
 

Fast and Scalable Structure-from-Motion 

for High-precision Mobile Augmented Reality Systems 

 

Hyojoon Bae 

 

 

Dissertation submitted to the faculty of  

the Virginia Polytechnic Institute and State University  

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 

In 

Computer Engineering 

 

C. Jules White, Chair 

Mani Golparvar-Fard 

Jeffrey H. Reed 

Peter H. Athanas 

T. Charles Clancy 

 

March 26th, 2014 

Blacksburg, Virginia 

 

Keywords: 3D Reconstruction, Structure-from-Motion, 3D Cyber-physical Modeling, 

Direct 2D-to-3D Matching, Image-based Localization, Mobile Augmented Reality 

 

 

Copyright 2014, Hyojoon Bae 

 



 

Fast and Scalable Structure-from-Motion 

for High-precision Mobile Augmented Reality Systems 

Hyojoon Bae 

ABSTRACT 

 

A key problem in mobile computing is providing people access to necessary cyber-

information associated with their surrounding physical objects. Mobile augmented reality is 

one of the emerging techniques that address this key problem by allowing users to see the 

cyber-information associated with real-world physical objects by overlaying that cyber-

information on the physical objects’ imagery. As a consequence, many mobile augmented 

reality approaches have been proposed to identify and visualize relevant cyber-information 

on users’ mobile devices by intelligently interpreting users’ positions and orientations in 3D 

and their associated surroundings. However, existing approaches for mobile augmented 

reality primarily rely on Radio Frequency (RF) based location tracking technologies (e.g., 

Global Positioning Systems or Wireless Local Area Networks), which typically do not 

provide sufficient precision in RF-denied areas or require additional hardware and custom 

mobile devices. 

 

To remove the dependency on external location tracking technologies, this dissertation 

presents a new vision-based context-aware approach for mobile augmented reality that 

allows users to query and access semantically-rich 3D cyber-information related to real-

world physical objects and see it precisely overlaid on top of imagery of the associated 
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physical objects. The approach does not require any RF-based location tracking modules, 

external hardware attachments on the mobile devices, and/or optical/fiducial markers for 

localizing a user’s position. Rather, the user’s 3D location and orientation are automatically 

and purely derived by comparing images from the user’s mobile device to a 3D point cloud 

model generated from a set of pre-collected photographs. 

 

A further challenge of mobile augmented reality is creating 3D cyber-information and 

associating it with real-world physical objects, especially using the limited 2D user 

interfaces in standard mobile devices. To address this challenge, this research provides a 

new image-based 3D cyber-physical content authoring method designed specifically for the 

limited screen sizes and capabilities of commodity mobile devices. This new approach does 

not only provide a method for creating 3D cyber-information with standard mobile devices, 

but also provides an automatic association of user-driven cyber-information with real-world 

physical objects in 3D. 

 

Finally, a key challenge of scalability for mobile augmented reality is addressed in this 

dissertation. In general, mobile augmented reality is required to work regardless of users’ 

location and environment, in terms of physical scale, such as size of objects, and in terms of 

cyber-information scale, such as total number of cyber-information entities associated with 

physical objects. However, many existing approaches for mobile augmented reality have 

mainly tested their approaches on limited real-world use-cases and have challenges in 

scaling their approaches. By designing fast direct 2D-to-3D matching algorithms for 
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localization, as well as applying caching scheme, the proposed research consistently 

supports near real-time localization and information association regardless of users’ 

location, size of physical objects, and number of cyber-physical information items. 

 

To realize all of these research objectives, five research methods are developed and 

validated: 1) Hybrid 4-Dimensional Augmented Reality (HD4AR), 2) Plane transformation 

based 3D cyber-physical content authoring from a single 2D image, 3) Cached k-d tree 

generation for fast direct 2D-to-3D matching, 4) double-stage matching algorithm with a 

single indexed k-d tree, and 5) K-means Clustering of 3D physical models with geo-

information. After discussing each solution with technical details, the perceived benefits 

and limitations of the research are discussed with validation results.
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1 Introduction 

 

Automated, inexpensive, and fast access to surrounding cyber-information associated with 

real-world physical objects in the field has significant potential to improve real-world tasks, 

such as decision-making during construction or facility management activities. For example, 

fast access to construction cyber-information, which is usually in form of specifications, 

drawings, or schedule information, can help construction project managers to proactively 

identify construction mistakes, decide on corrective actions, and minimize cost and delays 

due to performance discrepancies [1]. 

