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ABSTRACT 

Vehicle characteristics have a significant impact on handling, stability, and rollover 

propensity. This research is dedicated to furthering the research in and modeling of vehicle 

dynamics and parameter estimation. 

Parameter estimation is a challenging problem. Many different elements play into the 

stability of a parameter estimation algorithm. The primary trade-off is robustness for accuracy. 

Lyapunov estimation techniques, for instance, guarantee stability but do not guarantee parameter 

accuracy. The ability to observe the states of the system, whether by sensors or observers is a key 

problem. This research significantly improves the Generalized Polynomial Chaos Extended 

Kalman Filter (gPC-EKF) for state-space systems. Here it is also expanded to parameter 

regression, where it shows excellent capabilities for estimating parameters in linear regression 

problems. 

The modeling of ground vehicles has many challenges. Compounding the problems in the 

parameter estimation methods, the modeling of ground vehicles is very complex and contains 

many difficulties. Full multibody dynamics models may be able to accurately represent most of 

the dynamics of the suspension and vehicle body, but the computational time and required 

knowledge is too significant for real-time and realistic implementation. The literature is filled 

with different models to represent the dynamics of the ground vehicle, but these models were 
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primarily designed for controller use or to simplify the understanding of the vehicle’s dynamics, 

and are not suitable for parameter estimation.  

A model is devised that can be utilized for the parameter estimation. The parameters in the 

model are updated through the aforementioned gPC-EKF method as applies to polynomial 

systems. The mass and the horizontal center of gravity (CG) position of the vehicle are estimated 

to high accuracy.  

The culmination of this work is the estimation of the normal forces at the tire contact patch. 

These forces are estimated through a mapping of the suspension kinematics in conjunction with 

the previously estimated vehicle parameters. A proof of concept study is shown, where the 

system is mapped and the forces are recreated and verified for several different scenarios and for 

changing vehicle mass.  
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1 Introduction 

 

 

 

 

 

Vehicle dynamics and parameter estimation are both rich and dense fields of research. The 

work presented here is at a crossroads between the two fields, and this section describes the 

motivation for investigating this intersection.  

An overview of the work conducted provides a guide through the research presented in this 

dissertation, in order to tie together each of the sections, as well as to provide the big picture that 

helps understanding the connection between different components of the study. 

1.1 Motivation 

The National Highway and Traffic Safety Administration maintain several databases that 

record vehicle accidents and fatalities. In 2000, the Fatality Analysis Reporting System (FARS) 

database shows that 53% of light vehicle occupant fatalities in single-vehicle crashes involved a 

rollover event. The percentage of crashes that involve a rollover event increases with the size of 

the vehicle, 46% of passenger cars, approximately 60% for pickup trucks and vans, with 78% for 

sport utility vehicles [1].  
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Rollover events are second only to head-on collisions for passenger fatalities [2]. Combined 

with the increase in rollover propensity, demonstrated through the crash statistics, for increasing 

vehicle size it is apparent that vehicle characteristics play a key role in the vehicle’s stability. 

This research was started with the goal of improving vehicle stability to prevent the loss of life 

and injuries that are so common with vehicle rollover events. During the course of the research it 

became clear that improvement of vehicle stability controllers would require improved knowledge 

of the vehicle’s parameters. The National Highway Traffic and Safety Administration (NHTSA) 

has demonstrated that vehicle parameters can change up to 40% for passenger sedans, so fuzzy 

assumptions of the vehicle’s parameter are not reasonable assumptions [1, 3]. An adaptive 

controller could be proposed to improve the vehicle’s stability, but because rollover events are 

fast and happen typically only once for a vehicle, it is difficult to train the parameters in the 

controller. Therefore, a method of estimating the parameters of a vehicle was desired. 

In the course of investigating methods to improve vehicle stability it became clear that there 

was also a need for computationally efficient methods that could be employed in real-time for the 

vehicle parameter estimation. The more parameters that one attempts to estimate, the more 

computational cost is involved. For vehicle systems, and in general, the more generalized the 

model the larger the number of parameters that must be accounted for. The Generalized 

Polynomial Chaos method is only computationally efficient and tractable for real-time 

implementation in state-space systems for low complexity systems and a limited number of 

parameters (1-3). When applied to regression systems however, it is proven capable of 

performing, in real time, the estimation of several parameters, while maintaining the structure of 

the non-linear multi-input multi-output equations, unlike recursive least-squares. The method also 

demonstrates the ability to individually adjust the forgetting factor for each parameter. 
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1.2 Overview 

This research is at the crossroads of vehicle dynamics and parameter estimation. Vehicle 

dynamics is a challenging topic that has been studied for many years, and the research has been 

primarily oriented towards vehicle models developed for implementation of control systems and 

rough approximation models. The range of vehicle models is very wide. They can be as complex 

as extremely detailed multi-body dynamics models and as simple as bicycle models. All of these 

models have their advantages and disadvantages, and, depending on the requirements, each has a 

place for implementation. The primary metric that can be used to distinguish between them is the 

accuracy and corresponding computational complexity. It is in general true that accuracy is 

proportional to computational cost and in vehicle dynamics this is no different. 

Parameter estimation is a difficult task. There are two general types of parameter estimation 

techniques. The first one is model reference parameter estimation, which requires a state-space 

or other integrable model that is being integrated forward in time. The methods that can be 

shown to be stable through this parameter update are based on Lyapunov stability theory. 

However, those methods trade parameter convergence and accuracy for stability. Measurement 

noise and modeling errors will likely prevent the parameters from converging to the ‘true’ 

values, even if the sufficient richness requirement is met. True values being defined as the best 

value for a given type of modeling. The model reference parameter estimation methods are 

typically hard to stabilize due to the errors that are created in the system because of integrating 

forward with incorrect parameter values. The system has to perform both the state estimation and 

the parameter estimation from the same error residual, and, by definition, the system is nonlinear. 



4 

The second type of parameter estimation is through polynomial or regressive systems. These 

techniques use algebraic equations, or input-output relations, with uncertain parameter 

coefficients. In general, these methods are stable, because they are typically linear and there are 

many tools available to perform the parameter estimations.  

Several vehicle models are investigated in the course of this research. These models range 

from complex integrable models to simplified roll and pitch plane models. Because this research 

aimed at creating a generalizable method that could be implemented to extract vehicle 

parameters, many effects not typically covered in the literature were investigated. There are 

several difficulties in modeling vehicle dynamics due to the many parameters and effects that 

cannot be directly measured. The goal of this work was to create a model that can be developed 

and implemented on a vehicle with as little information as possible, with the intention of being 

real-time viable. Most of the sensors are accelerometers or displacement sensors; however, the 

one possibly difficult requirement for implementation is the knowledge of the suspension forces. 

Most models use the suspension stiffness and damping to recreate these forces in conjunction 

with state observers, which may also be feasible with the models presented here. The more 

accurately the suspension forces can be known, the more accurately the parameter values of the 

vehicle will be estimated. Future work would include using strain gauges or other low-cost force 

and non-intrusive sensors so that the method is easily applicable to a vehicle.  
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2 Literature Review and Background 

 

 

 

 

 

 This chapter covers the background knowledge that was used in this study. Most of the 

information included here is at a high level, with key citations used to reinforce points. The 

sections that are covered are Parameter Estimation, Kalman and Particle Filters, Vehicle 

Modeling and Dynamics, Vehicle Parameter Estimation, and Vehicle Stability. Some of these 

sections are for mathematical background, and others, like the Vehicle Parameter Estimation, are 

presented as historical background.  

2.1 Parameter Estimation Review 

The field of parameter estimation can be split into two different areas: parameter regression 

and state-space systems. Regression systems are input-output relational equations, where a set of 

data is fed into the system and a set of outputs are produced from the internal model. These 

systems can be further divided into two more categories: “linear in the parameters” and “non-

linear in the parameters”.  

The “linear in the parameters” case is the most studied and well-known area of parameter 

estimation [4-7]. There are two very easy-to-use methods for this type of estimation: Least 

Squares (LS) and Recursive Least Squares (RLS). The LS method is an averaging technique 

across a set of data in an offline or batch estimation setting. The RLS method is used for real-
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time or online system parameter estimation. There are also Stochastic Gradient [8] or Stochastic 

Approximation [9] methods for situations when the covariance of the system is hard to recover, 

but these schemes have much slower convergence rates. There are a plethora of other methods, 

not mentioned here, all with their own benefits and drawbacks.  

For “non-linear in the parameters” systems the estimation is much harder. For systems with 

explicit parameters there are two descriptors that define the type of method. The first type is 

“iterative”, which is the technique where the system space is locally mapped through perturbing 

the parameter values. The second type is “derivative”, where the system space is locally mapped 

through the gradient of the parameter values. This system space is usually the residual or the 

error between the desired output and the model output. Examples of iterative methods: Raster 

[4], Gibbs Sampling [10], Metropolis-Hastings [10]. Examples of derivative methods are: 

Newton-Raphson [11], non-linear least squares [4]. There are also methods that use both 

operations, such as the Levenberg-Marquart algorithm [12]. 

In general, all linear parameter regression methods will perform faster than real-time, as their 

parameter spaces are linear and do not have very complicated mathematics. Non-linear 

parameter estimation methods are not so easily implemented. Some of them, like the Gibbs or 

Metropolis-Hastings methods, are extremely computationally expensive and are only run in 

offline implementations [10].  

State-space systems are a completely different sort of problem [13]. Usually described as 

System Identification, it can be difficult to estimate the parameters of a system explicitly in terms 

of the desired parameters. For “linear in the parameter” systems, this may be possible, but 

typically the filters used (Kalman) are employed to correct the errors in the states, and the 
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parameter values are ignored. For non-linear systems, it is common to use black box models [4], 

such as Neural Networks, which are capable of highly complex function approximation. The 

parameters, however, are unobservable and, in most cases, completely meaningless to the 

physical parameters of the system. Adaptive control is a field that has been highly influential to 

the estimation of parameters in state-space systems. However, the parameter estimations are 

typically used for controlling a system with unknown parameters and less with the intention of 

estimating the uncertain parameters. This type of approach typically results in parameters that 

never converge, as the mathematical mechanics are used maintain system stability, and not for 

parameter estimation. 

2.1.1 Kalman Filters 

 The Kalman Filter has been around since the 1960s. The filter is the extension of the 

Luenberger Observer when calculated to address the addition of process and measurement noise. 

The original filter is simply the Kalman Filter [14]. There is a method using linearization of the 

state and measurement matrices for the tracking of systems with nonlinear equations in the 

Kalman filter, known as the Extended Kalman Filter (EKF), that is a very popular filter in both 

state tracking and parameter estimation [15, 16]. The EKF is a very popular method, but it is also 

one that does not maintain the stability of the linear Kalman Filter, and therefore, further 

research has been performed.  

 The more recent developments in the Kalman Filter field are the Ensemble Kalman Filter and 

the Unscented Kalman Filter. The Ensemble Kalman Filter (EnKF) uses the same EKF equations 

but does so by using many iterations of the EKF across a space that adds statistical saturation to 

the estimation in addition to the linearization [17]. The Unscented Kalman Filter builds upon that 
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by making a lateral move. The UKF uses the iterations of the EnKF but uses a different 

transform to calculate the covariance that does not require linearization [18-21]. The UKF is 

capable of handling significantly more nonlinear behavior than the traditional EKF. 

In this research, the method of Generalized Polynomial Chaos (gPC) is applied to the 

Extended Kalman Filter. Previous implementations of the gPC mathematics have been used to 

propagate the uncertain parameters through state-space vehicle models to create a stochastic 

vehicle model [22-31]. There is a significant paradox that is created within the gPC-EKF method 

that is created by the blending of the gPC method with the EKF equations, as Blanchard noted 

and attempted to explain [25]. The filter exhibits problems with state estimation and convergence 

to the correct parameter value. The goal of the research presented here on parameter estimation 

theory is to thoroughly explain the problem the gPC-EKF exhibits in the earlier study, and to 

correct it.  

The gPC-EKF mathematics is then expanded to non-linear regression systems. Past studies 

have shown that the gPC method is computationally efficient [22, 23, 32-35] for a small number 

of uncertain parameters, and quite capable of real-time online estimation.  

2.2 Vehicle Modeling and Dynamics 

This section highlights the difficulties involved with the modeling of vehicle systems. Some 

vehicle models may work in synthetic environments, but in the real world, when subject to 

regular driving conditions, they may not work.  

Modeling of ground vehicle systems requires information about many effects, both internal 

and external to the vehicle. The internal effects of the vehicle are due to the kinematics and 
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dynamics of the suspension components. The external effects are centrifugal accelerations, 

aerodynamics, and gravity.  

The kinematics of a ground vehicle constrains the motion of the vehicle; this implies that 

simple dynamical models often used in vehicle dynamics simulations do not have very high 

accuracy. All forces applied to and generated by the vehicle are summed at the roll and the pitch 

centers of the vehicle. These centers are a consequence of the way the vehicle’s motion is 

constrained by the various linkages and other kinematic connections, since no vehicle has a 

simple spring-damper assembly connecting the chassis to the wheels, as it is habitually 

considered in simplified vehicle models. 

The primary external effects that are very difficult to model are the aerodynamic effects. 

Most authors neglect the aerodynamic effects on the vehicle. For an SUV with a value for 

𝐶𝑑𝐴 ≈ 1 (where 𝐶𝑑 is the drag coefficient, and 𝐴 is the area of the transverse plane to the 

direction of flow), the aerodynamic drag force applied to a vehicle traveling at 110 𝑘𝑚/ℎ is 

approximately 575 N. For most systems, this might be small enough to be neglected, especially 

at slower speeds. For parameter estimation, though, it is important to model every possible 

effect, since the intent is to be able to capture even small variation in vehicle parameters in real 

time.  

2.2.1 Aerodynamics 

The aerodynamic effects that act upon a vehicle are very complicated. These effects have 

small subtleties that are very difficult to model or to estimate. For a ground vehicle, there are two 

primary aerodynamic effects: The aerodynamic drag force and the aerodynamic lift force. These 

two primary effects cause many different effects upon the vehicle.  
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The aerodynamic drag is caused primarily by the vehicle travelling forward. However, this is 

also caused by wind effects on the vehicle. Most authors, if they account for the aerodynamic 

effects, map the aerodynamics to the vehicle’s forward speed. This is, in general, not correct, as 

it does not account for wind, wake and drafting effects. However, as anyone in fluid dynamics 

knows, this is a very difficult area and they make the assumption that these added effects are 

trivial. For the most part, they are, but as many have seen, a strong wind can knock over a 

vehicle.  

There is a major problem in addressing how to add in these effects to the vehicle model. The 

problem arises from not being able to accurately describe an aerodynamics model for the vehicle. 

One element is estimating where the aerodynamic effects impact the vehicle. These forces are 

not necessarily summed at the center of gravity (CG) of the vehicle either, which means that 

there will be moments created on the vehicle body. The faster the vehicle travels, the more roll 

moment will be created, for example. This is further compounded by the fact that the vehicle’s 

aerodynamic center can change easily during operation. Opening a window, putting an arm out 

of the window or using pop-up headlights will all have an effect on the location of the 

aerodynamic center and the magnitude and direction of the aerodynamic forces. 

The aerodynamic lift component of the vehicle can be a nontrivial effect. In general, it should 

not be excluded, especially for race cars or other vehicles that design their aerodynamics to 

increase their down-force for better traction. The aerodynamic lift force has similar problems to 

the aerodynamic drag force in terms of modeling. An accurate location of where to sum the 

effects of the aerodynamics lift force is not easily recoverable, and special care should be paid to 

this when dealing with vehicles that have large lift force capabilities, as the moments generated 

will certainly not be trivial.  
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Here, for some of the models, the aerodynamic effects are considered, but they are assumed 

to impact the system at the vehicle’s CG. This approach seems to be the most appropriate in this 

case, allowing the algorithm to incorporate some amount of the aerodynamic effects into the 

global equations of the vehicle. The coefficients for these effects are scaled values of the actual 

ones, and the scaling is proportional to the error in the location for the summation of these 

effects. There is an error in this term, as the aerodynamics of the vehicle are mapped to the speed 

of the vehicle, due to ignoring the added effects of wind, drafting and wake. This error is 

partially compensated by the fact that the parameter is able to update in real-time to help 

compensate. Obviously this will lead to an incorrect value for the parameter, but the goal is not 

to estimate the aerodynamic effects on the vehicle to high accuracy, but rather to incorporate 

them so that their effects do not impact the mass and CG estimations. 

An excellent review of vehicle aerodynamics can be found in [36]. 

2.2.2 Suspension Nonlinearities and Roll/Pitch Center 

The roll and pitch centers of a vehicle are points in space (calculated under a given vehicle 

kinematic configuration) that do not have a physical location. Many authors [37-40] have 

discussed the roll and pitch centers of a vehicle and have detailed their location when the 

suspension is in the undisturbed state and stationary. All of these authors have either agreed that 

mapping the position of the roll and pitch centers is difficult when the suspension is moving or 

have neglected to discuss the topic. One of the main difficulties in addressing the estimation of 

the roll and pitch centers when the suspension is moving is the fact that the location of these 

points can move arbitrarily large distances, and there are no bounds on the limits of their 

location.  
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Extracting the CG height from experimental data is extremely difficult because the set of 

equations are evaluated at the roll or pitch center. The resulting estimation of CG height is the 

distance between the CG and the roll or pitch center.  

The typical strategy for estimating parameters for vehicle systems is to use a state-space 

method to model the vehicle’s dynamics. If the parameters of the vehicle are known, then this 

model in combination with a state estimator may function. However, because state estimation 

with unknown or uncertain parameters is a nonlinear process, the addition of modeling errors 

creates an environment that is unlikely to be able to produce correct parameter estimates. 

Lyapunov techniques will be able to preserve the model’s stability but will not be able to 

guarantee parameter convergence.  

Adding to these challenges are the non-linear elements in the suspension that are very 

difficult to measure. The primary candidate that causes problems is the friction in the suspension 

elements. Moreover, the time evolution of the system may make specific modeling impossible, 

as elements change over time. The suspension friction of the vehicle in this research is different 

depending on the direction of the velocity and the displacement of the strut, for example. 

2.3 Vehicle Parameter Estimation Review 

In this study, the method of Generalized Polynomial Chaos (gPC) is applied to the parameter 

regression. Previous implementations of the gPC mathematics have been used to propagate the 

uncertain parameters through state-space vehicle models to create a stochastic vehicle model [22-

31]. In the present work, the system is non-linear in the parameters, but does not involve a state-

space system. The gPC has been shown to be computationally efficient [22, 23, 32-35] and quite 
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capable of real-time online estimation for a low number of parameters. The gPC mathematics are 

blended with the Extended Kalman Filter to enable the parameter estimation [25].  

Much of vehicle dynamics modeling and analysis is performed with the intention of 

controller development. This leads to models that have large assumptions or very simplified 

models that may work well for a feedback controller but are unusable for parameter estimation. 

This is primarily because parameter estimations require high accuracy between the model and 

the data. Therefore, much of the literature on vehicle dynamics is unhelpful in the estimation of 

vehicle parameters.  

The remaining body of literature for parameter estimation and vehicle dynamics can be 

subdivided roughly into three categories: validation through simulation, validation through 

special maneuvers, and validation with assumptions.  

Validation of estimation techniques through simulation is an approach that allows the 

development of new ideas or mathematical tools in an environment that can be highly controlled. 

Unfortunately, due to the nature of this high level of control, it is difficult to simulate a real 

environment. Random effects like wind, uneven pavement, changes in road grade, drafting, 

potholes, engine vibrations, and vehicle kinematics are hard to simulate or simulate in real-time 

and, subsequently, they make it difficult to truly validate a method. What primarily makes these 

hard to validate, or impossible to use in reality, are the assumptions that are applied to the 

vehicle models: knowledge of road grade/bank angles or the ignoring of those effects [31, 41-

45]; knowledge of or the ignoring of aerodynamic effects [46-48]; handling of or the ignoring of 

the roll center [43, 49].  
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Validation based on data collected during special maneuvers is, in some sense, similar to 

simulation. When a method is validated against special maneuvers’ data, the environment is not 

quite as rigidly controlled as during a computer simulation, but it is still strongly controlled and 

enables what appears to be a validation. The validation thus performed will not hold under 

normal driving conditions, though (because one does not always drive in a constant radius turn 

on a flat surface, for example, if that was the maneuver against which the model/estimator was 

validated) [25, 27, 41]. So special maneuver studies are not necessarily wrong, but the results 

obtained from such studies need to be considered in the context of the respective maneuver; for 

example, Currier [46] argues that they may be needed when the vehicle is driven without 

significant excitation, and Fathy [5] posits the same idea. Which is essentially the idea that 

sufficient richness of signals needs to be maintained, and special maneuvers may need to be 

conducted to provide such information.  

The third type of validation identified in the literature is validation of a method on a drive 

cycle, but with certain assumptions. The literature in this area is relatively limited, and these 

studies start to show many of the problems typically encountered with a standard drive cycle: 

sufficient richness, estimation of aerodynamic forces, rolling resistance estimates, roll center 

mechanics, pitch center mechanics, and instrumentation error. 

The studies in this area use the drivetrain information to estimate the road grade and vehicle 

mass [5, 50, 51]. The parameters that are assumed to be known are the tire rolling resistance and 

the aerodynamic properties. The assumption made here about the aerodynamic properties is that 

there are no external wind effects, and that the wind speed is measurable simply by the speed of 

the vehicle. As discussed previously, this is not a good assumption [52]. Rolling resistance is not 

easily measured during vehicle operation, and extensive driving could pose a problem as air 
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pressure and temperature change, which affect the rolling resistance of the vehicle. Also, this 

strategy is only applicable to on-road driving, where the road surface is smooth. Once the road 

surface becomes rough, the rolling resistance changes non-trivially, and the initial estimation of 

the rolling resistance may be imprecise.  

2.4  Vehicle Rollover and Stability Review 

Vehicle rollover events are highly nonlinear events. These events can be quite difficult to 

distinguish and detect, and accurate vehicle parameters are essential to decreasing the response 

time for detecting a vehicle rollover event. 

There are multiple cases of vehicle rollover events. There are two main types of vehicle 

rollover: tripped and untripped. These two categories themselves have subcategories which have 

their own components that make detecting them difficult. 

Tripped rollover is where the vehicle strikes a physical object. This impact could be 

significant enough to cause the vehicle to rollover, or to simply lift part way up off of the ground. 

The ability to predict this difference requires good knowledge of the vehicle’s parameters (mass, 

center of gravity height, etc.).  

Untripped rollover can be more difficult to detect. Unlike tripped rollover, where many 

sensors experience significant excitation, untripped rollover can be subtle. There are two primary 

categories of untripped rollover. An untripped rollover event will fit into at least one of these 

categories and more commonly be split part way between them. 

