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Abstract

Genome sequencing technologies promise to revolutionize our understanding of genetics, evolution, and disease by
making it feasible to survey a broad spectrum of sequence variation on a population scale. However, this potential can only
be realized to the extent that methods for extracting and interpreting distinct forms of variation can be established. The
error profiles and read length limitations of early versions of next-generation sequencing technologies rendered them
ineffective for some sequence variant types, particularly microsatellites and other tandem repeats, and fostered the general
misconception that such variants are inherently inaccessible to these platforms. At the same time, tandem repeats have
emerged as important sources of functional variation. Tandem repeats are often located in and around genes, and frequent
mutations in their lengths exert quantitative effects on gene function and phenotype, rapidly degrading linkage
disequilibrium between markers and traits. Sensitive identification of these variants in large-scale next-gen sequencing
efforts will enable more comprehensive association studies capable of revealing previously invisible associations. We
present a population-scale analysis of microsatellite repeats using whole-genome data from 158 inbred isolates from the
Drosophila Genetics Reference Panel, a collection of over 200 extensively phenotypically characterized isolates from a single
natural population, to uncover processes underlying repeat mutation and to enable associations with behavioral,
morphological, and life-history traits. Analysis of repeat variation from next-generation sequence data will also enhance
studies of genome stability and neurodegenerative diseases.
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Introduction

Advances in genome technology are accelerating our under-

standing of the genetic basis for common traits and diseases.

Large-scale efforts such as the HapMap Project have produced an

initial catalog of genetic variants, primarily single nucleotide

polymorphisms (SNPs), that has facilitated association studies with

phenotypes [1]. The advent of accurate and cost-effective next-

generation sequencing methods has now enabled the production

of even more detailed maps of genetic variation. The 1000

Genomes Project and the Cancer Genome Atlas Project, for

example, promise to illuminate genetic population structure and

the genetic contribution to trait and disease phenotypes [2,3].

However, an issue of missing heritability has been identified in

many association studies, even for strongly heritable traits such as

height [4]. The paucity of identified genetic determinants in

genome-wide association studies may be partially explained by

their reliance on high-frequency SNPs. At least in part due to

technical limitations, the potential contributions of other forms of

variation remains less fully explored [5].

Although much-used in the heyday of genetic linkage studies,

polymorphic short tandem repeats, or microsatellites, were largely

rendered obsolete as genetic markers by advent of genotyping

microarrays, and are not broadly employed in GWAS [6]. However,

tandem repeats continue to be broadly utilized as markers for

genome instability and prognostic indicators for some forms of

cancer [7,8]. The roles of tandem repeats as causative agents of

disease has been defined for a wide range of neurological and

morphological disorders [9,10,11]. Furthermore, coding microsatel-

lites are enriched prevalent in transcription factors and other

regulatory proteins, where changes in repeat length exert incremen-

tal impacts on gene function [12,13,14]. Variations in the lengths of

noncoding repeats in the promoters of genes have been shown to

quantitatively affect transcription and can facilitate transcriptional

plasticity [15]. Emerging evidence implicates coding and noncoding

microsatellites as important sources of common genetic variation in

morphological and behavioral traits in numerous species, including

bacteria, yeast, flies, mice, dogs, and humans [16].

Despite the functional importance and unparalleled phyloge-

netic signal provided by tandem repeat variation, technical
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challenges have prevented its inclusion in the recent spate of

‘‘comprehensive’’ genomic variation analyses [5,17]. Genotyping

microsatellite repeats using next-generation sequencing is chal-

lenging for several reasons. At minimum, an individual read must

span the entire repeat plus some flanking non-repetitive sequence

for reliable local alignment and allele length determination.

Furthermore, since repeats are abundant in most genomes,

substantial additional unique sequence must be present in either

the same read, or more commonly within its paired-end mate, to

correctly map a repeat-containing read to the reference genome.

The error spectra of some next-gen platforms further complicate

the reliable ascertainment of repeat allele lengths. These issues

extend beyond the well-known problems with mononucleotide

repeats for the Roche 454 platform, affecting essentially all repeat

types and platforms to some extent [18]. However, the advent of

paired-end sequencing and increasingly longer read lengths are

enabling more sensitive and accurate detection of structural

variants and other problematic sequence variations [18,19,20].

