a label is assigned to it based upon the intersection of all three measurements. Rather
than doing an immediate binary label based upon this information, a “membership
degree” is assigned to the connected component for each of the possible symbol
types. If any of the membership degrees are within the upper and lower bounds, the
symbol type with the highest degree is assigned to the connected component. This

negatives.
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method was evaluated on a test database of 460 mathematical symbols and 95.3% of
connected components were found to be well-labeled. It was not indicated whether or
not there were false positives.

cpour x =L, p(x)=
ew =wj and L[a),,a)} =1 for @] #pw]
probability vector PJ = D)
ecalculated as pg—= “—! > and
Swhere R(t)) = |J}| r(u)du. By taking
€ For this reduces to V] ~ §2/m(1/Vn).

Figure 31: Regions detected by the method of Kacem et al. as belonging to expressions are

shown above bounded by rectangles. Note that, although most of the regions are over-
segmented with various symbols being missed altogether, subtraction of the above labeled
regions will result in improved accuracy for most commercial OCR engines which would
otherwise be confused by the presence of the various mathematical expressions. A. Kacem, A.
Belaid, B. M. Ahmed, "Automatic Extraction of Printed Mathematical Formulas using Fuzzy
Logic and Propagation of Context," International Journal of Document Analysis and

Recognition, vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.

Once the connected components are labeled as indicated above, the text lines
are determined by grouping all the connected components based upon proximity. The
specific algorithm used is not specified. Math symbols found within text lines are often
used as heuristics to dictate whether or not lines should be merged. For instance, in
the case of a large fraction bar, it is clear that there should be both a numerator and
denominator. This may require vertically merging part of the two text lines together.
Once the lines are extracted, their aspect ratios and position in relation to other lines
is measured in order to determine whether or not they are likely to be a displayed
equation. Further measurements are then made on each connected component's
vertical position within its corresponding line and its height in relation to the average
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connected component height for the line. For every line, all of the connected
components are labeled as one of the following topography features: overflowing,
ascending, descending, centered, high, or deep as illustrated by Figure 32.

Xy
Overflowing High
AN
4 Descending
Centered Ascending
Deepen

Figure 32: A connected component's possible topography features on text line j based upon
vertical location in reference to line j's upper and lower central bands. A. Kacem, A. Belaid, B.
M. Ahmed, "Automatic Extraction of Printed Mathematical Formulas using Fuzzy Logic and
Propagation of Context," International Journal of Document Analysis and Recognition, vol. 4,
no. 2, December 2001, pp. 97-108. Used under fair use, 2014.

The topography features are used to help determine the type of a symbol. For
instance subscripts would be descending or deep, while superscripts would be
ascending or high. Radicals would be overflowing, and fraction bars would be
centered. Subscripts and superscripts are found by comparing the relative size and
position of two adjacent connected components. Training is carried out on these
measurements using a histogram approach similar to the one described for math
symbol identification. Next, rule-based context is propagated based upon the specific
math symbols in question (for instance, each connected component inside a radical
symbol). Since summations, products, or integrals are often accompanied by limits,
these are sought out above and below such symbols.

The technique was evaluated on 100 pages with roughly 93% of the equations
reported as being properly segmented. While the technique was reported to be fairly
reliable for extracting displayed expression regions, it faced problems with embedded
expressions. Greek or italic symbols which should have been labeled as expressions

were often ignored as illustrated by Figure 33.
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denoted @, takes value in Q={®,,..., ] with probabilities {p(@)..... p(@,)},
respectively and that x is a realization of a random vector X characterized by a
conditional distribution p(x18), @ € Q. Thus, the task is to find a measurable mapping

yw : R7 — Q such that the expected loss function R(y) = E{L(y(X),0)}, called risk,

is minimal. Here L[a},,a))) is the loss incurred by taking action @, when the class i#

@). In this paper we assume, without loss of generality, that L(a)t.,(uf) = 0 for

w,=w, and L{w, )=1 for w, # ) and then R(y)=P(y(X)#6) is called the
probability of error. It is well known that an optimal rule ¥ (the Bayes rule) which
minimizes R(y) is of the following form ry'(x) = arg max p,(q,where

Isise

p(x)=P(@=w,1X=x), i=l,..,c are the posteriori probabilities. Let R* denote
the Bayes risk, i.e., the risk of the Bayes rule. In practice we rarely have any information
about the distribution of the pair (6,X), instead there is in our disposal a training set
n,={(6,X,)..(6,.X,)}. i.e., a sequence of pairs (f,,X]) distributed like (6.X).
where X] is the feature vector and )] is its class assignment. An empirical classification
rule W] is a measurable function of X and p7}. It is natural to construct a rule which
resembles the Bayes rule, i.e., by replacing p.(x) by its estimate [p,(x). A popular
nonparametric classification technique is the kernel classifier being defined as follows

Pn(x) = arg max?;l(e, = co,.)w(x _bx»*),

Isise

(1.1)%

Figure 33: A result of Kacem's expression segmentation technique. Note that the theta
symbol is only segmented for the cases when context propagation dictates that it
should be. When it is by itself it is missed entirely, while when it is wrapped in a
parenthesis or has a subscript it is segmented. A. Kacem, A. Belaid, B. M. Ahmed,
"Automatic Extraction of Printed Mathematical Formulas using Fuzzy Logic and
Propagation of Context," International Journal of Document Analysis and Recognition,
vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.

Jin et al. [105] (2003). Isolated expressions are extracted based on a Parzen
window classifier and embedded expressions are extracted based on 2-D structure
analysis and various heuristics. The technique is evaluated on a dataset consisting of
93 pages from technical journals. 10% of the pages in this set are used for training
and the other 90% for evaluation. The results are reported as favorable, however no
thorough evaluation or specific results are provided.

Drake and Baird [106] (2005). Drake and Baird utilize a technique based
upon Kise's bottom-up Area Veronoi Diagram-based physical segmentation method
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[75]. For each line of text, the Area Veronoi Diagram is calculated and then each
vertex and edge is classified as either normal text or mathematical. All of the results
for the line are then combined in order to classify the line as normal text or as a
displayed expression. A strength of this technique is that the Veronoi diagram is
invariant to skew of the page. Thus an expression could be detected by this technique
regardless of its angle in reference to the rest of the page. The input to both training
and evaluation are images of isolated text lines which were cut out of page images
manually or synthesized in isolation using Latex. The dataset contains roughly 4,400
connected components labeled as math, with about half used for training and the
other half used for testing. The Veronoi diagram's edges were also labeled in the
dataset, with roughly 4,000 used for both training and testing purposes respectively.
From reviewing the confusion matrices provided it was found that the true positive
rate for math connected component detection was 88% and false positive rate was
~7%. The algorithm was not tested on any lines that contained a mixture of math and
normal text.

Tian et al. [107] (2005). Tian et al. propose a technique aimed at segmenting
both displayed and embedded expressions. Displayed expressions are found by
calculating the average y distance of the center of all connected components on a line
from the line's center. If this measure is above an empirically determined threshold,
then the line is declared as a displayed expression candidate. To confirm whether or
not the candidate is truly a displayed expression region, the line's connected
components are run through a recognizer specifically designed from mathematical
symbols. If any mathematical symbols are found then the text line is confirmed to be a
displayed expression region. Embedded formulas are found by analyzing the spatial
orientations of connected components on the text line, recognizing mathematical
symbols, and employing propagation rules based upon these symbols. The technique
is evaluated on more than 100 pages of technical documents to achieve a true
positive rate of 95.19% for displayed expressions and 90.12% for embedded
expressions. False positive rates are not reported.

Yamazaki et al. [108] (2011). Yamazaki et al. describe a technique which
they have integrated into OCRopus [85]. The technique only detects displayed
expressions and uses features very similar to those proposed by Garain. Also included
are the following features: standard deviation of symbol aspect ratio within a text line,
and left indentation measurement. Rather than using the averaging techniques
employed by Garain, a SVM is used. The system is tested on an unspecified number of
pages containing 542 displayed expressions, of which, 531 are identified correctly. No
further evaluation is provided.
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Lin and Baker et al. [109] (2012). X. Lin from Peking University and J. Baker
from University of Birmingham collaborated in developing novel techniques for
expression segmentation in digitally-born PDF documents [118][119]. In 2012, Lin
proposed a technique for segmenting embedded expressions in digitally-born PDF
documents (the displayed expressions segmentation is not evaluated in this work).
Since the documents used in this study are digitally-born it is assumed that all
typesetting information and text is available within the PDF's on which the
experiments are run. In order to detect embedded expressions, text lines are
evaluated each in turn (no OCR is required). First the words on the text line are
segmented by using an adaptive thresholding technique on the PDF's image. A
histogram is created which gives the frequency of horizontal gap lengths throughout
the line. The second most frequent gap length is used for determining the word gap
threshold (the first most frequently occurring gap is typically the distance between
individual characters within words). Characters such as parenthesis, equals signs,
sums, etc., are segmented as words regardless of their left and right horizontal gaps,
assuming that their unicode is available within in the file.

Once the words are segmented, 12 features are calculated for each individual
word. These include 7 geometric layout features, 3 character features, and 2 context
features. The geometric layout features include the variance of font size of the
symbols within a word based on the PDF's typesetting information, variance of the y-
coordinates of the symbols, variance of inter-character gap, variance of the bounding
box width and height, a measure of the degree to which all the symbols in the word
correspond to the same language (i.e., English or Non-English), and percentage of
English characters found within the word. The character features include the amount
of mathematical characters in the word, recognition result of the leftmost character,
and recognition result of the rightmost character. The recognition result of the left
most and right most characters give an indication as to whether or not the words in
between or to the left or right are mathematical. For instance, if the right-most
character of the word is an “=" then it can be inferred that whatever is directly to the
left must also be mathematical. Context features include result of the right most
symbol of the previous word (word to the left), and type of the left-most symbol of the
next word (word to the right). Continuing with the “=" example, if the right-most
symbol of the word to the left is an “=" sign, then it can be inferred that the current
word is in some form mathematical in that it is part of the equation. All of the
aforementioned features are normalized to some value between [-1,1]. The features
are then fed into a binary SVM classifier which has been trained on labeled datasets.
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Experiments are carried out on 50 journal papers and 5 mathematical text
books. 2 pages from each paper and 20 pages from each textbook are randomly
selected, thus experiments are carried out on 200 pages in total. The 200 pages are
divided into 5 equal subsets and 5-fold cross-validation is carried out. In each round a
single subset is used for evaluation and the 4 others are used for training. This is
repeated 5 times such that all 5 subsets are evaluated in this manner. The precision
(positive predictive value) and recall (true positive rate) measurements are made for
each of the 5 evaluations and then averaged to get the final result: 86.94% precision
and 84.29% recall®.

Also in 2012, Lin et al. proposed a new technique for the evaluation of
expression segmentation methods [120]. A new evaluation metric is proposed which
takes into account oversegmentations, false positives, merges, etc. Weights of various
error types can be set based on specific application scenarios by changing parameters
of the evaluation tool implemented. For instance, in document information retrieval of
a math equation, a false negative should typically be weighted much higher than a
false positive. Either area-based evaluation or symbol-based evaluation is offered but
no pixel-level accuracy is achieved.

The dataset and groundtruth are claimed to be publicly available but truly are
not since the documents used are not in the public domain. The dataset has 194
digitally generated PDF pages. In total, 400 document pages were carefully selected
with an aim to be statistically representative of a wide variety of documents. Sources
for these documents range from conference proceedings, journals, books, and reports.
For each source document at least 1 and at most 8 pages are selected and added to
the dataset. Documents are selected with publication years ranging from 1977 to
2010. Domain topics include mathematics, computer science, biology, and physics.
65% of the document pages are single column and the remainder are multicolumn.
PDFs are also included that are generated by different PDF-writers (i.e. AFPL
Ghostscript, Acrobat Distiller, Acrobat PDFWriter, ESP Ghostscript, GNU Ghostscript,
Miktex PdfTex, etc.). The number of displayed and embedded formulas in each page is
counted and selected so that there is a wide variety of both counts.

Lin et al. Lin et al. [118] collaborated with Baker et al. with the goal of
improving mathematical expression segmentation accuracy for digitally-born PDF
documents. In this work, it is argued that improper initial physical segmentation of
text lines that contain math causes significant problems in formula identification. The
authors describe various cases of commonly mis-segmented mathematical

4 It should be noted that this segmentation technique suffers similar problems to Garain's
2009 approach, in that the initial word segmentation is never fixed, regardless of how incorrect
the adaptive thresholding technique may be.
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expressions separated into three basic categories. The first category describes a text
line containing expressions that are oversegmented into two vertically overlapping
lines (occurs with fractions, sums/integrals when upper/lower bounds are present,
etc.). The second category describes matrices and other grid-like expressions which
results in similar difficulties. The third category describes a single expression which is
covered by multiple lines. This occurs when an expression on the left side of an
equation is set equal to multiple expressions where each subsequent expression after
the first is covered by a new line. It is argued that, for identification and recognition
purposes, it is best that each new line of such an expression is merged during physical
segmentation as opposed to keeping each expression on the right of the equals as a
separate segment.

To address these problems, a learning-based text-line merging technique is
utilized. The technique utilizes one classifier to find the first two categories of mis-
segmented expressions and a second classifier for the third category. First the text
body is segmented from the header/footer regions. The text lines and columns are
then found using projection profile cuts. Next, for each line, the decision is made as to
whether or not the current line should be merged with the next line, based on the first
two improperly segmented categories. For this purpose, several features are utilized.
Features include vertical space between the text lines, the relative horizontal width of
the textlines, the difference of indentations between the two text lines, ratio of
average textline character widths and heights, ratio of main font sizes used in the
lines (for digitally-born PDF's the font sizes are typically available), 2 features
describing existence of fraction signs, the existence of a large operator in either line,
features describing whether or not the text line ends with a binary operator, and if the
lower line ends with a formula index. Then some of the aforementioned features are
employed just to describe the individual textlines themselves rather than the relation
between two consecutive ones.

The classification task is separated into two stages: the first aims at properly
segmenting all individual expressions and the second aims at merging single
expressions that span multiple lines. When training for both of these stages,
performance is compared on 7 machine learning algorithms: SVM, MLP, Decision Tree,
Random Forest, Bayesian Network, Bootstrap Aggregating (Bagging), and Adaboost.
Bagging and Adaboost were reported to obtain the best performance during training
for the first and second stage of segmentation, respectively, and were thus adopted
for evaluation. The technique is evaluated on 600 document pages. 100 of these
pages are used for training while the other 500 are used for evaluation. Precision and
recall are reported on both stages for 100 of the the images tested, and then for the
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remaining 400 accuracy is only reported. The precision, recall, and accuracy were, for
the most part, all reported to be above 90%. False positive rates are not reported.

Baker et al. Baker et al. [119] introduced a tool, Maxtract [121] which uses
projection profile cutting to segment the mathematical expressions but is reported to
not be very accurate. An improved segmentation technique is described and its
effects on the accuracy of Maxtract are reported. A histogram-based approach is
described for line segmentation. The approach is to first extract all of the connected
components on the page, and then determine initial lines based on grouping the
connected components based on vertical proximity. A histogram is then constructed
for the entire page which captures the horizontal distance between each adjacent
component on each text line. Two local minimums are commonly observed in a similar
location on the histograms of their pages. These local minimums are used to represent
the minimum and maximum distance expected of a “principal” text line. Principal text
lines are those that would correspond to either normal lines or the main lines in big
math expressions (for instance, ones that contain summations, integrals, etc). The
“non-principal” lines are the ones which may correspond to limits or upper and lower
bounds, and thus may need to be merged with their nearest principal line. Such lines
tend to be more sparsely distributed horizontally than the principal lines. Any
characters having a distance observed outside of the aforementioned range for
“principal” lines is considered a candidate for being part of a “non-principal” line.

A second pass is then used to correct any lines which may have been
mistakenly labeled as non-principal, the heights of the non-principal lines are
compared with the height of their next line. If the maximum connected component
height of the non-principal line is greater than that of the principal line divided by
some threshold then the non-principal line is re-labeled as principal. The threshold
value is determined empirically on a small sample set. A third pass then checks that
the lines that were considered as principal truly are principal. This is done by making
sure that all of the principal lines have a height greater than the maximum height of
the non-principal lines. The resulting non-principal lines are then merged with their
adjacent horizontally overlapping principal lines. If a non-principal line has no adjacent
horizontally overlapping principal line then it will be converted to a principal line.

The technique is evaluated on 200 pages comprising a mixture of technical
journals and text books. 96.9% accuracy is reported. The technique was then further
manually evaluated on a larger dataset of 1000 pages from more than 60
mathematical papers and an accuracy of 98.6% was reported. The most common error
was reported as that of incorrectly classifying a non-principal line as principal. This
occurs when the horizontal distance between characters on a non-principal line is
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similar to that of the principal line. The authors then carry out a further experiment
which integrates the aforementioned segmentation technique into their Maxtract
software. Note that the aforementioned technique does not necessarily go so far as to
logically segment the entire mathematical expression regions, it only serves to ease
the physical segmentation task prior to logical labeling. Unfortunately this also results
in some errors which wouldn't occur with normal segmentation techniques. For
instance, footer regions were sometimes mistaken for non-principal lines and
incorrectly merged with their preceding line. A technique similar to that reported in
the earlier literature [109] is then employed after the aforementioned segmentation
step to identify mathematical zones.

The modified Maxtract software is evaluated on two datasets. The first dataset
has 184 document pages and the second has only 10 pages. On the first dataset, the
math expression identification technique was reported to have, for displayed
expressions, a true positive rate of 73.18%, 7.85% false positive rate, and 1.26% false
negative rate. 6.56% of the regions were reported as being oversegmented while
12.41% of the region were reported as undersegmented. No results were reported for
embedded expressions in the first dataset however. In the second smaller dataset
which contains only ten images, results were reported for both displayed and
embedded expressions. While the isolated expressions have a true positive rate of
78.85% and false positive rate of 1.92%, the embedded expression only have a true
positive rate of 35.6% and false positive rate of 26.08%, and thus appear to require
significant improvement.