The first untripped rollover category is a fast rollover event. The fast rollover event is where 

a resonant steering maneuver is performed that causes the vehicle to rollover quickly. This will 
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induce high excitation to some of the vehicle’s sensors but may negatively impact other sensors 

on the vehicle. For example, an accelerometer on the vehicle that is measuring the lateral 

acceleration of the vehicle will register high excitation, but the suspension force sensors may not 

react as quickly, because the dynamics prevent the strut from extending and reducing the force 

measurement as quickly. The accelerometer will tell you that your vehicle is rolling over, but the 

force sensors will tell you that your vehicle still has contact forces on all suspension struts. The 

force sensor has a reading because as the vehicle rolls over the suspension still has some residual 

compression in it that takes time to dissipate due to the wheel assembly having mass, or in the 

case of the vehicle used in this research: non-trivial friction.  

The second category of untripped rollover is the slow rollover event. This will happen for a 

vehicle that is driving at a constant speed around a circle with constantly increasing speed. The 

vehicle’s rotation occurs slowly enough that the suspension’s force sensors give accurate 

information about the vehicle’s contact with the ground. However, the vehicle’s accelerometers 

may not be showing a high enough excitation signal to properly alert the rollover control system. 

This is exponentially compounded when the vehicle’s parameters are not known well. 

The interim case is where elements of both categories are present. This is where the vehicle 

rolls over at moderate speed, where the excitation to the accelerometers is high and the time 

delay in the suspension force sensors is trivial compared to the time of rollover.  
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3 Parameter Estimation and the Generalized 

Polynomial Chaos Extended Kalman Filter 

 

 

 

 

 

The research into parameter estimation theory henceforth is dedicated to the study of the 

Generalized Polynomial Chaos (gPC) Extended Kalman Filter (EKF) and its idiosyncrasies. The 

filter shows many interesting phenomena, such as the ability to change the parameter’s 

distribution shape in real-time to match time evolution behaviors.  

This chapter will cover the basics of the gPC mathematics, the basics of the EKF and the 

integration of the gPC with the EKF. It will progress into the problems of the gPC-EKF and 

several proposed improvements with examples of how each improvement interacts with the 

different problems in the filter. 

The next subsection will investigate choices of parameter update distributions and underlying 

basis function choices and their effects upon the filter’s convergence rates and steady state 

tracking. The following investigation demonstrates the filter for systems with multiple 

parameters to be estimated, the requirement for sufficient excitation and how the filter can show 

if that requirement is not met. 
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Finally, a technique that can be employed to estimate whether the filter has converged will be 

demonstrated and discussed. 

3.1 Generalized Polynomial Chaos 

A deterministic system has a vector of state variables: 

𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 (1) 

A system of interest may also contain a number of uncertain parameters. Each uncertain 

parameter, pi, when described through a gPC expansion, is expanded in an infinite series: 

𝑝𝑖 = ∑𝑝𝑖
𝑗
 𝜓𝑖

𝑗
(𝜉𝑖)

∞

𝑗

 
(2) 

The term 𝜓 is a single dimensional basis function. These basis functions are orthogonal or 

orthonormal functions, such as Legendre, Jacobi, or Hermite polynomials, depending on the type 

of probability distribution of the uncertain parameter. The basis functions are functions of a 

random variable, 𝜉𝑖, which spans the domain of the basis function, and subsequently the 

uncertain parameter’s domain. The index 𝑖 corresponds to the 𝑖𝑡ℎ uncertain parameter.  

When a parameter in the system is given a distribution the state vector has to be expanded in 

a distribution to account for the various forward solutions that the parameter distribution will 

cause. The 𝑖𝑡ℎ state variable’s expansion: 

𝑥𝑖 = ∑𝑥𝑖
𝑗
 𝛹𝑗(𝝃)

∞

𝑗

 
(3) 
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The state variables have a distribution that takes into account each individual parameter 

distribution. This comprehensive distribution is multidimensional, and is defined through a 

tensor product of the individual distributions: 

𝛹𝑗(𝜉1 …𝜉𝑛) = ∏𝜓𝑖
𝑙𝑖(𝜉𝑖)

𝑛

𝑖=1

,     𝑗 = 1,2, … 𝑆     

 𝑙𝑖 = 1,2, …𝑃𝑂 

(4) 

Technically, a gPC expansion should be expanded into an infinite number of terms, but, for 

computational purposes, they are truncated at a selected polynomial order (PO) and number of 

parameters (n). This truncation introduces some error into the system. The total number of tensor 

products in the multidimensional basis function for a specified truncation is: 

𝑆 =
(𝑛 + 𝑃𝑂)!

𝑛! 𝑃𝑂!
 

(5) 

For a system with two uncertain parameters and a maximum polynomial order of three, there 

are 10 terms in the state variable’s series expansions. For 𝑖 = 1,… ,10 these are: 

𝜓1
0𝜓2

0 𝜓1
0𝜓2

1 𝜓1
0𝜓2

2 𝜓1
0𝜓2

3 𝜓1
1𝜓2

0 (6) 

𝜓1
1𝜓2

1 𝜓1
1𝜓2

2 𝜓1
2𝜓2

0 𝜓1
2𝜓2

1 𝜓1
3𝜓2

0 

3.1.1 Application to a State-space System 

A deterministic system has a state-space representation as shown in: 
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𝒗̇ = 𝐹(𝑡, 𝒙, 𝒗; 𝒑) (7) 

Expanding this formulation using the gPC method, the state-space form becomes: 

𝒙̇𝑖 = 𝒗𝑖 (8) 

∑𝒗̇𝑖 ᴪi(ξ)

𝑆

𝑖=1

= 𝐹 (𝑡, ∑ 𝒙𝑚 ᴪm(𝜉)

𝑆

𝑚=1

, ∑ 𝒗𝑚 ᴪm(𝜉)

𝑆

𝑚=1

; ∑ 𝒑𝑚 ᴪm(ξ)

𝑆

𝑚=1

) 

The system is now described stochastically, with known basis functions, but unknown 

coefficients. There are several methods that can be used to calculate the coefficients, generally 

grouped in two main categories of methods: intrusive and non-intrusive.  

One of the intrusive methods is the Galerkin Projection, which leverages the properties of the 

orthogonal basis functions in the inner product. Using this approach, equation (8) becomes: 

𝒙̇𝑖 = 𝒗𝑖 (9) 

𝒗̇𝑖 < ᴪi, ᴪi > = < 𝐹 (𝑡, ∑ 𝒙𝑚 ᴪm(𝜉)

𝑆

𝑚=1

, ∑ 𝒗𝑚 ᴪm(𝜉)

𝑆

𝑚=1

; ∑ 𝒑𝑚 ᴪm(ξ)

𝑆

𝑚=1

) , ᴪi > 

This method can be used to calculate the exact values of each of the coefficients. The tradeoff 

is that there is a possibly large computational cost to calculate the inner products. The inner 

product calculation can typically be performed offline.  

The method used in this study is one of the non-intrusive methods, which is a collocation 

technique that iterates through the system at each time step to approximate the solution of the 

inner products. The collocation technique introduces error into the system by approximating the 

integrals of the Galerkin projection method. If carefully chosen points are used to span the space 

over which the integration is performed, a high accuracy solution for the coefficients can be 

recovered. A matrix of collocation points, 𝜇, is chosen, at which points the system will be 
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evaluated. It can be shown that, for a viable solution, at least S number of points must be used, 

but for high accuracy, 3𝑆 ≤ 𝑄 ≤ 4𝑆 number of points are chosen [53]. The collocation points are 

generated, for a small (1 – 3) number of uncertain parameters, using the Hammersley 

distribution, or for a large number of parameters (>4) by a random number sequence. Using the 

collocation technique, the system is described by equations (10-11). 

𝝁𝑖 = [𝜇1
𝑖 …𝜇𝑑

𝑖 ]
𝑇
 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑄 (10) 

𝒙̇𝑖 = 𝒗𝑖 (11) 

∑𝒗̇𝑗  ᴪ𝑗(𝝁𝑖) = 𝐹

𝑆

𝑗=1

(𝑡, ∑ 𝒙𝑚 ᴪm(𝝁𝑖)

𝑆

𝑚=1

, ∑ 𝒗𝑚 ᴪm(𝝁𝑖)

𝑆

𝑚=1

; ∑ 𝒑𝑚 ᴪm(𝝁𝑖)

𝑆

𝑚=1

) , 1 ≤ 𝑖 ≤ 𝑄 

The set of values of ᴪ𝑗(𝜇𝑖) can be written in matrix form as 𝐴𝑖,𝑗 = ᴪ𝑗(𝝁𝑖), 1 ≤ 𝑗 ≤ 𝑠, 1 ≤

𝑖 ≤ 𝑄. This allows us to write the system of equations (10-11) as: 

∑𝐴𝑖,𝑗𝒗̇
𝑗  = 𝐹

𝑆

𝑗=1

(𝑡, ∑ 𝐴𝑖,𝑗 𝒙
𝑚

𝑆

𝑚=1

, ∑ 𝐴𝑖,𝑗  𝒗
𝑚

𝑆

𝑚=1

; ∑ 𝐴𝑖,𝑗  𝒑
𝑚

𝑆

𝑚=1

) , 1 ≤ 𝑖 ≤ 𝑄 

(12) 

If we rewrite these arguments in terms of a single term, such as: 

𝑿𝑖(𝑡) = ∑𝐴𝑖,𝑗  𝒙
𝑗(𝑡)

𝑆

𝑗=1

 

(13) 

Then equation (12) becomes: 

𝑽̇𝑖(𝑡) = 𝐹(𝑡, 𝒀𝑖 , 𝑽𝑖: 𝑷𝑖), 1 ≤ 𝑖 ≤ 𝑄 (14) 
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The coefficients of the series are obtained by integrating equation (14) forward in time for 

each of the collocation points. Since there are 𝑄 number of collocation points, for each step 

forward in time, the model must be integrated 𝑄 times. 

To recover the stochastic coefficients one uses the inverse of the A matrix: 

𝒙𝑖(𝑇) = ∑(𝐴#)𝑖,𝑗  𝑿
𝑗(𝑇)

𝑄

𝑗=1

 

(15) 

𝒗𝑖(𝑇) = ∑(𝐴#)𝑖,𝑗 𝑽
𝑗(𝑇)

𝑄

𝑗=1

 

(16) 

Where 𝐴# is the Moore-Penrose pseudo-inverse of the 𝐴 matrix. As a note, if 𝐴# is not full 

rank, the solutions are questionable at best. If nothing else, the covariance matrix that is 

calculated from these solutions becomes entangled between multiple states and not just between 

two states per covariance matrix term.  

3.1.2 Extension of the Method to a Regression System 

A function may be expressed as: 

𝐺(𝒖, 𝑡; 𝒑) = 𝒂 
(17) 

Where 𝒖 is a vector of inputs to the system, t is time, 𝒑 a vector of parameters, and 𝒂 is a 

vector of outputs. Estimation of the parameters 𝒑 may be performed through a regression 

technique. An example is Newton’s second law: 

𝐹𝑜𝑟𝑐𝑒 =  𝑚 𝑎 
(18) 
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The function 𝐺(𝒖, 𝑡; 𝒑) is 𝑚𝑎𝑠𝑠 times 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑢 = 𝑎, 𝑝 = 𝑚). 𝒂 from equation (17) is 

the measured force. To solve for the parameters using the gPC-EKF the function is expanded in a 

similar way as the state-space system: 

∑𝒂𝑖  ᴪi(𝛏)

𝑆

𝑖=1

= 𝐺 (𝒖, 𝑡; ∑ 𝒑𝑚 ᴪm(𝛏)

𝑆

𝑚=1

) 

(19) 

The Galerkin projection or the collocation techniques can be applied to this system to solve 

for the coefficients. The advantage is that for a system without a state-space representation, the 

covariances can still be calculated, which enables integration into the Kalman Filter structure.  

The covariances of the state variables is easily calculable through gPC. The covariance of 

variable d, with variable j, at time k is calculated, for orthonormal basis functions, as: 

𝑐𝑜𝑣(𝑥𝑑,𝑘, 𝑥𝑗,𝑘) = ∑𝑥𝑑,𝑘
𝑖  𝑥𝑗,𝑘

𝑖

𝑆

𝑖=2

 

(20) 

3.2 Generalized Polynomial Chaos Extended Kalman Filter 

In section 3.2.1 the Extended Kalman Filter (EKF) is defined. The EKF is then merged with 

the gPC expansions in section 3.2.2. 

3.2.1 Extended Kalman Filter 

The filtering technique of the Extended Kalman Filter (EKF) can be applied to the 

Generalized Polynomial Chaos (gPC) expansions. The basic EKF is as follows: 

A differential equation system can be described in state-space form as: 
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𝒙̇ = 𝒇(𝒙) + 𝒗 (21) 

Where 𝒙 is the state vector, and 𝒘 is the vector of process noise.  The system measurement 

equation is defined as: 

𝒛 = 𝒉(𝒙) + 𝒘 (22) 

 𝒉 is the observation matrix that incorporates the state vector into an output solution. 𝒗 is the 

vector of the sensor noise. The Kalman Filter is designed for linear systems. The EKF linearizes 

the system mechanics in an attempt to produce an approximately linear system. This is done 

through linearizing the system dynamics and observation matrices and evaluating them at each 

time step, k: 

𝐹𝑘 =
𝛿𝑓(𝒙)

𝛿𝒙
|𝒙=𝒙𝑘

  
(23) 

𝐻𝑘 =
𝛿ℎ(𝒙)

𝛿𝒙
|𝒙=𝒙𝑘

  
(24) 

The resultant EKF equation is then written as: 

𝒙𝑘
𝑢 = 𝒙𝑘

𝑓
+ 𝐾𝑘 (𝒛𝒌 − 𝐻𝑘 𝒙𝒌) (25) 

The system takes the initial forecast (or model solution), 𝒙𝑘
𝑓
, and updates it through the 

Kalman update equations, 𝑲𝒌, and the residual, (𝒛𝒌 − 𝐻𝑘 ∗ 𝒙𝒌), to update the state variables, 𝒙𝑢. 

The Kalman update gain is defined as: 

𝐾𝑘 = 𝑀𝑘 𝐻𝑘
𝑇 (𝐻𝑘 𝑀𝑘 𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (26) 

The covariance matrices, 𝑀𝑘, and, 𝑃𝑘 are thus obtained as: 
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𝑀𝑘 = 𝛷𝑘 𝑃𝑘−1 𝛷𝑘 + 𝑄𝑘 (27) 

𝑃𝑘 = (𝐼 − 𝐾𝑘 𝐻𝑘) 𝑀𝑘 (28) 

The system covariance matrix, 𝑀𝑘, is created through the functional matrix, 𝛷𝑘, and the 

updated system covariance, 𝑃𝑘−1. The 𝑅𝑘 matrix is the measurement noise matrix, defined as: 

𝑅𝑘 = 𝐸(𝒗 𝒗𝑇) 

 

(29) 

E is the mathematical expectation operator. 𝑄𝑘 is the matrix that describes the discrete 

process noise matrix, through the process noise matrix, 𝑄.  

𝛷𝒌 = 𝒆𝐹𝑘 𝑇𝑠 (30) 

𝑄 = 𝐸(𝒘 𝒘𝑇) (31) 

𝑄𝑘 = ∫ 𝛷𝒌 𝑄 𝛷𝒌 𝒅𝒕
𝑇𝑠

0

 
(32) 

More thorough details and explanations for EKF can be found in [14, 16, 54]. 

3.2.2 EKF Integration with gPC Expansions 

Normally, the covariance matrices are created through the functional form of the system 

dynamics matrix for the EKF. Because the gPC mathematics creates an estimation of the 

covariance matrix (equation (20)) there is no need to use the functional form of the matrix or its 

linearization.  

We formally expand the state-space system to include the parameters. For time-invariant 

parameters, the state-space vector is defined as [27]: 
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𝒙 = [𝑥1 …𝑥𝑛, 𝑝1 …𝑝𝑑]𝑇 (33) 

Expanding equation (21) to include the parameters:  

[
𝒙̇𝒏

𝒑̇
] = [

𝑓(𝒙) + 𝒗
𝒇𝒑

] 
(34) 

For time-invariant parameters, 𝒇𝒑 = 0. For time-varying parameters 𝒇𝒑 is defined however 

those parameters vary. 

 

The Extended Kalman Filter equations become: 

𝒙𝑘
𝑢 = 𝒙𝑘

𝑓
+ 𝐾𝑘(𝒛𝑘 − 𝐻𝑘 𝒙𝑘

𝑓
) (35) 

The gPC method expands each element of the state vector into a series, which expands 

equation (33) into: 

𝒙 = [∑𝑥1
𝑖  ᴪi(𝛏)

𝑺

𝒊=𝟏

⋯ ∑𝑥𝑛
𝑖  ᴪi(𝛏)

𝑺

𝒊=𝟏

∑ 𝑝1
𝑖  ᴪi(𝛏)

𝑺

𝒊=𝟏

… ∑𝑝𝑛
𝑖  ᴪi(𝛏)

𝑺

𝒊=𝟏

]

𝑇

 

 (36) 

The Kalman update equation 

 integrates the covariances generated from the gPC theory. This is advantageous, since it 

removes the need to linearize the system dynamics equations; this removes one layer of error 

from the system. This advantage is only realized if one uses enough terms in the series 

representations of the variables; using too few terms makes the estimate worse than if the 

functional matrices were linearized. The observation matrices may still need to be linearized. 

When evaluated at each time step, the functions that depend on the uncertain parameters are 
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evaluated at the median value of the variable’s probability density function (PDF). A more 

thorough explanation of this can be found in [27, 55]. The sensor noise matrix remains the same, 

but the process noise matrix is tuned a bit differently, as explained later. 

𝒙𝑘
𝑢,𝑖 = 𝒙𝑘

𝑓,𝑖
+ 𝐾𝑘(𝒛𝑘𝛿(𝑖 − 1) − 𝐻𝑘 𝒙𝑘

𝑓,𝑖
) (37) 

𝐾𝑘 = 𝑐𝑜𝑣(𝒙𝑘, 𝒙𝑘) 𝐻
𝑇(𝑅𝑘 + 𝐻 𝑐𝑜𝑣 (𝒙𝑘, 𝒙𝑘)𝐻

𝑇)−1 (38) 

The term 𝛿(𝑖 − 1) is the delta function. If the system were to be solved through the Galerkin 

Projection method, the sensor data 𝒛𝑘 would be expanded into a series itself. However, since the 

sensor data is a given value, having a measured value and assumed to have no distribution, the 

series representation contains only the first term. Therefore, when each of the coefficients of the 

state-space vector is updated, only the first terms take into account the sensor data. The index 𝑖 

denotes the coefficients of the series in equation (37).  

This is where the problems in the filter appear. When equation (36) is performed, the first 

term in the series is driven to the sensor value, as: 

𝒙𝑘
𝑢,1 = 𝒙𝑘

𝑓,1
+ 𝐾𝑘(𝒛𝑘 − 𝐻𝑘 𝒙𝑘

𝑓,1
) (39) 

Where the rest of the series coefficients (2, … , 𝑆) are driven to zero: 

𝒙𝑘
𝑢,2…𝑆 = 𝒙𝑘

𝑓,2…𝑆
+ 𝐾𝑘(𝟎 − 𝐻𝑘 𝒙𝑘

𝑓,2…𝑆
) (40) 

As defined above, the covariance is calculated through the series coefficients (2…S), which 

are being driven to zero by the EKF. This drives the Kalman update to zero, which makes the 

state update: 
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𝒙𝑘
𝑢,𝑖 = 𝒙𝑘

𝑓,𝑖
+ (0)(𝒛𝑘𝛿(𝑖 − 1) − 𝐻𝑘 𝒙𝑘

𝑓,𝑖
) (41) 

Because: 

𝐾𝑘 = 𝑐𝑜𝑣(𝒙𝑘, 𝒙𝑘) 𝐻
𝑇(𝑅𝑘 + 𝐻 𝑐𝑜𝑣(𝒙𝑘, 𝒙𝑘) 𝐻

𝑇)−1 = 0 (42) 

3.3 gPC-Bayesian Method 

Bayesian parameter estimation typically performed through Gibbs sampling or Metropolis-

Hastings, is a powerful method of parameter estimation. The Bayesian framework for parameter 

estimation is defined as: 

𝑃[𝑝|𝒛] =
𝑃[𝒛|𝑝] 𝑃[𝑝]

𝑃[𝒛]
 

(43) 

For the purposes of estimation, the term 𝑃[𝑧] can be ignored as a constant scaling factor. 

This reduces equation (43) to: 

𝑃[𝑝|𝒛]  ∝ 𝑃[𝒛|𝑝]𝑃[𝑝] (44) 

𝑃[𝑝|𝑧] is the posterior probability density function of the parameter values given the data. 

The term 𝑃[𝑧|𝑝] is the statistical distribution of the error between the signal and the model. For a 

normal distribution, this is defined as: 

𝑃[𝒛|𝑝] = 𝑒
−

1
2
 ∑ (𝒛𝑡−ℎ𝑡(𝒙))𝑇𝑅𝑡

−1(𝒛𝑡−ℎ𝑡(𝒙))
𝑇𝑓
𝑡=𝑇𝑖  

(45) 

Where 𝑧𝑡 is the signal vector at time 𝑡, and ℎ𝑡 is the model output vector at the same time, 𝑡. 

The term 𝑅𝑡 is the signal noise matrix. The term 𝑃[𝑝] is the prior distribution of the parameters. 

𝑥 is the state-space vector. This is one of the powerful tools of the Bayesian framework, as it 

incorporates previous knowledge about the distributions of the parameters. This term is used to 

allow the estimator to learn.  
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A sequence of measurements is collected over a time span, [𝑇𝑖 …𝑇𝑓], and the distribution 

𝑃[𝑝|𝒛] is calculated. The Maximum A Posteriori (MAP) estimation finds the values of the 

parameters that maximize this function 𝑃[𝑝|𝒛]. The probability density function of 𝑃[𝑝|𝒛] is then 

fed into the next estimation as the distribution for 𝑃[𝑝].  

The values being estimated here are not the values of the parameters, 𝑝, but the values of the 

random variables, 𝜉. This redefines equation (45) as: 

𝑃[𝒛|𝜉] = 𝑒
−

1
2
 ∑ (𝒛𝑡−ℎ𝑡(𝒙,𝜉))

𝑇
𝑅𝑡

−1(𝒛𝑡−ℎ𝑡(𝒙,𝜉))
𝑇𝑓
𝑡=𝑇𝑖  

(46) 

𝑃[𝜉|𝒛]  ∝ 𝑃[𝒛|𝜉]𝑃[𝜉] (47) 

The MAP estimate of the random variables from equation (46) is used in the collocation 

matrix to return the values of the state-space variables and the parameter values as: 

𝐴(𝜉𝐸𝑠𝑡)𝒙(𝑡, 𝜉𝐸𝑠𝑡) (48) 

For systems with quasi-static parameters, this technique is highly recommended for the 

parameter estimation, and especially for initialization of the parameters for the gPC-EKF. The 

convergence rate of the gPC-EKF can be non-trivial, and the closer the initial estimates of the 

parameters, the faster the convergence. 