Here we introduce a method to accurately genotype microsat-

ellite repeats from next-generation sequencing data, and present a

population-scale analysis of microsatellite repeats using assemblies

of whole-genome Illumina data from 158 inbred isolates from the

Drosophila Genetics Reference Panel [21]. These lines are a

subset of nearly 200 extensively phenotypically characterized

isolates from a single natural population from the Raleigh, North

Carolina, USA area. First, we find that nearly a third of the

390,873 examined microsatellites are variable within this popula-

tion, and confirmed a sample of these by Sanger sequencing. Next,

we find that these polymorphic repeats generally conform to

accepted models for repeat evolution in that repeat variation is

predominantly in the form of insertions or deletions of whole

repeat units, and polymorphism is correlated with repeat length

and purity (i.e. fewer interruptions in the repeat sequence). These

data help illuminate the processes underlying repeat mutation and

will be instrumental in determining the contribution of repeats to

quantitative variation in behavioral, morphological, and life-

history traits.

Results

Length distribution of repeats in the Drosophila
melanogaster reference sequence

Sequence read length determines the upper bound of repeat

allele lengths that can be reliably determined by DNA sequencing.

It is therefore useful to examine the distribution of repeat lengths

in the finished D. melanogaster reference genome to estimate the

proportion of microsatellite loci expected to be within reach of

short read libraries. We identified all perfect and imperfect

microsatellite repeats with a unit length of up to five nucleotides

from build 5.13 of the D. melanogaster nuclear DNA reference

sequence (see Methods section). About 12% of these microsat-

ellites reside within or adjacent to larger repetitive elements, in

heterochromatic regions, or in unscaffolded contigs to which reads

cannot be uniquely mapped, and were excluded from further

consideration (Table 1). Of a total of 390,873 microsatellite

repeats satisfying minimum length and purity specifications,

92,047 (24%) were mononucleotides, 58,153 (15%) were dinucle-

otides, 95,234 (24%) were trinucleotides, 78,264 (20%) were

tetranucleotides, and 67,175 (17%) were pentanucleotides. The

median repeat length was 11 bases (range 7–651), and 90% of

repeats were shorter than 23 nucleotides. Over 98% of

microsatellites were accessible to the shortest reads employed in

the DGRP sequencing libraries (45 bases), while only 165 repeats

(0.04%) were beyond the reach of the longest reads (110 bases).

Microsatellite genotype determination
The number and specific identities of deleted or inserted repeat

units separating two different (or even identical) microsatellite

alleles in a population is generally unknowable [22]. Genotyping

tandem repeat variants in reference-mapped reads is therefore

fundamentally distinct from calling SNPs or indels in non-

repetitive sequence in that there is no sound basis for inferring

homology between pairs of aligned repeat units. Therefore,

microsatellite genotypes are scored in terms of allele length, or

the number of sequenced bases within a read separating the non-

repetitive flanking boundaries aligned to the reference, irrespective

of intervening alignment gaps. Although separate reads of the

same allelic variant might have been aligned with a gap/insertion

at a different location within the repeat, the reads will all yield the

same allele length call with this method. This approach effectively

negates the well-known problem of large numbers of false positive

SNP and indel calls resulting from inconsistent alignment of

ambiguously positioned indels [18,23,24].

Assessment of accuracy for genotype calls
We employed two metrics, completeness and internal concor-

dance, to assess the comprehensiveness and accuracy of repeat

genotype calls from whole-genome Drosophila data. The DGRP

lines are each derived from single female founders of a natural fly

population, and bred to near-isogeny by 20 generations of full-

sibling matings. Therefore, although alleles may differ among

lines, in the absence of mapping, alignment, or sequence errors, all

reads from a single inbred line mapped to a specific microsatellite

locus should possess the same repeat allele length. The assumption

of homozygosity permits the use of internal concordance among

the various reads within each inbred line to assess the relative

accuracy of alternative approaches and tune heuristics:

concordance~
Rmajor{1

Rtotal{1
,

where Rmajor = the number of reads supporting the majority allele,

and Rtotal = the total number of scorable reads at a repeat locus.

Regions of apparent residual heterozygosity were identified in

individual lines on the basis of SNP genotypes, and were excluded

Table 1. Number of identified microsatellites and their
association with repetitive elements by chromosome.

