Nonparallel stability of heated two-dimensional boundary layers

Waqar Asrar* and Ali H. Nayfeh
Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

(Received 20 June 1984; accepted 16 October 1984)

The method of multiple scales is used to determine three partial differential equations describing the modulation of the amplitude and complex wavenumbers of three-dimensional (3-D) waves propagating in two-dimensional (2-D) heated liquid layers. These equations are solved numerically along the characteristics subject to the condition that the ratio of the complex group velocities in the streamwise and transverse directions be real. A new criterion for the most dangerous frequency is proposed. For an n factor of 9, $F = 25 \times 10^{-6}$ is found to be the most dangerous frequency for the Blasius flow. Three-dimensional waves yield lower n factors than 2-D waves, irrespective of the heating distribution. For a power-law heating distribution of the form $T = T_e + Ax^N$, one cannot make a general statement on the effect of N on the stability. Numerical results are presented that show the n factor to increase with an increase or a decrease in N.

I. INTRODUCTION

The effects of heating/cooling on the stability of boundary layers were investigated by Linke 1 and Liepmann and Fila. 2 DiPrima and Dunn 3 quote unpublished results of McIntosh indicating large increases in the minimum critical Reynolds number for heated liquid boundary layers. Hauptmann 4 also predicted strong stabilization in water for small heating.

Wazzan, Okamura, and Smith 5,6 conducted extensive analytical studies of the stability of uniformly heated and cooled water boundary layers. They formulated the 2-D stability problem by taking into account the viscosity and temperature variations of the basic flow but neglecting the temperature and viscosity disturbances. The result is a fourth-order modified Orr–Sommerfeld equation. They showed that cooling destabilizes and heating stabilizes water boundary layers. Potter and Graber 7 also obtained similar results for plane Poiseuille flow. Lowell and Reshotko (e.g., Ref. 8) reformulated the 2-D stability problem and included the temperature and viscosity disturbances, thereby obtaining a sixth-order system. Lowell and Reshotko found that their sixth-order system yields neutral stability curves and growth rates that are sufficiently close to those obtained using the fourth-order system of Wazzan et al. The stabilizing effect of small uniform increases in the wall temperature of water boundary layers was confirmed experimentally by Strazisar, Reshotko, and Prahl 9 and Barker. 10 Barker found that the transition Reynolds number for water flowing in a tube can be increased from 10×10^6 to 42×10^6 by increasing the wall temperature by 7 $^\circ$C. The results of Strazisar et al. 9 show that, as the wall temperature increases, the critical Reynolds number increases, the growth rates decrease, and the range of frequencies undergoing amplification decreases. These results qualitatively agree with all the parallel results. 5–7 Including the nonparallel terms in the stability analysis 11 yields results that quantitatively agree with the experimental data.

Since the flow over the portion of the body upstream of the critical Reynolds number is stable and does not need heating, one needs to heat only the portions downstream of the critical Reynolds number. This suggests the use of nonuniform wall heating. This led Strazisar and Reshotko 12 to examine experimentally the effects of two types of nonuniform wall heating: step changes in the wall temperature of magnitude ΔT occurring at a location x_s, and power-law temperature distributions of the form $T_w - T_e = Ax^N$ for positive and negative values of N, where T is the temperature and the subscripts w and e refer to the wall and boundary-layer edge, respectively. In the power law case, Strazisar and Reshotko kept the wall temperature difference $T_w(x_s) - T_e$ at some reference location x_s fixed, while varying the exponent N. They made all their measurements at x_s, which corresponds to a displacement-thickness Reynolds number of 800. They found that decreasing N is stabilizing because for all frequencies the case $N < 0$ results in growth rates that are lower than the case $N = 0$, which in turn results in growth rates that are lower than the case $N > 0$. These results could not be explained by the parallel stability analyses that calculate the mean flow using self-similar boundary-layer codes. Nayfeh and El-Hady 13 showed that the stabilizing influence of decreasing N at x_s can be explained only if the mean flow is calculated using nonsimilar boundary-layer codes. Although the growth rates and range of frequencies undergoing amplification decrease at x_s, by decreasing N, we show in the present paper that the influence of decreasing N on the stability is not universal because the integrated growth rates (n factors) may increase or decrease with increasing N, depending on the position of the reference location x_s, relative to branches I and II of the neutral stability curve. Moreover, we propose a method for calculating the most dangerous frequency; that is, the frequency that might be responsible for triggering large growth rates and eventually transition.

II. PROBLEM FORMULATION

The fluid density ρ^*, viscosity coefficient μ^*, and thermal conductivity κ^* are assumed to be functions of tempera-
ture, which depends on the spatial coordinates. Nondimensional variables are introduced using \(L^* = (2\nu^* x^*/U^*_x)^{1/2} \) as the length scale, where \(x^* \) is the surface distance and \(\nu^* \) is the local edge kinematic viscosity, the local edge velocity \(U^*_x \) as the velocity scale, and the free stream values of viscosity, specific heat, and thermal conductivity as the reference values for the fluid properties. The quantities with an asterisk are dimensional.

A. Basic flow

We restrict our attention to time-independent 2-D boundary layer flows that are slightly nonparallel; that is, the transverse velocity is small compared with the streamwise component and all mean flow quantities are slowly varying functions of the streamwise position \(x \). Then, the basic flow is governed by the following nondimensional set of equations:

\[
\rho \left(U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} \right) = \rho \frac{dU_x}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial U}{\partial y} \right) ,
\]

\[
\frac{\partial P}{\partial y} = 0 ,
\]

\[
\frac{\partial (\rho U)}{\partial x} + \frac{\partial (\rho V)}{\partial y} = 0 ,
\]

\[
\rho \left(U \frac{\partial H}{\partial x} + V \frac{\partial H}{\partial y} \right) = \frac{\partial}{\partial y} \left[\left(\frac{\kappa}{c_p} \right) \frac{\partial H}{\partial y} + \mu \left(1 - \frac{1}{\Pr} \right) \frac{U \partial U}{\partial y} \right] ,
\]

where \(U \) and \(V \) are the velocity components in the \(x \) and \(y \) directions, \(P \) is the pressure, \(H \) is the total enthalpy, \(c_p \) is the specific heat at constant pressure, \(\Pr \) is the Prandtl number, and the subscript \(e \) refers to conditions at the edge of the boundary layer.

The solution of Eqs. (1)–(4) subject to the appropriate boundary conditions yields the basic flow which can be expressed as

\[
U = U_0(x_0,y_0), \quad V = e\gamma(x_0,y_0), \quad W = 0 ,
\]

\[
P = P_0(x_0), \quad T = T_0(x_0,y_0) ,
\]

where

\[
x_0 = \epsilon x , \quad \epsilon = 1/R \quad \text{and} \quad R = \frac{L^* U^*_x}{\nu^*} .
\]

B. Disturbance equations

Since the effect of temperature perturbations on the stability results is negligible, we consider the temperature profile obtained by solving the energy equation for the basic flow and do not consider the energy equation in deriving the disturbance equations. Small disturbances are introduced and superimposed on the basic flow so that the total-flow quantities can be expressed as

\[
Q = Q(x,y) + q(x,y,z,t) ,
\]

where \(Q \) represents \(U, V, W, \) and \(P \), the subscript \(s \) refers to the basic state, and the lower cases \(u, v, w, \) \(p \) refer to the disturbance quantities.