3.4 gPC-EKF Improvements and Application to State-space Systems 

When the gPC mathematics are blended with the EKF equations, a paradox in the system is 

created. The paradox is that, as the information in the parameter distributions becomes larger, the 

distribution becomes peaked at a value, the width of the distribution decreases. Normally, this 

would be good, but the covariance is calculated from the width of the distribution. As the 

distribution becomes more peaked, the ability to update the state and parameter values decreases. 
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These problems are particularly hard to identify for small initial variations in state or parameter 

values. There are three proposed improvements to the filter. Each of these has some 

mathematical basis and some empirical basis for how and why they work. One setup is used in 

demonstrating the problems and how each of the improvements work. These examples are 

somewhat contrived to demonstrate each of the problems. For different cases it may be possible 

to neglect some of the improvements; however, in general, they significantly improve the 

performance of the filter. 

For the sake of clarity, the three different improvements are defined now. The improvements 

are listed in terms of their application. The first is an improvement that enables state estimation 

and filtering, and is essentially a process noise matrix. This is what has been found empirically to 

work. There may be some improvement that can be applied to the system that will operate upon 

the state distributions themselves, but this is unlikely. Inclusion of an extraneous parameter that 

can be used to add uncertainty to the state parameters without affecting the dynamics is a 

possibility, but can cause the same problem as too large of a process noise matrix. This addition 

is identically the addition of another parameter distribution, but not including it in the actual 

dynamics. There is also the concern of adding an additional parameter to the system, which 

would increase computational cost and complexity. The improvement that is proposed is to add a 

small process noise covariance matrix to the actual state covariance matrix. This matrix can be 

custom defined, but, at a minimum, it needs to have a positive definite element for the state 

desired to be tracked. Here it is shown as a diagonal matrix.   
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𝑐𝑜𝑣(𝒙𝑘, 𝒙𝑘) =

[
 
 
 
 
 
 
∑𝑥1,𝑘

𝑖  𝑥1,𝑘
𝑖

𝑆

𝑖=2

⋯ ∑𝑥1,𝑘
𝑖  𝑥𝑛,𝑘

𝑖

𝑆

𝑖=2

⋮ ⋱ ⋮

∑𝑥𝑛,𝑘
𝑖  𝑥1,𝑘

𝑖

𝑆

𝑖=2

⋯ ∑𝑥𝑛,𝑘
𝑖  𝑥𝑛,𝑘

𝑖

𝑆

𝑖=2 ]
 
 
 
 
 
 

+ 𝑐 [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

] 

(49) 

The coefficient c is a difficult parameter to tune, it depends on both the time step and the 

noise in the system, as well as other not well understood dynamics. The parameter enables the 

state estimation by artificially adding information to the state covariance. If that information is 

too small, the residual will not be able to propagate through the update laws, and the system will 

not be able to track the trajectory. If the parameter is too large, the states and the parameter 

values will decouple, and the parameter values will be able to drift, as the residual will be small 

regardless of the parameter values.  

The second proposed improvement is with regards to the parameter distribution. As 

previously defined, when the system moves forward in time the filter drives the state and 

parameter distributions to zero by driving the higher order terms in the power series to zero. The 

problem is that the information in the covariance matrix is reduced as the information in the 

higher order power series coefficients is reduced. Normally the gPC-EKF is initialized with a 

parameter distribution. If at each time step, some amount of information is added to that 

distribution then the distribution width will never be able to collapse. How this is done is 

somewhat complicated. The information is added in the same way, but what information to add 

is highly complicated. The initial conditions for the forward integration as defined as: 

𝑿𝑘−1
𝑖 = ∑𝐴𝑖,𝑗 𝒙𝑘−1

𝑗

𝑆

𝑗=1

 

(50) 
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With  

𝒙𝑘−1
𝑗

= 𝒙𝑘−1
𝑗

+

[
 
 
 
 
 

0
⋮
0

𝑐1 𝐼1
𝑗

⋮

𝑐𝑑  𝐼𝑑
𝑗
]
 
 
 
 
 

 

(51) 

 

How 𝐼𝑑
𝑗
 is defined is the complicated part. In gPC-EKF there are three statistical distributions 

used. The first is the initialization of the system, or the uncertainty distribution associated with 

the parameter. The second is the underlying basis functions that are used in the gPC 

mathematics. And the third distribution is what is used for 𝐼𝑑
𝑗
. For a system that is using the 

Legendre basis functions, from empirical calculations, the points chosen to generate the 

collocation matrix are quite suitable. The parameter 𝑐𝑑 is used to tune the system to improve the 

tracking stability. That parameter suffers from the same constraints that the state improvement 

parameter does. Too small and there’s not enough effect, too large and the system becomes 

unstable. There are many different distributions that can be used. Random noise sequences are 

possible, though there are some complicating effects that are induced. The collocation points 

make good additions, especially for systems with asymmetric distributions, though that particular 

topic will be covered later. Distributions that are based off of the state trajectory error (so that the 

parameter additions become small as the tracking error converges), or distributions that are based 

off of the parameter mean value and distribution are also useful. There are many other different 

methods that can be employed. There are solid mathematical reasons for why the perturbation is 

needed, but very little aside from empirical results to show how each will affect the system’s 
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time evolution. Some of these distribution additions will be covered in more detail when 

investigating the effects of having an asymmetric distribution for the gPC basis functions. 

The final addition is employed when the initial state values for the real system are unknown. 

This addition adds a significant amount of information to the system that is quickly removed by 

the filter. The improvement is made through the addition of white noise to the state values during 

the first forward integration: 

𝒙𝑡0

𝑗
= 𝒙𝑡0

𝑗
+

[
 
 
 
 
 

𝑁1

⋮
𝑁𝑛

𝑐1 𝐼1
𝑗

⋮

𝑐1 𝐼𝑑
𝑗
]
 
 
 
 
 

 

(52) 

Where 𝑁𝑛 is a white noise process. It could also be a colored noise process, so long as it 

imparts enough statistical variations to supply the information needed to the filter. 

3.4.1 Demonstrations of the gPC-EKF Applied to a Mass-Spring System 

The gPC-EKF filter is applied to a simple harmonically excited spring-mass system to 

demonstrate the problems, improvements and capabilities of the filter. For this example the basis 

functions for the gPC basis are Legendre polynomials. Other basis functions could be used, but 

Legendre polynomials demonstrate the fewest quirks. The state vector, including uncertain 

parameters, for a spring-mass system is: 

𝒙 = [𝑥1, 𝑣1; 𝒑]𝑇 (53) 

With the uncertain parameter vector: 

𝒑 = [𝑚] (54) 
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The state-space is defined as: 

[
𝑥̇
𝑣̇
𝑚̇

] = [

𝑣

−
𝑘

𝑚
∗ 𝑥

0

] + [

0
200 sin(𝑡)

𝑚
0

] + 𝝂 

(55) 

Where 𝝂 is a process noise vector. The collocation method is used for propagating the 

uncertain parameters through the state-space. This method defines the power series expansions 

and parameter values for the iteration as: 

𝑚𝑖 = ∑𝑚𝑗𝜓1
𝑗
(𝜇1

𝑖 )

𝑗

 
(56) 

At each time step, 𝑘, the system is integrated 𝑄 times, for index 𝑖. 

𝑿𝑘
𝒊 = [𝑥𝑘,𝑖, 𝑣𝑘,𝑖, 𝑚𝑘,𝑖]

𝑇
, 𝑓𝑜𝑟 𝑖 = 1…𝑄 (57) 

The initial conditions for each step forward are defined as: 

𝑿𝑘−1
𝑖 = ∑𝐴𝑖,𝑗 𝑥𝑘−1

𝑗

𝑆

𝑗=1

+ [0,0, 𝑐1 𝜇1
𝑖 ]

𝑇
 

(58) 

With the observation matrix: 

𝐻𝑘 = [
1
0
0
] 

(59) 

The system is demonstrated without the improvements. Table 3.1 shows all of the different 

filter parameter values. 
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Table 3.1 Parameter Values for the Unmodified gPC-EKF 

Poly Order 3 

Q 6 

Time Step (S) 0.01 

𝑐 0 

𝑐1 0 

𝑥0 0 

𝑣0 0 

𝑚1 600 

𝑚2 10 

𝑁1 0 

𝑁2 0 

R 0.01 

The case study demonstrated here is a classical second order mass-spring system. The actual 

value of the mass is 100 𝑘𝑔. To highlight the problems with the filter, 40 seconds into the 

simulation, the mass of the ‘real system’ increases by 50% to 150kg. The state trajectory of the 

filter when no improvements are used is demonstrated in Figure 3.1. The filter does not diverge, 

which is good, but it also doesn’t perform the state or parameter estimation well. The harmonics 

observed in the velocity come from the high frequency vibrations for the filter system, because it 

has such a low mass value, but it tracks the velocity profile because the forcing term has the 

dominant frequency. 
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Figure 3.1 Spring-Mass System’s State Trajectory from the gPC-EKF without any 

Improvements 

Figure 3.2 shows the mean value of the gPC expansion for the mass parameter, or the 𝑚1 

parameter. This figure highlights the problem with the gPC-EKF for parameter estimation. The 

parameter trajectory starts to move, but before it can converge to the correct value, the 

distribution is driven to zero and the covariance matrix subsequently goes to zero. 
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Figure 3.2 Mass Estimate of the gPC-EKF when no Improvements are Used 

The covariance is dependent upon the distribution of the system. Figure 3.3 shows the higher 

order parameters of the gPC expansion for the mass parameter. It can clearly be seen that the 

distribution starts out having some information, but it is quickly driven to zero; the effects of the 

distribution being zero have already been demonstrated.  
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Figure 3.3  Mass Parameter’s Distribution Coefficients in the gPC-EKF when no 

Improvements are Used 

Next, the filter is performed with the first of the improvements: The perturbation of the 

covariance matrix. The filter’s coefficients are given in   Table 3.2. 
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  Table 3.2 Parameter Values for the gPC-EKF with the Covariance Improvements 

Poly Order 3 

Q 6 

Time Step (S) 0.01 

𝑐 0.0001 

𝑐1 0 

𝑥0 0 

𝑣0 0 

𝑚1 600 

𝑚2 10 

𝑁1 0 

𝑁2 0 

R 0.01 

The filter starts off with a good estimate of the state values, and the trajectories track well; 

however, once the mass increases, the tracking performance degrades. If the amount added to the 

covariance were larger, the tracking would be better. This is a good example of how large the 

addition to the covariance should be; it should be large enough for general tracking, but small 

enough to enable the residual to propagate to the parameter update.  
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Figure 3.4 Spring-Mass State Response with State Tracking Improvement 

The additions to the covariance matrix are also added to the parameter covariance, which 

prevents the system from driving the parameter power series coefficients to zero. Because of this, 

a small amount of parameter updating is enabled, and, as it can be seen in Figure 3.5, the mass 

parameter is slowly able to approach the actual value, because of the small element added to its 

covariance by the identity matrix style process noise covariance matrix addition. 
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Figure 3.5 Mass Parameter Estimation with State Improvement 

The distribution for the parameter is once again quickly driven towards zero, shown in 

Figure 3.6, but the added information in the covariance matrix prevents it from completely 

converging to zero. Though it is unclear if it will eventually converge to zero, the trend in the 

data indicates that it could.  
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Figure 3.6 Mass Distribution Higher Order Terms with State Tracking 

Improvement 

It can thus be seen why the next step is a logical one of adding information to the parameter 

distributions. The next set of examples shows the improvement that is gained by adding 

information to the parameter distributions. The parameter values for the unmodified gPC-EKF 

used in these examples are included in Table 3.3. 
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Table 3.3 Parameter Values for the Unmodified gPC-EKF 

Poly Order 3 

Q 6 

Time Step (S) 0.01 

𝑐 0.005 

𝑐1 0 

𝑥0 0 

𝑣0 0 

𝑚1 600 

𝑚2 10 

𝑁1 0 

𝑁2 0 

R 0.01 

The state trajectories quickly track the actual values, as it can be seen in Figure 3.7. The 

additions to the parameter distributions enable fast convergence of the parameter values. There is 

an important truth with this filter: If the parameters have converged, the non-tracked states will 

also converge. 
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Figure 3.7 State Response with State Tracking and Parameter Distribution 

Improvements 

The mass estimation is now able to track the actual mass of the system. The overshoot that 

happens is because the filter is not able to reduce the information in the covariance matrix fast 

enough. If that initial parameter distribution is removed, and only the additions to the parameter 

distribution at each time step are permitted, the parameter convergence can be much smoother. 

Also, if it takes a long time for the parameter to converge, the build-up of the added parameter 

distribution can cause an overshoot. 
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Figure 3.8 Mass Estimation with Both State and Parameter Improvements 

The additions to the parameter distributions are clearly seen in Figure 3.8. They keep the 

second term in the distribution from converging to zero. If the additions are not linear additions, 

the higher-order terms would show non-zero values, as illustrated in Figure 3.9. 
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Figure 3.9 Higher Order Terms of the Mass Parameter Series for the System with Both 

State and Parameter Improvements 

These two improvements are the cornerstone of the filter. Without them, the filter does not 

function very well. There is another case that must be considered, but is a subset of these other 

two improvements. When the filter is initialized, if the states of the actual system are not known 

well, information regarding that uncertainty must be added to the system to enable proper 

performance. This is demonstrated for the system with a colored noise signal, though it also 

works with the state of the actual system being different than the filter, and the filter having a 

white noise process. The parameter values used in this case study are provided in Table 3.4. 
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Table 3.4 Parameter Values for the Modified gPC-EKF with Initial Condition Noise 

Poly Order 3 

Q 6 

Time Step (S) 0.01 

𝑐 0.005 

𝑐1 0 

𝑥0 0 

𝑣0 0 

𝑚1 600 

𝑚2 0 

𝑁1 5+GaussianWhiteNoise 

𝑁2 5+GaussianWhiteNoise 

R 0.01 

The system is initialized with the colored noise signal. Also, the initial distribution of the 

parameter is set to zero, and the parameter trajectory does not vary nearly as much as the 

previous case. 
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Figure 3.10 State Response of the Filter with all Improvements 

It can be seen from Figure 3.10 that, once the initial state errors have converged, the system 

proceeds like before. This simulation demonstrates both the effects of the initial state errors, as 

well as what happens when the initial parameter distribution is set to zero. The parameter 

estimation does not overshoot like it did before. Later on, the effects of different additions to the 

parameter distributions will be investigated further, but for now it can be seen that the 

information in the parameter distribution has a significant effect on the ability of the filter to 

estimate the parameter. 
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Figure 3.11 Mass Estimation of the Filter with all Improvements 

The parameter distribution proceeds very similarly to the previous case, as shown in Figure 

3.11. However, a very important effect is demonstrated here. Blanchard [25] noted that, if the 

information in the covariance matrix was not significant enough, the filter did not appear to 

converge. The parameter distribution plot gives a lot of credit towards that concept, as the 

parameter estimate does not move very much or converge until the information increases to a 

certain threshold. The higher order terms of the mass parameter expansion are shown in Figure 

3.12. Since the information is being added at every time step, it slowly grows until it passes that 

threshold and the parameter value quickly moves. 
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Figure 3.12 Higher Order Terms of the Mass Series for the Filter with all Improvements 

The final case to be demonstrated for the filter is when there is noise in the measurements. If 

the filter cannot handle noise, then there is really no point to pursuing its development. The 

system has a Gaussian white noise signal added to the measurements, as shown in the Table 3.5 

of parameter values. 
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Table 3.5 Parameter Values for the Modified gPC-EKF with Initial Conditions Noise and 

Process Noise Matrix 

Poly Order 3 

Q 6 

Time Step (S) 0.01 

𝑐 0.005 

𝑐1 0 

𝑥0 0 

𝑣0 0 

𝑚1 600 

𝑚2 0 

𝑁1 GaussianWhiteNoise 

𝑁2 GaussianWhiteNoise 

R 0.1 

The filter is initialized with all of the improvements. The states track well, and the noise is 

properly filtered out, except for a small amount of error in the velocity, as presented in Figure 

3.13. 
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Figure 3.13 State Response for the Filter Tracking a Noisy Signal 

The biggest problem that occurs is found in the parameter estimation. Because the parameter 

distribution always has some information in it, the errors induced because of the sensor noise 

filtering causes the parameter value to fluctuate, as it can be seen in Figure 3.14. Using accurate 

knowledge of the filters convergence state leads to an ability to stabilize the parameter values in 

the presence of sensor noise, which will be demonstrated later.  
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Figure 3.14 Mass Estimation of the Filter in the Presence of Sensor Noise 
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The additions to the parameter distribution are independent of the sensor noise, and thus, the 

higher order parameter’s time evolutions are unaffected, which is shown in Figure 3.15. 

 

Figure 3.15 Higher Order Terms of the Mass Series for the System with Sensor Noise 

 As a note, the basis of attraction for this filter is highly non-linear. It depends on the initial 

conditions of the filter states, the initialized parameter distributions, the parameter update 

distributions, the process noise matrix additions, and the sensor noise matrix tuning.  

3.4.2 Investigation of Asymmetric Basis Functions and Distributions 

As mentioned previously, there are three separate distributions that make up the gPC-EKF. 

The first is the underlying basis functions of the gPC mathematics. The second is the 

initialization distribution of the parameter. The third is the distribution that is used to update the 
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parameter distribution in the filter. The original method was called Polynomial Chaos, and was 

created with only one type of underlying distribution [56]. Later on, it was expanded to utilize 

any orthogonal or orthonormal distribution, which is why it is called gPC. Most of the work 

performed with this filter has utilized only the Legendre polynomials for the gPC basis functions. 

Now, however, we consider other types of functions, specific for each distribution. This section 

shows some of the effects of using an asymmetric Beta distribution via the Jacobi basis 

functions. If the distribution is a Beta(1,1) then the results are identical to the Legendre 

functions.  

Using the same Mass-Spring system as in the previous section, the filter is simulated without 

the update laws or the improvements being active. The gPC method was developed to propagate 

parameter distributions through dynamical systems. This example is meant to show how the 

distributions evolve. The initialization of the mass parameter is a Beta(1,5) distribution. The 

beginning and ending values match each other, as illustrated in Figure 3.16, as they should, 

because no update laws are active. The distribution will approximate the true Beta(1,5) 

distribution as the poly chaos method increases in iterations to statistically saturate the 

distribution. 
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Figure 3.16 Mass PDF of the Beta(1,5) Distribution 

Three different simulations are now performed, using the parameters provided in Table 

3.6. These demonstrate different time evolutions of the system that happen because of the 

different distributions that are added to the parameter values. The system excitation is a band 

limited white noise signal. The proposed parameter update for the mass-spring system is: 

𝒙𝑘−1
𝑗

= 𝒙𝑘−1
𝑗

+ [
0
0
𝑈𝑗

] 
(60) 
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Table 3.6 gPC-EKF Parameters for Asymmetric Basis Function Filter Tests 

 Beta(1,5) Collocation Matrix Hammersley 

Poly Order 7 7 7 

Q 6 6 6 

Time Step (TS) 0.01 0.01 0.01 

𝑈𝑗 0.01(−1 + 2𝐵𝑒𝑡𝑎(1,5)) 0.001 𝐴𝑖,2 0.01 𝜇1
𝑖  

𝑐 0.0001 0.0001 0.0001 

𝑥0 0 0 0 

𝑣0 0 0 0 

𝑚1 160 160 160 

𝑚2 20 20 20 

𝑁1 0 0 0 

𝑁2 0 0 0 

R 0.01 0.01 0.01 

The system is initialized with the previous Beta(1,5) mass distribution. If the addition that 

is added is of the same distribution type, the resulting PDF for the mass estimation at the end of 

the simulation is the same type as the initial distribution, as the results in Figure 3.17 show. 
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Figure 3.17 Mass PDF Using the Beta Distribution for the Initialization and Update 

The next proposed method is employing the Hammersley points used to create the 

collocation matrix. The Hammersley algorithm is used to produce the points for the collocation 

technique to properly span the space of the inner product integrals. If those same points are used 

as the addition to the parameter distributions at each step, a linear distribution is added to the 

parameter values, which results in a linear parameter PDF, as presented in Figure 3.18.  
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Figure 3.18 Mass Distribution Using the Beta Distribution as the Underlying Distribution 

and the Hammersley Points as the Update 

The final distribution that is demonstrated here is the use of points from the collocation 

matrix. These points are based off of the Hammersley points, but are transformed through the 

underlying basis function. These points are therefore spaced in a manner that is congruent with 

the underlying basis functions and results in the least amount of error in the system. The final 

distribution is the most compact of the cases. The most important thing to note from Figure 3.19 

is that the distribution is not centered on the actual parameter value, but it is shifted to its side. 

This actually results in the most accurate mean value from the gPC-EKF, because the underlying 

distribution is shifted by the Beta(1,5) distribution.  
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Figure 3.19 Mass Distribution Using the Beta Distribution as the Underlying and the 

Collocation Matrix Elements as the Update 

The filter is aligning the mean value of the series expansion, and not of the PDF function. 

Because the collocation points are shifted in the same manner as the underlying basis functions, 

this results in the gPC-EKF’s mean value lining up with the actual value. The other two 

distributions are attempting to line the PDF’s mean value up to the actual value, which results in 

a shift in the gPC-EKF’s mean value from the actual value due to the constant input from the 

applied distribution. 

Looking at Figure 3.20, it is very difficult to tell which additional distribution has the 

fastest convergence rate. As the initial estimates degrade the use of the collocation matrix points 

prove more stable than the other two distributions, but this is purely empirical, and based on the 

magnitude of uncertainties that could be used before the filter would become unstable.  
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Figure 3.20 Mass Estimation Convergence for Various Update Distributions Using the 

Beta(1,5) Distribution as the Underlying Distribution 

As the parameter update distributions change, the tracking performance is affected, 

because the parameters used in the forward integrations are not the same. The use of the linear 

distribution shows the worst tracking performance, as presented in Figure 3.21. The error 

appears to be getting worse over time, but the actual signal that its tracking is going into a limit 

cycle and the error is just scaling with that signal. The beta distribution shows the next worst 

performance. It has some similarities to the underlying basis functions, but it doesn’t completely 

match it. Finally, the use of the collocation points shows the best matching of both the parameter 

values and of the tracking performance.  
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Figure 3.21 Tracking Error for Various Update Distributions Using the Beta(1,5) 

Underlying Distribution 

These three different distributions that are used are not a complete list. Any distribution 

that one could think of may be of use. Some can cause the filter to become unstable, and some 

may cause the filter to become completely stable. It is, however, very difficult to determine how 

the additional points will affect the time evolution of the system. Use of more than just the 𝐴𝑖,2 

points, and expanding to using the full set of values in the row shows positive results, but it is 

unclear how to scale each column of the A matrix.  

When the underlying basis functions are the Legendre polynomials, similar effects to the 

Jacobi basis functions are observed. The points chosen from the collocation matrix are still the 

ones with the lowest tracking error, but the Hammersley points (which are uniform in 
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distribution) show the next lowest error. The asymmetric distribution has the largest tracking 

error.  