Chromosome Total microsats Number (%) in REsa

2L 103,467 6,444 ( 6)

2LHet 1,083 837 (77)

2R 92,291 7,306 ( 8)

2RHet 10,388 7,556 (73)

3L 114,997 7,719 ( 7)

3LHet 8,803 6,326 (72)

3R 127,212 4,328 ( 3)

3RHet 8,414 6,351 (75)

4 6,603 2,064 (31)

U 28,559 21,274 (74)

X 131,339 7,356 ( 6)

XHet 813 415 (51)

YHet 923 555 (60)

aNumber (%) of microsatellites within 20 bases of a large repetitive element.
doi:10.1371/journal.pone.0033036.t001

Population-Scale Analysis of Repeats
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from concordance assessments [21]. In conjunction with concor-

dance, we employed another metric, completeness, or the

proportion of repeats for which valid genotypes were obtained.

The combination of these two metrics enables the evaluation of

the relative accuracy and the comprehensiveness of various

experimental approaches and heuristics.

To assign a genotype and assess concordance for a repeat, at

least two scorable reads were required. A read was determined to

be ‘‘scorable’’ on the basis of three criteria: First, the read must

span the entire microsatellite and include flanking non-repetitive

sequence on both ends. Second, a minimum number (initially,

one) of consecutive flanking positions adjacent to the repeat must

match the reference sequence. Finally, the read must have been

uniquely mapped to the reference genome, with no alternative

high-scoring hits to other regions of the genome.

Most repeats can be genotyped using 75 base paired-
end reads

The majority of the DGRP lines were sequenced using 45, 75,

95, 100, and/or 110 base reads to an average post-processed

coverage of 216 [21]. The variety of read lengths employed

presented a unique opportunity to investigate how read length

impacts our ability to confidently assess repeat genotypes. We

computed the concordance and completeness of microsatellite

repeat genotypes as a function of the length of the repeat tract, as

inferred from the allele length of the reference genome (referred to

henceforth as reference length). The dataset included microsatel-

lites for which at least 80% of bases in the repeat corresponded to

perfect repetitions of the repeated unit (referred to henceforth as

purity).

For genomes sequenced using 45 base reads, about 50% of

repeats with a reference length of 34 bases yielded genotypes and

3% of repeats with a reference length of 43 bases yielded

genotypes (Figure 1a). In comparison, for genomes that were

sequenced with 75+ base reads, an average 75% of repeats with a

reference length of 43 bases yielded genotypes. In our dataset,

90% of the repeats had a reference length of 22 bases or less; and

45 base reads captured 79% of genotypes for repeats with a

reference length of 22. Although 45 base reads yielded high-

quality genotypes for most repeats in the Drosophila genome, the

longest repeats tend to be the most variable, and so 45 base reads

are unlikely to capture the majority of repeat variation in the

DGRP lines.

Read length had only a modest impact on internal concordance.

For read sizes of 45, 75, and 95 bases, the concordance of repeats

at all reference lengths never fell below 90% (Figure 1b). The

modest inverse correlation between read length and concordance

observed for repeats shorter than ,30 bases appears to result from

the higher sequence error rates in later cycles of long read

sequencing (data not shown).

Some of the DGRP genomes were assembled from multiple

libraries with different read lengths. In particular, there were seven

genome assemblies possessing similar proportions of 45 and 75

base reads. These seven hybrid assemblies allow for direct

comparisons of genotypes of the same individual derived from

two read sizes. In these lines, an average of 263,994 (68%) repeats

per line could be assigned genotypes using reads of both sizes. Of

these, an average of 987 (0.4%) repeats per line yielded different

genotypes between 45 and 75 base reads. These discordant loci

exhibit a significant contraction bias in calls derived from 45 base

reads, relative to the reference repeat length (Figure 2). The

contraction bias in 45 base reads is most apparent for longer

repeats (data not shown), consistent with bias in ascertainment of

erroneously mapped (and gapped) reads. Since 45 base reads suffer

from reduced completeness for longer repeats and significant

contraction bias, they were excluded from subsequent optimiza-

tion and benchmarking efforts.

Genotype accuracy is affected by repeat length and type
Sequencing long microsatellite repeats is challenging and error-

prone by any technology, including Sanger sequencing, with

difficulties that extend beyond the known signal resolution

limitations of the Roche 454 sequencing platform [18,25].