Detection of Other Zone Types

While type-specific detection of mathematical expressions is the primary focus in
this work, there are many other aspects to type-specific layout analysis that also need
to be worked on. These may include, for instance, the segmentation of tables [122],
musical scores [123], chemical equations [124], circuit diagrams [125], etc. Although
these will not be studied for this work, they remain as important challenges in the
field.
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3 Method

3.1 Introduction

3.1.1 Purpose

The goal of this project is to enhance the quality of document layout analysis
and OCR for printed (non-handwritten) technical/scientific public domain documents
which may contain displayed/inline equations, matrices, illustrations, graphs, etc.
Automated processing of printed documents requires both physical and logical layout
analysis techniques to be employed in order to segment and classify zones of interest
for correct processing. After physical layout analysis is carried out, regions
corresponding to illustrations, plain text, musical notation, and mathematical formulas
all must be classified so that they can be processed correctly. The application of this
project is in automated processing of digitized public domain documents (or non
public domain documents with author/publisher consent and due legal permission).
Automated document processing has seen widespread use in industrial settings (i.e.,
automated processing of bank notes or postage envelopes) as well as for Assistive
Technology in aiding the blind and/or visually impaired in their accessibility to
information. Document layout analysis and OCR has also found use in the “Google
Books Initiative” whose founders have envisioned a veritable online “Library of
Alexandria” from which all of the world's knowledge could be acquired.

This project aims to achieve its goal by developing and evaluating a
mathematical expression detection and segmentation (MEDS) module fully integrated
with Google's existing document layout analysis software [18], compare this module's
accuracy to that of a default implementation provided with the software, and to
evaluate performance under a wide variety of inputs. Since a significant problem
observed in the existing literature is a lack of objective performance comparison
among MEDS modules, this work is tested on a dataset of public domain documents
that will be made available to others. The groundtruth dataset, MEDS implementation,
and evaluation tools are made publicly available [126] in the hopes that the
performance of the current technique may more easily and objectively be compared to
previous and/or future techniques.

While the general layout analysis framework of Tesseract is utilized for this
work, a new MEDS module implementation overrides Tesseract’s default one through
run-time polymorphism. The performance of Tesseract’s document layout analysis
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framework will be evaluated both under the default MEDS module and the newly
implemented one, the results compared, and experiments carried out on printed text
from a variety of sources in order to gain insight into how best to increase accuracy
over a wide variety of documents while avoiding the problems of overtraining to the
largest extent possible.

3.1.2 Problem Statement and Project Scope

Currently, the commercial OCR system best suitable in handling scientific
documents is Masakazu Suzuki's “Infty Reader” which can accurately recognize a wide
variety of complex mathematical equations as well as matrices, assuming that they
are first properly isolated from other, non-math, regions of text. While some of the
system's reported shortcomings are attributed to the merging or breaking of
characters during image scanning, many of the system's errors observed in practice
were caused to the improper isolation of the math regions from non-math regions. The
Infty Reader system isolates regions of interest based solely upon analysis of the
output of a commercial OCR system, Abby Fine Reader. Regions which appear to be
“junk output” are deemed as candidates for math recognition. Infty Reader effectively
sidesteps the problem of physical and logical layout analysis, relying solely upon
whatever physical and logical layout analysis is performed by the proprietary Abby
Fine Reader system utilized. The system's degree of document understanding prior to
recognition, therefore, is entirely at the mercy of false positive recognition and/or
layout analysis errors made by Abby Fine Reader, which, in and of itself, was not even
designed with the layout analysis of scientific/mathematical documents in mind.

Meanwhile, the “Google Books Initiative” project has spurred a great amount of
interest in the automated processing of a wide variety of documents ranging from
ancient texts, magazines, articles, to scientific/mathematical textbooks, dissertations,
etc. in over fifty languages. An experimental equation detector was implemented as
part of Google’s 2011 release of their open source OCR engine, Tesseract. Upon
performing a preliminary evaluation of the equation detector on several pages of a
public domain calculus text book [127] it was found that fewer than a fourth of the
equation zones were fully segmented. Of all of these fully segmented equation zones,
none of them were without at least some false positive pixels and/or under/over-
segmentations. The overall problem statement of this project can thus be described
as designing and evaluating a new MEDS module which can detect and segment math
expressions correctly on a range of document types. In the literature, the problem of
layout analysis for documents with formulas has either been that of properly detecting
and then segmenting the regions for math recognition or to detect all of the regions so
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they can be discarded and thus not hinder normal OCR output. It is important to stress
that the former of these two problems is the one being addressed in this work.

3.1.3 Definitions and Acronyms

Various acronyms and terms which will be used throughout the remainder of
this work are italicized and briefly explained in this section. The problem being
addressed in this work is that of both detecting and properly segmenting regions of
mathematical text in a document image from those of non-mathematical text, so that
overall document recognition accuracy may be improved. The problem is herein given
the title of mathematical expression detection and segmentation (MEDS). The MEDS
module implemented in this work operates as a component of Tesseract's larger
document layout analysis system which is still under development by Google [18]. The
overall program operates in two major phases: detection and then segmentation. The
initial connected components found during detection, referred to as the seed regions,
are then merged into surrounding regions based upon various heuristics during the
segmentation phase.

3.1.4 Tesseract Document Layout Analysis Framework
Overview

Since the MEDS module implemented in this work is fully integrated with and
utilized as a component of Google's open source document layout analysis and OCR
software, Tesseract, this section gives a brief overview of some of the layout analysis
software's inner workings and introduces some associated terminology. While the bulk
of Tesseract's layout analysis software is geared toward physical layout analysis (i.e.,
segmenting columns of text, filtering out noise, and segmenting image regions) some
logical layout analysis for detecting math equations and table regions is also
observed. The MEDS module implemented in this work overrides Tesseract's default
equation detection implementation through run-time polymorphism. Run-time
polymorphism is used to facilitate performance comparisons of the new and default
modules.

Prior to initiating the MEDS module, Tesseract's layout analysis system
segments image regions from normal text on the page and also filters out noise. The
page is then divided into regions referred to as Column Partitions. Each Column
Partition (CP) represents a region of text which should be physically and logically
segmented from its neighboring regions (i.e., an individual row of text within a column,
a displayed expression, etc.). These regions are initially segmented through a
projection blurring technique as illustrated by Figure 34 which blurs all connected

77



components in the direction of their nearest neighbor. Each blurred region in Figure 34
is thus effectively treated as an initial CP by Tesseract's physical layout analysis
system pending further processing. A Column Partition Set (CPset) is a division of a
horizontal slice of the page into column partitions at a given vertical location. Upon
completion of Tesseract's document layout analysis the page is represented as a list of
CPSets, where each entry of the list represents all of the text at a horizontal slice of
the page. While a page with only one column will consist of a list of one element
CPsets, a more complex page layout may consist of a title (one element CPSet)
followed by three columns of text (several three element CPSets). In Figure 34, for
instance, while much of the page consists of one element CPSets, the CPSet
corresponding to the image captions on the lower half of the page and the heading at
the top of the page would both ideally consist of two elements. More information on
the algorithms used by Tesseract to determine which CPSets are the best fit for a page

layout can be found in [18].

4.6 NUMERICAL INTEGRATION 225 | e—

Let f be a continuous function on an interval I, and let @ < b in I. By
definition, for each positive infinitesimal dx the definite integral
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is the standard part of the infinite Riemann sum
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In Section 4.1, examples were worked out to show that the finite Riemann sums
become very close to the definite integral when Ax is small; that is, the finite Riemann
sums approximate the definite integral. In Section 4.2, we saw that the definite
integral is the limit of the finite Riemann sums as Ax — 0*:
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The Riemann sum, which is a sum of areas of rectangles, is a rather inefficient
approximation of the definite integral. We can usually get a much closer approxi-
mation with the same amount of work by adding up arcas of trapezoids instead of
rectangles, forming the Trapezoidal Rule suggested by Figure 4.6.1. The Ti i
Rule also provides a formula, called an error estimate, which tells us how close the
approximation is to the exact value of the definite integral.
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Riemann Sum Trapezoidal Approximation
Figure 4.6.1

Choose a positive integer n and divide the interval [a, b] into n subintervals
of equal length Ax = (b — a)/n. The partition points are @ = Xq, X;, X5,...,X, = b.

The trapezoidal approximation is the arca of the region under the broken line con-
necting the points EEEEEE——
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Since all of these points lie on the curve y = f(x), the broken linc closely follows the ——
curve. So one would expect the area of the region under the broken line to closely
approximate the area under the curve.
Consider a single subinterval [x,,, x,,, ,] of width Ax. The region under the
line segment connecting the two points
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Figure 34: On the left is a document image and on the right is debug output from Tesseract

showing how that image is blurred during physical segmentation.

78



3.1.5 Overview

The method section of this thesis is organized as follows. The System Overview
section gives a general top-down description of the system and then the System
Architecture section discusses how the main modules function together in a
meaningful way. The Component Design section then gives in depth details on how all
of the modules are designed and what data structures and algorithms are used. The
Component Design section is then followed by a brief conclusion which gives some
ideas for future work.

3.2 System Overview

The MEDS software component described here is designed such that it may be
used in coordination with other components to produce a full-fledged document layout
analysis system. While the document layout analysis system, as a whole, is geared
toward the proper segmentation and detection of all zones (i.e. normal text, image,
halftones, mathematical expressions, musical notation, logos, chemical equations,
etc.) in an arbitrary printed document image, the MEDS subsystem is geared toward
only the proper detection and segmentation of mathematical expression regions. This
subsystem is fully integrated with an existing layout analysis system, Tesseract
(version 3.02) [18], and its results compared to those of a default MEDS component
supplied with the software. The subsystem is then evaluated on a ground truth data
set which includes 75 images all taken from public domain texts. The overall system is
divided into three primary components: groundtruth generation, evaluation technique,
and MEDS implementation. The evaluation method objectively gauges performance by
calculating true positive rate, precision, accuracy, false positive rate, false discovery
rate, specificity, and negative predictive value all down to pixel-level [87]. The
dataset, evaluation tools and groundtruth generation tools are made freely open to the
public [126] in hopes that they may be useful for the objective comparison of the
subsystem's performance to any future or existing techniques.

3.3 System Architechture

As mentioned previously, the system consists of three primary components: the
ground truth generation module, mathematical expression detection and
segmentation (MEDS) module, and the evaluation module. Together, these three
modules effectively comprise a test-driven development environment wherein MEDS
modules may be interchanged and evaluated against one another for objective
performance comparison. All MEDS modules which can be evaluated by this system
are fully integrated with Tesseract's document layout analysis software [18], and are
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instantiated by overriding Tesseract's EquationDetectBase class [128]. Tesseract
utilizes a hybrid physical layout analysis approach to locate initial CP candidates on
the page which are then corrected through further type-specific document layout
analysis techniques (i.e., segmentation algorithms for table, music, math, etc.). While
Tesseract provides a default MEDS module, a preliminary evaluation of the module's
accuracy demonstrated in Section 3.4.3 shows a need for improvement. Figures 35
and 36 illustrate how the groundtruth generation, MEDS, and evaluation modules
collaborate in order to foster a test-driven development environment for the
enhancement of MEDS accuracy.

2. The fundamental formulas of differential calculus are derived 2. The fundamental formulas of differential calculus are derived
directly from the application of the definition (2) or (3) and from a directly from the application of the definition (2) or (3) and from a
few fundamental propositions in limits. First may be mentioned few fundamental propositions in limits. First may be mentioned
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Figure 35: (Top-left) Portion of input image. (Top-right) Manually generated groundtruth.
Segments outlined with red rectangles are individual displayed expressions. (Bottom-left) Output
of Tesseract's default MEDS module. Segments outlined with red rectangles are individual
displayed expressions, segments outlined with green rectangles are individual embedded
expressions, and segments outlined with blue rectangles are normal text. (Bottom-right) Pixel-
accurate evaluation results for displayed expressions found in Tesseract's default module after
comparing it to the groundtruth. False negative pixels are colored green, false positive pixels are
colored blue, true positive pixels are colored red, and true negatives are orange. All background
pixels are colored black. Notice that the true positive region at the bottom is undersegmented (a
single region should correspond to the three regions). The commas and asterisk are false positives
since they are not logically part of the mathematical expressions.

The system is first fed multiple document image pages (in formats such as
.png) from which the groundtruth is manually generated. The groundtruth will contain
the bounding box coordinates for all displayed and embedded math expressions (and
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may also contain the coordinates of all displayed expression labels) as further
explained in Section 3.4. Both the input document image and the groundtruth are fed
into the evaluation module which subsequently triggers Tesseract's document layout
analysis software as illustrated in Figure 36. The MEDS module to be evaluated is
embedded in Tesseract's layout analysis software such that it is called after initial
CPSet estimates have been made through Tesseract's hybrid physical segmentation
technique [18]. Either Tesseract's default MEDS module can be evaluated or any new
MEDS module may override Tesseract's default one so that it can be evaluated. Once
the layout analysis software is finished being run on the document image (or multiple
images if desired), the results of the MEDS module are evaluated against the
groundtruth to obtain various evaluation metrics as specified in Section 3.4.3. The
resulting metrics for different MEDS modules evaluated on the same input data may

then be objectively compared.

o MEDS Development Environment o e
r
e —— Input ;
document
r imaae(s)
Tesseract Document Layout & 1
Analysis Framework = \I/

Groundtruth Generation | l_e Evaluation Module

|
MEDS Module Interface < Evaluate output of
L A

MEDS (new) MEDS (default)

Provide Groundtruth to evaluate against

Figure 36: High-level UML-based system architecture overview.

The MEDS module implementation is divided into two primary components:
detection and segmentation. The detection subsystem uses a trained binary classifier
to predict whether each connected component of the image is math or non-math. The
binary classifier takes as input a feature vector found from the feature extractor as
illustrated in Figure 37. Once trained, the classifier can carry out a prediction on new
data assuming the input data is a feature vector generated from the same feature
extractor it was trained with. The segmentation module uses various heuristics to then
merge detected math regions with neighboring ones (i.e., a + operator should have
both left and right operands, a fraction bar should have upper and lower operands,
etc.). Compile-time polymorphism is utilized here for both the Detector and
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Segmentor so that different MEDS modules can be effectively interchanged for
comparison and testing purposes without any significant performance overhead. The
detection module consists of training, feature extraction, and binary classifier
implementations. The Segmentor currently uses no supervised training and operates
purely on heuristic analysis, however the use of supervised training for this stage is

considered a goal for future work.

Trainer

training samples directory : s
classifier : BinaryClassifier
feature extractor : FeatureE:
train() : BinaryClassifier

Bim!r’YCl-!S-‘iiﬁl_ar E FeatureExtractor
predict(input : FeatureVe extractFeatures(sample : Bloblnfo, gridsearch : Blobl

Blobinfo

blob location : TBOX // bounding box on the page
word : string // word to which blob belongs if exists
sentence : string // sentence to which blob belongs
recoghition confidence: double // language recognition

BloblnfoGridSearch [/ Allows for efficient nearest neighbor search
/I Bloblnfo elements on the page

void StartFullSearch()

Blobinfo* NextFullSearch() // Return the next bbox in the search or

void StartRadSearch(x : int, y : int, max_radius : int)

BloblInfo* NextRadSearch()

void StartSideSearch(x : int, ymin : int, ymax : int)

Blobinfo* NextSideSearch(bool right_to_left)

void StartVerticalSearch(xmin : int, xmax : int, y : int)

Bloblnfo* NextVerticalSearch(bool top_to_bottom)

void StartRectSearch(rect : TBOX)

Bloblnfo* NextRectSearch()

Figure 37: UML diagram to depict the trainer, classifier, and feature extractor interfaces used in
the detection module (and also the data BlobinfoGrid data from which features are extracted
to be explained in Section 3.4). Compile-time polymorphism is utilized in order to facilitate

experimentation with and comparison of various combinations of training, classification and

feature extraction.

3.4 Component Design
The design of the three primary components: groundtruth dataset generation,

MEDS, and the performance evaluation are each discussed in this section.

3.4.1 Groundtruth Dataset Generation

In designing the MEDS module it is important to first have a proper
understanding the problem domain. Mathematical recognition modules require that
their input be properly segmented a priori in order to obtain good accuracy. The
definition of “properly segmented” often depends on the type of mathematical
expression being analyzed as well as its context. In this work, a groundtruth dataset is
manually generated to define the correct segmentations of mathematical regions in a
set of 75 images extracted at random pages from the five text books shown in Table 1

(all of which are in the public domain).

82



Table 1: The textbooks utilized in manually generating the groundtruth dataset for this study

Textbook Total Pages Used
E. Bidwell, Advanced Calculus. (1911) [127] 30
A. S. Kompaneyets, Theoretical Physics. 15
(1961) [129]
A. C. Lunn, The Differential Equations of 15

Dynamics. (1909) [130]

D. Sloughter, Difference Equations to
Differential Equations: An Introduction to 15
Calculus. (2000) [131]

In generating the groundtruth dataset, three types of math expressions are
defined: displayed expressions, embedded/inline expressions, and (optionally)
displayed expression labels. A displayed expression is any expression which resides on
its own line of text separated from normal non-math text whereas an embedded/inline
expression is one which resides as a part of a normal text line. The displayed
expression labels are numbers, letters, or symbols that are used to label and refer to a
displayed expression. A displayed expression may, for instance, reside on its own line
and then to either the right or left may have a separate label such as (1), (a), etc. The
label may then refer back to that expression within the text. Although the labels were
manually segmented during the groundtruth generation, the current work will only
strive to segment displayed and embedded regions, with the segmentation of
displayed labels being left as a goal for future work.