 

Augmented Reality (AR) is an emerging technique that allows users to see real-world 

physical objects and their associated cyber-information overlaid on top of imagery of them. 

Mobile augmented reality is a variant of augmented reality that uses a mobile device’s 

camera to capture real-world imagery and a mobile device’s sensors to derive what cyber-

information should be visible in the camera imagery, as shown in Figure 1.1. A key 

challenge of mobile augmented reality is that it relies on precisely localizing a user in order 

to determine what is visible in their camera view. The localization must be performed in the 

field without constraining the individual’s whereabouts to a specially equipped area such as 

custom augmented reality “caves” with pre-deployed external infrastructure for location 

tracking. In other words, mobile augmented reality must work regardless of users’ location 

and environment, and deliver relevant cyber-information precisely and quickly. 
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research approaches. 

 

Over the past decade, many research projects related to mobile augmented reality have 

focused on the first key component, i.e., accurate user localization, to realize mobile 

augmented reality on various types of mobile devices [2-6]. Prior localization approaches 

have primarily used Global Positioning Systems (GPS), Wireless Local Area Networks 

(WLAN), or Indoor GPS for positioning the user within the physical world [7-10]. The 

main drawback of these Radio Frequency (RF) based location tracking technologies is their 

high degree of dependency on pre-installed infrastructure, such as GPS satellites or wireless 

transceivers, and susceptibility to noise in commodity mobile device hardware [11], which 

makes their applications either highly inaccurate or impractical to use in many cases. Some 

research has focused on developing infrastructure-independent location tracking approaches 

[12, 13]. These approaches are typically based on inertial measurements and make use of 

highly accurate accelerometers and gyroscopes which are attached to users. However, these 

sensor-based approaches suffer from accumulated drift errors which grow with the distance 

traveled by the users. 

 

Accordingly, the vast majority of prior work on mobile augmented reality either requires 

external sensors or very high computing resources to achieve a high-level of localization 

accuracy, and thus do not work well with commodity smartphones. In addition, very little 

research has examined the scalability issues of mobile augmented reality and fast cyber-

physical information association. Despite the recent advances in mobile devices, 
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commodity smartphones still have limited processing power, inaccurate GPS sensors, and 

noisy accelerometers or gyroscopes. 

 

Given the recent popularity and rising availability of smartphones in United States, 

however, robust mobile augmented reality systems that operate on commodity smartphone 

platforms should be developed to expand the number of context-aware applications. This 

study seeks to develop new approaches, algorithmic techniques, and hybrid mobile/cloud 

computing architectures that 1) support augmented reality on commodity smartphones, 2) 

can rapidly associate cyber-information with arbitrary real-world 3D objects, 3) provide 

millimeter-accuracy information association in near real-time without requiring external 

sensors or environmental constraints, 4) are extremely robust and resistant to environmental 

changes, such as users are moving from outdoor to indoor where GPS or other RF signals 

are typically denied and cannot be used for localization, and 5) can dynamically scale the 

augmented reality services from room-level to city-level scale. 

 

A key differentiator of this research is its use of image-based localization from smartphone 

camera sensors and ability to localize users with respect to arbitrary marker-less 3D objects. 

The proposed mobile augmented reality approach, called as Hybrid 4-Dimensional 

Augmented Reality (HD4AR) [14-18], provides reliable identification of the location and 

orientation of the user based on photographs taken by existing and already available 

commodity smartphones. The HD4AR not only provides the location and orientation of the 

user, but also provides high-precision visualization of semantically-rich 3D cyber-
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information over real-world imagery in an augmented reality (AR) format. Rather than 

using imprecise mobile GPS and/or wireless sensors, as in existing mobile AR approaches, 

the HD4AR allows users to take pictures using smartphones for accurate localization in 3D 

and high-precision augmentation. 

 

The remainder of this dissertation is organized as follows: After demonstrating open 

research problems in mobile augmented reality through a motivating example in Chapter 2, 

Chapter 3 presents prior research on mobile augmented reality and research gaps in prior 

work. In Chapter 4, technical details of the HD4AR with empirical validation are discussed. 