Homopolymeric repeats are highly prone to in vitro slippage errors

during polymerase-mediated replication, and are routinely masked

for next-generation sequence analyses [26]. We therefore

examined the contribution of repeat unit size to completeness

and concordance, in order to determine unit size limitations for

accurately measured changes in microsatellite repeats.

First, mononucleotide repeats were the least comprehensively

genotyped repeat (Figure 3A). In contrast, pentanucleotide

repeats were genotyped with the same level of completeness as

Figure 1. The completeness and internal concordance of microsatellite repeat genotypes in the Drosophila genome. The plotted
values are the mean (A) completeness (fraction of repeats with at least two reads passing filtering criteria) and (B) concordance for the genomes in
the DGRP panel, grouped by read length. Data have been smoothed for clarity (unweighted mean with window size 62 bases). For this initial
analysis, only a single matching base on each side of the repeat was required for a read to be scored.
doi:10.1371/journal.pone.0033036.g001
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matched non-repetitive regions. Second, internal concordance for

mononucleotide repeats was considerably lower than for other

repeats, falling below 0.9 for homopolymers longer than 13 bases

(lengths based on the reference), and to 0.8 for repeats longer than

16 bases (Figure 3B). Completeness and concordance for longer

repeat units were markedly better, with a mean concordance for

dinucleotide repeats of at least 0.9 for repeats as long as 33 bases.

The concordance for triplet repeats never fell below 0.92, and

tetra- and pentanucleotide repeats never fell below 0.94.

We used Sanger sequencing to verify the lengths of 7 variable

microsatellites, including GAGGG, ATACC, AC, A, T, and

AAAT, in a total of 26 lines. These repeats were selected due to

their association with startle response and starvation resistance in

the DGRP lines [21]. Sanger sequencing confirmed the genotypes

of all 26 genotypes derived from the Illumina data.

Concordance is improved by filtering reads with flanking
mismatches

Since regions of residual heterozygosity have been excluded,

reads that span repeats in the inbred lines should all reflect the

same repeat allele length. While recent de novo mutations cannot

be excluded, discordant reads will predominantly be the result of

errors in sequencing, mapping, or local alignment. Because

microsatellites with similar or identical sequences occur at many

locations in the genome, reads with repetitive sequences are more

susceptible to misplacement with respect to a reference sequence.

Figure 2. Analysis of discordant genotypes in genomes sequenced with two different read lengths reveals that short reads exhibit a
bias towards shorter alleles. The difference between the inferred genotypes and the corresponding reference repeat length was tallied for 6,908
(out of 390,873) repeats for which different genotypes were obtained in the same inbred line from 45 base (open bars) versus 75 base (solid bars)
reads. Permutation testing (1000 trials) indicates that the bias toward shorter alleles evident in the 45 base libraries is significant (for clarity, only the
upper half of 95% confidence intervals are shown).
doi:10.1371/journal.pone.0033036.g002

Figure 3. Repeats of shorter unit length are more difficult to sequence. The plotted values are the mean (A) completeness (fraction of
repeats with at least two reads passing filtering criteria) and (B) concordance for the genomes in the DGRP panel. Data have been smoothed for
clarity (unweighted mean with window size 62 bases).
doi:10.1371/journal.pone.0033036.g003
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Manual inspection revealed improper mapping to be the

predominant source of discordant reads. To reduce errors

resulting from incorrectly mapped reads, we evaluated heuristics

for selectively filtering reads exhibiting characteristics indicative of

mapping error. First, we examined the relationship between

concordance and mapping quality scores obtained from the

mapping software. Like most short-read mapping programs, BWA

assigns a Phred-like mapping quality score to each read (MapQ)

based on match uniqueness, sequence identity, end-pairing, and

inferred insert size, that is intended to indicate confidence of read

placement accuracy [27,28]. At shorter repeat lengths (10–24

bases) the mean MapQ value for reads mapped to a locus

positively correlated with concordance (r2 = 0.99, p = 0.002).