In order to manually segment the expressions, a Qt Graphical User Interface
(GUI) implemented in a previous undergraduate independent study [132] was tweaked
so that boxed regions of an image can be manually specified, assigned a type
(displayed, embedded, or label) and then printed to a file. The GUI used to manually
generate the groundtruth dataset is shown in Figure 38.
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Figure 38: A screenshot of the GUI used to manually generate the groundtruth dataset used for

this study.

In manually generating the groundtruth dataset, certain conventions were
adopted in order to ensure that the dataset is consistent. In some instances it
becomes unclear as to whether a mathematical expressions should be considered
displayed or whether it should be considered embedded. In Figure 39, for instance,
each of the mathematical expressions could possibly pass as being considered
displayed since they comprise most of the text lines, with the lines being spatially
separated more than in most normal text. The convention adopted in this work is that,
if math expressions appear as part of a line with normal sentence structure and are
not intentionally moved down to a separate line, then these expressions are
considered embedded. If the expression is moved down a line from a normal sentence
then it is called displayed, even if it still obeys normal sentence structure conventions.
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0

9. With the aid of the trigonometric formulas

lcosz + cos2z + - - - 4 cos(n— 1)z = } [sinnz cot § z — 1 — cosnx],
[sinz + sin2z + - .. + sin (n — 1) x = 1 [(1 — cosnx) cot } £ — sin nzx},

show @Lf;bcoszd:c = sind — sin 4, El ILbsinm = CcOS @ — COS ll

10. A function is said to be even if |[f(— z) = f(x)|and odd if|f(— z) = — f(z)

Show @IL-af(x)dz=2J;af(z)d1l,even, Elf;:af(:c)dxzc,odd.

11. Show that if an integral is regarded as a function of the lower limit, the
upper limit being fixed, then )

v =1 [ Fei=—1@

-

if <I>(a)=j;bf(x)d2.

Figure 39: Groundtruth dataset segmentation example. Segments that are colored red are
considered displayed while those which are blue are considered embedded. The choice of which
regions are displayed vs. embedded is made based on the convention that all expressions that are
part of a normal sentence structure and not placed on their own line are embedded, whereas all
other expressions are displayed.

Segmenting Numbers. Another rule adopted in this work is that numbers
should be labeled as math or non-math based upon their context. While quantities can
be interpreted as mathematical since they inherently involve multiplication, such
entities as section numbers, parts of section headings, and dates/years. should not be
regarded as mathematical. False detection of such cases harms overall document
analysis performance in that it may result in the improper interpretation of the
document's contents.

Extending Displayed Expressions to New Lines. Since the current manual
groundtruth dataset generation procedure can only segment rectangular regions,
expressions cannot extend to new lines unless the resulting segment would be a
rectangle. Extending the groundtruth generation procedure to allow for isothetic
blocks of text is left as an idea for future work. This problem is illustrated by Figures 40
and 41.
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Af=f(a+h b+ k)—f(ab)

= hfi(a+ 0.k, b) + kf,(a + h, b+ 0)

= hfi(a + Ok, b+ 0k) + kf,(a + 6k, b + 6k)
[= Af(a, b) + kf.(a, b) + LA + LA,

where the [#’s are proper fractions, the[#s infinitesimals.

To prove the first form, add and subtract|f(a + &, b]; then

Af=[f(@+h b)—f(a O]+ [f@+h b+ k) —F(a+h b)]
= hf(a + 6.k, b) + kf) (@ + R, b + 6,%)

Figure 40: Result of existing groundtruth dataset segmentation technique. Notice that the
uppermost region is over-segmented (i.e. the set of expressions should correspond to one entity
but here they correspond to two so that the comma is not incorrectly considered part of the

expression and segmented regions cannot be isothetic). Red segments are displayed while blue
ones are embedded.

A =F@ T R TT R 7@
= hfi(a + Bk, 0 + k(0 + hy b+ O)
= hfi(a + Ok, b + Ok) + kF’(a + 6k, b+ OK)
= hfi(a, b) + kf)(a, b) + {h + LA
where the [#s are proper fractions, the[ds infinitesimals.

~

To prove the first form, add and subtract|f(a + k, b]; then

Af=[f(a+h,b)—f(a, 0]+ [f(@a+h b+ k)—F(a+h, b)]
= hf, (a + 0.k, b) + kf, (@ + h, b+ 6,k)

Figure 41: The correct segmentation which is not currently implemented in the existing
groundtruth generation technique. Notice that the top expression region is now properly
segmented as one entity even though the comma causes the region to be a more complex

isothetic shape than a simple rectangle. Red segments are displayed regions while blue ones are
embedded.
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Expressions Embedded in Images. Mathematical expressions embedded
within images or other non-normal text as illustrated in Figure 42, are considered
displayed expressions based upon the convention adopted by this work.

Z r\\
- \\
TNQ \
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\\ \
\
N[F7-4
i\ Ed
A \
A \
1\ |
i \
| 2 >
Fig. 1 Fig. 2

Figure 42: A segment of an image taken from the manually generated groundtruth dataset. All
segments here are segmented as displayed expressions.

Expressions Separated by Commas. Expressions separated by commas are
only joined as a single element if there is an ellipsis prior to the last element as
illustrated by Figure 43. This decision is made because any group of expressions that
includes an ellipsis can mathematically be interpreted as a series, which, itself, is a
single expression. When lists of expressions do not include an ellipsis they are not
merged and the commas are interpreted as part of the sentence wherein the
expressions are embedded as opposed to being part of the expression.
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For in the equation |df = Rdr+ Sds+ Tdt+- --= fldr+ f/ds+ fidt+- - |,
the variables[r, s, 7, --], being independent, may be assigned increments
absolutely at pleasure and if the particular choice gr=1|[ds=dt=...=0,
be made, it follows that |[R = £]; and so on. The single equation (20) is
thus equivalent to the equations (21) in number equal to the number of
the independent variables.

Figure 43: A segment of the groundtruth dataset. All blue segmented regions are considered
embedded expressions. Notice that on the second line of text, the comma which follows the
ellipsis is functionally part of the sentence in which the expression resides, whereas the r,s,t,...
can be interpreted as a single mathematical series and is thus segmented as one region.

3.4.2 MEDS Module

The MEDS module operates by first detecting regions of interest on the page
which, based upon a trained classifier, are considered strongly likely to be
mathematical in nature. Segmentation is then carried out using rationale based upon
the segmentation rules discussed in the groundtruth generation section. An idea for
iteratively searching for missed regions based on segmentation results is left as a goal
for future work. This would require either a math symbol recognizer or using a
Hausdorff distance metric to find other symbols on the page matching to those which
were found during segmentation. The process would then iteratively continue until no
more new math symbols are found on the page. Due to time constraints this is kept as
an idea for future work. Once the detection and segmentation steps are complete, the
final step ideally involves searching for displayed expression labels (i.e., the number,
letter, or other symbol which is used to refer back to a displayed expression). The
label, assuming it is recognizable by the language OCR engine, would then be found in
the recognized text and mapped to its location on the image. Again, due to time
constraints the searching for displayed expression labels is not implemented in this
work, but kept as an idea for future work.

Detection Subsystem

The design starts in a bottom up fashion and makes no assumptions about the

correctness or incorrectness of how CP's were formed by the Tesseract framework
from which it is instantiated. The module does, however, utilize the results of
language-specific OCR (while the default language is English, other languages may
also be employed) in order to quickly rule out most normal regions of text from
possibly being mathematically oriented. A goal in the design of this module is that it
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should still work all the same even if the underlying Tesseract framework from which it
is instantiated were to be altered.

The input to the MEDS module is a grid of CP objects (CPGrid) and the list of
CPsets determined to best represent the entire page by the hybrid layout analysis
technique described in [18]. The grid template container class is used within the
Tesseract framework for fast neighborhood access to bounding box classes as
illustrated in Figure 44. The grid provided to the MEDS module has, as its contained
object, CP objects determined through the previous hybrid layout analysis. Since one
of the design goals for this module is to ensure the MEDS results are as independent
of previous hybrid layout analysis as possible, the CPGrid is first converted to a
BlobGrid. While the CPGrid allows for nearest neighbor access among the CP's, the
BlobGrid allows for nearest neighbor access among all of the connected components®
in the image as illustrated in Figure 45.

| tesseract:GridBase |

i

tesseract:BBGrid«= ColPartition, ColPadition_CLIST, ColPadition_C_IT = tesseract:BEGrid= BLOBNBOX, BLOBMBOX_CLIST, BLOBNBOX_C_IT =

tesseract:ColPartition Grid tesseract:BlobGrid

i
| 1

tesseract:AlignedBlob tesseract:CCMonTexiDetect

I |

tesseract:TabFind tesseract:StrokeWidth

I

tesseract:ColumnFinder

Figure 44: The GridBase datastructure is used extensively within the Tesseract framework to
facilitate fast nearest neighbor access among various components on the image. The above
image is a Doxygen-generated inheritance diagram showing many of the different classes
which are derived from the GridBase class. Being a template container class, it's core
functionality of nearest neighbor search can be utilized for any number of data structures
ranging from CP's, recognized blobs (BLOBNBOX), unrecognized blobs (C BLOBS), and has
been utilized to build a custom grid data structure in this project.

While the BlobGrid is desirable for proper understanding of mathematical
expression regions, it contains no understanding of normal text regions. Easily

recognizable symbols which consist of multiple connected components (i.e. “i” and

> The terms “connected component”, “blob”, and “character” are used interchangeably in this
work to describe either a single group of connected pixels or a character recognized by
Tesseract which may consist of one or more groups of connected pixels as is the case for
characters like “i"” or “=".
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“=") are kept as separate blobs within the grid. Running Tesseract's language specific
OCR on these separated symbols proved to be largely inaccurate. For instance an “="
symbol run through Tesseract's character recognizer would consist of a recognition
being made for each horizontal line in the “=". Surprisingly, in one trial the individual

wrn

horizontal lines were often not recognized as dashes but instead as “j”'s. Similar
problems were observed on various other characters. For instance periods were often
mis-recognized as “0”'s.

In order to mitigate such problems, a new GridBase data structure, the
BlobInfoGrid, is implemented in this work, which contains a combination of the
information in the BlobGrid and information attained from running OCR on each
previously determined column partition on the page. The grid's objects contain
information on both the symbols which were recognized during OCR and those which
were not. If information is available from OCR for a given symbol, then the recognized
word to which the symbol belongs as well as its confidence rating are stored within the
object. The object also contains the symbol's bounding box and the sentence to which
it belongs (if applicable). Since, during the recognition stage, some blobs may be
improperly merged into symbols, a second pass is made by the MEDS module in order
to detect all blobs belonging to invalid words, and improperly merged blobs are thus
split into separate objects in order to facilitate proper analysis of potential

mathematical expression regions as illustrated in Figure 46.
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2 IXNTEODUCTORY REVIEW

The first five show distinetly that the independent variable is x, whereas
the last three do not explicitly indicate the variable and should not be
used unless there is no chance of a misunderstanding.

2. The of di il ealeulus arve derived
directly from the application of the definition (2) or (3) and from a
few fundamental propositions in limits. First may be mentioned

:: :; :-"; where z = ¢ (y) and y=(z) [0}
dz _df () _ 1 1 -
T T T @
dx
Dw £ v) = Du + Dy, D(ur)=ubv+ vDu. (8)
» (:_.) _ vl ;.,;Jn o D e, @

It may be recalled that (4), which is the rule for differentiating & funetlon of a
fusetion, follows from the application of the theorem that the limit of & product s
Ar Az Ay

the uct of the limits to the fractional identity — = — —=; whence
prod Az Ay ax
lim 22 = ]Im 22, im 2 Jlmt_. i ¥,
AraeBT  ardoAp acao AL a0 Ay asaoAX

which Is equivalent to (4). Similarly, if ¥ = r(z) and if z, 45 the inverse function
of y, be wrltten 2 =/=!(y) from analogy with y=ginz and z =sin='p, the
relation () follows from the fact that Ax/Ap and Ay/Az are reciprocals. The next
thres resalt from the Immediate application of the theorems concerning limits of
sums, products, and quotients (§ 21). The rule for differentinting a power is derived
in case n is integral by the applieation of the binomial theorem.

Ay _(ztaxp—an
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and the limit when Az=0 s clearly nze=!. The result may be extended to rational
values of the index m by writing n = e . ¥ =2, gt = 20 and by differentiating

both sides of the equation and reducing. To prove that (7) still holds when = Is
Irrational, It would be necessary to have a workable deffaition of irvational numbers
and ta develop the properties of sach numbers in greater detail than seems wise at
this point. The formula is therefore assumed in accord: ith the principle of
permanence of form (§178), just as formulas |ike a®a® = g=+= of the theary of
exponents, which may readily bo proved for rational bases and exponents, are
assamed without proof to hold also for irrational bases and exponents. See, how-
ever, §§ 18-25 and the exercises thereunder,

1t s frequently botter to regaed the quotiont as the product v - v=1 and apply ).
# For when ax &0, then ay & 0 or ap/az could not approach a Hmit.
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Figure 45: (Top center) The input image. (Bottom-left) The CPGrid of the image which is the
input to the MEDS module. (Bottom-right) The result of converting the CPGrid back into a
BlobGrid. Each rectangle on the image represents a blob. Blobs colored cyan are ones for which
the hybrid analysis was unable to determine whether the blob represents part of text or part of
an image. Yellow blobs have been labeled as “vertical text”.
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Figure 46: Both the bottom left and bottom right images correspond to the mathematical
expression region shown in the upper image. The left image shows the symbols remaining
after OCR by Tesseract. Notice that many of the symbols were ruled out as junk or improperly
merged to their nearest neighbors. On the right is the same expression region after the new
MEDS module noticed that the blobs in the region did not belong to valid words, split them
back up, and reinserted them into the grid for proper analysis.

The new grid data structure, called the BlobInfoGrid is used as input to all
subsequent feature extraction, classification, and segmentation techniques. The
detection module utilizes a supervised machine learning approach in order to predict
which non-noise connected components on a page are most likely to belong with
printed mathematical expressions. Detected regions are considered as the initial
seeds to mathematical expression segmentation carried out in the second stage. The
primary motivation is not necessarily to maximize detection accuracy on the
groundtruth data set, but rather to allow for generalized prediction accuracy on
unforeseen pages. While perfect accuracy is not expected, it is important that at least
a single component for each mathematical expression zone is detected at this stage
since these components may then be merged with their nearest neighbors in a later
step for proper segmentation. Thus, for regions wherein a single component has
already been detected, false negatives may be of very little importance. False

positives, however, will likely be impossible to account for in later stages without
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harming MEDS accuracy. The goal of the detection step is thus to detect at least a
single connected component of each expression zone while minimizing false positives.
The remainder of each detected zone can then be combined with its neighbors using
various heuristics during the segmentation stage of the MEDS module.

A problem observed with the resulting BlobIinfoGrid structure is that certain
mathematical characters would, in some instances, be missing. Tesseract's framework
had, in fact, discarded the characters as noise prior to running the MEDS module or
performing any sort of recognition. Although this problem occurs rarely, it certainly
occurs often enough to be a significant problem. Since resolving such an issue would
require modification to the Tesseract framework external to the MEDS module it is
outside of the scope for the current work. An idea for future work however, is to
modify Tesseract's framework to be less harsh on discarding perceived noise prior to
running any math detection/segmentation modules.

There are two primary components to the detection module: (1) training and (2)
prediction. The training step extracts chosen features from a small subset of the
groundtruth, runs and evaluates the binary classifier on these features multiple times
in order to learn classifier and feature specific parameters. These parameters are then
later used by the classifier to make decisions about unforeseen data during prediction.
Accuracy is evaluated by testing the prediction accuracy on the non-training subset
the groundtruth dataset, and then subsequently evaluated through visual inspection
on random unforeseen data which are completely unrelated to the groundtruth.

Training and Classification

This section discusses various classifier optimization and design techniques
which have been considered, discusses how training is carried out in the Detection
subsystem, then discusses the SVM binary classifier used for this implementation.

Classifier Design and Model Selection Techniques Considered

Cross validation. A labeled training set is randomly divided into m disjoint
sets of equal size n/m, where n is the total number of labels in the training set. The
classifier is trained m times, each time with a different set held out as a validation set.
The average of the m validation errors is considered as the classifier's performance.
By adjusting parameters so as to minimize this error, it is hoped that the classifier's
accuracy will generalize better to new data.

Jackknife. Train the classifier n times (n is the total number of labels in the
set), each time using the entire training set from which a different single training point
has been deleted. Each resulting trained classifier is then tested on the single deleted
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point and overall accuracy is estimated as the mean of all test results. Jackknife is
especially good for comparing two classifiers, to see if the difference in accuracy
between them is statistically significant. Jacknife is essentially the same as leave-one-
out cross-validation.

Bootstrap. Samples of any size less than that of the training set are randomly
pulled from the labeled training set with replacement (i.e., the same label may be
used multiple times). The classifier is trained on all of the samples and tested on the
others. The average of all of the accuracies is measured. Classifier parameters can be
adjusted during training in order to minimize the average error.

Bootstrap with Aggregation (Bagging). Results of multiple classifiers
trained on the bootstrap dataset are pooled together in some fashion to get the final
result during prediction. The multiple classifiers are typically all the same type (i.e.
SVM, neural net, decision tree, etc) but have different parameters due to being trained
on different sets. The results of all of the classifiers are typically combined through a
voting mechanism.

Boosting. Multiple weak learners (classifiers with accuracy only slightly better
than chance) are combined in order to achieve arbitrarily high accuracy on the
training set. A subset of labels of some size less than the total number of labels is
randomly selected without replacement and the first classifier is trained on this
subset. A second training set is then selected so that half of the patterns in it are
correctly classified by the first classifier then half are incorrectly classified by it.
Boosting techniques vary based upon how this second and subsequent training
subsets are chosen. An example boosting technique in order to train three classifiers
described in [133] involves flipping a fair coin to decide between the following:

(1) Select remaining labels from the dataset (not in the already extracted
subset) presenting them one by one to the existing classifier until it misclassifies one
of them. The misclassified label is added to the new subset.

