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The relationship between the normalization coefficient and 
dispersion function for the multigroup transport equation * 

Mitchell J. Feigenbaumt 

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 
(Received 25 July 1974; revised manuscript received 7 November 1975) 

An explicit formula for the discrete Case normalization coefficient is presented in terms of functions related 
to the dispersion function. These functions are easily determined and provide the normalization coefficient 
without need of prior evaluation of the eigenvectors. 

The single -group (reduced) transport equationl 

is an eigenvalue equation for z: setting 
1 J dJ.l ¢(J.l)= 1, 

-1 

one obtains (z ri [ - 1,1]) 

¢(J.l)=CZ/2 
z- J.l 

with z determined by reimposing (2) upon (3): 

f 1 CZ 11 dJ.l 
1= ¢(J.l)dJ.l=2 -_-=M(z). 

-1 -1 z J.l 

(1) 

(2) 

(3) 

That is, the eigenvalues z are the zeroes of the function 
a(z), where 

a(z)= 1-- -- = 1 -M(z). cz f dJ.l 
2 z - J.l 

(4) 

Had ¢ been multicomponented (as for multigroup equa­
tions), the eigenvalues z would similarly have been the 
zeroes of a function a(z), which then is the determinant 
of the coefficients of the linear system analogous to (0: 

a(z) = det( I - M(z»). (5) 

That is, (4) is simply the one-dimensional case of (5). 
We shall write the explicit form of the matrix M(z) 
later. 

A normalization factor N is defined for a solution to 
(1), according to 

N= f dJ.l J.l¢2(J.l). (6) 
-1 

By utilizing the solution (3) [with z replaced by zo, where 
a(zo) = 0], it is easy to verify that the value of N 

satisfies the well-known formula 

(7) 

For multi-group equations for particular (and small, 
e. g. , two) numbers of groups results similar to (7) have 
surfaced in the literature. 2 In this paper we attempt to 
determine just what the connection between N and a' 
is for a fairly general class of nonconstant, non isotropic 
multi group equations. 

To be exact, we investigate the equation3 

" (LZ - J.l1)· ¢(J.l) = z 6 Am(J.l)' f dJ.l' Bm(J.l') 0 ¢(J.l') (8) 
m=l -1 

for an a-fold degenerate nonconstant, nonisotropic 

614 Journal of Mathematical Physics, Vol. 17, No.5, May 1976 

scattering kernel, with L the diagonal matrix of cross­
sections: 

L= 

for an N-group problem. 

With M(z) the Net X Net matrix, 

we shall establish that 

where AI (z) is ith eigenvalue of M, and 

a=det(1 - M)= 11 [1 - Ai(z)] 
i-1 

In analogy to the solution of (0, one solves (8) by 
isolating ¢. Defining 

r dJ.lB(m)(J.l)'¢(/1)=~(m) (11) 
-1 

upon multiplying by (LZ - /11)-1, 

¢(/1)=Z(LZ-/1'1)-1.± A(m)W)·~(m). 
m=l 

Next, multiply by B(n)(/1) and integrate over /1: 

t B(n)( /1) 0 ¢(/1) d /1 = ~(n) 
-1 

O! 

=6 (t d/1 B(n)(/1)' Z(LZ - /1' 1)-1., A(m)(/1»' ~(m) 
m==l .. 1 

" ",.6 M(n)(m)(z). ~(m). 
m=l 

That is, 2:
m

(onm 1- M(n)(m\z))j3(m) =0, where M(n)(m) is 

defined by (9). Clearly, this is a usual homogeneous 
system of equations in Net. dimensions. Thus, apart 
from direct product subscripting, an et.-fold degenerate 
kernel presents the identical mathematical problems as 
the onefold kernel A.( /1)' B( /1'). Accordingly, with no 
loss of generality, we consider the notation ally simpler 
problem of the onefold degenerate kernel: 

(I - iVi(z») 0 ~= 0, ¢= z(Iz - /11)"10 A o~, (12) 

Copyright © 1976 American I nstitute of Physics 614 
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where 

M(Z) = t d Il B(Il)' z(~z - Iln-1 
• A(Il), 

-1 

~= t B(Il)- 4>(Il)dll. 
-1 

Next, define the adjoint solution 4>*: 

