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Abstract
Various document layout analysis techniques are employed in order to enhance

the accuracy of optical character recognition (OCR) in document images. Type-specific

document  layout  analysis  involves  localizing  and  segmenting  specific  zones  in  an

image so that they may be recognized by specialized OCR modules. Zones of interest

include  titles,  headers/footers,  paragraphs,  images,  mathematical  expressions,

chemical equations, musical notations, tables, circuit diagrams, among others. False

positive/negative  detections,  oversegmentations,  and  undersegmentations  made

during the detection and segmentation stage will confuse a specialized OCR system

and  thus  may  result  in  garbled,  incoherent  output.  In  this  work  a  mathematical

expression  detection  and  segmentation  (MEDS)  module  is  implemented  and  then

thoroughly  evaluated.  The  module  is  fully  integrated  with  the  open  source  OCR

software, Tesseract, and is designed to function as a component of it. Evaluation is

carried  out  on  freely  available  public  domain  images  so  that  future  and  existing

techniques may be objectively compared.
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1 Introduction
Basically, our goal is to organize the world's information
and to make it universally accessible and useful. 

Larry Page – Co-founder of Google

1.1 Enhancing Information Accessibility
Never, since the invention of the printing press, has society seen such a radical

change in its means of information distribution. Armed with powerful search engines

roaming the vast expanse of the World Wide Web, nearly everyone in the world has, at

their very fingertips, access to archives full of information. This enhanced information

accessibility is having profound implications for society and could lead to a fruitful age

of enlightenment.

The global effects of high speed Internet access are seen daily as hundreds of

millions browse for information/multimedia, look up map directions, interact through

email/social networks/video games, shop remotely, video chat, etc. Corporations like

Google, Microsoft, Facebook, eBay, and Amazon continue building and extending the

capacity of their server farms as the growth of user demand shows no signs of slowing

down. By mid-2012, it was reported that nearly an eighth of the world's population

was on the popular social networking site, Facebook [1]. As such figures continue to

grow, studies are showing that technology is even affecting the manner in which we

think  and  behave  at  the  most  fundamental  levels.  Whether  or  not  the  long-term

effects of this relatively nascent medium of interaction prove to be largely positive or

negative remains to be seen. One remaining certainty, however, is that continuing

innovation is, for better or for worse, altering the manner in which we live out our daily

lives. 

It was Benjamin Franklin who once said that “genius without education is like

silver in the mine.” One would be hard-pressed in arguing that, throughout history, all

people have been able to realize their full potential to succeed and make a difference

in the world. If that were true, many would argue that our knowledge would, by now,

have long since surpassed its current state. In fact it was just under five hundred years

ago, that Europeans were finally emerging from an age of intellectual darkness which

had lasted  for  roughly  a millennium.  If  we  look  back  to the  spread of  knowledge

throughout written history, starting from the earliest true writing systems developed in

ancient Egypt/Mesopotamia circa 3000 BC to the origins of philosophy, math, science,

and theater in ancient Greece,  all  the way to the birth of the “modern era” which

culminated itself in the scientific revolution of the sixteenth century AD, we notice a
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general  trend  of  small  bursts  of  knowledge  spreading  repeatedly,  each  time  with

greater strength than before, each one improving upon on its predecessor. Sir Isaac

Newton  exemplified  this  trait  of  humanity  with  his  statement  that  “if  I  have seen

further, it is by standing on the shoulders of giants.” 

Although much of what defines us from a cultural perspective may indeed be

passed  from  generation  to  generation  through  word  of  mouth,  our  tremendous

advancements in math, science, art, and literature since the dawn of the modern era

can  be  largely  attributed  to  Johannes  Gutenberg's  invention  of  the  printing press,

which made mass distribution of books possible in Late-Medieval Europe. Prior to this

key event in history, the stage was set in Europe for an age of scientific inquiry and

revelation  when  the  religious  leader,  Thomas  Aquinas,  embraced  the  separation

between the purely theological and purely scientific schools of thought. Also of vital

importance was the translation and recurrence of ancient Greek writings which had

been studied and further developed by Arabic scholars. The first universities built in

Medieval Europe were initially centered around classical Greek and religious studies

and helped to lead Europe out of its age of darkness. This collaborative environment of

scholastic  endeavor  helped set  the framework  for  an age  of  enlightenment  which

would move humanity a step forward. Archaic ideas such as bloodletting were soon

supplanted  by  discoveries  leading  to  modern  medicine  and  the  commonly  held

geocentric model of our earth was replaced by a heliocentric one. Major breakthroughs

were made in every field to foster  the spread of knowledge which took society to

where it is today.  Without this ideal of scientific thinking combined with the means to

distribute  information,  society  would  have  never  seen  such  tremendous

improvements. 

Moving forward to the present day,  society  has recently  made technological

breakthroughs which make the world's knowledge and information more accessible

than ever before. In fact, many have suggested that the widely used search engine,

Google, will  go down in history as rivaling in importance with Gutenberg's printing

press.  It was only about a decade and a half ago that two Stanford Ph.D. students

decided that they would like to take a shot at downloading and categorizing the entire

internet. These two graduate students are of course the founders of Google [2], a now

successful  multinational  corporation  which,  during the late  nineties,  left  its  search

engine competitors  far  behind.  Google  is  unique in  that its  employees  facilitate  a

diverse  range of  interesting  projects  ranging from cataloging  the  human genome,

building autonomous vehicles, developing smart homes of the future, to developing

augmented reality eye glasses, among many others. It is, however, in Google's core

mission of finding ways to make the world's information “more universally accessible
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and useful,” that the company has had its greatest impact on the world at large. It was

in  keeping  with  this  mission  that,  in  2005,  in  collaboration  with  HP Labs  and the

Information Science and Research Institute at UNLV, Google revived and open sourced

an optical character recognition engine that had been developed as a Ph.D. project for

HP Labs between 1985 to 1995.  Although optical  character  recognition (OCR),  the

autonomous conversion of printed documents into digital formats, is a very mature

area  of  research  [3],  development  in  this  area  continues  in  order  to  increase

recognition support for the broad spectrum of languages, formats, and subject matter

of printed documents. HP's OCR engine, named “Tesseract,” had proven itself as one

of the industry's leading engines during UNLV's Fourth Annual Test of OCR Accuracy

[4]. Eventually, however, HP subsequently went out of the OCR business, leaving the

software to basically collect dust for about a decade. 

Meanwhile, by around 2004, Google had begun its Google Books Initiative [5], a

large-scale  library  digitization  project.  This  initiative  began  with  the  lofty  goal  of

digitizing all  of the world's printed documents such that they may be indexed and

searched online. By around 2005, Google hired Ray Smith, the former lead developer

of Tesseract,  to return to his long-abandoned, yet ground-breaking, Ph.D. work and

also brought Tesseract into the open source domain. In so doing, Google helped to

spur further research interest into efficient and accurate document recognition1. In the

roughly  eight  years  since  the  project  was  revived,  support  has  been  added  for

recognition of over fifty languages. Advanced page layout analysis techniques have

been implemented in order to detect various types of documents ranging from novels,

magazines,  newspapers,  images,  textbooks,  sheet music,  etc.  Language and script

detection modules have also been implemented in order to autonomously determine

what processing should be carried out for any given world document  [6]. If Google's

endeavor is successful, then the resulting implications to society will be extraordinary,

possibly similar to the impact that Arabic scholars had on Europe when sharing and

translating  ancient  Greek  literature.  If  Google  is  successful  in  the  autonomous

digitization and recognition of any printed document regardless of its origin, then it

will not be long before information from all of the world's documents become instantly

accessible in every language and to everyone around the world. Such a development

would certainly speed up the world's already significant progress toward an era of far

greater enlightenment and wisdom than has yet been seen.

1 The term,  recognition, is herein used to describe a machine's extraction of a document's
contents. This requires both the document page layout analysis as well as algorithms which
subsequently convert the page layout contents into a machine-understandable form. The field
of document layout analysis is further discussed in Section 1.2.
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The autonomous recognition of all printed documents would not only expedite

the global advancement of knowledge and wisdom, but would also have tremendous

implications  toward  every  individual  in  society.  Such  a  breakthrough  would  be

especially significant toward the endeavor of Assistive Technology. With many devices

being developed and studies being carried out on ways to enhance human computer

interaction (HCI) for visually or physically handicapped  individuals, digital access to

all printed documents could make finding information, not only more convenient, but

also  possible  for  many who would not  otherwise  have access.  Global  autonomous

document recognition could also help open the doors toward breaking down language

barriers in information accessibility. 

As research and development continues to enhance the accurate translation of

discourse  between  various  languages  [7],  the  successful  recognition  of  printed

documents could eventually allow them to be machine-translated according to the

language  preference  of  a  given  user.  With  instant  access  to  all  of  the  world's

information, regardless of its language or origin, at one's disposal, collaboration and

learning among individuals across the world will be significantly enhanced. All people

in  the  world  regardless  of  their  language  preference,  geographical  location,  and

physical  ability  will  have  access  to  the  world's  stores  of  knowledge,  and  the

opportunity to have a profound impact on society through the medium of the World

Wide  Web.  Enhanced  document  analysis  and  recognition  capabilities  will  make  a

significant  contribution  toward  this  end.  The  following  section  will  discuss  the

background  as  well  as  some  of  the  fundamental  problems  faced  in  the  fields  of

document analysis and recognition.
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1.2 Introduction to OCR and Document Analysis: A

Brief History
From Herbert Shantz's The History of OCR [3], it is clear that the OCR of printed

documents has been studied extensively over the last century. In one of the earliest

OCR  patents  [8] (Figure  1),  a  mechanical  apparatus  was  used  to  measure  the

incidence of light reflected back from a printed character when illuminated through a

set of character templates. A character detection would occur when the light emitted

from the template overlapped the character (assumed to be in dark print) sufficiently

to prevent light from being reflected upon the medium. Despite requiring a significant

amount of human intervention to ensure proper alignment and being largely inefficient

at  best,  the  fundamental  ideas  which  motivated  this  early  initiative  are  seen

repeatedly throughout the century, and even now, albeit on a much larger scale. 
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Figure 1: This illustration, taken from a 1933 patent entitled “Statistical Machine” P. W. Handel,

"Statistical Machine," United States Patent Office. 1,915,993, Jun. 27, 1933., depicts one of the

earliest OCR devices ever invented. Used under fair use, 2014.



Although some of the first commercial OCR systems were released during the

1950's, their applicability was limited in that, by and large, they were only capable of

handling a single font type with very strict rules on character spacing. It was not until

the  mid-late  1970's,  with  the  invention  of  both  the  charge-coupled  device  (CCD)

flatbed scanner and the “Kurzweil Reading Machine” [9] that it became possible for a

computer  to  read  a  variety  of  documents  with  reasonable  accuracy.  Although the

training process for a particular font would take several hours and multi-column page

layouts  or  images  had  to  be  specified  by  the  user  manually,  Kurzweil's  software

showed significant improvement over the state-of-the-art technologies of the time.

In the 1980's, a company called Calera Recognition Systems [10] introduced an

omnifont  system  that  could  read  pages  containing  a  mixture  of  fonts  while  also

locating pictures and columns of text without any user intervention or extra training.

The progress of the state-of-the-art in document recognition will be further discussed

in the Chapter 2 Literature Review. More recent  commercial  OCR systems such as

ABBYY FineReader  [11],  OmniPage Professional  [12], and  Readiris  [13], are all quite

accurate,  not  only  in  recognizing  individual  words  or  characters,  but  also  in

understanding and reproducing document layout structure. A magazine or newspaper

page may, for instance, contain an intricate heading structure followed by multiple

columns of text, pull-out quotes, in-set images, and/or graphs as demonstrated in the

historical New York Times article shown in Figure 2 [14]. 

In order to understand and recognize content of such a document, it is essential

to first carry out document layout analysis techniques which will determine how the

document is partitioned. The text will be recognized with an understanding of where

the columns of text are, which portions of text indicate headings or quotes, and which

segments correspond to images, tables, captions, etc.  If  the text is not partitioned

appropriately prior to recognition then the textual output will become unpredictable.

With columns, paragraphs, or other structures merged together incorrectly, the text

will lose much of its intended meaning and become far less readable to the human

eye.  For  these  reasons,  sophisticated  page  layout  analysis  algorithms  are  of  the

utmost importance, not only  for document recognition accuracy, but also in ensuring

that the generated output is formatted correctly.
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Although most publishers keep digital copies of their more recent documents,

there is also great demand for older documents which, unless they are digitized, will

largely  become forgotten  by society.  This  would  be unfortunate  in  that  it  is  often

surprising how pertinent older information and ideas can be. For companies such as

Google who would like to make the world's information more readily available and

accessible as well  as to the Assistive Technology community,  this is of the utmost

importance.  For  this  reason,  a  standard  OCR  output  format  called  hOCR,  which

embeds OCR output within well-defined and widely available HTML and CSS structures

has been put into place [15]. In order to ensure the quality of textual output generated

by OCR for  the wide variety  of  possible  document  layout  structures,  sophisticated

document layout techniques are critical. 
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Figure 2: This excerpt from a 1901 New York Times article was optically recognized by ABBY

Fine Reader 8. The “New York Times” heading at the very top, the “Furniture and Home

Furnishings” label embedded in the illustration, and the layout of the three columns at the

bottom right  were all  incorrectly recognized by the commercial  system. Contributor:  Bob

Stein (uploaded to http://archive.org), "New York Times August September 1901 Collection,"

Internet:http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_

August_September_1901_Part_7_text.pdf, Date Accessed: 2013.Used under fair use, 2014.

http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_August_September_1901_Part_7_text.pdf
http://archive.org/download/NewYorkTimesAugSept1901Collection/New_York_Times_August_September_1901_Part_7_text.pdf


1.3 Google Books Initiative
There  are  various  languages,  dialects,  and  page  layout  formats  for  which

Google's  Tesseract  software  is  being  developed.  Among  them  are  mathematical

equations,  tables,  graphs,  and  other  figures  which  can  be  found  in  any  standard

science or math text book. While Smith's original work was optimized solely for the

recognition of  English  newspaper formats,  Google's  continued efforts  are aimed at

recognizing page formats from a much broader scope  [5].  Much of  Google's  ideas

regarding document recognition are essentially in their infancy, and have a long way

to go before  being fully  realized.  Although an experimental  equation  detector  has

been  added  to  the  Tesseract  software,  its  results,  although  showing  significant

promise,  have  been  tested  to  have  fairly  limited  accuracy.  A  table  detector

implemented by Google has also been tested on some sample images [16] (Figure 3)

to show that, it too, could use significant improvement (Figure 4). Notice that, in  the

left-most table in Figure 4, the software failed to indicate the years as either belonging

to the table or the normal text. They were simply disregarded. Also, the software was

unable to determine where exactly the table boundaries are (which should be labeled

green). In the right-most table, notice that although a better job was done, while the

bottom portion of the text consists of footnotes, it is therein incorrectly labeled as part

of the table. Also, the second line of all column labels are not recognized as part of the

table when they clearly should be.

The problem of efficiently and accurately detecting equations, tables, graphs,

and other figures for the broad spectrum of possible document types is certainly no

easy one to solve.  Although from a human's  perspective,  this  problem may seem

trivial, programming a machine to sum up a document with the same accuracy as the

human eye proves to be a daunting task, as will be further discussed in the literature

review chapter of this paper. As the inventors of Google continue to work toward their

dream of creating an online “Library of Alexandria,” there is significant progress to be

made  before  such  a  large-scale  endeavor  can  be  fully  realized.  The  Google  Book

Search  initiative  has  opened  up  many  avenues  for  future  research  in  document

understanding and recognition, of which, this project is certainly one of the many to

come. 
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Figure  4: Above is the text from Figure 3 after having been labeled by Tesseract's

table  detection  software.  The  text  within  the  blue  rectangles  was  identified  as

belonging to a table while the text within red rectangles was not. The green rectangle

should  encompass  the  entire  table  figure.  As  can  be  seen  there  are  both  false

negatives and false positives. 

Figure 3: The above text includes excerpts from two different pages taken from a scan

of an old textbook. On the left is a table followed by a paragraph of text, while on the

right is a larger table. These images were extracted from a PDF which was digitized by

Google and then made available under public domain at  http://www.archive.org.  R.

Griffin, Statistics. London: Macmillon and Co., 1913, pp. 121-122. Used under fair use,

2014.

http://www.archive.org/


1.4 Contributions of this Thesis
This thesis introduces a novel approach to mathematical expression detection

and segmentation (MEDS)  during the document  layout analysis  stage of  OCR. The

focus  of  this  thesis  is  toward  enhancing  the  OCR  quality  of  printed  scientific

documents. The motivation for MEDS is illustrated by Figure 5. From Figure 5, it is clear

that, when presented with mathematical expressions as input, an OCR system trained

specifically for English will result in garbled output. With reliable MEDS, it becomes

possible  to  prevent  this  mangled  output  from  occurring,  and  also  allows  existing

equation recognition algorithms, which have been extensively studied in the literature,

to  be  provided  a  properly  segmented  input.  While  state-of-the-art  mathematical

symbol  and structure  recognition engines have been shown to attain  near  perfect

accuracy on properly detected and segmented mathematical regions [17], their highly

favorable results operate under the assumption that MEDS has already been carried

out  either  automatically  or  manually  with  perfect  accuracy.  For  the  mathematical

recognition  studies  observed  in  the  literature,  either  manual  or  semi-automated

techniques are used in order to properly isolate all  mathematical  expressions from

normal text prior to any training or evaluation. The goal of this thesis is to produce and

evaluate  a  purely  automated  system  which  carries  out  this  functionality  as  a

component within a larger document layout analysis framework, Tesseract [18].
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Figure  5: Example of OCR results on text excerpt. On the left is an example of text that was

scanned at 300 dpi from a calculus text book. To the right is the output generated by the leading

open source OCR engine, Tesseract.



By utilizing and interfacing  with  the existing data structures  and algorithms

present within Google's open source OCR engine, Tesseract, much of the more well-

studied areas of OCR / document analysis research are surpassed so that a study of

the relevant problem of MEDS can be explored in much greater detail than would be

possible otherwise. As the Tesseract software, much like commercial state-of-the-art

systems, is capable of partitioning a document into columns, paragraphs, headings,

etc., the software implemented in this work searches Tesseract's resulting partitions in

order to detect regions of interest. Greater document understanding is accomplished

through recognition of a variety of relevant features, many of which have yet to have

been explored in existing research. Relevant features are subsequently combined into

a binary classifier in order to detect regions of interest. These regions are then fed into

a segmentation module whose aim is to properly combine the detection areas into

properly  segmented  regions.  The  primary  contributions  of  this  work  are  briefly

summarized below:

• A freely available ground-truth dataset of manually segmented mathematical

expressions,  taken  from  75  randomly  selected  pages  from  4

scientific/mathematical  text books.  Publications were chosen from the public

domain so that the dataset can be made freely available online for the objective

comparison with future or existing research endeavors.

• A novel evaluation framework which takes pixel-accurate measurements of a

MEDS  module's  true/false  positive  rate,  precision,  false  discovery  rate,

accuracy,  specificity,  and  negative  predictive  value.  Measurements  are  also

taken for the oversegmentations, and undersegmentations made on detected

regions.  This  framework  and  all  of  the  data  is  freely  available  to  help  in

facilitating the objective comparison of existing or future MEDS modules. 

• Development of a MEDS module which is fully integrated with Tesseract's layout

analysis framework. The developed MEDS module is designed so that various

combinations  of  detection  and  segmentation  techniques  can  be  easily

experimented with through compile-time polymorphism. 

1.5 Organization of Thesis
The work to be discussed in this thesis is aimed toward moving the world a step

closer to realizing some of the lofty goals set by Google's engineers and scientists.

Chapter  2  presents  a  review of  existing  document  analysis  techniques  with  extra

emphasis on those involving mathematical/scientific documents. Although there are a

wide  variety  of  problems  which  need  to  be  tackled  in  the  area  of  document
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recognition, the primary focus is on enhancing equation detection accuracy through

the use of feature recognition and a support vector machine (SVM) classifier. Chapter

3,  the  method  section,  discusses  the  ground  truth  generation  procedure,  feature

recognition algorithms, classification technique, and result evaluation. Chapter 4, the

results section, will involve a discussion of all results and their significance. Chapter 5,

the  conclusion,  summarizes  important  points  and  discusses  recommendations  for

future work. 
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2 Literature Review
“We are like dwarfs sitting on the shoulders of giants. We
see more, and things that are more distant, than they did,
not because our sight is superior or because we are taller
than they, but because they raise us up, and by their great
stature add to ours.”

John Salisbury

2.1 The Beginnings of OCR

2.1.1 Fixed-font
Over the past century, Assistive Technology has been a primary incentive for

OCR research and development. While machine understanding was initially the most

commercially viable domain for OCR, several reading devices for the blind have been

implemented  over  the  years.  In  1914,  one  of  the  earliest  reading  devices,  the

Optophone  [19],  could  allow  blind  individuals  to  understand  printed  text  without

relying on Braille. The device projected light upon a character of interest, focusing the

light's  reflection  upon  a  selenium  photosensor.  A  sound  with  a  frequency

corresponding to the reflected light would then be emitted to alert the reader of the

current character. A blind individual trained to use such a device, however, could only

expect to read at a mere one word per minute. 

While there were some OCR patents released in subsequent years  [20][8], it

was  not  until  the  late  forties  and  early  fifties  that  there  was  any  commercial

development in the OCR industry. In 1949, RCA engineers were working on an OCR

system which used an early text-to-speech synthesis technology to read individual

characters out loud [21]. This system required the user to move a “eye” (a cathode

ray  tube)  across  the  letters  of  interest.  The  rays  were  then  reflected  upon  a

photosensor connected to a complex processing unit (Figure 5). The project, however,

was discontinued prior to completion because it was not judged to be commercially

viable. 

In 1953, David Shepard patented an OCR system, “Gismo”, which could read all

26  fixed-font  letters  of  the  English  alphabet,  understand  musical  notation,  and

comprehend  Morse  Code  [22].  Shepard  founded  Intelligent  Machines  Research

Corporation (IMRC) and released the world's very first commercial OCR systems. Credit

card reading, although now carried out through magnetic strip recognition, was one of

the first commercially successful applications of OCR. The Farrington B numeric font,

13



still widely used on the front of credit cards to this day, was invented by Shepard in

order to minimize recognition errors.         

IBM utilized Shepard's patents over subsequent years while also improving the

accuracy of fixed-font OCR. The IBM 1408 Optical Character Reader [23] was packaged

with the IBM 1401 Data Processing System (Figure 6)  in 1960.  The entire system,

which included printer, optical reader, central processing unit, magnetic storage, etc.,

was sold for $146,600  [24],  a price tag which, if  sold by today's standards, would

amount to over a million dollars. The IBM 1418 Optical Character Reader could only

handle the ten numeric characters, the dash symbol, and the lozenge symbol. A later

model, however, the IBM 1428, was alphanumeric. The alphanumeric reader could be

programmed to read several document layout types assuming that they were printed

in the correct font and format. Recognizable documents included premium notices,

charge sales invoices,  operations and route slips,  payroll  and dividend checks,  and

mail orders  [25]. Throughout the 1960's, fixed-font OCR continued to be utilized and

improved upon due to its usefulness in a variety of industrial applications. Some of the

devices from this era are, in fact, still used even to this day for applications such as

mail sorting and banking. 

Although  commercial  OCR  systems  from  the  1960's  and  early  1970's  were

primitive  by  today's  standards,  they  were  quite  successful  during  their  time  as

illustrated in  Figure 7  [26].  Maintenance  costs  for   word processing,  an expensive

resource at the time, could be reduced significantly with ordinary typewriters used for

drafting and their OCR results used for final  editing  [27]. Fixed font OCR, although
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Figure 6: An image of RCA's 1949 OCR system: M. Martin, "Reading Machine Speaks Out Loud,"

Popular Science, vol. 154, no. 2, Feb 1949, pp. 125-127. Used under fair use, 2014. The system

was discontinued prior to completion due to its high costs .



primitive,  indeed  proved  to  meet  most  of  the  requirements  set  by  industry.  For

purposes of Assistive Technology,  however,  it  was of  little  to no use.  The blind or

visually impaired community needed an optical reader to understand not only OCR-

specific fonts and layouts, but a wide variety of printed documents including books,

newspapers, magazines, text books, etc., just as the idea of OCR originated primarily

for the purpose of Assistive Technology, some of its  most important breakthroughs

were driven by this same incentive. 

2.1.2 Omnifont
A major commercial breakthrough in the field of OCR came with the introduction

of Ray Kurzweil's Reading Machine in 1976  [9]. Up until this time, all OCR systems

were tailored to a specific font, or perhaps a specific set of fonts. This font limitation

can be attributed to the template matching algorithms commonly used at the time,

which  would  compare  each  incoming  character  image  to  a  library  of  bit-mapped

images. Although recognition of a larger set of fonts can be made possible through the

addition  of  more  templates  into the library,  too  many templates  would  cause  the

processing speed of each character  to decrease significantly.  Although it  would be

ideal to have a set of fonts which could encompass all possibilities in the template
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Figure 7: The IBM 1401 System (Optical Character Reader not shown here). From left to right,

the  punch  card  reader/writer,  mainframe,  printer,  and  magnetic  tape  units.  The IBM 1401

Demo  Lab  and  Restoration  Project  Computer  History  Museum,  "IBM  1401  Archive  Pics,"

Internet: http://ibm-1401.info/IBM1401_ArchivePics.html, Date Accessed: 2014. Used under fair

use, 2014. 



library,  this  would  prove  unfeasible  as  there  would  be  such  a  wide  range  of

possibilities. 

Omnifont  recognition  is  characterized  primarily  by  its  use  of  sophisticated

feature extraction techniques. As opposed to the brute force character-by-character

template matching algorithms utilized in earlier systems, feature extraction enables

recognition  of  characters  irrespective  of  the  font  or  typeset  they  are  in.  These

techniques find properties which are relatively invariant for the same character with

respect  to  the  kinds  of  changes  that  occur  across  different  typestyles.  These

properties  can  often  include  line  segments  (vectors),  concavities,  and  loops.  For

example,  the properties of a standard capital  "B" include two loops on top of one

another. Although the number “8” has this same feature, it does not have a straight

edge on the left side as does the “B”. Furthermore, it is often that the two characters

can also be disambiguated based on contextual analysis. For instance, if a character

with the two vertically  adjacent loops is  detected at the beginning of a word, this

character is far more likely to be a letter than a number.  

The Kurzweil Reading Machine used feature extraction and could be trained on

any number of fonts. Once the system was trained on a given font (a process taking

several  hours),  the knowledge would be stored on disk so that retraining would no

longer  be  required.  The  system  could  be  trained  to  handle  up  to  nine  fonts

simultaneously  [10].  If  the  page  contained  pictures  or  multiple  columns,  the  user

would be required to specify their locations manually. While sophisticated techniques

have been developed to address the problems of document analysis,  the following

subsection section will focus on work which has been done to prevent any retraining

from being required on new fonts. With the enhancements in processing speed and

more  abundant  memory  attributed  to  the  advent  of  microprocessors,  it  became

possible  to  implement  much  more  intelligent  systems  utilizing  complex  pattern

recognition approaches, as will be discussed in the following section.  

2.2 Pattern Recognition Techniques in OCR
As with all pattern recognition applications, in OCR some combination of feature

selection, extraction, and classification is essential. In general, a statistical classifier

will  observe  the  features  of  its  input  and,  based upon those  features,  choose  the

optimal class label to which the input should be associated. For a given problem, there

are often many combinations of features and classifiers from which acceptable results

may  be  obtained.  The  choice  of  classifier  and  feature  set  is  largely  application

dependent, and, as of yet, no “one fits all solution” has been found. For OCR there are

many such combinations which have been proven to yield near perfect results. This, of
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course, is to be expected, in that OCR is one of the most historically well-studied areas

in  the  field  of  Pattern  Recognition.  Not  only  are  pattern  recognition  techniques

fundamental  to character-by-character  classification, but they are also essential  for

the  detection  of  merged  or  broken  characters,  text  lines,  word  recognition  and

linguistic analysis, and, as will be discussed in Section 2.3, document layout analysis.

While a broad overview of all  techniques utilized for OCR would be outside of the

scope of this thesis, some of the most fundamental and important ones will briefly be

discussed.

2.2.1 Text Line Finding
Character  and  word  classification  algorithms  typically  operate  under  the

assumption that the unknown text to be recognized is  already in the fully upright

position. This is an unrealistic assumption given the many possible angles of skew with

which the text may have been scanned. Skewed text, as illustrated in Figure 8 [28], is

commonly encountered by most OCR systems. Assuming that page layout analysis

has  already extracted  all  of  the  columns  and text  blocks,  it  is  then  necessary  to

recognize angle of skew for each block. This is essential, not only so that characters

may be rotated to their upright positions prior to classification, but also to prevent

words  and  characters  in  vertically  adjacent  rows  from  becoming  mangled

inappropriately.  Individual  character  classification  algorithms  will  often  utilize  a

character's  positional  information  within  a  row  as  a  distinguishing  feature.  As

illustrated by Figure 9 [29], there is much information about a character which can be

derived from where it's top, middle, and bottom portions reside within a row. In order

to have access to such information, accurate text line finding algorithms are essential.

Some of the most important techniques are briefly discussed. 

Horizontal Projection Profile.  One of the most straightforward methods for

determining the skew angle of a document image uses horizontal projection profiles.

When the horizontal projection profile is applied to an  M x  N pixel image, a column

vector of size M x 1 is obtained. Elements of this column vector are the sum of pixel

values in each row of the image  [30]. The contents of this vector are at maximum

amplitude and frequency when the text is skewed at zero degrees since the number of

co-linear black pixels is maximized in this condition. One way in which the horizontal

projection profile can be utilized is by rotating the input image through a range of

angles while calculating the projection profile for each one [31]. Each projection profile

is then compared to determine which one has the maximum amplitude and frequency.