Substituting the total-flow quantities into the Navier-Stokes equations, subtracting the basic-flow terms, and linearizing the resulting equations, we obtain the following disturbance equations:

\[
\rho \left(\frac{\partial u}{\partial t} + U \frac{\partial u}{\partial x} + u \frac{\partial U}{\partial x} + eV \frac{\partial u}{\partial y} + v \frac{\partial U}{\partial y} + W \frac{\partial u}{\partial z} + \frac{\partial L_z}{\partial x} \right) = \frac{\partial P}{\partial x} + \frac{1}{R} \left(\frac{\partial}{\partial x} \left[2\mu_u \frac{\partial u}{\partial x} + \nu \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} \right) \right] \right) ,
\]

\[
\rho \left(\frac{\partial v}{\partial t} + U \frac{\partial v}{\partial x} + u \frac{\partial U}{\partial x} + eV \frac{\partial v}{\partial y} + v \frac{\partial U}{\partial y} + W \frac{\partial v}{\partial z} + \frac{\partial L_z}{\partial y} \right) = \frac{\partial P}{\partial y} + \frac{1}{R} \left(\frac{\partial}{\partial x} \left[2\mu_u \frac{\partial v}{\partial x} + \nu \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial v}{\partial y} + \frac{\partial v}{\partial x} \right) \right] \right) ,
\]

\[
\rho \left(\frac{\partial w}{\partial t} + U \frac{\partial w}{\partial x} + u \frac{\partial U}{\partial x} + eV \frac{\partial w}{\partial y} + v \frac{\partial U}{\partial y} + W \frac{\partial w}{\partial z} + \frac{\partial L_z}{\partial z} \right) = \frac{\partial P}{\partial z} + \frac{1}{R} \left(\frac{\partial}{\partial x} \left[2\mu_u \frac{\partial w}{\partial x} + \nu \left(\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial w}{\partial x} \right) \right] \right) ,
\]

These equations need to be supplemented by boundary conditions. The no-slip and no-penetration boundary conditions demand the vanishing of the disturbance velocities at the wall; that is,

\[
u = v = w = 0 \quad \text{at} \quad y = 0 .
\]

Moreover, all disturbances must decay away from the wall; that is,

\[
u, v, w, \to 0 \quad \text{as} \quad z \to \infty .
\]

III. METHOD OF ANALYSIS

Using the method of multiple scales, we seek a first-order uniform expansion for the disturbance quantities \(u, v, \) \(w, p \) in the traveling harmonic waveform,

\[
q(x,y,z,t) = \left[q_0(x_0,y_0,z_0,t_0) + eq_1(x_0,y_0,z_0,t_0) + \ldots \right] \exp(i\theta) ,
\]

where \(z_0 = \epsilon z, t_0 = \epsilon t, \) and
\[
\frac{\partial \theta}{\partial x} = \alpha(x, z), \quad \frac{\partial \theta}{\partial z} = \beta(x, z), \quad \frac{\partial \theta}{\partial t} = -\omega. \quad (15)
\]

Here \(\alpha\) is the wavenumber component in the \(x\) direction, \(\beta\) is the wavenumber component in the \(z\) direction, and \(\omega\) is the nondimensional frequency. Using the chain rule, we have
\[
\frac{\partial}{\partial x} = \alpha \frac{\partial}{\partial \theta} + \epsilon \frac{\partial}{\partial \xi}, \quad (16a)
\]
\[
\frac{\partial}{\partial z} = \beta \frac{\partial}{\partial \theta} + \epsilon \frac{\partial}{\partial \xi}, \quad (16b)
\]
\[
\frac{\partial}{\partial t} = -\omega \frac{\partial}{\partial \theta} + \epsilon \frac{\partial}{\partial \xi}. \quad (16c)
\]
For a spatial stability analysis, \(\alpha\) and \(\beta\) are complex and \(\omega\) is real; \(\alpha\), and \(\beta\), then represent the wavenumber components, and \(-\alpha\) and \(-\beta\), represent the growth rates in the streamwise and spanwise directions, respectively. For a temporal stability analysis, \(\alpha\) and \(\beta\) are real and represent the wavenumber components in the streamwise and spanwise directions; \(\omega\) is complex, with a real part that represents the frequency and an imaginary part that represents the growth rate.

Substituting Eqs. (14)–(16) into Eqs. (8)–(13) and equating each of the coefficients of \(\epsilon^{0}\) and \(\epsilon^{1}\) on both sides, we have two sets of problems. These are called the zeroth-order and the first-order problems, respectively.

A. The zeroth-order problem

The zeroth-order problem is
\[
L_{1}(u_{0}, v_{0}, w_{0}) = \rho_{s} \left[i\alpha u_{0} + D u_{0} + i\beta v_{0} + v_{0} p_{0} \right] = 0, \quad (17)
\]
\[
L_{2}(u_{0}, v_{0}, w_{0}, p_{0}) = \rho_{s} \left[-\omega + \alpha U_{s} + \beta W_{s} \right] u_{0} + \rho_{s} U_{s} D u_{0} - i\rho_{s} (1/R) \left[i\alpha u_{0} + \frac{i\alpha}{2} u_{0} + \frac{i\beta}{2} v_{0} + \frac{i\beta}{2} w_{0} \right] \right] = 0, \quad (18)
\]
\[
L_{3}(u_{0}, v_{0}, w_{0}, p_{0}) = \rho_{s} \left[-\omega + i\alpha U_{s} + i\beta W_{s} \right] v_{0} + \rho_{s} U_{s} D v_{0} - i\rho_{s} (1/R) \left[i\alpha u_{0} + \frac{i\alpha}{2} u_{0} + \frac{i\beta}{2} v_{0} + \frac{i\beta}{2} w_{0} \right] \right] = 0, \quad (19)
\]
\[
L_{4}(u_{0}, v_{0}, w_{0}, p_{0}) = \rho_{s} \left[i\omega \alpha U_{s} + i\beta W_{s} \right] w_{0} + \rho_{s} U_{s} D w_{0} - i\rho_{s} (1/R) \left[i\alpha u_{0} + \frac{i\alpha}{2} u_{0} + \frac{i\beta}{2} v_{0} + \frac{i\beta}{2} w_{0} \right] \right] = 0, \quad (20)
\]
and

The homogeneous sixth-order system of Eqs. (17)–(22) represents an eigenvalue problem. For a given basic flow and four of the six parameters \(\alpha_{s}, \alpha_{t}, \beta_{s}, \beta_{t}, \omega_{s},\), and \(\omega_{t}\), we can calculate the other two as eigenvalues.

