Spheroidal analysis of Coulomb scattering
Ming Chiang Li

Citation: Journal of Mathematical Physics 15, 570 (1974); doi: 10.1063/1.1666685
View online: http://dx.doi.org/10.1063/1.1666685
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/15/5?ver=pdfcov
Published by the AIP Publishing
Spheroidal analysis of Coulomb scattering

Ming Chiang Li

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

(Received 10 September 1973)

In studying the spheroidal problem of a charged particle scattered by two charged centers, we have had to deal with a differential equation. Its solution was complicated. In this paper, we study a very similar differential equation, which appears in the Coulomb problem. The solution for this equation, however, can be put in a simple form. For completeness the spheroidal analysis of the Coulomb scattering amplitude is also discussed.

1. INTRODUCTION

In a series of papers we have studied spheroidal potential scattering. The importance of such a study is twofold. First, it denotes a class of real physical problems, such as the scattering of electrons by diatomic molecules, and of deformed nuclei. Second, it describes the scattering between a particle and the simplest composite system which can be formed by two particles separated at a fixed distance.

The spheroidal scattering is less understood than the spherical scattering because of its complexity. In spherical scattering, after the separation of variables, only the radial equation depends on the potential. For normal cases, the equation contains two singularities, one at \(r = 0 \) and the other at \(r = \infty \). But in spheroidal scattering, both the radial and angle equations can depend on the potential. For example, the Coulomb potential of a pair of fixed unequal charges appears in both the radial and angle equations. Thus, we have to solve two ordinary differential equations instead of just one as in the case of spherical scattering. These equations, even without the potential term, have two regular and one irregular singularities, and are in the class of Lamé differential equations. In general, they are more difficult to solve.

In spheroidal scattering, the scattering amplitude is expressed in terms of spheroidal angle functions. This decomposition may be referred to as spheroidal analysis, as compared with the partial wave analysis in spherical scattering. These angle functions do not obey conventional recurrence relations. The so-called "recurrence relations" for these functions are actually the integral relations among them. These functions cannot be simply expressed, and their numerical construction is also troublesome. The trouble leads to a dilemma on the numerical treatment of spheroidal problems. The dilemma is a choice between spherical and spheroidal expansions of the scattering amplitude. The former expansion is an unnatural one and leads to a very slow convergent series; but each term in the series is difficult to calculate. The difficulty is mainly due to the troublesome numerical construction of spheroidal angle functions, which makes the spheroidal analysis in the numerical approach unattractive.

The complexity of the spheroidal problem has led to a theoretical effort in a different direction. Before treating the spheroidal scattering problem, one often uses some kind of approximations and tries to make problems simple and manageable. A good example is the scattering theory of electrons by polar molecules, in which the dipole is replaced by a point dipole.

In this paper, along with the problem of main interest to us, we present a detailed spheroidal analysis of the Coulomb problem. In Sec. 2, the spheroidal symmetry of the Coulomb problem is discussed and the resulting angle function is considered. In Sec. 3, we treat the solution of the radial equation. In Sec. 4, the spheroidal analysis of the Coulomb scattering amplitude is given.

2. COULOMB EQUATION AND ANGLE FUNCTIONS

A fixed charge \(Q \) is located on the z axis with coordinates \(r_\perp = (0, 0, d/2) \), where \(d \) is the interpoint distance of the prolate spheroidal coordinates:\n
\[
\begin{align*}
 x &= \left(\frac{1}{2} d \right) (1 - \eta^2) (\xi^2 - 1)^{1/2} \cos \phi, \\
 y &= \left(\frac{1}{2} d \right) [1 - \eta^2] \xi (\xi^2 - 1)^{1/2} \sin \phi, \\
 z &= \left(\frac{1}{2} d \right) d \eta, \\
\end{align*}
\]

with \(1 \leq \xi \leq \infty \), \(-1 \leq \eta \leq 1\), \(0 \leq \phi \leq 2\pi \).