Although much work has been done in order to optimize this approach, there are still

more efficient and accurate methods which can be utilized [28].
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Figure 8: Original image in correct alignment (a) and skewed by 5 degrees (b). J. J. Hull, and S.

L.  Taylor.  "Document  Image  Skew  Detection:  Survey  and  Annotated  Bibliography,"  World

Scientific, 1998, pp. 40-64. Used under fair use, 2014.



Hough  Transform.  The  Hough  transform,  a  well  known  feature  extraction

technique in computer vision, can be utilized in order to detect,  not only the skew

angle of a document image, but any mathematically tractable shape of interest. This

technique, when applied to 2D images, will take a series of  coordinates (for the

case of document images this will likely correspond to groups of connected pixels) and

transform them into a new coordinate space.  While the coordinate space will  vary

depending  upon the  desired  shape to  be  detected,  for  straight  lines  the  x  and y

coordinates  will  be  converted  to  the   coordinate  space  using  the  following

equation:

where  is the distance of the  point  from the origin  (usually  at  the  upper  left-

hand corner of the image), and  varies between -90° and 90°. The  parameter

uniquely represents a given line in the image by specifying its perpendicular angle and

distance with respect to the origin as shown in Figure 10.
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Figure 9: For printed text, a given character often has a precise position within the text line

which can be useful for classification purposes. R. Smith, "Apparatus and Method for Use in

Image Processing," United States Patent Office. 5,583,949, Dec 10, 1996. Used under fair

use, 2014.



For  each  chosen   coordinate  within  the  image,  the  Hough  transform

algorithm will calculate the   values corresponding to some subset of the possible  

values between -90° and 90°. There can be an infinite set of lines going through a

given point, thus the amount of lines required per point depends upon the desired

accuracy of the system as well  as desired overall  computational  speed. The set of

chosen  lines  per  point,  each  represented  in  Hough  parameter  space  ,  is

represented  by  an  accumulator  array  [32],  each  entry  of  which  corresponds  to  a

unique line in the image. Each time that a line is found to go through an  point of

interest, its corresponding entry in the accumulator array is incremented. When the

process is completed, the accumulator array entries with the highest increments will

correspond to the lines which intersect the most points in the image. 

For OCR purposes, lines of text may be found within the image based upon this

operation. The   coordinates of interest typically correspond to the centroids of

connected  components  (groups  of  connected  foreground  pixels  which  often

correspond to individual  characters).  When several  parallel  lines are found to have

very high entries in the accumulator array, this will  often mean that the page was

scanned at the skew angle corresponding to these lines, and that they are likely to

represent individual lines of text within the document.  

Geometric Distribution of Connected Components. The Hough Transform

has been utilized in various techniques to achieve accurate skew results. For a more

complete survey of past techniques the reader is referred to [28]. These techniques,

for the most part, vary, not by their use of the Hough Transform, but by their method

for  determining  connected  components  which  are  of  interest  and  most  likely  to

correspond to rows of text. In  [33], Smith utilizes an efficient and simple algorithm
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Figure 10: Mapping from (x,y) to Hough space



which, unlike previous methods, finds lines of text independently of the page's skew.

The connected  components  of  the image are  extracted  and filtered  such  that  the

remaining components are most  likely to represent a body of  text.  The connected

components are then sorted based on their positions in ascending order from left to

right and iterates through them. Each connected component is added to a row of text

to which it is most likely to belong based on vertical overlap. If no such row exists then

it is created. Based upon which connected components are added to which rows, a

running average is kept on the slope of the text rows. This process is continued in an

iterative fashion until all connected components have been associated with rows. This

algorithm has been found to achieve reasonably accurate results while proving to be

more efficient than corresponding Hough Transform based algorithms. 

 Curved Text Line Detection. Even when text lines are accurately found, it is

often the case that the lines will need to be fitted to the text more precisely due to

scanning artifacts which may give the text a curved appearance as depicted in Figure

11.  Among  the  techniques  utilized  for  this  problem  are  quadratic  or  cubic  spline

modeling via least square fitting techniques [34] as well as active contour tracing via

snakes [35]. Smoothing techniques are often applied in order to simplify the input for

curved line detection. The optimal technique to be applied largely depends upon the

type of document fed into the OCR system. Thus document understanding at early

stages in the OCR process is of great importance in achieving accurate results. For a

more  complete  account  of  text line  detection in various  documents,  the reader  is

referred to [36]. 

2.2.2 Character Feature Extraction
The problem of feature extraction for optical character recognition, although a

difficult task, has been extensively studied in the literature. Techniques vary based

upon  their  application,  with  handwritten  recognition  often  requiring  different

techniques from printed character recognition. As with the rest of this thesis, the focus
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Figure  11: An example of skewed and slightly curved text. Close inspection shows that the

cyan/gray line is curved relative to the straight black line above it. R. Smith. "An Overview of

the Tesseract OCR Engine," Proc. Int. Conf. Document Analysis Recognition, 2007, pp. 629-633.

Used under fair use, 2014. 



here will  be on techniques  pertaining  to printed character  recognition.  Techniques

utilized  by  Google's  OCR  System,  Tesseract,  will  be  emphasized  and  discussed

primarily since they are used within this thesis project.

Edge  Extraction.  After  text  lines  have  been  located  as  discussed  in  the

previous section,  the next task for a typical  OCR system will  be to perform some

image processing operations on the input in order to make features more easily and

efficiently recognizable. Tesseract  [29] utilizes a novel edge operator which can take

advantage  of  grayscale  values  if  they  are  available  to  achieve  robust  character

segmentation  results.  Text  and non-text  can  often  also  be distinguished based on

contextual evidence as well as using basic height/width filters. Furthermore, the edge

extraction algorithm will inherently filter out a significant amount of noise since it will

disregard any portions of the image which do not form closed loops. The term “closed

loop” is used here to describe a contour which, after being followed a certain amount

of time will return to its starting position. 

Also of importance is preserving the relationships between the inner and outer

portions of characters.  Take, for instance, the character “o” depicted at the left on

Figure 12  [37]. Since the edge detector will find the inner and outer portions of this

character as separate, simple data structures must be implemented which store the

relationships among overlapping edges. In Tesseract, a 2D bucket sorting technique is

utilized in order to store all of the inner portions of characters as enclosures or “holes”

within  them.  The  results  of  edge  extraction  are  stored  in  chain  code  format  as

illustrated by Figure 13 [38]. 
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Figure 12: Comparison of a prototype for “o” to an unknown character by template matching.

R. Smith. "Tesseract OCR Engine: What It Is, Where It Came From, Where It Is Go- 

ing," OSCON, 2007. Used under fair use, 2014. 



Polygonal  Approximation. In  Tesseract,  the  process  of  polygonal

approximation  is  required  in  order  to  optimize  the  efficiency  and  accuracy  of

subsequent  feature  extraction  techniques.  Polygonal  approximation  of  a  character

image, if done effectively, results in an output whose data is neither too fine or course

for purposes of feature extraction  [39]. It becomes easier to detect global convexes

and concavities as well as character enclosures, which are very important features. 

The process of polygonal approximation utilized by Tesseract analyzes the chain

code output  of  the edge extractor  in  order  to  locate  simplifications  which  can  be

made, which will enhance the robustness of subsequent feature extraction techniques.

The  process  begins  by  first  breaking  up  the  character  into  directional  segments,

separated by 90° or two subsequent 45° transitions  [29]. The second stage involves

further  analysis  of  these  segments  and  subsequent  approximations  being  made

between the end points of each segment.  The process is repeated iteratively until

certain criterion are met.

Normalization and Template Matching.  After polygonal approximation and

prior to feature extraction, normalization is applied to the input in order to eliminate

some of the complexities which may come about from various font differences. For an
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Figure  13: (a) Example of chain-code. (b) Chain-code directions. S. Mori, C. Y. Suen, and K.

Yamamoto, "Historical Review of OCR Research and Development," Proceedings of the IEEE,

vol. 80, no. 7, Jul 1992, pp. 1029-1058. Used under fair use, 2014.



in depth discussion on normalization techniques the reader is referred to Chapter 3 of

[39]. Normalization is very important in accounting for character font transformations

which  may  occur  in  terms  of  size,  perspective,  and  rotation  with  respect  to  the

features of prototypes used in training the system. Normalization techniques can, in

general, be separated into categories using either linear or nonlinear methods. While

linear methods account for affine transformations often found in printed characters,

nonlinear  techniques  are  generally  geared  more  towards  handwritten  character

recognition wherein much more drastic variation is to be expected.

Normalization can be performed either before or after feature extraction. If done

after feature extraction, then the process is carried out within the feature space rather

than  directly  on  the  character's  pixels.  In  the  case  of  Tesseract,  normalization  is

carried out on the feature space of the character's polygonal approximation, which can

be viewed as  a vector of 3D features, the dimensions of which are simply  position, 

position, and direction within the range of  [40]. Figure 14 gives an example of

how Tesseract will normalize the features of unknown characters while matching them

to those of character prototypes.
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Figure  14:  (top)  The  polygonal  approximation  features  of  a  “1”  followed  by  those  same

features  after  normalization  with  respect  to  the  prototype  of  “1”  to  the  right.  (bottom)

Features  of  an  “integral,”  a  character  for  which  there  is  currently  no  valid  template  in

Tesseract. To the right is the integral after normalization with respect to the prototype of “/”.

For both normalized pictures, the solid lines represent the prototypes while the dotted lines

represent the normalized unknown character. Lines are colored from best to worst match:

white, green, red, blue. These images were taken from Tesseract's debugger.



As  illustrated  by  Figure  13,  Tesseract  normalizes  a  feature  vector  by  each

character prototype to which it is compared. For instance, assume that the character

“8” is fed into the system. Based upon a coarse shape analysis of the character a

subset of the the total prototypes may be chosen as potential candidates. For instance

“B” may be chosen since it has two enclosures, and “0” may also be chosen based

upon its  convex top and bottom regions.  Assuming that only these characters  are

chosen  as  candidates,  the  feature  vector  for  “8”  will  be  subsequently  normalized

based upon both of these prototypes prior to the respective template matching. The

process of normalization begins by isotropically scaling the bounding box to a fixed

height and width. The feature vector is then centered and scaled anisotropically based

upon  the  second  moments  of  the  prototype  to  which  it  is  being  compared  [40].

Moment-based character normalization has been studied extensively in the literature

dating back to even before the advent of microprocessors. For some examples of in-

depth studies the reader is referred to [41] [42]. 

During Tesseract's classifier training, the training data is automatically grouped

into clusters based upon certain important features. These feature clusters are then

utilized  during  classification  to  reduce  computation  time  with  very  little  loss  in

accuracy. The five most important features utilized by Tesseract will be herein briefly

discussed.

Concavities.  One of the most important features in character recognition are

concavities. By definition, a concavity is part of an outline which does not lie on its

convex hull (the smallest convex region enclosing the outline as illustrated by Figure

15 [43]). In Tesseract, a concavities are characterized by the direction of their hull line,

their centroid [29], shape,  skew, and area.
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Figure 15: Red outlines represent convex hulls of the white regions. Aforge.NET, "Blobs Processing,"

Internet:  http://www.aforgenet.com/framework/features/blobs_processing.html,  Date

Accessed: 2013. Used under fair use, 2014.



Functional Closures.  Character closures are common features which can be

useful in distinguishing characters regardless of their font. For instance the “e” and “o”

characters will both always consist of a single closure when properly drawn or printed.

The  term  functional  closure  is  useful  when  a  character's  closure  may  be  slightly

degraded somehow, such that there there may be an unintended opening. In Tesseract

[29], each concavity is tested for functional closure. Based open the location of the

concavity within the character (i.e. upward facing, downward facing, etc.) a threshold

is  assigned  for  the  maximum  character  to  concavity  width  ratio  expected  for  a

functional  closure.  If  the ratio  is below the appropriate threshold then a functional

closure will be detected.

Axes. Tesseract  defines  axis  features  only  on  characters  for  which  no

concavities  or  closures  are  detected.  Characters  including  commas,  periods,

quotations,  etc.,  fall  under  this  category.  The  axis  feature  measures  a  character's

length to width ratio. The length of a character is determined by finding a point on the

outline whose distance from the character's centroid is maximum. The vector going

from the point to the centroid is said to be the character's major axis. The character's

width is then calculated as the sum of the maximum perpendicular distances from the

major axis to the character outline on either side of the axis. The major axis length to

character width ratio can be useful in disambiguating commas, periods, quotes, etc. 

Lines. As  illustrated  by  Figure  13,  lines  are  useful  features  in  template

matching.  Line features  are  only  used by Tesseract  for  unknown characters  which

closely  match  more  than  one  of  the  prototypes,  as  measured  with  concavities,

closures, and axes [29]. The degree to which a line in the unknown character matches

a line in a prototype is measured based upon the normalized position of the center of

the line, its quantized direction, and its scaled length. 

Symmetry  and  Detection  of  Italicized  Characters. Vertical  as  well  as

horizontal  symmetry  can  be  a  very  useful  measure  in  discriminating  certain

characters. For instance, the character “C” and “G”, “j” and “/”, “j” and “]”, “T” and

“1”,  etc.  can  often  be  disambiguated  through  their  respective  measurements  of

symmetry.  The  main  difficulty  in  symmetry  measurement  is  not  in  measuring  the

degree of symmetry about an axis, but rather in locating the axis of interest. While the

problem is trivial for vertical text (simply drawing a vertical line through the center will

suffice), italicized text is much more difficult since the axis is rotated slightly and may

be difficult to locate. Tesseract utilizes two methods to determine a character's axis of

symmetry. Once this axis is found it is then easy to determine whether or not the

character is italicized. 
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The first method used by Tesseract searches the character's outline for a vector

which passes from the bottom to the top half of the character's bounding box. The

direction  of  this  vector  may  be  a  good  indication  for  the  direction  of  the  axis  of

symmetry. For round characters such as “o” and “e” and those which contain vertical

lines such as “H” and “p”, this method  is useful. However, for angular characters such

as “X” or “8”, a valid result is not produced. The second method finds the rightmost

point  on  the  outline  then  calculates  the  most  clockwise  line  which  can  be  drawn

through this point, without intersecting any other point on the outline.  This operation

is  repeated on the leftmost  point of  the outline as well.  The line which was least

clockwise from the vertical becomes the axis of symmetry. 

After the axis of symmetry found, the outline is searched around the axis for

points  of  reflection.  Symmetry  testing  is  commenced  at  a  point  where  the  axis

intersects the outline and works in opposite directions simultaneously. The points are

tested for being in the same locality of the point on the opposite side of the axis.

Symmetry is only measured for certain character candidates and typically only in one

direction (either vertical or horizontal).

2.2.3 Character Classification
The  line  finding,  edge  extraction,  polygonal  approximation,  and  feature

extraction techniques discussed thus far would be of  little  to  no value without  an

effective  classifier.  In  pattern  recognition,  a  classifier  will  take  a  set  of  feature

measurements as input and, using these measurements, choose from a finite set of

classes, the class to which the unknown input is mostly likely to belong. In the case of

OCR, the classes will often correspond to individual characters. Tesseract employs two

separate classifiers: one is termed the static classifier while the other is the adaptive

classifier. In order to save computational time, a class pruner is utilized first to narrow

down the number of candidate classes for an unknown character.

Tesseract  Class  Pruner. In  the  first  stage  of  classification,  Tesseract  will

employ its class pruner in order to reduce the number of potential candidates to which

an unknown character is to be compared. The class pruner uses a fixed quantized

version  of  the  3D  feature  space  wherein  each  of  the  3  dimensions  are

quantized into 24 cells. After the unknown character's features are quantized, they are

indexed to the quantized feature space in order to obtain a set of classes which allow

the given features. The number of feature hits for each class is summed and the best

few matching classes are then fed into the next stage of classification [40]. 

 Tesseract Static Classifier. Both Tesseract's adaptive and static classifiers are

unique  when  compared  to  more  standard  techniques  in  that  they  operate  on  a
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variable  number  of  features.  While  standard  classifiers  such  as  neural  networks,

support  vector  machines,  etc.,  will  work  in  a  feature  space  of  fixed  dimension,

Tesseract has a variable number of features for each class of interest.  The classifer

can  be  regarded  as  an  optimized  K-Nearest-Neighbor  (KNN)  classifier  where  the

character class,  , with minimum distance from the unknown character is computed

as follows: 

where the variables are as follows:  is the current feature dimension (either  position,

 position,  or  );   is the cluster;   is  the character  class;  and   is the unknown's

feature.  is the feature dimension (either  position,  position, or ) of the unknown

character  's  feature  at  index  .   is  the  total  number  of  feature  vectors  in  the

unknown character,  (this varies depending upon the character of interest).  is the

total number of character clusters which the training set was divided into.    is the

mean feature value for the   feature,   cluster,  and   class calculated during

training. 

While the left-most summation measures the distance between each feature

dimension and its corresponding average clustered prototype value, the right-most

summation measures the distance between the average value in each cluster to the

corresponding feature dimension. The result of these summations is then divided by

the  total  number  of  features  in  the  unknown  character  and  training  set.  A  key

advantage to this approach is its symmetry. The nearest matching features between

both the unknown and prototype and the prototype and the unknown are effectively

found. Say, for instance that the unknown character is “e” and the prototype to which

it is compared is “c”. Since most of the features in “c” are allowed by “e”, it becomes

possible that the “e” will be misclassified as “c” if only the distance between the “e”

and “c” is computed. When the distance between the “c” and “e” is added into the

classification, the lack of crossbar in the “c” will incur a penalty, thus lowering the risk

of misclassification.

Tesseract  Adaptive  Classifier.  After  word  recognition,  as  will  be  briefly

discussed in section 2.2.5, a second pass is made by Tesseract's classifier. This time

the classification is considered to be adaptive in that it utilizes the extra information

obtained after word recognition in order to better train the classifier to the current

font. After word recognition is carried out, there may be several characters which can

be disambiguated and thus used to better train the classifier on the second pass and
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increase accuracy. The adaptive classifier is essentially the same as the static one

except that it applies a different type of normalization to the unknown character prior

to comparing it to the prototype. While, for the static classifier, the centroid of the

unknown character is centered in the feature space and then scaled anisotropically to

normalize the second moments of the outlines, the adaptive classifier will normalize

the  unknown  by  centering  the  horizontal  centroid  of  the  outline  and  scaling

isotropically to normalize the -height of the character. This normalization retains font

differences, which, at this stage of OCR, is very important [40]. 

2.2.4 Detection of Merged or Broken Characters
While  some  of  the  first  OCR  systems  would  only  recognize  each  individual

character independently, more sophisticated systems such as Tesseract, Omnipage,

and Abby Fine Reader, ReadIris, etc., [11][12][13] analyze inter-character relationships

in order to increase their systems' robustness in the presence of noise.  In Tesseract,

while  the results  of  word recognition  (described  in  Section  2.2.5)  are  found to  be

unsatisfactory, a character merger/segmenter module is utilized in order to test the

word on new potential character candidates in areas with low character recognition

confidence.  The  merger/segmenter  module  will  locate  concave  vertices  of  a

questionable  character's  polygonal  approximation  and  attempt  to  separate  the

character in those locations to test for a possible merged character as illustrated by

Figure 16. Likewise, potentially broken characters are attached to their neighbor and

tested if their combined width is within an acceptable range.  

2.2.5 Word Recognition and Linguistic Analysis
Individual words within Tesseract are detected based upon the distribution of

space  between  characters  found  on  a  text  line.  Characters  which  are  within  an

appropriate horizontal distance parallel to the text line are considered to be within the

same words, while groups of such characters are considered to be separate words. The

word recognition module looks up candidate words in a dictionary to make sure they
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Figure 16: Example of merged letters with candidate chop points (denoted by triangles). R. Smith.

"Tesseract OCR Engine: What It Is, Where It Came From, Where It Is Going," OSCON, 2007. Used

under fair use, 2014.



are valid. This information is also vital to detecting broken or merged characters and

training the adaptive character classifier.

Some basic linguistic information can be important for increasing accuracy. For

instance, in Tesseract's English word recognition module, numeric characters are not

allowed to exist in alphabetic words, uppercase characters cannot follow lower case

ones,  and  the  only  punctuation  allowed  within  a  word  are  apostrophes.  Markov

methods are also very useful in OCR due to spelling conventions (such as u following

q) and the need for  words to be pronounceable  (i.e.,  g is  unlikely to follow j).  By

modeling each individual character as a possible state and each character occurence

as the next element in a Markov chain, it is possible to use a transition matrix (whose

width and height are 26, the number of characters in the English alphabet) to help in

selecting a word's next character [29]. While it is possible to make choices based upon

multiple characters, the transition matrix for making a choice based upon the previous

m - 1 characters would require a transition matrix of size 26(m-1)x26(m-1). Rather than

using large values for m, Tesseract employs dictionary methods.

Strings of characters can be reduced into words which are either in a dictionary

or can be generated through the use of various production rules [44]. For each string

of  characters  a set  of  candidate words are derived using the dictionary.  The word

which  has  the  highest  overall  rating  based upon the recognition  confidence  of  its

individual characters is chosen. The word recognition result can then be utilized in

order to boost the adaptive character  classifier's accuracy since certain characters

which had low confidence in the static classifier may now be confirmed.

2.3 Document Layout Analysis Techniques

2.3.1 Introduction to Document Layout Analysis
The improvements made in the field of commercial  OCR throughout the 80's

and  early  90's  are  primarily  attributed  to  enhanced  processor  and  digitizer

technologies rather than to improved classification techniques for individual patterns

[45]. By the early 90's there had been significant progress already made toward the

study of OCR and pattern recognition techniques which are still largely in use to this

day. A significant amount of the more recent progress made in the state-of-the-art has

been  due  to  improvements  in  document  layout  analysis  and  understanding  as

opposed  to  the  much  more  mature  character-by-character  feature  extraction  and

classification algorithms. 

While inflexible hardwired classification engines once dominated the market for

OCR,  the  computational  advancements  of  the  70's  and  80's  allowed  for  more
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intelligent systems to take hold. While systems became robust against multiple fonts,

merged/broken characters, and document skew as discussed in the previous section,

the need also arose for systems which could recognize pages from a wide variety of

document types. While an OCR system may be predominantly exposed to documents

like newspapers, magazines, letters, etc., it is also often necessary to process such

“special”  documents  as  electronic  circuit  diagrams,  envelopes,  checks,  tax  return

forms, music notations, etc. [46]. 

The importance of document layout analysis techniques is made apparent in

the presence  of  both  the  former  and latter  document  types  as  they  may  contain

complex backgrounds, lines with drop-caps, mathematical formulas, various symbols,

imagery,  tables,  graphs,  multiple  columns,  titles,  headings/subheadings,  etc.

Therefore,  it  becomes  important,  not  only  to  recognize  the  individual  words  and

characters,  but  to  also  interpret  and preserve  the layout  and spatial  context  of  a

document's components. Such details as spatial context and document structure are

vital in conveying a document's message as it is intended to be perceived, as well as

for  understanding  how  exactly  the  document  needs  to  be  processed  in  order  to

achieve  the  optimal  recognition  accuracy.  Figure  17  [47] shows  two  examples  of

document images with complex layouts. 
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Figure 17: Two document images with complex layouts. On the left, an intricate background as

well  as complex column structure  is  observed.  On the  right  is  a newspaper  article  with a

complex layout of titles and columns along with imagery and captions. Both document images

will require sophisticated image processing and layout analysis techniques in order to achieve

both OCR accuracy as well as efficient data storage and indexing within computer systems. A.

M. Namboodiri, and A. Jain. "Document Structure and Layout Analysis," Advances in Pattern

Recognition, Springer-Verlag, London 2007. Used under fair use, 2014.



Document layout analysis is a very important design component for any OCR

system and has been extensively studied [46][47][48][49][50][51][52][53]. Not only is

document layout analysis often essential for obtaining correct OCR results, it can also

provide the means for computer  systems to use logical  information such as titles,

footers, authors, captions, abstracts, page numbers, etc., to more efficiently store and

index  a  document  image's  information  [54].  This  contextual  information  is  also

essential for Assistive Technology purposes, in enabling blind individuals to have an

understanding of the same spatial and logical cues afforded by the document's visual

layout [55]. This section will discuss how the field of document analysis is divided into

various sub-problems by existing literature and then compare and contrast various

techniques which address these problems. The problem of document analysis can be

broadly  divided  into  its  five  most  important  interdependent  components:  image

preprocessing,  document  structure  analysis,  document  content  representation,

training set development, and finally performance evaluation as illustrated by Figure

18 [47]. After a brief overview of what each stage entails along with some introduction

of  terminology,  various  techniques  found  in  the  literature  for  each  stage  will  be

discussed. 
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Firstly, the most common problems addressed by image preprocessing (Section

2.3.2)  in  document  analysis  involve  noise  removal,  separation  of  background  and

foreground regions, and skew correction. Secondly, after any necessary preprocessing

is carried out on the document image, the modified image is fed into the system's

document structure analysis module. From a broad perspective, document structure

analysis  involves  first  extracting  the  document's  geometric  structure  and  then

mapping that structure into a valid logical one which can be understood by computer

systems. A document is thus considered as having both a physical (geometric-based)

structure and a logical (content-based) structure. Thus document structure analysis is

commonly divided into two distinct phases: physical layout analysis and logical layout

analysis. Each distinct phase of document structure analysis will be further discussed

in Section 2.3.3. 
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Figure 18: The five most important inter-dependent components of document analysis involve

preprocessing, document structure analysis, document content representation (not illustrated

here), training set development (ground truth), and performance evaluation. Each module is

described as interdependent because the performance of the overall system really depends on

each component. For instance, if preprocessing is not effective, then structure analysis will

likely fail. If the document content representation is not consistent, then ground truth and

performance  evaluation  will  yield  insignificant  results.  A.  M.  Namboodiri,  and  A.  Jain.

"Document Structure and Layout Analysis," Advances in Pattern Recognition, Springer-Verlag,

London 2007. Used under fair use, 2014.



2.3.2 Preprocessing
The  most  common  problems  addressed  by  image  processing  involve  noise

removal, separation of background and foreground regions, and skew correction. Since

skew correction was already covered in great detail  by Section 2.2.1, it will  not be

further discussed in this section. Noise removal in image processing is a well studied

field and advanced techniques have been developed to cope with white noise, salt and

pepper noise, quantization artifacts, etc. Such noise sources are often compensated

for by using techniques such as median filtering, dithering, low pass filtering, etc. [52].

An in depth overview of noise reduction methods in image processing can be found in

[56].  For  purposes  of  document  layout  analysis,  one  of  the  more  important  noise

removal tasks involves the detection and filtering of half-tones.  This discussion will be

followed by a brief overview of preprocessing tasks for background and foreground

separation. 

 Noise Removal: Dealing with Half-tones
Halftones, as illustrated by Figure 19 [57], utilize variably sized or spaced dots

in order to create the optical illusion of an infinite range of colors while, in actuality,

only printing a limited amount. Half-tones are utilized by color and grayscale printers

in order to reproduce imagery while requiring few colors of ink. Figure 19, for instance,

creates the illusion of grayscale while only requiring black dots. When scanned at high

resolution,  the  halftones  in  a document  become a significant  noise  artifact,  as  an

image's connect components clearly should not be divided into such small  dots for

document analysis purposes. Halftones can be detected through the use of various

filtering  techniques  [58],  whose  accuracy  often  depends  upon  the  dot  sizes  and

spaces of the halftone in question. Once detected, the halftones can be converted into

continuous grayscale by applying an appropriate low-pass filter to smooth out all of

the dots, followed by a sharpening technique which will reduce the blur.
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 Background and Foreground Separation
Although the problem of foreground detection is often very simple in the case of

the most typical black text on white background, the problem becomes much more

complex  when  faced  with  intricate  backgrounds  which  are  overlayed  with  text  in

varying color, size, and font as depicted in Figure 20. In the former case it is possible

to use thresholding techniques like Otsu's method [59]. An alternative method which

could work for varying background and foreground color schemes would be to find the

outline  of  characters  through  edge  detection  [29].  In  the  presence  of  complex

backgrounds,  however,  more  sophisticated  background  and  foreground  separation

techniques may be required. A common approach is to compute statistical properties

of image patches and assign them as either foreground or background using a trained

classifier such as a neural network [47].  Through a combination of edge detection and

a trained classifier it becomes possible to detect foreground text of varying colors on a

complex background with a certain degree of confidence as demonstrated in Figure

20. 
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Figure  19:  An example of a halftone image. Notice that, when looking at the image from a

distance, the illusion is created that the image is in grayscale, when, in fact, it is actually

printed  with  only  black  dots  of  varying  sizes.  R.  Miller,  "Ink-Jet  Basics,"  Internet:

http://www.thetonesystem.com/inkjet_basics.html, Date Accessed: 2013. Used under fair use,

2014.



2.3.3 Document Structure Analysis
A  primary  component  of  any  document  analysis  system  is  the  document

structure analysis stage itself. As previously indicated in Figure 18, however, the steps

of  preprocessing,  document  content  representation,  training  set  development,  and

performance evaluation also play a crucial role. In this section the term “document

structure analysis” is  used to refer to the broad class of both physical  and logical

document  structure  analysis  methods  which  will  be  explored  in  this  section.   In

general,  physical  layout  analysis  techniques  are  one  of  the  first  steps  of  an  OCR

system and will initially divide the document image into areas perceived as text and

non-text, as well  as splitting multi-column text into columns  [18]. In this literature

review  an  important  distinction  between  physical  and  logical  layout  analysis

techniques  is  made such  that,  while  logical  layout  analysis  techniques  make final

classification  decisions  on  blocks,  physical  layout  analysis  techniques  extract  and

evaluate the geometry of blocks without necessarily reaching any final conclusions on

their syntactic meaning. While the physical layout analysis stage looks for geometric

patterns,  the logical  layout analysis  stage will  utilize  this  and other  information in
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Figure 20: (Left) Part of a document image with complex background. (Right) The same image

with  foreground  separated  from  background.  A.  M.  Namboodiri,  and  A.  Jain.  "Document

Structure  and  Layout  Analysis,"  Advances  in  Pattern  Recognition,  Springer-Verlag,  London

2007. Use under fair use, 2014.



order to infer a document's meaning from a syntactic perspective (i.e., the type of

document and the location and functional purpose of its “zones” which may include

titles, headers, footers, math equations, imagery, etc.). This logical understanding is

very  important  both  for  indexing  and  storage  purposes  as  well  as  for  Assistive

Technology applications as previously mentioned. 