Equations (17)–(20) can be written as a set of six first-order equations that can be numerically integrated over the region of interest. To this end, we define
\[
Z_{01} = u_{0}, \quad Z_{02} = D u_{0}, \quad Z_{03} = v_{0}, \quad (23a)
\]
\[
Z_{04} = p_{0}, \quad Z_{05} = w_{0}, \quad Z_{06} = D w_{0}. \quad (23b)
\]
This enables us to rewrite Eqs. (17)–(22) as
\[
D Z_{0} - \sum_{j=1}^{6} A_{ij} Z_{0j} = 0 \quad \text{for} \quad i = 1, 2, 3, \ldots, 6, \quad (24)
\]
\[
Z_{01} = Z_{03} = Z_{05} = 0 \quad \text{at} \quad y = 0, \quad (25)
\]
\[
Z_{01} \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty, \quad (26)
\]
where \((A_{ij})\) is a \(6 \times 6\) variable-coefficient matrix which is defined in Appendix A. The \(A_{ij}\) are also slowly varying functions of \(x_{1}\) and \(z_{1}\).

The solution of Eqs. (24)–(26) can be written as
\[
Z_{0i} = \mathcal{A} \left(x_{1}, z_{1}, t_{1}, y_{1}, x_{1}, y_{1}, z_{1} \right) \quad \text{for} \quad i = 1, 2, \ldots, 6, \quad (27)
\]
where \(\mathcal{A}\) is an unknown function at this level of approximation. It is determined by imposing the solvability condition at the next level of approximation.\(^{15}\)

B. The first-order problem

Substituting Eqs. (14)–(16) into Eqs. (8)–(13) and equating the coefficients of \(\epsilon\) on both sides, we obtain
\[
L_{i}(u_{1}, v_{1}, w_{1}) = I_{i}, \quad (28a)
\]
\[
L_{2}(u_{2}, v_{2}, w_{2}, p_{2}) = I_{2}, \quad (28b)
\]
\[
L_{3}(u_{1}, v_{1}, w_{1}, p_{1}) = I_{3}, \quad (28c)
\]
\[
L_{4}(u_{1}, v_{1}, w_{1}, p_{1}) = I_{4}, \quad (28d)
\]
\[
u_{1}, u_{1}, v_{1}, w_{1} \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty, \quad (28f)
\]
where the operators \(L_{1}, L_{2}, L_{3},\) and \(L_{4}\) are defined in Eqs. (17)–(20) and the inhomogeneous terms \(I_{1}, I_{2}, I_{3},\) and \(I_{4}\) have contributions from the nonparallel effects of the basic flow and the variation of the eigenfunctions along the streamwise and spanwise directions. They are defined in Appendix B.

Equations (28) can be cast into a set of six first-order equations by defining
\[
Z_{11} = u_{1}, \quad Z_{12} = D u_{1}, \quad Z_{13} = v_{1}, \quad (29a)
\]
\[
Z_{14} = p_{1}, \quad Z_{15} = w_{1}, \quad Z_{16} = D w_{1}. \quad (29b)
\]

The result is
\[
D Z_{11} - \sum_{j=1}^{6} A_{1j} Z_{1j} = D_{1} \frac{\partial A}{\partial x_{1}} + E_{1} \frac{\partial A}{\partial x_{1}} + F_{1} \frac{\partial A}{\partial x_{1}} + G_{1}, \quad (30)
\]
\[
Z_{11} = Z_{12} = Z_{15} = 0 \quad \text{at} \quad y = 0, \quad (31)
\]
\[
Z_{11} \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty, \quad (32)
\]
where \(D_{1}, E_{1}, F_{1},\) and \(G_{1}\) are functions of the basic-flow quantities, the eigenfunctions of the zeroth-order problem, and the streamwise and spanwise derivatives of these quantities. They are defined in Appendix B.

Since the homogeneous part of the first-order problem has a nontrivial solution, the inhomogeneous first-order problem has a solution only if the inhomogeneous parts are orthogonal to every solution of the adjoint homogeneous
problem. This is the solvability or the consistency condition which must be satisfied by the first-order problem.

C. Solvability condition

We use the concept of adjoint to arrive at the solvability condition for the first-order problem. The adjoint problem can be defined as follows: the zeroth-order homogeneous system of equations (24) can be rewritten in matrix form as

\[\{ D Z_0 \} = 0, \]

where \(Z_0 \) is a column vector whose elements are the \(Z_{0i} \). We multiply Eq. (33) from the left by \(\{ W^T \} \), where \(W \) is the adjoint column vector, and obtain

\[\{ W^T \} \{ D Z_0 \} = 0. \]

Integrating Eq. (34a) by parts from \(y = 0 \) to \(y = \infty \), we obtain

\[\int_0^\infty \{ W^T \} \{ D Z_0 \} \, dy = 0. \]

We now define the adjoint equation by setting the coefficient of \(| Z_0 | \) in the integrand equal to zero. The result is

\[\{ W^T \} \{ D W \} + \{ W^T \} \{ A \} = 0, \]

or

\[\{ W^T \} \{ D W \} + \{ W^T \} \{ A \} = 0. \]

The boundary conditions for the adjoint system can be obtained as follows. Using Eq. (35), we obtain from Eq. (34b) that

\[\{ W^T \} \{ Z_0 \} |_{y=0} = 0, \]

or

\[\int_0^\infty \{ W^T \} \{ Z_0 \} \, dy = 0. \]

(36)

Since \(Z_{0i} \to 0 \) as \(y \to \infty \), the terms evaluated at infinity in Eq. (36) vanish if

\[W_{n} \to 0 \] as \(y \to \infty \).

(37)

Then using Eqs. (25), we find that Eq. (36) becomes

\[\int_0^\infty \{ W^T \} \{ Z_0 \} \, dy = 0. \]

(38)

We define the adjoint boundary conditions at \(y = 0 \) such that each of the coefficients of \(Z_{0i} \), \(Z_{04} \), and \(Z_{06} \) in Eq. (38) vanishes independently; that is,

\[W_2 = W_4 = W_6 = 0 \] at \(y = 0 \).

(39)

Therefore the adjoint problem is defined by Eq. (35) subject to the boundary conditions (37) and (39).

Having defined the adjoint problem, we return to the inhomogeneous problem. We multiply the matrix form of Eq. (30) from the left by \(\{ W^T \} \), integrate the result by parts from \(y = 0 \) to \(y = \infty \), use the definition of the adjoint and of Eqs. (31) and (32), and obtain the solvability condition

\[\int_0^\infty \{ W^T \} \{ D \} \frac{\partial A}{\partial y} \, dy + \int_0^\infty \{ W^T \} \{ E \} \frac{\partial A}{\partial x_1} \, dy \]

\[+ \int_0^\infty \{ W^T \} \{ F \} \frac{\partial A}{\partial x_1} \, dy + \int_0^\infty \{ W^T \} \{ G \} \, dy = 0, \]

where \(D \), \(E \), \(F \), and \(G \) are column vectors whose components are the \(D_i \), \(E_i \), \(F_i \), and \(G_i \).