The method for creating 3D cyber-information with a single 2D image is then illustrated in 

Chapter 5. In Chapters 6-7, new solution approaches for faster image-based 

localization/augmentation in large scale of usage, such as street-level mobile augmented 

reality, are presented. Specifically, Chapter 6 discusses a cached approach for the HD4AR 

and Chapter 7 discusses the method for combining and/or clustering 3D point cloud models 

used in the HD4AR. Finally, the dissertation concludes by summarizing contributions and 

identifying possible future work in Chapter 8. 
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2 Key Challenges of Mobile Augmented Reality 

 

In this chapter, a motivating example is provided to illustrate the challenges of associating 

cyber-information with real-world physical objects. Specifically, a construction progress 

monitoring process from the Architectural, Engineering, Construction and Facility 

Management (AEC/FM) domain is used as it typically requires millimeter-level association 

of cyber-information, such as 3D blueprints of construction plans, with real-world 

construction building elements in challenging environments that are continually changing. 

After the motivating example is presented, open research problems on cyber-physical 

information association system, i.e., mobile augmented reality system, are presented and 

discussed in the context of the example. 

 

2.1 Motivating Scenario 

 

As a motivating example, a scenario where a field engineer is concerned about the 

construction progress and quality of a concrete foundation wall will be discussed. With the 

current best practices on construction sites, as shown in Figure 2.1, the field engineer would 

return to a construction trailer or office and open 2D construction drawings (at best a 3D 

Building Information Model (BIM)), project specifications, and the schedule to find out 

when the construction of this element is expected to be finished and what is the required 

quality of the outcome. Once the drawings and/or 3D building model are opened, the field 

engineer must navigate the model to determine which, of possibly hundreds or thousands of  
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making. With mobile augmented reality, the picture from field engineer provides all 

information that is needed to localize the user with respect to their environment, and thus 

reduce the information available down to what is relevant to the current scene. Given the 

close proximity of construction elements, the location and orientation of the picture needs 

to be accurately estimated and relevant cyber-information should be precisely visualized 

and overlaid on top of each associated construction elements. 

 

2.2  Open Research Problems in Mobile Augmented Reality 

 

2.2.1 Problem 1: Need for Accurate User Localization 
 

To deliver relevant building plan information to a field engineer, as described in the 

motivating example, the mobile augmented reality system first has to precisely identify 

his/her location to determine which construction elements are in the current viewpoint and 

how their associated 3D schematic and specifications should be visualized on top of 

photograph. More specifically, 3D localization, which identifies a user’s position and 

orientation simultaneously, is required to deliver relevant information even with significant 

changes in the user’s viewpoint, as shown in Figure 2.2. This 3D localization is often called 

6-DOF (degrees-of-freedom) localization – three degrees from 3D rotational angles and 

three degrees from 3D translation distances. The accuracy of 6-DOF localization directly 

impacts the reliability of mobile augmented reality. In the context of the motivating 

example discussed in Section 2.1, the 6-DOF localization must be accurate to within 3-50 

millimeters in order to correctly visualize a 3D schematic on top of a foundation wall. The 
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through mobile augmented reality. However, the question of how to conveniently and 

accurately register even simple 3D content using a mobile device and 2D interface is still 

an open problem [19]. 

 

2.2.3 Problem 3: Need for Scalable Mobile Augmented Reality System 

 

There are typically 5,000-30,000 building elements with their related specifications on a 

construction site and the physical scale of jobsites varies from tens of meters to hundreds of 

meters. Considering this variability, in terms of number of cyber-physical items and 

physical scales of target scene, it is difficult to design and implement general and near real-

time mobile augmented reality system, especially with commodity smartphones which have 

limited resource of computing powers. Prior research has primarily tested their mobile 

augmented reality approaches on limited real-world use-cases, such as few office objects in 

the room. Up-to-date, there is no research that has analyzed scalability with respect to both 

the total number of cyber-information items and the physical scales of objects in the 

physical environment. Techniques are needed that can accurately operate at multiple 

different physical scales, such as on a remote control, indoor office room, large outdoor 

building, or entire outdoor street scene. In addition, the system should provide consistent 

and high-precision localization during the operation at dynamically changing scales and 

with large numbers of cyber-information items. 



 

 

12

3 Related Work and Research Gaps 
 

This chapter discusses the current state of knowledge and research gaps for each research 

problem outlined in Chapter 2, i.e., “Problem 1: Need for accurate user localization”, 

“Problem 2: Need for 3D Content Authoring and Association”, and “Problem 3: Need for 

Scalable Mobile Augmented Reality System”. 