However, this correlation did not hold for repeat lengths greater

than 24 bases (lengths 24–39, r2 = 0.65, p = 0.24; lengths 40–54,

r2 = 0.57, p = 0.32). As a more sensitive test, we examined the

MapQ of discordant singleton reads for loci with at least four reads

supporting the majority allele (i.e. loci with allelic representation of

n:1, with n$4). Although the MapQ scores of discordant singletons

were on average 10% below the mean of the majority reads at the

same locus, the score distributions were not sufficiently distinct to

support effective MapQ-based filtering. Similarly, although the

distribution of base sequence quality scores declined more steeply

toward the end of discordant singleton reads than majority reads,

the overlap in distributions limits effective read filtering on the

basis of sequence quality.

Manual inspection revealed that incorrectly mapped or aligned

reads, and reads with poor sequence quality can often be identified

by the presence of mismatches to the reference in the sequence

immediately flanking the repeat. Increasing the minimum requisite

number of consecutive perfectly matching flanking bases on both

ends of the repeat resulted in modest drops in completeness

(Figure 4A) but substantial improvements in concordance

(Figure 4B). The improvement in concordance is exceeded by

the loss in completeness when requiring more than three

consecutive flanking matches.

Properties of polymorphic microsatellite repeats
Almost any process that exposes single strands of DNA can lead

to repeat length mutations, including replication, recombination,

DNA damage repair, and other aspects of DNA metabolism

[9,29]. The susceptibility of a microsatellite to length mutations is

largely a function of intrinsic properties of the repeat sequence,

including the repeat unit length, the number of repeated units, and

the purity of the repeat tract [30,31]. In agreement with previous

studies, we find that repeat tract length, purity, and unit size

correlate with the average number of alleles for a repeat

(Figure 5). The relationship between purity and length reveals

that repeats possessing only one or two interruptions (Figure 5A,

green line) evolve similarly to perfect repeats ,6–8 nucleotides

shorter (Figure 5A, red line), corresponding closely to the

expected longest uninterrupted stretch of the imperfect repeats.

However, a different dynamic emerges for more degenerate

repeats, which exhibit step-wise decreases in slope with purity, yet

all with similar intercepts. This pattern is not explained by

uninterrupted segments of imperfect repeats, potentially suggestive

of alternate mechanisms. In addition, dinucleotide repeats

segregate from other repeats as the most variable (Figure 5B).

Since microsatellite length mutations almost always give rise to

insertions or deletions of one or more whole repeat units, the

minimum lengths at which short tandem repeats begin to exhibit this

form of mutation can be determined by the emergence of excess unit-

length variants over background mutation rates for nearby non-

repetitive sequences. Makova and colleagues [32] recently used a

related approach to delimit length thresholds for microsatellites

within several regions Sanger sequenced in humans as part of the

ENCODE project. In that study, the authors determined that human

mononucleotide and dinucleotide repeats mutate above background

slippage rates when the repeat tract is at least 10 bases [32].

We determined the lengths at which various repetitive

sequences begin mutating as microsatellites by examining how

the proportion of whole-unit variation to non-whole-unit variation

changes as a function repeat length. We classified repeat variation

from the DGRP lines in the form of the proportion of alleles that

differ in whole-unit lengths from the most common allele relative

to fractional unit length differences. As shown in Figure 6, we

find that in D. melanogaster, the tendency for repetitive sequences to

mutate in whole unit increments is clearly evident for even very

short repeats. This tendency increases rapidly with tract length

and eventually begins to plateau at approximately 13, 20, 23, and

Figure 4. Increasing the requisite number of matching flank bases between a read and the reference improves genotyping
accuracy at the expense of coverage. The minimum required number of matching flanking bases for a read to be scored was incremented from
zero to five. Two or more scorable reads were required to determine a repeat genotype. The plotted values are the mean (A) completeness (fraction
of repeats with at least two reads passing filtering criteria) and (B) concordance for the genomes in the DGRP panel. Data have been smoothed for
clarity (unweighted mean with window size 62 bases).
doi:10.1371/journal.pone.0033036.g004
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27 bases for di-, tri-, tetra-, and pentanucleotide repeats,

respectively. Most of the variation (97%, 96%, 82%, and 86%,

for di-, tri-, tetra-, and pentanucleotides), in repeats at least as long

as these plateau lengths, conforms to the classic step-wise model of

microsatellite evolution (Figure 7). The majority of repeat lengths

that were not whole-unit likely reflect errors in sequencing,

mapping, or alignment. However, it is possible that some of this

non-unit variation might also be indicative of other classes of indel

mutations; or they might reflect instances of complex or imperfect

repeats exhibiting mutational properties of multiple different units.