D. Amplitude-modulation equation

Substituting Eqs. (27) into Eq. (40) yields the following amplitude-modulation equation:

\[g_1 \frac{\partial A}{\partial y} + g_2 \frac{\partial A}{\partial x_1} + g_3 \frac{\partial A}{\partial z_1} = \hat{h}_i A, \]

or

\[\frac{\partial A}{\partial y} + \omega_\alpha \frac{\partial A}{\partial x_1} + \omega_\beta \frac{\partial A}{\partial z_1} = h_1 A, \]

where

\[\omega_\alpha = g_2/g_1, \quad \omega_\beta = g_3/g_1, \quad h_1 = \hat{h}_i/g_1, \]

and \(g_1 \), \(g_2 \), and \(g_3 \) are defined in Appendix C. Equation (41) describes the modulation of the amplitude function \(A \) with \(x_1 \), \(z_1 \), and \(t_1 \). Here, \(\omega_\alpha \) and \(\omega_\beta \) are the components of the complex group velocity in the \(x \) and \(z \) directions, respectively. The functions \(g_1 \), \(g_2 \), and \(g_3 \) are given in quadratures in terms of the basic flow, the eigenvalues and the eigenfunctions of the zeroth-order problem, and the eigenvalues of the adjoint problem. The function \(\hat{h}_i \) is given in quadrature in terms of the basic flow, the eigenfunctions, the variation of the basic-flow quantities with the streamwise and spanwise directions, the nonparallel flow terms, and the variation of the eigenfunctions and eigenvalues of the zeroth-order problem in the streamwise and spanwise directions. It is defined in Appendix C.

E. Wavenumber modulation equations

The evaluation of \(h_1 \) demands the evaluation of the derivatives of the eigenfunctions of the zeroth-order problem. To this end we replace \(Z_{0i} \) by \(\zeta_1 \), the zeroth-order eigenfunctions, in Eqs. (24)-(26), differentiate the resulting expressions with respect to \(x_1 \), and arrive at

\[D \left(\frac{\partial \zeta_1}{\partial x_1} \right) = \sum_{j=1}^6 A_j \left(\frac{\partial \zeta_j}{\partial x_1} \right) = iE_i \frac{\partial \alpha}{\partial x_1} + iF_i \frac{\partial \beta}{\partial x_1} + H_{1i}, \]

subject to the boundary conditions

\[\frac{\partial \zeta_1}{\partial x_1} = \frac{\partial \zeta_3}{\partial x_1} = \frac{\partial \zeta_5}{\partial x_1} = 0 \] at \(y = 0 \),

\[\frac{\partial \zeta_n}{\partial x_1} \to 0 \] as \(y \to \infty \).

Similarly, differentiating Eqs. (24)-(26) with respect to \(z_1 \) yields

\[D \left(\frac{\partial \zeta_1}{\partial z_1} \right) = \sum_{j=1}^6 A_j \left(\frac{\partial \zeta_j}{\partial z_1} \right) = iE_i \frac{\partial \alpha}{\partial z_1} + iF_i \frac{\partial \beta}{\partial z_1} + H_{2i}, \]

subject to the boundary conditions

\[\frac{\partial \zeta_1}{\partial z_1} = \frac{\partial \zeta_3}{\partial z_1} = \frac{\partial \zeta_5}{\partial z_1} = 0 \] at \(y = 0 \),

\[\frac{\partial \zeta_n}{\partial z_1} \to 0 \] as \(y \to \infty \),

where the \(E_i \) and \(F_i \) are given in Appendix B and...
\[H_{1i} = \sum_{m=1}^{6} \frac{\partial A_{im}}{\partial x_1} |_{\alpha, \beta} \xi m, \quad H_{2i} = \sum_{m=1}^{6} \frac{\partial A_{im}}{\partial \alpha} |_{\alpha, \beta} \xi m. \]

Since the homogeneous parts of Eqs. (43)-(48) have non-trivial solutions, the inhomogeneous systems (43)-(45) and (46)-(48) have solutions only if solvability conditions are satisfied. Application of these conditions yields
\[\omega_\alpha \frac{\partial \alpha}{\partial x_1} + \omega_\beta \frac{\partial \beta}{\partial x_1} = h_2, \quad (49) \]
and
\[\omega_\alpha \frac{\partial \alpha}{\partial x_1} + \omega_\beta \frac{\partial \beta}{\partial x_1} = h_3, \quad (50) \]
where \(h_2 \) and \(h_3 \) reflect the effects of nonparallelism in the streamwise and spanwise directions, respectively. They are given in Appendix C.

If the phase angle \(\theta \) is assumed to be continuously differentiable, then it follows from Eqs. (15) that
\[\frac{\partial^2 \theta}{\partial x \partial z} = \epsilon \frac{\partial \alpha}{\partial x_1} = \frac{\partial^2 \theta}{\partial z \partial x} = \epsilon \frac{\partial \beta}{\partial x_1}, \]
and hence
\[\frac{\partial \alpha}{\partial x_1} = \frac{\partial \beta}{\partial x_1}. \quad (51) \]
Therefore Eqs. (49) and (50) can be rewritten as
\[\omega_\alpha \frac{\partial \alpha}{\partial x_1} + \omega_\beta \frac{\partial \alpha}{\partial x_1} = h_2, \quad (52) \]
\[\omega_\alpha \frac{\partial \beta}{\partial x_1} + \omega_\beta \frac{\partial \beta}{\partial x_1} = h_3. \quad (53) \]
For this formulation to represent a physical problem, Nayfeh16,17 showed that \(\omega_\beta/\omega_\alpha \) must be a real quantity. Dividing Eqs. (52) and (53) by \(\omega_\alpha \), we have
\[\frac{\partial \alpha}{\partial x_1} + \left(\frac{\omega_\beta}{\omega_\alpha} \right) \frac{\partial \alpha}{\partial z_1} = \frac{h_2}{\omega_\alpha}, \quad (54) \]
\[\frac{\partial \beta}{\partial x_1} + \left(\frac{\omega_\beta}{\omega_\alpha} \right) \frac{\partial \beta}{\partial z_1} = \frac{h_3}{\omega_\alpha}. \quad (55) \]

These two equations represent a Cauchy problem in \(x_1 \) and \(z_1 \).