 

3.1  Research Gap 1: Fine-grained 3D Localization with Mobile Devices 

 

3.1.1 Overview 

 

Based on the techniques used for estimating a location and pose of the user’s mobile device, 

prior work on user localization can be roughly categorized into: 1) sensor-based 

localization which tracks the position using GPS and/or inertial, geomagnetic sensors 

attached to users, 2) marker-based localization which identifies the mobile device’s camera 

position and orientation by leveraging pre-defined optical markers and image processing 

techniques, 3) visual simultaneous localization and mapping (visual SLAM) which utilizes 

parallel threads for simultaneously tracking and mapping visual features from images, and 

4) model-based localization which uses pre-constructed 3D models of the physical world as 

priori information to identify relative location and orientation of mobile devices. Table 3.1 

summarizes and evaluates each category of prior research and presents qualitative 

assessment on localization accuracy and computational time. The desired values are based 

on the motivating scenario discussed in Chapter 2, i.e., real-world construction progress 
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Table 3.1 Qualitative comparison of localization techniques for mobile augmented reality systems 

Metrics Sensor-based Marker-based Visual SLAM Model-based Desired 

Localization 
Accuracy 

1.5 – 35 m (a) 0.5 – 2 mm (b) 0.5 – 20 mm (c) 0.5 – 20 mm (c) Under 20 mm

Localization 
Speed 

100 – 200 msec 20 – 140 msec 20 – 40 msec 5 – 240 sec Under 3 sec 

External 
Infrastructure 

GPS satellite, 
RF transmitters 

Optical markers Not needed Not needed Not needed 

Resistant to 
drifts and error 
accumulation 

×  ×   

Scale well to 
large scene 

× × ×   

Supports 
mobility 

   ×  

(a) GPS Covered area; (b) Markers within 3m distance; (c) Objects within 10m distance. 

 

monitoring scenario. For image-based localizations, such as marker-based, visual SLAM, 

and model-based localizations, the localization accuracy is typically computed in image 

pixel unit, i.e., projecting 3D objects or optical markers into mobile device’s image sensor 

using recovered camera location and orientation and computing the pixel distance between 

projected points and corresponding image points where subjects actually appeared on the 

image, as shown in Figure 3.1. The measured image pixel errors, i.e. mean re-projection 

errors, can be converted to real-world distance metric, such as centimeters or millimeters, 

by using camera focal length, the dimension of camera image sensor, and the size of images. 

The details of image-based localizations will be further discussed in following subsection 

and the details of image pixel error conversion to real-world distance metric will be 

discussed in Section 4.4. 
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many potential technologies and techniques that are suggested to offer the same 

functionality as a GPS indoors, such as WLAN, Ultra-Wide Band (UWB) and Indoor GPS. 

By tagging users with appropriate receivers/tags and deploying a number of nodes (e.g., 

access points, receivers, transmitters, etc.) at fixed positions indoors, the location of tagged 

users can be tracked by triangulation [12, 20]. However, the accuracy of using network 

infrastructure for 6-DOF localization is still questionable and their reliance on pre-installed 

infrastructures causing challenges in scalability. 

 

In the meantime, several research groups have proposed marker-based mobile augmented 

reality to remove the dependency on mobile sensors or pre-installed network infrastructures 

[19-24]. These works track users’ position and orientation using image processing 

techniques, i.e., matching the image captured by users’ mobile devices to special, pre-

defined 2D patterns (markers). Although marker-based localization has shown to work well 

in both indoor and outdoor environments and does not require additional sensors, yet the 

visual markers need to be attached to every real-world physical object of interest. Tagging 

hundreds to thousands of objects with 2D markers in the case of large-scale environments, 

such as street scenes, or construction site, is impractical and does not scale well to handle 

various distances to objects. 

 

The advent of computer vision methods over the past decade has led to new research on the 

application of image-based localization methods for marker-less mobile augmented reality 

systems. Due to the independency on pre-installed infrastructure, inertial measurers, and/or 
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optimal markers, vision-based localization methods have gained significant attention in the 

computer vision community, as well as in the augmented reality community [1, 19, 25-36]. 

A group of these works have focused on visual Simultaneous Localization and Mapping 

(SLAM) [26, 29, 31], which simultaneously constructs a sparse 3D map from visual 

features and localizes a device using generated map, with parallel threads of tracking and 

mapping (PTAM) [28] method. However, visual SLAM methods mostly focus on small-

scale environment, such as indoor office room, and suffer from inconsistent loop closure 

problem when the scale becomes larger, such as outdoor buildings on the street. In addition, 

in the context of augmented reality, the visual SLAM methods are difficult to associate 

arbitrary 3D cyber-information with physical objects as the 3D coordinates of the map are 

varying from the devices and their initial locations of calibration. As a consequence, the 

visual SLAM methods require either an offline-learned 3D model or manual association of 

3D cyber-information, whenever users initiate the SLAM method with different devices. 