4>* • (~Z - Ill) = z( J dil' 4>*(Il' ) 'A( Il')) • B( ilL 

In an identical fashion to the above, with 

P* = t d Il 4>* (Il) • A( J.L) 
-1 

one obtains 

and 

(13) 

(14) 

(15) 

(16) 

(17) 

(~ differs from f3* only when M is nonsymmetric. ) The 
solubility of either (12) or (17) is exactly the eigenvalue 
condition S"2(z) = 0, where 

S"2(z)=det(I-M(z)), (18) 

with f3 and f3*, respectively, right and left eigenvectors 
of M corresponding to the eigenvalue + 1; the condition 
on a Zo is that M(zo) should possess the eigenvalue + 1. 

Corresponding to the mth zero of 'liz) [i. e., S"2(zm) 
= 0] is a f3(m) and f3 * (m). As a natural nor malization for 
that solution, we choose 

(19) 

and shortly comment on when this condition. is tenable: 
At this point we cannot yet even comment on orthogonal­
ity of different modes. Normalization on the solution 
through (19), having been set, the normalization co­
efficient is determined: 

Nm = f dllll4>*(Il)' 4>(Il) 
-1 

and 

N =-z 2f3*(m)'M'(Z )of3(m) [where i\Ii ' = (d/dz)W.]. 
m m m 

(20) 

Equation (20) establishes some connection between N 
and M, although it requires the evaluation of both ~ and 
f3* prior to calculating N. It is our goal to provide an 
evaluation of N independent of explicit f3 dependence. 
Unfortunately, Eqs. (12) and (17) are not valid for all 
z: Rather, they are a compatable system of equations 
only for certain specific values of z (i. e. , the zm)' 
Accordingly, neither of (12) or (17) can be differentiated 
to be useful in (20). Thus, we are forced to pose a more 
flexible eigenvalue problem for M. Clearly, for any z, 
we can evaluate the elements of M(Z) and pose its eigen­
value problem. Equation (12) poses a more restricted 
problem, in that it seeks out those special values of z 
for which the eigenvalue is + 1: For other values of z, 
M will possess eigenvalues different from 1 and z-
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dependent: 

i'vl(z)' Y(z) = A(Z)y(Z), 

where 

A(Zm) = 1. 

For a given z, there will, in general, be N different 
eigenvalues: 

Am(Z), m=1, ..• ,N 

(21) 

and, in general, at a zm satisfying S"2(zm) = 0, only one 
A will achieve the value + 1. Accordingly, we label the 
z-dependent eigenvalues with the same index that labels 
the z's that satisfy S"2(Z) = 0: 

(22) 

[Should S"2(z) = 0 possess a degenerate root, evidently 
exactly that number of the A'S must simultaneously 
achieve the value + 1 at that z-value.] For zm' (21) 
becomes 

M(zm)' ym(zm) = rm(zm), 

where r<m)(z) is the eigenvector associated with Am' 
That is, 

f3(m) = ym(zm). (23) 

Similarly, 

r,;; (z)· M(Z) = Am(Z)r,;; (z) (24) 

and 

(25) 

We are now in a position to examine orthonormality 
questions. 

M(z) • l'm(z) = Am(Z)l'm(z) 

=> l'n*(z), M(z)' l'm(z) = Am(Z)l'~ (z)· ym(z) 

and 

r~(Z)' M(z)= \(z)l'~(z) 

=> r~(z) • M(z)· rm(z) = \(z)l'~ (z)· Ym(z) , 

i. e. , 

(26) 

so that 

(27) 

Should all the eigenvalues be distinct, then these Ym's 
must span the N-dimensional space. Since, by (27), r~ 
is orthogonal to N - 1 linearly independent vectors, and 
is nonnull, it must have a projection upon the last, 
so that by appropriate normalization coefficients of the 
r 's, one can set 

(28) 

Accordingly, by defining 

(29) 

where (28) also guarantees G's invertibility. Clearly, 

Mitchell J. Feigenbaum 615 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Mon, 24 Mar 2014 18:47:42



G accomplishes M's diagonalization 

Y~ • M' Ym= AmY~' Ym 

~ (G-1
• M' G)mn = AmOmn '" (A)mn' (30) 

However, with degenerate eigenvalues and M nonsym­
metric, diagonalization is not in general possible. 
Should it be possible, M's spectrum is termed complete. 
We assume completeness from this point onwards. This 
is important because it guarantees the validity of the 
normalization posited in (19): Set m = n in (28) and 
evaluate at Z = zm: 

1= r*(z ). r (z )= Q*(m). Q(m) 
m m m m ~ ~. 