A Cauchy problem needs initial data specified on an initial curve that is not a characteristic but intersects one of the characteristics. This initial data should satisfy the dispersion relationship and the condition \(\omega_\beta/\omega_\alpha \) being real at a particular \(x \) and \(z \) location. The initial data are taken to be
\[\beta(x_1 = a, z_1) = \beta_0(x_1) \text{ on } z_1 = Y. \]

IV. NUMERICAL PROCEDURE

The zeroth-order problem given by Eqs. (24)-(26) constitutes an eigenvalue problem. For a given mean flow the dispersion relationship is
\[\omega = \omega(\alpha, \beta, R). \quad (56) \]
The eigenvalues are determined numerically, in general, by integrating the system of Eqs. (24) in the transverse direction and imposing the boundary condition (25) and (26). The boundary conditions at \(y = 0 \) present no difficulties, but the boundary conditions (26) are reformulated in the numerical procedure that we use. Instead of applying the boundary conditions (26) numerically, which is very expensive and not very accurate, we determine an analytic solution to Eqs. (24) outside the boundary layer, apply these boundary conditions, and replace them with three other conditions at a finite value of \(y \) just outside the boundary layer. We reformulate the boundary conditions for both the zeroth-order problem and its adjoint following Ragab and Nayfeh.18

To solve the two-point boundary value problem given by Eqs. (24)-(26), we use the code SUPORT developed by Scott and Watts.19 The integration procedure consists of the superposition of a set of linearly independent solutions coupled with an orthonormalization procedure that ensures the linear independence of the individual solution vectors. The boundary-value problem is converted into an initial value problem. The boundary conditions at \(y = y_{\text{max}} \) are known. These three conditions eliminate three of the six linearly independent solutions. The remaining three solutions are then integrated through the boundary layer. Linear combinations of these three solutions do not satisfy, in general, the boundary conditions at \(y = 0 \) unless the parameters \(\omega_\alpha, \alpha, \beta, \) and \(R \) are chosen so that the dispersion relation (56) is satisfied. A simple Newton–Raphson procedure is used to iterate on the eigenvalues (two of the parameters \(\omega_\alpha, \omega_\beta, \alpha, \beta, \) and \(R \) given the other parameters) to satisfy the boundary conditions at \(y = 0 \).

V. METHOD OF DETERMINING THE MOST UNSTABLE DISTURBANCE

The most unstable disturbance is determined by solving the Cauchy problem defined by Eqs. (54) and (55) that govern the variation of the wavenumbers in the streamwise and spanwise directions. Their characteristics are given by
\[\frac{dx_1}{ds} = 1, \quad \frac{dz_1}{ds} = \frac{\omega_\beta}{\omega_\alpha}. \quad (57) \]
Along these characteristics, Eqs. (54) and (55) become
\[\frac{d\alpha}{ds} = \frac{h_2}{\omega_\alpha}, \quad \frac{d\beta}{ds} = \frac{h_3}{\omega_\alpha}. \quad (58) \]
Equations (58) show that if the wavenumber modulation equations were homogeneous, the wavenumbers would be constant along each characteristic obtained by integrating Eqs. (57). This would be the case for a "parallel boundary layer." Since the boundary layer is not "parallel" and all flow quantities are slowly varying functions of the streamwise and spanwise positions, the resulting wavenumber modulation equations are inhomogeneous, in general, and need to be numerically integrated with the dispersion relation (56) as a constraint subject to initial conditions on a given curve which intersects a characteristic curve. The initial conditions are given in the form
\[x_1(a, r) = a, \quad z_1(a, r) = r, \quad \beta(x_1 = a, r) = \beta_0(r). \quad (59) \]
The general solution of the characteristic Eqs. (57) can be written as
\[x_1 = s + c_1, \quad z_1 = \int_a^s \left(\frac{\omega_\beta}{\omega_\alpha} \right) dt + c_2. \quad (60) \]
where \(c_1\) and \(c_2\) are constants. Applying the initial conditions (59) and the choice \(s = a\) at the initial curve, we obtain \(x_1 = s\) and \(c_3 = \tau\). Hence

\[
x_1 = s, \quad z_1 = \int_{0}^{\mu} \left(\frac{\omega_B}{\omega_a} \right) \, dt + \tau.
\]

(61)

To proceed further, we need to determine the partial derivatives of \(\alpha\) and \(\beta\) and hence the partial derivatives of the \(\xi_i\) with respect to \(x_1\) and \(z_1\) along the characteristics. It follows from Eq. (58b) and the initial condition (59c) that

\[
\beta = \int_{0}^{\mu} \left(\frac{h_1}{\omega_a} \right) \, dt + \beta_0(\tau).
\]

(62)

Moreover, it follows from Eq. (61b) that

\[
\tau = z_1 - \int_{0}^{\mu} \left(\frac{\omega_B}{\omega_a} \right) \, dt.
\]

(63)

Since

\[
\frac{\partial \beta}{\partial x_1} = \frac{\partial \beta}{\partial s} \frac{\partial s}{\partial x_1} + \frac{\partial \beta}{\partial \tau} \frac{\partial \tau}{\partial x_1},
\]

and

\[
\frac{\partial s}{\partial x_1} = 1, \quad \frac{\partial \tau}{\partial x_1} = -\frac{\omega_B}{\omega_a},
\]

it follows from Eqs. (51) and (63) that

\[
\frac{\partial \alpha}{\partial x_1} = \frac{\partial \beta}{\partial x_1} = \frac{h_3}{\omega_a} - \left(\frac{\omega_B}{\omega_a} \right) \beta_0'(\tau).
\]

(64)

Then, it follows from Eq. (55) that

\[
\frac{\partial \beta}{\partial x_1} = \beta_0'(\tau).
\]

(65)

Substituting Eq. (64) into Eq. (54) yields

\[
\frac{\partial \alpha}{\partial x_1} = \frac{h_2}{\omega_a} - \left(\frac{\omega_B}{\omega_a} \right)^2 h_3 + \left(\frac{\omega_B}{\omega_a} \right)^2 \beta_0'(\tau).
\]

(66)

These partial derivatives can now be used to solve Eqs. (43)–(48) and hence determine \(\xi_1/\partial x_1\) and \(\xi_1/\partial z_1\), which in turn are used to determine \(h_1\). Then, for a monochromatic frequency, Eq. (41) can be rewritten along the characteristic as

\[
\frac{\partial A}{\partial s} = \left(\frac{h_1}{\omega_a} \right) A.
\]

(67)

To determine the most unstable disturbance, we determine the dimensional frequency \(\omega^*\) and the real part of the dimensional spanwise wavenumber \(\beta^*\) such that the \(n\) factor is a maximum. To this end, for a given \(\omega^*\), we select a \(\beta^*\) and let \(\beta_0(\tau) = \beta^*\) in Eq. (59c) and numerically integrate Eqs. (58), (61), and (67). The initial values for \(\beta_1, \alpha_1, \text{ and } \alpha_i\) are determined by solving the zeroth-order eigenvalue problem and imposing the condition that \(\omega_B/\omega_a\) must be real. If these conditions are not satisfied, the step size \(\Delta s\) is reduced until they are satisfied. Then, the \(n\) factor is calculated as

\[
n = -\int_{0}^{\mu} \left[\alpha_i + \left(\frac{\omega_B}{\omega_a} \right) \beta_i - \text{Re} \left(\frac{h_1}{\omega_a} \beta_0 \right) \right] \, ds.
\]

(70)

The process is repeated for other values of \(\beta^*\) and \(\omega^*\). Reed and Nayfeh20 defined the most dangerous frequency and spanwise wavenumber (values that might be responsible for triggering large growth rates and eventually transition) to be the values that maximize \(n\). Alternatively, we define the most dangerous frequency and spanwise wavenumber to be the values that make \(n\) exceed a critical value in the shortest possible distance.