Another drawback of visual SLAM methods is that the performance of localization depends 

on the used devices. All the computations need to be done on the board of the devices, and 

thus, the localization speed relies on the computing power of mobile devices. The 

dependency on used mobile devices makes visual SLAM methods difficult to structure the 

general large-scale mobile augmented reality system, typically in form of server-client 

architecture, which allows people to collaboratively add or query cyber-information. 

 

Finally, another group of computer vision based works has shown that a set of overlapping 

images can be used to extract very accurate 3D geometry of stationary subjects, such as 
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buildings under construction, in form of 3D point cloud model. After extracting the 3D 

point cloud of the subjects through the Structure-from-Motion (SfM) algorithm that 

estimates the 3D position of the visual features through image feature extraction, pair-wise 

matching, initial triangulation, and the Bundle Adjustment [32] optimization process, the 

3D point cloud model can be used as a prior knowledge to compute 2D-to-3D 

correspondences for precisely localizing mobile camera imagery [33-36]. Using a 3D point 

cloud for user localization, i.e., model-based localization, permits mobile augmented reality 

systems to accurately estimate the 3D position and 3D orientation of the new photograph 

purely based on the image [14-18], and therefore, it does not have any hardware constraints 

on mobile devices, such as stereo cameras, GPS sensors, or motion tracking sensors. 

Furthermore, recent advances in SfM [37-39] enable the easy creation of large scale 3D 

point clouds from an unordered set of images and extend model-based localization methods 

to large scene such as street-level or city-level scale. 

 

Although this body of computer vision research has shown the potential and high-accuracy 

of model-based reasoning, most of the recent model-based localization methods assume 

that those point clouds are already available at the beginning of the localization process. 

The 3D point cloud generation process, also called as 3D reconstruction, is often separated 

from the localization process and the 3D reconstruction is done in an offline preparation 

step. Despite the scalability of recent approaches in SfM, however, collecting image data 

and processing them to prepare a 3D point cloud still takes considerable amount of time. 

The Bundler [39], a widely-used SfM software package, takes from hours to a day to 
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generate a 3D point cloud even with small numbers of input images. This time-consuming 

preparation of 3D point cloud prevents using model-based localization in mobile 

augmented reality, especially when users want to model a daily changing scene such as 

construction site. Furthermore, the low speed of model-based localization (typically 5 – 240 

sec) and the lack of on spot localization methods make their applications difficult to use in 

mobile augmented reality. One of the objectives of the proposed research is to overcome 

these challenges in model-based localization methods by optimizing both 3D reconstruction 

and localization processes, and make it available on mobile devices to provide near real-

time mobile augmented reality. 

 

3.2 Research Gap 2: 3D Cyber-physical Content Authoring from a 2D 
interface 

 

3.2.1 Overview 

 

Another important capability in mobile augmented reality is being able to author and 

associate cyber-content with the real-world physical objects around the user. Prior work has 

assumed that this content is already available and focused on mobile augmented reality 

systems with fast and accurate user localization. Creating and associating cyber-information 

with physical objects on-the-fly, however, is challenging due to the complexity of spatially 

associating cyber-information with the geometry of arbitrary real-world objects, such as 

engine parts or windows on the building, in a 3D space and using a small 2D mobile device 

interface. 
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Existing work on 3D content authoring can be roughly categorized into: 1) 3D drawing 

methods which use 3D design tools to create 3D contents, 2) gesture recognition based 

methods, which track the motions of the users’ fingers or other tools in order to draw 3D 

contents into the virtual 3D space. All of these methods require specific devices to support 

3D content authoring and manual association with real-world physical objects, and thus, do 

not work well with commodity smartphones. Table 3.2 summarizes and evaluates 3D cyber-

physical content authoring methods in each category and presents metrics for qualitative 

comparison. 