A  document  analysis  system  must  be  able  to  understand  not  only  how  a

document  can  best  be  partitioned  into  its  logical  sections,  but  also  the  role  that

physical  geometry  plays  in  conveying  information  effectively.  It  is  important  for  a

document recognition system to move back and forth between physical and logical

analysis in an intelligent manner which may vary significantly depending upon the

aspects of what is being recognized. This concept is illustrated by the bidirectional

arrows seen in Figure 18. Although it is possible for a very specific physical layout to

match to only a single logical structure (i.e. in the case of a very complex and unique

form),  there is  never a guaranteed one-to-one mapping between any physical  and

logical layout or vice versa. In creating a system that can generalize to a wide variety

of  document  structures  while  minimizing  overfit,  it  is  thus  important  not  to  make

assumptions too early based solely upon geometric information. A system may require

to make “fuzzy” decisions which, in later steps, can be further refined to reach an

appropriate solution. For instance, if text is found to be centered within a column this

could open up many distinct possibilities based upon the contents of the text itself as

well as its context within the entire page. It could, for instance, be the title of a new

subsection,  new chapter,  a  mathematical  formula,  a quote,  image caption,  or  any

number of other possibilities. Thus, while an understanding of the geometric structure

of  a  block  of  text  is  important,  there  is  more  information  required  in  order  to

understand the block's logical structure. If an OCR algorithm yields results with low

enough  confidence  then  various  alternatives  can  be  tested  (i.e.  for  mathematical

formulas, musical notation, other languages, etc.).   

 Document Physical Structure Analysis
Physical layout analysis, an essential step for all OCR and document analysis

systems, localizes individual blocks of text and imagery while leaving assignment of

logical meaning of these blocks as well as final classification of text/nontext regions to

later stages in processing which will be discussed in the Document Logical Structure

Analysis  Section.  Methods  for  physical  layout  analysis  fall  into  roughly  three

categories: top-down, bottom-up, and hybrid, each of which will be discussed in turn

by this  section.  An important  distinction between algorithms involves the types of

physical layouts which they can handle. The following three types of physical layout
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patterns are commonly defined: these include Manhattan, rectangular, and arbitrary

layouts [60]. A document's Manhattan layout can be viewed as the document divided

into  a  grid,  which  may  be  horizontally  or  vertically  split  recursively  into  smaller

components in any given region. For a Manhattan layout, if a region overlaps another

then it  must  be entirely  covered  by that  region (i.e.,  there  is  no  partial  overlap).

Rectangular  layouts consist  of  several  rectangles arbitrarily  spaced apart  or  which

could be partially overlapping. Arbitrary layouts, on the other hand, are formed by

unconstrained polygonal shapes as demonstrated by Figure 21 [61]. 

Top-down  physical  layout  analysis  techniques  recursively  segment  the

document  into  smaller  rectangles  which  are  expected  to  correspond  with  image,

column, paragraph, or other text block boundaries [54]. Bottom-up techniques, on the

other hand, analyze individual pixels or connected components, recursively merging

them together into larger regions. While bottom-up techniques can handle arbitrary

physical  layouts,  top-down  methods  are  constrained  to  only  handling  rectangular

regions. A disadvantage of bottom-up techniques, however, is that they may result in

over-fragmented regions. For instance, a bottom-up technique will be more likely to

properly segment small structures like individual paragraphs of text than to properly

segment entire columns. Due to these trade-offs it is often that hybrid techniques,

which combine top-down and bottom-up ideas, are employed [62]. Starting with top-

down methods,  variants  of each broad category of physical  layout analysis will  be

reviewed by this section.
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 Top-Down Physical Structure Analysis

The first  physical  layout analysis technique to be reviewed here is the “top-

down” method. Top-down strategies segment blocks based upon interpretations of the

document from a high level  (i.e.,  by first  looking at a representation of the entire

document and recursively splitting it into smaller components). Top-down strategies

will then typically attempt to verify each segmentation by visiting each node down the

to the terminals (the lowest levels, corresponding to individual connected components

or pixels) [63]. For documents having a complex layout, top-down methods are often

more robust but slower than bottom-up ones. Typical bottom-up algorithms are faster,

but can be less reliable since they may greedily over-segment blocks without regard to

all of the available contextual information. 

X-Y Cut Algorithm. The X-Y cut algorithm [64] is a top-down approach which

has been utilized extensively over the past several decades. The technique analyzes
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Figure  21: An example of an arbitrary physical layout wherein blocks of text are fit to the

shape of a pie chart.  A layout analysis system should ideally be able to segment text blocks

into  the  appropriate  shape,  which  sometimes  may  be  more  complicated  than  simple

rectangular layouts. For this figure, a document layout analysis system which can only handle

rectangles  would  be  insufficient,  and would likely result  in a  mangled output.  A.  Gourdol,

"CSS3  Regions:  Rich  Page  Layout  With  HTML  And  CSS3,"  Internet:

http://www.adobe.com/devnet/html5/articles/css3-regions.html,  Date  Accessed:  2013.  Used

under fair use, 2014.



vertical  and horizontal  projection profiles of the image to find regions of  low pixel

density, often termed as “valleys” [46][47]. Assuming that the document has a white

background and Manhattan layout, its X and Y valleys are likely to correspond with

horizontal and vertical text block boundaries respectively. For instance, these could be

divisions between paragraphs and columns. The X-Y cut algorithm will start with the

horizontal  and  vertical  projection  profiles  of  the  entire  image  and use  the  largest

valley (or valleys) in either direction as the first splitting point. After having made the

first split(s), the algorithm will then recursively make further splits within each sub-

region using the same methodology. The document's physical layout is represented by

an X-Y tree data structure wherein each node represents a split region. If the algorithm

is correct, then the terminal nodes of the tree will correspond to the individual text

blocks.  Once  the  terminal  nodes  have  been  located,  the  algorithm  will  backtrack

through the tree structure to ensure that the physical structure is appropriate based

upon some preconceived notions of expected document structure. A possible result of

the algorithm is illustrated by Figure 22. In order for the X-Y cut algorithm to work

correctly, it is vital that the document first has its skew corrected. If, for instance, the

horizontal projection profile is taken for a document that has been rotated by several

degrees, then many of the “valleys” will not be found correctly and thus the algorithm

will fail.
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Figure 22: A possible result of the X-Y Cut algorithm (done manually) on an article page

(citation below). Here the entire page is cut vertically (red) and then each sub-region is

cut horizontally (green). The splitting order from this point becomes rather complex but

is color coded as follows: orange, yellow, blue, and pink. Notice that a single node may

have more than two children, which is the case for sections with multiple paragraphs,

columns,  etc.  G.  Nagy,  S.  Seth,  and  M.  Viswanathan,  "A  Prototype  Document  Image

Analysis System for Technical Journals," Computer, vol. 25, no. 1, Jan 1992, pp. 10-22.

Used under fair use, 2014.



Run-Length  Smoothing  Algorithm (RLSA).  It  is  typically  unnecessary  to

perform processing on all pixels of the document image. For the top-down algorithms

previously described, which use either maximal white space rectangles or projection

profiles, the document image is usually reduced in size during a preprocessing stage.

By  reducing  the  size  and  complexity  of  the  input  image,  both  the  efficiency  and

accuracy  can  be  enhanced  assuming  that  only  insignificant  data  is  reduced.  For

instance,  when  detecting  entire  columns  of  text,  the  spacing  between  individual

characters, words, and lines is unnecessary. One way to reduce the amount of data is

to use a run-length smoothing algorithm (RLSA) [65]  which will be discussed further in

the Bottom-up Physical Structure Analysis section. This method can merge characters

into words, words into text lines, and text lines into paragraphs by “smearing” the text

to  join  characters  into  blobs.  This  is  done  by  inspecting  white  spaces  between

foreground pixels and, if their width is below some threshold, setting them to black.

Template Techniques. “Template” techniques which have been observed in

the literature  [66][67],  are  labeled as top-down even though they often rely  on a

combination  of  both  logical  and  physical  document  structure  analysis  [50].  These

methods require  a significant  amount of  knowledge about the expected document

structure  on which  they are  trained and may not generalize  well  to  new types of

documents. An effective way in which document structure can be described is through

the use of a Form Description Language (FDL) [66]. The basic concept of FDL is that

both the logical and physical structures of a document can be described in terms of a

set of rectangular regions. The FDL specifies how a document should be processed

based  upon  various  aspects  of  its  physical  layout.  Systems  which  utilize  an  FDL

typically  operate  on a limited assortment  of  document  types,  thus its  use is  very

application specific.

Dengel  et  al.  present  a  technique  which  they  call  “Discriminating  Attribute

Values  in  uncertain  Object  Sets  (DAVOS)  [67].  By  “object  sets”,  Dengel  et  al.  are

referring to sets of regions on a document image along with their appropriate logical

labels.  The attributes  (geometric  features)  of  these  objects  may not  be limited  to

single values but could cover a range of possible values and are thus considered as

“uncertain.” The DAVOS system analyzes business letters and builds a decision tree

where each level corresponds with an increasing level of document type specificity.

The terminals on the tree specify the entire logical layout of the document. Just as

with FDL, the ability of the DAVOS system to generalize to new document types is

limited.  DAVOS  was  only  tested  on  business  letters  and  was  evaluated  against  a

bottom-up technique (which utilized merging of connected components) and shown to
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have  similar  but  “more  balanced”  results  (i.e.  logical  labeling  errors  were  more

distributed among the various labels).

 Bottom-Up Physical Structure Analysis

While  top-down  approaches  start  with  the  complete  document  image,

repeatedly  splitting  it  into  smaller  regions,  bottom-up  approaches  carry  out  the

inverse operation. Starting with the document image's primitives (i.e. individual pixels,

connected  components,  words,  etc.,  depending  upon  the  application)  bottom-up

techniques repeatedly merge smaller regions into larger ones. While allowing more

flexibility over top-down techniques, bottom-up techniques often result in greedy over-

segmentation  of  regions.  Bottom-up  physical  layout  analysis  techniques  all  utilize

connected  component  analysis  and may also  make use of  Veronoi  diagrams,   run

length  smoothing,  mathematical  morphology,  neural  networks  [68],  as  well  as

communication  theory  (Document  Image  Decoding)  [69].  This  section  will  briefly

review work that has been done for bottom-up techniques, starting with a discussion

of connected component analysis. 

Connected  Component  Analysis. As  discussed  previously,  connected

components are sets of foreground pixels such that a four or eight-connected path

exists between every pixel pair in the the set. While text usually consists of connected

components with a relatively consistent size and spacing, graphics generally tend to

consist of larger connected components with more sparsely distributed positions. By

analyzing these spatial properties of connected components, it becomes possible to

identify  and group text  and graphics  separately.  Connected  component  generation

involves  grouping  all  four  or  eight-connected  foreground  pixels  together  in  the

document image. The components are then grouped based upon their bounding box

location. The output of a connected component (cc) generation algorithm is a list of

cc's where each entry contains the bounding box coordinates, shape of the region,

number of black pixels, an image of the region itself, etc. The cc's are typically sorted

by their bounding box position, and can be then filtered based upon height and width

to determine  regions more  likely  to  be text  vs  those  which  are  more  likely  to  be

graphics [46]. 

An example of a bottom-up physical  analysis technique is Bixler et al.'s text

extraction  algorithm [70].  Bixler  demonstrates  his  algorithm  by  extracting  and

recognizing the text from a map as shown in Figure 23. His technique first uses a

standard recursive (stack-based) flood fill  algorithm in order to find the connected

components  [71].  After  finding  an  initial  starting  foreground  pixel,  the  flood  fill

algorithm can be described simply as follows: (1) If the current pixel is not foreground
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then return, (2) Set the current pixel to a replacement color in order to mark it as

processed, store it in memory (3) Recurse to the function in each direction in turn (4)

Return from the function.  The aforementioned algorithm is then repeated for each

unmarked foreground pixel of the image in turn, until all connected components are

found and all marked pixels grouped into their constituent connected components are

stored  in  memory,  along  with  their  bounding  boxes,  and  any  other  relevant

information.

With the connected components found, Bixler then determines which ones are

text  and  which  are  graphics  based  on  a  simple  height  and  width  thresholding

technique. Once the components have been segmented into text and graphics, those

identified  as  graphics  are  subtracted  from the  image  to  leave  only  the  text.  The

resolution  of  the  image  is  then  reduced  based  upon  the  size  of  the  character

components. A connected component tracking algorithm is then utilized in order to

find  words  which  could  be  potentially  in  any  direction  (i.e.  vertical,  diagonal,

horizontal, etc.). The algorithm scans the reduced document image from left to right,
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Figure 23: On the left is a map, and on the right is the map's extracted text. Notice there are

some dependencies where the foreground text was confused with the imagery of the map. For

instance one of the “f's” in the word “Post Office” is missing because it overlaps with a road. J.

P.  Bixler.  "Tracking  Text  in  Mixed-Mode  Document,"  Proc.  ACM  Conference  on  Document

Processing System, 1998, pp. 177-185. Used under fair use, 2014. 



top  to  bottom  looking  for  a  starting  connected  component,  then  does  a  nearest

neighbor search in each direction to find the closest character. Information about the

spacing and direction between the first two characters is then utilized to track the

location  of  the  next  character  until  entire  words  are  detected.  The  procedure  is

repeated  for  each  unique  starting  point  until  all  words  are  found.  The  technique

achieved  near  perfect  results  for  a  complex  map,  with  only  those  words  which

significantly overlapped graphics being missed.

Document  Spectrum  Analysis  (“Docstrum”). The  Document  Spectrum

(Docstrum)  proposed  by O’Gorman  [72],  is  a  representation  of  a  document  which

describes global structure features and can be useful for page analysis. The technique

takes  the  document's  connected  components  and  utilizes  a  k-nearest-neighbor

clustering  technique  in  order  to  segment  the  document  into  words,  text  lines,

paragraphs, etc. The algorithm recognizes five nearest neighbors for each connected

component, where closeness is measured by Euclidean distance in the image. Each

nearest neighbor pair is described by a 2-tuple, , which is the distance and angle

between the centroids of the two connected components. The “Docstrum” is the plot

of   for all nearest neighbor pairs in the image as illustrated by Figure 24. The

text's  spacing  between  characters  and  words  as  well  as  the  line  angles  can  be

estimated by summing up the distance and angle values in the docstrum plot. The

distances  and  angles  are  converted  to  respective  histogram  representations.  The

nearest neighbor angle histogram is smoothed and the peak found. The angle of the

peak value gives a rough estimate of the text line orientation. This rough estimate is

then used to determine intra-line and inter-line spacing by analyzing two histograms

of the nearest-neighbor distance values. The first histogram is for intra-line spacing

and filters out all distance values that are not within a tolerable range of the textline

orientation estimate. This histogram thus represents the distribution of inter-character

and word spacing within each text line. The second distance histogram filters out all

values outside of a tolerable range of the textline orientation estimate's perpendicular.

This  histogram,  therefore,  represents  the  distribution  of  the  document's  inter-line

spacing.
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Nearest neighbors on each line are merged into words and then a regression fit

is made to the centroids of the words in order to locate text lines. A straight line is

fitted to the centroids in each group by minimizing the sum of square errors between

centroids and the line. From these text lines a final estimate is made of the page's

skew. An issue with this method is that text line descenders and noise could reduce

the  accuracy  of  the  initial  estimate  and  cause  problems  with  reaching  the  right

conclusions. It is important to have the correct threshold values and to smooth the

histograms appropriately in order to get successful  results.  After the text lines are

estimated, larger structures (like paragraphs or other text blocks) are then detected.

The blocking technique examines pairs of text lines to determine whether or not they

meet certain criteria to be considered part of the same text block. If the two lines are

approximately  parallel,  close  enough in  perpendicular  distance,  and/or  horizontally

overlap to some degree then they are said to meet the criteria of belonging to the

same block. 
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Figure  24: On the left is a document image and on the right is its corresponding Document

Spectrum representation. L. O'Gorman, "The Document Spectrum for Page Layout Analysis,"

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 11, Nov 1993, pp. 162-173.

Used under fair use, 2014.



One of  the  benefits  of  this  algorithm is  that  it  does  not  assume that  each

component  of  the  document  has  the  same  skew  angle.  Thus  it  is  possible  to

indiscriminately  segment  lines and/or  blocks  of  text in  any direction.  This  may be

useful for a variety of circumstances including analysis of magazines or journals with

sporadically appearing vertical  text, scans of several  credit cards or business cards

each  on  the  same  page  but  at  arbitrary  angles,  maps  with  text  overlayed  over

imagery in arbitrary directions, etc. The technique was tested on hundreds of scanned

journal pages, however no comprehensive performance evaluation is given.  

Voronoi Diagram. Given a set of points and a subset of these points called

sites (or generators), the Voronoi  diagram is the partition of the entire set into convex

cells,  such that each cell  is  the region consisting of all  points that are closer to a

particular site than to any other. Voronoi diagrams are among the most fundamental

and  well-studied  objects  in  computational  geometry  [73].  An  ordinary Voronoi

diagram, as illustrated by Figure 25 [74], is one which uses Euclidean distance as its

metric and can be described as the set of Voronoi regions which correspond to the

convex shapes created by the partition.  

An  area Voronoi diagram is a generalization of the  ordinary Voronoi diagram

depicted  by  Figure  25  which  uses  the  Euclidean  distance  between  the  areas  of

connected components as a metric rather than the distance between points. The area

Voronoi diagram for a document image can be found by the following procedure: (1)

Sub-sample every connected component in the image such that all that remains is a

subset of  the points on the outer edge; (2)  generate an  ordinary Voronoi diagram

using this subset of points in the image; (3) remove all edges of the Voronoi diagram
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Figure 25: Illustration of an ordinary Voronoi diagram. Wikipedia, "Voronoi Diagram," Internet:

http://en.wikipedia.org/wiki/Voronoi_diagram, Date Accessed: 2013. Used under fair-use 2014.



which  both  belong  to  points  of  the  same  connected  component.   This  process  is

illustrated by Figure 26 [75].

Kise et al. formulate the problem of physical page as that of determining which

edges  of  a  document's  area Voronoi  diagram  best  represent  the  boundaries  of

document  components.  By  analyzing  various  features  in  the  document  image,

superfluous edges of the area Voronoi diagram can be removed, thereby leaving only

the  edges  corresponding  to  document  boundaries.  Superfluous  edges  would,  for

instance, correspond to the space between characters, words, text lines, etc., when a

division  of  the  page  into  separate  paragraphs,  columns,  imagery,  title,  etc.,  is

required. For each edge, all of its line segments are evaluated in order to determine

the minimum distance between the two points on the connected component which

were used to generate the Voronoi line segments in the first place. If this minimum
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Figure 26: The process of segmenting an image into an area Voronoi diagram as illustrated by

Kise et al. K. Kise, A. Sata, and M. Iwata, "Segmentation of Page Images Using the Area Voronoi

Diagram," Computer Vision and Image Understanding, vol. 70, no. 3, Jun 1998, pp. 370-382.

Used under fair use, 2014.



distance is below a given threshold for any line segment of the edge, then the entire

edge removed.  Likewise,  the  area of  connected  components  are  divided  by these

edges are compared and if the distance between the connected components is small

enough  in  relation  to  the  area  ratio  of  the  two  connected  components,  then  the

corresponding edge is removed. 

Kise et al. evaluate their algorithm on 16 document images at two resolutions,

90 DPI and 300 DPI, having a non-Manhattan layout each at 4 different skew angles to

test for robustness (thus a total of 128 with non-Manhattan layout when counting the

resolutions and skew). In order to test the applicability with Manhattan layouts, the

algorithm  was  also  evaluated  on  98  images  from  the  University  of  Washington

database (UW1) all  at 300 DPI.  In evaluating the algorithm on these datasets,  the

percentage of the “body” text, “auxiliary” text, and “non-text” document zones which

were over and under fragmented is evaluated respectively. The algorithm performed

best on the body text of the non-Manhattan documents scanned at higher resolution

where only 2.1% of zones were over-fragmented and only .4% under-fragmented. The

algorithm faired poorly for the segmentation of non-text zones of all document types,

but  especially  poorly  for  Manhattan  documents  where  it  resulted  in  a  98%  over-

fragmentation rate.  

Run Length Smearing Algorithm (RLSA). Proposed originally  in  1974 by

Johnston [76] in order to separate text blocks from graphics, the Run Length Smearing

Algorithm (RLSA)  has  been frequently  used to  obtain  basic  features  for  document

analysis [46]. RLSA, in its most basic form, transforms a binary image as follows: (1)

For each background pixel, if the number of neighboring foreground pixels is above a

certain threshold, then the pixel is changed to foreground; (2) all foreground pixels are

left unchanged. When applied horizontally or vertically to the rows or columns of an

image respectively, RLSA has the effect of linking together neighboring background

pixels that are separated by a number of pixels below the given threshold (illustrated

by Figure 27 [65]). With an appropriate choice of threshold, it is possible for the linked

areas  to  correspond with  separate  document  zones.  The  threshold  is  typically  set

based upon the character height, gap between words, and interline spacing [46]. 
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Multiresolution  Morophology. Bloomberg  [77] discusses  an  approach  to

document image analysis which uses morphological operations at multiple resolutions.

For an in-depth overview of morphological image processing (including definitions for

terms such as structuring element, dilation, erosion, opening, and closing) the reader

is referred to  [78].  While connected component based techniques are effective on

pages with only characters, they can exhibit practically unbound time and memory

requirements  when presented  with  pages  consisting  of  halftones,  graphics,  and/or

handwritten  notes.  While,  in  connected  component  analysis,  a  region's  shape  is

primarily  dictated  by  the  configuration  of  its  “ON”  pixels,  Bloomberg  considers  a

region's shape based upon relationships between adjacent “ON” and “OFF” pixels and

then considers texture to be the statistical distribution of such shapes in an image.

Bloomberg  describes  a  morphological  image  processing  operation  called  the

“generalized opening,” based upon the hit-or-miss transformation [79], which is useful

for localizing shapes and textures of interest within an image. The rationale behind

carrying  out  operations  at  multiple  resolutions  is  that  a  single  document  image

typically  will  contain  shapes  and textures  of  various  sizes.  While  it  may  be  more

advantageous  to  process  smaller  regions  at  a  higher  resolution,  larger  regions

generally  require  only  a  course  view  (lower  resolution).  Multiresolution  image

processing exploits such size differences such that regions can be processed in their

most appropriate resolutions. Bloomberg describes a solution to the problem of half-

tone  segmentation  which  closes  the  image  (performs  a  dilation  followed  by  an

erosion) with a large structural element, followed by an opening (erosion followed by
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Figure 27: From left to right: (1) The original image. (2) Vertically run length smeared image.

(3) Horizontally run length smeared image. (4) The logical AND of (2) and (3). F. Wahl, K. Wong,

and  R.  Casey,  "Block  Segmentation  and  Text  Extraction  in  Mixed  Text/Image  Documents,"

Graphical Models and Image Processing, vol. 20, no. 1, Jan 1982, pp. 375-390. Used under fair

use, 2014.



dilation) in order to only keep the half-tone regions while  removing the text ones.

Since using large structural elements on a high resolution image ends up being very

costly, Bloomberg instead carries out the same functionality by carrying out a cascade

of openings and closings using a 2x2 structural element while subsampling the image

in between these operations. 

Bloomberg further goes on to illustrate how multiresolution morphology can be used

for the detection of italicized words (and also a separate technique for detecting bold

words). To detect italics,  Bloomberg looks for edges inclined at about 12 ° from the

vertical. A 6x13 structural element is used which consists of 4 “OFF” pixels on top of

one another aligned at an approximately 12° angle followed by 4 “ON” pixels in the

same  configuration.  The  aforementioned  pixel  sequences  are  separated  by  “don’t

care” pixels in between and to the sides as shown in Figure 28. 

As illustrated by Figure 29 (a), the “generalized opening” operation (hit or miss

transform followed by dilation) is carried out on the image using the structure element

shown in  Figure  28  in  order  to  find which  regions  of  the  text  contain  italics.  The

resulting “ON” pixels of the generalized opening are considered the “seed” pixels for

italicized words. A closing operation followed by an opening as carried out on the seed

pixels in order to, respectively,  merge the correct seed pixels,  and then get rid of

noise. After performing a small  vertical dilation on the result, the final seed image,
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 Figure 28: 6x13 structural element used by Bloomberg in detecting italics. The open circles

on the left represent “OFF” pixels, the closed circles represent “ON” pixels, and the empty

squares are “don’t care” pixels. D. S. Bloomberg. "Multiresolution Morphological Approach to

Document  Image  Analysis,"  1st  International  Conference  of  Document  Analysis  and

Recognition, 1991, pp. 963-971. Used under fair use, 2014.



Figure 29 (b), is ready. Next, a word mask, Figure 29 (c), is created by sub-sampling

the image by a factor of 4 and using a cascade of openings and closings as was done

for the half-tone segmentation problem, followed by a small  horizontal dilation. The

final italics selection mask, Figure 29 (d), is then created by keeping only those words

in the word mask which overlap the seed pixels in the final seed image, thus resulting

in a mask which only keeps the italicized words in the image. 

 Hybrid Physical Structure Analysis

Hybrid structure analysis can simply be regarded as any mixture of the top-

down  and  bottom-up  approaches  previously  described.  Several  of  the  hybrid

segmentation algorithms found in the literature utilize a combination of “splitting and

merging” strategies [62] [80] [81]. Such algorithms will begin by  carrying out a top-

down  methodology  in  order  to  first  split  the  page  into  regions  which  appear

homogeneous,  usually  based  upon  horizontal  or  vertical  projection  profile

measurements.  Liu et al.  [80], for instance, utilize an algorithm which operates as

follows: If a region is found to be in-homogeneous based upon certain critieria then it

is  split  into 4  rectangular  sub-regions using an adaptive thresholding technique to

choose the line positions.  If  two regions within the previously split  region are then

found to be homogeneous based upon the same criteria then they are merged. This is

continued recursively until there are no more splits and merges to be made. There are

also  various  hybrid  techniques  which  operate  based  upon  measuring  the  space

between  text  areas,  referred  to  as  “maximal  white  space  calculation.”  Such

techniques  such as those  of  Okamoto et  al.  [82] and Bruel  [83] are  derived from
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Figure 29: Bloomberg’s italics detection. Original text is on the left and on the right is (a) the

intermediate seed image, (b) the final seed image, (c) the word mask, and (d) the final italic

word selection mask for the image. D. S. Bloomberg. "Multiresolution Morphological Approach

to  Document  Image  Analysis,"  1st  International  Conference  of  Document  Analysis  and

Recognition, 1991, pp. 963-971. Used under fair use, 2014.



Baird’s “Shape-directed Cover Algorithm” [84]. This subsection will first discuss Baird’s

shape directed cover algorithm as well  as a newer algorithm which is in the same

spirit. Two notable open source systems which perform document layout analysis are

Tesseract  [18] and OCR-Opus  [85]. Both systems utilize a combination of bottom-up

and top-down physical layout analysis techniques and will briefly be discussed as well.

Shape-directed Cover Algorithm. In an attempt to combine the strengths of

top-down and bottom-up methods (i.e. faster run time for the more greedy bottom up

methods  but  more  global  knowledge  for  top-down),  Baird  et  al.  [84] proposed  a

“global-to-local” strategy which first finds the rectangular coordinates of all foreground

connected  components  and  then  finds  all  of  the  maximal  white  space  rectangles

surrounding them. A white space rectangle is considered maximal if it contains only

white pixels and cannot be further expanded while staying entirely white. The white

space rectangles are then sorted into a binary tree structure where the right-most

white space rectangles are at the root, and the left-most are the leaves. Multi-way

branches which occur when there is more than one maximal white space rectangle at

a given X coordinate, are handled using singly linked lists as entries in the binary tree.

Unlike most of the previous top-down physical layout analysis research, Baird focuses

intently on algorithmic complexity. When he denotes the number of maximal white

space rectangles as m and the number of foreground rectangles as n, he found his

algorithmic complexity for sorting the white space rectangles to be . 

Once the rectangles are sorted, a subset of these rectangles denoted as the

“cover set” is chosen.  Any regions of the image not covered by the union of this cover

set will define the segmented text blocks. In order to speed up processing time, the

rectangles  in  the  cover  set  are  chosen  in  a  greedy  fashion  using  the  high  level

information available in the binary tree. In terms of processing speed, this can prove

advantageous  over  the  X-Y  Cut  algorithm which  uses  extensive  backtracking.  The

cover  space  is  chosen  based  upon  domain  specific  information.  For  instance,  in

Manhattan layouts, the white space rectangles between columns will typically have a

high (but not too high) aspect  ratio.  Baird et  al.  thus assigns shape scores to the

rectangles in order to favor the most significant and choose the cover space based

upon  these  scores.  Experiments  were  run  on  over  100  Manhattan  layouts  which

included typewritten and printed pages from letters, magazines, books, journals, and

newspapers,  which  included  complex  layouts  consisting  of  headers,  footers,

embedded  mathematical  equations,  graphs,  multiple  columns,  etc.  The  authors

reported near perfect results for large column structures but would observe errors for

smaller blocks of text especially in the presence of noise. 
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White  space  cover  algorithm by Breuel. Breuel  presents  a  variation  of

Baird's white space analysis algorithm which is simpler to implement (requires less

than 100 lines of Java code)  [83]. The algorithm starts by picking one of the black

rectangles,  called the “pivot”,  toward the center  of the image.  Since the maximal

white rectangle cannot contain the pivot, there are now four distinct possibilities for

the maximal rectangle's location: above, below, to the right, and to the left of the

pivot.  Each  sub-rectangle  is  then evaluated  using a quality  measure  to  determine

which is most likely to contain the maximal rectangle. After the sub-rectangles and

their respective quality measures are inserted into a priority queue, the above steps

are repeated. This process continues until a fully white-space region is detected. The

rectangle  corresponding  to  this  region  is  the  optimal  solution.  The  results  of  this

algorithm were described as favorable when run on the same dataset as Baird (the

UW3 Database  [86]), with no errors observed on 223 pages. An in-depth evaluation,

however, was not provided. Figure 30 illustrates a more recent technique called “the

White Space Cuts Algorithm,” [87] which combines Baird and Bruel’s approaches.  