VI. RESULTS AND DISCUSSION

Numerical results were obtained for the flow over a flat plate. The boundary layer equations were solved using the Transition Analysis Program System (TAPS).21 In all calculations \(U_e = 13.58\text{ m/sec}, T_e = 296.9\text{K}, \rho_e = 0.9965\text{ g/cc}, \mu_e = 0.0091676\text{ cP}, \text{ and the Reynolds number per meter (RPM)} = 14.76 \times 10^6.

A. Unheated case

Table I shows the results for the unheated case. In each case \(\omega^*\) is kept at a constant. To calculate the most dangerous frequency we proceed as follows. For flows over a flat plate we assume that transition corresponds to a given value of \(n\), say 9. Keeping this in mind the most dangerous frequency should be defined as the one that gives \(n = 9\) in the shortest possible distance along the plate. Based on this condition, Table I shows that the most dangerous frequency is \(F \approx 24.9 \times 10^{-6}\) corresponding to a dimensional frequency \(\omega^* \approx 5000\text{ Hz}; R_s\) in all tables is the Reynolds number based on the surface distance \(x\) and is defined as \(R_s = U_e^2 x / \nu^*\). These results compare very well with those of Saric22 who found that \(F = 25 \times 10^{-6}\) is the most dangerous frequency for a flat plate. A sample plot of the variation of the \(n\) factor with distance is shown in Fig. 1.

It is interesting to note that \(F = 12.46 \times 10^{-6}\) gives \(n\) factors greater than 20 if the integration is carried out along a much larger distance on the plate. Had we based the definition of the most dangerous frequency on the maximum value of \(n\), irrespective of how far the disturbance travels to reach this value,20 the results would have been erroneous. Since transition on a flat plate is assumed to occur when \(n\) reaches

<table>
<thead>
<tr>
<th>(\omega^*)</th>
<th>(F \times 10^{-6})</th>
<th>(n)</th>
<th>(R_s \times 10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>12.46</td>
<td>18.50</td>
<td>9.28</td>
</tr>
<tr>
<td>2500</td>
<td>12.46</td>
<td>9.00</td>
<td>5.25</td>
</tr>
<tr>
<td>4500</td>
<td>22.42</td>
<td>9.00</td>
<td>3.23</td>
</tr>
<tr>
<td>4900</td>
<td>24.44</td>
<td>9.00</td>
<td>3.14</td>
</tr>
<tr>
<td>4950</td>
<td>24.68</td>
<td>9.00</td>
<td>3.13</td>
</tr>
<tr>
<td>5000</td>
<td>24.93</td>
<td>9.00</td>
<td>3.13</td>
</tr>
<tr>
<td>5100</td>
<td>25.43</td>
<td>9.00</td>
<td>3.15</td>
</tr>
<tr>
<td>5200</td>
<td>25.93</td>
<td>9.00</td>
<td>3.15</td>
</tr>
</tbody>
</table>
9, there is no point in performing any calculations once this critical value is reached for any frequency. Consequently the modified definition of the most critical frequency should be used.

Next, an investigation is considered into the influence of 3-D disturbances with different dimensional wavelengths in the spanwise direction. In all the cases considered, the resulting n factors are equal to or less than those obtained for 2-D disturbances as shown in Table II. Introduction of 3-D disturbances reduces the wavenumber as well as the growth rates. The stronger the three dimensionality is, the lower the growth rates.

B. Heated case

Next, we evaluate the influence of power-law wall heating on the stability of the flow past a flat plate. The wall temperature is varied as $T_w = T_e + A x^N$, keeping $\Delta T = T_w - T_e = 5.56^\circ C$ at $x = 10.71$ cm for all N. The temperature distribution along the length of the plate is shown in Fig. 2. The exponent N varies between -1.0 and 1.0. Since the wall overheat is a function of the streamwise position, we use nonlinear boundary-layer codes to solve for the mean-flow quantities. This was shown to be a require-

TABLE II. Effect of three-dimensional disturbances for unheated case.

<table>
<thead>
<tr>
<th>ω^*</th>
<th>$F \times 10^{-6}$</th>
<th>β^*</th>
<th>n</th>
<th>$R_x = 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4900</td>
<td>24.44</td>
<td>1.0e-04</td>
<td>9.35</td>
<td>3.26</td>
</tr>
<tr>
<td>4900</td>
<td>24.44</td>
<td>3.0e+00</td>
<td>9.16</td>
<td>3.26</td>
</tr>
<tr>
<td>4900</td>
<td>24.44</td>
<td>5.0e+00</td>
<td>8.76</td>
<td>3.26</td>
</tr>
<tr>
<td>5000</td>
<td>24.93</td>
<td>1.0e-04</td>
<td>9.35</td>
<td>3.26</td>
</tr>
<tr>
<td>5000</td>
<td>24.93</td>
<td>1.0e-01</td>
<td>9.35</td>
<td>3.26</td>
</tr>
<tr>
<td>5000</td>
<td>24.93</td>
<td>3.0e-01</td>
<td>9.35</td>
<td>3.26</td>
</tr>
<tr>
<td>5000</td>
<td>24.93</td>
<td>5.0e-01</td>
<td>9.35</td>
<td>3.26</td>
</tr>
<tr>
<td>5000</td>
<td>24.93</td>
<td>1.0e+01</td>
<td>6.16</td>
<td>3.12</td>
</tr>
<tr>
<td>5000</td>
<td>24.93</td>
<td>1.5e+01</td>
<td>3.09</td>
<td>2.46</td>
</tr>
</tbody>
</table>

TABLE III. Effect of exponent N on growth rates at $x = 10.71$ cm.

