Low temperature processed 0.7SrBi2Ta2O9 –0.3Bi3TaTiO9 thin films fabricated on multilayer electrode-barrier structure for high-density ferroelectric memories
S. O. Ryu, P. C. Joshi, and S. B. Desu

Citation: Applied Physics Letters 75, 2126 (1999); doi: 10.1063/1.124938
View online: http://dx.doi.org/10.1063/1.124938
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/75/14?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Impurities in dielectrics and hydrogen barriers for SrBi2Ta2O9-based ferroelectric memories

Hydrogen barriers for SrBi2Ta2O9-based ferroelectric memories

Transmission electron microscope investigation of SrBi2Ta2O9 memory capacitors on Si with silicon dioxide and silicon nitride as buffers

Barrier properties of Ta–RuO2 diffusion barrier for dynamic random access memory capacitor bottom electrodes
J. Vac. Sci. Technol. B 17, 1470 (1999); 10.1116/1.590776

Investigation of Ta–RuO2 diffusion barrier for high density memory capacitor applications
J. Vac. Sci. Technol. B 16, 3059 (1998); 10.1116/1.590342
Low temperature processed 0.7SrBi$_2$Ta$_2$O$_9$–0.3Bi$_3$TaTiO$_9$ thin films fabricated on multilayer electrode-barrier structure for high-density ferroelectric memories

S. O. Ryu
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061

P. C. Joshi$^{[1]}$
Weapons and Materials Research Directorate, Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005

S. B. Desu
Department of Electrical and Computer Engineering, University of Massachusetts, 201 Marcus Hall, Amherst, Massachusetts 01003

(Received 29 April 1999; accepted for publication 3 August 1999)

Thin films of solid-solution material 0.7SrBi$_2$Ta$_2$O$_9$–0.3Bi$_3$TaTiO$_9$ (0.7SBT–0.3BTT) were fabricated on n^+-polycrystalline (n^+-poly) Si substrates by a metalorganic solution deposition technique at a low processing temperature of 650 °C using a Pt–Rh/Pt–Rh–O$_x$ electrode-barrier structure. The Pt–Rh/Pt–Rh–O$_x$ structure was deposited using an in situ reactive radio frequency sputtering process. The electrodes had a smooth and fine-grained microstructure and were excellent diffusion barriers between the 0.7SBT–0.3BTT thin film and Si substrate. The ferroelectric (0.7SBT–0.3BTT) test capacitors using these electrode-barrier grown directly on Si showed good ferroelectric hysteresis properties, measured through n^+-poly Si substrate, with $2P_c$ and E_c values of 11.5 μC/cm2 and 80 kV/cm, respectively, at an applied electric field of 200 kV/cm. The films exhibited good fatigue characteristics ($<10\%$ decay) under bipolar stressing up to 10^{11} switching cycles and the leakage current density was lower 10^{-7} A/cm2 at an applied electric field of 200 kV/cm. The good ferroelectric properties of 0.7SBT–0.3BTT solid-solution thin films at a low processing temperature of 650 °C and excellent electrode-diffusion barrier properties of a Pt–Rh/Pt–Rh–O$_x$ structure are encouraging for the realization of high-density nonvolatile ferroelectric random access memories on silicon substrates. © 1999 American Institute of Physics. [S0003-6951(99)01240-1]

Layered perovskite materials are being intensively investigated for ferroelectric random access memory (FRAM) devices. Ferroelectric nonvolatile memories have the potential to replace current state-of-the-art nonvolatile memories such as floating and flash erasable programmable read only memories because of their low writing voltages, faster writing speeds, better endurance, and potentially fewer process-
the diffusion barrier layer, and the top Pt–Rh–O₃ layer is the fatigue reduction layer. This electrode-barrier structure becomes even simpler for layered perovskite materials due to their excellent fatigue endurance characteristics. The electrode–diffusion barrier layers were deposited on n⁺-poly Si substrates by an in situ reactive radio frequency (rf) sputtering process, details of which are described elsewhere. The ferroelectric 0.7SBT–0.3BTT layer was deposited by a metalorganic solution deposition technique using carboxylate-alcoxide precursors. Prior to the deposition of the electrode-barrier layers, the silicon substrates were cleaned by a room-temperature technique entitled spin etching to remove the native silicon oxide and make the substrate surface hydrogen terminated. The post-deposition annealing of the films was carried out at 650 °C for 1 h in an oxygen atmosphere. The thickness of the films, as determined by spectroscopic ellipsometry, was about 2400 Å. The structure and surface morphology of the films were determined by x-ray diffraction (XRD) and atomic force microscopy (AFM). The electrical measurements were conducted on films in Pt–Rh/0.7SBT–0.3BTT/Pt–Rh [metal–ferroelectric–metal (MFM)] and Pt–Rh/0.7SBT–0.3BTT/Pt–Rh/Pt–RhOₓ/n⁺-poly Si [metal–ferroelectric–metal–oxide–silicon (MFMOS)] configurations. Top Pt–Rh electrodes (10% Rh), area=3.0×10⁻⁴ cm², were deposited through a shadow mask by rf sputtering. The films were annealed at 600 °C for 2 min after top electrode deposition to get good electrical contact. The bottom metal electrode of MFM capacitors was accessed by etching the 0.7SBT–0.3BTT thin films while a conducting silver adhesive paint was applied to the back surface of the silicon substrate after etching to make electrical contact on MFMOS capacitors.