Also, 

O(Z) = det( 1- M(Z) = detG-1 (z)G (z)· det( I - M(Z) 

= det(G-1 (z) • (I - M (z))· G (z) 

= det( I - A(Z) 
N 

= IT [1 - Am(Z)]. (31) 
m:::l 

Since (21) holds for all z, we can differentiate it: 

M'(z) • rm(z) + M(z), r~(z) = A~(z)rm(z) + Am(Z)Ym(z) 

or 

Projecting upon r,!, paying attention to (24) and (28), 
we obtain 

r~(Z)' M'(z)' rm(z) 

= A~(Z)r:(z) • rm(z) + r,! (z)· (Am(Z) I - M(z», r~(z) 

=A~(Z). 

Finally, evaluating at z = zm' 

Y,! (zm) • M'(zm)' rm(zm) 

=~*(m)'M'(z ).Q(m)=II.'(z) 
m IJ m m 

so that 

(32) 

Thus, knowledge of the lI.(z)'s suffices to determine at 
once the zm's and Nm's. To rewrite (32) in terms of 0, I 

differentiate (31): 

O'(zm)= - A~(Zm) IT [1-lI. j (zm)] 
U m 

or 

(33) 

It is, at this point, perhaps useful to explicate these 
ideas by examining a two-group equation with constant, 
isotropic kernel, 4 

=(1 0) . = (cn 
C

12
) '" C ~ Oa,AB CC ' 

21 22 

and 

¢*(iJ.)(~Z - iJ.1)=z r ¢*(iJ.')diJ.'·C. 
-I 

Defining 

~= J diJ.' ¢(iJ.'), 

13* = J diJ.' ¢*(iJ.,). C, 

we have 

M(zl= z r diJ. (~z - iJ.1)-1. C 
-I 

(34) 

(35) 

with ~ and ~* right and left eigenvectors. Writing out 
(35), we have 

(

ztdiJ./(Z-iJ.) 0 ) 
M(zl= _I C 

o zrdiJ./(az-iJ.) • 

= t:1 
(1/ Ol~ o,n) , c',' (36) 

Calculating A(Z): 

det(AI -0'1 (l/OI:O,Jc) ~o, (37) 

which, after some algebra, reduces to 

11.2 
- A[Cnf(z) + (C2/a)j(az)] + (C/a)f(z)f(az) = 0, 

C '" detC. (38) 

Differentiating (38), 

2AII.' - A'[ Cnf(z) + (C 22/ a)j( az)]- A[Cllf(z) + C22 f'(az)] + (C/ a)f'(z)j(az) + Cf(z)f' (az) = O. 

Solving for A' and setting A = 1, z = zo, 

11.' __ (C/ a)f(zo)f(azo) + Cf(zo)f(azo) - [Cllf(zo) + C2d(azo)] 
- 2 - Cllj(Zo) - (C 2/ a)j(azo) 

so that 

N 
-_ 2,,( )-C 2(1/a)f(zo)j(azo)+j(zo)f(azo)-(1/C)[Cllf(zo)+C2d(azo)] 

0- zo" Zo - Zo j( ) ( /)j( ) 2 - Cll Zo - C22 a azo 
(39) 

To evaluate zo, one sets A = 1 in (38), which of course, 
is simply O(zo)=O as can be seen by setting A=1 in (37). 
Since f is a perfectly definite function 

f(z) = z t diJ./(z - J.L) = z ln I (1 + z)/(1 - z) I = 2z tanh-1(1/ z), 
-1 
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'once Zo is evaluated, No is obtained from (39) without 
further computation. It is to be recalled here that No 
of (39) is the normalization factor for the solution 
normalized to ~* • ~= 1, or 

(j diJ. ¢* (iJ.». C· (j diJ. ¢(J.L» = 1. 

Mitchell J. Feigenbaum 616 
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