3.4.3 Spring-Mass-Damper and Sufficient Excitation 

The state vector, including uncertain parameters, for a spring-mass-damper system is: 

𝒙 = [𝑥, 𝑣; 𝒑]𝑇 (61) 

With the uncertain parameter vector: 

𝒑 = [𝑚, 𝑘, 𝑐] (62) 

The state-space is defined as: 

[
 
 
 
 
𝑥̇
𝑣̇
𝑚̇
𝑘̇
𝑐̇ ]
 
 
 
 

=

[
 
 
 
 
 

𝑣

−
𝑘

𝑚
∗ 𝑥 −

𝑐

𝑚
∗ 𝑥

0
0
0 ]

 
 
 
 
 

+

[
 
 
 
 
 

0

sin(𝑡) ∗
200

𝑚
0
0
0 ]

 
 
 
 
 

+ 𝝂 

(63) 

Where 𝝂 is again the process noise vector. The collocation method is used for propagating 

the uncertain parameters through the state-space. This method defines the power series 

expansions and parameter values for the iteration as: 

𝑚𝑖 = ∑𝑚𝑗𝜓1
𝑗
(𝜇1

𝑖 )

𝑗

 

𝑘𝑖 = ∑𝑘𝑗𝜓1
𝑗
(𝜇2

𝑖 )

𝑗

 

𝑐 = ∑𝑐𝑗𝜓1
𝑗
(𝜇3

𝑖 )

𝑗

 

(64) 
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At each time step, 𝑘, the system is integrated 𝑄 times, for index 𝑖. 

𝑿𝑘
𝒊 = [𝑥𝑘,𝑖, 𝑣𝑘,𝑖, 𝑚𝑘,𝑖, 𝑘𝑘,𝑖, 𝑐𝑘,𝑖]

𝑇
, 𝑓𝑜𝑟 𝑖 = 1…𝑄 (65) 

The initial conditions for each step forward are defined as: 

𝑿𝑘−1
𝑖 = ∑𝐴𝑖,𝑗 𝑥𝑘−1

𝑗

𝑆

𝑗=1

+ [0,0, 𝑐1 𝜇1
𝑖 , 𝑐2 𝜇2

𝑖 , 𝑐3 𝜇3
𝑖 ]

𝑇
 

(66) 

With the observation matrix: 

𝐻𝑘 =

[
 
 
 
 
1
0
0
0
0]
 
 
 
 

 

(67) 

3.4.4 Spring-Mass-Damper Parameter Estimation Results 

A spring-mass-damper system is used in conjunction with the gPC-EKF to estimate all three 

parameters of the system (mass, stiffness, damping). This system is a good example of the 

capabilities of the parameter estimation method. The system is excited by a sine wave, and the 

system response is shown in Figure 3.22. 
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Figure 3.22 State Estimation for the Spring-Mass-Damper System with Poor Parameter 

Convergence 

Figure 3.22 clearly shows that the estimator is able to converge to the correct state 

estimations. Even with incorrect initial conditions, the method converges and tracks the states 

well. However, as is seen in Figure 3.23, the parameter values do not converge to the correct 

values. 
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Figure 3.23 Parameter Estimation for the Spring-Mass-Damper System with Sine Wave 

Excitation 

This problem is analogous to the persistent excitation requirement of adaptive control 

systems. The parameters find a suitable place that minimizes the system’s error and plateau off at 

those values. The advantage of using the gPC-EKF is that it can be seen when the input signal is 

not sufficient, as illustrated in Figure 3.24. The parameter distributions expand because the filter 

doesn’t have enough information to control the parameter distribution. 
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Figure 3.24 Mass Distribution Time Evolution for the Spring-Mass-Damper System 

without Sufficient Signal Richness 

If however the excitation changes from a sin input to a band limited white noise signal the 

parameter estimations converge to the correct values. The state tracking can be seen in Figure 

3.25. 
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Figure 3.25 State Tracking of the Spring-Mass-Damper System for Band-Limited White 

Noise Input 

For the sin input signal the parameters almost converge to the correct values, but once they 

get close they stop updating and the distributions begin to fan out. Using the random noise signal 

produces a much more useful excitation and the parameter values converge to the correct values 

without biases, shown in Figure 3.26. 
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Figure 3.26 Parameter Trajectories for the Spring-Mass-Damper System Excited by Band-

Limited White Noise 

The parameter distribution for the sin excitation signal lacks enough information to control 

the parameter distributions. As such, once the parameter gets close enough the residual is small 

enough that the distribution begins to fan out. When the random noise signal is used the mass 

distribution stays well contained and by the constant boundary fluctuations in the distribution 

shows that the signal is informative, as can be seen in Figure 3.27. 
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Figure 3.27 Parameter Convergence for the Spring-Mass-Damper System with a Band-

Limited White Noise Signal 

3.5  Convergence Estimation 

Because the gPC-EKF can be difficult to tune, a test for checking convergence of the filter was 

investigated. Because of the custom adjusted covariance matrix for the tracked state the filter’s 

estimate of the tracked state should be similar to the actual trajectory, and the error residual will 

show how accurate of an assumption that is. Once the residual is small, the convergence test can 

be used. 

For the spring-mass system that is tracking the position, the convergence test is comparing the 

derivative of the filter’s estimate of position to the filter’s estimate of the velocity. The reason this 
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works because the filter’s estimate of the velocity depends on the system parameters, where the 

derivative of the filter’s estimate of the position does not.  

Simulating the same mass-spring system as defined in section 3.4.1, this convergence test is 

investigated. The gPC-EKF’s coefficients are listed in Table 3.7. 

Table 3.7 Parameter values for the unmodified gPC-EKF 

Poly Order 4 

Q 3 

Time Step (S) 0.01 

𝑐 0.0001 

𝑐1 0.001 

𝑥0 -5 

𝑣0 10 

𝑚1 600 

𝑚2 0 

𝑁1 15+3*WhiteNoise 

𝑁2 15+3*WhiteNoise 

R 0.01 
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Figure 3.28 State Estimate with Gaussian White Noise for the Convergence Simulation 

Figure 3.28 shows the filter’s state values as compared to the actual values. As can clearly be 

seen, when the mass parameter converges, shown in Figure 3.29, both the velocity of the filter as 

compared to the actual, shown in Figure 3.28, and the velocity of the filter as compared to the 

derivative of the position from the filter, shown in Figure 3.30, converge.  

The idea for the convergence test arose from looking at the state response of the system. 

When looking at the tracked states error, an estimate of the error between those two signals is 

well known, because that state is measured, except for the effects of the sensor’s noise. When 

looking at the velocity state, however, it becomes clear that that state does not converge until the 

parameter converges, which is clearly seen in all of the examples shown in this work.  
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Because the tracked state is converging because of the artificial perturbation of the 

covariance matrix, the estimate of that state does not depend upon the system itself. This is 

powerful, because once this is tuned well the derivative of this is much smoother than the 

derivative of a noisy signal, like the one demonstrated.  

Since the derivative of this signal can be estimated, its comparison to the filter’s estimate of 

velocity, which does depends on the parameters in the system, can be used. A Savitzky-Golay 

second order filter with 41 points was used to smooth and calculate the derivative of the filter’s 

estimate of the position. The Savitzky-Golay filter is used because it is a least-squares based 

recursive filter that excels at simultaneously calculating derivatives while robust to sensor noise. 

 

Figure 3.29 Mass Estimation for the System Demonstrating the Convergence Test 
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When the two velocity curves, shown in Figure 3.30, overlap is when the filter has 

converged. This test may be constructed for any system, given sufficient knowledge about the 

system’s equations. It may not just involve differentials, but also integrals. 

 

Figure 3.30 Convergence Test, Mass-Spring System 

For this system, it is easy to see why it works. The analysis of the proposed convergence 

interval is shown as a simple proof: 

𝑑

𝑑𝑡
(𝑥𝑓𝑖𝑙𝑡𝑒𝑟) − 𝑣𝑓𝑖𝑙𝑡𝑒𝑟 =

𝑑

𝑑𝑡
(𝑥𝑓𝑖𝑙𝑡𝑒𝑟) + ∫(

𝑘

𝑚𝑓𝑖𝑙𝑡𝑒𝑟
𝑥𝑓𝑖𝑙𝑡𝑒𝑟 −

200 sin(𝑡)

𝑚𝑓𝑖𝑙𝑡𝑒𝑟
)  𝑑𝑡 

(68) 

If 𝑥𝑓𝑖𝑙𝑡𝑒𝑟 is sufficiently close to 𝑥𝑎𝑐𝑡𝑢𝑎𝑙, then 
𝑑

𝑑𝑡
(𝑥𝑓𝑖𝑙𝑡𝑒𝑟) will be close to 

𝑑

𝑑𝑡
(𝑥𝑎𝑐𝑡𝑢𝑎𝑙) and 

∫(
𝑘

𝑚𝑓𝑖𝑙𝑡𝑒𝑟
𝑥𝑓𝑖𝑙𝑡𝑒𝑟 −

200 sin(𝑡)

𝑚𝑓𝑖𝑙𝑡𝑒𝑟
)  𝑑𝑡 = ∫(

𝑘

𝑚𝑎𝑐𝑡𝑢𝑎𝑙
𝑥𝑎𝑐𝑡𝑢𝑎𝑙 −

200 sin(𝑡)

𝑚𝑎𝑐𝑡𝑢𝑎𝑙
)  𝑑𝑡 

(69) 
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Which will only be equal when 𝑚𝑓𝑖𝑙𝑡𝑒𝑟 is equal to 𝑚𝑎𝑐𝑡𝑢𝑎𝑙, given 𝑥𝑓𝑖𝑙𝑡𝑒𝑟 ≈ 𝑥𝑎𝑐𝑡𝑢𝑎𝑙, which is 

known a priori.  

3.6 gPC-EKF for Regression Systems 

The gPC-EKF is essentially still a Kalman filter, which means that use on regression systems 

is quite simplistic. There is, however, a significant benefit to doing this, which come from the 

improvement additions.  

3.7 Improvements to the gPC-EKF for Regression Systems 

For the regression systems, the gPC-EKF operates a little differently than the state-space 

system. In the state-space systems the added diagonal matrix from equation (49), aids in the state 

estimation, which directly effects the parameter estimation. For regression systems, the 

parameter estimation needs to be based solely off of the error in the observed states. Therefore, 

the added diagonal matrix is not used, and the Kalman update for the states is set to zero: 

𝐾 = [01 … 0𝑛, 𝑘𝑝1 …𝑘𝑝𝑛]
𝑇
 (70) 

The added state noise is also removed. When the parameters have information added to their 

distributions in the state-space systems, the forward integrations smooth out the effect and 

propagate it to the next time interval. Here, the added parameter information directly impacts the 

parameter values and can heavily affect the estimates. For systems with large numbers of 

uncertain parameters, the added parameter information should be very small. The larger the 

addition to the parameters at each time step, the larger their covariance matrix elements become, 

and the more the parameters move with regard to the residual.   
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3.8 Simple Roll Plane Vehicle Model Demonstrating gPC-EKF 

A vehicle model that is non-linear in the parameters is used for demonstration of the 

regression estimator for multiple parameters at once. The vehicle diagram is shown in Figure 

3.31 and the equations of motion are defined as: 

𝑚 𝑍̈ = ∑ 𝑆𝐹𝑖

𝑖=𝑓𝑙,𝑓𝑟,𝑟𝑙,𝑟𝑟

 
(71) 

𝐽𝜙 𝜙̈ = 𝑙 (𝑆𝐹𝑓𝑙 + 𝑆𝐹𝑟𝑙) − 𝑟 (𝑆𝐹𝑓𝑟 + 𝑆𝐹𝑟𝑟) + 𝑚ℎ𝐴𝑦 (72) 

𝐽𝜃 𝜃̈ = −𝑎 (𝑆𝐹𝑓𝑙 + 𝑆𝐹𝑓𝑟) + 𝑏 (𝑆𝐹𝑟𝑙 + 𝑆𝐹𝑟𝑟) + 𝑚ℎ𝐴𝑥  (73) 

Definition of variables: 𝑍̈ is the bounce acceleration of the vehicle, 𝜃̈ is the pitch 

acceleration, 𝜙̈ is the roll acceleration. Definition of parameters: 𝑙, 𝑟, 𝑎, 𝑏 are geometric 

properties of the vehicle, with 𝑙 as the distance from left side of the vehicle to the vehicle’s center 

of gravity (CG), 𝑟 is the distance from the right side to the CG, 𝑎 is the distance from the front 

axle to the CG, and 𝑏 is the distance from the rear axle to the CG. The physical properties of the 

vehicle, 𝑚, 𝐽𝜃 , 𝐽𝜙 are the mass, the roll inertia and the pitch inertia. 𝑆𝐹𝑖 represents the suspension 

forces at the front left (fl), front right (fr), real left (rl), and rear right (rr). The height of the CG 

from the ground is the parameter ℎ. 
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Figure 3.31 Vehicle Model Diagram 

3.8.1 Integration of the Simple Roll Plane Vehicle Model with gPC-EKF 

The state vector, including uncertain parameters, for the vehicle model is: 

𝒙 = [𝑍̈, 𝜃̈, 𝜙̈; 𝒑]
𝑇
 (74) 

Where the parameter vector is: 

𝒑 = [𝑚, 𝐽𝜃, 𝐽𝜙, ℎ] (75) 

Specifying the uncertain parameter’s domains and iterations: 

𝑚𝑖 = ∑𝑚𝑗𝜓1
𝑗
(𝜇1

𝑖 )

𝑗

 𝐽𝜃,𝑖 = ∑𝐽𝜃
𝑗𝜓2

𝑗
(𝜇2

𝑖 )

𝑗

 
(76) 

𝐽𝜙,𝑖 = ∑𝐽𝜙
𝑗𝜓3

𝑗
(𝜇3

𝑖 )

𝑗

 ℎ𝑖 = ∑ℎ𝑗𝜓4
𝑗
(𝜇4

𝑖 )

𝑗

 

Where  
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𝑚1 = 2850 𝑘𝑔,  

𝑚2 = 200 𝑘𝑔, 

 𝑚3−∞ = 0 

𝐽𝜃
1 = 2000 𝑘𝑔, 

 𝐽𝜃
2 = 400 𝑘𝑔, 

 𝐽𝜃
3−∞ = 0 

(77) 

𝐽𝜙
1 = 600 𝑘𝑔,  

𝐽𝜙
2 = 100 𝑘𝑔,  

𝐽𝜙
3−∞ = 0 

ℎ1 = 0.4 𝑘𝑔,  

ℎ2 = 0.2 𝑘𝑔, 

 ℎ3−∞ = 0 

The initial conditions at the next time step are: 

𝑿𝑘−1
𝑖 = ∑𝐴𝑖,𝑗 𝑥𝑘−1

𝑗

𝑆

𝑗=1

+ [0,0,0, 𝑐1 𝑚
2 𝜇1

𝑖 , 𝑐2 𝐽𝜃
2 𝜇2

𝑖 , 𝑐3 𝐽𝜙
2 𝜇3

𝑖 , 𝑐4 ℎ
2 𝜇4

𝑖 ]
𝑇
 

(78) 

With the Kalman Filter measurement matrix: 

𝐻𝑘 =

[
 
 
 
 
 
 
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 

 

(79) 

3.8.2 Simple Roll Plane Vehicle Model with RLS Method 

A linear regression model can be described as: 

𝑦(𝑡) = 𝜃𝑇 𝜂(𝑡) + 𝜈(𝑡) (80) 

The output or measurement of the system is 𝑦(𝑡), 𝜃 is the vector of parameters, 𝜙(𝑡) is the 

set of observed signals and 𝜈(𝑡) is a white noise error term.  

For systems that are linear in the parameters the estimation is a simple set of equations.  
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𝑃𝑘 =
1

𝜆
(𝐼 − 𝐾𝑘−1𝜂𝑘)𝑃𝑘−1 

(81) 

𝐾𝑘 =
𝑃𝑘𝜂𝑘

𝜆 + 𝜂𝑘
𝑇𝑃𝑘−1𝜂𝑘

 
(82) 

𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝜃𝑘−1
𝑇 𝜙𝑘) (83) 

These are the equations for recursive least squares with exponential forgetting. The system 

has to be initialized with 𝑃0, 𝜃0. The matrix 𝑃 is the covariance of the parameters. 𝜆 is the 

exponential forgetting factor. Typical values for this range from 0.95 ≤ 𝜆 ≤  1. If the value is set 

to 1, then the exponential forgetting is disabled, and all measurements have equal weighting. 

More detailing of the RLS algorithm can be found in [16, 57, 58]. 

For this vehicle model, the observation matrix is: 

 

𝜂(𝑡) =

[
 
 
 
 
 
 ∑ 𝑆𝐹𝑖(𝑡)

𝑖=𝑓𝑙,𝑓𝑟,𝑟𝑙,𝑟𝑟

0 0

0 𝑙 (𝑆𝐹𝑓𝑙 + 𝑆𝐹𝑟𝑙) − 𝑟 (𝑆𝐹𝑓𝑟 + 𝑆𝐹𝑟𝑟) 0

0 0 −𝑎 (𝑆𝐹𝑓𝑙 + 𝑆𝐹𝑓𝑟) + 𝑏 (𝑆𝐹𝑟𝑙 + 𝑆𝐹𝑟𝑟)

0 𝐴𝑥 0
0 0 𝐴𝑦 ]

 
 
 
 
 
 

 

(84) 

With parameter vector: 

𝜃𝑇(𝑇) = [
1

𝑚
,
1

𝐽𝜃
,
1

𝐽𝜙
,
𝑚ℎ

𝐽𝜃
,
𝑚ℎ

𝐽𝜙
] 

(85) 

3.9 Comparison of Parameter Estimation Methods for Regression Systems 

The parameter estimation is performed for the vehicle model with no sensor noise. The 

excitation to the model is a set of sine waves at various frequencies and amplitudes. Table 3.8 
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lists the filter’s coefficients for the estimation. Table 3.9 lists the RLS algorithm’s forgetting 

factor. 

Table 3.8 Parameter values for gPC-EKF for the regression system 

Poly Order 2 

Q 4 

Time Step (S) 0.01 

𝑐 0 

𝑐1 1/5000 

𝑐2 1/5000 

𝑐3 1/5000 

𝑐4 1/10000 

R 0.001 

 

Table 3.9 RLS Forgetting Factor 

𝜆 0.999 

The parameter estimates for both the RLS and gPC-EKF are demonstrated in the next several 

graphs. Figure 3.32 shows the CG height estimation. Figure 3.33 shows the mass estimation. 

Figure 3.34 shows the pitch inertia estimation, and Figure 3.35 shows the roll inertia estimation. 

For most all of these both methods perform similarly. The RLS method has an error for about 80 

seconds during the Roll Inertia estimation.  
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Figure 3.32 CG Height Estimation 
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Figure 3.33 Mass Estimation 
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Figure 3.34 Pitch Inertia Estimation 
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Figure 3.35 Roll Inertia Estimation 

The purpose of having the RLS estimates is for comparison of the gPC-EKF with a known 

baseline. The RLS is a very well-known estimation technique and this shows that the gPC-EKF, 

when applied to regressive systems, performs similarly to the RLS. The gPC-EKF does have 

small biases in the parameter estimates compared to the RLS.  

The same simulation is performed next, but with a white noise process added to the synthetic 

sensors. The noise is a 0.2 variance white noise process. Table 3.10 lists the gPC-EKF’s 

coefficients.  
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Table 3.10 Parameter Values for gPC-EKF Applied to the Regression System with Noise 

Poly Order 2 

Q 4 

Time Step (TS) 0.01 

𝑐 0 

𝑐1 1/10000 

𝑐2 1/10000 

𝑐3 1/10000 

𝑐4 1/20000 

R 0.1 

The CG height estimation is shown in Figure 3.36. Figure 3.37 shows the mass estimation, 

Figure 3.38 shows the pitch inertia estimation, and Figure 3.39 shows the roll inertia estimation. 
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Figure 3.36 CG Height Estimation with Sensor Noise  
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Figure 3.37 Mass Estimation with Sensor Noise 
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Figure 3.38 Pitch Inertia Estimation with Sensor Noise 
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Figure 3.39 Roll Inertia Estimation with Sensor Noise 

Previously, in the case where there was no noise, the RLS algorithm did slightly better than 

the gPC-EKF. However, here it can be clearly seen that the gPC-EKF performs a better estimate. 

This is because the gPC-EKF performs an estimate for the individual parameters across all of the 

equations, which makes it less sensitive to noise. The RLS method calculates an individual 

coefficient for each term in the observation matrix, which leads to the significant error observed 

for the CG height. 

The gPC-EKF has many different values that can be tuned to ensure good parameter 

estimations. As the sensor noise values increase, there are many coefficients that can be tuned to 

improve the filter’s convergence.  
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A major benefit of using the gPC-EKF over the RLS is that the addition of the information to 

the parameter distributions enables separate update rates for each of the parameters. The RLS has 

a forgetting factor that is used for each sensor feed, and not for the individual parameters. For a 

system with time-varying and time-invariant parameters, the gPC-EKF can be configured to 

track both, without having the time-invariant parameters affected by the time-varying 

parameter’s effects.  
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4 Experimental Vehicle Setup and Test Scenarios 

 

 

 

 

 

This chapter contains information about the experimental vehicle and the test scenarios that 

were performed. The first section gives details about the vehicle, such as sensors used and 

configuration. The second section details the experiments performed and gives some background 

on each of the tests and their importance for identifying vehicle parameters. 

4.1 Experimental Vehicle 

The experimental data is collected on a Land Rover Defender 110 off-road vehicle, shown in 

Figure 4.1.  
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Figure 4.1 Instrumented Land Rover Defender 110 

This vehicle is common in South Africa, and is easily modifiable, as shown by the Vehicle 

Dynamics Group at the University of Pretoria. It has a ladder style chassis, which allowed for 

significant modification of the suspension struts. The Vehicle Dynamics Group created a custom 

suspension that can be tuned for different stiffness and damping characteristics, as well as ride 

height control.  

4.1.1 Instrumentation 

Two accelerometers are mounted vertically on each strut, a 10g tri-axial accelerometer on the 

unsprung mass and a 4g tri-axial accelerometer on the sprung mass. A 4g tri-axial accelerometer 

is also placed at approximately the center of mass of the vehicle. The vehicle is equipped with a 

Racelogic VBox 3 GPS receiver. The GPS receiver is used to accurately determine the vehicle 
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speed and provides additional information such as latitude, longitude, heading and height above 

sea level. The GPS information is logged separately but synchronized by means of a trigger 

signal as well as the vehicle speed that is recorded on both data acquisition systems. There are 

linear displacement sensors on each strut. A sensor is placed on the rear of the vehicle that 

measures lateral and longitudinal velocity, and calculates the vehicle’s slip angle.  

Each of the suspension struts has a pressure transducer built into it that measures the 

suspension force. The rear left strut also has a load cell measurement of the suspension force. 

There are laser displacement sensors mounted near each wheel to measure body displacement 

from the ground. A high precision GPS system, with a base station nearby is used for precise 3 

dimensional position measurements, in addition to the Racelogic VBox. Each strut has a linear 

displacement potentiometer to record the suspension displacement. The rear left wheel has a 

custom-built wheel force transducer built into the wheel hub. The sensor transmits the 3 

moments and 3 forces that are applied to the wheel. 