The Coulomb potential \(V \) at distance \(r \) has the form

\[
V = \frac{Q}{|r - r_\perp|} = 2Q \frac{1}{d} \frac{1}{\xi} \frac{1 + \eta}{\xi^2 - \eta^2}.
\]

(2.2)
This is a potential with prolate spheroidal symmetry. The Schrödinger equation for describing a charged particle scattered by the potential in Eq. (2.2) has the form
\[
-\left(\hat{\mathbf{r}}^2/2m\right)\psi'' + V\psi = (\hbar^2/2m)\psi, \tag{2.3}
\]
where \(\mu\) is the mass, \(q\) the charge, and \(k\) the momentum of the incident particle. The above equation may be expressed simply in the prolate spheroidal coordinates as
\[
\left(\frac{\partial}{\partial \eta} + \frac{2}{\eta} - \frac{\partial}{\partial \xi} \right)^2 + \left(\frac{\partial}{\partial \phi} \right)^2 + \eta^2 \left(\frac{\partial}{\partial \xi} \right)^2 - \frac{\partial^2}{\partial \phi^2} = 0.
\]

The equation is separable and its solution can be obtained in the form of the Lagé products:
\[
\psi_{mn} = R_{mn}(A, C; \xi) S_{mn}(A, C; \eta), \quad \text{cosm} \phi.
\]

Functions \(R_{mn}(A, C; \xi)\) and \(S_{mn}(A, C; \eta)\) satisfy ordinary differential equations
\[
\frac{d^2}{d\xi^2} \left(\xi^2 - 1\right) + \frac{d}{d\xi} + \left(\Lambda_{mn}(A, C) - C^2 \xi^2 + AC\xi + \frac{m^2}{\xi^2 - 1}\right)R_{mn}(A, C, \xi) = 0, \tag{2.6}
\]
\[
\frac{d^2}{d\eta^2} \left(1 - \eta^2\right) + \frac{\partial}{\partial \eta} + \left(\Lambda_{mn}(A, C) - C^2 \eta^2 - AC\eta - \frac{m^2}{1 - \eta^2}\right)S_{mn}(A, C; \eta) = 0, \tag{2.7}
\]
where
\[
\Lambda_{mn}(A, C) = \left(\frac{1}{2}\right)^2 + A = \left(\frac{2\mu q}{\hbar}\right)/2.
\]

For convenience we will refer to \(S_{mn}(A, C; \eta)\) as the Coulomb spheroidal angle function and \(R_{mn}(A, C; \xi)\) as the Coulomb spheroidal radial function.

When \(C\) vanishes, the differential Eq. (2.7) becomes the one which is satisfied by the associated Legendre functions. It follows that the angle functions must reduce to the associated Legendre functions of the integral order and degree, as \(C\) goes to zero. Therefore,
\[
\Lambda_{mn}(0, 0) = n(n + 1). \tag{2.8}
\]

When \(C\) is not zero, Eq. (2.7) differs from the associated Legendre equation by having an irregular singularity at infinity. This suggests for the angle functions, an infinite sum of the form
\[
S_{mn}(A, C; \eta) = \sum_{r=0}^{\infty} S_{mn}^{(r)}(A, C) P_{mn}^{(r)}(\eta). \tag{2.8}
\]

The recursion formula for the expansion coefficients constitutes a linear homogeneous difference equation of the fourth order. When \(A\) vanishes, the recursion formula reduces to one which is satisfied by the expansion coefficients \(a_{mn}(C)\) of the spheroidal angle functions in terms of the associated Legendre functions. We now substitute in Eq. (2.11) the expansions
\[
D_{mn}^{(r)}(A, C) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} B_{r, j, k}^{(m, n)} C^2 (AC)^k, \tag{2.12}
\]
\[
\Lambda_{mn}(A, C) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} I_{r, j, k}^{(m, n)} C^2 (AC)^k \tag{2.13}
\]