 

3.2.2 Gaps in Existing Research 

 

Despite the great efforts to facilitate onsite activities through mobile augmented reality, 

most of research has mainly focused on retrieving existing cyber-information and 

displaying them over imagery captured by mobile devices in form of augmented reality 

 

Table 3.2 Qualitative comparison of 3D content authoring techniques for mobile augmented reality 

systems 

Metrics 3D drawings Gesture recognition Desired 

External 
3D framework 

CAD Not needed Not needed 

Device type 
Personal 

Computer 
Gloves, pens 

Commodity 
smartphones 

Automatic 
association with 

real-world objects 
× ×  

Supports mobility ×   
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overlays without proposing methods that can easily and quickly create cyber-information 

and associate it with real-world physical objects. 

 

A number of 3D drawing methods for content authoring have been discussed by several 

works for mobile augmented reality systems [1, 3, 12, 24, 25]. However, all of these works 

used existing commercial 3D drawing tools to create 3D cyber-information and manually 

geo-tagged or aligned cyber-information to real-world physical objects. The main problem 

with this approach is that it requires specific 3D design frameworks (e.g., Computer Aided 

Design (CAD) tool) and devices (e.g., mouse, pen, etc.), which are not available on 

commodity mobile devices. 

 

More recently, some research have focused on intuitive methods for 3D content authoring, 

such as gesture recognition based methods [40, 41]. These methods track the movements of 

users’ fingers or pen, create virtual objects corresponding to those movements, and 

visualize them on top of the camera view. Although they provide more straightforward 

methods than 3D drawing based methods, the user interface is still complicated and 

difficult to draw 3D virtual objects accurately. In addition, they also require special devices, 

such as gloves or sensor-attached pens, and do not provide automatic association of created 

cyber-information with real-world physical objects. One of the objectives of the proposed 

research is to overcome these limitations and provide a practical method for 3D cyber-

physical content authoring on a 2D mobile device interface with no external hardware. 
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3.3 Research Gap 3: Near Real-time Cyber-Physical Information 
Association at Dynamically Varying Environmental Scales 

 

3.3.1 Overview 

 

Since model-based localization methods provide sufficient accuracy for high-precision 

cyber-physical information association scenarios, such as identifying the buttons on a car 

dashboard, overlaying construction information on walls, etc., this study focuses on model-

based localization techniques for high-precision mobile augmented reality systems. In 

addition, model-based localization techniques are only approaches that do not require any 

external infrastructures, such as GPS satellites, wireless network sensors, or fiducial/optical 

markers, as described in Section 3.1. As a consequence, existing work on model-based 

localization methods has been analyzed for performance comparison at different 

environmental scales, such as room-level, or street-level. Table 3.3 summarizes and 

evaluates existing model-based localization techniques and presents metrics for qualitative 

comparison. 

 

3.3.2 Gaps in Existing Research 

 

Lim et al. [35] and Sattler et al. [36] proposed near real-time model-based localization 

methods. However, their test cases consist of only a single 3D point cloud model at room-

level scale and their approaches were not true mobile augmented reality as they were 

unable to provide cyber-information delivery/visualization functionality and the mobility. 
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Table 3.3 Qualitative comparison for scalability of mobile augmented reality systems 

Metrics Model-based Desired 

Model scale room-street object-street 

Model 
preparation time 

3 – 24 hr 0.1 – 1 hr 

Number of  
3D physical models 

in the system 
Single 

Multiple 
(Hundreds of models) 

Number of  
cyber-information items 

in the system 
0 – 103 100 – 104 

Localization/ 
Augmentation 

Speed 
5 – 240 sec Under 3 sec 

Supports mobility ×  

 

Applications of model-based localization methods in augmented reality systems can be 

found in [1, 25]. These systems were designed for context-aware AEC/FM applications to 

enhance construction progress monitoring processes. The 3D point cloud model is 

generated from pre-collected photographs of a construction site and the system uses the 

extracted model at street-level scale to localize users. Although their systems precisely 

determine the users’ location and deliver relevant construction project information to end-

users, yet it could not conduct user localization in the field for on-site decision making 

purposes. With their systems, field personnel have to take photographs and bring them back 

to the office to process each photograph. Even after field personnel bringing photographs 

back to the office, localizing a single photograph to see the cyber-information overlaid on 

top of imagery takes tens of seconds with a high-end personal computer at the office. 

Considering the applications and the current limits from these works, a new approach, 
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which takes at most 1-3 seconds regardless of operating scales and provides mobility with 

commodity smartphones, should be developed. 