4.1.2 Suspension Strut Design and Implementation 

The Land Rover is fitted with a prototype Hydro-pneumatic spring-damper suspension 

system developed by the Vehicle Dynamics Group of the University of Pretoria. The schematic 

is illustrated in Figure 4.2, and the physical version is shown in Figure 4.3 [59]. 
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Figure 4.2 Technical Schematic of Hydro-Pneumatic Spring-Damper 
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Figure 4.3 Picture of the Physical Hydropneumatic Spring-Damper 

Each strut is equipped with a linear potentiometer displacement transducer that is used to 

obtain the strut’s displacement. A pressure transducer is mounted at the top of each strut that 

measures the pressure above each strut piston. The pressure is used to determine the combined 

damping and spring forces at each strut and thus accounts for all forces, except for the columbic 

stick-slip friction force. The friction in the suspension has a very non-trivial effect upon the 
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vehicle’s performance and ride. The friction effects can be seen in Figure 4.4 and Figure 4.5 

[59].  

 

Figure 4.4 Suspension Friction Effects for Low Frequencies 
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Figure 4.5 Suspension Friction Effects for Higher Frequency Oscillations 

The effects of friction are present in both kinetic and static quantities. The effects are 

significant enough to cause constant rotations in the vehicle. During the constant radius tests the 

vehicle would gain a constant roll bias due to the friction effects. Driving of the vehicle would 

slowly remove this, or, as demonstrated in Figure 4.6 someone can jump on an outrigger to 

provide a counter moment (while the vehicle is stationary). 
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Figure 4.6 Removal of Constant Rotation Bias Due to Suspension Friction 

The effects of the friction are not a uniform effect, but are biased towards one direction of 

strut travel. 

4.1.3 Suspension Configuration 

 The suspension of the vehicle is a fairly basic suspension. It was originally coil springs but 

has been retrofitted with the above suspension struts. The front suspension system is two 

horizontal leading arms with a lateral stabilizing panhard rod, and is diagramed in Figure 4.7. 
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Figure 4.7 Front Suspension Linkage Diagram 

 The rear suspension on the vehicle is composed of two horizontal leading arms with an A 

arm suspension in the middle for guidance and lateral stabilization. A diagram of this 

configuration is shown in Figure 4.8. 
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Figure 4.8 Rear Suspension Linkage Diagram 

4.2 Vehicle Data Sets 

Several vehicle scenarios were performed in order to gather a substantial data set. This 

section showcases each of the tests and describes their importance.  

4.2.1 Constant Radius 

One of the types of rollover that was described above was the event where the vehicle slowly 

rolls over due to a slowly increasing lateral force. For a vehicle driving in a constant radius, the 

lateral force is proportional to the square of the vehicle’s velocity. A constant radius test is 

therefore an excellent example of a slow rollover environment. The speed of the vehicle is 

slowly increased as it drives around the circle. Eventually, if the speed reaches a critical level, 

the vehicle will begin to rollover. A picture of the track used for the constant radius test is shown 

in Figure 4.9. 
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Figure 4.9 Constant Radius Test 

4.2.2 Dynamic Handling Track 

The dynamic handling track contains many standard concepts found on a regular road. There 

are counter cambered turns, decreasing radius turns and combinations of road banks and grades. 

This track gives a compact recreation of many of the effects of standard driving.  

Being able to control a vehicle on a flat surface is one thing, being able to do it for 

disadvantageous and complicated road surfaces is a completely different story. A diagram of the 

track used for the Dynamic Handling tests is shown in Figure 4.10. 
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Figure 4.10 Dynamic Handling Track at Gerotek* 

* With permission from Gerotek Test Facilities, a Test Facility in South Africa. 

Tel No: +27 12 371 2065 

www.gerotek.co.za 

 

 This test is a solid test of the vehicle, and its results are quite useful for both the estimation of 

the vehicle’s parameters, as well as the mapping of its suspension as one data-set on this course 

can contain many important characteristics of the vehicle’s suspension and response to high 

excitation maneuvers. The data is used both for parameter estimation as well as the mapping of 

the vehicle suspension, which is used to estimate the tire normal force without the need for the 

wheel force transducer.  

tel:%2B27%2012%C2%A0371%202065
http://www.gerotek.co.za/
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4.2.3 Long Straight Track 

 The Long Straight Track, shown in Figure 4.11, is used for Double Lane Change maneuvers, 

and Sine Sweep tests. Data was collected for both of these maneuvers, but the Double Lane 

Change data was not used for validation because more sensors are needed to properly 

characterize an effect that happens during longitudinal accelerations when the outriggers are 

equipped. The vehicle gains a significant lateral load transfer during longitudinal acceleration 

only when the outriggers are attached to the vehicle. 

The Sine Sweep data is used, and the un-modeled effect does show up, though much smaller 

due to the smaller initial accelerations. 

 

Figure 4.11 Long Straight Track* 

* With permission from Gerotek Test Facilities, a Test Facility in South Africa. 
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Tel No: +27 12 371 2065 

www.gerotek.co.za 

 

4.2.4 Driving Around Gerotek 

 Data is collected from the vehicle as it drives around the Gerotek facility between tracks. 

This data is also used for validation purposes of the methods developed here. The maneuvers 

performed as relatively simple and unexciting, and their results are representative of the average 

drive around the neighborhood.  

4.2.5 Rural Road 

The four previous tracks are used to demonstrate the capabilities of the tire normal force 

estimation and the applicability of the method to maneuvers where it is designed to function. The 

next two scenarios highlight the vehicle parameter estimation technique during standard driving 

maneuvers. Two different data sets were used in evaluating the parameter estimation. The first 

data set was obtained on a winding rural road, shown in Figure 4.12, with many filled and 

unfilled potholes. The road is therefore very uneven and bumpy. The test was conducted at 

normal driving speeds with traffic, thus a non-constant speed profile is obtained with typical 

braking and acceleration patterns of an everyday driver. The uneven road surface and speed 

profile in conjunction with the road cornering, embankment and grade result in considerable 

excitation to the vehicle [60].  

tel:%2B27%2012%C2%A0371%202065
http://www.gerotek.co.za/


105 

 

Figure 4.12 Rural Data Experiment Path 

4.2.6 Urban Road 

The second data set was obtained in an urban environment, with the route shown in Figure 

4.13. The road surface was much smoother than the rural road, and there was little cornering. 

Most of the road excitation is as a result of the road grade.  Thus, the urban road has a lot less 

road excitation and more excitation in the form of braking and accelerating [60].  

 

 

Figure 4.13 Urban Data Experiment Path 
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The data from this test also clearly highlights the effects of the suspension friction. The 

vehicle has to stop at several intersections, and during those stops the vehicle never returns to an 

equilibrium position, but has constant biases due to the friction. 
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5 First Attempt at Vehicle Parameter Estimation 

 

 

 

 

 

This research started without a very clear idea of what types of models and methods to, or 

even could, be used. There is a very large set of vehicle models that have been developed over 

the years. During the course of the research several models were investigated and implemented. 

This section covers the first attempt at performing the parameter estimation. There were several 

reasons that the method used here was not considered viable: The model is too constrained to be 

used for general driving purposes, and it required that the suspension parameters were known. 

The thought process of trying to expand this model to using the suspension forces is what led to 

the use of the load transfer model later on. 

5.1 Acceleration Based Model and Demonstration of Difficulties 

A common model used in vehicle dynamics is a seven degree-of-freedom (DOF) base 

excitation model, such as the one presented in Figure 5.1. This model consists of a chassis 

(denoted as the sprung mass) and the suspension systems and wheels on the four corners 

(denoted as unsprung masses). The model uses the terrain profile to excite the unsprung masses 

through the tire dynamics; it then propagates the forces up through the suspension elements to 

excite the sprung mass dynamics. In the present study the terrain profile requirement has been 

removed; in addition to vertical bounce and pitch DOFs considered in [30], the model in this 
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study includes the roll DOF. This is very important since without including the roll motion of the 

vehicle, the roll inertia of the vehicle would be ignored, and thus could not be estimated.  

 

Figure 5.1 The dynamics of the seven degree of freedom vehicle model 

The parameters 𝑚1, 𝑚2, 𝑚3, 𝑚4 are the mass values of the four unsprung masses. The 

parameter 𝑘𝑡 is the tire stiffness value. The parameters 𝑎, 𝑏, 𝑟, 𝑙, 𝐿, 𝐵 are the geometric properties 

of the sprung mass (a is the distance from the front axle to the center of mass of the sprung mass, 

b is the distance from the rear axle to the center of gravity of the sprung mass, r is the distance 

from the right side of the vehicle to the center of gravity of the sprung mass, l is the distance 

from the left side of the vehicle to the center of gravity of the sprung mass, L is the wheelbase 

and B is the trackwidth of the vehicle). The parameters 𝑘𝑓 , 𝑏𝑓 , 𝑘𝑟 , 𝑏𝑟 are the stiffness and 

damping of the front and rear wheels.  

The modified model of the seven DOF system uses the four vertical acceleration motions of 

the wheels as inputs. This reduces the computational complexity, as well as removes the need for 

knowledge about the unsprung masses’ stiffnesses, weights, and damping and knowledge about 

the terrain profile.  Thus, the modified model, illustrated in Figure 5.2, has three DOF: vertical 

bounce, pitch rotation and roll rotation of the sprung mass.  
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Figure 5.2 The dynamics of the three degree of freedom model 

This model has been developed based on the following assumptions: small lateral velocity, 

small yaw velocity, small longitudinal acceleration, small lateral acceleration, small roll angle, 

small pitch angle, linear suspension elements, symmetry of front suspension elements, as well as 

rear elements: 𝑘𝑓𝑟 = 𝑘𝑓𝑙 = 𝑘𝑓 . 

The system uses two “centers”, one for the sprung mass, and one for the ensemble of the 

unsprung masses. For the sprung mass, the center is defined as the height, pitch, and roll of the 

center of mass. For the unsprung masses, the center is defined as the geometric average height, 

𝑧𝑢,𝑐𝑔, roll, 𝜃𝑢,𝑐𝑔, and pitch, 𝜙𝑢,𝑐𝑔, for each body, making this an adaptation of a quarter car 

model; the center for the ensemble of the unsprung masses in vertical bounce, pitch, and roll are 

thus described as:  

𝑧𝑢,𝑐𝑔 = (𝐿 − 𝑎)
𝐵 − 𝑙

𝐿 𝐵
𝑧𝑓𝑙 + (𝐿 − 𝑎)

𝑙

𝐿 𝐵
𝑧𝑓𝑟 + 𝑎

𝐵 − 𝑙

𝐿 𝐵
𝑧𝑟𝑙 + 𝑎

𝑙

𝐿 𝐵
𝑧𝑟𝑟 

(86) 

𝜃𝑢,𝑐𝑔 =
[−(𝑟 𝑧𝑓𝑙 + 𝑙 𝑧𝑓𝑟) + (𝑟 𝑧𝑟𝑙 + 𝑙 𝑧𝑟𝑟)]

𝐿 𝐵
 

(87) 

𝜙𝑢,𝑐𝑔 =
[(𝑏 𝑧𝑓𝑙 + 𝑎 𝑧𝑟𝑙) − (𝑎 𝑧𝑟𝑟 + 𝑏 𝑧𝑓𝑟)]

𝐿 𝐵
 

(88) 
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Similar relations to Equations (86), (87), and (88) can be written in terms of accelerations, 

corresponding directly to the measurement done using accelerometers on the instrumented 

vehicle. The accelerations thus computed are then fed into Equations (89), (90), and (91). (The 

parameters 𝑧𝑓𝑙, 𝑧𝑓𝑟 , 𝑧𝑟𝑙, 𝑧𝑟𝑟 are the vertical displacements of the wheels (front left, front right, real 

left, rear right).) 

Using the parameters to be estimated 𝑚𝑠, 𝐽𝑝𝑖𝑡𝑐ℎ, 𝐽𝑟𝑜𝑙𝑙 as the mass, pitch inertia, and roll inertia 

of the sprung mass, the dynamic equations of motion of the sprung mass are defined as: 

𝑚𝑠 𝑍̈ = ( ∑ 𝐹𝑖

𝑖=𝑓𝑙,𝑓𝑟,𝑟𝑙,𝑟𝑟

) − 𝑧̈𝑢,𝑐𝑔  

(89) 

𝐽𝑝𝑖𝑡𝑐ℎ 𝜃̈ = 𝑇𝑝𝑖𝑡𝑐ℎ − 𝐽𝑝𝑖𝑡𝑐ℎ 𝜃̈𝑢,𝑐𝑔 (90) 

𝐽𝑟𝑜𝑙𝑙 𝜙̈ = 𝑇𝑟𝑜𝑙𝑙 − 𝐽𝑟𝑜𝑙𝑙 𝜙̈𝑢,𝑐𝑔 (91) 

 

Where the relative displacements in vertical bounce (Z), pitch (𝜃) and roll (𝜙) between the 

‘centers’ of the unsprung and sprung mass bodies are: 

𝑍 = 𝑧𝑠,𝑐𝑔 − 𝑧𝑢,𝑐𝑔 (92) 

𝜃 = 𝜃𝑠,𝑐𝑔 − 𝜃𝑢,𝑐𝑔 (93) 

𝜙 = 𝜙𝑠,𝑐𝑔 − 𝜙𝑢,𝑐𝑔 (94) 

  

The forces and moments for the sprung mass system using the relative displacements are: 
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𝐹𝑓𝑙 = −𝑘𝑓  𝑍 − 𝑏𝑓 𝑍̇ + 𝑎 𝑘𝑓 𝜃 + 𝑎 𝑏𝑓 𝜃̇ − 𝑙 𝑘𝑓 𝜙 − 𝑙 𝑏𝑓 𝜙̇ (95) 

𝐹𝑓𝑟 = −𝑘𝑓  𝑍 − 𝑏𝑓 𝑍̇ + 𝑎 𝑘𝑓 𝜃 + 𝑎 𝑏𝑓 𝜃̇ + 𝑟 𝑘𝑓 𝜙 + 𝑟 𝑏𝑓 𝜙̇ (96) 

𝐹𝑟𝑙 = −𝑘𝑟  𝑍 − 𝑏𝑟 𝑍̇ − 𝑏 𝑘𝑟 𝜃 − 𝑏 𝑏𝑟 𝜃̇ − 𝑙 𝑘𝑟 𝜙 − 𝑙 𝑏𝑟 𝜙̇ (97) 

𝐹𝑟𝑙 = −𝑘𝑟  𝑍 − 𝑏𝑟 𝑍̇ − 𝑏 𝑘𝑟 𝜃 − 𝑏 𝑏𝑟 𝜃̇ + 𝑟 𝑘𝑟 𝜙 + 𝑟 𝑏𝑟 𝜙̇ (98) 

𝑇𝑝𝑖𝑡𝑐ℎ = −𝑎(𝐹𝑓𝑙 + 𝐹𝑓𝑟) + 𝑏(𝐹𝑟𝑙 + 𝐹𝑟𝑟) (99) 

𝑇𝑟𝑜𝑙𝑙 = −𝑟(𝐹𝑓𝑟 + 𝐹𝑟𝑟) + 𝑙(𝐹𝑓𝑙 + 𝐹𝑟𝑙) (100) 

 

5.1.1 Parameter Estimation with the Accelerometer Based Model 

Eight experiments are detailed below in Table 5.1and Table 5.2. For each of the estimation 

experiments, several of the parameters are changed. These are listed below as the initial 

estimation of the mass, pitch inertia and roll inertia mean values, the polynomial order (Poly 

Order) of the gPC expansions, the length of each time interval used for estimation and the 

number of estimations performed. 

Table 5.1 Initial Parameters Used for the Bayesian MAP Estimation Algorithm 

Run Mass (kg) Pitch 

Inertia 

(𝑘𝑔.𝑚2) 

Roll Inertia 

(𝑘𝑔.𝑚2) 

Poly Order Time 

Interval (s) 

# of 

Intervals 

1 2250 3500 1000 6 24 1 

2 2250 3500 1000 6 1 24 

3 2250 3500 1000 4 24 1 

4 2250 3500 1000 4 1 24 
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5 1650 2600 1000 6 24 1 

6 2250 3500 1000 4 6 4 

7 2250 3500 1000 4 60 1 

8 2250 3500 1000 10 24 1 

Table 5.2 details the results of the estimation algorithm. The table details what the final 

estimates are, and what their percent error is relative to the actual values of the synthetic data 

model.  

Table 5.2 Results of the Bayesian Simulations 

Run Mass Est Pitch Est Roll Est % Err 

Mass 

% Err 

Pitch 

% Err Roll 

1 1905.685 3054.9 785.44 3.01% 1.83% -1.82% 

2 1897.915 3017.19 823.28 2.59% 0.57% 2.91% 

3 1934.36 3159 780.08 4.56% 5.3% -2.49% 

4 1852.405 2877 833.44 0.13% -4.1% 4.18% 

5 1914 3069.4 766.7 3.46% 2.31% -4.17% 

6 1897.9 3048.3 858.2 2.59% 2.61% 7.28% 

7 1802.5 2876.4 803.4 -1.59% -4.12% 0.43% 

8 1874.2 3047.3 777.7 1.31% 1.58% -2.78% 

The higher the polynomial order, the more accurate are the estimations. This is consistent 

with the proposed behavior of the gPC mathematics. The longer the time sequence fed into the 
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Bayesian estimation algorithm, the better the estimation, which is consistent with statistical 

theory.  

5.1.2 Theoretical Problems with Accelerometer Based Model 

This model has its parameters estimated in a purely synthetic environment. As discussed 

previously this model is a poor choice without special control laws employed to limit the 

parameter updates, as it does not encapsulate many effects that impact a vehicle during regular 

driving.  

The point of this model was to devise a method by which some of the parameters could be 

estimated through only accelerometers. Research into this model was abandoned for two reasons. 

The first reason is that the model requires known suspension characteristics, and the test vehicle 

has measured forces but unknown suspension characteristics and dynamics. The second reason is 

that the model is unable to capture steady-state turning or accelerating, which would prevent the 

estimation of the vehicle’s CG height.  

When the model is subjected to a steady-state cornering force there is a transient response 

where the tires have a vertical acceleration. However, their steady-state value will only reflect 

gravity. This means that the lateral accelerometer is reading a non-zero value while there is no 

countering force from the suspension, since those accelerometers don’t have a response. The 

model subsequently drifts and the parameter values diverge.  
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6 Second Attempt at Vehicle Parameter Estimation: 

Roll Plane, Pitch Plane, and Load Transfer Model 

 

 

 

 

 

The next attempt was made by attempting to advance the previous model by using the 

suspension forces as an input, rather than doing the transform to use accelerations, since the 

vehicle data included the suspension forces. The thought was to make it work, first, and then try 

to refine it to reduce the required sensors or vehicle information.  

The previous model operated in the bounce, pitch and roll degrees of freedom. In that light, 

the second attempt tried to analyze those degrees of freedom and to estimate those parameters.  

6.1 Roll Plane Model 

The model for this section is a classical model that also shows poor performance when applied 

to a set of experimental data. 

The roll plane model is designed to look at the roll motion of the vehicle. A diagram of this 

model is illustrated in Figure 6.1.  
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Figure 6.1 Simple Roll Plane Diagram 

The simplified equations of motion for this model are demonstrated when using the gPC-EKF 

for regression systems in section 3.6. These equations however are very simplistic and do not 

model the experimental data well. Modifying the equations to encapsulate more effects of the 

vehicle, the equations of motion for the roll plane model are: 

𝐽𝜙𝜙̈ = (𝐹𝑓𝑙

𝐵

2
− 𝐹𝑓𝑟

𝐵

2
+ 𝐹𝑟𝑙

𝐵

2
− 𝐹𝑟𝑟

𝐵

2
− 𝑚ℎ𝑟𝐴𝑦𝐴𝑧 − 𝑚ℎ𝑟𝐴𝑥𝐴𝑧 (−𝑙 +

𝐵

2
)

+ (−𝑙 +
𝐵

2
)𝑚𝐴𝑧 − (𝜙ℎ𝑟𝑚𝐴𝑧)) 

(101) 

The suspension forces (𝐹𝑓𝑙, 𝐹𝑓𝑟 , 𝐹𝑟𝑙, 𝐹𝑟𝑟) are determined from sensors, 𝐴𝑥, 𝐴𝑦 are measured in 

g’s, and 𝐴𝑧 is measured in 
𝑚

𝑠2. The mass, m, is known from estimation, as is the roll center height 

to the CG, ℎ𝑟. The CG’s lateral position, l, is also derived from the estimation. The track width 

of the vehicle is the parameter B. The roll inertia of the body is determined afterwards and set to 

1200 𝑘𝑔 𝑚2. This is a somewhat arbitrary choice, chosen from looking at the batch results, but 

since this parameter only serves to scale the response, it will be clear that the choice can be 

arbitrary without affecting the dynamics in a time dependent manner. The rotation of the body, 

𝜙, is derived from the suspension displacements. This term has been found to add significant 
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enhancement to the load transfer models in terms of their ability to match the suspension forces 

during large displacements. The roll acceleration is derived from several vertical accelerometers 

as: 

𝜙̈ =
𝐴𝑧,𝑓𝑙 + 𝐴𝑧,𝑟𝑙 − 𝐴𝑧,𝑓𝑟 − 𝐴𝑧,𝑟𝑟

𝐵
 

(102) 

The terms 𝐴𝑧,𝑖 (𝑖 = 𝑓𝑙, 𝑓𝑟, 𝑟𝑟, 𝑟𝑙)   are the vertical accelerations at each corner of the vehicle 

(Front left, Front right, Rear right, Rear left). This does not recreate the roll acceleration exactly, 

but is a decent approximation. Figure 6.2 shows the results when the Roll Plane model is applied to 

the experimental data. 

 

Figure 6.2 Roll Plane Vehicle Model of the Rural Data 
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There are several reasons why this model does not adequately model the data. First, the 

vehicle has linkages that restrict the roll motion, and second, the friction effects supply 

discontinuous forces. The model is very sensitive to the friction effects, which show up strongly 

during large excitations. For small excitations the model tends to capture the dynamics better, 

especially when the panhard rod effects are minimal, as seen for 𝑡 ∈ [100 150]. 

6.2 Pitch Plane Vehicle Model 

Like the Roll Plane model, the Pitch Plane model looks at the pitch motion of the vehicle. 