OCRopus Open Source OCR System. Bruel, who was discussed previously

for his novel variation of Baird’s white space cover technique, is the project lead for

OCRopus, an open source Google-sponsored project which addresses various problems

in  Document  Analysis  through the use  of  large  scale  machine  learning.  All  of  the

project’s modules are written in Python and the project emphasizes modularity, easy

extensibility, and reuse. OCRopus is aimed at both the research community as well as

large scale commercial document conversions  [85]. The system includes overridable
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Figure:  30:  An example image illustrating different steps of the whitespace-cuts algorithm.

Left  to  right:  whitespace cover of  the page background,  extracted vertical  separators and

borders,  extracted  horizontal  separators,  extracted  page  segments.  F.  Shafait.  "Geometric

Layout Analysis of Scanned Documents," PhD thesis, University of Kaiserslautern, 2008. Used

under fair use, 2014.



modules  including,  but  not  limited  to,  noise  removal,  skew  detection,  text/image

segmentation, layout analysis, textline recognition, optical character recognition, and

statistical  language  modeling.  For  more  details  on  the  architecture  as  well  as

algorithms implemented by this system, the reader is referred to [88]. 

Tesseract  Layout  Analysis  Module. Tesseract,  another  Google-sponsored

project as described earlier, utilizes a hybrid page layout analysis algorithm [18] which

starts by utilizing bottom-up techniques in order to locate “tab-stops” on each text

line.  These  “tab-stops”  can  represent  the  left  and  right  edges  of  columns  at  that

particular vertical location of the page. Each left and right tab stop is connected to

form a “column partition,” a vertical slice of a column at the given text line. A “column

partition set” is the group of all “column partitions” at a vertical position of the page

(i.e. stretching from the left of the page to the right). The column partition sets are

then iterated in order to derive the column structure that makes the most sense for

the  entire  page.  Once  the  column  structure  of  the  page  has  been  derived,  this

structure is applied in a top-down fashion in order to derive the page’s reading order.

 Document Logical Structure Analysis
While the physical layout analysis step of a document analysis system generally

divides an image into areas of text and non-text while determining an initial estimate

of the page’s basic columnar structure, the logical  layout analysis step will  further

investigate the resulting structure in order to determine where splits or merges  may

need to be made based upon the perceived syntactic  meaning of  the document’s

components. The document analysis system may then iteratively transition back and

forth from physical  to logical  analysis based upon further document understanding

until  some criteria is met. Once all  of the document’s components have been fully

classified  and  segmented,  the  result  of  the  logical  analysis  will  be  an  increased

understanding of the page’s components. The page may, for instance, be composed of

the  chapter  name  at  the  very  top,  a  page  number  to  the  top  right,  and  several

columns  of  text.  The  columns  may  consist  of  imagery,  half  tones,  mathematical

equations, block quotations, as well as various other components.

In the literature, document logical layout analysis research can be most broadly

split into three main categories: (1) type-specific detection, (2) zone classification, and

(3) page classification [89]. Type-specific logical layout analysis techniques, which are

the primary focus of this thesis, emphasize the use of separate algorithms to detect

possible components (i.e., text, image, math, half-tone, chemical equation, etc.) and

make no assumptions  about  whether  or  not  these  components  have already been

correctly segmented. The input to a type-specific logical analysis algorithm may, for
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instance,  consist  of  a  single  block  which  should  really  be  logically  separated  into

multiple separate blocks,  and/or various blocks which actually need to be merged.

Zone classification techniques,  on the other  hand,  assume that  the document has

already been properly segmented into type specific zones and all  that needs to be

determined is what these types are. Such techniques will extract features from the

zones and then use these in order to directly classify the zone type as one of a finite

set of types (i.e., normal text, mathematics, imagery, etc.). Page classification layout

analysis research is geared toward classifying an entire page based upon the type of

its content. A page may, for instance, be categorized as a title page, table of contents,

appendix, glossary, regular page, etc. 

Although  page  classification  is  an  important  component  of  document

understanding, such a region-wide generalization should only be made after an in-

depth analysis of the page is carried out to gain an understanding of all of its zones. It

would not make sense to segment the page into logical zones based upon an ill-fitted

estimate of what contents the page is expected to have. Likewise, zone classification

may be an important step in logical layout analysis but it misses the important point

that no physical layout analysis technique done prior to logical analysis is perfect. A

full understanding of the under and over segmentations made by the initial physical

layout  analysis  algorithm  may  rely  upon  the  type  of  content  in  question.  If,  for

instance, a table element is detected by the logical analysis module, it may make the

most sense to then check for oversegmentations that could have been made by the

physical analysis module. All of the elements that are clearly part of a larger table

should be merged such that the table is then segmented appropriately. Likewise, there

may be a  block  of  text  which  has actually  been undersegmented by the physical

analysis module. An example of an undersegmentation is seen when there are inline

mathematical expressions within a paragraph of text. While the entire paragraph may

have been correctly segmented by the physical layout module, it is very important for

the mathematical expressions within it to be segmented from the normal text in order

to avoid subsequent recognition errors. In such an instance, it is then the logical layout

analysis module’s job to detect candidate mathematical expression regions and then

utilize the appropriate physical  layout techniques necessary to segment them from

the normal text.

Since proper physical segmentation and page classification are dependent upon

the type of content in question, type-specific detection is the primary focus of this

thesis. After a brief overview of some of the page and zone classification techniques

found in the literature, type-specific detection techniques, the focal point of this work,

will  be  discussed  in  greater  detail.  The  focus  will  be  primarily  on  type-specific
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detection of mathematical expressions. Detection of other zones such as tables, logos,

and music scores will also be briefly discussed.

 Page Classification

The motivation for page classification research is two-fold. Firstly, it is important

in facilitating faster document processing. If a page's specific type can be known then

the  corresponding  type-specific  layout  analysis  techniques  may  be  employed  to

reduce processing time. Secondly it is important to facilitate faster indexing of page

types. For instance if the title page is known, it will be very fast to do a document wide

search  to  find  the  author  of  the  work.  When  a  user  is  searching  for  a  specific

document,  knowing  the  class  under  which  the  document  resides  may  allow  for  a

quicker and more fruitful query experience. Page classification techniques found in the

literature utilize a wide range of feature and classifier types in order to categorize an

entire page. Although some methods utilize the output of a commercial OCR engine

[90], the majority of techniques only use features taken directly from the document

image  [91] [92].  Page  classification  can  be  carried  out  at  various  stages  in  the

document layout analysis process. The stage at which a final decision regarding the

page type is made may vary based upon the type of document fed into the system, its

physical and logical layout, etc. For an in-depth overview of how the problem of page

classification has been previously approached, the reader is referred to [93]. 

 Zone Classification

Zone classification techniques are employed in order to logically label regions

independently  of  physical  segmentation.  Such  techniques  operate  under  the

assumption that whatever physical layout technique was carried out prior to logical

analysis has already properly segmented the page into logically independent zones

(i.e., normal text, equation, table, image, etc.). In the literature these techniques vary

based upon feature extraction methods, classification techniques, and the number of

zone types to choose from. While earlier works [94] [95] may only distinguish between

2-3 zone types, more recent work [96] [97] is observed to distinguish a wider variety

of zone types (i.e., 9-10). 

The work done in [95] employs features based on the zone's spatial distribution

of pixels to train a binary decision tree classifier that distinguishes text from non-text.

Fan et al. [94] use pixel density features to first segment text from non-text and then

use a “pixel connectivity histogram” in order to classify nontext as either photographic

imagery or vectorized graphics. The pixel connectivity histogram takes into account

every foreground pixel of the given zone, measures the number of other foreground

pixels connected to it (the connectivity measurement), and gives the number of such
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foreground  pixels  that  fall  under  each  connectivity  measurement  found.  The

classification algorithm utilized was not specified by this work. Wang et al. [96] use a

25 dimensional  vector composed of run-length, spatial, and background features in

order to train an optimized decision tree to classify a zone as one of nine zone types.

Abd-Almageed et al.  [97] extract features of the zones based on the run-length and

spatial  distribution of foreground pixels.  The partial  least squares algorithm is then

carried out on these features in order to reduce their dimensionality. A novel hybrid

classification approach which combines the benefits of a one-against-all classification

scheme with those of a one-against-one scheme is used to determine the zone type

from the reduced feature space. An SVM is used as the underlying binary classifier.

Zones are classified into one of 10 logical  types (chemical  drawing, small  text and

symbols, drawing, halftone, logo or seal, map, math, ruling, table and large text). Both

[96] and [97] are evaluated on the University of Washington III (UWIII) data-set [86].   

 Type-specific Classification

Type specific classification techniques make no assumption about the accuracy

of any physical segmentation carried out prior to logical analysis. Thus a type specific

technique will, not only detect the type of a given region, but also choose what further

physical layout analysis may be required in order to ensure that the given region is

properly  segmented  (i.e.,  table  regions,  for  instance,  may  require  a  different

segmentation  technique  than  what  would  be  required  to  segment  normal  text

regions). The primary focus for this thesis is in type-specific classification: specifically,

the proper detection and segmentation of mathematical equations.  After an in depth

overview of mathematical equation detection and segmentation techniques found in

the  literature,  type-specific  classification  of  other  types  will  also  be  very  briefly

discussed.

     Mathematical Expression Detection

Only a dozen independent studies related to the type-specific segmentation of

mathematical expressions from document images were observed in the literature [98]

[99][100][101][102][103][104][105][106][107][108][109].  Although  the  research  of

math detection in document images may be largely uncharted, it is no mystery that

there are a wide variety of mathematical expressions prevalent in text books, journals,

and  technical  papers.  Such  documents  are  often  desired  to  be  viewed  through

portable  devices,  desktop  computers  and/or  screen  reading  software  for  general

convenience as well as assistive technology purposes. Even for “digitally-born” PDF

documents, it is rare that mathematical regions of text end up being properly viewable

by  most  software.  For  scanned  documents  this  problem  is  even  worse.  Most

59



commercial OCR modules employed typically have no understanding of mathematical

expressions and become confused by their presence. A common result of the presence

of  mathematical  expressions  during  OCR  is  garbled  output,  not  only  of  the

mathematical expression regions, but even nearby normal text regions which would

otherwise  be  recognized  correctly.  One  of  the  early  motivations  for  mathematical

expression detection was,  not necessarily  to properly  recognize these  regions,  but

rather  to  ensure  that  their  presence  does  not  reduce  the  accuracy  of  normal

commercial OCR software [104].

While there has been a relatively small amount of work found in the literature

geared toward the logical  and physical  segmentation of mathematical  regions,  the

OCR of these regions is a relatively mature field of study [110][17]. In mathematical

OCR, however, it is typically assumed that all regions are perfectly segmented prior to

recognition, either manually or automatically. In the literature, these regions are most

often manually segmented prior to evaluation such that the recognition problem is

evaluated  independently  of  the  segmentation  problem.  The  only  commercial

mathematical OCR software found in the literature to date, “Infty” [111], implements

an  expression  detection  module,  however  no  detailed  evaluation  of  it  is  provided

[100]. Their most thorough evaluations are thus carried out on regions which were

manually segmented beforehand. Since the type-specific logical and physical layout

analysis  of  mathematical  expressions  is  a  largely  uncharted  area  of  study  while

mathematical OCR has been studied extensively, the primary focus of this thesis is on

layout analysis rather than recognition. While mathematical OCR is certainly a very

important processing step, it is outside of the scope of this work. For a recent in-depth

literature survey on mathematical OCR the reader is referred to [17]. 

Before discussing the existing literature on expression detection, it is important

to first specify some common notation and practices. Mathematical expressions found

in printed text can either be located on a separate line from normal text or be mixed in

with the text. Expressions falling under the first category are commonly termed as

either displayed/isolated by the literature while those which fall under the second are

termed as embbeded/inline. Expression detection techniques most often operate in

several  steps referred to as passes.  The first  pass often consists  of locating initial

expression  candidates  referred  to  as  seed  regions.  These  regions  are  then  either

removed or grown in further passes based upon various heuristics. The term, “digital-

born document” refers to a document which was created directly from a computer

rather than being scanned in. The dozen independent studies found in the literature

each consist of either one or more conference or journal papers and will be briefly

reviewed in the chronological order of their first publication.
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Lee  et  al.  [99] (1995). While  this  study  is  primarily  geared  towards

mathematical  expression  recognition,  the  system  also  included  an  expression

detection module.  Bayes  decision  rules  are  employed in  order  to  locate  displayed

expression regions.  If a displayed region is detected then the entire line on which it

resides  is  labeled  as  an  expression  region.  No  detailed  analysis  of  the  detection

accuracy is provided. Similar work was also later carried out in  [112].

Inoue et al.  [100] (1998). An early study carried out by the authors of the

“Infty”  commercial  OCR  software,  this  work  explains  the  software's  underlying

expression segmentation module. The module recognizes normal text and segments it

from  mathematical  text  in  the  same  step  by  using  information  obtained  from  a

commercial OCR engine along with a dynamic programming algorithm. Experiments

are run on 50 pages of Japanese text, of which detection errors are reported to have

occurred on every page. No thorough evaluation is provided.

Fateman  [101] (1999). The technique described operates in three separate

passes and includes an interactive system which allows the user to manually correct

any segmentation  errors  which  may have been made.  During the first  pass,  each

connected  component  in  the  image  is  separated  into  one  of  two  “bags”:  one  for

normal  text,  the  other  for  mathematical  text.  The  math  bag  initially  contains  all

italicized  letters,  Roman  digits,  punctuation,  special  symbols,  and  horizontal  lines.

These are considered as the seed regions. The second pass will then group the math-

bag components into zones and, according to horizontal and vertical proximity, grow

the seed regions by relabeling nearby text components as belonging to the math bag.

On the third pass, remaining punctuation connected components in the math bag that

are still isolated are moved to the text bag. Remaining isolated Greek letters, Roman

numbers, etc. are kept in the math bag. Text components  that are close in proximity

to the math bag, and could be considered as math such as “sin”,  “cos”,  etc.,  are

moved to the math bag. Finally, the results are then shown to a human for interactive

editing and correction.

Toumit et al.  [102] (1999). A specialized top-down physical  segmentation

technique  operating  on the  entire  image  with  image  reductions  to  segment  math

regions is briefly described but no specific details are provided. Displayed expressions

are located under the assumption that they are always centered and on their own line.

No further specific details are given. Embedded expressions are located by first finding

special characters (i.e., “+”, “=”, “>”, etc.) and propagating around these using rules

specific to the given symbol. Various concepts and heuristics are defined and utilized

for  mathematical  expression  detection,  primarily:  atomic  structures  are  single

mathematical  symbols;  composite  structures  are  logical  groupings  of  atomic
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structures; implicit structures have no graphical representation (i.e., the multiplication

operator when representing the multiplication of   with   as simply  ).  To represent

mathematics, a tree structure is used which allows each node to have more than two

children.  It  is  argued  that  mathematics  is  not  inherently  a  binary  recursive  data

structure, but simply a recursive one. While  can be represented by a binary

tree, matrices, integrals, and vectors cannot necessarily be represented in this way.

No detailed evaluation was carried out in this work.

Garain et al. [103] (2000). Four relavent works from Garain and his advisor,

Chaudhuri, will be herein briefly reviewed. Garain's earliest technique first segments

all text lines (this includes those of displayed expressions) by measuring horizontal

projection profiles and denoting the boundary between two lines as local minima of

these  profiles.  Next,  each  text  line  is  separated  into  its  constituent  connected

components. The mean and standard deviation is calculated for the distance of the

bottom  of  the  text  line  to  the  bottom  of  each  connect  component.  Since  math

expressions may contain elements whose distance from the baseline varies more than

normal text, this metric can, in some cases, be very helpful. If the standard deviation

is above a predefined threshold then the line is expected to contain an expression. If

such  a  line  is  also  observed  to  be  vertically  separated  from  normal  text  lines

significantly then it is labeled as a displayed expression region. 

Embedded regions are then found by first looking at remaining normal text lines

to find mathematical characters (i.e. “+”, “=”, etc.). When such characters are found,

they are considered as seeds for the expression region and are recursively merged

with their neighbors based upon the following criteria: (1) if the seed  region is just a

binary operator then the immediate left and right “words” are merged with the seed

operator, (2) “words” adjacent to the seed region on the immediate left and right are

merged if they contain one or more mathematical  symbols, superscripts/subscripts,

single  dots/ellipsis,  or  numbers.  Their  detection  algorithm is  tested  on  120  pages

containing a total of 140 mathematical expression zones. Of these 120 pages, 20 are

taken from the UWIII dataset. 132/140 expression zones were properly detected, with

eight of them being entirely missed and three entirely false detections. No partially

correct detections are presented in the results (i.e., either the detection is completely

correct or completely wrong based upon their evaluation technique). 

In 2003 a morphological technique was proposed by Chowdhury [113] in order

to  segment  displayed  expression  regions  from  all  other  regions  in  the  text.  A

morphological approach is first carried out to segment table, text, and graphic zones.

Further segmentation is then carried out on the result in order to find the displayed

expression regions.  Such regions are categorized into the three basic  types:  those
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which contain large horizontal lines, those which contain a long vertical separator (as

is often seen in matrices or determinants) and all  others. In order to segment the

regions which  fall  under  the “all  others”  category,  the page  is  first  closed  with  a

horizontal  structuring  element  in  order  to  locate  the  text  lines.  Subscripts  and

superscripts (localized based on proximity and size relationship) are associated with

their  text  lines.  Features  such  as  number  of  subscripts  and  superscripts,  vertical

overlaps,  presence  of  tall  symbols,  and  horizontal  positioning  of  connected

components are used by a decision tree classifier  to locate the displayed regions.

Similar techniques are used to localize regions containing horizontal or vertical lines.

The techniques  are  evaluated  on a  set  of  197  images.  While  roughly  97% of  the

displayed regions were reported to have been correctly segmented, no measurement

was  given  of  false  positives.  The  technique  was  tested  on  embedded  expression

regions and found to have a 68% true positive rate. Again, no indication was given of

false positive rate. 

In 2004, Garain and Chaudhuri propose a technique for segmenting embedded

expressions  from  document  images  [114].  n-grams  are  utilized  in  order  to  spot

sentences  output  from  a  commercial  OCR  that  are  likely  to  contain  embedded

expressions.  Sentences  containing phrases  like  “such  that”,  “note  that”,  “denote”,

etc.,  were shown to have a higher probability of containing embedded expressions

than  those  which  did  not.  A  dataset  containing  400  scanned  pages  of  scientific

documents including various science books, journals, conference proceedings, etc., is

utilized by this study for evaluation [115].  Words recognized by the commercial OCR

are  evaluated  as  possible  embedded  expression  candidates  based  upon  the

probability of their sentence to contain embedded expressions based on n-grams, the

commercial OCR's confidence rating for constituent letters within the word in question,

italic/bold/normal  type  style  detection,  inter-character  spacing  within  the  word  in

question, and variance of the bottom y coordinates for the constituent symbols within

the word in question. 

Experiments were carried out on the 400 scanned pages from the dataset which

contained over 3000 embedded expressions. Evaluation includes a count of the true

positives,  false  negatives,  and  false  positives.  Also  included  in  the  evaluation  are

partially recognized regions. The evaluation scheme strives to combine all of these

measurements into one single metric/score. Partial recognitions are weighted based

upon how many components were supposed to be identified as math in the region vs

how many were actually identified2. The false negative count is weighted by zero for

2 This may prove problematic since components with a large number of pixels will be
weighted just the same as components that are very small.  For this reason, pixel-
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some  reason,  and  thus  does  not  factor  into  the  score.  Based  upon  their  scoring

technique, ranging from 0 to 1, an average score of .963 was obtained for all  400

pages. 

In 2009,  Gerain  experiments with methods for detecting both displayed and

embedded expressions in document images [116]. Gerain approaches the problem by

first  extracting  features  for  displayed  and  then  embedded  expressions  from  the

document image and then experimenting with various averaging techniques on the

respective features in order to see which has the best discrimination power for the

given problem. Features are first extracted in order to classify an entire line of text as

either being a displayed expression or not. In this study, the tendency of displayed

expressions  to  also  contain  normal  text  seperators  which  don't  belong  to  the

expression  (i.e.,  commas,  periods,  phrases  like  “and”,  “therefore”,  etc.)  is  not

accounted  for.  The  features  used  to  detect  displayed  expressions  include  a

measurement of the vertical  space above and below the text line in question,  the

vertical scatter of the bottom  coordinates of the connected components on the line

in question, the pixel height of the text line in question relative to the average pixel

height of all the lines on the page, and the number of mathematical symbols on the

text line. Each of these features is normalized to a value between 0 and 1 by using the

following  exponential  expression,  ,  where   is  the  feature  value.  The

exponential allows for slight changes in the quantities being measured to have a large

impact on the feature values. 

After  text  lines  are  labeled  as  either  displayed  or  normal,  embedded

expressions are then sought out for the remaining normal text lines. Individual words

within sentences are classified as either displayed or normal based upon the following

features.  As  in  the  previous  study,  linguistics  is  incorporated  in  order  to  detect

sentences  which  are  likely  to  contain  embedded  expressions.  Other  features

incorporated  for  embedded  expression  detection  include  the  commercial  OCR

confidence rating of each word of the sentence, the typestyle of the given word (i.e.,

italic,  bold,  etc.),  the scatteredness of  the connected components within the word

about the textline, and the average horizontal gap between characters within the the

word in question. After normalizing these features,  they are used to classify every

word of a sentence as either normal text or embedded expression text3. The features

accurate methods of evaluation are utilized in this work, as will be explained in a
later section.
3 Garrain relies on commercial OCR engines to segment his words within sentences,
prior to classification. He makes no corrections to improper segmentations made by
the commercial OCR. Thus in the situation where a word is improperly segmented by
the commercial OCR as containing part of an expression and part of a normal text all
in one block, Garrain's algorithm will always either result in false positives or false
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for displayed text lines are each combined into a single scalar value through one of

the  following  averaging  techniques:  arithmetic  mean,  geometric  mean,  harmonic

mean, and weighted mean. Lines are chosen as displayed text or not by comparing

the resulting feature value to a scalar feature value found empirically which varies

depending upon the averaging technique used. A very similar approach is  used to

detect  words  segmented  by  the  commercial  OCR  engine  that  are  embedded

expressions.

Experiments  are  carried out  on 200 scanned pages.  150 of  the pages were

taken  from  Garrain's  corpus  [115] and  the  other  50  were  taken  from  the  INFTY

database  [117] which  only  contains  manually  segmented  displayed  expression

images.  Training to determine  thresholds  is  carried  out  on 50  of  the images,  and

evaluation carried out on the other 150. Tests using the weighted average method

wherein the weights are determined through a gradient descent algorithm showed the

best results. Using their specialized efficiency metric which takes into account false

negative, false positives, true positives, and partial recognitions, [114] a score of 87%

is achieved for embedded expression extraction while a score of 88% is achieved for

displayed expression extraction. 

Kacem et al. [104] (2001). As illustrated by Figure 31, the primary motivation

of this work is  not to properly segment all  mathematical  regions for mathematical

recognition purposes, but rather to only segment those regions which may interfere

with a normal commercial OCR engine (i.e., that could result in errors). The proposed

technique identifies various mathematical symbols in the document without the use of

any commercial OCR engine. These symbols include product, summation, integrals,

roots,  fraction  bars,  large  brackets  (i.e.,  that  surround  horizontally  overlapping

expressions  on different  lines),  small  delimiters  (i.e.,  normal  paranthesis/brackets),

and  binary  operators  such  as  plus,  subtraction  and  equals.  These  symbols  are

identified based on a measurement of their connected component's aspect ratio, area,

and pixel density. Using a training set which contains various appearances of these

symbols in printed text, a histogram is created for all measurements in order to know

their distribution. Based upon these histograms, upper and lower bounds are set on

these measurements for each symbol. When identifying a new connected component,

a label is assigned to it based upon the intersection of all three measurements. Rather

than doing an immediate binary label based upon this information, a “membership

degree”  is  assigned to the connected  component  for  each  of  the possible  symbol

types. If any of the membership degrees are within the upper and lower bounds, the

symbol type with the highest degree is assigned to the connected component. This

negatives. 
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method was evaluated on a test database of 460 mathematical symbols and 95.3% of

connected components were found to be well-labeled.  It was not indicated whether or

not there were false positives.  

Once the connected components are labeled as indicated above, the text lines

are determined by grouping all the connected components based upon proximity. The

specific algorithm used is not specified. Math symbols found within text lines are often

used as heuristics to dictate whether or not lines should be merged. For instance, in

the case of a large fraction bar, it is clear that there should be both a numerator and

denominator. This may require vertically merging part of the two text lines together.

Once the lines are extracted, their aspect ratios and position in relation to other lines

is measured in order to determine whether or not they are likely to be a displayed

equation.  Further  measurements  are  then  made  on  each  connected  component's

vertical position within its corresponding line and its height in relation to the average
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Figure 31: Regions detected by the method of Kacem et al. as belonging to expressions are

shown  above  bounded  by  rectangles.  Note  that,  although  most  of  the  regions  are  over-

segmented with various symbols being missed altogether, subtraction of the above labeled

regions  will  result  in  improved  accuracy  for  most  commercial  OCR  engines  which  would

otherwise be confused by the presence of the various mathematical expressions. A. Kacem, A.

Belaid,  B.  M.  Ahmed,  "Automatic  Extraction  of  Printed Mathematical  Formulas using Fuzzy

Logic  and  Propagation  of  Context,"  International  Journal  of  Document  Analysis  and

Recognition, vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.



connected  component  height  for  the  line.  For  every  line,  all  of  the  connected

components  are  labeled  as  one  of  the  following topography features:  overflowing,

ascending, descending, centered, high, or deep as illustrated by Figure 32.

The topography features are used to help determine the type of a symbol. For

instance  subscripts  would  be  descending  or  deep,  while  superscripts  would  be

ascending  or  high.  Radicals  would  be  overflowing,  and  fraction  bars  would  be

centered. Subscripts and superscripts are found by comparing the relative size and

position  of  two  adjacent  connected  components.  Training  is  carried  out  on  these

measurements  using  a  histogram approach  similar  to  the  one  described  for  math

symbol identification.  Next, rule-based context is propagated based upon the specific

math symbols in question (for instance, each connected component inside a radical

symbol). Since summations, products, or integrals are often accompanied by limits,

these are sought out above and below such symbols. 

The technique was evaluated on 100 pages  with roughly 93% of the equations

reported as being properly segmented. While the technique was reported to be fairly

reliable for extracting displayed expression regions, it faced problems with embedded

expressions. Greek or italic symbols which should have been labeled as expressions

were often ignored as illustrated by Figure 33. 
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Figure  32: A connected component's possible topography features on text line j based upon

vertical location in reference to line j's upper and lower central bands. A. Kacem, A. Belaid, B.

M.  Ahmed,  "Automatic  Extraction of  Printed Mathematical  Formulas using Fuzzy Logic and

Propagation of Context," International Journal of Document Analysis and Recognition, vol. 4,

no. 2, December 2001, pp. 97-108. Used under fair use, 2014.



Jin et al. [105] (2003). Isolated expressions are extracted based on a Parzen

window classifier  and embedded expressions are extracted based on 2-D structure

analysis and various heuristics. The technique is evaluated on a dataset consisting of

93 pages from technical journals. 10% of the pages in this set are used for training

and the other 90%  for evaluation. The results are reported as favorable, however no

thorough evaluation or specific results are provided. 

Drake and Baird  [106] (2005). Drake and Baird utilize a technique based

upon Kise's  bottom-up Area Veronoi  Diagram-based physical  segmentation method
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Figure  33:  A  result  of  Kacem's  expression  segmentation  technique.  Note  that  the theta

symbol is only segmented for the cases when context propagation dictates that it

should be. When it is by itself it is missed entirely, while when it is wrapped in a

parenthesis or has a subscript it is segmented. A. Kacem, A. Belaid, B. M. Ahmed,

"Automatic  Extraction  of  Printed  Mathematical  Formulas  using  Fuzzy  Logic  and

Propagation of Context," International Journal of Document Analysis and Recognition,

vol. 4, no. 2, December 2001, pp. 97-108. Used under fair use, 2014.



[75].  For  each line of  text,  the Area Veronoi  Diagram is calculated and then each

vertex and edge is classified as either normal text or mathematical. All of the results

for the line are then combined in order to classify the line as normal  text or as a

displayed  expression.  A  strength  of  this  technique  is  that  the  Veronoi  diagram is

invariant to skew of the page. Thus an expression could be detected by this technique

regardless of its angle in reference to the rest of the page. The input to both training

and evaluation are images of isolated text lines which were cut out of page images

manually or synthesized in isolation using Latex. The dataset contains roughly 4,400

connected components labeled as math,  with about half  used for training and the

other  half  used for  testing.  The Veronoi  diagram's  edges were also  labeled in the

dataset, with roughly 4,000 used for both training and testing purposes respectively.

From reviewing the confusion matrices provided it was found that the true positive

rate for math connected component detection was 88% and false positive rate was

~7%. The algorithm was not tested on any lines that contained a mixture of math and

normal text.

Tian et al. [107] (2005). Tian et al. propose a technique aimed at segmenting

both  displayed  and  embedded  expressions.  Displayed  expressions  are  found  by

calculating the average  distance of the center of all connected components on a line

from the line's center. If this measure is above an empirically determined threshold,

then the line is declared as a displayed expression candidate. To confirm whether or

not  the  candidate  is  truly  a  displayed  expression  region,  the  line's  connected

components  are  run through a recognizer  specifically  designed from mathematical

symbols. If any mathematical symbols are found then the text line is confirmed to be a

displayed expression region.  Embedded formulas are found by analyzing the spatial

orientations  of  connected  components  on  the  text  line,  recognizing  mathematical

symbols, and employing propagation rules based upon these symbols. The technique

is  evaluated  on  more  than  100  pages  of  technical  documents  to  achieve  a  true

positive  rate  of  95.19%  for  displayed  expressions  and  90.12%  for  embedded

expressions. False positive rates are not reported. 