 

In addition, all aforementioned works on model-based localization were based on the 3D 

point clouds generated by the SfM framework in the Bundler package. To produce a single 

3D point cloud, the Bundler package typically takes from hours to days depending on the 

number of input images, due to exhaustive computations in pair-wise feature matching and 

non-linear multi-dimensional Bundle Adjustment optimization on a single-thread CPU. 

This considerable amount of time for 3D point cloud preparation also prevents developing 

general mobile augmented reality systems using model-based localization for dynamically 

varying environmental scales. The details of model preparation, i.e., 3D reconstruction, will 

be further discussed in Section 4.2. 
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4 Hybrid 4-Dimensional Augmented Reality (HD4AR) 

 

4.1 Overview of Solution Approach to Research Gaps 1 and 3 
 

To fill the “Research Gap 1: Fine-grained 6-DOF Localization with Mobile Devices”, and 

“Research Gap 3: Near Real-time Cyber-physical Information Association at Dynamically 

Varying Environmental Scales”, a new type of mobile augmented reality, Hybrid 4-

Dimensional Augmented Reality (HD4AR), is proposed and developed. The HD4AR uses a 

model-based localization approach, which takes advantage of a pre-constructed 3D point 

cloud of target scene to identify a mobile device’s relative location and orientation. Since 

the 3D point cloud generated from a set of overlapping photographs represents an accurate 

3D geometry of real-world physical objects, it is often called as 3D physical model. 

Consequently, the HD4AR requires a 3D reconstruction process that rapidly and robustly 

generates a 3D physical model from pre-collected photographs. 

 

As discussed in Section 3.1, using a 3D physical model for localization permits the system 

to estimate the complete pose (6-DOF) of the camera, and therefore can support high-

accuracy augmented reality applications, such as construction progress monitoring where 

millimeter-level precision is needed. Due to time-consuming preparation of 3D point cloud 

[1, 25, 37-39], however, using a 3D physical model for localization is often considered as 

an impractical solution for mobile augmented reality. To overcome this challenge, a new 

parallelized 3D reconstruction process, which combines different image feature descriptors, 

operates across cores in a multi-core CPU and GPU for fast operations, and thus is suitable 
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for mobile augmented reality, is designed and developed. The algorithmic details and 

enhancements of the new fast 3D reconstruction process will be presented in Section 4.2. 

 

Once the 3D physical model is available, a user can take a new photo at a random location 

and his/her location and orientation are determined by comparing the new image to the 

generated 3D physical model. Specifically, the system attempts to estimate extrinsic camera 

parameters, i.e., a rotation matrix and a translation vector of the camera, to find the relative 

position of the user’s camera (mobile device). After recovering a complete pose of the 

user’s camera, the system can decide what cyber-information should appear in the user’s 

photograph. However, existing model-based localization methods take tens of seconds even 

with a high-end personal computer to localize a single image, which is not suitable for 

mobile augmented reality with commodity mobile devices. Therefore, a new model-based 

6-DOF localization method using a direct 2D-to-3D matching algorithm, which takes at 

most few seconds to localize a photograph, is devised and developed. In addition, the 

HD4AR uses the client-server architecture to further increase the localization speed. The 

smartphone as the client uploads new photographs to the server for localization and the 

major image processing load is located on the server. The details of a new model-based 

localization method will be discussed in Section 4.3. Figures 4.1 and 4.2 summarize the 

overall procedures of the HD4AR, from initial 3D reconstruction to localization/ 

augmentation process. 
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this 3D physical model must be generated quickly for fast initialization of the system. 

Generating this 3D physical model requires a collection of overlapping base images of the 

target scene and processing these images using the SfM algorithm that estimates the 3D 

positions of 2D image feature points. 

 

To accelerate the speed of SfM-based 3D reconstruction, computer vision researchers have 

proposed several methods separately from mobile augmented reality applications and none 

of these works are feasible for mobile augmented reality using 3D physical models. First, 

the Bundler package has been developed by Snavely et al. [39]. Snavely et al. have created 

the first structured pipeline for 3D point cloud modeling from an unordered set of large-

scale internet photo collections. The Bundler uses the SIFT (Scale Invariant Feature 

Transformation) descriptor [42] for feature extraction, which has good invariance properties 

but requires multiple layers of computation for each spatial scale, and thus is time 

consuming. In addition, the pair-wise image matching in the Bundler is performed on a 

single-thread CPU, and therefore the processing time grows exponentially with the size of 

image set. More recently, a cloud computing scheme has been introduced to accelerate the 

entire SfM procedure [37]. A cloud computing has achieved a remarkable performance gain 

on very large-scale 3D reconstruction by distributing tasks over several hundreds of cores. 