This model shows similar performance to the Roll Plane model. The equations of motion for the 

pitch plane are defined as: 

𝐽𝜃𝜃̈ = (𝐹𝑓𝑙𝑎 + 𝐹𝑓𝑟𝑎 − 𝐹𝑟𝑙𝑏 − 𝐹𝑟𝑟𝑏 − 𝑚ℎ𝑝𝐴𝑥𝐴𝑧 − 𝑚ℎ𝑝𝐴𝑦𝐴𝑧 (−𝑙 +
𝐿

2
) − (𝜃ℎ𝑝𝑚𝐴𝑧)) 

(103) 

A similar sensor fusion used to estimate the roll acceleration is employed here: 

𝜃̈ =
𝐴𝑧,𝑓𝑙 − 𝐴𝑧,𝑟𝑙 + 𝐴𝑧,𝑓𝑟 − 𝐴𝑧,𝑟𝑟

𝐿
 

(104) 

where L is the wheelbase of the vehicle. The pitch inertia is approximated as 4000 𝑘𝑔.𝑚2, the 

unloaded inertia of the vehicle is measured at approximately 2900 𝑘𝑔.𝑚2 The model is applied 

to the rural data set, and the results are shown in Figure 6.3. 
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Figure 6.3 Pitch Plane Vehicle Model Applied to the Rural Data 

Like the Roll Plane model, the Pitch Plane model is highly sensitive to the effects of the 

suspension friction. During hard braking at 65 seconds, the suspension friction causes the 

major spike that is seen, and similarly at the other points of mismatch. This model is also 

employed without an aerodynamic drag term, and those errors are also present. 

For the roll and pitch plane models, long term data collection and batch processing can 

result in approximate values for the roll or pitch inertias of the vehicle. The suspension 

friction effects do tend to average out over long enough data sets, but recursive estimations 

are unlikely to produce satisfactory results. Integration of the vehicle’s kinematics would 

increase the performance, but unless the suspension friction effects can be accounted for, 

those models are too sensitive to that effect to be of much use. 
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6.3 Load Transfer Model (LTM) 

The most basic building block used for these models is the concept of load transfer. 

During dynamic maneuvers the changes in forces at each corner of a vehicle can be described as 

load or weight transfer from one section of the vehicle to another [40, 46]. This occurs purely 

because of the inertial forces applied to the vehicle, and is not an actual transfer of mass. 

For a vehicle that is cornering on a flat surface, the load transfer from one side of the 

vehicle to another is defined as:  

∆𝑊 =
𝑚 𝐴𝑧 𝐴𝑥 ℎ𝑟

𝐵
 

(105) 

Where 𝑚 is the mass of the vehicle, 𝐴𝑧 is the vertical acceleration that the vehicle feels, in 
𝑚

𝑠2, 

𝐴𝑥 is the centrifugal acceleration in g’s, ℎ𝑟 is the distance that the CG is above the roll center of 

the vehicle, and 𝐵 is the track width of the vehicle. This is calculated as the moment about the 

roll center of the vehicle. A similar moment calculation about the pitch center can be performed 

to estimate the weight transfer during acceleration or braking.  

One of the major advantages of this technique is that components (load transfer terms) can 

easily be added or removed. The basic component is the lateral or longitudinal load transfer that 

occurs because of cornering or longitudinal accelerations. There are many other building blocks 

that can be used. These building blocks are other dynamical effects, such as aerodynamic forces, 

roll or pitch rotation effects, inertia effects. Integration with kinematic effects can be added if 

their resulting forces are known, such as from a multi-body dynamics model. A diagram of the 

simple load transfer model is shown in Figure 6.4. 
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Figure 6.4 Vehicle LTM Diagram 

The load transfer and resulting forces at each corner are: 

𝐹𝑓𝑙 =
𝑚𝐴𝑧

𝐵𝐿
[𝑏𝑟 − 𝐴𝑦𝑏ℎ𝑟 − 𝐴𝑥𝑟ℎ𝑝] −

𝑟ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
−

𝑚𝑏ℎ𝑟𝐴𝑧𝜙

𝐿𝐵
−

𝑚𝑟ℎ𝑝𝐴𝑧𝜃

𝐿𝐵
 

(106) 

𝐹𝑓𝑟 =
𝑚𝐴𝑧

𝐵𝐿
[𝑏𝑙 + 𝐴𝑦𝑏ℎ𝑟 − 𝐴𝑥𝑙ℎ𝑝] −

𝑙ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
+

𝑚𝑏ℎ𝑟𝐴𝑧𝜙

𝐿𝐵
−

𝑚𝑙ℎ𝑝𝐴𝑧𝜃

𝐿𝐵
 

(107) 

𝐹𝑟𝑙 =
𝑚𝐴𝑧

𝐵𝐿
[𝑎𝑟 − 𝐴𝑦𝑎ℎ𝑟 + 𝐴𝑥𝑟ℎ𝑝] +

𝑟ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
−

𝑚𝑎ℎ𝑟𝐴𝑧𝜙

𝐿𝐵
+

𝑚𝑟ℎ𝑝𝐴𝑧𝜃

𝐿𝐵
 

(108) 

𝐹𝑟𝑟 =
𝑚𝐴𝑧

𝐵𝐿
[𝑎𝑙 + 𝐴𝑦𝑎ℎ𝑟 + 𝐴𝑥𝑙ℎ𝑝] +

𝑙ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
+

𝑚𝑎ℎ𝑟𝐴𝑧𝜙

𝐿𝐵
+

𝑚𝑙ℎ𝑝𝐴𝑧𝜃

𝐿𝐵
 

(109) 

𝐹𝑏𝑜𝑢𝑛𝑐𝑒 = 𝑚𝐴𝑧 (110) 

The terms 𝑎, 𝑏, 𝑙, 𝑟, 𝐿, ℎ𝑝 are the distance from the front axle to the CG, distance from the rear 

axle to the CG, distance to the CG from the left track, distance to the CG from the right track, 

wheelbase of the vehicle, and the height of the CG above the pitch center of the vehicle. 𝐹𝑖 is the 

force in the suspension for the front left (fl), front right (fr), rear left (rl), and rear right (rr), 
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respectively. Here, 𝐴𝑦 is the lateral acceleration at the CG, and 𝐴𝑥 is the longitudinal 

acceleration at the CG. 𝐴𝑦 and 𝐴𝑥 are measured in g’s, 𝐴𝑧 is measured in 
𝑚

𝑠
. The term C is the 

aerodynamic drag coefficient. 

6.3.1 Load Transfer Simulation and Results  

The state vector, including uncertain parameters, for the force-based vehicle dynamics model 

is expressed as: 

𝒙 = [𝐹𝑓𝑙, 𝐹𝑓𝑟 , 𝐹𝑟𝑙 , 𝐹𝑟𝑟 , 𝐹𝑏𝑜𝑢𝑛𝑐𝑒; 𝒑
𝑇]

𝑇
 (111) 

where  

𝒑 = [𝑚, 𝑎, 𝑙, ℎ𝑟 , ℎ𝑝, 𝐶]
𝑇
 (112) 

Specifying the uncertain parameters domains: 

𝑚 = ∑𝑚𝑗𝜓1
𝑗
(𝜉1)

𝑗

 𝑎 = ∑𝑎𝑗  𝜓2
𝑗
(𝜉2)

𝑗

 
(113) 

𝑙 = ∑𝑙𝑗  𝜓3
𝑗
(𝜉3)

𝑗

 ℎ𝑟 = ∑ℎ𝑟
𝑗
𝜓5

𝑗
(𝜉5)

𝑗

 
 

ℎ𝑝 = ∑ℎ𝑝
𝑗
𝜓6

𝑗
(𝜉6)

𝑗

 𝐶 = ∑𝐶𝑗𝜓7
𝑗
(𝜉7)

𝑗

 

where  

𝑚1 = 2000 𝑘𝑔, 𝑚2 = 100 𝑘𝑔,

𝑚3…∞ = 0 

𝑎1 = 2 𝑚, 𝑎2 = .2 𝑚, 𝑎3…∞ = 0 (114) 

𝑙1 = .8 𝑚, 𝑙2 = .1 𝑚, 𝑙3…∞ = 0 ℎ𝑟
1 = 1 𝑚, ℎ𝑟

2 = .5 𝑚, ℎ𝑟
3…∞ = 0 
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ℎ𝑝
1 = 1 𝑚, ℎ𝑝

2 = .5 𝑚, ℎ𝑝
3…∞ = 0 𝐶1 = 1, 𝐶2 = .5, 𝐶3…∞ = 0 

At each time step, 𝑡, the system is iterated 𝑄 times, for index 𝑖. 

𝑿𝑘
𝒊 = [𝐹𝑓𝑙,𝑘

𝑖 , 𝐹𝑓𝑟,𝑘
𝑖 , 𝐹𝑟𝑙,𝑘

𝑖 , 𝐹𝑟𝑟,𝑘
𝑖 , 𝐹𝑏𝑜𝑢𝑛𝑐𝑒,𝑘

𝑖 , 

𝑚𝑘
𝑖 , 𝑎𝑘

𝑖 , 𝑙𝑘
𝑖 , ℎ𝑟,𝑘

𝑖 , ℎ𝑝,𝑘
𝑖 , 𝐶𝑘

𝑖 ]𝑇  

  𝑓𝑜𝑟 𝑖 = 1…𝑄 

(115) 

The observation matrix at time t is defined as: 

𝐻𝑘 =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]
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 The choice of the parameter distributions (mean and variance) are chosen based on a rough 

idea of what the vehicle mass is (though it doesn’t matter if the value is close or not), and the 

variance should be smaller than the mean, but its rather trivial what the value is after that. The 

higher order terms are set to zero because it just adds unnecessary complications if they are non-

zero. 

Table 6.1 Parameter Values for the gPC-EKF LTM Model 

Poly Order 1 

Q 1 

Time Step (S) 0.001 
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𝑐 0 

𝑐1 (mass) 1e-7 

𝑐2 (a) 1e-9 

𝑐3 (l) 1e-9 

𝑐4 (ℎ𝑟) 1e-9 

𝑐5 (ℎ𝑝) 1e-9 

𝑐6 (𝐶) 1e-10 

R(FL) 10 

R(FR) 10 

R(RL) 10 

R(RR) 10 

R(Bounce) 100 

The LTM model has several flaws. Some of them were known a priori, and the rest of them 

were found later on when analyzing more complicated data, or looking at the post processing. 

The front left suspension force sensor value and model estimation are shown in Figure 6.5. 

The LTM model, however, was the first attempt to accurately recreate the parameters in a 

recursive manner. The advantage of this is that in spite of its flaws, it can still estimate the 

horizontal CG location, and the mass of the vehicle. The advances from here are used to more 

accurately estimate the suspension forces and to model the inertia and suspension linkage effects. 

The description here will appear linear, but only for the sake of continuity. 
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Figure 6.5 LTM Results for the Front Left Suspension 

 The constant bias of the LTM model is caused by the lumped mass assumption of the model. 

Which is validated by the weights recorded when scales are placed under the wheels. The gPC-

EKF minimizes the cost function across the set of suspension forces. 
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Figure 6.6 Fallacy of the Lumped Mass CG Assumption 

Figure 6.6 shows the problem with the lumped mass assumption. If an amount of mass “X” 

is moved from the front left to the front right, and the same amount of mass “X” is moved from 

the rear right to the rear left of the vehicle, the CG location will remain unchanged, but the 

resulting suspension forces will not be the same. The LTM model does not account for this 

effect, and therefore has a constant bias. 

The second problem with the LTM model is that it is implemented with a single parameter 

for the roll and pitch centers. When analyzing the data for various suspension stiffnesses it 

became clear that for the soft suspension, the roll and pitch centers for the front and the rear were 

about the same. When the suspension became stiffer, the roll centers for the front and rear split, 

with the front moving downward and the rear moving upward. Using a single roll center or pitch 

center became very disadvantageous.  
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The final problem with this implementation is that the roll and pitch centers are time varying 

quantities. Not because the roll or pitch centers move themselves, but because the suspension 

force values that are used do not include the linkage forces. This implementation was performed 

with a very slow update rate, which likely averages out where the roll or pitch center actually is, 

but does not match the suspension force estimate very well. The primary example of this is that 

when the vehicle breaks very quickly, the suspension linkages cause a jacking force in the front 

that gives the vehicle an anti-dive behavior, which the suspension force values reflect, but the 

accelerometers do not.  

6.3.2 Load Transfer Model Parameter Estimations 

 The LTM Model was run on data for both the Rural and Urban driving scenarios. The 

vehicle’s parameters do not change between the runs, which highlights the effects of the different 

driving scenarios upon the estimator’s ability to estimate the vehicle’s parameters. Figure 6.7 

shows the LTM’s estimate of the vehicle mass. The LTM’s estimate of the horizontal CG 

position is shown in Figure 6.8, for lateral position, and in Figure 6.9 , for longitudinal position.  
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Figure 6.7 Mass Estimation from the LTM Model for the Rural and Urban Data Sets 
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Figure 6.8 LTM Model’s Estimate of the Vehicle Lateral Position for the Rural and Urban 

Data Sets 
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Figure 6.9 LTM Model’s Estimate of the Vehicle’s Longitudinal Position for the Rural and 

Urban Data Sets 

 The LTM model does an excellent job of estimating the parameters. Part of the reason for 

such accuracy is because it has the sensor values from approximately the CG location of the 

vehicle. If the sensors were not at the CG of the vehicle (because of loading conditions, etc) it 

would be given erroneous data and the estimate would not be as accurate. The problem with 

needing to know where the CG of the vehicle is, is one of the major reasons for the further 

development of the estimation method, as shown in subsequent chapters.  



130 

 

Figure 6.10 𝒉𝒑 and 𝒉𝒓 Parameter Values from the LTM Model for the Rural and Urban 

Data Sets 

 For this simulation, the LTM model has a slow update for the parameter values, which is why 

the ℎ𝑝 and ℎ𝑟 values, shown in Figure 6.10, appear to be converging to a value. They are in fact 

converging to an average value, which corresponds to a reasonable estimate of the distance 

between the CG and the roll center for when the suspension is in its static equilibrium position.  
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7 Third Attempt at Vehicle Parameter Estimation: 

Modified Load Transfer Model 

 

 

 

 

 

The modified load transfer model (MLTM) was developed primarily to compensate for the 

LTM’s constant bias in the suspension force estimates, and to remove the need to know where 

the CG is a priori for sensor placements. This model constitutes the third attempt at estimating 

the vehicle parameters. The MLTM model shown here was performed with a slow update for the 

roll and pitch centers, and still uses a single roll and pitch center parameter.  

7.1 Modified Load Transfer Model (MLTM) 

Instead of using the CG of the vehicle to calculate the load transfer due to the horizontal 

accelerations, the Modified Load Transfer Model (MLTM) utilizes accelerometers placed at the 

suspension struts. In practice this is a more reasonable method of estimation as the acceleration 

at the CG is generally not known. For an unknown center of gravity, the measured CG vertical 

acceleration can be approximated as: 

𝑍̈ =
1

4
[𝐴𝑧,𝑓𝑙 + 𝐴𝑧,𝑓𝑟 + 𝐴𝑧,𝑟𝑙 + 𝐴𝑧,𝑟𝑟 + 2(𝑟 − 𝑙)𝜙̈ + 2(𝑏 − 𝑎)𝜃̈] 

(117) 
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This model returns an estimate of the mass at each corner of the vehicle, which can be used 

to estimate the total mass of the vehicle. These estimations are then used for estimating the total 

mass and the center of gravity of the vehicle.  

The load transfer equations are transformed as follows: 

𝐹𝑓𝑙 = 𝑚𝑓𝑙𝐴𝑧,𝑓𝑙 −
𝑚̅𝑍̈

𝐵𝐿
𝐴𝑦𝑏ℎ𝑟 −

𝑚̅𝑍̈

𝐵𝐿
𝐴𝑥𝑟ℎ𝑝 −

𝑟ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
−

𝑚̅𝑏ℎ𝑟𝑍̈𝜙

𝐿𝐵
−

𝑚̅𝑟ℎ𝑝𝑍̈𝜃

𝐿𝐵
 

(118) 

𝐹𝑓𝑟 = 𝑚𝑓𝑟𝐴𝑧,𝑓𝑟 +
𝑚̅𝑍̈

𝐵𝐿
𝐴𝑦𝑏ℎ𝑟 −

𝑚̅𝑍̈

𝐵𝐿
𝐴𝑥𝑙ℎ𝑝  −

𝑙ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
+

𝑚̅𝑏ℎ𝑟𝑍̈𝜙

𝐿𝐵
−

𝑚̅𝑙ℎ𝑝𝑍̈𝜃

𝐿𝐵
 

(119) 

𝐹𝑟𝑙 = 𝑚𝑟𝑙𝐴𝑧,𝑟𝑙 −
𝑚̅𝑍̈

𝐵𝐿
𝐴𝑦𝑎ℎ𝑟 +

𝑚̅𝑍̈

𝐵𝐿
𝐴𝑥𝑟ℎ𝑝 +

𝑟ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
−

𝑚̅𝑎ℎ𝑟𝑍̈𝜙

𝐿𝐵
+

𝑚̅𝑟ℎ𝑝𝑍̈𝜃

𝐿𝐵
 

(120) 

𝐹𝑟𝑟 = 𝑚𝑟𝑟𝐴𝑧,𝑟𝑟 +
𝑚̅𝑍̈

𝐵𝐿
𝐴𝑦𝑎ℎ𝑟 +

𝑚̅𝑍̈

𝐵𝐿
𝐴𝑥𝑙ℎ𝑝 +

𝑙ℎ𝑝𝑉𝑥
2𝐶

𝐵𝐿
+

𝑚̅𝑎ℎ𝑟𝑍̈𝜙

𝐿𝐵
+

𝑚̅𝑙ℎ𝑝𝑍̈𝜃

𝐿𝐵
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𝐹𝑏𝑜𝑢𝑛𝑐𝑒 = 𝐹𝑓𝑙 + 𝐹𝑓𝑟 + 𝐹𝑟𝑙 + 𝐹𝑟𝑟 = 𝑚𝑓𝑙𝐴𝑧,𝑓𝑙 + 𝑚𝑓𝑟𝐴𝑧,𝑓𝑟 + 𝑚𝑟𝑙𝐴𝑧,𝑟𝑙 + 𝑚𝑟𝑟𝐴𝑧,𝑟𝑟 (122) 

With the total bounce of the vehicle calculated as: 

𝐹𝑏𝑜𝑢𝑛𝑐𝑒 = 𝐹𝑓𝑙 + 𝐹𝑓𝑟 + 𝐹𝑟𝑙 + 𝐹𝑟𝑟 = 𝑚𝑓𝑙𝐴𝑧,𝑓𝑙 + 𝑚𝑓𝑟𝐴𝑧,𝑓𝑟 + 𝑚𝑟𝑙𝐴𝑧,𝑟𝑙 + 𝑚𝑟𝑟𝐴𝑧,𝑟𝑟 (123) 

Here the estimates for 𝑚̅ are the sum of the estimates for 𝑚𝑓𝑙, 𝑚𝑓𝑟 , 𝑚𝑟𝑙, 𝑚𝑟𝑟, where each of 

these is the mass estimate for each corner of the vehicle. The number of parameters here have 

several redundant ones, since the position of the CG can be directly calculated from the four 

mass estimations above each strut.  

The lateral and longitudinal positions can be calculated through basic geometry of the 

masses at each of the suspension struts: 

𝑎 =
𝑚𝑟𝑙 + 𝑚𝑟𝑟

𝑚̅
𝐿 

(124) 
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𝑙 =
𝑚𝑓𝑟 + 𝑚𝑟𝑟

𝑚̅
𝐵 

(125) 

The state vector, including uncertain parameters, for the force based vehicle dynamics model: 

𝒙 = [𝐹𝑓𝑙, 𝐹𝑓𝑟 , 𝐹𝑟𝑙, 𝐹𝑟𝑟 , 𝐹𝑏𝑜𝑢𝑛𝑐𝑒; 𝒑
𝑇]

𝑇
 (126) 

where  

𝒑 = [𝑚𝑓𝑙, 𝑚𝑓𝑟 , 𝑚𝑟𝑙, 𝑚𝑟𝑟 , ℎ𝑟 , ℎ𝑝, 𝐶]
𝑇
 (127) 

Using the substitutions for a and l the MLTM equations become: 

𝐹𝑓𝑙 = 𝑚𝑓𝑙 𝐴𝑧,𝑓𝑙 −
(𝑚𝑓𝑙 + 𝑚𝑓𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟 −

(𝑚𝑓𝑙 + 𝑚𝑟𝑙)𝑍̈

𝐿
𝐴𝑥ℎ𝑝

−
ℎ𝑝𝑉𝑥

2𝐶

𝐿
(

𝑚𝑓𝑙 + 𝑚𝑟𝑙

𝑚𝑓𝑙 + 𝑚𝑓𝑟 + 𝑚𝑟𝑙 + 𝑚𝑟𝑟
) −

(𝑚𝑓𝑙 + 𝑚𝑓𝑟)ℎ𝑟𝑍̈𝜙

𝐵

−
(𝑚𝑓𝑙 + 𝑚𝑟𝑙)ℎ𝑝𝑍̈𝜃

𝐿
 

(128) 

𝐹𝑓𝑟 = 𝑚𝑓𝑟 𝐴𝑧,𝑓𝑟 +
(𝑚𝑓𝑙 + 𝑚𝑓𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟 −

(𝑚𝑓𝑟 + 𝑚𝑟𝑟)𝑍̈

𝐿
𝐴𝑥ℎ𝑝  

−
ℎ𝑝𝑉𝑥

2𝐶

𝐿
(

𝑚𝑓𝑟 + 𝑚𝑟𝑟

𝑚𝑓𝑙 + 𝑚𝑓𝑟 + 𝑚𝑟𝑙 + 𝑚𝑟𝑟
) +

(𝑚𝑓𝑙 + 𝑚𝑓𝑟)ℎ𝑟𝑍̈𝜙

𝐵

−
(𝑚𝑓𝑟 + 𝑚𝑟𝑟)ℎ𝑝𝑍̈𝜃

𝐿
 

(129) 

𝐹𝑟𝑙 = 𝑚𝑟𝑙 𝐴𝑧,𝑟𝑙 −
(𝑚𝑟𝑙 + 𝑚𝑟𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟 +

(𝑚𝑓𝑙 + 𝑚𝑟𝑙)𝑍̈

𝐿
𝐴𝑥ℎ𝑝

+
ℎ𝑝𝑉𝑥

2𝐶

𝐿
(

𝑚𝑓𝑙 + 𝑚𝑟𝑙

𝑚𝑓𝑙 + 𝑚𝑓𝑟 + 𝑚𝑟𝑙 + 𝑚𝑟𝑟
) −

(𝑚𝑟𝑙 + 𝑚𝑟𝑟)ℎ𝑟𝑍̈𝜙

𝐵

+
(𝑚𝑓𝑙 + 𝑚𝑟𝑙)ℎ𝑝𝑍̈𝜃

𝐿
 

(130) 
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𝐹𝑟𝑟 = 𝑚𝑟𝑟 𝐴𝑧,𝑟𝑟 +
(𝑚𝑟𝑙 + 𝑚𝑟𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟 +

(𝑚𝑓𝑟 + 𝑚𝑟𝑟)𝑍̈

𝐿
𝐴𝑥ℎ𝑝

+
ℎ𝑝𝑉𝑥

2𝐶

𝐿
(

𝑚𝑓𝑟 + 𝑚𝑟𝑟

𝑚𝑓𝑙 + 𝑚𝑓𝑟 + 𝑚𝑟𝑙 + 𝑚𝑟𝑟
) +

(𝑚𝑟𝑙 + 𝑚𝑟𝑟)ℎ𝑟𝑍̈𝜙

𝐵

+
(𝑚𝑓𝑟 + 𝑚𝑟𝑟)ℎ𝑝𝑍̈𝜃

𝐿
 

(131) 

𝐹𝑏𝑜𝑢𝑛𝑐𝑒 = 𝑚𝑓𝑙𝐴𝑧,𝑓𝑙 + 𝑚𝑓𝑟𝐴𝑧,𝑓𝑟 + 𝑚𝑟𝑙𝐴𝑧,𝑟𝑙 + 𝑚𝑟𝑟𝐴𝑧,𝑟𝑟 (132) 

Specifying the uncertain parameters domains: 

𝑚𝑓𝑙 = ∑𝑚𝑓𝑙
𝑗
𝜓1

𝑗
(𝜉1)

𝑗

 𝑚𝑓𝑟 = ∑𝑚𝑓𝑟
𝑗

𝜓2
𝑗
(𝜉2)

𝑗
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𝑚𝑟𝑙 = ∑𝑚𝑟𝑙
𝑗
𝜓3

𝑗
(𝜉3)

𝑗

 𝑚𝑟𝑟 = ∑𝑚𝑟𝑟
𝑗

𝜓4
𝑗
(𝜉4)

𝑗

 

ℎ𝑟 = ∑ℎ𝑟
𝑗
𝜓5

𝑗
(𝜉5)

𝑗

 ℎ𝑝 = ∑ℎ𝑝
𝑗
𝜓6

𝑗
(𝜉6)

𝑗

 

𝐶 = ∑𝐶𝑗𝜓7
𝑗
(𝜉7)

𝑗

 

where  

𝑚𝑓𝑙
1 = 400 𝑘𝑔, 𝑚𝑓𝑙

2 = 100 𝑘𝑔,

𝑚𝑓𝑙
3…∞ = 0 

𝑚𝑓𝑟
1 = 400 𝑘𝑔, 𝑚𝑓𝑟

2 = 100 𝑘𝑔,

𝑚𝑓𝑟
3…∞ = 0 

(134) 

𝑚𝑟𝑙
1 = 400 𝑘𝑔, 𝑚𝑟𝑙

2 = 100 𝑘𝑔,

𝑚𝑟𝑙
3…∞ = 0 

𝑚𝑟𝑟
1 = 400 𝑘𝑔, 𝑚𝑟𝑟

2 = 100 𝑘𝑔,

𝑚𝑟𝑟
3…∞ = 0 

ℎ𝑟
1 = 1 𝑚, ℎ𝑟

2 = .5 𝑚, ℎ𝑟
3…∞ = 0 ℎ𝑝

1 = 1 𝑚, ℎ𝑝
2 = .5 𝑚, ℎ𝑝

3…∞ = 0 

𝐶1 = 1, 𝐶2 = .5, 𝐶3…∞ = 0 
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At each time step, 𝑘, the system is iterated 𝑄 times, for index 𝑖. 