(2) Add a pattern that the first classifier classifies correctly.

This is continued until no more patterns can be added in this manner. Thus half
of the patterns in the new subset are correctly classified by the first classifier and the
other half are not. The second classifier is then trained on this new dataset. A third
dataset is then found by presenting remaining labels (not in either of the first two
sets) to the first two classifiers. If the two classifiers disagree, then the label is added
to the third dataset, otherwise it is ignored. Finally the third classifier is trained on the
third dataset.

Adaptive Boosting (AdaBoost). Each label receives a weight that determines
its importance for training new classifiers. If a label is accurately classified, then its
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chance of being used again in subsequent classifiers is reduced, while if it is not
accurately classified its chance of being used again is raised. The algorithm starts by
assigning a uniform weight to each label in the training set. On each iteration a subset
is drawn according to the weights (initially at random since they are uniform) and a
classifier is trained on the subset. Next the weights of misclassified labels are
increased and correctly classified label weights are decreased. Labels chosen based
upon these new weights are then used to train the next classifier and the process is
repeated until the desired number of classifiers are trained. During prediction, the
weighted output of all classifiers are combined and the final classifier decision is made
using the sigmoid function on this summed output.
Training Process

Training samples are first automatically generated by running the feature
extractor on all BlobInfo objects on the grid. Each BlobInfo object then stores a feature
vector of floating point values, each element of which is normalized between [0,1]. For
each Bloblnfo element on the grid, a training sample is created which consists of the
blob's feature vector, it's binary label (math/non-math), and the blob's bounding box
on the image. A label is automatically assigned to each blob by comparing its
bounding box to those of bounding boxes in the manually generated groundtruth
described in Section 3.4.1. Any blob that intersects with a groundtruth box is labeled
as math while all others are labeled as non-math in their corresponding samples as
illustrated in Figure 47.
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It may be recalled that (4), which is the rule for differentiating a function of a
function, follows from the application of the theorem that the limit of a product is

the product of the limits to the fractional identity Az = Az Ay ; whence
Ar Ay Ax

tim 2 = lim 22, lim 2% = 1imt2%. 1im 2%,
Ax=0 AT Ax=0AY Ax=0AT Ay=0 AY az=0AX

which is equivalent to (4). Similarly, if ¥ = f(x) and if z, as the inverse function
of y, be written z = f-1(y) from analogy with y =sinz and x =sin-ly, the
relation (5) follows from the fact that Ax/Ay and Ay/Ax are reciprocals. The next
three result from the immediate application of the theorems concerning limits of
sums, products, and quotients (§ 21). The rule for differentiating a power is derived
in case n is integral by the application of the binomial theorem.

1_32: (z + Ax)"——x"= nzn—1 4 nn—1)
Az Ar 2!

m=2Ax 4 --- + (Ax)n—l,

and the limit when Ar=0 is clearly nx7—1. The result may be extended to rational
P

values of the index n by writing n = g, y =29, y7=z» and by differentiating
both sides of the equation and reducing. To prove that (7) still holds when = is
irrational, it would be necessary to have a workable definition of irrational numbers
and to develop the properties of such numbers in greater detail than seems wise at
this point. The formula is therefore assumed in accordance with the principle of
permanence of form (§178), just as formulas like ama» = am+» of the theory of
exponents, which may readily be proved for rational bases and exponents, are
assumed without proof to hold also for irrational bases and exponents. See, how-
ever, §§ 18-25 and the exercises thereunder. '

Figure 47: Above is a page from a training image. After the BlobinfoGrid was generated for this
image, each blob in the grid was automatically assigned a binary label (math or non-math)
based upon the blob's location in reference to any entry within the page's manually generated
groundtruth. For debugging purposes, the foreground of blobs which are labeled by the
groundtruth as math were automatically colored red while those which were not were colored

blue.

Once each blob is assigned to a label, the labels are fed into whatever training
module is being utilized. The DLib Machine Learning Library [134] is used extensively
in this work for training and binary classification purposes. The library includes several
versions of the Support Vector Machine classifier (SVM), Multilayer Perceptron (MLP),
and Bayesian Networks and also includes a cross validator implementation useful for
optimal parameter selection.

Training Data Selection. With a groundtruth only available for 75 images,

there are not very many options for selecting training pages. In this work, 15 randomly
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selected pages from one text book [127] are used for training purposes. Since it is
desired to prove that the classification techniques outlined here can generalize well it
was decided to not use data from more than one book, especially since there are
currently only five books to choose from in the entire groundtruth dataset. Since the
15 pages used for training belong to the same book from which 30 of the total
groundtruth images belong (the other four books each have 15 randomly selected
images which were added to the dataset), testing is carried out both with and without
the other 15 pages from the same book. If accuracy is significantly higher for the
dataset with the 15 pages from the same book then low generalization and
overtraining will become a major concern.

Binary Classification

For purposes of detecting mathematical connected components, a Support
Vector Machine (SVM) is utilized in this work. Each character or connected component
of the image is first assigned a normalized feature vector by the Feature Extraction
sub-module to be described in the next section. This feature vector is then fed into a
SVM binary classifier in order to determine whether the component is math or non-
math. The SVM classification technique, first proposed in 1992 by Vapnik et al. [135],
non-linearly maps a feature vector to a higher dimensional space where a linear
decision surface is constructed. During training the SVM finds a hyperplane in the
higher dimensional feature space with maximal margin between the vectors of the two
classes as illustrated in Figure 48 [136]. The optimal hyperplane is constructed using
the support vectors. The support vectors are a subset of the training samples which
are closest to the decision plane while also maximally separating the two classes
(labeled as -1 and +1 as shown in Figure 48).

Determining this optimal hyperplane involves first choosing the non-linear
kernel function which will map the input feature vectors into a higher dimensional
feature space suitable for the SVM's application. Although the dimensional space of
the transformed feature vector is potentially infinite after the kernel is applied, little
computational complexity is added since the optimal hyperplane algorithm (see
Appendix A.1 in [137] for the mathematical details) uses the scalar results of inner
products from the increased feature space rather than carrying out any of its
computations in that space. The kernel function chosen must satisfy Mercer's
Condition, meaning that any resulting matrix from applying the kernel to all of the
feature vectors must be guaranteed to always be positive semi-definite (i.e.
aMa™ >=0 for all @ where M is the resulting matrix and a is any 1 x N vector, and
where N is the number of rows in the matrix). Mercer's Condition guarantees that a
higher dimensional feature space does indeed exist for any possible set of feature
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vectors to be kernelized (see p. 283 of [137] for the definition of Mercer's Condition).
Standard kernel techniques such as the Radial Basis Function (RBF), Polynomial, and
Linear have all been proven to satisfy Mercer's Condition.

While, for some situations, a linear decision boundary may be possible with the
unaltered input feature space, the RBF (Gaussian) kernel is often cited as the most
standard kernel function for this task, and is used for the SVM in this work. The RBF
kernel replaces the inner product of the feature vector with the following operation
repeated over every combination of values in the vector during the quadratic
hyperplane optimization algorithm:

K (w5,x5) = exp(—yllzi — z;*),7 > 0
The value for gamma is one that needs to be fine-tuned through one of the
aforementioned parameter selection techniques. For purposes of this work, cross
validation is used in order to fine-tune the v parameter as the C parameter explained
in the following paragraph.

While the original SVM algorithm proposed in 1992 was implemented for the
restricted case where the training data can be separated without any errors, the
technigue was extended in 1995 [137] to work on training data on which some
labeling errors are to be expected. The resulting SVM formulation, often referred to as
the soft margin, C formulation, or the C-Support Vector Classifier (C-SVC), has become
the most widely used in practice and is illustrated in Figure 48. The C-SVC introduces a
slack variable, &, for each vector which quantifies margin error (i.e. deviation from the
expected minimum hyperplane distance based upon the support vectors). Each error,
&, is added up to give a metric for the total amount of margin error for the given
hyperplane. The constant, C, is a parameter set by the user which specifies how much
total margin error can be tolerated while still achieving the optimal hyperplane. This
parameter, like v, is chosen through cross-validation in this work. Through cross-
validation, the combination of v and C which gives the best results on the training
data can be chosen.
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Figure 48: lllustration of the soft-margin, C formulation (C-SVC) of the SVM binary classifier
[136]. The omega vector and beta give the optimal hyperplane within the higher dimensional
feature space specified by the kernel function, psi. The xi values are deviation measurements
of each sample from the hyperplane's expected minimal margin specified by the support
vectors. The soft-margin SVM's C parameter specifies the total deviation that can be tolerated.

Fine Tuning of SVM Parameters

As previously mentioned, the parameters C and ~ need to be fine-tuned during
training. Among parameter selection techniques that were considered for this purpose
are cross-validation, jack-knife (leave one out cross-validation), bootstrap, and
boosting as described at the beginning of this section. A potential problem with the
bootstrap technique for parameter selection is that the entire training set may or may
not be used since samples are drawn with replacement. Depending upon the nature of
the training set and possibly random chance this may or may not prove to be an
effective mechanism for parameter selection. Bootstrapping with Aggregation
(bagging) involves combining the decisions of several classifiers trained on different
bootstrapped datasets during prediction. Bagging has been observed to increase the
accuracy of unstable classifiers (i.e. classifiers for which small changes in the training
set lead to significant changes in classifier output) [133]. Utilizing an ensemble of
SVM's through bagging has been shown to greatly increase classifier performance for
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handwritten digit recognition [138], and is thus considered as a potential avenue for
experimentation. Like bagging, boosting also operates by combining the output of an
ensemble of classifiers. Boosting, however is considered most effective for training an
ensemble of weak learners so that their combined decision is highly accurate. Since
the SVM is most certainly not a weak learner, the effectiveness of the boosting
technigue may be limited for the current approach.

Cross validation is a useful parameter selection technique which has often been
observed to yield favorable results in practice. While 10-fold cross-validation has been
observed to give favorable performance in many scenarios, the decision of how much
to divide the training data is application dependent. If m = n fold cross validation is
carried out where the training set size is n (i.e. leave one out cross
validation/jackknife), the classifier yielding the best performance in cross-validation is
more likely to have too high of a variance, be too sensitive to and over-fit the training
set and thus may not generalize well to new data. If too small of an m value is chosen,
on the other hand, the resulting classifier may not be sensitive enough to both the
training set and new data, have too much bias, and would be under-fit to the training
data.

In this work, the classifier parameters are fine-tuned using 10-fold cross-
validation. The 10-fold cross-validation model selection procedure is carried out by
running cross-validation on the training set with possible combinations of the model
parameters C and vy and then choosing the parameters that yield the best average
results. To enhance numerical stability during training, all training samples are each
subtracted by the training sample mean (for each individual feature value in each
sample) and then divided by the training sample standard deviation prior to training
being carried out. While this simple operation had no effect on classifier accuracy, it
was observed to significantly speed up the training procedure from taking several
hours (or even days) to taking less than or slightly more than one hour when training
with over 30,000 samples and using a separate CPU core for each cross-validation. As
recommended in [139], an initial starting point for C and v parameters is found
through a coarse parameter selection technique which runs the cross-validation
initially at a low value for both parameters (1le-3 and le-7 for C and v respectively)
and then exponentially increments each one in turn up to a maximum value (1,000
and 100 are the empirically chosen values used here for C and v respectively). A total
of 10 possibilities are tested on each parameter (thus a total of 100 10-fold cross
validations). Whichever (C, ) pair yields the highest sum of sensitivity (true positive
rate) and specificity (true negative rate) is the pair that is selected as the starting
point for subsequent finer-tuned parameter selection. The final parameters are then
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found by feeding them into the Bound Optimization by Quadratic Approximation
(BOBYQA) algorithm [140], a C++ implementation of which is conveniently included in
the D-Lib Machine Learning Library [134]. As with the coarse parameter selection, the
finer-tuned BOBYQA parameter selection finds the (C, v) pair which maximize the sum

of sensitivity and specificity.

Feature Extraction
While the D-Lib Machine Learning Library [134] is utilized for both the training
and classification steps in this work, all of the feature extraction steps were

implemented in-house. To achieve desired results in binary classification it is of the
utmost importance that the features extracted for each character be highly
descriptive at distinguishing math from non-math. For this work, the features
implemented can be categorized as either “spatial” or “recognition-based”. While
spatial features describe a character's spatial relationship with regard to its
surrounding characters, recognition-based features are any features that can be
gleaned from OCR results. Both the spatial and recognition-based features
implemented in this work are described in this section. All feature values that are not
already scaled, are scaled between 0 and 1 using the normalization mapping of
1—e %, where = is the un-scaled feature value. The rationale behind using this
normalization technique is for slight deviations in the quantities being measured to
result in a significant change to the feature as recommended in [116].
Spatial Features

Number of Horizontally or Vertically Aligned Characters. In many
mathematical equations there are seen elements which essentially “cover” multiple
adjacent elements that are either horizontally or vertically adjacent depending upon
the context as illustrated by Figures 49 and 50. If the center of a horizontally adjacent
character is within the vertical bounds of the current character's bounding box, then
that character is “covered” by the current one as shown in Figure 49. This also applies
when a vertically adjacent character's center is within the horizontal bounds of the

current character as shown in Figure 50.
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Figure 49: When the integral symbol is analyzed in the above expression, it is measured to have

three horizontally adjacent vertically overlapping elements to its right. The red and blue
bounding boxes were drawn manually a for illustration purposes, where the red box “covers” the
blue boxes.
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Figure 50: When the fraction bar in the above expression is analyzed it is found to have one

vertically adjacent horizontally overlapping element above and four below. The red and blue
bounding boxes were manually added for illustration purposes, where the red box “covers” the
blue boxes.

For a character to be considered adjacent however, it has been empirically
found that it must be within half the character's height if looking for horizontally
adjacent neighbors and half the character's width if looking for vertically adjacent
neighbors. Each character is assigned a number of elements greater than or equal to
zero to which it “covers,” based upon the definition specified here, as a feature.

Number of Completely Nested Characters. Similar to the above feature,
however less often observed, are symbols which have multiple characters effectively
nested inside of their bounding box. This has primarily been observed for square roots
and is not very often observed otherwise in practice. If the number of characters
completely inside of the current character is greater than one, then the feature may
be useful as illustrated for the square root shown in Figure 51. Figure 52 demonstrates
results of the nested character feature on a training image.
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Figure 51: The square root in the above expression contains 8 elements nested within it.

13. If the roots of a + bx + cx? = 0 are imaginary, f R(z, Va + bz + cx?) may
be rationalized by y =Va + bx + c2? F z Ve.

14. Integrate the following.

x3 1+\/x z
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) [ ——> &) [ ——» ,
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O | ——> .
(")fz(1+z2)% ()f z ()‘)f\/l—x3+ x

Figure 52: Results of the nested character feature on a training image demonstrated through
foreground region coloring. The red blobs are inside the bounding box of a nested blob. The
square-root in the expression labeled as alpha was filtered out by Tesseract as noise prior to
running the MEDS module. The other three missed square roots were broken into two blobs
and thus have no nested characters. The integrals, parenthesis, and plus sign were all mis-

recognized by Tesseract as containing more than one character.

Subscripts or Superscripts. The presence of superscripts and subscripts can
often, but not always, infer presence of mathematical notation. An example of a
situation where mathematics cannot be inferred from superscripts and subscripts is
the presence of footnotes. Used as a single binary feature in conjunction with multiple
other features, the presence of super and subscripts can be informative, however. A
character is assigned four binary features (1 if true 0 otherwise) based upon whether
it has a superscript, has a subscript, is a superscript, or is a subscript. A character has
a superscript if a horizontally adjacent character to the right vertically overlaps at
least to some extent but also has a bottom that is around or above the character's
vertical center. Likewise, a character has a subscript if a horizontally adjacent
character to the right which vertically overlaps at least to some extent has a top that
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is around or below the current character's vertical center. A character is a
super/subscript if its neighbor which is found to have a subscript assigns it as its own
super/subscript.

As demonstrated by Figures 53-55, the superscript/subscript feature can be
informative but also misleading in some circumstances. In Figure 53, for instance, a
fraction bar is seen as the superscript of part of an “=" symbol. Punctuation often
meets the previously mentioned requirements of being a subscript. In order to prevent
false detection of punctuation as subscripts, the feature extraction technique makes
sure that, for normal text, the last character is non-punctuation during subscript
detection. Furthermore when detecting a superscript or subscript the current blob
must be the rightmost on its word whereas the neighboring blob (the potential
superscript/subscript) must be the left-most blob on its word. When a blob belongs to
a mis-recognized word, as shown in Figures 53-55, this precaution is of little help
however. An area threshold is also employed in order to prevent noise from being
mistaken for sub/superscripts.

dy Rsint 4+ (x— a) (y) '
—— ’ —_— =t, =
dr RcostT— (y— ¥, dx/ a, y, T =s),
d% _[RcosT— (y — ¥o)]* + [RsinT + (2 — a)] (_y) ~_ 1
dz? [RcosT — (¥ — y,)] ' dc?/a,yy Rcos’T’
1
d = — — 2— e e
an y=9y+@E@—a)(a)+tx—a Roos s

Figure 53: Result of sub/superscript detection on a training image depicted by foreground
region coloring in order to illustrate the feature's reliability. The red blobs were detected to
have a sub/superscript, the green blobs are superscripts, and the blue blobs are subscripts.
Due to the page's spacing, the d in second derivative was not found to have a square since the
bottom of the 2 is above d's center. The large parenthesis were also found to have
sub/superscripts based upon the criteria and since it is not known that they are themselves
punctuation due to improper recognition.

Simpson’s Rule

Figure 54: The word “Simpson's” was mis-recognized by Tesseract, resulting in the apostrophe

being mistaken for a super-script.
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(right-

Figure 55: The word, “right-” was mis-recognized by Tesseract, resulting in the bottom of the

“

“g” being mistaken for a subscript, the left part of the “h” mistaken as a superscript, and the
being mistaken for a subscript of the right part of the “h” and the “t” which were improperly

combined into a single character.