and use the perturbation method to calculate expansion coefficients \(B_{r, j, k}^{(m, n)}\) and \(I_{r, j, k}^{(m, n)}\). The lower-order coefficients are found to be
\[
l_{mn}(0, 0) = n(n + 1),
l_{mn}(1, 0) = \frac{1}{4} \left(1 + \frac{(2m - 1)(2m + 1)}{(2n + 1)(2n + 3)}\right),
l_{mn}(2, 0) = \frac{1}{8} \left((n - m - 1)(n - m + 1)(n + m + 1)(n + m + 2)\right) \tag{2.14}
\]
\[
l_{mn}(2, 1) = 0,
l_{mn}(2, 2) = \frac{(n - m - 1)(n - m - 2)(n + m + 1)(n + m + 2)}{(2n + 1)(2n + 3)(2n + 5)},
l_{mn}(1, 1) = 0.
\]

\[
B_{r, 0, 0}^{(m, n)} = \delta_{n-m, r},
\]
\[
B_{r, 0, 1}^{(m, n)} = \frac{1}{2} \delta_{n-m, r+2} - \frac{(2m + r + 2)(2m + r + 1)}{(2m + 2r + 3)(2m + 2r + 5)} \tag{2.15}
\]
\[
B_{r, 0, 2}^{(m, n)} = \frac{1}{2} \delta_{n-m, r+4} - \frac{(2m + r + 2)(2m + r + 1)}{(2m + 2r + 3)(2m + 2r + 1)} \tag{2.16}
\]

\[
B_{r, 1, 0}^{(m, n)} = \frac{1}{2} \delta_{n-m, r-2} - \frac{(2m + r + 2)(2m + r + 1)}{(2m + 2r + 3)(2m + 2r - 1)} \tag{2.17}
\]
\[
B_{r, 1, 2}^{(m, n)} = \frac{1}{2} \delta_{n-m, r-4} - \frac{(2m + r + 2)(2m + r + 1)}{(2m + 2r + 3)(2m + 2r - 1)} \tag{2.18}
\]

\[
B_{r, 2, 0}^{(m, n)} = \frac{1}{2} \delta_{n-m, r-4} - \frac{(2m + r + 2)(2m + r + 1)}{(2m + 2r + 3)(2m + 2r - 1)} \tag{2.19}
\]

\[
B_{r, 2, 2}^{(m, n)} = \frac{1}{2} \delta_{n-m, r-8} - \frac{(2m + r + 2)(2m + r + 1)}{(2m + 2r + 3)(2m + 2r - 1)} \tag{2.20}
\]

\[
B_{r, 2, 3}^{(m, n)} = \frac{1}{2} \delta_{n-m, r-12} - \frac{(2m + r + 2)(2m + r + 1)}{(2m + 2r + 3)(2m + 2r - 1)} \tag{2.21}
\]
We have normalized the coefficients so that each Coulomb spheroidal angle function reduces exactly to the corresponding associated Legendre function when C becomes zero. From the general theory of Sturm-Liouville differential equations it follows that the functions \(S_{m}(A, C; \eta) \) form a complete orthogonal set on the interval (1, 1). Thus

\[
\int_{1}^{1} S_{m}(A, C; \eta) S_{m'}(A, C; \eta) d\eta = \delta_{m, m'} N_{m}(A, C),
\]

where \(N_{m}(A, C) \) is easily found with the use of the normalization factor of the associated Legendre functions to be

\[
N_{m}(A, C) = 2 \sum_{r=0}^{\infty} \frac{(r + 2m)!}{(2r + 2m + 1)!} [D^{m}_{m'}(A, C)]^{2}.
\]

Near the end points \(\eta = \pm 1 \), the associated Legendre functions \(P_{m}^{n}(\eta) \) have the following behavior:

\[
P_{n}^{n}(\eta) = O[(1 - \eta^{2})^{-m/2}] \quad \text{for} \quad (n - m) \text{ even},
\]

\[
P_{n}^{n}(\eta) = O[(1 - \eta^{2})^{-m/2}] \quad \text{for} \quad (n - m) \text{ odd}.
\]