Yamazaki et al.  [108] (2011). Yamazaki  et al. describe a technique which

they  have  integrated  into  OCRopus  [85].  The  technique  only  detects  displayed

expressions and uses features very similar to those proposed by Garain. Also included

are the following features: standard deviation of symbol aspect ratio within a text line,

and  left  indentation  measurement.  Rather  than  using  the  averaging  techniques

employed by Garain, a SVM is used. The system is tested on an unspecified number of

pages containing 542 displayed expressions, of which, 531 are identified correctly. No

further evaluation is provided.
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Lin and Baker et al. [109] (2012). X. Lin from Peking University and J. Baker

from  University  of  Birmingham  collaborated  in  developing  novel  techniques  for

expression  segmentation  in  digitally-born  PDF  documents  [118][119].  In  2012,  Lin

proposed  a  technique  for  segmenting  embedded  expressions  in  digitally-born  PDF

documents (the displayed expressions segmentation is not evaluated in this work).

Since  the  documents  used  in  this  study  are  digitally-born  it  is  assumed  that  all

typesetting  information  and  text  is  available  within  the  PDF's  on  which  the

experiments  are  run. In  order  to  detect  embedded  expressions,  text  lines  are

evaluated  each  in  turn  (no  OCR is  required).  First  the  words  on  the  text  line  are

segmented  by  using  an  adaptive  thresholding  technique  on  the  PDF's  image.  A

histogram is created which gives the frequency of horizontal gap lengths throughout

the line. The second most frequent gap length is used for determining the word gap

threshold  (the first most frequently occurring gap is typically the distance between

individual  characters  within  words).  Characters  such  as  parenthesis,  equals  signs,

sums, etc., are segmented as words regardless of their left and right horizontal gaps,

assuming that their unicode is available within in the file. 

Once the words are segmented, 12 features are calculated for each individual

word. These include 7 geometric layout features, 3 character features, and 2 context

features.  The  geometric  layout  features  include  the  variance  of  font  size  of  the

symbols within a word based on the PDF's typesetting information, variance of the -

coordinates of the symbols, variance of inter-character gap, variance of the bounding

box width and height, a measure of the degree to which all the symbols in the word

correspond to the same language (i.e.,  English or  Non-English),  and percentage of

English characters found within the word. The character features include the amount

of mathematical characters in the word, recognition result of the leftmost character,

and recognition result  of  the rightmost character.  The recognition result  of the left

most and right most characters give an indication as to whether or not the words in

between  or  to  the  left  or  right  are  mathematical.  For  instance,  if  the  right-most

character of the word is an “=” then it can be inferred that whatever is directly to the

left  must  also  be  mathematical.  Context  features  include  result  of  the  right  most

symbol of the previous word (word to the left), and type of the left-most symbol of the

next  word (word to the right).  Continuing with the “=”  example,  if  the right-most

symbol of the word to the left is an “=” sign, then it can be inferred that the current

word  is  in  some  form  mathematical  in  that  it  is  part  of  the  equation.  All  of  the

aforementioned features are normalized to some value between [-1,1]. The features

are then fed into a binary SVM classifier which has been trained on labeled datasets. 
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Experiments  are carried  out  on  50  journal  papers  and 5  mathematical  text

books.  2  pages  from each  paper  and 20 pages  from each  textbook  are randomly

selected,  thus experiments are carried out on 200 pages in total. The 200 pages are

divided into 5 equal subsets and 5-fold cross-validation is carried out. In each round a

single subset is used for evaluation and the 4 others are used for training. This is

repeated 5 times such that all 5 subsets are evaluated in this manner. The precision

(positive predictive value) and recall (true positive rate) measurements are made for

each of the 5 evaluations and then averaged to get the final result: 86.94% precision

and 84.29% recall4. 

Also  in  2012,  Lin  et  al.  proposed  a  new  technique  for  the  evaluation  of

expression segmentation methods [120].  A new evaluation metric is proposed which

takes into account oversegmentations, false positives, merges, etc. Weights of various

error types can be set based on specific application scenarios by changing parameters

of the evaluation tool implemented. For instance, in document information retrieval of

a math equation, a false negative should typically be weighted much higher than a

false positive. Either area-based evaluation or symbol-based evaluation is offered but

no pixel-level accuracy is achieved. 

The dataset and groundtruth are claimed to be publicly available but truly are

not since the documents used are not in the public  domain.  The dataset  has 194

digitally generated PDF pages. In total, 400 document pages were carefully selected

with an aim to be statistically representative of a wide variety of documents. Sources

for these documents range from conference proceedings, journals, books, and reports.

For each source document at least 1 and at most 8 pages are selected and added to

the dataset.  Documents  are  selected  with  publication  years  ranging from 1977  to

2010. Domain topics include mathematics,  computer science, biology, and physics.

65% of the document pages are single column and the remainder are multicolumn.

PDFs  are  also  included  that  are  generated  by  different  PDF-writers  (i.e.  AFPL

Ghostscript,  Acrobat Distiller,  Acrobat  PDFWriter,  ESP Ghostscript,  GNU Ghostscript,

Miktex PdfTex, etc.). The number of displayed and embedded formulas in each page is

counted and selected so that there is a wide variety of both counts. 

Lin  et  al.  Lin  et  al.  [118] collaborated  with  Baker  et  al.  with  the  goal  of

improving  mathematical  expression  segmentation  accuracy  for  digitally-born  PDF

documents.  In this work, it is argued that improper initial  physical segmentation of

text lines that contain math causes significant problems in formula identification. The

authors  describe  various  cases  of  commonly  mis-segmented  mathematical

4 It  should be noted that this segmentation technique suffers similar problems to Garain's
2009 approach, in that the initial word segmentation is never fixed, regardless of how incorrect
the adaptive thresholding technique may be.
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expressions separated into three basic categories. The first category describes a text

line containing expressions that are oversegmented into two vertically  overlapping

lines  (occurs  with  fractions,  sums/integrals  when  upper/lower  bounds  are  present,

etc.).  The second category describes matrices and other grid-like expressions which

results in similar difficulties. The third category describes a single expression which is

covered  by  multiple  lines.  This  occurs  when an  expression  on  the  left  side  of  an

equation is set equal to multiple expressions where each subsequent expression after

the first is covered by a new line. It is argued that, for identification and recognition

purposes, it is best that each new line of such an expression is merged during physical

segmentation as opposed to keeping each expression on the right of the equals as a

separate segment. 

To  address  these  problems,  a  learning-based  text-line  merging  technique  is

utilized. The technique utilizes one classifier to find the first two categories of mis-

segmented expressions and a second classifier for the third category. First the text

body is segmented from the header/footer regions. The text lines and columns are

then found using projection profile cuts. Next, for each line, the decision is made as to

whether or not the current line should be merged with the next line, based on the first

two improperly segmented categories. For this purpose, several features are utilized.

Features include vertical space between the text lines, the relative horizontal width of

the  textlines,  the  difference  of  indentations  between  the  two  text  lines,  ratio  of

average textline character widths and heights, ratio of main font sizes used in the

lines  (for  digitally-born  PDF's  the  font  sizes  are  typically  available),  2  features

describing existence of fraction signs, the existence of a large operator in either line,

features describing whether or not the text line ends with a binary operator, and if the

lower line ends with a formula index. Then some of the aforementioned features are

employed just to describe the individual textlines themselves rather than the relation

between two consecutive ones. 

The classification task is separated into two stages: the first aims at properly

segmenting  all  individual  expressions  and  the  second  aims  at  merging  single

expressions  that  span  multiple  lines.  When  training  for  both  of  these  stages,

performance is compared on 7 machine learning algorithms: SVM, MLP, Decision Tree,

Random Forest, Bayesian Network, Bootstrap Aggregating (Bagging), and Adaboost.

Bagging and Adaboost were reported to obtain the best performance during training

for the first and second stage of segmentation, respectively, and were thus adopted

for  evaluation.  The technique is  evaluated  on 600  document  pages.  100  of  these

pages are used for training while the other 500 are used for evaluation. Precision and

recall are reported on both stages for 100 of the the images tested, and then for the
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remaining 400 accuracy is only reported. The precision, recall, and accuracy were, for

the most part, all reported to be above 90%. False positive rates are not reported.

Baker et al.  Baker et al.  [119] introduced a tool, Maxtract  [121] which uses

projection profile cutting to segment the mathematical expressions but is reported to

not  be  very  accurate.  An  improved  segmentation  technique  is  described  and  its

effects  on  the  accuracy  of  Maxtract  are  reported.  A  histogram-based  approach  is

described for line segmentation. The approach is to first extract all of the connected

components  on  the  page,  and  then  determine  initial  lines  based  on  grouping  the

connected components based on vertical proximity. A histogram is then constructed

for the entire page which captures the horizontal  distance between each adjacent

component on each text line. Two local minimums are commonly observed in a similar

location on the histograms of their pages. These local minimums are used to represent

the minimum and maximum distance expected of a “principal” text line. Principal text

lines are those that would correspond to either normal lines or the main lines in big

math expressions (for instance,  ones that contain  summations,  integrals,  etc).  The

“non-principal” lines are the ones which may correspond to limits or upper and lower

bounds, and thus may need to be merged with their nearest principal line. Such lines

tend  to  be  more  sparsely  distributed  horizontally  than  the  principal  lines. Any

characters  having  a  distance  observed  outside  of  the  aforementioned  range  for

“principal” lines is considered a candidate for being part of a “non-principal” line.  

A  second  pass  is  then  used  to  correct  any  lines  which  may  have  been

mistakenly  labeled  as  non-principal,  the  heights  of  the  non-principal  lines  are

compared with the height of their next line. If the maximum connected component

height of the non-principal  line is greater than that of the principal  line divided by

some threshold then the non-principal  line is re-labeled as principal.  The threshold

value is determined empirically on a small sample set. A third pass then checks that

the lines that were considered as principal truly are principal. This is done by making

sure that all of the principal lines have a height greater than the maximum height of

the non-principal lines. The resulting non-principal lines are then merged with their

adjacent horizontally overlapping principal lines. If a non-principal line has no adjacent

horizontally overlapping principal line then it will be converted to a principal line. 

The technique is  evaluated on 200 pages comprising a mixture of  technical

journals and text books. 96.9% accuracy is reported. The technique was then further

manually  evaluated  on  a  larger  dataset  of  1000  pages  from  more  than  60

mathematical papers and an accuracy of 98.6% was reported. The most common error

was reported as that of incorrectly classifying a non-principal  line as principal. This

occurs  when the horizontal  distance  between characters  on a non-principal  line  is
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similar to that of the principal line. The authors then carry out a further experiment

which  integrates  the  aforementioned  segmentation  technique  into  their  Maxtract

software. Note that the aforementioned technique does not necessarily go so far as to

logically segment the entire mathematical expression regions, it only serves to ease

the physical segmentation task prior to logical labeling. Unfortunately this also results

in  some  errors  which  wouldn't  occur  with  normal  segmentation  techniques.  For

instance,  footer  regions  were  sometimes  mistaken  for  non-principal  lines  and

incorrectly merged with their preceding line. A technique similar to that reported in

the earlier literature  [109] is then employed after the aforementioned segmentation

step to identify mathematical zones.  

The modified Maxtract software is evaluated on two datasets. The first dataset

has 184 document pages and the second has only 10 pages. On the first dataset, the

math  expression  identification  technique  was  reported  to  have,  for  displayed

expressions, a true positive rate of 73.18%, 7.85% false positive rate, and 1.26% false

negative  rate.  6.56% of  the regions  were  reported  as being oversegmented while

12.41% of the region were reported as undersegmented. No results were reported for

embedded expressions in the first  dataset  however.  In the second smaller  dataset

which  contains  only  ten  images,  results  were  reported  for  both  displayed  and

embedded expressions.  While the isolated expressions have a true positive rate of

78.85% and false positive rate of 1.92%, the embedded expression only have a true

positive rate of 35.6% and false positive rate of 26.08%, and thus appear to require

significant improvement. 

Detection of Other Zone Types

      While type-specific detection of mathematical expressions is the primary focus in

this work, there are many other aspects to type-specific layout analysis that also need

to be worked on. These may include, for instance, the segmentation of tables [122],

musical scores [123], chemical equations [124],  circuit diagrams [125], etc. Although

these will not be studied for this work, they remain as important challenges in the

field.
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3 Method

3.1 Introduction

3.1.1 Purpose
The goal of this project is to enhance the quality of document layout analysis

and OCR for printed (non-handwritten) technical/scientific public domain documents

which  may  contain  displayed/inline  equations,  matrices,  illustrations,  graphs,  etc.

Automated processing of printed documents requires both physical and logical layout

analysis techniques to be employed in order to segment and classify zones of interest

for  correct  processing.  After  physical  layout  analysis  is  carried  out,  regions

corresponding to illustrations, plain text, musical notation, and mathematical formulas

all must be classified so that they can be processed correctly. The application of this

project  is  in  automated  processing  of  digitized  public  domain  documents  (or  non

public domain documents with author/publisher consent and due legal permission).

Automated document processing has seen widespread use in industrial settings (i.e.,

automated processing of bank notes or postage envelopes) as well  as for Assistive

Technology  in  aiding  the  blind  and/or  visually  impaired  in  their  accessibility  to

information. Document layout analysis and OCR has also found use in the “Google

Books  Initiative”  whose  founders  have  envisioned  a  veritable  online  “Library  of

Alexandria” from which all of the world's knowledge could be acquired.

This  project  aims  to  achieve  its  goal  by  developing  and  evaluating  a

mathematical expression detection and segmentation (MEDS) module fully integrated

with Google's existing document layout analysis software [18], compare this module's

accuracy  to  that  of  a  default  implementation  provided  with  the  software,  and  to

evaluate  performance  under  a  wide  variety  of  inputs.  Since  a  significant  problem

observed  in  the  existing  literature  is  a  lack  of  objective  performance  comparison

among MEDS modules, this work is tested on a dataset of public domain documents

that will be made available to others. The groundtruth dataset, MEDS implementation,

and  evaluation  tools  are  made  publicly  available  [126] in  the  hopes  that  the

performance of the current technique may more easily and objectively be compared to

previous and/or future techniques.

While  the  general  layout  analysis  framework  of  Tesseract  is  utilized for  this

work, a new MEDS module implementation overrides Tesseract’s default one through

run-time  polymorphism.  The  performance  of  Tesseract’s  document  layout  analysis
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framework  will  be evaluated  both under  the  default  MEDS module  and the  newly

implemented one, the results compared, and experiments carried out on printed text

from a variety of sources in order to gain insight into how best to increase accuracy

over a wide variety of documents while avoiding the problems of overtraining to the

largest extent possible. 

3.1.2 Problem Statement and Project Scope
Currently,  the  commercial  OCR  system  best  suitable  in  handling  scientific

documents is Masakazu Suzuki's “Infty Reader” which can accurately recognize a wide

variety of complex mathematical equations as well as matrices, assuming that they

are first properly isolated from other, non-math, regions of text. While some of the

system's  reported  shortcomings  are  attributed  to  the  merging  or  breaking  of

characters during image scanning, many of the system's errors observed in practice

were caused to the improper isolation of the math regions from non-math regions. The

Infty  Reader  system isolates  regions  of  interest  based solely  upon analysis  of  the

output of a commercial OCR system, Abby Fine Reader. Regions which appear to be

“junk output” are deemed as candidates for math recognition. Infty Reader effectively

sidesteps  the  problem  of  physical  and  logical  layout  analysis,  relying  solely  upon

whatever physical  and logical  layout analysis is performed by the proprietary Abby

Fine Reader system utilized. The system's degree of document understanding prior to

recognition,  therefore,  is  entirely  at  the mercy  of  false  positive  recognition  and/or

layout analysis errors made by Abby Fine Reader, which, in and of itself, was not even

designed with the layout analysis of scientific/mathematical documents in mind. 

Meanwhile, the “Google Books Initiative” project has spurred a great amount of

interest in the automated processing of a wide variety of documents ranging from

ancient texts, magazines, articles, to scientific/mathematical textbooks, dissertations,

etc. in over fifty languages. An experimental equation detector was implemented as

part  of  Google’s  2011  release  of  their  open  source  OCR  engine,  Tesseract.  Upon

performing a preliminary evaluation of the equation detector on several pages of a

public domain calculus text book  [127] it was found that fewer than a fourth of the

equation zones were fully segmented. Of all of these fully segmented equation zones,

none  of  them were  without  at  least  some  false  positive  pixels  and/or  under/over-

segmentations. The overall problem statement of this project can thus be described

as designing and evaluating a new MEDS module which can detect and segment math

expressions correctly on a range of document types. In the literature, the problem of

layout analysis for documents with formulas has either been that of properly detecting

and then segmenting the regions for math recognition or to detect all of the regions so
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they can be discarded and thus not hinder normal OCR output. It is important to stress

that the former of these two problems is the one being addressed in this work.

3.1.3 Definitions and Acronyms
Various acronyms and terms which will  be used throughout the remainder of

this  work  are  italicized  and  briefly  explained  in  this  section.  The  problem  being

addressed in this work is that of both detecting and properly segmenting regions of

mathematical text in a document image from those of non-mathematical text, so that

overall document recognition accuracy may be improved. The problem is herein given

the title of mathematical expression detection and segmentation  (MEDS). The MEDS

module  implemented  in  this  work  operates  as  a  component  of  Tesseract's  larger

document layout analysis system which is still under development by Google [18]. The

overall program operates in two major phases: detection and then segmentation. The

initial connected components found during detection, referred to as the seed regions,

are then  merged into surrounding regions based upon various heuristics during the

segmentation phase. 

3.1.4 Tesseract  Document  Layout  Analysis  Framework
Overview

Since the MEDS module implemented in this work is fully integrated with and

utilized as a component of Google's open source document layout analysis and OCR

software, Tesseract, this section gives a brief overview of some of the layout analysis

software's inner workings and introduces some associated terminology. While the bulk

of Tesseract's layout analysis software is geared toward physical layout analysis (i.e.,

segmenting columns of text, filtering out noise, and segmenting image regions) some

logical  layout  analysis  for  detecting  math  equations  and  table  regions  is  also

observed. The MEDS module implemented in this work overrides Tesseract's default

equation  detection  implementation  through  run-time  polymorphism.  Run-time

polymorphism is used to facilitate performance comparisons of the new and default

modules. 

Prior  to  initiating  the  MEDS  module,  Tesseract's  layout  analysis  system

segments image regions from normal text on the page and also filters out noise. The

page  is  then  divided  into  regions  referred  to  as  Column  Partitions.  Each  Column

Partition  (CP)  represents  a  region of  text  which  should  be  physically  and logically

segmented from its neighboring regions (i.e., an individual row of text within a column,

a  displayed  expression,  etc.).  These  regions  are  initially  segmented  through  a

projection  blurring technique as illustrated by Figure 34  which blurs  all  connected
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components in the direction of their nearest neighbor. Each blurred region in Figure 34

is  thus  effectively  treated  as  an  initial  CP  by  Tesseract's  physical  layout  analysis

system pending further processing. A Column Partition Set (CPset) is a division of a

horizontal slice of the page into column partitions at a given vertical location. Upon

completion of Tesseract's document layout analysis the page is represented as a list of

CPSets, where each entry of the list represents all of the text at a horizontal slice of

the page. While a page with only one column will  consist of a list of one element

CPsets,  a  more  complex  page  layout  may  consist  of  a  title  (one  element  CPSet)

followed by three columns of text (several three element CPSets).  In Figure 34, for

instance,  while  much  of  the  page  consists  of  one  element  CPSets,  the  CPSet

corresponding to the image captions on the lower half of the page and the heading at

the top of the page would both ideally consist of two elements. More information on

the algorithms used by Tesseract to determine which CPSets are the best fit for a page

layout can be found in [18].
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3.1.5 Overview
The method section of this thesis is organized as follows. The System Overview

section  gives  a  general  top-down description  of  the  system and then the  System

Architecture  section  discusses  how  the  main  modules  function  together  in  a

meaningful way. The Component Design section then gives in depth details on how all

of the modules are designed and what data structures and algorithms are used. The

Component Design section is then followed by a brief conclusion which gives some

ideas for future work.

3.2 System Overview
The MEDS software component described here is designed such that it may be

used in coordination with other components to produce a full-fledged document layout

analysis system. While the document layout analysis system, as a whole, is geared

toward the proper segmentation and detection of all zones (i.e. normal text, image,

halftones,  mathematical  expressions,  musical  notation,  logos,  chemical  equations,

etc.) in an arbitrary printed document image, the MEDS subsystem is geared toward

only the proper detection and  segmentation of mathematical expression regions. This

subsystem  is  fully  integrated  with  an  existing  layout  analysis  system,  Tesseract

(version 3.02)  [18], and its results compared to those of a default MEDS component

supplied with the software. The subsystem is then evaluated on a ground truth data

set which includes 75 images all taken from public domain texts. The overall system is

divided into three primary components: groundtruth generation, evaluation technique,

and MEDS implementation. The evaluation method objectively gauges performance by

calculating true positive rate, precision, accuracy, false positive rate, false discovery

rate,  specificity,  and  negative  predictive  value  all  down  to  pixel-level  [87].  The

dataset, evaluation tools and groundtruth generation tools are made freely open to the

public  [126] in hopes that they may be useful  for the objective comparison of the

subsystem's performance to any future or existing techniques.

3.3 System Architechture
As mentioned previously, the system consists of three primary components: the

ground  truth  generation  module,  mathematical  expression  detection  and

segmentation  (MEDS)  module,  and  the  evaluation  module.  Together,  these  three

modules effectively comprise a test-driven development environment wherein MEDS

modules  may  be  interchanged  and  evaluated  against  one  another  for  objective

performance comparison. All MEDS modules which can be evaluated by this system

are fully integrated with Tesseract's document layout analysis software [18], and are
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instantiated  by  overriding  Tesseract's  EquationDetectBase  class  [128].  Tesseract

utilizes a hybrid physical layout analysis approach to locate initial CP candidates on

the  page  which  are  then  corrected  through  further  type-specific  document  layout

analysis techniques (i.e., segmentation algorithms for table, music, math, etc.). While

Tesseract provides a default MEDS module, a preliminary evaluation of the module's

accuracy demonstrated in Section 3.4.3 shows a need for improvement. Figures 35

and  36  illustrate  how the  groundtruth  generation,  MEDS,  and  evaluation  modules

collaborate  in  order  to  foster  a  test-driven  development  environment  for  the

enhancement of MEDS accuracy. 

The system is  first  fed multiple  document  image pages (in formats such as

.png) from which the groundtruth is manually generated. The groundtruth will contain

the bounding box coordinates for all displayed and embedded math expressions (and
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Figure  35:  (Top-left)  Portion  of  input  image.  (Top-right)  Manually  generated  groundtruth.

Segments outlined with red rectangles are individual displayed expressions. (Bottom-left) Output

of  Tesseract's  default  MEDS  module.  Segments  outlined  with  red  rectangles  are  individual

displayed  expressions,  segments  outlined  with  green  rectangles  are  individual  embedded

expressions, and segments outlined with blue rectangles are normal text. (Bottom-right) Pixel-

accurate evaluation results for displayed expressions found in Tesseract's default module after

comparing it to the groundtruth. False negative pixels are colored green, false positive pixels are

colored blue, true positive pixels are colored red, and true negatives are orange. All background

pixels are colored black. Notice that the true positive region at the bottom is undersegmented (a

single region should correspond to the three regions).The commas and asterisk are false positives

since they are not logically part of the mathematical expressions. 



may  also  contain  the  coordinates  of  all  displayed  expression  labels)  as  further

explained in Section 3.4. Both the input document image and the groundtruth are fed

into the evaluation module which subsequently triggers Tesseract's document layout

analysis  software as illustrated in Figure 36.  The MEDS module  to be evaluated is

embedded in Tesseract's  layout analysis  software such that it  is  called after initial

CPSet estimates have been made through Tesseract's hybrid physical segmentation

technique [18]. Either Tesseract's default MEDS module can be evaluated or any new

MEDS module may override Tesseract's default one so that it can be evaluated. Once

the layout analysis software is finished being run on the document image (or multiple

images  if  desired),  the  results  of  the  MEDS  module  are  evaluated  against  the

groundtruth to obtain various evaluation metrics  as specified in Section 3.4.3.  The

resulting metrics for different MEDS modules evaluated on the same input data may

then be objectively compared.  

The  MEDS module  implementation  is  divided  into  two primary  components:

detection and segmentation. The detection subsystem uses a trained binary classifier

to predict whether each connected component of the image is math or non-math. The

binary classifier takes as input a feature vector found from the feature extractor as

illustrated in Figure 37. Once trained, the classifier can carry out a prediction on new

data assuming the input data is a feature vector generated from the same feature

extractor it was trained with. The segmentation module uses various heuristics to then

merge detected math regions with neighboring ones (i.e., a + operator should have

both left and right operands, a fraction bar should have upper and lower operands,

etc.).  Compile-time  polymorphism  is  utilized  here  for  both  the  Detector  and

81

Figure 36: High-level UML-based system architecture overview.



Segmentor  so  that  different  MEDS  modules  can  be  effectively  interchanged  for

comparison and testing purposes without any significant performance overhead.  The

detection  module  consists  of  training,  feature  extraction,  and  binary  classifier

implementations. The Segmentor currently uses no supervised training and operates

purely on heuristic analysis, however the use of supervised training for this stage is

considered a goal for future work.

3.4 Component Design
The design of the three primary components: groundtruth dataset generation,

MEDS, and the performance evaluation are each discussed in this section.  

3.4.1 Groundtruth Dataset Generation 
In  designing  the  MEDS  module  it  is  important  to  first  have  a  proper

understanding the problem domain.  Mathematical  recognition modules require that

their  input  be  properly  segmented  a  priori  in  order  to  obtain  good accuracy.  The

definition  of  “properly  segmented”  often  depends  on  the  type  of  mathematical

expression being analyzed as well as its context. In this work, a groundtruth dataset is

manually generated to define the correct segmentations of mathematical regions in a

set of 75 images extracted at random pages from the five text books shown in Table 1

(all of which are in the public domain).
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Figure 37: UML diagram to depict the trainer, classifier, and feature extractor interfaces used in

the detection module (and also the data BlobInfoGrid data from which features are extracted

to be explained in Section 3.4). Compile-time polymorphism is utilized in order to facilitate

experimentation with and comparison of various combinations of training, classification and

feature extraction.



Table 1: The textbooks utilized in manually generating the groundtruth dataset for this study

Textbook Total Pages Used

E. Bidwell, Advanced Calculus. (1911)  [127] 30

A. S. Kompaneyets, Theoretical Physics.

(1961) [129]

15

A. C. Lunn, The Differential Equations of

Dynamics. (1909) [130]

15

D. Sloughter, Difference Equations to

Differential Equations: An Introduction to

Calculus. (2000) [131] 

15

In generating the groundtruth dataset,   three types of math expressions are

defined:  displayed  expressions,  embedded/inline  expressions,  and  (optionally)

displayed expression labels. A displayed expression is any expression which resides on

its own line of text separated from normal non-math text whereas an embedded/inline

expression  is  one  which  resides  as  a  part  of  a  normal  text  line.  The  displayed

expression labels are numbers, letters, or symbols that are used to label and refer to a

displayed expression. A displayed expression may, for instance, reside on its own line

and then to either the right or left may have a separate label such as (1), (a), etc. The

label may then refer back to that expression within the text. Although the labels were

manually segmented during the groundtruth generation,  the current work will  only

strive  to  segment  displayed  and  embedded  regions,  with  the  segmentation  of

displayed labels being left as a goal for future work. 

In order to manually segment the expressions, a Qt Graphical  User Interface

(GUI) implemented in a previous undergraduate independent study [132] was tweaked

so  that  boxed  regions  of  an  image  can  be  manually  specified,  assigned  a  type

(displayed, embedded, or label) and then printed to a file. The GUI used to manually

generate the groundtruth dataset is shown in Figure 38.
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In  manually  generating  the  groundtruth  dataset,  certain  conventions  were

adopted  in  order  to  ensure  that  the  dataset  is  consistent.  In  some  instances  it

becomes  unclear  as to  whether  a mathematical  expressions  should be considered

displayed or whether it should be considered embedded. In Figure 39, for instance,

each  of  the  mathematical  expressions  could  possibly  pass  as  being  considered

displayed since they comprise most of the text lines, with the lines being spatially

separated more than in most normal text. The convention adopted in this work is that,

if math expressions appear as part of a line with normal sentence structure and are

not  intentionally  moved  down  to  a  separate  line,  then  these  expressions  are

considered embedded. If the expression is moved down a line from a normal sentence

then it is called displayed, even if it still obeys normal sentence structure conventions.
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Figure 38: A screenshot of the GUI used to manually generate the groundtruth dataset used for

this study.



Segmenting Numbers.  Another  rule  adopted in  this  work is  that  numbers

should be labeled as math or non-math based upon their context. While quantities can

be  interpreted  as  mathematical  since  they  inherently  involve  multiplication,  such

entities as section numbers, parts of section headings, and dates/years. should not be

regarded as  mathematical.  False  detection  of  such  cases  harms  overall  document

analysis  performance  in  that  it  may  result  in  the  improper  interpretation  of  the

document's contents.

Extending Displayed Expressions to New Lines. Since the current manual

groundtruth  dataset  generation  procedure  can  only  segment  rectangular  regions,

expressions  cannot  extend to  new lines  unless  the  resulting  segment  would  be a

rectangle.  Extending  the  groundtruth  generation  procedure  to  allow  for  isothetic

blocks of text is left as an idea for future work. This problem is illustrated by Figures 40

and 41.
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Figure  39:  Groundtruth  dataset  segmentation  example.  Segments  that  are  colored  red  are

considered displayed while those which are blue are considered embedded. The choice of which

regions are displayed vs. embedded is made based on the convention that all expressions that are

part of a normal sentence structure and not placed on their own line are embedded, whereas all

other expressions are displayed.