Examples of the former possibility are most evident among

tetranucleotide repeats, for which a large proportion of non-whole-

unit variation is in multiples of two bases (Figure 7C). This half-

unit excess is predominantly produced by imperfect repeats, but is

also apparent in many perfect tetranucleotide repeats, suggestive

of an alternative mutational process. Finally, although strand-

slippage is expected to induce whole-unit mutations in uninter-

rupted repeats, repeats are also prone to double-strand breaks and

if these breaks are not repaired by recombination-mediated

processes, non-whole-unit changes to repeats can result [33,34].

Discussion

Nucleotide repeats are ubiquitous and polymorphic across all

species. An often-cited example of physiologically and evolution-

arily important microsatellite variation in Drosophila is a

polymorphic threonine-glycine dipeptide repeat within the period

gene. Naturally occurring length variation of the period coding

repeat gene produces altered temperature-dependent circadian

rhythm behavior in related populations of flies [35]. Natural

selection has been demonstrated to act upon this locally adaptive

variation, and it has been proposed that variation in such rhythm

Figure 5. Variability is correlated with increasing repeat length, increasing purity, and decreasing unit size. Correlations were made
using genotypes of repeats (2mers to 5mers) that were derived from genomes sequenced with a read length of at least 75 bases. Data points were
plotted at each reference length bin interval that contained at least 25 repeats. The mean number of alleles (A) positively correlated with purity and
(B) negatively correlated with unit size.
doi:10.1371/journal.pone.0033036.g005

Figure 6. The tendency for differences in repeat length to occur in the form of insertions and deletions of whole repeated units
increases with repeat tract length. The percent in-phase values of uninterrupted 2mer, 3mer, 4mer, and 5mer repeats approached a plateau at
repeat lengths of 13, 20, 23, and 27 bases respectively, where length-changes are close to 100% in-phase. Genotypes for pure repeats were
determined in all the DGRP lines if there were at least two scorable reads and a read was scored if it spanned the repeat region with 3 or more
matching flank bases on either side of the repeat.
doi:10.1371/journal.pone.0033036.g006

Population-Scale Analysis of Repeats
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behavior underlies sympatric speciation events [36]. Furthermore,

microsatellite repeats likely underlie the evolution of quantitative

traits in many other species including mammals [16].

We developed an approach to derive microsatellite repeat allele

lengths from Illumina whole-genome data to gain insight into the

mutational processes that modulate microsatellite variation and to

enable the discovery of functional microsatellites. We find that that

read sizes of at least 75 bases are sufficient to enable the accurate

genotyping of most repeats in the Drosophila melanogaster genome

and that mononucleotide repeats are the most challenging repeats

to measure. Our proposed approach will gain even more utility for

the ongoing data deluge as the read lengths for Illumina data now

approach 150 bases. The approach can also be generalized to

other genomes, including human genomes. Although the length

distribution of microsatellites is longer in mammals than in

Drosophila [37], repeats in normal human genomes, for example,

almost never exceed 75 bases for pure repeats (Figure 8A) or even

imperfect repeats (Figure 8B).

Figure 7. Changes in repeat length typically occur in the form of insertions and deletions of whole repeated units. The plotted dataset
consisted of repeats that were at least 90% pure, with a minimum reference repeat length of 13, 20, 23, and 27 bases for (A) 2mers, (B) 3mers, (C)
4mers, and (D) 5mers, respectively. Genotypes were determined if there were at least two scorable reads and a read was scored if it spanned the
repeat region with 3 or more matching flank bases on either side of the repeat.
doi:10.1371/journal.pone.0033036.g007

Figure 8. The distributions of repeat lengths in Drosophila and human genomes. The heights of the bars indicate the relative abundance
of repeats at various lengths in Drosophila (black) and human (gray) genomes. The solid portions indicate the fraction of (A) all repeats 80% pure or
greater, and (B) pure repeats that can be genotyped based on observed completeness using reads that are at least 100 bases.
doi:10.1371/journal.pone.0033036.g008

Population-Scale Analysis of Repeats

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e33036



In the population of 158 inbred isolates from the Drosophila

Genetics Reference Panel, we found that a third of the identified

repeats vary in the population. Some of these repeats have already

been related by GWAS to traits such as startle response and

starvation resistance in the DGRP lines [21]. Undoubtedly, future

studies with the DGRP population will reveal other associations

between repeat length changes and trait variation. Next, we found

that these polymorphic repeats follow accepted models for repeat

instability—repeat mutation predominantly manifests itself in the

form of insertions or deletions of whole repeat units and

polymorphism correlates with increasing length and sequence

purity. Finally, we used the DGRP dataset to ascertain the

minimum lengths for a repetitive sequence to mutate as a

microsatellite and find these values to be 13, 20, 23, and 27 bases

for di-, tri-, tetra-, and penta-nucleotide repeats respectively.