From these relations, one obtains the following behavior of the Coulomb spheroidal wavefunction near \(\eta = \pm 1 \) with the aid of Eq. (2.10):

\[
S_{m}(A, C; \eta) = O[(1 - \eta^{2})^{-m/2}].
\]

3. RADIAL FUNCTION

The differential equation (2.6) satisfied by the Coulomb spheroidal radial function is very similar to one encountered in the scattering of two charged centers. The difference between these two is in the parameter dependence. The differential equation (2.6) depends on the Coulomb spheroidal eigenvalue \(\lambda_{m}(A, C) \). The other one depends on the spherical eigenvalue \(\lambda_{m}(C) = \Lambda_{m}(0, C) \). We have developed a method for solving the latter equation. In the method, an integro-differential equation is used to express the solution of the differential equation. After removal of the second-order derivative, the integro-differential equation is solved through an iteration procedure. The series is convergent under a proper substitution. The same method can also be directly applied to the present equation (2.6). Due to the complexity of the method and the messiness of the expression, we shall approach the present problem through a different path.

From the general theory of integral representations of solutions of differential equations, it follows that the function defined by the integral

\[
\int_{1}^{1} K_{m}(\xi, \eta) S_{m}(A, C; \eta) d\eta
\]

is a solution of the Coulomb radial differential equation (2.6), provided that the limits a and b are so chosen that the bilinear concomitant,

\[
(1 - \eta^{2}) \frac{\partial^{2} K_{m}(\xi, \eta)}{\partial \eta^{2}} - S_{m}(A, C; \eta) - K_{m}(\xi, \eta) \frac{\partial}{\partial \eta} S_{m}(A, C; \eta) = 0,
\]

vanishes at both limits, and that the kernel \(K_{m}(\xi, \eta) \) satisfies the differential equation

\[
\frac{\partial}{\partial \eta}(1 - \eta^{2}) \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \xi}(\xi^{2} - 1) \frac{\partial}{\partial \xi} + m^{2} \left(\frac{1}{1 - \eta^{2}} + \frac{1}{\xi^{2} - 1} \right) + C(\xi^{2} - \eta^{2}) - AC(\xi + \eta) K_{m}(\xi, \eta) = 0.
\]

By comparing Eq. (3.3) with Eq. (2.4) we observe that the kernel \(K_{m}(\xi, \eta) \) is actually a solution of the Coulomb scattering equation with the azimuthal angle \(\phi \) dependence factored out. If a fixed charge \(Q \) is at the origin of a coordinate system, one of the solutions for the Coulomb scattering equation has the form

\[
e^{i(\beta/2)\xi_{0}m/2}(1 - \eta^{2})^{m/2}\int_{1}^{1} F_{1}(\xi/\kappa m/2, 1 - \eta^{2})^{m/2} d\eta = \int_{1}^{1} F_{1}(-\frac{1}{\kappa m/2}(1 - \eta^{2})^{m/2} d\eta,
\]

where the function \(F_{1}(x; y, z) \) is a confluent hypergeometric function, \(\eta_{0} = 0 \), \(\xi_{0} = 1 \) are the parabolic coordinates of the above coordinate system. In the present investigation we used a different coordinate system and placed the fixed charge \(Q \) on the z axis with coordinates \(\eta = 0, \xi = \frac{1}{2} \). The relations of these two coordinate systems are as follows:

\[
\eta_{0} = \frac{1}{2}d(\xi + 1)(1 - \eta), \quad \xi_{0} = \frac{1}{2}d(\xi - 1)(1 + \eta).
\]

We recall the integration in Eq. (3.4) may be expressed as

\[
(1 - d/2m)_{m}e^{ic(\xi - 1)(1 - \eta^{2})^{m/2}2}F_{1}(\frac{-1}{\kappa m/2}(1 - \eta^{2})^{m/2} + 1; ic(\xi + 1)(1 - \eta)).
\]

It may be verified directly that the function in Eq. (3.6) satisfies the differential equation in Eq. (3.3). We denote this function as kernel \(K_{m}^{(1)}(\xi, \eta) \). The two obvious limits \(a = b \) at which the bilinear concomitant in Eq. (3.2) vanishes, are

\[
a = -1, \quad b = 1.
\]