<table>
<thead>
<tr>
<th>N</th>
<th>α_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = -1.0$</td>
<td>$-2.51e-04$</td>
</tr>
<tr>
<td>$N = -0.5$</td>
<td>$-0.54e-03$</td>
</tr>
<tr>
<td>$N = 0.5$</td>
<td>$-0.15e-02$</td>
</tr>
<tr>
<td>$N = 1.0$</td>
<td>$-0.17e-02$</td>
</tr>
</tbody>
</table>

ment by Nayfeh and El-Hady.\(^{13}\) The mean flow is obtained using the TAPS code. The variation of the growth rates at $x = 10.71$ cm with N is shown in Table III for $F = 19.95 \times 10^{-6}$. Inspection of Table III shows that decreasing N produces smaller growth rates and hence is stabilizing, in agreement with the experimental results of Strazisar and Reshotko\(^{12}\) and the analytical results of Nayfeh and El-Hady.\(^{13}\) The stabilizing effect (decrease of growth rates and range of frequencies undergoing amplification) produced by decreasing the exponent N at the reference location can be explained as follows: As N decreases, Fig. 2 shows that ΔT increases at all locations upstream of x, resulting in full velocity profiles and hence a more stable flow. Therefore, the stabilizing effect at x is the culmination of all upstream stabilizing effects. However, as N decreases, ΔT decreases at all locations downstream of x, resulting in less full velocity profiles and hence a less stable flow. Consequently, there exists a location x, downstream of x, such that for $x > x$, a distribution with a larger exponent will produce smaller growth rates and range of frequencies undergoing amplification. Therefore, the effect of the exponent N on the stability should be based on the integration of the growth rates (n factors) rather than on the values of the growth rates at a given location. In the present case, Fig. 3 shows the variation of the n factors with distance for $F = 24.44 \times 10^{-6}$. It shows that the n factor for the case $N = -1.0$ is less than that for the case $N = 1.0$ only at locations corresponding to $R_x \approx 2.4 \times 10^6$. Therefore, if the criterion for comparing the
TABLE V. Effect of heating on three dimensional disturbances.

<table>
<thead>
<tr>
<th>β^*</th>
<th>T_w</th>
<th>n</th>
<th>$R_s \times 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0e - 04</td>
<td>296.6</td>
<td>9.36</td>
<td>3.26</td>
</tr>
<tr>
<td>3.0e + 00</td>
<td>296.6</td>
<td>9.16</td>
<td>3.26</td>
</tr>
<tr>
<td>5.0e + 00</td>
<td>296.6</td>
<td>9.01</td>
<td>3.40</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 10.0$, $N = 0.0$</td>
<td>4.40</td>
<td>3.48</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 10.0$, $N = 0.0$</td>
<td>4.37</td>
<td>3.40</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 16.87$, $N = 0.5$</td>
<td>3.63</td>
<td>3.04</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 16.87$, $N = 0.5$</td>
<td>3.61</td>
<td>3.12</td>
</tr>
<tr>
<td>3.0e + 00</td>
<td>$A = 16.87$, $N = 0.5$</td>
<td>3.45</td>
<td>2.98</td>
</tr>
<tr>
<td>5.0e + 00</td>
<td>$A = 16.87$, $N = 0.5$</td>
<td>3.12</td>
<td>2.98</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 5.93$, $N = -0.5$</td>
<td>5.52</td>
<td>3.83</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 5.93$, $N = -0.5$</td>
<td>5.47</td>
<td>3.83</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 3.52$, $N = -1.0$</td>
<td>6.89</td>
<td>4.18</td>
</tr>
<tr>
<td>1.0e + 00</td>
<td>$A = 3.52$, $N = -1.0$</td>
<td>6.84</td>
<td>4.18</td>
</tr>
<tr>
<td>1.0e - 04</td>
<td>$A = 28.46$, $N = 1.0$</td>
<td>3.02</td>
<td>2.73</td>
</tr>
<tr>
<td>1.0e + 00</td>
<td>$A = 28.46$, $N = 1.0$</td>
<td>3.01</td>
<td>2.73</td>
</tr>
</tbody>
</table>

VII. CONCLUDING REMARKS

We have analyzed the 3-D stability of 2-D boundary-layer flows. Numerical results are presented for the case of heated water boundary layers.

A modified definition for determining the critical frequency has been suggested. The critical frequency is the one that gives $n = n_{tr}$, where n_{tr} corresponds to transition, in the shortest possible distance on the body. This definition has been used to obtain the most dangerous frequency for the Blasius boundary layer.

Three dimensional disturbances have been studied. The results show that 2-D waves are more critical and yield higher n factors than 3-D waves for heated and unheated boundary layers.

The effect of power-law heating distributions in a water boundary layer on the n factors has been evaluated. The results show that the stability strongly depends on the actual heat distribution.

ACKNOWLEDGMENT

This work was supported by the Fluid Dynamics Program of the Office of Naval Research under Contract No. N00014-75-C-0381.

APPENDIX A: COMPONENTS OF MATRIX A

All $A_{ij} = 0$ except the following:

$A_{12} = 1.0$,

$A_{11} = (R / \mu_s) \left[- i \alpha \rho_s + i \alpha D U_s \right] + (\alpha^2 + \beta^2),$

$A_{22} = - D \mu_s / \mu_s,$

$A_{23} = (R / \mu_s) [\rho_s D U_s - i \alpha D \rho_s / R + i \alpha \mu_s (s + 1) D \rho_s / R \rho_s],$

$A_{24} = - i \alpha R / \mu_s.$

FIG. 3. Effect of exponent N on n factors.

effect of the exponent N on the stability is based on the maximum value of the n factor, or the value of n that exceeds a given value in the shortest distance, then decreasing N is destabilizing, which appears to contradict the conclusions of Strazisar and Reshotko12 and Nayfeh and El-Hady.13

It should be emphasized that, if x_s, is greater than or equal to or even slightly less than the streamwise position of branch II of the neutral stability curve, decreasing N will produce smaller values of n and hence is stabilizing. This is the reason why Nayfeh and El-Hady,13 after calculating the n factors for distributions corresponding to different values of the exponent N, have arrived at the conclusion that decreasing N is stabilizing. As a test we changed x_s to 25.0 cm for the case $\alpha^* = 4900$, for which the branch II point occurs at $x = 27.5$ cm, and calculated the effect of the exponent N on the n factors. For this value of x_s, Table IV shows that decreasing N is stabilizing, in agreement with the conclusions of Strazisar and Reshotko12 and Nayfeh and El-Hady.13 Therefore the conclusion that decreasing or increasing N is stabilizing actually depends on the location of the reference point x_s and is thus not universal.

Table V shows the calculated n factors for 3-D disturbances for $F = 24.44 \times 10^{-6}$. Also shown are the results of the unheated case. It is clear from the data that 3-D disturbances result in lower growth rates for both unheated and

TABLE IV. Effect of exponent N on n factors for $x_s = 25$ cm.