While the above results establish a proof of principle that

microsatellite repeats can be genotyped from short read next-

generation sequencing data, the primary goal of this study is to

catalog microsatellite variation in the DGRP lines to enable future

studies of their contributions to variation in morphological,

behavioral, and life-history traits. In the pursuit of this goal, all

variants identified in this study are available online (http://

genome.vbi.vt.edu/public/DGRP). A public web resource is also

available to enable researchers to upload phenotypic data for

association with microsatellite repeat variation, as well as other

genetic polymorphisms (http://dgrp.gnets.ncsu.edu/). These re-

sources will enable the scientific community to perform their own

association studies and ultimately gauge the contribution of

microsatellite repeat variation to quantitative traits in Drosophila.

Methods

Identifying microsatellite repeats from the Drosophila
reference

Microsatellites were identified in the Drosophila melanogaster

reference genome (release 5.13) using TRF v4.04 [38] using

parameters ‘‘2 5 5 80 10 14 5,’’ and filtered to remove redundant

hits. We excluded microsatellites within or adjacent to regions that

preclude unique mapping, including larger repetitive elements and

heterochromatin.

Transposons and other repetitive elements that confound short

read mapping were identified using RepeatMasker (version

20071705; library release 20061006; -s setting). RepeatMasker

results were filtered to remove all ‘‘Simple_repeat’’ and ‘‘Low_-

complexity’’ hits, and TRF-identified microsatellites occurring

within 20 bases with of a RepeatMasker interval were removed.

This reduced the microsatellite set from 634,892 regions to

556,361. A disproportionate number of the removed microsatel-

lites were in heterochromatin and unscaffolded contigs (which are

also mostly heterochromatin). We therefore chose to exclude the

heterochromatic regions from analysis. The final set included

390,873 microsatellites.

Mapping Illumina whole-genome from the DGRP lines
Methods for library preparation and sequencing are described

elsewhere [21]. For the present study, we remapped all of the

sequences for all 158 lines to the Dmel 5.13 reference genome

using BWA (version 0.5.8c) with the ‘‘-n 5 –o 1 –e 3 –l 25’’

parameters [27].

Microsatellite genotype inference
For each TRF-identified microsatellite, genotypes were scored

by allele length, or the number of sequenced bases within a read

separating the non-repetitive flanking boundaries aligned to the

reference, irrespective of intervening alignment gaps. This

approach ensures that insertions or deletions aligned to different

portions of the repeat region in different reads are not scored as

distinct alleles. Scripts and software used in the determination of

repeat genotypes are available from the authors upon request.

Correlations to length, unit size, and purity
To examine the relationships between unit size or purity and

variability, genotypes of microsatellites of given unit sizes and

purity values were analyzed to determine the number of unique

alleles found within the DGRP dataset. The TRF-reported unit

size and purity values were used to categorize the microsatellites by

unit size or purity, while the most frequently observed allele length

in the population was used for repeat length. Repeats were binned

by length, and the mean number of distinct alleles for each bin was

determined.

Bootstrapping analysis
To evaluate the significance of allelic bias in 45 base versus 75

base libraries, 1,000 frequency distributions of allele length

difference at discordant loci were created using microsatellites

randomly sampled from the original set with replacement. For

each allele length difference bin, the frequency values from each of

these 1,000 randomized sets of repeats were sorted into increasing

order and the 2.5th and 97.5th percentiles were plotted.

Exclusion of residual heterozygosity
Regions of apparent heterozygosity within individual lines on

the basis of heterozygous SNP genotypes were obtained from the

DGRP project site [21]. Chromosomal arms were excluded from

individual lines for concordance measurements if more than 5% of

single nucleotide polymorphism sites were scored as heterozygous.
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