The Coulomb spheroidal radial function based on the kernel \(K_{m}^{(1)}(\xi, \eta) \) will be called \(R_{m}(A, C; \xi) \):

\[
R_{m}(A, C; \xi) = \int_{1}^{1} K_{m}^{(1)}(\xi, \eta) S_{m}(A, C; \eta) d\eta.
\]

The function \(R_{m}(A, C; \xi) \) is regular at \(\xi = 1, \) at which the differential equation (2.6) has a regular singularity. In the following we will discuss its asymptotic forms, which has a special interest in the scattering theory. After the substitution of the expansion of Coulomb spheroidal angle function \(S_{m}(A, C; \eta) \) in Eq. (2.10) to Eq. (3.8), we have

\[
R_{m}(A, C; \xi) = \sum_{r=0}^{\infty} D^{m}_{m'}(A, C, \xi) \int_{1}^{1} K_{m}^{(1)}(\xi, \eta) P_{m'}^{n}(\eta) d\eta
\]

\[
= \sum_{r=0}^{\infty} D^{m}_{m'}(A, C, \xi) \left[\frac{d^{m}}{d^{m}} \right]^{(2r - 1)/2} \int_{1}^{1} d\eta P_{m'}^{n}(\eta) \times e^{ic(\xi - 1)(1 - \eta^{2})^{m/2}} \times F_{1}(\frac{-1}{\kappa m/2}(1 - \eta^{2})^{m/2} + 1; ic(\xi + 1)(1 - \eta)).
\]

The confluent hypergeometric function \(F_{1}(x; y, z) \) has the integral representation

\[
F_{1}(\alpha; \beta; z) = -\frac{1}{2\beta i} \Gamma(1 - \alpha) \Gamma(\beta) \times \phi e^{i\pi(1 - \alpha - 1)(\alpha - 1) - \alpha - 1(-\xi) - 1 dt.
\]

If \(\alpha \) is a positive integer and \(\Re(\gamma - \alpha) \geq 0 \), contour \(c' \) can be any contour which passes around both the points \(t = 0 \) and \(1 \). We recall the integration

\[
\int_{1}^{1} F_{1}(\xi; y, z) = \frac{2\pi(2m + r)!}{z^{m}} f_{m}(z),
\]

where \(j_{m}(z) \) is a spherical Bessel function. After
using Eqs. (3.10) and (3.11) the function \(R_{mn}^{(1)}(A, C; \ell) \) in Eq. (3.9) becomes

\[
R_{mn}^{(1)}(A, C; \ell) = \left(\frac{d}{2} \right)^{n} (t^2 - 1)^{m/2} \frac{\Gamma(n + 1 + A \ell) \Gamma(m + 1)}{\Gamma(m + 1 + A \ell)} \times \sum_{r=0}^{\infty} D_{m}^{n}(A, C) \frac{t^{2m + r + 1} \Gamma(2m + r + 1)}{r!} K_{m}(A, C; \ell),
\]

(3.12)

where

\[
K_{m}(A, C; \ell) = - \frac{1}{2 \pi i} \oint_{C} d[t[C(t - 1)]^{-m} \times f_{m}(t)[c(t - 1) - t]^{-m} \Gamma(2m + r + 1)(1 - t)^{m + A/2} \times e^{i [t(l + 1) - 1]}.
\]

(3.13)

The spherical Bessel function is related to the confluent hypergeometric function

\[
x^{n} j_{n}(z) = \frac{\sqrt{\pi}}{2^{n+1} \Gamma(n + 1/2)} e^{i n \pi / 2} F_{1}(n + 1; 2n + 2; 2i z).
\]

(3.14)

The confluent hypergeometric function satisfies the Kummer transformation

\[
F_{1}(n;\gamma; z) = e^{z} F_{1}(\gamma - n; \gamma; -z).
\]

(3.15)