86

Figure  40:  Result  of  existing  groundtruth  dataset  segmentation  technique.  Notice  that  the

uppermost region is over-segmented (i.e. the set of expressions should correspond to one entity

but here they correspond to two so that the comma is not incorrectly considered part  of the

expression and segmented regions cannot be isothetic). Red segments are displayed while blue

ones are embedded.

Figure  41:  The  correct  segmentation  which  is  not  currently  implemented  in  the  existing

groundtruth  generation  technique.  Notice  that  the  top  expression  region  is  now  properly

segmented as  one entity  even though  the  comma causes the  region  to  be  a  more  complex

isothetic shape than a simple rectangle. Red segments are displayed regions while blue ones are

embedded.



Expressions  Embedded  in  Images.  Mathematical  expressions  embedded

within images  or  other  non-normal  text  as illustrated in Figure 42,  are  considered

displayed expressions based upon the convention adopted by this work.

Expressions Separated by Commas. Expressions separated by commas are

only joined as a single  element  if  there is  an ellipsis  prior  to  the last  element  as

illustrated by Figure 43. This decision is made because any group of expressions that

includes an ellipsis can mathematically be interpreted as a series, which, itself, is a

single expression.  When lists of expressions do not include an ellipsis they are not

merged  and  the  commas  are  interpreted  as  part  of  the  sentence  wherein  the

expressions are embedded as opposed to being part of the expression.

87

Figure  42: A segment of an image taken from the manually generated groundtruth dataset. All

segments here are segmented as displayed expressions.



3.4.2 MEDS Module 
The MEDS module operates by first detecting regions of interest on the page

which,  based  upon  a  trained  classifier,  are  considered  strongly  likely  to  be

mathematical in nature. Segmentation is then carried out using rationale based upon

the segmentation rules discussed in the groundtruth generation section. An idea for

iteratively searching for missed regions based on segmentation results is left as a goal

for  future  work.  This  would  require  either  a  math  symbol  recognizer  or  using  a

Hausdorff distance metric to find other symbols on the page matching to those which

were found during segmentation. The process would then iteratively continue until no

more new math symbols are found on the page. Due to time constraints this is kept as

an idea for future work. Once the detection and segmentation steps are complete, the

final step ideally involves searching for displayed expression labels (i.e., the number,

letter,  or other symbol which is used to refer back to a displayed expression).  The

label, assuming it is recognizable by the language OCR engine, would then be found in

the recognized text  and mapped to its  location on the image.  Again,  due to time

constraints the searching for displayed expression labels is not implemented in this

work, but kept as an idea for future work.

 Detection Subsystem
The design starts in a bottom up fashion and makes no assumptions about the

correctness or  incorrectness  of  how CP's were formed by the Tesseract  framework

from  which  it  is  instantiated.  The  module  does,  however,  utilize  the  results  of

language-specific OCR (while the default language is English, other languages may

also  be  employed)  in  order  to  quickly  rule  out  most  normal  regions  of  text  from

possibly being mathematically oriented.  A goal in the design of this module is that it
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Figure  43: A segment of the groundtruth  dataset.  All  blue segmented regions are considered

embedded expressions.  Notice that  on the second line of  text,  the  comma which follows the

ellipsis is functionally part of the sentence in which the expression resides, whereas the 

can be interpreted as a single mathematical series and is thus segmented as one region.



should still work all the same even if the underlying Tesseract framework from which it

is instantiated were to be altered. 

The input to the MEDS module is a grid of CP objects (CPGrid) and the list of

CPsets determined to best represent the entire page by the hybrid layout analysis

technique  described  in  [18].  The  grid  template  container  class  is  used  within  the

Tesseract  framework  for  fast  neighborhood  access  to  bounding  box  classes  as

illustrated in Figure 44. The grid provided to the MEDS module has, as its contained

object, CP objects determined through the previous hybrid layout analysis. Since one

of the design goals for this module is to ensure the MEDS results are as independent

of  previous  hybrid  layout  analysis  as  possible,  the  CPGrid  is  first  converted  to  a

BlobGrid. While the CPGrid allows for nearest neighbor access among the CP's, the

BlobGrid allows for nearest neighbor access among all of the connected components5

in the image as illustrated in Figure 45. 

While  the  BlobGrid  is  desirable  for  proper  understanding  of  mathematical

expression  regions,  it  contains  no  understanding  of  normal  text  regions.  Easily

recognizable symbols which consist of multiple connected components (i.e. “i” and

5 The terms “connected component”, “blob”, and “character” are used interchangeably in this
work  to  describe  either  a  single  group  of  connected  pixels  or  a  character  recognized  by
Tesseract which may consist of one or more groups of connected pixels as is the case for
characters like “i” or “=”.

89

Figure 44: The GridBase datastructure is used extensively within the Tesseract framework to

facilitate fast nearest neighbor access among various components on the image. The above

image is  a Doxygen-generated inheritance diagram showing many of  the different  classes

which  are  derived  from  the  GridBase  class.  Being  a  template  container  class,  it's  core

functionality of nearest neighbor  search can be utilized for any number of data structures

ranging  from CP's,  recognized blobs  (BLOBNBOX), unrecognized blobs (C_BLOBS),  and has

been utilized to build a custom grid data structure in this project. 



“=”) are kept as separate blobs within the grid. Running Tesseract's language specific

OCR on these separated symbols proved to be largely inaccurate. For instance an “=”

symbol  run through Tesseract's  character recognizer would consist  of a recognition

being made for each horizontal line in the “=”. Surprisingly, in one trial the individual

horizontal  lines  were  often  not  recognized  as  dashes  but  instead  as  “j”'s.  Similar

problems were observed on various other characters. For instance periods were often

mis-recognized as “o”'s. 

In  order  to  mitigate  such  problems,  a  new  GridBase  data  structure,  the

BlobInfoGrid,  is  implemented  in  this  work,  which  contains  a  combination  of  the

information  in  the  BlobGrid  and  information  attained  from  running  OCR  on  each

previously  determined  column  partition  on  the  page.  The  grid's  objects  contain

information on both the symbols which were recognized during OCR and those which

were not. If information is available from OCR for a given symbol, then the recognized

word to which the symbol belongs as well as its confidence rating are stored within the

object. The object also contains the symbol's bounding box and the sentence to which

it  belongs (if  applicable).  Since,  during the recognition  stage,  some blobs may be

improperly merged into symbols, a second pass is made by the MEDS module in order

to detect all blobs belonging to invalid words, and improperly merged blobs are thus

split  into  separate  objects  in  order  to  facilitate  proper  analysis  of  potential

mathematical expression regions as illustrated in Figure 46.
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Figure 45: (Top center) The input image. (Bottom-left) The CPGrid of the  image which is the

input  to  the  MEDS module.  (Bottom-right)  The result  of  converting the CPGrid back into  a

BlobGrid. Each rectangle on the image represents a blob. Blobs colored cyan are ones for which

the hybrid analysis was unable to determine whether the blob represents part of text or part of

an image. Yellow blobs have been labeled as “vertical text”.



The new grid  data  structure,  called  the  BlobInfoGrid  is  used  as  input  to  all

subsequent  feature  extraction,  classification,  and  segmentation  techniques.  The

detection module utilizes a supervised machine learning approach in order to predict

which  non-noise  connected  components  on a page are  most  likely  to  belong with

printed  mathematical  expressions.  Detected  regions  are  considered  as  the  initial

seeds to mathematical expression segmentation carried out in the second stage. The

primary  motivation  is  not  necessarily  to  maximize  detection  accuracy  on  the

groundtruth  data  set,  but  rather  to  allow  for  generalized  prediction  accuracy  on

unforeseen pages. While perfect accuracy is not expected, it is important that at least

a single component for each mathematical expression zone is detected at this stage

since these components may then be merged with their nearest neighbors in a later

step  for  proper  segmentation.  Thus,  for  regions  wherein  a  single  component  has

already  been  detected,  false  negatives  may  be  of  very  little  importance.  False

positives,  however,  will  likely  be impossible  to  account  for  in  later  stages  without
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Figure  46: Both the bottom left and bottom right  images correspond to  the mathematical

expression region shown in the upper image. The left image shows the symbols remaining

after OCR by Tesseract. Notice that many of the symbols were ruled out as junk or improperly

merged to their nearest neighbors. On the right is the same expression region after the new

MEDS module noticed that the blobs in the region did not belong to valid words, split them

back up, and reinserted them into the grid for proper analysis.



harming MEDS accuracy. The goal of the detection step is thus to detect at least a

single connected component of each expression zone while minimizing false positives.

The remainder of each detected zone can then be combined with its neighbors using

various heuristics during the segmentation stage of the MEDS module. 

 A problem observed with  the resulting  BlobInfoGrid  structure  is  that  certain

mathematical characters would, in some instances, be missing. Tesseract's framework

had, in fact, discarded the characters as noise prior to running the MEDS module or

performing any sort of recognition. Although this problem occurs rarely, it certainly

occurs often enough to be a significant problem. Since resolving such an issue would

require modification to the Tesseract framework external  to the MEDS module it  is

outside of  the scope  for  the current  work.  An idea for  future work however,  is  to

modify Tesseract's framework to be less harsh on discarding perceived noise prior to

running any math detection/segmentation modules.

There are two primary components to the detection module: (1) training and (2)

prediction.  The  training  step  extracts  chosen  features  from a  small  subset  of  the

groundtruth, runs and evaluates the binary classifier on these features multiple times

in order to learn classifier and feature specific parameters. These parameters are then

later used by the classifier to make decisions about unforeseen data during prediction.

Accuracy is evaluated by testing the prediction accuracy on the non-training subset

the groundtruth dataset, and then subsequently evaluated through visual inspection

on random unforeseen data which are completely unrelated to the groundtruth.

 Training and Classification

This  section  discusses  various  classifier  optimization  and  design  techniques

which have been considered, discusses how training is carried out in the Detection

subsystem, then discusses the SVM binary classifier used for this implementation.

Classifier Design and Model Selection Techniques Considered

Cross validation. A labeled training set is randomly divided into  m  disjoint

sets of equal size n/m, where n is the total number of labels in the training set. The

classifier is trained m times, each time with a different set held out as a validation set.

The average of the m validation errors is considered as the classifier's performance.

By adjusting parameters so as to minimize this error, it is hoped that the classifier's

accuracy will generalize better to new data. 

Jackknife. Train the classifier  n times (n  is the total number of labels in the

set), each time using the entire training set from which a different single training point

has been deleted. Each resulting trained classifier is then tested on the single deleted
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point and overall  accuracy is estimated as the mean of all test results. Jackknife is

especially  good for  comparing two classifiers,  to  see  if  the difference  in  accuracy

between them is statistically significant. Jacknife is essentially the same as leave-one-

out cross-validation.

Bootstrap. Samples of any size less than that of the training set are randomly

pulled from the labeled training set with replacement (i.e., the same label may be

used multiple times). The classifier is trained on all of the samples and tested on the

others. The average of all of the accuracies is measured. Classifier parameters can be

adjusted during training in order to minimize the average error.

Bootstrap  with  Aggregation  (Bagging). Results  of  multiple  classifiers

trained on the bootstrap dataset are pooled together in some fashion to get the final

result during prediction. The multiple classifiers are typically all the same type (i.e.

SVM, neural net, decision tree, etc) but have different parameters due to being trained

on different sets. The results of all of the classifiers are typically combined through a

voting mechanism. 

Boosting. Multiple weak learners (classifiers with accuracy only slightly better

than  chance)  are  combined  in  order  to  achieve  arbitrarily  high  accuracy  on  the

training set. A subset of labels of some size less than the total number of labels is

randomly  selected  without  replacement  and  the  first  classifier  is  trained  on  this

subset. A second training set is then selected so that half of the patterns in it are

correctly  classified  by  the  first  classifier  then  half  are  incorrectly  classified  by  it.

Boosting  techniques  vary  based  upon  how  this  second  and  subsequent  training

subsets are chosen. An example boosting technique in order to train three classifiers

described in [133] involves  flipping a fair coin to decide between the following: 

(1)  Select  remaining  labels  from  the  dataset  (not  in  the  already  extracted

subset) presenting them one by one to the existing classifier until it misclassifies one

of them. The misclassified label is added to the new subset.

(2) Add a pattern that the first classifier classifies correctly.

This is continued until no more patterns can be added in this manner. Thus half

of the patterns in the new subset are correctly classified by the first classifier and the

other half are not. The second classifier is then trained on this new dataset. A third

dataset is then found by presenting remaining labels (not in either of the first two

sets) to the first two classifiers. If the two classifiers disagree, then the label is added

to the third dataset, otherwise it is ignored.  Finally the third classifier is trained on the

third dataset. 

Adaptive Boosting (AdaBoost). Each label receives a weight that determines

its importance for training new classifiers. If a label is accurately classified, then its
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chance  of  being used again  in  subsequent  classifiers  is  reduced,  while  if  it  is  not

accurately classified its chance of being used again is raised. The algorithm starts by

assigning a uniform weight to each label in the training set. On each iteration a subset

is drawn according to the weights (initially at random since they are uniform) and a

classifier  is  trained  on  the  subset.  Next  the  weights  of  misclassified  labels  are

increased and correctly classified label weights are decreased. Labels chosen based

upon these new weights are then used to train the next classifier and the process is

repeated until  the desired number of classifiers  are trained.  During prediction,  the

weighted output of all classifiers are combined and the final classifier decision is made

using the sigmoid function on this summed output.

Training Process

Training  samples  are  first  automatically  generated  by  running  the  feature

extractor on all BlobInfo objects on the grid. Each BlobInfo object then stores a feature

vector of floating point values, each element of which is normalized between [0,1]. For

each BlobInfo element on the grid, a training sample is created which consists of the

blob's feature vector, it's binary label (math/non-math), and the blob's bounding box

on  the  image.  A  label  is  automatically  assigned  to  each  blob  by  comparing  its

bounding  box to  those  of  bounding  boxes  in  the  manually  generated  groundtruth

described in Section 3.4.1. Any blob that intersects with a groundtruth box is labeled

as math while all others are labeled as non-math in their corresponding samples as

illustrated in Figure 47. 
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Once each blob is assigned to a label, the labels are fed into whatever training

module is being utilized. The DLib Machine Learning Library [134] is used extensively

in this work for training and binary classification purposes. The library includes several

versions of the Support Vector Machine classifier (SVM), Multilayer Perceptron (MLP),

and Bayesian Networks and also includes a cross validator implementation useful for

optimal parameter selection.

Training Data Selection.  With a groundtruth only available for 75 images,

there are not very many options for selecting training pages. In this work, 15 randomly
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Figure 47: Above is a page from a training image. After the BlobInfoGrid was generated for this

image, each blob in the grid was automatically assigned a binary label (math or non-math)

based upon the blob's location in reference to any entry within the page's manually generated

groundtruth.  For  debugging  purposes,  the  foreground  of  blobs  which  are  labeled  by  the

groundtruth as math were automatically colored red while those which were not were colored

blue.



selected pages from one text book  [127] are used for training purposes. Since it is

desired to prove that the classification techniques outlined here can generalize well it

was decided to not use data from more than one book, especially  since there are

currently only five books to choose from in the entire groundtruth dataset. Since the

15  pages  used  for  training  belong  to  the  same  book  from which  30  of  the  total

groundtruth images belong (the other four books each have 15 randomly selected

images which were added to the dataset), testing is carried out both with and without

the other 15 pages from the same book. If  accuracy is significantly higher for the

dataset  with  the  15  pages  from  the  same  book  then  low  generalization  and

overtraining will become a major concern.

Binary Classification

For  purposes  of  detecting  mathematical  connected  components,  a  Support

Vector Machine (SVM) is utilized in this work. Each character or connected component

of the image is first assigned a normalized feature vector by the Feature Extraction

sub-module to be described in the next section. This feature vector is then fed into a

SVM binary classifier in order to determine whether the component is math or non-

math. The SVM classification technique, first proposed in 1992 by Vapnik et al. [135],

non-linearly  maps  a  feature  vector  to  a  higher  dimensional  space  where  a  linear

decision surface is  constructed.  During training the SVM finds a hyperplane in the

higher dimensional feature space with maximal margin between the vectors of the two

classes as illustrated in Figure 48 [136]. The optimal hyperplane is constructed using

the support vectors. The support vectors are a subset of the training samples which

are closest  to  the decision  plane while  also  maximally  separating the two classes

(labeled as -1 and +1 as shown in Figure 48). 

Determining  this  optimal  hyperplane  involves  first  choosing  the  non-linear

kernel  function which will  map the input feature vectors into a higher dimensional

feature space suitable for the SVM's application. Although the dimensional space of

the transformed feature vector is potentially infinite after the kernel is applied, little

computational  complexity  is  added  since  the  optimal  hyperplane  algorithm  (see

Appendix A.1 in  [137] for the mathematical details) uses the scalar results of inner

products  from  the  increased  feature  space  rather  than  carrying  out  any  of  its

computations  in  that  space.  The  kernel  function  chosen  must  satisfy  Mercer's

Condition, meaning that any resulting matrix from applying the kernel to all  of the

feature  vectors  must  be  guaranteed  to  always  be  positive  semi-definite  (i.e.

 for all   where  is the resulting matrix and  is any  vector, and

where   is the number of rows in the matrix). Mercer's Condition guarantees that a

higher dimensional  feature space does indeed exist for any possible set of feature
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vectors to be kernelized (see p. 283 of [137] for the definition of Mercer's Condition).

Standard kernel techniques such as the Radial Basis Function (RBF), Polynomial, and

Linear have all been proven to satisfy Mercer's Condition.

While, for some situations, a linear decision boundary may be possible with the

unaltered input feature space, the RBF (Gaussian) kernel is often cited as the most

standard kernel function for this task, and is used for the SVM in this work. The RBF

kernel replaces the inner product of the feature vector with the following operation

repeated  over  every  combination  of  values  in  the  vector  during  the  quadratic

hyperplane optimization algorithm:

The  value  for  gamma  is  one  that  needs  to  be  fine-tuned  through  one  of  the

aforementioned  parameter  selection  techniques.  For  purposes  of  this  work,  cross

validation is used in order to fine-tune the  parameter as the C parameter explained

in the following paragraph. 

While the original SVM algorithm proposed in 1992 was implemented for the

restricted  case  where  the  training  data  can  be  separated  without  any  errors,  the

technique  was  extended  in  1995  [137] to  work  on  training  data  on  which  some

labeling errors are to be expected. The resulting SVM formulation, often referred to as

the soft margin, C formulation, or the C-Support Vector Classifier (C-SVC), has become

the most widely used in practice and is illustrated in Figure 48. The C-SVC introduces a

slack variable, , for each vector which quantifies margin error (i.e. deviation from the

expected minimum hyperplane distance based upon the support vectors). Each error,

, is added up to give a metric for the total  amount of margin error for the given

hyperplane. The constant, C, is a parameter set by the user which specifies how much

total margin error can be tolerated while still achieving the optimal hyperplane. This

parameter,  like  ,  is  chosen  through  cross-validation  in  this  work.  Through  cross-

validation, the combination of   and C which gives the best results on the training

data can be chosen. 
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Fine Tuning of SVM Parameters

As previously mentioned, the parameters C and  need to be fine-tuned during

training. Among parameter selection techniques that were considered for this purpose

are  cross-validation,  jack-knife  (leave  one  out  cross-validation),  bootstrap,  and

boosting as described at the beginning of this section. A potential problem with the

bootstrap technique for parameter selection is that the entire training set may or may

not be used since samples are drawn with replacement. Depending upon the nature of

the training set and possibly random chance this may or may not prove to be an

effective  mechanism  for  parameter  selection.  Bootstrapping  with  Aggregation

(bagging) involves combining the decisions of several classifiers trained on different

bootstrapped datasets during prediction. Bagging has been observed to increase the

accuracy of unstable classifiers (i.e. classifiers for which small changes in the training

set lead to significant changes in classifier  output)  [133].  Utilizing an ensemble of

SVM's through bagging has been shown to greatly increase classifier performance for
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Figure  48: Illustration of the soft-margin, C formulation (C-SVC) of the SVM binary classifier

[136]. The omega vector and beta give the optimal hyperplane within the higher dimensional

feature space specified by the kernel function, psi. The xi values are deviation measurements

of  each  sample  from the  hyperplane's  expected  minimal  margin  specified  by  the  support

vectors. The soft-margin SVM's C parameter specifies the total deviation that can be tolerated. 



handwritten digit recognition [138], and is thus considered as a potential avenue for

experimentation. Like bagging, boosting also operates by combining the output of an

ensemble of classifiers. Boosting, however is considered most effective for training an

ensemble of weak learners so that their combined decision is highly accurate. Since

the  SVM is  most  certainly  not  a  weak  learner,  the  effectiveness  of  the  boosting

technique may be limited for the current approach.

Cross validation is a useful parameter selection technique which has often been

observed to yield favorable results in practice. While 10-fold cross-validation has been

observed to give favorable performance in many scenarios, the decision of how much

to divide the training data is application dependent. If   fold cross validation is

carried  out  where  the  training  set  size  is   (i.e.  leave  one  out  cross

validation/jackknife), the classifier yielding the best performance in cross-validation is

more likely to have too high of a variance, be too sensitive to and over-fit the training

set and thus may not generalize well to new data. If too small of an  value is chosen,

on the other hand, the resulting classifier may not be sensitive enough to both the

training set and new data, have too much bias, and would be under-fit to the training

data. 

In  this  work,  the  classifier  parameters  are  fine-tuned  using  10-fold  cross-

validation. The 10-fold cross-validation model  selection procedure is  carried out by

running cross-validation on the training set with possible combinations of the model

parameters C and   and then choosing the parameters that yield the best average

results. To enhance numerical stability during training, all training samples are each

subtracted by the training sample mean (for each individual  feature value in each

sample) and then divided by the training sample standard deviation prior to training

being carried out. While this simple operation had no effect on classifier accuracy, it

was observed to significantly  speed up the training procedure  from taking several

hours (or even days) to taking less than or slightly more than one hour when training

with over 30,000 samples and using a separate CPU core for each cross-validation. As

recommended  in  [139],  an  initial  starting  point  for  C  and   parameters  is  found

through  a  coarse  parameter  selection  technique  which  runs  the  cross-validation

initially at a low value for both parameters (1e-3 and 1e-7 for C and  respectively)

and then exponentially increments each one in turn up to a maximum value (1,000

and 100 are the empirically chosen values used here for C and  respectively). A total

of 10 possibilities are tested on each parameter (thus a total  of  100 10-fold cross

validations). Whichever (C, ) pair yields the highest sum of sensitivity (true positive

rate) and specificity (true negative rate) is the pair that is selected as the starting

point for subsequent finer-tuned parameter selection. The final parameters are then
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found  by  feeding  them  into  the  Bound  Optimization  by  Quadratic  Approximation

(BOBYQA) algorithm [140], a C++ implementation of which is conveniently included in

the D-Lib Machine Learning Library [134]. As with the coarse parameter selection, the

finer-tuned BOBYQA parameter selection finds the (C, ) pair which maximize the sum

of sensitivity and specificity.

 Feature Extraction

While the D-Lib Machine Learning Library [134] is utilized for both the training

and  classification  steps  in  this  work,  all  of  the  feature  extraction  steps  were

implemented in-house. To achieve desired results in binary classification it is of the

utmost  importance  that  the  features  extracted  for  each  character  be  highly

descriptive  at  distinguishing  math  from  non-math.  For  this  work,  the  features

implemented  can  be  categorized  as  either  “spatial”  or  “recognition-based”.  While

spatial  features  describe  a  character's  spatial  relationship  with  regard  to  its

surrounding  characters,  recognition-based  features  are  any  features  that  can  be

gleaned  from  OCR  results.  Both  the  spatial  and  recognition-based  features

implemented in this work are described in this section. All feature values that are not

already  scaled,  are  scaled  between  0  and  1  using  the  normalization  mapping  of

,  where   is  the  un-scaled  feature  value.  The  rationale  behind  using  this

normalization technique is for slight deviations in the quantities being measured to

result in a significant change to the feature as recommended in [116].

Spatial Features

Number  of  Horizontally  or  Vertically  Aligned  Characters.  In  many

mathematical equations there are seen elements which essentially “cover” multiple

adjacent elements that are either horizontally or vertically adjacent depending upon

the context as illustrated by Figures 49 and 50. If the center of a horizontally adjacent

character is within the vertical bounds of the current character's bounding box, then

that character is “covered” by the current one as shown in Figure 49. This also applies

when a vertically adjacent character's center is within the horizontal bounds of the

current character as shown in Figure 50. 
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For  a character  to  be considered  adjacent  however,  it  has  been empirically

found that  it  must  be  within  half  the  character's  height  if  looking for  horizontally

adjacent  neighbors  and half  the character's  width if  looking for  vertically  adjacent

neighbors. Each character is assigned a number of elements greater than or equal to

zero to which it “covers,” based upon the definition specified here, as a feature.

Number of Completely Nested Characters.  Similar to the above feature,

however less often observed, are symbols which have multiple characters effectively

nested inside of their bounding box. This has primarily been observed for square roots

and is  not  very often observed otherwise  in practice.  If  the number  of  characters

completely inside of the current character is greater than one, then the feature may

be useful as illustrated for the square root shown in Figure 51. Figure 52 demonstrates

results of the nested character feature on a training image.
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Figure 49: When the integral symbol is analyzed in the above expression, it is measured to have

three  horizontally  adjacent  vertically  overlapping  elements  to  its  right.  The  red  and  blue

bounding boxes were drawn manually a for illustration purposes, where the red box “covers” the

blue boxes.

Figure  50: When the fraction bar in the above expression is analyzed it is found to have one

vertically adjacent horizontally overlapping element above and four below. The red and blue

bounding boxes were manually added for illustration purposes, where the red box “covers” the

blue boxes.



Subscripts or Superscripts. The presence of superscripts and subscripts can

often,  but  not  always,  infer  presence  of  mathematical  notation.  An  example  of  a

situation where mathematics cannot be inferred from superscripts and subscripts is

the presence of footnotes. Used as a single binary feature in conjunction with multiple

other features, the presence of super and subscripts can be informative, however. A

character is assigned four binary features (1 if true 0 otherwise) based upon whether

it has a superscript, has a subscript, is a superscript, or is a subscript. A character has

a superscript  if  a horizontally adjacent character  to the right vertically overlaps at

least to some extent but also has a bottom that is around or above the character's

vertical  center.  Likewise,  a  character  has  a  subscript  if  a  horizontally  adjacent

character to the right which vertically overlaps at least to some extent has a top that
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Figure 52: Results of the nested character feature on a training image demonstrated through

foreground region coloring. The red blobs are inside the bounding box of a nested blob. The

square-root in the expression labeled as alpha was filtered out by Tesseract as noise prior to

running the MEDS module. The other three missed square roots were broken into two blobs

and thus have no nested characters. The integrals, parenthesis, and plus sign were all mis-

recognized by Tesseract as containing more than one character.

Figure 51: The square root in the above expression contains 8 elements nested within it.



is  around  or  below  the  current  character's  vertical  center.  A  character  is  a

super/subscript if its neighbor which is found to have a subscript assigns it as its own

super/subscript. 

As  demonstrated  by  Figures  53-55,  the  superscript/subscript  feature  can  be

informative but also misleading in some circumstances. In Figure 53, for instance, a

fraction bar is seen as the superscript of part of an “=” symbol. Punctuation often

meets the previously mentioned requirements of being a subscript. In order to prevent

false detection of punctuation as subscripts, the feature extraction technique makes

sure  that,  for  normal  text,  the  last  character  is  non-punctuation  during  subscript

detection.  Furthermore  when detecting  a  superscript  or  subscript  the  current  blob

must  be  the  rightmost  on  its  word  whereas  the  neighboring  blob  (the  potential

superscript/subscript) must be the left-most blob on its word. When a blob belongs to

a mis-recognized word,  as  shown in Figures 53-55,  this  precaution is  of  little  help

however.  An area threshold is  also employed in order to prevent noise from being

mistaken for sub/superscripts.
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Figure  53: Result  of  sub/superscript  detection on a training image depicted by foreground

region coloring in order to illustrate the feature's reliability. The red blobs were detected to

have a sub/superscript, the green blobs are superscripts, and the blue blobs are subscripts.

Due to the page's spacing, the d in second derivative was not found to have a square since the

bottom  of  the  2  is  above  d's  center.  The  large  parenthesis  were  also  found  to  have

sub/superscripts based upon the criteria and since it is not known that they are themselves

punctuation due to improper recognition.

Figure 54: The word “Simpson's” was mis-recognized by Tesseract, resulting in the apostrophe

being mistaken for a super-script.



Character  Height. Mathematical  characters  like  integral  signs,  exponents,

square roots, etc. are observed to have heights which differ from the height of normal

text on a page. A distinguishing feature of some mathematical regions is thus their

difference from the average normal text height. Normal text is defined here as any

word for which a valid match is found in Tesseract API's dictionary as described in [29].

The height of  all  characters  or connected  components  belonging to valid words is

averaged  over  the  image  to  give  the  average  normal  text  height.  The  character

feature is then measured for each character as  where  is the character height

and  is the average normal text height on a page. If there is no normal text found on

the page then the character height feature is simply .

Character  Width  to  Height  Ratio.  The  width  to  height  ratio  feature  is

primarily utilized in helping to detect fraction bars. Just as with the character height

feature, the average width/height ratio is first taken for all normal text on a page. The

width/height feature is then measured as  where  is the width/height ratio of the

character being measured and  is the average width/height ratio for normal text on

the page. If there is no normal text on the page the width/height ratio is simply  and a

flag is set on a separate binary feature to denote that there exists no normal text on

the page. This binary flag is set in order to prevent the classifier from being confused

by the new measurements it may receive for pages without normal text. In this work,

however, all pages tested will have at least some normal text.