The structure of the films was analyzed by XRD. The XRD patterns were recorded on a Scintag XDS 2000 diffractometer using Cu Kα radiation at 40 kV. Figure 1 shows the XRD pattern of a 0.7SBT–0.3BTT thin film annealed at 650 °C for 60 min. It was possible to obtain a well-crystallized perovskite phase at an annealing temperature of 650 °C. The intensity and sharpness of the peaks in the XRD pattern of present films was comparable to those deposited on Pt-coated Si wafers indicating a similar order of crystallization. The surface morphology of the 0.7SBT–0.3BTT thin films on a Pt–Rh electrode was analyzed by Digital Instrument’s Dimension 3000 AFM using the tapping mode with amplitude modulation. The films exhibited, as shown in Fig. 2, a dense microstructure and fine grain size. The average surface roughness of the films was found to be less than 20 nm. The surface morphology of the films deposited on Pt–Rh electrodes showed more uniform grain growth as compared to films deposited on Pt-coated Si substrates where large elongated grains were observed along with small grains. The average grain size was about 130 nm, which is comparable to average grain size observed for films deposited on Pt-coated Si wafers under similar annealing temperature conditions.

The dielectric properties of 0.7SBT–0.3BTT thin films were measured with a HP 4192A impedance analyzer at room temperature. The dielectric measurements were conducted on films in MFM and MFMOS configurations to analyze the diffusion barrier/n⁺-poly Si interfacial characteristics. Figure 3 shows the dielectric constant, εᵣ, and loss factor, tan δ, of MFM and MFMOS capacitors, processed at 650 °C, as a function of frequency. The measured small signal dielectric constant values for MFM and MFMOS capacitors.
MFMOS capacitors were 12.6 and 11.5 \times 10^7 \text{A/cm}^2, respectively, at an applied electric field of 200 kV/cm. The coercive field \(E_c \) values for both MFM and MF-MOS capacitors were 12.6 and 11.5 \mu\text{C/cm}^2, respectively, at an applied electric field of 200 kV/cm. The coercive field \(E_c \) values for both configurations were about 80 kV/cm. The high value of \(P_r \) on Pt–Rh/Pt–Rh–O electrode-barrier structure, comparable to the value obtained on Pt-coated Si substrates, indicated good film/electrode-barrier/n⁺-poly Si interfacial characteristics. The leakage current density of 0.7SBT–0.3BTT thin films was lower than \(10^{-7} \text{A/cm}^2 \) at an applied electric field of 200 kV/cm, indicating good insulating characteristics. The polarization switching endurance tests were performed using an externally generated square wave with amplitude of \(\pm 200 \text{kV/cm} \) and a frequency of 500 kHz. Figure 5 shows the decay of the remanent polarization as a function of polarization reversing switching cycles. Both MFM and MF-MOS capacitors exhibited similar fatigue characteristics with less than 10% decay in remanent polarization after about \(10^{11} \) switching cycles suggesting the suitability of 0.7SBT–0.3BTT thin films and Pt–Rh/Pt–Rh–O electrode-barrier for the fabrication of reliable high-density nonvolatile memories.

In conclusion, polycrystalline 0.7SBT–0.3BTT thin films were successfully produced on n⁺-poly Si substrates at a low processing temperature of 650 °C by a metalorganic solution deposition technique using Pt–Rh/Pt–Rh–O electrode-barrier layers. The ferroelectric test capacitors showed excellent dielectric, insulating, and ferroelectric properties. The dielectric values did not show any appreciable dispersion with frequency up to about 1 MHz indicating good ferroelectric/electrode-barrier/n⁺-Si interfacial characteristics. The typical measured \(P_r \) and \(E_c \) values were 11.5 \mu\text{C/cm}^2 and 80 kV/cm, respectively, at an applied electric field of 200 kV/cm. At this bias, the leakage current density was lower than \(10^{-7} \text{A/cm}^2 \). The switching degradation of the polarization state was found to be less than 10% after about \(10^{11} \) polarization reversing switching cycles. The low processing temperature of 650 °C and good structural, insulating, and ferroelectric properties of 0.7SBT–0.3BTT thin films, and excellent barrier properties of the multilayer electrode structure show promise for the integration of ferroelectric capacitors in the very large scale integrated nonvolatile random access memory cell structures.