With the help of Eqs. (3.14) and (3.15), we rewrite Eq. (3.13) as

\[
K_{m}(A, C; \ell) = - \frac{1}{2 \pi i} \oint_{C} d[t[C(t - 1)]^{-m} \times f_{m}(t)[c(t - 1) - t]^{-m} \Gamma(2m + r + 1)(1 - t)^{m + A/2} \times 1 F_{1}(m + r + 1; 2m + 2r + 2; -2i c(t - 1)].
\]

(3.16)

The confluent hypergeometric function has a series expansion

\[
x^{n} j_{n}(z) = \frac{\sqrt{\pi}}{2^{n+1} \Gamma(n + 1/2)} e^{i n \pi / 2} F_{1}(n + 1; 2n + 2; 2i z).
\]

(3.17)

The hypergeometric function has a contour integral representation

\[
x^{n} j_{n}(z) = \frac{\sqrt{\pi}}{2^{n+1} \Gamma(n + 1/2)} e^{i n \pi / 2} F_{1}(n + 1; 2n + 2; 2i z).
\]

(3.18)

From Eqs. (3.17) and (3.18) we may express Eq. (3.16) as

\[
K_{m}(A, C; \ell) = \frac{2^{n + A/2} \Gamma(m + 1 + A \ell/2)}{\Gamma(1 + A \ell/2)} e^{i \ell(\pi/2 - n)} \times \sum_{k=0}^{\infty} \frac{\Gamma(m + r + 1 + k)}{\Gamma(2m + 2r + 2 + k) \Gamma(k + 1)} (c t)^{m + r + 1} (1 - t)^{-m - 1}.
\]

(3.19)

In reaching Eq. (3.19) these identities are also used:

\[
\Gamma(1/2) = \frac{\pi}{2},
\]

(3.20)

\[
\Gamma(n + 1/2) = \frac{\pi}{2^{n + 1}} n!.
\]

Equation (3.12) together with Eq. (3.19) yields a complete series solution of the Coulomb spheroidal radial function \(R_{mn}^{(1)}(A, C; \ell) \). If we used the general method,\(^1\) which was previously suggested to solve the integro-differential equation arising from the spheroidal scattering problem we would obtain another series expansion for the function \(R_{mn}^{(1)}(A, C; \ell) \). However the latter expansion has more complicated form. The asymptotic form of the function \(R_{mn}^{(1)}(A, C; \ell) \) has considerable interests in the scattering theory. This form follows directly from the series expansion presented here.

The hypergeometric function satisfies a relation

\[
F_{1}(a; \beta; y) = \Gamma(\gamma - \alpha - \beta) \Gamma(\gamma - \alpha) \Gamma(\gamma - \beta) 2F_{1}(a, \beta; \alpha + \beta + 1 - \gamma; 1 - x) - \gamma \Gamma(\gamma - \beta) \Gamma(\gamma - \alpha - \beta) \Gamma(\gamma - \alpha) F_{1}(a, \beta; \alpha + \beta + 1 - \gamma; 1 - x - 1).
\]

(3.21)

Equation (3.21) leads us to the following asymptotic form \(K_{m}(A, C; \ell) \) in Eq. (3.19):

\[
K_{m}(A, C; \ell) \rightarrow \frac{2^{n + A/2} \Gamma(m + r + 1 + A \ell/2)}{\Gamma(1 + A \ell/2) \Gamma(2m + 2r + 2)} (c t)^{m + r + 1} e^{i \ell(\pi/2 - n)} (1 - t)^{-m - 1}.
\]

(3.22)

In arriving at Eq. (3.22), we also used Eq. (3.17) and the equation

\[
1/\Gamma(n) = 0, \quad n = 0, 1, 2, \ldots.
\]

(3.23)

The spherical regular Coulomb wave function \(F_{L}(1/2 A, \rho) \) has the form

\[
F_{L}(A/2, \rho) = C_{L}(A/2) P_{L+1}^{1}(\rho) F_{1}(L + 1 + A \ell/2, \rho) = 2L + 1 - 2i \rho,
\]