Character Height. Mathematical characters like integral signs, exponents,
square roots, etc. are observed to have heights which differ from the height of normal
text on a page. A distinguishing feature of some mathematical regions is thus their
difference from the average normal text height. Normal text is defined here as any
word for which a valid match is found in Tesseract API's dictionary as described in [29].
The height of all characters or connected components belonging to valid words is
averaged over the image to give the average normal text height. The character
feature is then measured for each character as h/h, where h is the character height
and h,, is the average normal text height on a page. If there is no normal text found on
the page then the character height feature is simply h.

Character Width to Height Ratio. The width to height ratio feature is
primarily utilized in helping to detect fraction bars. Just as with the character height
feature, the average width/height ratio is first taken for all normal text on a page. The
width/height feature is then measured as r/r, where r is the width/height ratio of the
character being measured and r, is the average width/height ratio for normal text on
the page. If there is no normal text on the page the width/height ratio is simply r and a
flag is set on a separate binary feature to denote that there exists no normal text on
the page. This binary flag is set in order to prevent the classifier from being confused
by the new measurements it may receive for pages without normal text. In this work,
however, all pages tested will have at least some normal text.

Vertical Distance Above Row Baseline (VDARB). Fraction numerators,
fraction bars, and exponents in embedded expressions are positioned above the
baseline wherein normal text is expected to reside. The baseline for each row of text
found by Tesseract is computed by fitting a quadratic spline to groups of blobs using a
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least squares technique as described in [34]. The fitted baseline can be useful for
detecting outliers on normal text lines, however it loses its meaning for non-normal
text lines like displayed expressions where the fitted baseline is often incorrectly
computed as shown in Figure 56. It was deemed that a row must therefore contain at
least one valid word in order for this feature to be meaningful. If a character resides on
a row which contains at least one valid word, then the difference between that
character's bottom-y coordinate to the y coordinate of the row's baseline at the
0"
often have their bottom residing well below the baseline, all characters with a

u

character's x position is computed. Since normal characters like the character

negative distance from the baseline are assigned to 0 for this feature, unless the top of
the character is below the baseline as well, in which case the absolute value of the
distance is used. The feature is then subtracted by the average vertical baseline
distance for the normal text on the given row, divided by the row's height, and then
normalized between [0,1] exponentially. If the character does not reside on a row with

at least one valid word then this feature is fixed to O.

2. The fundamental formulas of differential caleulus are derived
directly from the application of the definition (2) or (3) and from a
few fundamental propositions in limits. First may be mentioned

dz—_dz dy .

— =—-%, where 2=d (%) and v = Ff(x). 4)

dx dy dx v v v X 7 N\ 7
de_df()_ 1 _ 1 s

dy dy df(x) dy ®)

, dx dx

D(u + v) = Du + Du, D (uv) = uDv + vDu. (6)
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It may be recalled that (4), which is the rule for differentiating a function of a
function, follows from the application of the theorem that the limit. of a product. is
Az Az Ay

the product of the limits to the fractional identity — =-= —= . whence
Ar Ay Az

. 1. 1. . Az .. A
lim ==t —-tm l: | ——1m -——y-,
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Figure 56: The baselines found during Tesseract's layout analysis were automatically drawn on
a training image in order to gauge the effectiveness of the VDARB feature. From the above
example it is can be seen that, while Tesseract's quadratic spline line detection algorithm is
highly effective on normal text, results are somewhat unpredictable in the presence of

mathematical expressions.

Count of Stacked Characters at Character Position. Mathematical regions

may have a two-dimensional layout that is more complex than what is observed in
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normal text regions. If a character is observed to be part of a non-existent or non-valid
word after language recognition, then a vertical search is done above and below that
character at its horizontal position to count the total chain of adjacent nearest
neighbors that also belong to invalid or non-existent words. A neighbor is considered
adjacent only if its distance from the current character is less than or equal to half of
the initial character's height (height of the character at the position being measured).
The nearest neighbor search looks up first until all characters which meet the
aforementioned criteria are found and then does the same by looking down. The total
number of stacked characters does not include the current character itself because
the exponential normalization technique used (as described in [116]) yields much
better separation this way. The method is illustrated by Figure 57.

d® _[RcosT—(y—yy)]2+ [BsinT + (z — a)]?
da? [RcosT — (¥ — ¥,)]®

Figure 57: Fractions are an example of mathematical notation that is often two dimension-ally

more complex than is normal language text. For the left side of the equation, both of the d
symbols have 2 as their stacked count features. The minus signs and exponents are the
exceptions as they are assigned 0. The fraction bars are also assigned 0 because their height

is very low so that no nearest neighbors can be vertically adjacent.

Examples of feature values found using this technique are shown in Figures 58
and 59. Words which are considered valid by Tesseract's dictionary method are
discarded for purposes of this feature in order to avoid false positives. Unfortunately,
this causes several blobs which should have a stacked feature of 1 or 2 to be fixed at 0
as can be observed in Figure 58. The dx at the bottom left of Figure 58, for instance, is
considered to be a valid word by Tesseract and thus has a stacked feature fixed at 0.
This also occurs for the [R, cos, (y, and (x. The sin is a somewhat unusual
circumstance because the word was misrecognized and improperly segmented into
three blobs by Tesseract: the “si”, the dot on the i, and the “n”. The “si” has one
stacked feature above it because the dot on the “i” is mistaken for a separate entity.
The “si”, “n”, as well as the 7 however are at a distance from the fraction bar greater
than half of their heights and are thus not seen as adjacent to it. The +, on the other
hand is seen to have two adjacent elements below it: the fraction bar and the closing
bracket. More results of this technique are demonstrated in Figure 59. Although by no
means perfect, this feature can give a good indication of the the “geometric
complexity” of a mathematical expression region as described in [115].
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d?y _[RcosT—(y—y,)]?+ [RsinT + (z — a)]?
dz? [RcosT — (y — ¥y, |2

Figure 58: Results of using the described stacked feature algorithm on the same expression
shown in Figure 53. Dark blobs have a stacked feature of O, red blobs have a stacked feature
of 1, and green blobs have a stacked feature of 2.
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It may be recalled that (4), which is the rule for differentiating a function of a
function, follows from the application of the theorem that the limit of a product is

the product of the limits to the fractional identity 2E_ 2 %; whence
T Y
lim 22 = lim 2. lim &%= 1imt2%. lim 2%,
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which is equivalent to (4). Similarly, if ¥ = f(x) and if x, as the inverse function
of y, be written x =f~1(y) from analogy with y =sinz and = sin-1ly, the
relation (5) follows from the fact that Ax/Ay and Ay/Ax are reciprocals. The next
three result from the immediate application of the theorems concerning limits of
sums, products, and quotients (§ 21). The rule for differentiating a power is derived
in case n is integral by the application of the binomial theorem.

Ly _@timrn—z e D) n—
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and the limit when Azr=0 is clearly nzn—1, The result may be extended to rational
d
values of the index n by writing n = rk y =29, y7 = zr and by differentiating

Figure 59: Results of using the described stacked feature algorithm. Dark blobs have a stacked
feature of 0, red blobs have a stacked feature of 1, green blobs have a stacked feature of 2,
and blue blobs have a stacked feature of 3 or more.

Recognition-based Features

Recognized Math Symbols or Words. The language® Tesseract OCR utilized
in this work allows for the instant detection of some basic mathematical characters
like “<”, “>", “47, “." “/" “%"”, etc. While using OCR trained specifically for
mathematics would increase accuracy significantly and allow for the detection of more

6 Here the language classification result indicates the result of a classifier that was trained for
a particular language. Although in the context of this work English is all that is tested, testing
of existing techniques in various languages is of interest for future studies.
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complex symbols like integrals, greek letters, etc., training Tesseract for new symbols
is a very time consuming task that is kept as an idea for future work. For purposes of
this work a finite list of math words has been generated. If a character belongs to a
word or symbol on the list then its corresponding recognized math symbol feature is
set to 1, otherwise it is O.

Italicized or Bold Text. Single italicized or bold characters among normal text
have often been observed to correspond to mathematical variables. Whether or not
the text is math often depends upon the context of the sentence to which they belong.
A helpful feature in further distinguishing math from non-math in a sentence is
linguistic analysis. If a sentence has n-grams that have been measured to extensively
belong to mathematical sentences then the likelihood of bold or italicized characters
in that sentence being mathematical increases. The n-gram feature used in this work
is discussed in a following section. Tesseract utilizes a technique described in [29]
which detects bold and/or italicized text. Unfortunately, however Tesseract's
assignment of bold/italics was found to be rather unstable as illustrated in Figure 60.
Since italics appear to be much more accurate than bold assignments, only italics are
utilized as a feature for purposes of this work. If a blob belongs to an italic word the
feature is assigned 1 otherwise it is fixed to O.

be the Taylor developments of the two curves. If the difference
of the ordinates for equal values of x is to be an infinitesimal of the
nth order with respect to x —a is the perpendicular from the

agree up to but not including the terms in a". This is the condition for
contact of order n —1. ‘
As the difference between the ordinates is

F@ 9@ = 2@ [/ @ — g @]+,

sign
a according as » is odd or even, because for values sufficiently near to
x the higher terms may be neglected. Hence the curves will cross each
other if the order of contact is even, but will not cross each other if the
order of contact is odd. If the values of the ordinates are equated to find
the points of intersection of the two curves, the result is

= T o= L@ = @]+

Figure 60: Results of Tesseract's italic and bold text assignment. Blobs colored red were

detected as italic, green as bold, and blue as both bold and italic.

OCR Confidence Rating. After language-specific OCR is carried out, normal
text can be largely distinguished from abnormal text based upon the OCR confidence
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rating assigned to each recognized character. This feature primarily serves to rule out
normal text from potentially mathematical text, and does not necessarily say anything
about whether or not a character should be considered mathematical. After carrying
out recognition on a character, Tesseract assigns to it a rating which specifies how
confident the OCR engine was in making its final decision. The rating which Tesseract
assigns to a character is a negative number which approaches zero for high
confidence but may be as low as -20 for characters recognized with extremely low
confidence. The confidence feature is computed as c/c, where c is the current
character's confidence rating and c, is the average character confidence rating on the
page for characters which are part of valid words. If there are no valid words on the
page then the feature is simply —c and a separate feature, which indicates whether or
not a valid word is found on the page is set to 1 where it would normally be 0.

Linguistic Analysis (n-grams). Since the Tesseract OCR utilized in this work
can recognhize normal text with near perfect accuracy, linguistic analysis can be
performed in order locate sentences of recognized text which are likely to contain
mathematical notation. In a 2005 project by Garain and Chaudhuri [115], an in-depth
statistical study was carried out on 297 document pages from books, journals, and
exam papers and 103 synthetically generated document pages (from Microsoft Word
and TEX). Among several other in-depth analyses, a linguistic analysis was carried out.
Linguistic analysis of sentences revealed that a word-level n-gram model could be of
great help in categorizing sentences into one of two categories: namely with or
without mathematical expressions. In the study, uni-grams, bi-grams, and tri-grams
are extracted for 870 sentences containing math and 2,655 not containing math. The
n-grams are ranked separately for each category based upon frequency of occurrence.
The top 150 n-grams for each class are used to generate an “n-gram Profile” for their
respective class.

In Garain's work, a classification technique utilized on 877 new test sentences
involved first finding the n-grams for that sentence and counting the number of the
found n-grams that exist in the math and non-math n-gram Profiles respectively. If
more of the sentence's n-grams were observed in the math category then the
sentence is categorized as math, otherwise if more n-grams were observed in the non-
math category the sentence is categorized as non-math. If the sentence has equal
amounts of math and non-math n-grams then it is considered indeterminate. Test
results showed that accuracy increased for sentences with more n-grams. Accuracy
ranged from 90.2% for sentences with up to 50 n-grams to 98.9% for sentences with
up to 150 n-grams.
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In this work, n-grams are ranked by frequency of occurrence from the result of
Tesseract's OCR on 7 of the 15 pages which were taken from [127] and used for
training. The rationale behind not using all 15 pages to generate n-gram Profiles is to
avoid over-training of the classifier to this particular text, and, as previously
mentioned, only pages from a single text were chosen for training since only 5 texts
are currently available in the entire dataset. A sentence is, in this work, defined as a
sequence of words starting with a valid word having a capitalized first letter and

“u n

ending with either a or a “?” (“1” is not used as a sentence ending due to the
presence of factorials). Sentences recognized by Tesseract are first automatically
separated into math and non-math by determining each sentence's region on the
image and comparing that region to the manually generated groundtruth. If a
sentence overlaps any groundtruth region then it is labeled as math otherwise it is
labeled as non-math. Next, n-gram profiles are generated for both the math and non-
math sentences. These profiles, including uni-grams, bi-grams, and tri-grams, are
ranked by frequency of occurrence, and are each placed in their own text file. The
matching n-grams in the non-math profile are then subtracted from matching n-grams
in the math profile so that the math profile gives the frequency of occurrence of the n-
grams most relevant to math sentences. If there are more math n-grams than non-
math n-grams then the count of matching non-math n-grams are upweighted by the
ratio math/non-math word ratio during subtraction. The updated frequencies are then
used to re-rank the math n-gram profile in descending order of updated frequency. The
updated math n-gram profile is then utilized in this work to generate an n-gram-based
feature for all characters belonging to a given sentence. After a brief discussion of how
individual characters are assigned to sentences within the context of this work, the
method used to assign the n-gram feature (i.e. probability that a sentence contains
math based on n-grams) to a sentence is discussed. Also the resulting n-gram profiles
for the limited dataset will briefly be covered.

Assigning Blobs to Sentences. In order to ensure that the right n-gram
feature is assigned to each blob within a sentence, it is important that each blob is
physically assigned to the correct recognized sentence to which it logically belongs.
Although tesseract does not store a mapping from the individual blob to the physical
row of text to which it belongs, it does inherently store a row of text which points
indirectly to all of the characters that reside on that line. The results of Tesseract's
page recognition are stored in a top-down fashion, starting with a small set of blocks
each of which contains one or more rows with the rows each containing one or more
words which each contain one or more individual blobs. During preparation of the
BlobIinfoGrid, tesseract's OCR is carried out on the entire page for which the
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BlobInfoGrid is being created. The result of Tesseract's OCR is a “page result” object
which points to the resulting blocks, rows, words, and blobs structured in the top-down
manner previously mentioned. In order to assign individual blobs to sentences, it is
necessary that the blobs also have access to the word and row to which they belong
which is not the case for the output of Tesseract. Since bidirectional access is not
given by Tesseract's page results, some very simple but convenient data structures
are implemented in this work. In order to give the Blobinfo objects access to the word
and row to which they belong, a “WordInfo” object pointer is assigned to each Blobinfo
object. This WordInfo object is created for each word recognized by Tesseract and
contains pointers to all Blobinfo objects which reside within it, a pointer to the row to
which the word belongs, a pointer to the word result from Tesseract, and sentence
start and ending flags which are only true if the given word is found to reside on a
sentence boundary. Likewise a “RowlInfo” object pointer is assigned to each Wordinfo
object. The RowInfo object contains pointers to all WordInfo objects contained in it, the
corresponding row result from Tesseract, a convenience function for concatenating the
recognized text of all words on the row, and also stores any other convenient
information: for instance the average distance of each of the row's blob's from the
row's baseline if that is needed for feature extraction. BlobIlnfo objects for which no
Tesseract recognition results are obtained are assigned to a NULL WordInfo pointer.
Although pointer access is both to and from each RowInfo object and its Wordinfo
objects, the WordInfo objects are owned by the RowlInfo object in which they reside
and are deallocated upon the RowlInfo object's destruction. Each of the RowlInfo objects
are stored in a vector belonging to the BlobInfoGrid.

Sentences are first found by iterating through the RowInfo vector in order to find
the words which signify sentence boundaries. The convention adopted here is that
only valid capitalized words, i.e., words which have been deemed as “valid” by
Tesseract's APl and consist of a capitalized letter immediately followed by a lowercase
one, can be considered as sentence start boundaries. Likewise only valid words ending
with a period or question mark can be considered as sentence ending boundaries. The
exclamation point is not used as a sentence boundary in this work because factorial
symbols have been observed to cause otherwise valid sentences to end prematurely.
Once the first start boundary word is detected, the subsequent words are checked for
end boundaries. With the detection of an end boundary, the algorithm then seeks start
boundaries again for subsequent words repeating the previously mentioned pattern
until the last word on the page is reached. If the last word is reached and an end
boundary is still being sought then the final word is flagged as the sentence's end
boundary regardless of its content. Each time an end boundary of a sentence is found,
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a Sentence object is instantiated to store the indices of its row and word boundaries
and the recognized text in the sentence. The Sentence object also stores the bounding
box coordinates of each of its rows as well as the n-grams found during feature
extraction. Each Sentence object is appended to a vector owned by the BloblnfoGrid.

The BlobIinfo objects belonging to sentences are then each assigned an index
corresponding to the Sentence object to which they belong. In order to assign the
BlobInfo objects to their sentences the Rowinfo vector is again iterated with the row
and word indices of each WordInfo object in each row being checked against the
corresponding row and word boundary indices for all of the Sentence objects. If the
current WordInfo object is found to belong to a sentence then all of the Bloblnfo
objects which it points to, i.e., which were found to belong to the word during
Tesseract page recognition, are assigned to that same sentence. Determining which
sentence the WordInfo object belongs to involves iterating through each sentence
object and comparing the WordInfo object's word and row indices to the corresponding
sentence boundary indices as follows. If the row index is less than the Sentence start
row or greater than the sentence end row then word is not part of the sentence,
otherwise if blob's row index is in between the sentence's start and end row
boundaries then the word is assigned to that sentence. If the word is on a sentence
row boundary then the decision requires also comparing the word index as follows: if
the current sentence starts and ends on the same row then the word's index must be
>= the sentence start boundary and <= the sentence end boundary. If the sentence
starts and ends on different rows and the word is on the starting row then its word
index must be >= the sentence's start word boundary but the end word boundary
does not matter. Likewise when the sentence starts and ends on different rows and the
word is on the ending row of the sentence then the word's index must be <= the
sentence's end boundary but the start boundary does not matter. Results of this blob
sentence assignment technique are illustrated in Figure 61.