Vertical  Distance  Above  Row  Baseline  (VDARB). Fraction  numerators,

fraction  bars,  and  exponents  in  embedded  expressions  are  positioned  above  the

baseline wherein normal text is expected to reside. The baseline for each row of text

found by Tesseract is computed by fitting a quadratic spline to groups of blobs using a
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Figure  55: The word, “right-” was mis-recognized by Tesseract, resulting in the bottom of the

“g” being mistaken for a subscript, the left part of the “h” mistaken as a superscript, and the “-”

being mistaken for a subscript of the right part of the “h” and the “t” which were improperly

combined into a single character.



least squares technique as described in  [34]. The fitted baseline can be useful  for

detecting outliers on normal text lines, however it loses its meaning for non-normal

text  lines  like  displayed  expressions  where  the  fitted  baseline  is  often  incorrectly

computed as shown in Figure 56. It was deemed that a row must therefore contain at

least one valid word in order for this feature to be meaningful. If a character resides on

a  row  which  contains  at  least  one  valid  word,  then  the  difference  between  that

character's  bottom-  coordinate  to  the   coordinate  of  the  row's  baseline  at  the

character's   position is  computed.  Since normal  characters  like the character  “p”

often  have  their  bottom  residing  well  below  the  baseline,  all  characters  with  a

negative distance from the baseline are assigned to  for this feature, unless the top of

the character is below the baseline as well, in which case the absolute value of the

distance  is  used.  The  feature  is  then  subtracted  by  the  average  vertical  baseline

distance for the normal text on the given row, divided by the row's height, and then

normalized between [0,1] exponentially. If the character does not reside on a row with

at least one valid word then this feature is fixed to 0.

Count of Stacked Characters at Character Position. Mathematical regions

may have a two-dimensional layout that is more complex than what is observed in
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Figure 56: The baselines found during Tesseract's layout analysis were automatically drawn on

a training image in order to gauge the effectiveness of the VDARB feature. From the above

example it is can be seen that, while Tesseract's quadratic spline line detection algorithm is

highly  effective  on  normal  text,  results  are  somewhat  unpredictable  in  the  presence  of

mathematical expressions. 



normal text regions. If a character is observed to be part of a non-existent or non-valid

word after language recognition, then a vertical search is done above and below that

character  at  its  horizontal  position  to  count  the  total  chain  of  adjacent  nearest

neighbors that also belong to invalid or non-existent words. A neighbor is considered

adjacent only if its distance from the current character is less than or equal to half of

the initial character's height (height of the character at the position being measured).

The  nearest  neighbor  search  looks  up  first  until  all  characters  which  meet  the

aforementioned criteria are found and then does the same by looking down. The total

number of stacked characters does not include the current character itself because

the exponential  normalization  technique used (as  described  in  [116])  yields  much

better separation this way. The method is illustrated by Figure 57. 

Examples of feature values found using this technique are shown in Figures 58

and  59.  Words  which  are  considered  valid  by  Tesseract's  dictionary  method  are

discarded for purposes of this feature in order to avoid false positives. Unfortunately,

this causes several blobs which should have a stacked feature of 1 or 2 to be fixed at 0

as can be observed in Figure 58. The  at the bottom left of Figure 58, for instance, is

considered to be a valid word by Tesseract and thus has a stacked feature fixed at 0.

This  also  occurs  for  the  ,  ,  ,  and  .  The   is  a  somewhat  unusual

circumstance because the word was misrecognized and improperly segmented into

three blobs by Tesseract: the “si”,  the dot on the i,  and the “n”. The “si” has one

stacked feature above it because the dot on the “i” is mistaken for a separate entity.

The “si”, “n”, as well as the  however are at a distance from the fraction bar greater

than half of their heights and are thus not seen as adjacent to it. The , on the other

hand is seen to have two adjacent elements below it: the fraction bar and the closing

bracket. More results of this technique are demonstrated in Figure 59. Although by no

means  perfect,  this  feature  can  give  a  good  indication  of  the  the  “geometric

complexity” of a mathematical expression region as described in [115].
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Figure 57: Fractions are an example of mathematical notation that is often two dimension-ally

more complex than is normal language text. For the left side of the equation, both of the d

symbols  have 2 as  their  stacked count  features.  The minus  signs and exponents  are  the

exceptions as they are assigned 0. The fraction bars are also assigned 0 because their height

is very low so that no nearest neighbors can be vertically adjacent.



Recognition-based Features

Recognized Math Symbols or Words. The language6 Tesseract OCR utilized

in this work allows for the instant detection of some basic mathematical characters

like  “<”,  “>”,  “+”,  “-”,  “/”,  “%”,  etc.  While  using  OCR  trained  specifically  for

mathematics would increase accuracy significantly and allow for the detection of more

6 Here the language classification result indicates the result of a classifier that was trained for
a particular language. Although in the context of this work English is all that is tested, testing
of existing techniques in various languages is of interest for future studies. 
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Figure  58: Results of using the described stacked feature algorithm on the same expression

shown in Figure 53. Dark blobs have a stacked feature of 0, red blobs have a stacked feature

of 1, and green blobs have a stacked feature of 2. 

Figure 59: Results of using the described stacked feature algorithm. Dark blobs have a stacked

feature of 0, red blobs have a stacked feature of 1, green blobs have a stacked feature of 2,

and blue blobs have a stacked feature of 3 or more. 



complex symbols like integrals, greek letters, etc., training Tesseract for new symbols

is a very time consuming task that is kept as an idea for future work. For purposes of

this work a finite list of math words has been generated. If a character belongs to a

word or symbol on the list then its corresponding recognized math symbol feature is

set to 1, otherwise it is 0. 

Italicized or Bold Text. Single italicized or bold characters among normal text

have often been observed to correspond to mathematical variables. Whether or not

the text is math often depends upon the context of the sentence to which they belong.

A  helpful  feature  in  further  distinguishing  math  from  non-math  in  a  sentence  is

linguistic analysis. If a sentence has n-grams that have been measured to extensively

belong to mathematical sentences then the likelihood of bold or italicized characters

in that sentence being mathematical increases. The n-gram feature used in this work

is discussed in a following section. Tesseract utilizes a technique described in  [29]

which  detects  bold  and/or  italicized  text.  Unfortunately,  however  Tesseract's

assignment of bold/italics was found to be rather unstable as illustrated in Figure 60.

Since italics appear to be much more accurate than bold assignments, only italics are

utilized as a feature for purposes of this work. If a blob belongs to an italic word the

feature is assigned 1 otherwise it is fixed to 0.

OCR Confidence Rating. After language-specific OCR is carried out, normal

text can be largely distinguished from abnormal text based upon the OCR confidence
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Figure  60:  Results  of  Tesseract's  italic  and  bold  text  assignment.  Blobs  colored red  were

detected as italic, green as bold, and blue as both bold and italic.



rating assigned to each recognized character. This feature primarily serves to rule out

normal text from potentially mathematical text, and does not necessarily say anything

about whether or not a character should be considered mathematical. After carrying

out recognition on a character, Tesseract assigns to it a rating which specifies how

confident the OCR engine was in making its final decision. The rating which Tesseract

assigns  to  a  character  is  a  negative  number  which  approaches  zero  for  high

confidence but may be as low as -20 for characters recognized with extremely low

confidence.  The  confidence  feature  is  computed  as   where   is  the  current

character's confidence rating and  is the average character confidence rating on the

page for characters which are part of valid words. If there are no valid words on the

page then the feature is simply  and a separate feature, which indicates whether or

not a valid word is found on the page is set to 1 where it would normally be 0.

Linguistic Analysis (n-grams). Since the Tesseract OCR utilized in this work

can  recognize  normal  text  with  near  perfect  accuracy,  linguistic  analysis  can  be

performed in order locate sentences of recognized text which are likely to contain

mathematical notation. In a 2005 project by Garain and Chaudhuri [115], an in-depth

statistical  study was carried out on 297 document pages from books, journals, and

exam papers and 103 synthetically generated document pages (from Microsoft Word

and TEX). Among several other in-depth analyses, a linguistic analysis was carried out.

Linguistic analysis of sentences revealed that a word-level n-gram model could be of

great  help  in  categorizing  sentences  into  one  of  two  categories:  namely  with  or

without mathematical  expressions. In the study, uni-grams, bi-grams, and tri-grams

are extracted for 870 sentences containing math and 2,655 not containing math. The

n-grams are ranked separately for each category based upon frequency of occurrence.

The top 150 n-grams for each class are used to generate an “n-gram Profile” for their

respective class. 

In Garain's work, a classification technique utilized on 877 new test sentences

involved first finding the n-grams for that sentence and counting the number of the

found n-grams that exist in the math and non-math n-gram Profiles respectively. If

more  of  the  sentence's  n-grams  were  observed  in  the  math  category  then  the

sentence is categorized as math, otherwise if more n-grams were observed in the non-

math category the sentence is categorized as non-math. If the sentence has equal

amounts  of  math  and non-math  n-grams then it  is  considered  indeterminate.  Test

results showed that accuracy increased for sentences with more n-grams. Accuracy

ranged from 90.2% for sentences with up to 50 n-grams to 98.9% for sentences with

up to 150 n-grams. 
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In this work, n-grams are ranked by frequency of occurrence from the result of

Tesseract's  OCR on 7 of  the 15  pages which were taken from  [127] and used for

training. The rationale behind not using all 15 pages to generate n-gram Profiles is to

avoid  over-training  of  the  classifier  to  this  particular  text,  and,  as  previously

mentioned, only pages from a single text were chosen for training since only 5 texts

are currently available in the entire dataset. A sentence is, in this work, defined as a

sequence  of  words  starting  with  a  valid  word having a  capitalized  first  letter  and

ending with either a “.” or a “?” (“!” is not used as a sentence ending due to the

presence  of  factorials).  Sentences  recognized  by  Tesseract  are  first  automatically

separated  into math  and non-math  by determining each  sentence's  region on the

image  and  comparing  that  region  to  the  manually  generated  groundtruth.  If  a

sentence overlaps any groundtruth region then it is labeled as math otherwise it is

labeled as non-math. Next, n-gram profiles are generated for both the math and non-

math  sentences.  These  profiles,  including  uni-grams,  bi-grams,  and  tri-grams,  are

ranked by frequency of occurrence, and are each placed in their own text file. The

matching n-grams in the non-math profile are then subtracted from matching n-grams

in the math profile so that the math profile gives the frequency of occurrence of the n-

grams most relevant to math sentences. If there are more math n-grams than non-

math n-grams then the count of matching non-math n-grams are upweighted by the

ratio math/non-math word ratio during subtraction. The updated frequencies are then

used to re-rank the math n-gram profile in descending order of updated frequency. The

updated math n-gram profile is then utilized in this work to generate an n-gram-based

feature for all characters belonging to a given sentence. After a brief discussion of how

individual  characters are assigned to sentences within the context of this work, the

method used to assign the n-gram feature (i.e. probability that a sentence contains

math based on n-grams) to a sentence is discussed. Also the resulting n-gram profiles

for the limited dataset will briefly be covered. 

Assigning  Blobs  to Sentences. In  order  to  ensure  that  the  right  n-gram

feature is assigned to each blob within a sentence, it is important that each blob is

physically assigned to the correct recognized sentence to which it logically belongs.

Although tesseract does not store a mapping from the individual blob to the physical

row of text to which it belongs, it does inherently store a row of text which points

indirectly to all of the characters that reside on that line. The results of Tesseract's

page recognition are stored in a top-down fashion, starting with a small set of blocks

each of which contains one or more rows with the rows each containing one or more

words  which each contain  one or more individual  blobs.  During preparation of the

BlobInfoGrid,  tesseract's  OCR  is  carried  out  on  the  entire  page  for  which  the
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BlobInfoGrid is being created. The result of Tesseract's OCR is a “page result” object

which points to the resulting blocks, rows, words, and blobs structured in the top-down

manner previously mentioned. In order to assign individual blobs to sentences, it is

necessary that the blobs also have access to the word and row to which they belong

which is not the case for the output of Tesseract.  Since bidirectional  access is not

given by Tesseract's page results, some very simple but convenient data structures

are implemented in this work. In order to give the BlobInfo objects access to the word

and row to which they belong, a “WordInfo” object pointer is assigned to each BlobInfo

object.  This  WordInfo object  is  created for each word recognized by Tesseract  and

contains pointers to all BlobInfo objects which reside within it, a pointer to the row to

which the word belongs, a pointer to the word result from Tesseract, and sentence

start and ending flags which are only true if the given word is found to reside on a

sentence boundary. Likewise a “RowInfo” object pointer is assigned to each WordInfo

object. The RowInfo object contains pointers to all WordInfo objects contained in it, the

corresponding row result from Tesseract, a convenience function for concatenating the

recognized  text  of  all  words  on  the  row,  and  also  stores  any  other  convenient

information: for instance the average distance of each of the row's blob's from the

row's baseline if that is needed for feature extraction. BlobInfo objects for which no

Tesseract recognition results are obtained are assigned to a NULL WordInfo pointer.

Although pointer access is  both to and from each RowInfo object  and its WordInfo

objects, the WordInfo objects are owned by the RowInfo object in which they reside

and are deallocated upon the RowInfo object's destruction. Each of the RowInfo objects

are stored in a vector belonging to the BlobInfoGrid. 

Sentences are first found by iterating through the RowInfo vector in order to find

the words which signify sentence boundaries. The convention adopted here is  that

only  valid  capitalized  words,  i.e.,  words  which  have  been  deemed  as  “valid”  by

Tesseract's API and consist of a capitalized letter immediately followed by a lowercase

one, can be considered as sentence start boundaries. Likewise only valid words ending

with a period or question mark can be considered as sentence ending boundaries. The

exclamation point is not used as a sentence boundary in this work because factorial

symbols have been observed to cause otherwise valid sentences to end prematurely.

Once the first start boundary word is detected, the subsequent words are checked for

end boundaries. With the detection of an end boundary, the algorithm then seeks start

boundaries again for subsequent words repeating the previously mentioned pattern

until  the last word on the page is reached. If the last word is reached and an end

boundary is still  being sought then the final word is flagged as the sentence's end

boundary regardless of its content. Each time an end boundary of a sentence is found,
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a Sentence object is instantiated to store the indices of its row and word boundaries

and the recognized text in the sentence. The Sentence object also stores the bounding

box coordinates  of  each  of  its  rows  as  well  as  the  n-grams  found during  feature

extraction. Each Sentence object is appended to a vector owned by the BlobInfoGrid. 

The BlobInfo objects belonging to sentences are then each assigned an index

corresponding to the Sentence object to which they belong. In order to assign the

BlobInfo objects to their sentences the RowInfo vector is again iterated with the row

and word indices  of  each  WordInfo  object  in  each  row being  checked  against  the

corresponding row and word boundary indices for all of the Sentence objects. If the

current  WordInfo  object  is  found to belong to  a  sentence  then  all  of  the  BlobInfo

objects  which  it  points  to,  i.e.,  which  were  found  to  belong  to  the  word  during

Tesseract page recognition, are assigned to that same sentence. Determining which

sentence  the WordInfo  object  belongs to involves  iterating  through each  sentence

object and comparing the WordInfo object's word and row indices to the corresponding

sentence boundary indices as follows. If the row index is less than the Sentence start

row or  greater  than the sentence end row then word is  not  part  of  the sentence,

otherwise  if  blob's  row  index  is  in  between  the  sentence's  start  and  end  row

boundaries then the word is assigned to that sentence. If the word is on a sentence

row boundary then the decision requires also comparing the word index as follows: if

the current sentence starts and ends on the same row then the word's index must be

>= the sentence start boundary and <= the sentence end boundary. If the sentence

starts and ends on different rows and the word is on the starting row then its word

index must be >= the sentence's start word boundary but the end word boundary

does not matter. Likewise when the sentence starts and ends on different rows and the

word is on the ending row of the sentence then the word's index must be <= the

sentence's end boundary but the start boundary does not matter. Results of this blob

sentence assignment technique are illustrated in Figure 61. 
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The Tesseract recognition results for the sentences shown in Figure 61 are as shown

below. It is observed that Tesseract often mistakes the lowercase “w” for a capital one

and of course the mathematical text primarily results in junk output except for the 

and  variables which are recognized perfectly in several cases.

Sentence 1: Wide variety of integrands integrable in terms of elementary functions.=

Sentence 2: The devices which Will be treated are:

Integration by parts, Resolution into partial fractions,

Various substitutions, Reference to tables of integrals.

Sentence 3: Integration by parts is an application of (61) when written as

fun’ = uv — fu’v.
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Figure  61: An excerpt from a training image. For debugging purposes, each blob has been

automatically colored according to the sentence to which it is assigned. The first sentence is

red, the second blue, the third green, the fourth is red, etc. Leptonica [122] is utilized in this

work for pixel coloring.



Sentence 4: That is, it may happen that the integrand can be written as the product

uv’ of two factors, where v’ is integrable and where u’v is also integrable.

Sentence 5: Then uv’ is integrable.

Sentence 6: For instance, logo: is not integrated by the fundamental formulas ; but

floga:=flog2:-lzxloga:-—-fa:/:c=a:loga:-9:.

Sentence 7: Here log 3; is taken as u and 1 as 1:’, so that v is 2:, u’ is 1/9:, and u’v =

1 is immedi- A

ately integrable.

Sentence  8: This  method  applies  to  the  inverse  trigonometric  and  hyperbolic

functions.

Sentence 9: Another example is

fa: sina: =— 3: cosa; +fcos2: :- sina: — cc cosx.

Although some junk output is assigned a sentence with the current technique, a

largely useful n-gram Profile is made assuming that there is enough sentence content

to analyze. 

N-gram Profile. After feeding 7 of the 15 available training images from [127]

into the n-gram Profile generator developed in this work, some interesting results were

obtained as shown in the below table. Of a total of a meager 75 math sentences and

34 non-math sentences the top 20 math n-grams found after subtracting matching

non-math n-grams (each matching non-math n-gram is weighted by the math to non-

math total word count ratio during subtraction) are shown in Table 2. 
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Table 2: N-gram Profile automatically generated from 7 of the 15 training images used in this

work. 75 math and 34 non-math sentences were used to generate this profile. All matching

non-math n-grams are subtracted from the math n-gram counts after being weighted by the

math/non-math word ratio to result in the above profile. 

Tri-grams Counts Bi-grams Counts Uni-grams Counts

area  under  the 4 the  function 10 = 47

under  the  curve 4 at  the 7 + 18

equal  to  the 4 of  a 6 f 16

mass  of  the 4 the  area 5.6532 function 10.9596

be  written  as 3 the  mass 5.6532 approach 9

written  as  the 3 the  curve 5 y 8

limit  of  the 3 the  density 5 area 7.6532

the  rod  to 3 equal  to 5 sin 7

of  the  rod 3 it  is 4.3064 rod 7

continuous  at  the 3 and  if 4 density 7

is  not  continuous 3 be  written 4 mass 6.6532

not  continuous  at 3 the  product 4 values 6

exactly  equal  to 2 under  the 4 value 6

than  the  original 2 if  the 4 written 5

integration  by  parts 2 written  as 4 between 5

as  the  product 2 the  rod 4 variable 4

a  function  f 2 that  the 3.3064 case 4

is  integrable and 2 values  of 3 product 4

it  is  necessary 2 function  f 3 integrable 4

it  is  clear 2 integral  of 3 intervals 4

As may be expected for such a limited amount of data, a lot of the n-grams are

largely specific to the particular document in which they are found. For instance the

word “mass” and “rod” are seen a significant amount of times for this limited amount

of sentences and are largely specific to the particular context in which the words are

used. tri-grams like “it is clear” or “it is necessary” however may be useful for a wider
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range of documents. Adding more data to the groundtruth dataset would make the

coverage of these n-gram profiles much more powerful. For purposes of this study, a

short list of empirically determined stop-words is manually generated to specify uni-

grams which should likely be removed from the profile like “a”, “the”, “and”, etc.

N-gram Feature Assignment.  All  blobs belonging to a given sentence are

each assigned their own uni-gram, bi-gram, and tri-gram features. The n-grams are

first extracted from the sentence. The features each start at zero and are incremented

by the count of all  matching n-grams to the n-gram Profile. The features are then

scaled to an interval from [0,5], with 0 being the lowest possible n-gram feature and 5

being the highest. The feature is then normalized to [0,1] using  on the scaled

feature. The manner in which the scaling is  carried out is  decided empirically  and

depends upon the nature of the n-gram Profile. If the highest counted object on the

profile has a count less than or equal  to 5, then the total  n-gram feature for that

sentence is kept as the original count but capped at 5. If the highest counted object on

the profile has a count greater than 5 then the feature is divided by 10, an empirically

chosen constant, and capped to 5 as the upper bound. 

 Segmentation Subsystem
The segmentation subsystem takes as its input all regions that were recognized

as math by the detection  subsystem previously  explained (the seed regions),  and

merges them with their neighbors to find all of the logical math zones on the image

with  as  few  under-segmentations,  over-segmentations,  missed  regions,  and  false

positives as possible. It is also decided within this subsystem whether an expression

should be labeled as displayed or embedded. The resulting math regions can then be

fed directly into a recognition module, assuming that the segmentation system has

made the proper decisions. 

This step does not include a classifier and relies upon various heuristics in order

to make the appropriate decisions. Although no supervised learning is utilized in this

work, it would not be difficult to extend this module to handle supervised learning.

Training  would  involve  assigning  each  blob  the  directions  to  which  it  should  be

merged. For instance the fraction bar in the following expression  should be merged

with its nearest neighbor above and below while  should be merged with its nearest

neighbor  left,  right,  and  below.  Four  binary  classifiers  could  be  trained,  each  one

representing one of the following merge procedures: merge with nearest neighbor left,

right,  above,  and  below.  If  any  of  the  the  four  classifier  outputs  are  1  then  the

corresponding  merge  operation  would  be  carried  out.  If  a  seed  region  “covers”

multiple regions either horizontally or vertically as previously explained in the spatial
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feature extraction section of this work entitled  Number of Horizontally or Vertically

Aligned Characters, then all of the adjacent neighbors covered by the seed region in

the appropriate direction would be merged rather than just the nearest neighbor. If a

blob is already merged in a given direction then no action would be required during

the prediction stage. Although supervised learning of these four binary classifiers and

choosing  the  best  features  for  them  would  be  a  productive  avenue  for

experimentation, it is kept as an idea for future work and is here replaced by a simpler

unsupervised heuristic approach to be described in this section.

During  the  segmentation  process,  a  seed  region  can  be  merged  in  any

combination of the following directions:  left, right, up, or down. The decision as to

which directions are appropriate for merging are based on various heuristics which are

enumerated in this section. 

Classify as Displayed or Embedded. Each math blob is first  classified as

either displayed or embedded. The classification technique employed here is simple: if

a blob belongs to a row that is deemed as “normal” then it is classified as embedded

otherwise it is classified as displayed. Normal rows have a good overall  recognition

confidence and have a predictable vertical spacing. The width in normal text rows is

also predictable up to the last row of a paragraph which is expected to be less than or

equal to the width of its preceding rows. Specifically, the number of valid words is

counted on each individual row and then the mean and standard deviation of the valid

word count per row is calculated (only rows containing at least one valid word are used

in this measurement). Two passes are carried out in order to determine whether a row

should  be  considered  “normal”  or  “abnormal”  (abnormal  rows  end  up  being

considered as candidates for containing displayed expressions in this work). On the

first  pass,  rows  are  classified  as  “abnormal”  if  their  valid  word  count  negatively

deviates from the average by more than twice the standard deviation. On the second

pass, the average and standard deviation of the vertical space between rows are then

calculated (the top row is not included in this calculation since it is often a header). If

the  vertical  space  above  a  row  previously  classified  as  “abnormal”  is  below  the

standard deviation, then the row is considered to be a paragraph ending and assigned

back to “normal”. An example of results for this procedure is illustrated by Figure 62.

An improved classification technique for normal and abnormal rows would enhance

both detection and segmentation accuracy significantly but is kept as a goal for future

work.

118



Segmentation  Algorithm. The  segmentation  algorithm  works  by  iterating

through  all  of  the  BlobInfo  elements  in  the  grid,  skipping  them  unless  they  are

mathematical  and  haven't  already  been  processed.  When  an  unprocessed

mathematical region is found, it is first flagged as processed in order to ensure it will
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Figure 62: Result of normal/abnormal row classification technique. The blue foreground

regions are part of rows classified as “abnormal” while the red foreground regions are

part of “normal” ones.



only be processed once. A Merge Decision is made for each of the four directions as

specified in the Merge Decision subsection. The Merge Operation (as specified in the

Merge Operation subsection) is then carried out on whichever of the four directions

were decided for merging by the Merge Decision. The aforementioned operation is

recursively repeated for every merged blob until all merged blobs are processed and

no more merges are deemed necessary by the Merge Decision. The algorithm then

continues iterating the BlobInfo elements, repeating the aforementioned procedure for

each  BlobInfo  element.  The  final  math  zones  are  then  set  to  the  bounding  box

represented by the top left and bottom right points of each resulting segmentation. 

Data structures  Utilized. Each  BlobInfo  element  contains  a  Merge  object

which  specifies  what  merge  operations  are  to  be  carried  out.  The  Merge  object

contains an initially NULL pointer for each direction (left, right, up, and down). If  a

merge  operation  in  the  corresponding  direction  is  not  to  be  carried  out  then  the

pointer will remain NULL, otherwise it will point to the merged BlobInfo element. The

Merge object also contains a flag which specifies whether or not the corresponding

BlobInfo element has already been processed so that  each will  only be processed

once.  Each  Merge  object  also  contains  a  pointer  to  the  bounding  box  which

corresponds  to  the  entire  segmentation  to  which  it's  BlobInfo  element  belongs.

Whenever a merge operation is carried out, this segment is modified if the new object

merged is outside of the bounds of it's segment's bounding box.

Merge  Decision. For  each  unprocessed  mathematical  BlobInfo  element,  a

merge decision must be made for the four directions. The factors which underlie the

merge  decision  are  dependent  upon  whether  the  merge  direction  is  up/down  or

right/left. 

Vertical Merges. Fraction bars should typically be merged both up and down with the

elements that they “cover” as explained earlier in the Feature Extraction subsection.

Also of interest here are limits and intervals wherein characters below and/or above

need to be merged as illustrated by Figure 63.
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Stacked elements at a position which satisfy the rules in the Stacked element

feature section are merged up/down. The features found during feature extraction are

useful here. If an element has a stack count greater than one, the stacked neighbors

are all immediately merged.

Once any tall element or stack of elements is merged, the entire merged region

in question immediately grows in size. Each element being merged is immediately

assigned to the box which represents  the entire  segment  which  it  has joined and

required to grow the segment if it is outside of its bounds. The size of the segment to

which a blob belongs plays a role in merging new blobs when dealing with displayed

expression  regions.  If  the  current  blob  has  been  classified  as  part  of  a  displayed

expression, belongs to a segment which vertically “covers” multiple objects adjacent

to  it  (the  entire  segmentation),  and  none  of  the  adjacent  blobs  are  separators

(periods,  commas,  phrases like “such that” “therefore” “thus” etc),  then all  of  the

covered blobs are immediately merged. In Figure 64, for instance, the entire merged

region would start with just the |A|, then its right would be modified as the equivalent

operator is merged (as described in the following horizontal merging subsection), then

top and bottom bounds would be modified as the large vertical bar is merged, etc.
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Figure 63: The above expressions were taken from the groundtruth dataset used in this work.

The summations, limits, and fractions illustrate the need for vertical merging of fraction and

non-fraction elements alike.



Horizontal Merges. As explained in the previous section, the vertical  “coverage”

feature is made useful in order to horizontally merge multiple vertically overlapping

elements as shown in Figure 64. For displayed expressions, the rule employed here is

to continue merging right until  either  a significant space gap is found (empirically

decided as more than twice the maximum gap observed in the current segmentation)

or  a  separator  is  detected.  For  embedded  expressions  the  merging  is  more

conservative. If the seed is a known binary operator then a merge takes place both to

the left and right.  Merging to the right is obvious if the nearest adjacent neighbor is

math,  otherwise  it  becomes  tricky.  This  work  will  rely  largely  on  the  detector's

accuracy for embedded expressions. If the nearest neighbor to the right is part of an

invalid word but was not classified as math, then merging will only take place if either

the current blob is a known operator or if the adjacent blob is close enough to the

current one (an empirically chosen distance of less than half the width of the current

blob has been chosen for this task).

Merge Operation.  Whenever a merge operation is carried out the pointer in

the corresponding direction will be set to the merged element, and then the merged

element's corresponding pointer in the opposite direction will be set as well. Thus if a

right merge is carried out then the current blob's right pointer is set to the blob on the

right while the merged blob's left pointer is set to the current blob. This operation

ensures  that  the  blobs  are  logically  linked  to  each  other  in  each  direction.  As

previously  mentioned,  each  blob has access  to the bounding box which gives the

entire  region  currently  under  segmentation.  If  a  merged  blob  is  outside  of  this

boundary, then the boundary is modified to fit the blob during the merging process.
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Figure  64:  An  expression  taken  from  the  training  set  which  includes  a  determinate.

Determinates  and  matrices  include  multiple  vertically  stacked  elements  which  must  be

merged into a single math segment.



Final  Output  Preparation. Once  all  the  math  segmentations  have  been

prepared, the column partitions found by Tesseract are modified only in places wherein

mathematical  partitions  have  been  found  (i.e.  if  a  paragraph  contains  embedded

mathematical expressions, the regions corresponding to these expressions should be

understood as part of the paragraph however segmented from the normal text). 

3.4.3 Evaluation Module
A  significant  problem  observed  in  previous  work  for  math  detection  and

segmentation  has  been  that  of  objectively  comparing  the  performance  of  one

technique  to  another.  Difficulties  in  objective  comparison  of  different  works  are  a

result of each author using their own private datasets and evaluation techniques. In

this work the evaluation code as well as the dataset are made publicly available [126]

in order to encourage objective performance comparison of current, new, and existing

MEDS techniques. This section describes the design and functionality of this work's

pixel accurate evaluation module.