𝑿𝑘
𝒊 = [𝐹𝑓𝑙,𝑘

𝑖 , 𝐹𝑓𝑟,𝑘
𝑖 , 𝐹𝑟𝑙,𝑘

𝑖 , 𝐹𝑟𝑟,𝑘
𝑖 , 𝐹𝑏𝑜𝑢𝑛𝑐𝑒,𝑘

𝑖 , 𝑚𝑓𝑙,𝑘
𝑖 , 𝑚𝑓𝑟,𝑘

𝑖 , 

𝑚𝑟𝑙,𝑘
𝑖 , 𝑚𝑟𝑟,𝑘

𝑖 , ℎ𝑟,𝑘
𝑖 , ℎ𝑝,𝑘

𝑖 , 𝐶𝑘
𝑖 ]𝑇 

  𝑓𝑜𝑟 𝑖 = 1…𝑄 

(135) 

The observation matrix at time t is defined as: 

𝐻𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

 

(136) 

Table 7.1 Parameter Values for the gPC-EKF for the MLTM Model 

Poly Order 1 

Q 1 

Time Step (S) 0.001 

𝑐 0 

𝑐1 (𝑚𝑓𝑙) 1e-7 

𝑐1 (𝑚𝑓𝑟) 1e-7 

𝑐1 (𝑚𝑟𝑙) 1e-7 

𝑐1 (𝑚𝑟𝑟) 1e-7 

𝑐5 (ℎ𝑝) 1e-9 
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𝑐5 (ℎ𝑟) 1e-9 

𝑐6 (𝐶) 1e-10 

R(FL) 10 

R(FR) 10 

R(RL) 10 

R(RR) 10 

R(Bounce) 100 

7.2 Results for Modified Load Transfer Model 

The MLTM is run using the Rural and Urban driving scenarios. The coefficients for the gPC-

EKF are presented in Table 7.1. The purpose of the modified system was to give better matching of 

the sensor data. For comparison, the MLTM model is shown in contrast to both the LTM and the 

Sensor value for the front left suspension strut. 
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Figure 7.1 Suspension Strut Force for Front Left Suspension for the Rural Data Set, for the 

MLTM Model Compared to the LTM Model 

The MLTM model compensates for the constant bias of the LTM model, as can be seen in 

Figure 7.1. The sensor tends to better estimate the suspension force, primarily for the peak at 

~275 seconds.  

7.2.1 Parameter Estimations for MLTM Model 

Figure 7.2 shows the MLTM’s estimate of the vehicle’s mass for the Rural and the Urban 

driving scenarios. The MLTM shows a larger estimate than the LTM for two reasons. The first is 

because the sensors have biases (DC accelerometers, filtering), and how well each sensor is 

zeroed will play into the parameter error (talking about 0-2% bias). Second, the MLTM uses 
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accelerometers at each suspension strut, and because the vehicle lacks gyros the accelerometers 

are not calibrated to reject the vehicle’s roll and pitch motions. This is problematic because the 

philosophy of the load transfer modeling is that the vehicle is a block that has no rotational 

inertia properties and assumes all load transfers occur due to external or inertial forces.  

 

Figure 7.2 Mass Estimation from the MLTM Model for the Rural and Urban Data Sets 

The lateral position estimate, shown in Figure 7.3, shows what appears to be a drift in the 

parameters, which is caused by the suspension friction slowly causing an increasing roll angle 

bias, and is not in fact a drift, as can be seen in Figure 7.4. The updating law is slow enough that 

the large spikes do not make enough of a difference to counter the slowly increasing bias, 

however their effect can be seen. This asymmetrical friction force in the suspension of the 



139 

vehicle will appear later in the vehicle tire normal load estimations, and it causes some 

interesting effects.  

 

Figure 7.3 Lateral Position Estimate from the MLTM Model for the Rural and Urban Data 

Sets 

The longitudinal parameter estimate, shown in Figure 7.5, updates quite nicely, with the 

MLTM showing a much better approximation of the position than the LTM. This estimation is 

also much smoother than the lateral position estimate. In general, across several data sets, the 

longitudinal position converges much better than the lateral position estimate, because the effects 

of friction are less significant in the pitch dynamics.  



140 

 

Figure 7.4 Suspension Displacement Difference (Body Roll) 
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Figure 7.5 Longitudinal Position Estimate of the MLTM Model for the Rural and Urban 

Data Sets 
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Figure 7.6 𝒉𝒑 and 𝒉𝒓 Parameter Values from the MLTM Model for the Rural and Urban 

Data Sets 

As mentioned previously, the MLTM model picks up on the roll and pitch effects of the 

vehicle because the accelerometers are located at the struts, rather than the CG (or, in reality, the 

instantaneous centers of the roll and pitch motions). Because of this, the ℎ𝑟 and ℎ𝑝 parameters, 

shown in Figure 7.6, for the MLTM are smaller than for the LTM model.  
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8 Fourth and Final Parameter Estimation Model: 

High Frequency Update Modeling of Vehicle’s 

Suspension Forces 

 

 

 

 

 

 This section is the fourth attempt at modeling the vehicle’s suspension forces and estimation 

of the vehicle’s parameters. The MLTM model is expanded to include three roll centers, and two 

pitch centers. The effects of the aerodynamics and the roll and pitch angle effects are removed, 

as their effects are rolled into the rapid updating of the roll/pitch center parameters. Full 

implementation should include these effects with slow updating. The update rates for the roll and 

pitch center parameters are significantly increased, which enables real time compensation for un-

modeled effects, and provides better matching of the suspension forces.  

 The need for three roll centers is due to the linkage effects. The front of the vehicle has a 

panhard rod that provides lateral stability, which causes asymmetric load transfer effects. The 

panhard rod provides a direct means of lateral load transfer between the body and the axle in the 

front, which results in the need for two roll centers, one for each wheel. The third roll center is 

used in the rear of the vehicle, where the suspension is approximately symmetric. The two pitch 

centers are obvious, one for the front and one for the rear of the vehicle.  
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 The equations for the High Frequency Load Transfer Model (HFLTM) are: 

𝐹𝑓𝑙 = 𝑚𝑓𝑙 𝐴𝑧,𝑓𝑙 −
(𝑚𝑓𝑙 + 𝑚𝑓𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟𝑓𝑙 −

(𝑚𝑓𝑙 + 𝑚𝑟𝑙)𝑍̈

𝐿
𝐴𝑥ℎ𝑝𝑓 

(137) 

𝐹𝑓𝑟 = 𝑚𝑓𝑟 𝐴𝑧,𝑓𝑟 +
(𝑚𝑓𝑙 + 𝑚𝑓𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟𝑓𝑟 −

(𝑚𝑓𝑟 + 𝑚𝑟𝑟)𝑍̈

𝐿
𝐴𝑥ℎ𝑝𝑓  

(138) 

𝐹𝑟𝑙 = 𝑚𝑟𝑙 𝐴𝑧,𝑟𝑙 −
(𝑚𝑟𝑙 + 𝑚𝑟𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟𝑟 +

(𝑚𝑓𝑙 + 𝑚𝑟𝑙)𝑍̈

𝐿
𝐴𝑥ℎ𝑝𝑟 

(139) 

𝐹𝑟𝑟 = 𝑚𝑟𝑟 𝐴𝑧,𝑟𝑟 +
(𝑚𝑟𝑙 + 𝑚𝑟𝑟)𝑍̈

𝐵
𝐴𝑦ℎ𝑟𝑟 +

(𝑚𝑓𝑟 + 𝑚𝑟𝑟)𝑍̈

𝐿
𝐴𝑥ℎ𝑝𝑟 

(140) 

where, 

𝑚𝑓𝑙 = ∑𝑚𝑓𝑙
𝑗
𝜓1

𝑗
(𝜉1)

𝑗

 𝑚𝑓𝑟 = ∑𝑚𝑓𝑟
𝑗

𝜓2
𝑗
(𝜉2)

𝑗
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𝑚𝑟𝑙 = ∑𝑚𝑟𝑙
𝑗
𝜓3

𝑗
(𝜉3)

𝑗

 𝑚𝑟𝑟 = ∑𝑚𝑟𝑟
𝑗

𝜓4
𝑗
(𝜉4)

𝑗

 
 

ℎ𝑟𝑓𝑙 = ∑ℎ𝑟𝑓𝑙
𝑗

𝜓5
𝑗
(𝜉5)

𝑗

 ℎ𝑝𝑓 = ∑ℎ𝑝𝑓
𝑗

𝜓8
𝑗
(𝜉8)

𝑗

 

ℎ𝑟𝑓𝑟 = ∑ℎ𝑟𝑓𝑟
𝑗

𝜓6
𝑗
(𝜉6)

𝑗

 ℎ𝑝𝑟 = ∑ℎ𝑝𝑟
𝑗

𝜓9
𝑗
(𝜉9)

𝑗

 

ℎ𝑟𝑟 = ∑ℎ𝑟𝑟
𝑗

𝜓7
𝑗
(𝜉7)

𝑗

 

Where  

𝑚𝑓𝑙
1 = 400 𝑘𝑔, 𝑚𝑓𝑙

2 = 100 𝑘𝑔,

𝑚𝑓𝑙
3…∞ = 0 

𝑚𝑓𝑟
1 = 400 𝑘𝑔, 𝑚𝑓𝑟

2 = 100 𝑘𝑔,

𝑚𝑓𝑟
3…∞ = 0 

(142) 

𝑚𝑟𝑙
1 = 400 𝑘𝑔, 𝑚𝑟𝑙

2 = 100 𝑘𝑔,

𝑚𝑟𝑙
3…∞ = 0 

𝑚𝑟𝑟
1 = 400 𝑘𝑔, 𝑚𝑟𝑟

2 = 100 𝑘𝑔,

𝑚𝑟𝑟
3…∞ = 0 
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ℎ𝑟𝑓𝑟
1 = 1 𝑚, ℎ𝑟𝑓𝑟

2 = .5 𝑚,

ℎ𝑟𝑓𝑟
3…∞ = 0 

ℎ𝑝𝑓
1 = 1 𝑚, ℎ𝑝𝑓

2 = .5 𝑚,

ℎ𝑝𝑓
3…∞ = 0 

ℎ𝑟𝑓𝑙
1 = 1 𝑚, ℎ𝑟𝑓𝑙

2 = .5 𝑚,

ℎ𝑟𝑓𝑙
3…∞ = 0 

ℎ𝑝𝑟
1 = 1 𝑚, ℎ𝑝𝑟

2 = .5 𝑚,

ℎ𝑝𝑟
3…∞ = 0 

 

ℎ𝑟𝑟
1 = 1 𝑚, ℎ𝑟𝑟

2 = .5 𝑚, ℎ𝑟𝑟
3…∞ = 0   

At each time step, 𝑘, the system is iterated 𝑄 times, for index 𝑖. 

𝑿𝑘
𝒊 = [𝐹𝑓𝑙,𝑘

𝑖 , 𝐹𝑓𝑟,𝑘
𝑖 , 𝐹𝑟𝑙,𝑘

𝑖 , 𝐹𝑟𝑟,𝑘
𝑖 , 𝐹𝑏𝑜𝑢𝑛𝑐𝑒,𝑘

𝑖 , 𝑚𝑓𝑙,𝑘
𝑖 , 𝑚𝑓𝑟,𝑘

𝑖 , 

𝑚𝑟𝑙,𝑘
𝑖 , 𝑚𝑟𝑟,𝑘

𝑖 , ℎ𝑟𝑓𝑟,𝑘
𝑖 , ℎ𝑟𝑓𝑙,𝑘

𝑖 , ℎ𝑟𝑟,𝑘
𝑖 , ℎ𝑝𝑓,𝑘

𝑖 , ℎ𝑝𝑟,𝑘
𝑖 ]𝑇 

  𝑓𝑜𝑟 𝑖 = 1…𝑄 

(143) 

The observation matrix at time t is defined as: 

𝐻𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(144) 

Table 8.1 Parameter Values for the gPC-EKF for the HFLTM Model 

Poly Order 1 

Q 1 
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Time Step (S) 0.001 

𝑐 0 

𝑐1 (𝑚𝑓𝑙) 1e-8 

𝑐1 (𝑚𝑓𝑟) 1e-8 

𝑐1 (𝑚𝑟𝑙) 1e-8 

𝑐1 (𝑚𝑟𝑟) 1e-8 

𝑐5 (ℎ𝑝𝑓) 1e-6 

𝑐5 (ℎ𝑝𝑟) 1e-6 

𝑐5 (ℎ𝑟𝑓𝑙) 1e-6 

𝑐5 (ℎ𝑟𝑓𝑟) 1e-6 

𝑐5 (ℎ𝑟𝑟) 1e-6 

R(FL) 10 

R(FR) 10 

R(RL) 10 

R(RR) 10 

8.1 Experimental Results for Dynamic Handling Track 

The dynamic handling track data is the first set of data to contain both the soft and the hard 

suspension settings. The Rural and Urban drive cycles were both done using the soft suspension 

setting, which is why the need for multiple roll and pitch centers was not observed. For the soft 

suspension setting, these are relatively close to the same values. The actual values for the 

vehicle’s mass and horizontal CG location are not precisely known for the tests shown in this 
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chapter. Measurements were performed before the tests, but these included the unsprung 

components. The coefficients for the gPC-EKF for these tests are listed in Table 8.1. 

The total mass measurement, which was performed with scales, was approximately 2400 kg. 

The total unsprung components weigh about 500 kg. The model estimates the vehicle’s mass to be 

about 1940 kg, which is about 2% error, though in truth the accuracy is within instrumentation 

and measurement error ranges.  

8.1.1 Dynamic Handling Track with Soft Suspension 

 The results for the soft suspension are presented first, as the previous attempts to estimate the 

vehicle’s parameters were performed on a soft suspension configuration. The parameters have a 

fairly large update rate, and the effects of the friction can clearly be seen between the soft and the 

hard settings. The nonlinear behavior of the panhard rod and the need for multiple roll and pitch 

parameters is also immediately evident.  

 The estimation of the suspension force is good, shown in Figure 8.1, with large errors 

primarily only present during low dynamic events. The estimate is able to capture the peaks of 

the system, and track the model during dynamic maneuvers. The RMS error is 115.85 N, with a 

peak error of 518 N occurring at 71.66 seconds.  
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Figure 8.1 Dynamic Handling Track HFLTM FL Suspension Force Estimate for the Soft 

Suspension Setting 

 Because of the faster parameter update rates the friction effects can have a more noticeable 

effect. The longitudinal CG position converges fairly smoothly, but the longitudinal position 

shifts around a bit, as the vehicle tends to roll much more than pitch. These results are shown in 

Figure 8.2. 
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Figure 8.2 Horizontal CG Estimate for the HFLTM on the Dynamic Handling Track Using 

the Soft Suspension Setting 

 The mass parameter, results shown in Figure 8.3, which is a sum of the masses calculated at 

each corner, is used to calculate the horizontal CG position and shows why the lateral position is 

shifting around. The mass parameter is changing very slightly at each corner to help 

accommodate for the friction effects. 
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Figure 8.3 Mass Estimate for Dynamic Handling Track Using the Soft Suspension 

 It can be clearly seen why a rapid update for the pitch and roll centers are needed. The pitch 

center for the front can shift between positive and negative values. The negative values are when 

braking occurs at a magnitude that transfers enough load through the suspension linkages as to 

cause a jacking force, which is the anti-dive mechanic. The rear of the vehicle does get a 

negative value, and at that point the vehicle is driving up a grade while accelerating. A typical 

value for the rear is much larger than for the front, for this vehicle. Figure 8.4 shows the pitch 

center estimates. 
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Figure 8.4 Pitch Center Height Estimates for the Dynamic Handling Track for the Soft 

Suspension 

 The nonlinear effects of the panhard rod are clearly seen in the roll center parameter 

estimates. The two roll centers have completely different trajectories. The rear roll center tends 

to oscillate about a constant DC value, which is what the previous studies converged to. The 

oscillations occur because of the un-modeled effects. The reason that the panhard rods effects are 

seen more clearly here, rather than in the Rural or Urban scenarios is that the magnitude of the 

dynamics is much larger and the roll angle of the vehicle is typically much larger. Figure 8.5 

shows the roll center parameter estimates. 
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Figure 8.5 Roll Center Height for the Dynamic Handling Track using the Soft Suspension 

 The average of these lines is in the same neighborhood, which is why for lower dynamics the 

single coefficient was viable in the previous models. For larger dynamic events a faster update 

and multiple parameters are needed to adequately account for un-modeled effects.   

8.1.2 Dynamic Handling Track with Hard Suspension 

 The hard suspension setting shows significantly different results than the soft setting. Much 

more of the load transfer is passed through the suspension, which results in significantly higher 

suspension forces. The suspension does not move very much in this setting, which causes 

significant tire deflections. The RMS error in the suspension force estimate is 253.96 N with a 

peak error of 1088 N at 114.6 seconds, shown in Figure 8.6.  
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Figure 8.6 Front Left Suspension Force Estimate for the Dynamic Handling Track Using 

the Hard Suspension Setting 

 The longitudinal CG position converged to a larger value than when in the soft configuration, 

and the lateral position took much longer to stop drifting, and comes to a smaller estimate than 

the soft setting estimate. These estimates are shown in Figure 8.7. 
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Figure 8.7 Horizontal CG Estimate for the Dynamic Handling Track for the Hard 

Suspension 

 The mass estimate of the vehicle for the hard suspension is different than for the soft 

suspension. The soft suspension has a small variation, but the hard suspension setting appears to 

be converging for the first two-thirds of the test. Its final value is also smaller than the soft 

setting. This is because of the asymmetrical (vertical, this time) friction effect that is slowly 

jacking the suspension down, which makes the vehicle appear to be heavier than it actually is. 

The results are shown in Figure 8.8. 
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Figure 8.8 Mass Estimate for the Dynamic Handling Track Using the Hard Suspension 

 The pitch center estimates, shown in Figure 8.9, have significantly more variation, because 

the suspension doesn’t move as much, the vehicle body doesn’t move as much, and the inertia of 

the vehicle does not buffer the energy transfer so the suspension has to apply a much higher 

force.  
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Figure 8.9 Pitch Center Height Estimates for the Dynamic Handling Track Using the Hard 

Suspension 

 Because the suspension doesn’t deflect as much, the panhard rod doesn’t appear to play as 

large of a role in the lateral load transfer. When looking at the roll center height estimates, shown 

in Figure 8.10, this is exactly what is observed. During very hard maneuvers the panhard does 

show an effect, but for softer maneuvers its effects are less significant. 
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Figure 8.10 Roll Center Height Estimates for the Dynamic Handling Track Using the Hard 

Suspension 

8.2 Why the HFLTM Works 

 The HFLTM is configured to compensate for un-modeled internal dynamic effects, such as 

linkage forces and roll/pitch angles. The reason that this is effective is because of how the 

mathematics are defined. 

𝑚 𝐴𝑦 ℎ𝑟 = 𝑚 𝐴𝑦  ℎ𝑟𝑡 + 𝐹𝑙𝑖𝑛𝑘𝑎𝑔𝑒 + 𝐹𝐴𝑒𝑟𝑜 + 𝐹𝑅𝑜𝑙𝑙𝐴𝑛𝑔𝑙𝑒 + 𝐹𝑅𝑜𝑙𝑙𝐵𝑎𝑟 (145) 

 The right hand side has a roll center height, ℎ𝑟𝑡, that is a constant. Due to the additions of the 

linkage forces and other effects the left hand side estimate of the roll center height is constantly 

changing to compensate for the sum of the right side. One can see that if there are significant 

effects present when there is no lateral acceleration, the parameter ℎ𝑟 could diverge. For this 
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reason if there is only a small acceleration present, the Kalman update for that parameter is 

disabled. 
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9 Axle Normal Force Estimate and Suspension 

Mapping 

 

 

 

 

 

 Classically, the estimate of the wheel vertical forces is simply the load transfer plus the static 

vertical weight. However, because of the linkage constraints this is not in general true or 

accurate, and secondary effects can cause significant differences from this estimation. 

 The assumption that is used in this work is that this classical constraint holds below the roll 

center point, and that all of the effects above the roll center point correspond to the roll center 

height parameter that the filter estimates, which contains all of the linkage forces etc.  