113



FUNDAMENTAL RULES 19

wide variety of integrands integrable in terms of elementary functions.
The devices which will be treated are :

Integration by parts, Resolution into partial fractions,
Various substitutions, Reference to tables of integrals.

Integration by parts is an application of (61) when written as

fuv’ = uv —fu’v. (61%)

That is, it may happen that the integrand can be written as the product uv” of two
factors, where v is integrable and where u’v is also integrable. Then uv’ is integrable.
For instance, log z is not integrated by the fundamental formulas ; but

floga::flog:c- 1=:clogx-—-fx/z= zlogzx — x.
T
Here log z is taken as u and 1 as v’, so that v is , u’is 1/z, and w’v =1 is immedi-
ately integrable. This method applies to the inverse trigonometric and hyperbolic

functions. Another example is

fxsinz:—zcosm +fcos:c = sinL — Z COs .

Figure 61: An excerpt from a training image. For debugging purposes, each blob has been
automatically colored according to the sentence to which it is assigned. The first sentence is
red, the second blue, the third green, the fourth is red, etc. Leptonica [122] is utilized in this
work for pixel coloring.

The Tesseract recognition results for the sentences shown in Figure 61 are as shown
below. It is observed that Tesseract often mistakes the lowercase “w” for a capital one
and of course the mathematical text primarily results in junk output except for the u’
and v’ variables which are recognized perfectly in several cases.

Sentence 1: Wide variety of integrands integrable in terms of elementary functions.=
Sentence 2: The devices which Will be treated are:

Integration by parts, Resolution into partial fractions,

Various substitutions, Reference to tables of integrals.

Sentence 3: Integration by parts is an application of (61) when written as

fun’ = uv — fu'v.
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Sentence 4: That is, it may happen that the integrand can be written as the product
uv’ of two factors, where v’ is integrable and where u'’v is also integrable.

Sentence 5: Then uVv’ is integrable.

Sentence 6: For instance, logo: is not integrated by the fundamental formulas ; but
floga:=flog2:-Izxloga:-—-fa:/:c=a:loga:-9:.

Sentence 7: Here log 3; istakenasu and 1 as 1:’, so that vis 2:, u"is 1/9:, and u’'v =
1 is immedi- A

ately integrable.

Sentence 8: This method applies to the inverse trigonometric and hyperbolic
functions.

Sentence 9: Another example is

fa: sina: =— 3: cosa; +fcos2: :- sina: — cc cosx.

Although some junk output is assigned a sentence with the current technique, a
largely useful n-gram Profile is made assuming that there is enough sentence content

to analyze.

N-gram Profile. After feeding 7 of the 15 available training images from [127]
into the n-gram Profile generator developed in this work, some interesting results were
obtained as shown in the below table. Of a total of a meager 75 math sentences and
34 non-math sentences the top 20 math n-grams found after subtracting matching
non-math n-grams (each matching non-math n-gram is weighted by the math to non-
math total word count ratio during subtraction) are shown in Table 2.
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Table 2: N-gram Profile automatically generated from 7 of the 15 training images used in this

work. 75 math and 34 non-math sentences were used to generate this profile. All matching

non-math n-grams are subtracted from the math n-gram counts after being weighted by the

math/non-math word ratio to result in the above profile.

Tri-grams Counts |  Bj-grams Counts Uni-grams Counts
area under the 4 the function 10 = 47
under the curve 4 at the / + 18

equal to the 4 of a 6 f 16
mass of the 4 the area 5.6532 function 10.9596
be written as 3 the mass 5.6532 approach d
written as the 3 the curve > y 8

limit of the the density > area 7.6532

the rod to 3 equal to > sin 7

of the rod 3 it is 4.3064 rod /
continuous at the 3 and if 4 density 7
is not continuous 3 be written 4 mass 6.6532
not continuous at 3 the product 4 values 6
exactly equal to 2 under the 4 value 6
than the original 2 if the 4 written >

integration by parts 2 written as 4 between >
as the product 2 the rod 4 variable 4

a function f 2 that the 3.3064 case 4
is integrable and 2 values of 3 product 4
it is necessary 2 function f 3 integrable 4

it is clear 2 integral of 3 intervals 4

As may be expected for such a limited amount of data, a lot of the n-grams are

largely specific to the particular document in which they are found. For instance the

word “mass” and “rod” are seen a significant amount of times for this limited amount

of sentences and are largely specific to the particular context in which the words are

used. tri-grams like “it is clear” or “it is necessary” however may be useful for a wider
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range of documents. Adding more data to the groundtruth dataset would make the
coverage of these n-gram profiles much more powerful. For purposes of this study, a
short list of empirically determined stop-words is manually generated to specify uni-
grams which should likely be removed from the profile like “a”, “the”, “and”, etc.

N-gram Feature Assignment. All blobs belonging to a given sentence are
each assigned their own uni-gram, bi-gram, and tri-gram features. The n-grams are
first extracted from the sentence. The features each start at zero and are incremented
by the count of all matching n-grams to the n-gram Profile. The features are then
scaled to an interval from [0,5], with O being the lowest possible n-gram feature and 5
being the highest. The feature is then normalized to [0,1] using 1 — e~ * on the scaled
feature. The manner in which the scaling is carried out is decided empirically and
depends upon the nature of the n-gram Profile. If the highest counted object on the
profile has a count less than or equal to 5, then the total n-gram feature for that
sentence is kept as the original count but capped at 5. If the highest counted object on
the profile has a count greater than 5 then the feature is divided by 10, an empirically
chosen constant, and capped to 5 as the upper bound.

Segmentation Subsystem

The segmentation subsystem takes as its input all regions that were recognized

as math by the detection subsystem previously explained (the seed regions), and
merges them with their neighbors to find all of the logical math zones on the image
with as few under-segmentations, over-segmentations, missed regions, and false
positives as possible. It is also decided within this subsystem whether an expression
should be labeled as displayed or embedded. The resulting math regions can then be
fed directly into a recognition module, assuming that the segmentation system has
made the proper decisions.

This step does not include a classifier and relies upon various heuristics in order
to make the appropriate decisions. Although no supervised learning is utilized in this
work, it would not be difficult to extend this module to handle supervised learning.
Training would involve assigning each blob the directions to which it should be
merged. For instance the fraction bar in the following expression “T“’ should be merged
with its nearest neighbor above and below while 4+ should be merged with its nearest
neighbor left, right, and below. Four binary classifiers could be trained, each one
representing one of the following merge procedures: merge with nearest neighbor left,
right, above, and below. If any of the the four classifier outputs are 1 then the
corresponding merge operation would be carried out. If a seed region “covers”
multiple regions either horizontally or vertically as previously explained in the spatial

117



feature extraction section of this work entitled Number of Horizontally or Vertically
Aligned Characters, then all of the adjacent neighbors covered by the seed region in
the appropriate direction would be merged rather than just the nearest neighbor. If a
blob is already merged in a given direction then no action would be required during
the prediction stage. Although supervised learning of these four binary classifiers and
choosing the best features for them would be a productive avenue for
experimentation, it is kept as an idea for future work and is here replaced by a simpler
unsupervised heuristic approach to be described in this section.

During the segmentation process, a seed region can be merged in any
combination of the following directions: left, right, up, or down. The decision as to
which directions are appropriate for merging are based on various heuristics which are
enumerated in this section.

Classify as Displayed or Embedded. Each math blob is first classified as
either displayed or embedded. The classification technique employed here is simple: if
a blob belongs to a row that is deemed as “normal” then it is classified as embedded
otherwise it is classified as displayed. Normal rows have a good overall recognition
confidence and have a predictable vertical spacing. The width in normal text rows is
also predictable up to the last row of a paragraph which is expected to be less than or
equal to the width of its preceding rows. Specifically, the number of valid words is
counted on each individual row and then the mean and standard deviation of the valid
word count per row is calculated (only rows containing at least one valid word are used
in this measurement). Two passes are carried out in order to determine whether a row

III

should be considered “normal” or “abnormal” (abnormal rows end up being

considered as candidates for containing displayed expressions in this work). On the

|n

first pass, rows are classified as “abnormal” if their valid word count negatively
deviates from the average by more than twice the standard deviation. On the second
pass, the average and standard deviation of the vertical space between rows are then
calculated (the top row is not included in this calculation since it is often a header). If

IH

the vertical space above a row previously classified as “abnormal” is below the
standard deviation, then the row is considered to be a paragraph ending and assigned
back to “normal”. An example of results for this procedure is illustrated by Figure 62.
An improved classification technique for normal and abnormal rows would enhance
both detection and segmentation accuracy significantly but is kept as a goal for future

work.
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TAYLOR’S FORMULA; ALLIED TOPICS 7

are the areas of the circumscribed trapezoid, the curve, the inscribed trapezoid.
Hence infer that to compute the area under the curve from the inscribed or cir-
cumscribed trapezoids introduces a relative error of the order 42, but that to com-
pute from the relation 8 = §(2 S, + 8,) introduces an error of only the order of 3*.

24. Let the interval from a to b be divided into an even number 2n of equal
parts & and let the 27 + 1 ordinates yo, ¥, * * *, ¥2a at the extremities of the inter-
vals be drawn to the curve y = f(z). Inscribe trapezoids by joining the ends of
every other ordinate beginning with y,, ¥,, and going to y3,. Circumscribe trape-
zoids by drawing tangents at the ends of every other ordinate y,, ¥;, -« +, ¥2n—-1.
Compute the area under the curve as

+ Y+ 4+ Y2n-1)
+2(y0+y2+"'+y2n]_yo_?/2n]+R

by using the work of Ex. 23 and infer that the error R is less than (b— a) 8*f ") (£)/45.
This method of computation is known as Simpson’s Rule. It usually gives accu-

racy sufficient for work to four or even five figures when § = 0.1 and b — @ = 1; for
J@)(z) usually is small.

S=j;bf(:c)dz=b_a

25. Compute these integrals by Simpson’s Rule. Take 2n = 10 equal intervals.
Carry numerical work to six figures except where tables must be used to find f(z) :

2 dx 1 dgz 1
-— = 0. = “11=Z74=0.
() f1 — = log2 = 0.69315, ®) jo' g = i 1= g = 0.78535,
3T 2
) f sin zdz = 1.00000, ) f log,,zdx = 21o0g,ox — M = 0.16776,
1 .
log (1 + z) 1log (1 + )
dr = 0.27220, —=_ T dx = 0.82247.
(o [ 8 e ® [ ==

The answers here given are the true values of the integrals to five places.

26. Show that the quadrant of the ellipse ¢ = asin'¢, y=>bcos¢ is

s:a,jo‘“\/l—e’sin2¢d¢=;ra./;1\/§(2—e“)+}e200s7rudu.

Compute to four figures by Simpson’s Rule with six divisions the quadrants of
the ellipses :

(@) e=3V3, s=1211q, ®) e=§\/§, 3=1.35la.

27. Expand 8 in Ex. 26 into a series and discuss the remainder.

1 12, /1.8\2¢t [1.3.5\2¢b 1.3.-.(2{1_1))2 n ]

= - 1—(= ) - — R,

$ 2’"’[ (2)62 (2 4) 3 (2-4-6) 3 ( 2-4-.-2n J2n—1 '™
1 (1.3...(27,_{.1)) e2n+2

I—e\2.4.--2n+2)/2n+1

Estimate the number of terms necessary to compute Ex. 26 (8) with an error not
greater than 2 in the last place and compare the labor with that of Simpson’s Rule.

SeeEx. 18, p.60,and Peirce’s **Tables,” p.62.

28. If the eccentricity of an ellipse is g4, find to five decimals the percentage
error made in taking 2 7a as the perimeter. Ans. 0.00694%

Figure 62: Result of normal/abnormal row classification technique. The blue foreground
regions are part of rows classified as “abnormal” while the red foreground regions are

part of “normal” ones.

Segmentation Algorithm. The segmentation algorithm works by iterating
through all of the BlobIinfo elements in the grid, skipping them unless they are
mathematical and haven't already been processed. When an unprocessed

mathematical region is found, it is first flagged as processed in order to ensure it will
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only be processed once. A Merge Decision is made for each of the four directions as
specified in the Merge Decision subsection. The Merge Operation (as specified in the
Merge Operation subsection) is then carried out on whichever of the four directions
were decided for merging by the Merge Decision. The aforementioned operation is
recursively repeated for every merged blob until all merged blobs are processed and
no more merges are deemed necessary by the Merge Decision. The algorithm then
continues iterating the Blobinfo elements, repeating the aforementioned procedure for
each BlobInfo element. The final math zones are then set to the bounding box
represented by the top left and bottom right points of each resulting segmentation.

Data structures Utilized. Each BlobInfo element contains a Merge object
which specifies what merge operations are to be carried out. The Merge object
contains an initially NULL pointer for each direction (left, right, up, and down). If a
merge operation in the corresponding direction is not to be carried out then the
pointer will remain NULL, otherwise it will point to the merged Bloblnfo element. The
Merge object also contains a flag which specifies whether or not the corresponding
BlobIinfo element has already been processed so that each will only be processed
once. Each Merge object also contains a pointer to the bounding box which
corresponds to the entire segmentation to which it's Blobinfo element belongs.
Whenever a merge operation is carried out, this segment is modified if the new object
merged is outside of the bounds of it's segment's bounding box.

Merge Decision. For each unprocessed mathematical BlobIinfo element, a

merge decision must be made for the four directions. The factors which underlie the
merge decision are dependent upon whether the merge direction is up/down or
right/left.
Vertical Merges. Fraction bars should typically be merged both up and down with the
elements that they “cover” as explained earlier in the Feature Extraction subsection.
Also of interest here are limits and intervals wherein characters below and/or above
need to be merged as illustrated by Figure 63.
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Figure 63: The above expressions were taken from the groundtruth dataset used in this work.
The summations, limits, and fractions illustrate the need for vertical merging of fraction and

non-fraction elements alike.

Stacked elements at a position which satisfy the rules in the Stacked element
feature section are merged up/down. The features found during feature extraction are
useful here. If an element has a stack count greater than one, the stacked neighbors
are all immediately merged.

Once any tall element or stack of elements is merged, the entire merged region
in question immediately grows in size. Each element being merged is immediately
assigned to the box which represents the entire segment which it has joined and
required to grow the segment if it is outside of its bounds. The size of the segment to
which a blob belongs plays a role in merging new blobs when dealing with displayed
expression regions. If the current blob has been classified as part of a displayed
expression, belongs to a segment which vertically “covers” multiple objects adjacent
to it (the entire segmentation), and none of the adjacent blobs are separators
(periods, commas, phrases like “such that” “therefore” “thus” etc), then all of the
covered blobs are immediately merged. In Figure 64, for instance, the entire merged
region would start with just the |A|, then its right would be modified as the equivalent
operator is merged (as described in the following horizontal merging subsection), then
top and bottom bounds would be modified as the large vertical bar is merged, etc.
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Figure 64: An expression taken from the training set which includes a determinate.

Determinates and matrices include multiple vertically stacked elements which must be
merged into a single math segment.

Horizontal Merges. As explained in the previous section, the vertical “coverage”
feature is made useful in order to horizontally merge multiple vertically overlapping
elements as shown in Figure 64. For displayed expressions, the rule employed here is
to continue merging right until either a significant space gap is found (empirically
decided as more than twice the maximum gap observed in the current segmentation)
or a separator is detected. For embedded expressions the merging is more
conservative. If the seed is a known binary operator then a merge takes place both to
the left and right. Merging to the right is obvious if the nearest adjacent neighbor is
math, otherwise it becomes tricky. This work will rely largely on the detector's
accuracy for embedded expressions. If the nearest neighbor to the right is part of an
invalid word but was not classified as math, then merging will only take place if either
the current blob is a known operator or if the adjacent blob is close enough to the
current one (an empirically chosen distance of less than half the width of the current
blob has been chosen for this task).

Merge Operation. Whenever a merge operation is carried out the pointer in
the corresponding direction will be set to the merged element, and then the merged
element's corresponding pointer in the opposite direction will be set as well. Thus if a
right merge is carried out then the current blob's right pointer is set to the blob on the
right while the merged blob's left pointer is set to the current blob. This operation
ensures that the blobs are logically linked to each other in each direction. As
previously mentioned, each blob has access to the bounding box which gives the
entire region currently under segmentation. If a merged blob is outside of this
boundary, then the boundary is modified to fit the blob during the merging process.
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Final Output Preparation. Once all the math segmentations have been
prepared, the column partitions found by Tesseract are modified only in places wherein
mathematical partitions have been found (i.e. if a paragraph contains embedded
mathematical expressions, the regions corresponding to these expressions should be
understood as part of the paragraph however segmented from the normal text).

3.4.3 Evaluation Module

A significant problem observed in previous work for math detection and
segmentation has been that of objectively comparing the performance of one
technique to another. Difficulties in objective comparison of different works are a
result of each author using their own private datasets and evaluation techniques. In
this work the evaluation code as well as the dataset are made publicly available [126]
in order to encourage objective performance comparison of current, new, and existing
MEDS techniques. This section describes the design and functionality of this work's
pixel accurate evaluation module.

The evaluation module used in this work is designed to evaluate both the math
regions found by Tesseract's default MEDS module [141] as well as the math regions
found by any newly implemented MEDS module which overrides Tesseract's default
one. The output of Tesseract's default equation detector is automatically evaluated by
first writing the results to a “box file” which contains the left, bottom, top, and right
coordinates for each detected region as illustrated in Figure 65 and also coloring the
corresponding pixels in the image based on the result type of each box file entry as

illustrated in Figure 66.