The evaluation module used in this work is designed to evaluate both the math

regions found by Tesseract's default MEDS module [141] as well as the math regions

found by any newly implemented MEDS module which overrides Tesseract's default

one. The output of Tesseract's default equation detector is automatically evaluated by

first writing the results to a “box file” which contains the left, bottom, top, and right

coordinates for each detected region as illustrated in Figure 65 and also coloring the

corresponding pixels in the image based on the result type of each box file entry as

illustrated in Figure 66. 
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Figure  65: Debug output  from Tesseract's  default  MEDS module.  Red regions were

classified as displayed expressions, green regions classified as embedded, and blue

regions are non-math.



The  foreground  regions  are  then  also  colored  for  the  rectangles  in  the

corresponding image's manually generated groundtruth data as illustrated in Figure

67. 
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Figure  66:  The same image as  shown in  Figure  53 except  with  the  foreground  regions

colored for the math expression bounding boxes found by Tesseract's default MEDS module.

The blue regions here were labeled as part of an embedded expression region while the red

regions were labeled as part of a displayed expression region. 



Figures 66 and 67 illustrate  the hypothesis  and groundtruth (correct)  results

respectively which are compared in this module in order to evaluate the correctness of

the hypothesis.  The term hypothesis  is  used by this section to refer  to any MEDS

results for a type of expression in a  single image whereas the term groundtruth refers

to  the  expected/correct  segmentation  results  for  a  type  of  expression  in  a  single

image. Figures 66 and 67 are thus essentially representing two groundtruth/hypothesis

pairs  since  both  embedded  and  displayed  expressions  are  shown.  A  single

groundtruth/hypothesis  pair  is  used  to  evaluate  just  one  expression  type  (either

displayed, embedded or optionally displayed expression labels). Both the groundtruth

and hypothesis are represented by an image/file pair. The image is as shown in Figures

66 and 67 (except with only one color being observed) and allows for pixel accurate

evaluation while the file gives the bounding boxes of all segmented regions. While the

image allows for pixel-accurate comparisons, the file allows for the detection of over-

segmentations  and  under-segmentations.  Over-segmentations  occur  when  a  single
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Figure 67: The same image as shown in Figures 53 and 54 but with the foreground regions of

the bounding boxes from the manually generated groundtruth automatically colored using

the same convention as in Figure 54.



region in the groundtruth is incorrectly divided into multiple regions by the hypothesis,

while  under-segmentations  occur  when  multiple  regions  in  the  groundtruth  are

incorrectly merged into one region by the hypothesis. 

Pixel-by-pixel  comparison  of  the  foreground  pixels  of  the  groundtruth  and

hypothesis images allow for the pixel accurate calculation of True Positive Rate (TPR),

Positive  Predictive  Value  (PPV),  Accuracy  (ACC),  False  Positive  Rate  (FPR),  False

Discovery Rate (FDR), True Negative Rate (TNR), and Negative Predictive Value (NPV).

All  7 of the aforementioned pixel  accurate metrics  are defined in Table 3 with the

following notation:

Positives (P). P pixels are the foreground pixels in the groundtruth that are of 

the color being observed (i.e. red if evaluating displayed expressions and blue if 

evaluating embedded expressions).

Negatives (N). N pixels are the total foreground pixels in the groundtruth that 

are not of the color being observed (either black or the color of a different expression 

type which is not currently being evaluated). 

True Positive Pixels (TP). TP pixels that are colored in the groundtruth and 

are also colored in the hypothesis. TP are thus pixels that are correctly labeled in the 

hypothesis.

False Negative Pixels (FN). FN pixels are colored in the groundtruth but not 

in the hypothesis.  The FN and TP pixels should add up to the total positive pixels in 

the groundtruth (P).

False Positive Pixels (FP). FP pixels are not colored in the groundtruth but 

are colored in the hypothesis.

True Negative Pixels (TN): TN pixels are not colored in the hypothesis and 

are also not colored in the groundtruth. The sum of the TN and FP pixels should be 

equal to the total negative pixels in the groundtruth (N).
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Table  3:  The  seven  pixel-accurate  metrics  which  are  found  to  measure  the  validity  of  a

hypothesis in comparison to a groundtruth along with measurements of oversegmentations

and undersegmentations. 

Metric Pseudonyms Definition

TPR Recall/Sensitivity/Hit Rate TP/(TP+FN) = TP/P

PPV Precision TP/(TP+FP)

ACC Accuracy (TP+TN)/(TP+FN+TN+FP) = (TP+TN)/(P+N)

FPR Fallout FP/(FP+TN) = FP/N

FDR False Discovery Rate FP/(FP+TP)

TNR Specificity TN/(FP+TN) = TN/N

NPV Negative Predictive Value TN/(TN+FN)

In  order  to  calculate  the  metrics  shown  in  Table  3  and  to  count  the

oversegmentations  and  undersegmentations,  a  bipartite  graph  data  structure  is

utilized  [87].  The  bipartite  graph  data  structure  consists  of  two  graphs,  one

representing  the  hypothesis  and the  other  representing  the  groundtruth.  For  each

graph, the vertices are first added, each one representing a segmented region. Edges

between  the  groundtruth  and  hypothesis  graphs  are  then  made  to  represent  the

intersection of pixels between them. If a vertex is unmatched by the other image (i.e.

a segmented region in one graph has no overlapping region in the other) then it will

have no edges. Vertices may also have multiple edges if more than one region in the

other graph intersects the one in the current graph. 

Once the bipartite graph structure is initialized with all of its vertices and edges,

it then becomes rather easy to measure over-segmentations,  under-segmentations,

entirely missed regions, and entirely false positive regions. Over-segmentations occur

when  one  vertex  in  the  groundtruth  maps  to  many  in  the  hypothesis  and  under-

segmentations occur when a single hypothesis vertex maps to multiple groundtruth

vertices. A region is entirely missed when a groundtruth vertex has no edges and a

region is  entirely  false  positive  when a hypothesis  vertex  has no edges.  For  each

hypothesis  region,  the  number  of  overlapping  groundtruth  pixels  gives  the  true

positives. These true positives aggregated over the entire image and then divided by

the total positives in the groundtruth then gives the TPR. Similar calculations are then

carried out for the remaining six metrics and aggregated for the entire image to yield

the final metrics. The metrics are then written to a file in the following format:
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// region-wide statistics:

[# correctly segemented regions] / [total # regions]

[# regions completely missed (fn)]

[# regions completely wrongly detected (fp)]

// stats on oversegmentations and undersegmentations:

[# oversegmented regions]

[# total oversegmentations for all regions]

[# avg oversegmentations per oversegmented groundtruth region]

[# undersegmented regions]

[# total undersegmentations for all regions]

[# avg undersegmentations for undersegmented hypothesis region]

// pixel counts:

[# total foreground pix (tp+fp+tn+fn)]

[# total positively detected pix (tp+fp)]

[# total negatively detected pix (tn+fn)]

[# total true positive pix (tp)]

[# total false negative pix (fn)]

[# total true negative pix (tn)]

[# total false positive pix (fp)]

// metrics based on pixel counts (all between 0 and 1)

[TPR/Recall/Sensitivity/Hit_Rate = tp/(tp+fn)]

[Precision/Positive_Predictive_Value = tp/(tp+fp)]

[Accuracy = (tp+tn)/(tp+fn+tn+fp)]

[FPR/Fallout = fp/(fp+tn)]

[False_Discovery_Rate = fp/(fp+tp)]

[TNR/Specificity = tn/(fp+tn)]

[Negative_Predictive_Value = tn/(tn+fn)]

In  the  above  format,  the  statistics  on  over-segmentations  and  under-

segmentation  requires  some  explanation.  The  number  of  over-segmented  regions

gives the number of vertices in the groundtruth which have more than one edge in the

hypothesis.  The total  over-segmentations  for  all  regions gives  the total  number  of

edges aggregated over each over-segmented groundtruth region. The average over-

segmentations per over-segmented groundtruth region gives the average number of
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edges that an over-segmented groundtruth vertex has over  the entire  groundtruth

graph  (i.e.,  the  average  severity of  an  oversegmentation).  This  is  effectively  a

measure  of  how  badly  split  a  typical  over-segmented  region  is.  The  under-

segmentation  statistics  are  very  similar  to  the  over-segmentation  ones.  Under-

segmentation, however, is found when a hypothesis vertex has more than one edge

pointing to the groundtruth.  To  illustrate  the  usefulness  of  the evaluation module,

evaluation of the default Tesseract MEDS module was carried out on the input image

shown  in  Figures  65-67  yielded  the  metrics  shown  in  Tables  4-7  for  displayed

expressions: 

Table 4: Region-wide statistics for Tesseract default equation detector.

Region-wide Statistics Measurement

# correctly segemented regions] / [total # regions] 4/16

# regions completely missed (fn) 10

# regions completely wrongly detected (fp) 0

Table 5: Over/under-segmentation statistics for Tesseract default equation detector.

Over/under-segmentation Statistics Measurement

# oversegmented regions 0

# total oversegmentations for all regions 0

# avg oversegmentations per oversegmented groundtruth region 0

# undersegmented regions 1

# total undersegmentations for all regions 2

# avg undersegmentations for undersegmented hypothesis region 2
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Table 6: Pixel count statistics for Tesseract default equation detector.

Pixel Count Statistics Measurement

# total foreground pix (tp+fp+tn+fn) 1,157,429 

# total positively detected pix (tp+fp) 140,878

# total negatively detected pix (tn+fn) 1,016,551

# total true positive pix (tp) 140,096

# total false negative pix (fn) 130,031

# total true negative pix (tn) 886,520

# total false positive pix (fp) 782

Table 7: Pixel accurate metrics for Tesseract's default equation detector.

Pixel-accurate Evaluation Statistics Measurement

TPR/Recall/Sensitivity/Hit_Rate = tp/(tp+fn) 0.518630

Precision/Positive_Predictive_Value = tp/(tp+fp) 0.994449

Accuracy = (tp+tn)/(tp+fn+tn+fp) 0.886980

FPR/Fallout = fp/(fp+tn) 0.000881

False_Discovery_Rate = fp/(fp+tp) 0.005551

TNR/Specificity = tn/(fp+tn) 0.999119

Negative_Predictive_Value = tn/(tn+fn) 0.872086
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4 Experimental Results
The math expressions of 75 images were manually extracted and placed into

“box files”  which  contain  the  image  index,  type  of  expression,  and  bounding  box

coordinates as discussed in Section 3.4.1. Of these images and their corresponding

box files, 15 of them were used to train the math expression detector while the other

60 were used to then evaluate it. The following section first discusses the results of

the detector parameter selection and cross validation training technique as described

in Section 3.4.2's Fine Tuning of SVM Parameters. The results of Parameter Selection

and cross validation on the 15 training images are then followed by a presentation of

and discussion for all final evaluation results which were carried out on the remaining

60 images used in this work. 

4.1 Detector Parameter Selection and Training
The D-Lib Machine Learning Library [134] was utilized in this work to train four

separate SVM classifiers,  each of which uses the RBF kernel.  While all  four of the

classifiers  are  trained  using  the  same  procedure,  they  are  done  so  on  different

combinations of features extracted from each sample of the image, where a sample is

an individual element in the image's custom grid data structure as illustrated in Figure

46 of Section 3.4.2. The classifiers are named based upon the SVM kernel used for

training along with the name of the feature extractor combination employed.  Each

feature  extractor  was  simply  named  F_Ext  (for  feature  extractor)  followed  by  an

identifier. The feature extractor which extracts all of the features described in Section

3.4.2 is named F_Ext1. The full list of features used by F_Ext1 is shown in Table 8. The

remaining three feature extractors use a subset of the F_Ext1 features as shown in

Table 9.
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Table 8: All of the features extracted in this work. The feature extractor named F_Ext1 uses all

22 features while the other three extractors tested use a subset of these.

Shorthand Name Feature Description

rhabc Rightward horizontally adjacent blobs covered 

uvabc Upward vertically adjacent blobs covered 

dvabc Downard vertically adjacent blobs covered

cn Number of completely nested characters

has_sup Has a superscript

has_sub Has a subscript

is_sup Is a superscript

is_sub Is a subscript

h Blob height

whr Blob width/height ratio

vdarb Vertical distance above row baseline

cosbabp Count of stacked blobs at blob position

imw Is blob in math word

is_italic Italicized text

ocr_conf OCR confidence rating

unigram Unigram Feature

bigram Bigram Feature

trigram Trigram Feature

in_valid_row Blob belongs to row with normal text (at least one valid word)

in_valid_word Blob belongs to normal text

bad_page Page doesn't have normal text

stop_word Blob belongs to stop word
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Table 9: The four classifiers which were trained and tested in this work along with the features

on which they were trained.

Classifier Name Feature Combination

RBFSVM_F_Ext1 All Features

RBFSVM_F_Ext2 No “in_valid_word” feature

RBFSVM_F_Ext3 No “in_valid_row” feature or n-gram features

RBFSVM_F_Ext4 No italics feature

As discussed in  Section 3.4.2's  Fine Tuning of SVM Parameters,  a coarse to

fine-grained parameter selection technique was carried out in order to determine what

SVM parameters gave the best 10-fold cross-validation results overall. This technique

was carried out on all four of the classifiers shown in Table 9 and yielded the results

shown in Table 10. In addition to the four RBF kernel SVM's tested, a linear SVM was

tested using the F_Ext1 features but could not achieve a true positive rate above 75%

during any cross validation and was thus the discarded in favor of the RBF kernel.    

Table 10: Each classifiers' optimal parameter combination, TPR, and TNR found through coarse

to fine grained parameter selection using repeated 10-fold cross-validation.

Classifier Name Optimal (C, ) TPR TNR

RBFSVM_F_Ext1 (123.88, 0.83020) 88.79% 97.87%

RBFSVM_F_Ext2 (133.34, 0.81802) 88.75% 97.86%

RBFSVM_F_Ext3 (7.0551, 7.65815) 87.54% 97.44%

RBFSVM_F_Ext4 (16.513, 2.66315) 89.79% 97.50%

4.2 Final Evaluation
While the parameter selection and training described in the previous section

was carried out on 15 images from the set of 75 images used in this work, the final

evaluation of the trained classifiers as well as the segmentation technique is carried

out on the remaining 60 images as was shown in Table 1 of  Section 3.4.1. The 15

images used for training were taken from Bidwell's Advanced Calculus (1911) [127] .

The remaining 60 images are separated into test  sets,  each containing 15 images

from a separate book as illustrated in Table 11. 
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Table 11: The four tests which were carried out. Fifteen pages of the corresponding textbook

was used in each test.

Test Name Textbook from which 15 Pages are Used for Testing

Test1 D.  Sloughter,  Difference  Equations  to  Differential  Equations:  An

Introduction to Calculus (2000) [131]

Test2 E. Bidwell, Advanced Calculus (1911) [127]

Test3 A. C. Lunn, The Differential Equations of Dynamics (1909) [130]

Test4 A. S. Kompaneyets, Theoretical Physics (1961) [129]

The second test (Test2) shown in Table 11 is carried out on different pages taken

from  the  same  textbook  which  was  used  for  training.  Although  performance  was

generally observed to be slightly better on the same textbook on which the training

was  carried  out,  overtraining  is  not  a  major  concern  since  the  results  do  not

significantly differ between the datasets. The average evaluation results for each of

the four detectors shown in Table 10, each averaged over all four tests shown in Table

11, are given in Table 12 and illustrated in Figure 68. The classifier names are here

replaced by the term MEDS (Mathematical Expression Detection and Segmentation)

followed by the corresponding number of the classifier used. Thus MEDS1 corresponds

to  RBFSVM_F_Ext1,  MEDS2  corresponds  with  RBFSVM_F_Ext2,  etc.  Although

segmentation is not being carried out yet at this stage, the MEDS modules that are

tested use the same detectors that are evaluated here.

Table 12: Results of detection averaged over all four tests.

Classifier TPR FPR ACC TNR PPV FDR NPV

MEDS1 82.77% 12.61% 87.36% 87.38% 63.94% 36.06% 94.03%

MEDS2 82.78% 12.57% 87.39% 87.43% 63.93% 36.06% 94.05%

MEDS3 83.12% 22.22% 80.88% 77.77% 59.46% 40.54% 89.15%

MEDS4 81.36% 10.35% 88.35% 89.65% 63.97% 36.03% 95.04%
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After an analysis of the detection evaluation results, it was observed that many

of the false positive detections were small parts of valid words, or even stop-words like

“the”, “at”, “and”, etc. In an attempt to mitigate such false positive recognition a post-

processing step was employed after the detection which removes all blobs detected as

math that are within stop-words. If blob detected as math is observed in a valid, non-

math word that isn't a stop-word, then the ratio of math blobs to total blobs in that

word has to be above an empirically chosen threshold of .6. The detection results after

the post-processing step are shown in Table 13 and illustrated in Figure 69.
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Figure 68: Graphical depiction of the overall average detection results on the four classifiers

which were tested. The classifier trained without the italic feature (MEDS4) is shown to give

the lowest false positive detection rate.



Table 13: Detection results after post-processing step is carried out to filter out obvious false

positives. This also causes a slight decrease in true positive rate, but still results in an increase

in overall accuracy.

Classifier TPR FPR ACC TNR PPV FDR NPV

MEDS1 80.40% 9.285% 89.53% 90.71% 69.97% 30.03% 95.07%

MEDS2 80.43% 9.255% 89.55% 90.74% 70.06% 29.94% 95.09%

MEDS3 81.56% 15.89% 85.31% 84.11% 66.09% 33.91% 94.40%

MEDS4 79.82% 7.676% 90.32% 92.32% 70.61% 29.39% 95.01%

After the detection and post processing was evaluated, the final results after the

segmentation  algorithm  described  in  Section  3.4.2.  The  recursive  segmentation

algorithm  employed  here  was  observed  to  be  very  successful  at  minimizing  the

occurrence of oversegmentations and undersegmentations in the results.  However,

the algorithm was also observed to become rather time-consuming as the number of
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Figure 69: Graphical representation of the results shown in Table 9.



blobs in a segment increases. Each time a segment's size is increased, all of the blobs

in  that  segment  are  required  by  the  algorithm  to  be  updated  and  rechecked  for

possible  merges  in  all  four  directions.  Although the current  implementation  shows

significant potential  for efficiency improvements, these are kept as ideas for future

work due to time constraints.  The final results after the detection, post-processing,

and segmentation are carried out are given in Tables 14, 15, and 16 and illustrated by

Figure 70. While Table 14 gives the pixel accurate metrics, Tables 15 and 16 give the

region-wide  statistics.  The  metrics  from  evaluating  Tesseract's  default  equation

detector are also included.

Table 14: Final pixel-accurate results of detection, post-processing, and segmentation.

MEDS TPR FPR ACC TNR PPV FDR NPV

MEDS1 90.21% 15.32% 86.78% 84.68% 59.31% 40.69% 97.72%

MEDS2 90.26 15.35% 86.76% 84.65% 59.28% 40.72% 97.72%

MEDS3 91.99% 22.32% 82.15% 77.68% 54.85% 45.15% 97.52%

MEDS4 90.17% 13.40% 87.98% 86.60% 60.68% 39.32% 97.82%

Tesseract 34.14% 3.685% 86.50% 96.31% 62.18% 19.49% 87.13%

Table 15: Region segmentation statistics for each MEDS module tested averaged over all four

test sets. Avg. Overseg/Underseg refers to the average number of over/undersegmentationed

regions  per  page.  The  severity  is  the  average  degree  to  which  each  such  region  is

over/undersegmented (i.e., how many regions an oversegmented groundtruth region is split

into by the hypothesis image).

MEDS Avg Overseg. Overseg. Severity Avg.  Underseg. Unserseg. Severity

MEDS1 9.88 3.75 1.32 4.16

MEDS2 9.90  3.75 1.32 4.16

MEDS3 10.28 3.78 1.37 4.06

MEDS4 9.90 3.63 1.28 4.09

Tesseract
0.27 0.27 2.42 2.27
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Table 16: Region-wide statistics for each MEDS module tested, averaged over all four test sets.

The Correct Segmentation % is the ratio of groundtruth regions that had no overlapping false

positive hypothesis pixels. Completely missed % is the ratio of groundtruth regions that had no

overlapping true positive hypothesis pixels. The average falsely detected count is the average

number of regions per page which have no true positive pixels.

MEDS Correct Segmentation % Completely Missed % Avg. Falsely Detected Count

MEDS1 72.19% 11.28% 25.80

MEDS2 72.34% 11.14% 25.90

MEDS3 75.58% 9.595% 37.03

MEDS4 71.39% 11.26% 22.35

Tesseract
10.35% 76.67% 0.200
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Figure 70: Graphical representation of the results shown in Table 10.



As  illustrated  by  Table  14  and  Figure  70,  false  detections  are  worsened

significantly by the segmentation stage since more false regions are often improperly

merged together. The true positive rate, however, is increased by nearly 10% during

segmentation.  The  importance  of  minimizing  false  positive  detections  while

maintaining  an  acceptable true  positive  rate  is  thus  emphasized.  Since  nearly  10

oversegmented regions were observed on average per page, with an average severity

of around 3 oversegmenations per segmented region, the segmentation module is far

from perfect. Problems with undersegmentations can often be attributed to separators

like commas, periods, or phrases like “or” and “such that” being improperly merged to

a region. The results,  however,  are satisfactory for the scope of this current  work.

After giving the numerical statistics for the evaluation, a more intuitive explanation of

the  results  is  demonstrated  by  Figures  71-73.  These  images  were  automatically

generated during evaluation in order to keep track of each pixel as it is evaluated and

to help avoid duplicate pixel counts. Each foreground pixel in the binarized image can

be, upon evaluation, counted as a true positive, false positive, true negative, or false

negative. The pixels are color-coded as shown in Table 17. The rest of these images

can be viewed at [126].

Table 17: Pixel color codes used to keep track of pixels during evaluation

Pixel Type Color Code

True Positive Red

False Positive Blue

True Negative Orange

False Negative Green

The  following  images  are  some  of  the  final  results  from  the  MEDS4

detector/segmentor  with  pixels  color-coded  as  shown  in  Table  17.  MEDS4  was

observed  to  have  the  highest  accuracy.  As  mentioned  previously,  this  particular

dector/segmentor differs from the others in that Tesseract's italics feature is not used.

This feature was observed not to be particularly accurate, having many false positives.

It is likely that the inconsistency of this feature may have confused the SVM classifier

during training. Other potential problems will  be addressed in the conclusion/future

work section of this thesis. While the Tesseract equation detector results have a very

similar accuracy to the detector/segmentor implemented in this work, it has a highly

different specificity and sensitivity as can be seen in Figure 70. The Tesseract equation

detector succeeds in having a very false positive rate but unfortunately has a true
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positive  rate  that  could  be  argued  as  too  low  for  practical  purposes  given  the

evaluation results depending upon the intended application of course. The precision,

however, is slightly higher than the MEDS4 precision. The significant amount of false

positive detections and segmentations made by MEDS4 leaves room for improvement.

Some of the aspects that need improvement will be discussed in the conclusion/future

work section of this thesis.
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Figure 71: MEDS4 final results on a page randomly pulled from D. Sloughter, Difference

Equations  to  Differential  Equations:  An  Introduction  to  Calculus.  Furman  University,

Greenville, SC: Creative Commons, 2000. Used under fair use, 2014.
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Figure 72: MEDS4 results on a page randomly pulled from A. S Kompaneyets, Theoretical

Physics. Osmania University: Foreign Languages Publishing House, 1961. Used under fair

use, 2014.



In order to illustrate the degree to which over-training to the specific textbook

from which the 15 training images were taken is a concern, the average results for

each  individual  dataset  from  the  best  performing  detector/segmentor,  MEDS4,  is

shown in Table 18. These are the results of detection and do not include any post-

processing or segmentation. As was shown previously in Table 11, the Test2 images

are taken from the same textbook as were the training images.  Thus a significant

improvement seen in the results of Test2 may be an indication that overtraining is a

concern.
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Figure  73:  On  the  left  are  some  pixel-accurate  evaluation  results  of  the  Tesseract  3.02

experimental  equation  detector  and  on  the  right  are  some  results  for  the

detection/segmentation module implemented in this work. 



Table 18: Average Detection results for MEDS4 on each individual test.

Test TPR FPR ACC TNR PPV FDR NPV

Test1 80.45% 17.70% 81.26% 82.29% 56.02% 43.98% 92.91%

Test2 83.36% 6.50% 91.36% 93.50% 71.71% 28.29% 95.40%

Test3 81.73% 10.10% 89.08% 89.90% 61.38% 38.62% 95.03%

Test4 79.90% 7.077% 91.72% 92.92% 66.78% 33.22% 96.82%

From Table 18, it can be argued that, although there may be a small degree of

overtraining as indicated by the higher precision and true positive rate observed for

Test2, the overtraining is not a major concern since the numbers are not very drastic.

Test4 which is entirely unrelated to the dataset used for training (in fact the textbook

used in Test4 was published more than 40 years after the one for Test2!) even has a

slightly higher accuracy measurement than Test2. 

Although the results of MEDS1 and MEDS2 (without the valid_word feature) are

very similar, a relatively significant change is observed for MEDS3 and MEDS4 results.

As indicated in Table 9, MEDS3 does not utilize the n-gram features or the valid_row

feature, while MEDS4 simply discards the italics feature. Although the current n-gram

Profile is generated only from a small amount of mathematical regions in the training

set and may not be statistically useful in a larger sense, the drastic increase in false

positive rate from MEDS1 to MEDS3 may indicate that the n-gram feature combined

with  the  valid_row feature  prevents  a  significant  amount  of  false  detections  from

taking place. If  a more statistically significant n-gram profile were to be generated

from a larger dataset and then applied to this work, it may reduce false detections

even more greatly.
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5 Conclusion and Future Work
The detection/segmentation technique utilized in this work can increase OCR

accuracy  in  document  images  by  allowing  for  a  higher  degree  of  document

understanding prior to recognition. In order for mathematical regions to be properly

recognized during OCR and not mangled with normal language text it is important that

mathematical  expression  regions  are  detected  and then  properly  segmented  from

their  surroundings.  The  evaluation  technique  utilized  in  this  work  counts  the  true

positive, false positive, true negative, and false negative pixels after detection and

segmentation  is  carried  out  in  order  to  get  a  highly  accurate  and  objective

understanding of performance. The count of oversegmentations, undersegmentations,

falsely detected segmentations, and falsely missed segmentations on a page can also

give  a  useful  indication  of  performance.  The  mathematical  detection  and

segmentation  module  implemented  in  this  work  has  potential  for  significant

improvement and also gives very favorable results overall. 

There  are  many  aspects  of  the  mathematical  detection  and  segmentation

module which, if improved, could make the results even more favorable. Firstly, the

feature  extraction  and  segmentation  code  could  be  optimized  for  speed.  During

segmentation, some of the methods from the feature extractor are used repeatedly,

and  since  these  methods  have  not  been  optimized  the  speed  of  the  program  is

reduced significantly. This is especially true for larger segmentations where, each time

the segment's size is increased, all of the blob's inside of it need to be re-evaluated for

potential merges in all directions. The segmentation algorithm currently implemented

also needs to be modified for detecting separators and mathematical words to further

enhance the accuracy.

Perhaps the most important future work item for both increasing true positive

rate and decreasing false positive rate, would be ensuring the proper identification of

“abnormal”  rows  of  text  which  are  more  likely  to  contain  one  or  more  displayed

expressions. While the current method can be satisfactory in some instances it is often

wrong. Implementing an accurate abnormal row detector is outside of the scope of this

work, but would improve the usefulness of several of the features which are extracted

only for abnormal rows. When a row is misclassified as abnormal, it can result in an

entire row of normal text being improperly segmented as a mathematical region. A

separate SVM for detecting abnormal rows may be a possible avenue for future work.

Header  and  footer  rows  need  to  have  been  found  either  prior  to  mathematical

expression detection/segmentation being carried out or as part of the overall process.
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Knowing  that  a  row  is  a  header,  and  not  part  of  normal  sentence  structure  is

important. Math may occur in the header however, so it is still important that headers

are taken into consideration. The current implementation simply assumes that the first

row is the header. While this is often the case, it has been observed that the first row

or couple of rows may be noise, in which cases both the header and first row of normal

text are improperly seen as abnormal.

Incorporating the results of a mathematical  OCR module would be helpful in

improving detector accuracy for the individual blobs. The occurrence of mathematical

blobs  within  words  that  were  misrecognized  as  normal  text  by Tesseract  currently

confuses the classifier during training. This results in parts of valid words and even

stop words being improperly detected as math. A more sophisticated technique of

ruling out obvious normal text from potential math text is required, one which not only

analyzes  the  normal  OCR  recognition  result  for  the  word  but  also  analyzes

mathematical OCR results. All features need to be analyzed in great detail so that a

deeper  numerical  understanding  of  classifier  performance  may  be  obtained  and

potential classification alternatives considered. 

Another  important  future  work  item  is  to  generate  more  data.  The  current

amount of pages, 75, is a very small amount of data, and makes it difficult to get a

truly objective understanding of the results. Getting data which is more statistically

significant is also important. Only 5 textbooks have been utilized in this work, which

although  satisfactory  for  a  small  test  set,  are  not  as  representative  as  would  be

desired  for  practical  applications.  Adding  a  math  symbol  recognizer  to  the  MEDS

module would be extremely useful. If math symbols could be recognized then it would

be possible to find regions that may have been missed by the detection phase during

segmentation. For any missed regions detected, the segmentation step could then be

repeated  until  no more  missed  regions  are  found.  Support  for  detecting  displayed

expression labels is also kept as an idea for future work. Detecting labels which refer

to displayed expressions would increase overall document understanding.

Improved italics and bold detection would also be extremely useful in making

the  detector  more  robust.  The  italics  and  bold  detection  implemented  as  part  of

Tesseract was used in feature extraction for this work but was found to not be very

accurate and was thus not used to train the final classifier. Implementing italic/bold

detection from scratch is outside of the scope of this work but would be very useful. 
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