𝑚𝑢,𝑖 𝐴𝑧𝑢,𝑖 + ℎ𝑟𝑐,𝑖 𝑚 𝐴𝑦 + ℎ𝑝𝑐,𝑖 𝑚 𝐴𝑥 + 𝑆𝐹𝑖 = 𝐹𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 (146) 

 The parameter 𝑚𝑢,𝑖 is the unsprung mass, 𝑆𝐹𝑖 is the suspension force, and 𝐹𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 is the 

ground force or normal force at the 𝑖𝑡ℎ corner. 𝐴𝑥 and 𝐴𝑦 are the longitudinal acceleration and 

lateral acceleration, and 𝑚 is the total mass of the vehicle. The parameters (ℎ𝑟𝑐,𝑖, ℎ𝑝𝑐,𝑖) depend 

on the horizontal CG positions, and upon which wheel is being mapped. 

ℎ𝑟𝑐,𝑓𝑙 =
𝑏

𝐿𝐵
 ℎ𝑟𝑐𝜂1 

(147) 
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ℎ𝑝𝑐,𝑓𝑙 =
𝑟

𝐿𝐵
 ℎ𝑝𝑐𝜂2 

(148) 

For a system with a single roll center parameter. Considering all of the system’s linkages is 

important for determining how many of these parameters to use. For the highest accuracy, a 

separate parameter should be used at each corner. The horizontal CG values are used to make 

this invariant with regard to the horizontal CG position. For a full mapping there would be eight 

𝜂 coefficients.  

The parameter 𝜂 is an empirically derived parameter that is defined as: 

𝜂1 = (1 − 𝑠𝑖𝑔𝑛(
𝐴𝑦 (ℎ𝑠 +

∑𝐷𝑠,𝑖

𝑖
)

ℎ𝑠

)
(ℎ𝑠 +

∑𝐷𝑠,𝑖

𝑖
)

ℎ𝑠

)

2

(1 −
𝑠𝑖𝑔𝑛 (𝐴𝑦(𝐷𝑠,𝑟𝑙 − 𝐷𝑠,𝑟𝑟)) (𝐷𝑠,𝑟𝑙 − 𝐷𝑠,𝑟𝑟)

𝐵
)

2

 

 

(149) 

𝜂2 = (1 − 𝑠𝑖𝑔𝑛 (
𝐴𝑦 (ℎ𝑠 +

∑𝐷𝑠,𝑖

𝑖
)

ℎ𝑠

)
(ℎ𝑠 +

∑𝐷𝑠,𝑖

𝑖
)

ℎ𝑠

)

2

 

 

(150) 

There are several reasons for developing this method. The first is that wheel force 

transducers are expensive and not commonly available for long-term implementation. The 

second reason is that it is desired to have a method that does not require being tailored to the 

specific vehicle. Using a separate mapping for each wheel and with the provided mathematical 

support of a fast updating parameter to compensate for un-modeled dynamics, such a method is 

provided. To properly extract the vehicle height it is likely that the method used will have to be 

tailored to the specific vehicle to account for all of the linkages and other effects, which become 

costly both in computation and in manpower. 
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9.1  Results for Suspension Mapping Concept Study 

The results presented here are a proof of concept study. The method is demonstrated for some 

changes in the vehicle’s parameters, and for several different maneuvers. Data was only available 

for one wheel. Further work with sensors for all four wheels would likely result in improved 

results.  

9.1.1 Training Set Results 

The parameters are tuned from a single run of the dynamic handling track, by the Least 

Squares technique. The parameter ℎ𝑠 is chosen based on the static suspension displacement for 

this run, to represent when the suspension of the vehicle compresses or changes from run to run, 

and to make it invariant with respect to changing suspension heights.  

Table 9.1 Parameter Values for Suspension Mapping 

𝑀𝑢𝑛𝑠𝑝𝑟𝑢𝑛𝑔 72 𝑘𝑔 

ℎ𝑟𝑐 0.57 

ℎ𝑝𝑐 0.96 

ℎ𝑠 0.21 𝑚 
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Figure 9.1 Dynamic Handling Training Data Run 

Table 9.2 Training Data Error for Suspension Mapping 

RMS Error 122 𝑁 

Peak Error 326 𝑁 @(111 𝑠) 

 

 The results, shown in Figure 9.1, are very good. The errors can primarily be attributed to the 

friction in the suspension. The friction acts in an asymmetric method that prevents the wheels 

from easily extending or contracting sometimes, which makes the vehicle look like it weighs 

more or less, as it is constrained to roll about a different axis. This effect will be seen quite 

clearly later on for the constant radius test and the sine sweep test.  
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9.1.2 Validation Case – Special Maneuvers 

 This section covers the investigation of how well the mapping technique validated for special 

maneuvers. The two maneuvers presented here highlight some of the problems of the method 

quite clearly. The first maneuver is a constant radius test.  

 The constant radius test involves the vehicle driving in a constant radius with a slowly 

increasing speed. The results are promising, but show a particular flaw in the method. The 

suspension friction effects are not accounted for and cause a bias in the results.  

 

Figure 9.2 Counter Clockwise Constant Radius Validation Case 

Table 9.3 Counter Clockwise Constant Radius Test Error Results 

RMS Error 346 𝑁 

Peak Error 648 𝑁 @(58.1 𝑠) 
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 The estimate, shown in Figure 9.2, is quite good up to about 28 seconds. At that point the 

suspension starts to lock because of friction, which prevents the wheel from extending further, 

and causing an un-modeled force to appear. As the vehicle slows down the friction effects 

dissipate a bit, but then prevent the vehicle from re-orienting to a level position. The vehicle is 

stuck with a constant roll angle that puts more of the weight on the right wheels, than the left, 

which is exactly what the suspension force sensor shows. This phenomenon is observed directly 

Figure 9.3.  

 

Figure 9.3 Suspension Displacements for the Constant Radius Counter Clockwise Test 

 Unlike the previous maneuver, the clockwise constant radius, results shown in Figure 9.4, 

only shows minor effects of friction. The friction effect is asymmetrical in two ways: First, it is 

more likely to contract than expand, and secondly it is more likely to have this contraction occur 



165 

on one side of the vehicle, as seen in Figure 9.5. The biggest mismatch here is at the beginning 

and end, where the high longitudinal acceleration causes a lateral load transfer, which can be 

observed in the suspension displacements. Since that load transfer is not accounted for there is a 

big discrepancy between the model and the sensor. If the coefficient is reduced from 0.9 to 0.35 

for the longitudinal component these spikes disappear and the matching of the sensor is 

maintained. This effect only seems to appear when the outriggers are added to the vehicle. It 

does not appear to correlate to gyroscopic motion, or to aerodynamic effects. These results are 

proof of concept, and further work with more sensors and sensor data is needed to properly 

characterize this effect.  

 

Figure 9.4 Clockwise Constant Radius Validation Case 
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Table 9.4 Clockwise Constant Radius Error Results 

RMS Error 193 𝑁 

Peak Error 700 𝑁 @(4.2 𝑠) 

 

 If the initial 5 seconds and last 10 seconds are ignored, the largest peak error is 611 N, at 35 

seconds. 

Table 9.5 Truncated Clockwise Constant Radius Error Results 

RMS Error 172 𝑁 

Peak Error 611 𝑁 @(35 𝑠) 

 

 

Figure 9.5 Clockwise Constant Radius Suspension Displacements 

 The next maneuver for validation is a sine sweep pattern. The vehicle sweeps left and right at 

a fairly constant speed. The test is performed by a driver and is not performed at a set frequency. 

The vehicle is simply steered left and right in a approximately-rhythmic manner. The results, 
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shown in Figure 9.6, show exactly what was observed in the previous tests. The asymmetric 

friction effects cause the suspension to compress and then try to lift one of the wheels, rather 

than extending smoothly, which causes the vehicle to roll about a different point, which results in 

a shift in the tire normal force. The error at the beginning is caused by the lateral load transfer 

that is caused by a longitudinal acceleration, as noted previously.  

 

Figure 9.6 Sine Sweep Validation Case 

Table 9.6 Sine Sweep Error Results 

RMS Error 277.4 𝑁 

Peak Error 632 𝑁 @(36.6 𝑠) 

 The error at the end is a combination of the lateral load transfer and the friction effects, as 

seen in Figure 9.7.  
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Figure 9.7 Sine Sweep Suspension Displacements 

 

9.1.3 Validation Case – General Driving 

 This section demonstrates the devised strategy when applied to general driving and non-

specialized cases. The first two cases are general driving around the testing facility, and the third 

case is another trip around the Dynamic Handling track.  

 The first general driving scenario results in good capture of the peaks. The friction effects are 

quite evident when there is limited dynamics, as seen in Figure 9.8. For these tests the 

suspension displacements have been omitted, as they do not add much to the discussion. 
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Figure 9.8 General Driving 1 Validation Case 

Table 9.7 General Driving 1 Error Results 

RMS Error 123.4 𝑁 

Peak Error 331 𝑁 @(13.8 𝑠) 

 The second general driving test, shown in Figure 9.9, performs remarkably better than the 

first one. There are two points that should be looked at. At the beginning of the simulation there 

is an initial offset caused because of the suspension friction. The section at 141 seconds is when 

the suspension friction causes a significant force, such that when the vehicle rolls from one side 

to the other it does not roll unconstrained. The vehicle picks up the wheels on the right side, 

which makes the vehicle essentially roll about a different point.  
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Figure 9.9 General Driving 2 Validation Case 

Table 9.8 General Driving 2 Error Results 

RMS Error 111 𝑁 

Peak Error 464.5 𝑁 @(141 𝑠) 

 As a comparison, the model is applied to a different run around the dynamic handling track. 

The first run was approximated better, and showed fewer signs of friction effects which was why 

it was used. Here those friction effects can be observed a bit clearer. Overall, the model does a 

good job, except for the peak at 41 seconds where it over-shoots by a fair margin. It does capture 

the notch at 96 seconds with about 50 𝑁 error. The results are shown in Figure 9.10. 



171 

 

Figure 9.10 Dynamic Handling 2 Validation Case 

Table 9.9 Dynamic Handling 2 Error Results 

RMS Error 175 𝑁 

Peak Error 645 𝑁 @(40.8 𝑠) 
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10 Vehicle Stability and Rollover through LTM 

Model 

 

 

 

 

 

 This chapter provides a brief interlude between the parameter estimation sections and the tire 

force estimations. This chapter provides several derivations of stability metrics based on the 

LTM model, and compares them to some of the current ones.  

10.1 Vehicle Stability Through Load Transfer Model 

This section investigates the stability of the vehicle through the lens of the LTM. The same 

investigations are viable with the MLTM, but the answers result in more intuitive results with the 

LTM. All the algorithms if implemented should be done so using the MTLM, or HFLTM for 

better accuracy. 

10.1.1 LTM and Static Stability Factor (SSF) 

The NHTSA has determined that a good first measurement of a vehicle’s stability is 

determined through what they call the “Static Stability Factor (SSF).” The SSF measurement is 

determined from a block on a slanted hill, illustrated in Figure 10.1: 

B 
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Figure 10.1 Static stability factor diagram 

 The SSF is the moment balance of the vertical acceleration to the lateral acceleration at the 

edge of the vehicle: 

𝐴𝑧 (
𝐵

2
) = 𝐴𝑦ℎ 

(151) 

This yields the SSF: 

𝐴𝑦

𝐴𝑧
=

𝐵

2ℎ
 

(152) 

If 𝐴𝑧 is the acceleration due to gravity, this equation gives a first order limit on the lateral 

acceleration that the vehicle can sustain before rolling over. There are some key problems in this 

model, such as the lateral position of the vehicle’s CG and how the roll of the body plays into the 

stability. 

From the load transfer equations a similar equation can be calculated by solving for the 

necessary lateral acceleration to transfer all of the weight from one side of the vehicle to the other. 

This is the condition upon which traction on one side of the vehicle is lost. For easy conception of 

this, the equations are used from the regular LTM model, including the roll and pitch angle terms. 

The lateral acceleration that is calculated for reducing the load on the left side of the vehicle: 
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𝐹𝑓𝑙 + 𝐹𝑟𝑙 = 0 (153) 

𝑚𝐴𝑧

𝐵𝐿
(𝑏𝑟 − 𝐴𝑥𝑟ℎ𝑝 − 𝐴𝑦𝑏ℎ𝑟) +

𝑚𝐴𝑧

𝐵𝐿
(𝑎𝑟 + 𝐴𝑥𝑟ℎ𝑝 − 𝐴𝑦𝑎ℎ𝑟) −

𝑚ℎ𝑟𝜙𝐴𝑧

𝐵
= 0 

(154) 

𝐴𝑦 =
𝑟

ℎ𝑟
− 𝜙 

(155) 

This is to remove all of the weight from one side of the suspension to the other. If this is 

transcribed to the wheel contacts, assuming a rigid roll center, the acceleration limit becomes: 

𝐴𝑦 =
𝑟

ℎ
−

𝜙ℎ𝑟

ℎ
 

(156) 

Which, if 𝜙 = 0, and the lateral position of the CG is at the half-track: 

𝐴𝑦 =
𝐵

2ℎ
 

(157) 

Remember, 𝐴𝑦 is measured in g’s in the LTM, so this equation returns the same value as the 

SSF. Therefore, the load transfer equations return better estimates of the vehicle’s propensity to 

rollover than the SSF measurement. The method employed here is redone for the acceleration 

needed to remove the weight from the right side of the vehicle, as it requires a different amount of 

acceleration to do that, because of the asymmetry of the lateral CG position. 

10.1.2  LTM and Rollover Coefficient (RC) 

There is an alternative method for calculating the vehicle stability, called the Rollover 

Coefficient. The Rollover Coefficient is defined as the weight on the left side of the vehicle (𝑊𝑙) 

minus the weight on the right side of the vehicle (𝑊𝑟), normalized by the total weight of the 

vehicle (𝑊): 

𝑅𝐶 =
𝑊𝑙 − 𝑊𝑟

𝑊
 

(158) 
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This returns a value that is ∈ [−1 1]. The vehicle is in danger when close to the bounds. If we 

evaluate this equation using the LTM we recover: 

𝐹𝑙 − 𝐹𝑟

∑ 𝐹𝑖𝑖=𝑓𝑙,𝑓𝑟,𝑟𝑙,𝑟𝑟
=

1

𝑚 𝐴𝑧
[
𝑚𝐴𝑧

𝐵
(𝑟 − 𝑙 − 2𝐴𝑦ℎ𝑟) −

2𝑚ℎ𝑟𝐴𝑧𝜙

𝐵
] 

(159) 

This results in: 

𝑅𝐶 =
𝑟 − 𝑙

𝐵
−

2𝐴𝑦ℎ𝑟

𝐵
−

2ℎ𝑟𝜙

𝐵
 

(160) 

Evaluating this at the negative boundary, or when the weight on the left side of the vehicle 

goes to zero, for the lateral acceleration: 

𝐴𝑦 =
𝐵

2ℎ𝑟
− 𝜙 +

𝑟 − 𝑙

2ℎ𝑟
 

(161) 

This is the same equation that was derived by the LTM when solving for the lateral 

acceleration when the force on the left side of the vehicle was zero.  

The generalized equation that can be used for calculating the rollover threshold for the 

vehicle, regardless of which side of the vehicle is going to rollover, is: 

𝐴𝑦 = 𝑠𝑖𝑔𝑛(𝐴𝑦)
𝐵

2ℎ𝑟
− 𝜙 +

𝑟 − 𝑙

2ℎ𝑟
 

(162) 

This equation is derived from the LTM model, and is in agreement with the Rollover 

Coefficient, and the SSF measurement. If applied to the total height of the vehicle, the equation 

for vehicle stability is: 

𝐴𝑦 = 𝑠𝑖𝑔𝑛(𝐴𝑦)
𝐵

2ℎ
−

𝜙ℎ𝑟

ℎ
+

𝑟 − 𝑙

2ℎ
 

(163) 
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10.2 Vehicle Stability through the Suspension Mapping Technique 

 The Suspension Mapping technique showed in Chapter 9 can be used to approximate the 

vehicle’s stability. Repeating the suspension mapping equation (Eq. 146): 

𝑚𝑢,𝑖 𝐴𝑧𝑢,𝑖 + ℎ𝑟𝑐,𝑖 𝑚 𝐴𝑦 + ℎ𝑝𝑐,𝑖 𝑚 𝐴𝑥 + 𝑆𝐹𝑖 = 𝐹𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 (164) 

This equation, once the parameters are estimated, can be used to estimate when the vehicle 

will lose contact at a specific wheel, or when the vehicle will lose contact on one side of the 

vehicle. Further work could be done to estimate what the acceleration limits are that will cause 

loss of traction, in conjunction with a surface friction coefficient, or even at what point a 

significant acceleration becomes large enough to roll the vehicle over. 

Because this equation has different values for each ℎ𝑝𝑐,𝑖 or ℎ𝑟𝑐,𝑖 the results of those equations 

are not very compact and do not result in intuitive equations. They do however result in excellent 

equations for controller design and analytical formulation of vehicle rollover or traction 

constraints.  
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11 Conclusions 

 

 

 

 

 

 Presented in this work are three major results. The first is the improvement and analysis of 

the gPC-EKF filter. The work here investigated the paradoxical nature of the filter: To be able to 

converge requires a populated covariance matrix, but to populate the covariance matrix requires 

the system to not converge. Empirical steps were proposed to compensate for this, and analytical 

solutions have yet to be found. The solution to this problem is first the solution to a Kalman filter 

tracking a desired frequency signal through only the process noise matrix which has not to my 

knowledge been solved. This solution would then have to be solved with the constraint that the 

system behave in such a manner as to help the parameter values to converge, which is a highly 

nonlinear problem that does not have an analytical formulation as of yet.  

 Results were demonstrated for different types of distributions  (and their respective basis 

functions) and their effects on the systems solutions were discussed. The filter was able to 

provide information about whether the excitation was sufficient or not. The method was 

demonstrated for multiple parameters and for regression problems.  
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 Finally, an investigation was conducted to be able to test for the system’s convergence. A 

method that can be employed to test for convergence was developed, and shown in both 

analytical and empirical results that it is viable.  

 The second major work was the estimation of the vehicle’s mass and horizontal CG position. 

To the best of my knowledge, this is the first time that, for a general driving scenario, these 

parameters were able to be estimated, and to the accuracy that they have been, despite the 

significant error induced by the suspension friction. The method was shown for various driving 

scenarios, and the initial method was improved over several iterations.  

 During the course of the previous step it became clear that being able to estimate the total 

height of the vehicle was very difficult, if not impossible. Dynamic effects that were originally 

thought to be second- order effects summed to create first- order errors. The resulting technique 

for estimating the contact forces proved much more reliable, and much more computationally 

efficient.  

 The method was demonstrated in a proof of concept study. Full implementation of the system 

will require that the vehicle be mapped at each corner independently, with four rather than one 

wheel force transducer’s data. The results presented here are very encouraging, and lead me to 

believe that the method would be very successful when fully implemented. 
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12  Future Work 

 

 

 

 

 

 The continuation of this work would primarily revolve around four areas. The first is the 

analytical formulation of the required improvements for the gPC-EKF. The second would be the 

estimation and inclusion of the suspension friction effects into the above models. The third 

would be the final mapping of the vehicle’s suspension using data from four wheel force 

transducers to result in a comprehensive solution that could be deployed on the vehicle. The 

fourth and final area would the creation of traction and roll stability controllers that use the above 

suspension mapping technique.  
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Nomenclature 

Notation / Quantity Meaning 

Bold Vector Vector quantity 

Superscript Poly Chaos series term or gPC-EKF iteration 

gPC Generalize Polynomial Chaos 

CG Center of Gravity 

RLS Recursive Least Squares 

LS Least Squares 

gPC-EKF Generalized Polynomial Chaos based Extended 

Kalman Filter 

𝐶𝑑𝐴 Coefficient of aerodynamic drag times vehicle 

cross-sectional area 

𝜓 gPC Basis function series term 

Ψ gPC basis vector 

ξ Random variable ranging from -1 to 1 for 

spanning the basis function’s space 

S Number of terms in the gPC series expansion 

PO Polynomial order of truncation of the gPC 

series 

t Time 

𝜇 Basis function random variable value for 

iteration 

Q Number of iterations for the gPC-EKF 

A Collocation A matrix (matrix of 𝜓(𝜇) points) 

z Sensor measurement 

𝑐𝑖 Scaling coefficient of the addition to the 𝑖𝑡ℎ 

gPC-EKF parameter value 

I, U Addition to a gPC-EKF parameter value 

N Noise for the gPC-EKF state variables 

m mass 

c Process noise addition scaling parameter, 

suspension damping parameter 

𝑥0 State position initial value 

𝑣0 State velocity initial value 

R Error noise covariance matrix 

K Kalman update or RLS update matrix 

k Spring stiffness or term of the K matrix 

H Measurement matrix 

𝑍̈, 𝐴𝑧 Vertical acceleration at the CG 

𝑆𝐹𝑖, 𝐹𝑖 Suspension force 

𝐴𝑦, 𝐴𝑥 Lateral and longitudinal acceleration 
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𝐽𝜙, 𝐽𝜃  Roll inertia, pitch inertia 

𝜙̈, 𝜃̈ Roll acceleration, pitch acceleration 

𝜙 Roll angle 

I Distance to the CG from the left side 

r Distance to the CG from the right side 

a Distance to the CG from the front 

b Distance to the CG from the rear 

𝐷𝑠 Suspension displacement 

𝑚̅ Summed mass of each corner mass estimate 

H CG height 

fl Front left 

fr Front right 

rl Rear left 

rr Rear right 

𝜃 Pitch angle or RLS parameter matrix 

𝜂 Suspension mapping coefficient or RLS 

observation matrix 

y Measurement 

v, 𝜈 Process noise vector or sensor noise for RLS 

P Covariance matrix 

𝜆 RLS forgetting factor 

Beta Beta distribution 

TS Time step 

ℎ𝑖  Road height at each wheel 

𝑧𝑢,𝑖 Unsprung height for each wheel 

L Wheelbase length 

B Trackwidth 

𝑇 Torque 

RCH Roll center height 

PCH Pitch center height 

𝐴𝑧,𝑖 Vertical acceleration at each suspension strut 

of the vehicle 

∆𝑊 Weight transfer 

ℎ𝑟, ℎ𝑟𝑡 Distance between CG and roll center 

ℎ𝑝 Distance between CG and pitch center 

𝑉𝑥 Longitudinal velocity 

C 𝐶𝑑𝐴 

𝑚𝑖 Mass at each corner 
𝐹𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 Normal force at tire contact patch for each 

wheel 
ℎ𝑝𝑐, 𝑖 Pitch center height parameter for each wheel 

ℎ𝑟𝑐,𝑖 Roll center height parameter for each wheel 

𝐷𝑠,𝑖 Displacement at the 𝑖𝑡ℎ strut 
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ℎ𝑠 Averaged suspension displacement 

RC Rollover Coefficient 

𝑊𝑙,𝑊𝑟 Weight on left or right side 

W Vehicle weight 

𝐹𝑙 , 𝐹𝑟 Force on left or right side 
 

 