123



5= [t R s )

2@ +v+ -+ y2a]—Yo—y2a] + B

[by using the work of Ex. 23 and infer that the error R is less than (b— a) 8° fV(£)/45]
[This method of computation is known as Simpson’s Rule. It usually gives accuq

fracy sufficient for work to four or even five figures when § = 0.I1and b —a =1 ; foy
|f@)(z) usually is small]

5. Compute these integrals by Simpson’s Rule. Take 2n = 10 equal intervals]
[Carry numerical work to six figures except where tables must be used to find f(z) i

2 1
ka) f d.zf = log2 = 0.69315, ®) f % =tan-11= .1. r= 0.785854
1 0
L z
)(7) ‘/; sin zdz = 1.00000, ©®) jl' log,zdz = 2log,gx — M = o.1e77el

Tlogl+2) ;. _ Tlog(T+2) , _
k‘) ./; g == %2220, ® fo T dr = 0.82247J

h‘he answers here given are the true values of the integrals to five places]

ES. Show that the quadrant of the ellipse = asing¢, y = bcos¢ 15
" T
l.g:af‘ Vl—e’sin’*’¢d¢=1}1raf Vi(2—e’)+1}ezcos1rudu{
0 1]

[Compute to four figures by Simpson’s Rule with six divisions the quadrants ofl

.
a) e=3V3, s=1211gq, B) e=%V2, s=1.351aJ
P'l. Expand s in Ex. 26 into a series and discuss the rema.inder{
1 1\2 1.8\2ef 1.83.5\Z¢8 1~3-~-(2n—1))2 ezn ]
== 1—(=)e2—(=—2) & _ € _ ... —R
)” 2”[ (2)62 (2.4) 3 (2-4-6) 5 2.4...2n J2n_1_ "
1-8...2n+ 1))2 ent?

Ex.18,p.60,and Peirce’s “Tables,” p.
mﬁ(ﬁ-4--~(2n+2i TYS| BeeEx.18,p. nd Peirc es,’p.62]
[Estimate the number of terms n Ty to compute Ex. 26 (8) with an error nof
fgreater than 2 in the last place and compare the Jabor with that of Simpson’s Rule]

. If the eccentricity of an ellipse is find to five decimals the percent:
rror made in taking 2 wa as the perimeter. ns. 0. %

Figure 65: Debug output from Tesseract's default MEDS module. Red regions were
classified as displayed expressions, green regions classified as embedded, and blue
regions are non-math.

124




b b—a
§= [ f@)de =" (40 +Us+ - + v200)
a
+2@W+ ¥t -+ vl — ¥ —v2n] + B
by using the work of Ex. 23 and infer that the error R is less than (b— a) 8*f(v)(¢)/45.
This method of computation is known as Simpson’s Rule. It usually gives accu-

racy sufficient for work to four or even five figures when § = 0.1and b— a = 1; for
J@)(z) usually is small.

25. Compute these integrals by Simpson’s Rule. Take 2n = 10 equal intervals.
Carry numerical work to six figures except where tables must be used to find f(z) :

2 dg 1 @ 1
(@) [ 5 =logz = 060815, ® [ poas=tant1=gm=0.78585,
" 2
™) f‘ sin zdz = 1.00000, 9) jl‘ log,, zdz = 2log;yz — M = 0.16776,
1log(1+:c) llog(142),
() f i =022, ®) fo — dr = 0.82247.

The answers here given are the true values of the integrals to five plac‘es.

26. Show that the quadrant of the ellipse = asin'.ﬁ, y="bcosgis
L4 1
8= ufi V1—e?sin?¢pde = éraf V(2 — €2) + }e?cosmu du.
0 )

Compute to four figures by Simpson’s Rule with six divisions the quadrants of
the ellipses :

(@) e=3V3, s=1211g, ®) e_—.}.ﬁ, 3 =1.351a.

27. Expand 8 in Ex. 26 into a series and discuss the remainder.

1 1\2 1.8\2¢t  (1.3.5\2¢8 1.3...(2n—1)\2 e2n
s==-ma|l—(=)e—(—) = —(—— ——~--( —R,
2 2 2.4/ 3 2-4.6/ b 2-4..-2n /2n-—1
.8 2 o2n+2
R, < ! (l 3 (2n+1)) er SeeEx. 18, p.60,and Peirce’s “Tables,” p.62.
1—e2\2.4...2n+2)/ 2n+1

Estimate the number of terms necessary to compute Ex. 26 (8) with an error not
greater than 2 in the last place and compare the labor with that of Simpson’s Rule.

28. If the eccentricity of an ellipse is g, find to five decimals the percentage
error made in taking 2 7a as the perimeter. Ans. 0.006947%

Figure 66: The same image as shown in Figure 53 except with the foreground regions
colored for the math expression bounding boxes found by Tesseract's default MEDS module.
The blue regions here were labeled as part of an embedded expression region while the red

regions were labeled as part of a displayed expression region.

The foreground regions are then also colored for the rectangles in the
corresponding image's manually generated groundtruth data as illustrated in Figure
67.
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b—a

6 [4(II|+?/3+---+1/2"—1)
+2(y0+y2+"'+y2n]_yo—y2n]+R

by using the work of Ex. 23 and infer that the error R is less than (b— a) 8*f(v)(£)/45.

This method of computation is known as Simpson’s Rule. It usually gives accu-

racy sufficient for work to four or even five figures when § = 0.1and b—a =1 for

J@)(z) usually is small.

s:fabf(z)dz:

25. Compute these integrals by Simpson’s Rule. Take 27 = 10 equal intervals.
Carry numerical work to six figures except where tables must be used to find f(z) :

2dz 1 dg 1
(@) fl = = log2 = 0.69315, ® [ o= tani1=gm=0.78535,
i 2
@) fo sinzdz = 1.00000, ©®) ./1‘ log,yzdz = 2log,,x — M = 0.16776,
1log(1+ 2) 1log (1+ z)
080+ 7 g, — 0.27220 08U0+7) g, _ 0.82247.
©f e 220, @) [ 2

The answers here given are the true values of the integrals to five placés,

26. Show that the quadrant of the ellipse ¢ = a sin.¢, y=bcosgis
1
$= u.f”\/l— e2sin2 ¢ dp = %raf V3(2— €%) + }€? cosmudu.
[ (]

Compute to four figures by Simpson’s Rule with six divisions the quadrants of
the ellipses :

(@) e=}V3, s=1211g, B) e=}V2, s=135la.
27. Expand 8 in Ex. 26 into a series and discuss the remainder.
2 . 8\2 .8.5\2 .8... —1)\2 e2
szl,,a[l-(1>ee_(1__3)i‘_<1375> f_...(l 8---@2n 1)> en —R,.]
2 2 2.4/ 3 2-4.6/ b 2-4..-2n 2n—-1
.8... 2 2n+2
B <! (13 (2n+1))en
1—&\2-4..-2n+2)/ 2n +1

Estimate the number of terms necessary to compute Ex. 26 (8) with an error not
greater than 2 in the last place and compare the labor with that of Simpson’s Rule.

SeeEx.18, p.60,and Peirce’s **Tables,” p.62.

28. If the eccentricity of an ellipse is g, find to five decimals the percentage
error made in taking 2 ma as the perimeter. Ans. 0.006947%

Figure 67: The same image as shown in Figures 53 and 54 but with the foreground regions of
the bounding boxes from the manually generated groundtruth automatically colored using
the same convention as in Figure 54.

Figures 66 and 67 illustrate the hypothesis and groundtruth (correct) results
respectively which are compared in this module in order to evaluate the correctness of
the hypothesis. The term hypothesis is used by this section to refer to any MEDS
results for a type of expression in a single image whereas the term groundtruth refers
to the expected/correct segmentation results for a type of expression in a single
image. Figures 66 and 67 are thus essentially representing two groundtruth/hypothesis
pairs since both embedded and displayed expressions are shown. A single
groundtruth/hypothesis pair is used to evaluate just one expression type (either
displayed, embedded or optionally displayed expression labels). Both the groundtruth
and hypothesis are represented by an image/file pair. The image is as shown in Figures
66 and 67 (except with only one color being observed) and allows for pixel accurate
evaluation while the file gives the bounding boxes of all segmented regions. While the
image allows for pixel-accurate comparisons, the file allows for the detection of over-

segmentations and under-segmentations. Over-segmentations occur when a single
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region in the groundtruth is incorrectly divided into multiple regions by the hypothesis,
while under-segmentations occur when multiple regions in the groundtruth are
incorrectly merged into one region by the hypothesis.

Pixel-by-pixel comparison of the foreground pixels of the groundtruth and
hypothesis images allow for the pixel accurate calculation of True Positive Rate (TPR),
Positive Predictive Value (PPV), Accuracy (ACC), False Positive Rate (FPR), False
Discovery Rate (FDR), True Negative Rate (TNR), and Negative Predictive Value (NPV).
All 7 of the aforementioned pixel accurate metrics are defined in Table 3 with the
following notation:

Positives (P). P pixels are the foreground pixels in the groundtruth that are of
the color being observed (i.e. red if evaluating displayed expressions and blue if
evaluating embedded expressions).

Negatives (N). N pixels are the total foreground pixels in the groundtruth that
are not of the color being observed (either black or the color of a different expression
type which is not currently being evaluated).

True Positive Pixels (TP). TP pixels that are colored in the groundtruth and
are also colored in the hypothesis. TP are thus pixels that are correctly labeled in the
hypothesis.

False Negative Pixels (FN). FN pixels are colored in the groundtruth but not
in the hypothesis. The FN and TP pixels should add up to the total positive pixels in
the groundtruth (P).

False Positive Pixels (FP). FP pixels are not colored in the groundtruth but
are colored in the hypothesis.

True Negative Pixels (TN): TN pixels are not colored in the hypothesis and
are also not colored in the groundtruth. The sum of the TN and FP pixels should be

equal to the total negative pixels in the groundtruth (N).
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Table 3: The seven pixel-accurate metrics which are found to measure the validity of a
hypothesis in comparison to a groundtruth along with measurements of oversegmentations

and undersegmentations.

Metric Pseudonyms Definition

TPR " IRecall/Sensitivity/Hit Rate TP/(TP+FN) = TP/P

PPV Precision TP/(TP+FP)

ACC Accuracy (TP+TN)/(TP+FN+TN+FP) = (TP+TN)/(P+N)
FPR Fallout FP/(FP+TN) = FP/N

FDR False Discovery Rate FP/(FP+TP)

TNR Specificity TN/(FP+TN) = TN/N

NPV Negative Predictive Value TN/(TN+FN)

In order to calculate the metrics shown in Table 3 and to count the
oversegmentations and undersegmentations, a bipartite graph data structure is
utilized [87]. The bipartite graph data structure consists of two graphs, one
representing the hypothesis and the other representing the groundtruth. For each
graph, the vertices are first added, each one representing a segmented region. Edges
between the groundtruth and hypothesis graphs are then made to represent the
intersection of pixels between them. If a vertex is unmatched by the other image (i.e.
a segmented region in one graph has no overlapping region in the other) then it will
have no edges. Vertices may also have multiple edges if more than one region in the
other graph intersects the one in the current graph.

Once the bipartite graph structure is initialized with all of its vertices and edges,
it then becomes rather easy to measure over-segmentations, under-segmentations,
entirely missed regions, and entirely false positive regions. Over-segmentations occur
when one vertex in the groundtruth maps to many in the hypothesis and under-
segmentations occur when a single hypothesis vertex maps to multiple groundtruth
vertices. A region is entirely missed when a groundtruth vertex has no edges and a
region is entirely false positive when a hypothesis vertex has no edges. For each
hypothesis region, the number of overlapping groundtruth pixels gives the true
positives. These true positives aggregated over the entire image and then divided by
the total positives in the groundtruth then gives the TPR. Similar calculations are then
carried out for the remaining six metrics and aggregated for the entire image to yield
the final metrics. The metrics are then written to a file in the following format:
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// region-wide statistics:

[# correctly segemented regions] / [total # regions]
[# regions completely missed (fn)]

[# regions completely wrongly detected (fp)]

/] stats on oversegmentations and undersegmentations:

[# oversegmented regions]

[# total oversegmentations for all regions]

[# avg oversegmentations per oversegmented groundtruth region]
[# undersegmented regions]

[# total undersegmentations for all regions]

[# avg undersegmentations for undersegmented hypothesis region]

// pixel counts:

[# total foreground pix (tp+fp+tn+fn)]
[# total positively detected pix (tp+fp)]
[# total negatively detected pix (tn+fn)]
[# total true positive pix (tp)]

[# total false negative pix (fn)]

[# total true negative pix (tn)]

[# total false positive pix (fp)]

// metrics based on pixel counts (all between 0 and 1)
[TPR/Recall/Sensitivity/Hit_Rate = tp/(tp+fn)]
[Precision/Positive_Predictive Value = tp/(tp+fp)]
[Accuracy = (tp+tn)/(tp+fn+tn+fp)]

[FPR/Fallout = fp/(fp+tn)]

[False_Discovery Rate = fp/(fp+tp)]

[TNR/Specificity = tn/(fp+tn)]
[Negative_Predictive_Value = tn/(tn+fn)]

In the above format, the statistics on over-segmentations and under-
segmentation requires some explanation. The number of over-segmented regions
gives the number of vertices in the groundtruth which have more than one edge in the
hypothesis. The total over-segmentations for all regions gives the total number of
edges aggregated over each over-segmented groundtruth region. The average over-
segmentations per over-segmented groundtruth region gives the average number of
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edges that an over-segmented groundtruth vertex has over the entire groundtruth
graph (i.e., the average severity of an oversegmentation). This is effectively a
measure of how badly split a typical over-segmented region is. The under-
segmentation statistics are very similar to the over-segmentation ones. Under-
segmentation, however, is found when a hypothesis vertex has more than one edge
pointing to the groundtruth. To illustrate the usefulness of the evaluation module,
evaluation of the default Tesseract MEDS module was carried out on the input image
shown in Figures 65-67 yielded the metrics shown in Tables 4-7 for displayed

expressions:

Table 4: Region-wide statistics for Tesseract default equation detector.

Region-wide Statistics Measurement
# correctly segemented regions] / [total # regions] 4/16

# regions completely missed (fn) 10

# regions completely wrongly detected (fp) 0

Table 5: Over/under-segmentation statistics for Tesseract default equation detector.

Over/under-segmentation Statistics Measurement
# oversegmented regions 0
# total oversegmentations for all regions 0
# avg oversegmentations per oversegmented groundtruth region 0
# undersegmented regions 1
# total undersegmentations for all regions 2
# avg undersegmentations for undersegmented hypothesis region 2
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Table 6: Pixel count statistics for Tesseract default equation detector.

Pixel Count Statistics Measurement
# total foreground pix (tp+fp+tn+fn) 1,157,429
# total positively detected pix (tp+fp) 140,878

# total negatively detected pix (tn+fn) 1,016,551

# total true positive pix (tp) 140,096
# total false negative pix (fn) 130,031
# total true negative pix (tn) 886,520
# total false positive pix (fp) 782

Table 7: Pixel accurate metrics for Tesseract's default equation detector.

Pixel-accurate Evaluation Statistics Measurement

TPR/Recall/Sensitivity/Hit_Rate = tp/(tp+fn) 0.518630

Precision/Positive_Predictive Value = tp/(tp+fp) 0.994449

Accuracy = (tp+tn)/(tp+fn+tn+fp) 0.886980
FPR/Fallout = fp/(fp+tn) 0.000881
False Discovery Rate = fp/(fp+tp) 0.005551
TNR/Specificity = tn/(fp+tn) 0.999119
Negative_Predictive_Value = tn/(tn+fn) 0.872086
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4 Experimental Results

The math expressions of 75 images were manually extracted and placed into
“box files” which contain the image index, type of expression, and bounding box
coordinates as discussed in Section 3.4.1. Of these images and their corresponding
box files, 15 of them were used to train the math expression detector while the other
60 were used to then evaluate it. The following section first discusses the results of
the detector parameter selection and cross validation training technique as described
in Section 3.4.2's Fine Tuning of SVM Parameters. The results of Parameter Selection
and cross validation on the 15 training images are then followed by a presentation of
and discussion for all final evaluation results which were carried out on the remaining

60 images used in this work.

4.1 Detector Parameter Selection and Training

The D-Lib Machine Learning Library [134] was utilized in this work to train four
separate SVM classifiers, each of which uses the RBF kernel. While all four of the
classifiers are trained using the same procedure, they are done so on different
combinations of features extracted from each sample of the image, where a sample is
an individual element in the image's custom grid data structure as illustrated in Figure
46 of Section 3.4.2. The classifiers are named based upon the SVM kernel used for
training along with the name of the feature extractor combination employed. Each
feature extractor was simply named F_Ext (for feature extractor) followed by an
identifier. The feature extractor which extracts all of the features described in Section
3.4.2 is named F_Extl. The full list of features used by F_Extl is shown in Table 8. The
remaining three feature extractors use a subset of the F_Extl features as shown in
Table 9.
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Table 8: All of the features extracted in this work. The feature extractor named F_Ext1 uses all

22 features while the other three extractors tested use a subset of these.

Shorthand Name

Feature Description

rhabc Rightward horizontally adjacent blobs covered
uvabc Upward vertically adjacent blobs covered
dvabc Downard vertically adjacent blobs covered
n Number of completely nested characters
has_sup Has a superscript

has_sub Has a subscript

Is_sup Is a superscript

Is_sub Is a subscript

h Blob height

whr Blob width/height ratio

vdarb Vertical distance above row baseline
cosbabp Count of stacked blobs at blob position
imw Is blob in math word

Is_italic Italicized text

ocr_conf OCR confidence rating

unigram Unigram Feature

bigram Bigram Feature

trigram

Trigram Feature

in_valid_row

Blob belongs to row with normal text (at least one valid word)

in_valid_word

Blob belongs to normal text

bad_page

Page doesn't have normal text

stop_word

Blob belongs to stop word
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Table 9: The four classifiers which were trained and tested in this work along with the features
on which they were trained.