(3.24)

where

\[
C_{L}(A/2) = \frac{2^{L - A/4} \Gamma(L + 1 + A \ell/2)}{\Gamma(2L + 2)}.
\]

(3.25)

From Eqs. (3.12), (3.22), and (3.24) we obtain the asymptotic form of the Coulomb spheroidal radial function

\[
R_{mn}^{(1)}(A, C; \ell) \rightarrow 2^{n + 1} \times \sum_{r=0}^{\infty} D_{m}^{n}(A, C) \frac{t^{2m + r + 1} \Gamma(2m + r + 1)}{r!} e^{i \ell(\pi/2 - n)} (1 - t)^{-m - 1}.
\]

(3.26)

where

\[
\sigma_{m+r} = \text{arg} \Gamma(m + r + 1 + A \ell/2)
\]

(3.27)

is the spherical Coulomb phase shift. The spherical regular Coulomb wave function \(F_{L}(A/2, \rho) \) has the asymptotic form

\[
F_{L}(1/2 A, \rho) \rightarrow \sin(\rho - \frac{1}{4} A \ln 2\rho - \frac{1}{4} L \pi + \omega_{L}).
\]

(3.28)

The final asymptotic form of the Coulomb spheroidal radial function follows directly from Eqs. (3.26) and (3.26);

\[
R_{mn}^{(1)}(A, C; \ell) \rightarrow e^{i \ell(\pi/2 - n)} (1 - t)^{-m - 1} \times (H_{m}^{(1)} + i H_{m}^{(2)}) \sin(c t - \frac{1}{4} A \ln(2c t) - \frac{1}{4} \pi \sigma + \varphi + \Sigma_{m}).
\]

(3.29)
H_{mn} = \sum_{r=0}^\infty D_{mn}^r(A, C) \frac{i^r(2m + r)!}{r!} e^{i\sigma_m r} \\ \times \cos[(n - m - r)\pi/2 + \sigma_m r - \sigma_n],

I_{mn} = \sum_{r=0}^\infty D_{mn}^r(A, C) \frac{i^r(2m + r)!}{r!} e^{i\sigma_m r} \\ \times \sin[(n - m - r)\pi/2 + \sigma_m r - \sigma_n],

\Sigma_m = \tan^{-1}[I_{mn}/H_{mn}].

4. SCATTERING AMPLITUDE

In this section the spheroidal expression of the Coulomb scattering amplitude is discussed. The complete Coulomb wavefunction (incident plus scattered wave) is known. This wavefunction is the starting point of the present discussion. If the fixed charge Q is at the origin of the spherical coordinate system, the complete Coulomb wavefunction has the form

\[U_c = \frac{1}{4\pi^2} \frac{ZQ}{(m + 1 + 1/2\lambda^2)} \exp\left(-ic + \frac{\pi A}{4}\right) \times \sum_{m'=0}^{\infty} \sum_{n'=0}^{\infty} \frac{\Gamma[m + 1 + 1/2\lambda^2]}{\Gamma[m + n' + 1]} \exp[i(n' - m')! \cdot (2\pi \xi)] \times \sin[(n' - m')! \cdot (2\pi \xi)] \times \cos[(n' - m')! \cdot (2\pi \xi)] \times \exp[\frac{1}{2}(2\pi \xi) + \frac{1}{2}i\pi] P_n'(\cos\xi), \]

\[f_c(\Theta) \text{ is the Coulomb scattering amplitude} \]

\[f_c(\Theta) = \frac{A}{4\kappa} \exp(-\frac{1}{2}A \ln(\sin^2\frac{1}{2}\Theta) - \pi - 2\sigma_0) \]

\[\times \sum_{n=0}^{\infty} (2n + 1)e^{i2\pi a_P} P_n'\left(\cos\Theta\right). \]