<table>
<thead>
<tr>
<th>T_w</th>
<th>n</th>
<th>$R_s \times 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>296.99°C</td>
<td>9.36</td>
<td>3.26</td>
</tr>
<tr>
<td>$A = 8.21$, $N = -1.0$</td>
<td>completely stable</td>
<td></td>
</tr>
<tr>
<td>$A = 9.06$, $N = -0.5$</td>
<td></td>
<td>3.04</td>
</tr>
<tr>
<td>$A = 10.00$, $N = 0.0$</td>
<td></td>
<td>4.40</td>
</tr>
<tr>
<td>$A = 11.04$, $N = 0.5$</td>
<td></td>
<td>5.56</td>
</tr>
<tr>
<td>$A = 12.19$, $N = 1.0$</td>
<td></td>
<td>6.48</td>
</tr>
</tbody>
</table>
APPENDIX B: INHOMOGENEITIES FOR FIRST-ORDER PROBLEM

\[
I_1 = -\rho \left(\frac{\partial u_0}{\partial x_1} + \frac{\partial w_0}{\partial y} \right) - u_0 \frac{\partial p_s}{\partial x_1},
\]

\[
I_2 = -\rho \left(\frac{\partial u_0}{\partial x_1} + U_s \frac{\partial u_0}{\partial x_1} + V_s \frac{\partial u_0}{\partial y} + u_0 \frac{\partial U_s}{\partial x_1} + W_s \frac{\partial u_0}{\partial x_1} - \frac{\partial p_s}{\partial x_1} + \frac{i}{R} \left(2\mu_s \frac{\partial u_0}{\partial x_1} + 2\mu_s u_0 \frac{\partial a}{\partial x_1} + 2iau_0 \frac{\partial u_0}{\partial x_1} + 2iau_0 \frac{\partial u_0}{\partial x_1} + 2i\alpha u_0 \frac{\partial u_0}{\partial x_1} \right) \right.
\]

\[
+ \frac{i\alpha u_0}{\partial x_1} + \frac{i\alpha \lambda_0 \partial u_0}{\partial x_1} + \frac{e^{i\lambda_0 y}}{\partial x_1} + \frac{\partial \lambda_0}{\partial y} \frac{\partial u_0}{\partial x_1} + \frac{\partial \lambda_0}{\partial y} \frac{\partial u_0}{\partial x_1} + \frac{i\beta u_0}{\partial x_1} + \frac{i\beta \lambda_0}{\partial y} \frac{\partial u_0}{\partial x_1} + \frac{i\beta \lambda_0}{\partial y} \frac{\partial u_0}{\partial x_1},
\]

\[
I_3 = -\rho \left(\frac{\partial v_0}{\partial x_1} + U_s \frac{\partial v_0}{\partial x_1} + V_s \frac{\partial v_0}{\partial y} + v_0 \frac{\partial V_s}{\partial x_1} \right) + \frac{1}{R} \left(i\alpha \frac{\partial u_0}{\partial x_1} + i\alpha \mu \frac{\partial v_0}{\partial x_1} + i\alpha \lambda_0 \frac{\partial w_0}{\partial x_1} + i\alpha \lambda_0 \frac{\partial w_0}{\partial x_1} \right)
\]

\[
+ \frac{i\lambda_0 \partial u_0}{\partial x_1} + \frac{\partial \lambda_0}{\partial y} \frac{\partial u_0}{\partial x_1} + \frac{\partial \lambda_0}{\partial y} \frac{\partial u_0}{\partial x_1} + \frac{i\alpha u_0}{\partial x_1} + \frac{i\alpha \lambda_0 \partial u_0}{\partial x_1} + i\beta \frac{\partial u_0}{\partial x_1},
\]

\[
I_4 = -\rho \left(\frac{\partial w_0}{\partial x_1} + U_s \frac{\partial w_0}{\partial x_1} + V_s \frac{\partial w_0}{\partial y} + w_0 \frac{\partial V_s}{\partial x_1} \right) - \frac{1}{R} \left(-u_0 \left(\frac{\partial u_0}{\partial x_1} + \frac{\partial v_0}{\partial x_1} + \frac{\partial w_0}{\partial x_1} + \frac{\partial v_0}{\partial x_1} \right) - i\alpha u_0 \frac{\partial w_0}{\partial x_1} \right)
\]

\[
+ \frac{\partial^2 v_0}{\partial y \partial x_1} \left(-\mu_s - \lambda_s \right) + \frac{\partial^2 w_0}{\partial y \partial x_1} \left(-\frac{\partial u_0}{\partial y} \right) + \frac{\partial w_0}{\partial y} \left(-2\mu_s \beta - 2i\mu_s - 2i\beta \lambda_s \right)
\]

\[
D_n = i \sum_{m=1}^{6} \frac{\partial A_{nm}}{\partial \phi} \xi_m, \quad E_n = -i \sum_{m=1}^{6} \frac{\partial A_{nm}}{\partial \alpha} \xi_m, \quad F_n = -i \sum_{m=1}^{6} \frac{\partial A_{nm}}{\partial \beta} \xi_m,
\]

\[
G_1 = G_2 = 0, \quad G_3 = \rho_s \left(\frac{\partial U_s}{\partial x_1} + U_s \frac{\partial \xi_1}{\partial x_1} + V_s \frac{\partial \xi_1}{\partial y} + W_s \frac{\partial \xi_1}{\partial x_1} + \frac{1}{\rho_s} \frac{\partial \xi_1}{\partial x_1} \right) (\nu_s)^{-1}, \quad G_4 = -\rho_s \left(U_s \frac{\partial \xi_3}{\partial x_1} + V_s \frac{\partial \xi_3}{\partial x_1} + \frac{\partial \xi_3}{\partial x_1} \right), \quad G_5 = \rho_s \frac{\partial R}{\partial \mu} \left(U_s \frac{\partial \xi_3}{\partial x_1} + V_s \frac{\partial \xi_3}{\partial x_1} + \frac{1}{\rho_s} \frac{\partial \xi_3}{\partial x_1} \right),
\]

\[
g_1 = \int_0^\infty \left(\frac{\rho_s R}{\mu_s} \left(W_2 \xi_1 + W_6 \xi_5 \right) - \rho_s \xi_3 \xi_4 \right) dy, \quad g_2 = \int_0^\infty \left(\frac{\rho_s R U_s}{\mu_s} \left[W_2 \left(\xi_1 + \xi_5 \right) U_s + W_6 \xi_5 \right] - W_5 \xi_1 - \rho_s U_s \xi_3 \xi_4 \right) dy,
\]

\[
g_3 = \int_0^\infty \left(-W_5 \xi_3 + RW_6 \xi_5 \right) dy, \quad h_1 = \int_{m=1}^{6} \int_0^\infty G_m W_m dy,
\]

\[
h_2 = \int_{n,m=1}^{6} \int_0^\infty \frac{\partial A_{nm}}{\partial x_1} \xi_m W_m dy, \quad h_3 = \int_{n,m=1}^{6} \int_0^\infty \frac{\partial A_{nm}}{\partial x_1} \xi_m W_m dy.
\]
1W. Linke, Luftfahrt-Forsch. 19, 157 (1942).
21A. E. Gentry (private communication).
22W. S. Saric (private communication).