Classifier Name Feature Combination

RBFSVM_F_Ext1l All Features

RBFSVM_F_Ext2 No “in_valid_word” feature

RBFSVM_F_Ext3 No “in_valid_row” feature or n-gram features
RBFSVM_F_Ext4 No italics feature

As discussed in Section 3.4.2's Fine Tuning of SVM Parameters, a coarse to
fine-grained parameter selection technique was carried out in order to determine what
SVM parameters gave the best 10-fold cross-validation results overall. This technique
was carried out on all four of the classifiers shown in Table 9 and yielded the results
shown in Table 10. In addition to the four RBF kernel SVM's tested, a linear SVM was
tested using the F_Extl features but could not achieve a true positive rate above 75%
during any cross validation and was thus the discarded in favor of the RBF kernel.

Table 10: Each classifiers' optimal parameter combination, TPR, and TNR found through coarse
to fine grained parameter selection using repeated 10-fold cross-validation.

Classifier Name Optimal (C,v) TPR TNR

RBFSVM_F_Extl (123.88, 0.83020) 88.79% 97.87%
RBFSVM_F_Ext2 (133.34, 0.81802) 88.75% 97.86%
RBFSVM_F_Ext3 (7.0551, 7.65815) 87.54% 97.44%
RBFSVM_F Ext4 (16.513, 2.66315) 89.79% 97.50%

4.2 Final Evaluation

While the parameter selection and training described in the previous section
was carried out on 15 images from the set of 75 images used in this work, the final
evaluation of the trained classifiers as well as the segmentation technique is carried
out on the remaining 60 images as was shown in Table 1 of Section 3.4.1. The 15
images used for training were taken from Bidwell's Advanced Calculus (1911) [127] .
The remaining 60 images are separated into test sets, each containing 15 images
from a separate book as illustrated in Table 11.
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Table 11: The four tests which were carried out. Fifteen pages of the corresponding textbook
was used in each test.

Test Name |Textbook from which 15 Pages are Used for Testing
Testl

D. Sloughter, Difference Equations to Differential Equations: An
Introduction to Calculus (2000) [131]

Test2 E. Bidwell, Advanced Calculus (1911) [127]
Test3 A. C. Lunn, The Differential Equations of Dynamics (1909) [130]
Test4 A. S. Kompaneyets, Theoretical Physics (1961) [129]

The second test (Test2) shown in Table 11 is carried out on different pages taken
from the same textbook which was used for training. Although performance was
generally observed to be slightly better on the same textbook on which the training
was carried out, overtraining is not a major concern since the results do not
significantly differ between the datasets. The average evaluation results for each of
the four detectors shown in Table 10, each averaged over all four tests shown in Table
11, are given in Table 12 and illustrated in Figure 68. The classifier names are here
replaced by the term MEDS (Mathematical Expression Detection and Segmentation)
followed by the corresponding number of the classifier used. Thus MEDS1 corresponds
to RBFSVM F Extl, MEDS2 corresponds with RBFSVM F Ext2, etc. Although
segmentation is not being carried out yet at this stage, the MEDS modules that are
tested use the same detectors that are evaluated here.

Table 12: Results of detection averaged over all four tests.

Classifier |TPR FPR ACC TNR PPV FDR NPV
MEDS1

82.77% |12.61% |87.36% 87.38% |63.94% |36.06% |94.03%

MEDS2 185 78% |12.57% |87.39% |87.43% 163.93% |36.06% |94.05%
MEDS3 83129 [22.22% (80.88% |77.77% |59.46% |40.54%  89.15%
MEDS4

81.36% |10.35% |88.35% 89.65% |63.97% [36.03% [95.04%
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Figure 68: Graphical depiction of the overall average detection results on the four classifiers
which were tested. The classifier trained without the italic feature (MEDS4) is shown to give

the lowest false positive detection rate.

After an analysis of the detection evaluation results, it was observed that many
of the false positive detections were small parts of valid words, or even stop-words like
“the”, “at”, “and”, etc. In an attempt to mitigate such false positive recognition a post-
processing step was employed after the detection which removes all blobs detected as
math that are within stop-words. If blob detected as math is observed in a valid, non-
math word that isn't a stop-word, then the ratio of math blobs to total blobs in that
word has to be above an empirically chosen threshold of .6. The detection results after

the post-processing step are shown in Table 13 and illustrated in Figure 69.
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Table 13: Detection results after post-processing step is carried out to filter out obvious false
positives. This also causes a slight decrease in true positive rate, but still results in an increase

in overall accuracy.

Classifier | TPR FPR ACC TNR PPV FDR NPV
MEDSI  180.40% |9.285% (89.53% |90.71% 69.97% |30.03% |95.07%
MEDS2  150.43% 9.255% |89.55% |90.74% |70.06% |29.94% |95.09%
MEDS3 g1 56% 15.89% |85.31% |84.11% 66.09% |33.91% |94.40%
MEDS4  17982% |7.676% |90.32% |92.32% |70.61% |29.39% |95.01%
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Figure 69: Graphical representation of the results shown in Table 9.

After the detection and post processing was evaluated, the final results after the
segmentation algorithm described in Section 3.4.2. The recursive segmentation
algorithm employed here was observed to be very successful at minimizing the
occurrence of oversegmentations and undersegmentations in the results. However,
the algorithm was also observed to become rather time-consuming as the number of
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blobs in a segment increases. Each time a segment's size is increased, all of the blobs
in that segment are required by the algorithm to be updated and rechecked for
possible merges in all four directions. Although the current implementation shows
significant potential for efficiency improvements, these are kept as ideas for future
work due to time constraints. The final results after the detection, post-processing,
and segmentation are carried out are given in Tables 14, 15, and 16 and illustrated by
Figure 70. While Table 14 gives the pixel accurate metrics, Tables 15 and 16 give the
region-wide statistics. The metrics from evaluating Tesseract's default equation

detector are also included.

Table 14: Final pixel-accurate results of detection, post-processing, and segmentation.

MEDS TPR FPR ACC TNR PPV FDR NPV
MEDS1

90.21% |15.32% |86.78% |84.68% |59.31% |40.69% |97.72%

MEDS2 19026 15.35% |86.76% |84.65% |59.28% 40.72% |97.72%

MEDS3 197 99% [22.32% (82.15% |77.68% |54.85% |45.15% |97.52%

MEDS4  190.17% [13.40% |87.98% (86.60% 60.68% |39.32% |97.82%

Tesseract 13414% 3.685% 86.50% 96.31% 62.18% 19.49% 87.13%

Table 15: Region segmentation statistics for each MEDS module tested averaged over all four
test sets. Avg. Overseg/Underseg refers to the average number of over/undersegmentationed
regions per page. The severity is the average degree to which each such region is
over/undersegmented (i.e., how many regions an oversegmented groundtruth region is split

into by the hypothesis image).

MEDS |Avg Overseg. |Overseg. Severity |Avg. Underseg. Unserseg. Severity
MEDSIL g gg 3.75 1.32 4.16
MEDS2 9 99 3.75 1.32 4.16
MEDS3 |10.28 3.78 1.37 4.06
MEDS4 19 90 3.63 1.28 4.09
Tesseract| g 57 0.27 2.42 2.27
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Table 16: Region-wide statistics for each MEDS module tested, averaged over all four test sets.
The Correct Segmentation % is the ratio of groundtruth regions that had no overlapping false
positive hypothesis pixels. Completely missed % is the ratio of groundtruth regions that had no
overlapping true positive hypothesis pixels. The average falsely detected count is the average
number of regions per page which have no true positive pixels.

MEDS |Correct Segmentation % |Completely Missed % |Avg. Falsely Detected Count
MEDS1 |75 199 11.28% 25.80
MEDS?2 72.34% 11.14% 25.90
MEDS3 | 75 559, 9.595% 37.03
MEDS4 |71 399, 11.26% 22.35
Tesseract 1 10.35% 76.67% 0.200
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Figure 70: Graphical representation of the results shown in Table 10.
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As illustrated by Table 14 and Figure 70, false detections are worsened
significantly by the segmentation stage since more false regions are often improperly
merged together. The true positive rate, however, is increased by nearly 10% during
segmentation. The importance of minimizing false positive detections while
maintaining an acceptable true positive rate is thus emphasized. Since nearly 10
oversegmented regions were observed on average per page, with an average severity
of around 3 oversegmenations per segmented region, the segmentation module is far
from perfect. Problems with undersegmentations can often be attributed to separators
like commas, periods, or phrases like “or” and “such that” being improperly merged to
a region. The results, however, are satisfactory for the scope of this current work.
After giving the numerical statistics for the evaluation, a more intuitive explanation of
the results is demonstrated by Figures 71-73. These images were automatically
generated during evaluation in order to keep track of each pixel as it is evaluated and
to help avoid duplicate pixel counts. Each foreground pixel in the binarized image can
be, upon evaluation, counted as a true positive, false positive, true negative, or false
negative. The pixels are color-coded as shown in Table 17. The rest of these images

can be viewed at [126].

Table 17: Pixel color codes used to keep track of pixels during evaluation

Pixel Type Color Code
True Positive Red

False Positive Blue

True Negative Orange
False Negative Green

The following images are some of the final results from the MEDS4
detector/segmentor with pixels color-coded as shown in Table 17. MEDS4 was
observed to have the highest accuracy. As mentioned previously, this particular
dector/segmentor differs from the others in that Tesseract's italics feature is not used.
This feature was observed not to be particularly accurate, having many false positives.
It is likely that the inconsistency of this feature may have confused the SVM classifier
during training. Other potential problems will be addressed in the conclusion/future
work section of this thesis. While the Tesseract equation detector results have a very
similar accuracy to the detector/segmentor implemented in this work, it has a highly
different specificity and sensitivity as can be seen in Figure 70. The Tesseract equation
detector succeeds in having a very false positive rate but unfortunately has a true
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positive rate that could be argued as too low for practical purposes given the
evaluation results depending upon the intended application of course. The precision,
however, is slightly higher than the MEDS4 precision. The significant amount of false
positive detections and segmentations made by MEDS4 leaves room for improvement.
Some of the aspects that need improvement will be discussed in the conclusion/future

work section of this thesis.
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Section 3.4 Differentiation of Compositions of Functions

where we have used the continuity of ¢ at ¢ to that s goes to 0 as h goes to 0.
and .. we now have

which is our desired result.

Chain Rule If / and g are then

Example Suppose . where
Now

and

Note that the preceding example is a particular case of the following general example.
[f g is a differentiable function, 0 is an integer, and then
where Then we have

and so

That is,

Example To illustrate the previous comments,

Example For another illustration, if

then

Figure 71: MEDS4 final results on a page randomly pulled from D. Sloughter, Difference

Equations to Differential Equations: An Introduction to Calculus. Furman University,

Greenville, SC: Creative Commons, 2000. Used under fair use, 2014.




Sec. 3 THE QUANTUM THEORY OF RADTATION 355

while in the final state the atom went to the ground state and a
quantum appeared in the field.
Let us divide the Hamiltonian of the system into two terms:

, Where corresponds to the separated atom and

field while S describes the interaction. We then deduce a general
formula for the transition probability, and apply it to a radiation.

We shall therefore cal the Hamiltonian of the unperturbed
system, and regar as a small perturbation causing the transition.

The and eigenvalues of the operato are
mined from the equation

Allowing for perturbation, the wave function satisfies the equation

Considering that . is a small perturbation, we represent the wave
function 11 the form

the “product”’ will be neglected as being of the second order.
Then, for we obtain the monhomogeneous equation

We shall look for in the form of an eigenfunction expansion
of the operator

each of the functions satisfying the homogeneous equation =.1).
Substituting the series 5 in the nonhomogeneous equation and

using the indicated property of the function we arrive at the
following equality:

The coefficients c,, can be determined therefrom by taking advantage
of the orthogonality property of the eigenfunctions (30.6). For
this it is necessary to multiply both sidesof (" .7 by and integrate

over a volume. Then only the term on the left,

while on the right a certain integral is obtained which is characteristic
of the perturbation method set out here:

Figure 72: MEDS4 results on a page randomly pulled from A. S Kompaneyets, Theoretical
Physics. Osmania University: Foreign Languages Publishing House, 1961. Used under fair
use, 2014.
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Figure 73: On the left are some pixel-accurate evaluation results of the Tesseract 3.02
experimental equation detector and on the right are some results for the

detection/segmentation module implemented in this work.

In order to illustrate the degree to which over-training to the specific textbook
from which the 15 training images were taken is a concern, the average results for
each individual dataset from the best performing detector/segmentor, MEDS4, is
shown in Table 18. These are the results of detection and do not include any post-
processing or segmentation. As was shown previously in Table 11, the Test2 images
are taken from the same textbook as were the training images. Thus a significant
improvement seen in the results of Test2 may be an indication that overtraining is a

concern.
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Table 18: Average Detection results for MEDS4 on each individual test.

Test TPR FPR ACC TNR PPV FDR NPV

Testl 80.45% 17.70% 81.26% 82.29% 56.02% 43.98% 92.91%
Test2 83.36% 6.50% 91.36% 93.50% 71.71% 28.29% 95.40%
Test3 81.73% 10.10% 89.08% 89.90% 61.38% 38.62% 95.03%
Test4 79.90% 7.077% 91.72% 92.92% 66.78% 33.22% 96.82%

From Table 18, it can be argued that, although there may be a small degree of
overtraining as indicated by the higher precision and true positive rate observed for
Test2, the overtraining is not a major concern since the numbers are not very drastic.
Test4 which is entirely unrelated to the dataset used for training (in fact the textbook
used in Test4 was published more than 40 years after the one for Test2!) even has a
slightly higher accuracy measurement than Test2.

Although the results of MEDS1 and MEDS2 (without the valid _word feature) are
very similar, a relatively significant change is observed for MEDS3 and MEDS4 results.
As indicated in Table 9, MEDS3 does not utilize the n-gram features or the valid_row
feature, while MEDS4 simply discards the italics feature. Although the current n-gram
Profile is generated only from a small amount of mathematical regions in the training
set and may not be statistically useful in a larger sense, the drastic increase in false
positive rate from MEDS1 to MEDS3 may indicate that the n-gram feature combined
with the valid_row feature prevents a significant amount of false detections from
taking place. If a more statistically significant n-gram profile were to be generated
from a larger dataset and then applied to this work, it may reduce false detections

even more greatly.
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5 Conclusion and Future Work

The detection/segmentation technique utilized in this work can increase OCR
accuracy in document images by allowing for a higher degree of document
understanding prior to recognition. In order for mathematical regions to be properly
recognized during OCR and not mangled with normal language text it is important that
mathematical expression regions are detected and then properly segmented from
their surroundings. The evaluation technique utilized in this work counts the true
positive, false positive, true negative, and false negative pixels after detection and
segmentation is carried out in order to get a highly accurate and objective
understanding of performance. The count of oversegmentations, undersegmentations,
falsely detected segmentations, and falsely missed segmentations on a page can also
give a useful indication of performance. The mathematical detection and
segmentation module implemented in this work has potential for significant
improvement and also gives very favorable results overall.

There are many aspects of the mathematical detection and segmentation
module which, if improved, could make the results even more favorable. Firstly, the
feature extraction and segmentation code could be optimized for speed. During
segmentation, some of the methods from the feature extractor are used repeatedly,
and since these methods have not been optimized the speed of the program is
reduced significantly. This is especially true for larger segmentations where, each time
the segment's size is increased, all of the blob's inside of it need to be re-evaluated for
potential merges in all directions. The segmentation algorithm currently implemented
also needs to be modified for detecting separators and mathematical words to further
enhance the accuracy.

Perhaps the most important future work item for both increasing true positive
rate and decreasing false positive rate, would be ensuring the proper identification of
“abnormal” rows of text which are more likely to contain one or more displayed
expressions. While the current method can be satisfactory in some instances it is often
wrong. Implementing an accurate abnormal row detector is outside of the scope of this
work, but would improve the usefulness of several of the features which are extracted
only for abnormal rows. When a row is misclassified as abnormal, it can result in an
entire row of normal text being improperly segmented as a mathematical region. A
separate SVM for detecting abnormal rows may be a possible avenue for future work.
Header and footer rows need to have been found either prior to mathematical

expression detection/segmentation being carried out or as part of the overall process.
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Knowing that a row is a header, and not part of normal sentence structure is
important. Math may occur in the header however, so it is still important that headers
are taken into consideration. The current implementation simply assumes that the first
row is the header. While this is often the case, it has been observed that the first row
or couple of rows may be noise, in which cases both the header and first row of normal
text are improperly seen as abnormal.

Incorporating the results of a mathematical OCR module would be helpful in
improving detector accuracy for the individual blobs. The occurrence of mathematical
blobs within words that were misrecognized as normal text by Tesseract currently
confuses the classifier during training. This results in parts of valid words and even
stop words being improperly detected as math. A more sophisticated technique of
ruling out obvious normal text from potential math text is required, one which not only
analyzes the normal OCR recognition result for the word but also analyzes
mathematical OCR results. All features need to be analyzed in great detail so that a
deeper numerical understanding of classifier performance may be obtained and
potential classification alternatives considered.

Another important future work item is to generate more data. The current
amount of pages, 75, is a very small amount of data, and makes it difficult to get a
truly objective understanding of the results. Getting data which is more statistically
significant is also important. Only 5 textbooks have been utilized in this work, which
although satisfactory for a small test set, are not as representative as would be
desired for practical applications. Adding a math symbol recognizer to the MEDS
module would be extremely useful. If math symbols could be recognized then it would
be possible to find regions that may have been missed by the detection phase during
segmentation. For any missed regions detected, the segmentation step could then be
repeated until no more missed regions are found. Support for detecting displayed
expression labels is also kept as an idea for future work. Detecting labels which refer
to displayed expressions would increase overall document understanding.

Improved italics and bold detection would also be extremely useful in making
the detector more robust. The italics and bold detection implemented as part of
Tesseract was used in feature extraction for this work but was found to not be very
accurate and was thus not used to train the final classifier. Implementing italic/bold
detection from scratch is outside of the scope of this work but would be very useful.
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