The angle \(\Theta \) can be expressed as

\[\cos\Theta = \cos\Theta_0 \cos\Theta' + \sin\Theta_0 \sin\Theta' \cos(\phi - \phi'), \]

where the incident momentum \(k \) and the position vector \(r_0 \) have the spherical coordinates \(\theta', \phi' \) and \(\theta_0, \phi_0 \equiv \phi \), respectively. In the asymptotic region there is no difference between the spherical coordinate \(\eta \) and \(\cos\Theta_0: \]

\[\cos\Theta \rightarrow \eta \cos\Theta' + (1 - \eta^2)^{1/2} \sin\Theta' \cos(\phi - \phi'). \]

Now we wish to express the Coulomb scattering amplitude \(f_c(\Theta) \) in terms of the spheroidal analysis. To start with the complete Coulomb wavefunction \(U_c \) in Eq. (4.1) is expanded as

\[U_c = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{mn}(\theta, \phi) R_{mn}^\ell(A, C; \ell) S_{mn}(\eta; C, \eta) \cos[m(\phi - \phi')]. \]

In writing down Eq. (4.10), we use the fact that the Coulomb wavefunction can be expressed in terms of the Lamé products in Eq. (2.5) and is rotational invariant along the \(z \) axis. The expansion coefficients have the form

\[B_{mn}(\theta, \phi) = \frac{2\Gamma(m + 1)}{\cos\Theta_0} \times \sum_{m'=0}^{\infty} \sum_{n'=0}^{\infty} \frac{\Gamma[n' + 1 + 1/2\lambda^2]}{\Gamma[n' + m' + 1]} \exp[i(n' - m')! \cdot (2\pi \xi)] \times \sin[(n' - m')! \cdot (2\pi \xi)] \times \cos[(n' - m')! \cdot (2\pi \xi)] \times \exp[\frac{1}{2}(2\pi \xi) + \frac{1}{2}i\pi] P_n'(\cos\xi), \]

\[f_c(\Theta) \text{ is the Coulomb scattering amplitude} \]

\[f_c(\Theta) = \frac{A}{4\kappa} \exp(-\frac{1}{2}A \ln(\sin^2\frac{1}{2}\Theta) - \pi - 2\sigma_0) \]

\[\times \sum_{n=0}^{\infty} (2n + 1)e^{i2\pi a_P} P_n'\left(\cos\Theta\right). \]

The angle \(\Theta \) can be expressed as

\[\cos\Theta = \cos\Theta_0 \cos\Theta' + \sin\Theta_0 \sin\Theta' \cos(\phi - \phi'), \]

where the incident momentum \(k \) and the position vector \(r_0 \) have the spherical coordinates \(\theta', \phi' \) and \(\theta_0, \phi_0 \equiv \phi \), respectively. In the asymptotic region there is no difference between the spherical coordinate \(\eta \) and \(\cos\Theta_0: \]

\[\cos\Theta \rightarrow \eta \cos\Theta' + (1 - \eta^2)^{1/2} \sin\Theta' \cos(\phi - \phi'). \]
We carry out the integrations in Eq. (4.15) through the help of Eqs. (4.10) and (4.16) and obtain

\[
\frac{2(2 - \delta_{0m})}{c\ell N_{m\alpha}(A, C)} \sum_{r' = 0}^{\infty} \left(\frac{2m + r + 1}{r!} \right) D^{n}_{m\ell}(A, C) e^{2i\sigma_{m\alpha} r'/r} \sum_{r = 0}^{\infty} \frac{(-r)^{2m + r + 1}}{r!} D^{n}_{m\ell}(A, C).
\]

The quantity \(\sigma_{m\alpha} \) may be called the spherical Coulomb phase shift and is not real. For a real spherical potential we always have a real spherical phase shift. The complexness of the spherical Coulomb phase shift \(\sigma_{m\alpha} \) may be the cause of the dual spherical and spheroidal nature for the Coulomb potential.

ACKNOWLEDGMENT

The author wishes to express his appreciation to Professor D. Kaplan for several discussions.

1 Ming Chiang Li, J. Math. Phys. 12, 936 (1971); 13, 1381 (1972); 14, 1358 (1973).