However, using several hundreds of cores is often not feasible and the system is still based 

on CPU-based SIFT descriptor. Another approach uses both GPU-based SIFT and an image 

clustering scheme on a cloudless system [38]. The proposed system, however, limits the 

number of feature points per image due to memory bandwidth of the GPU and its purpose 
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is estimating the pose of base cameras to recover the surface of the scene rather than 

creating an accurate 3D point cloud for user localization or augmented reality. 

 

To further speed up 3D reconstruction task and enable fast initialization of mobile 

augmented reality system, a new parallelized SfM framework, which supports new types of 

feature descriptors to replace the time-consuming SIFT descriptor, is developed and used in 

the HD4AR. Compared to vector-based real-number descriptors, such as SIFT or SURF 

(Speeded Up Robust Features) [43], the HD4AR takes advantage of binary feature 

descriptors, which consist of a binary bit-string rather than a vector of real-numbers, to 

reduce memory consumption and computational complexity of image processing in both 

3D reconstruction and localization. The advantages of using binary descriptors are that 1) it 

requires much less memory than real-number descriptors and 2) it can use the Hamming 

distance for descriptor matching, which is faster than the Euclidian distance comparison. 

However, binary descriptors are typically considered as a trade-off, providing less 

robustness against image rotation or scaling. While some research have compared the 

robustness of binary descriptors against 2D image rotation and scaling, no research has 

argued the impact of binary descriptors on 3D reconstruction and compared different 

feature descriptors using a single unified SfM-based 3D reconstruction framework. 

Through the extensive experiments, we realize that recently proposed binary descriptors, 

such as BRISK (Binary Robust Invariant Scalable Keypoint) [44] or FREAK (Fast REtinA 

Keypoint) [45], have a strong potential for accurate 3D reconstruction. As a consequence, 



 

 

29

CPU-based SIFT, GPU-based SURF, CPU-based BRISK and CPU-based FREAK are 

comprehensively analyzed and compared within the HD4AR. 

 

A new filtering approach is also developed for accurate 3D reconstruction and the structure 

of 3D physical model is optimized for further application, such as fast model-based 

localization and/or mobile augmented reality. In addition, an entire 3D reconstruction 

process exploits hardware/software parallelism including parallelized nearest neighbor 

searching to scale the performance of 3D reconstruction. The proposed parallelized SfM 

framework follows some of the original algorithmic steps in [39], but significantly alters 

others in order to vastly accelerate the process, improve robustness, and improve accuracy.  

 

As aforementioned, the key modifications that make the most substantial impact on 

performance are: 1) the combination of different feature detectors and descriptors to 

optimize the 3D reconstruction performance, 2) new filtering approach for reducing noise 

in the 3D point clouds and improving localization accuracy, 3) memory-efficient point 

cloud structure for mobile augmented reality and 4) a parallelized multicore CPU and GPU 

hardware implementation for faster processing. Figure 4.3 illustrates the overview of the 

HD4AR 3D reconstruction process, consisting of four algorithmic stages. The details of 

each algorithmic stage are further discussed in the following subsections. 
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4.2.2 Robust Matching Stage 
 

The next step is finding correspondences between all image pairs (i.e., pair-wise matching) 

using extracted feature descriptors. For binary feature descriptors (FREAK and BRISK), 

the FANN Matcher module first creates hierarchical clustering k-d trees of each image 

descriptors and runs the Fast Approximate Nearest Neighbors (FANN) searching algorithm 

[46] to rapidly find the two nearest neighbors of each descriptor in the image. For vector-

based real number descriptors (SIFT and SURF), the FANN Matcher module runs 

randomized k-d tree searching algorithm with four parallel trees to improve the search 

speed [47]. With all recovered nearest neighbor results, the FANN Matcher module finally 

performs the distance ratio-test [42] with threshold value 0.5 to remove suspicious matches. 

In addition, if more than one feature descriptor matches the same feature in the opposite 

image, it removes all of matches for that image pair. 

 

After the distance ratio-test, the F-matrix module robustly estimates a fundamental matrix 

and further removes outliers for every image pair using the RANSAC (RANdom SAmple 

Consensus) algorithm with the eight-point algorithm [48]. This filtering process removes 

false matches using an epipolar geometry constraint given by the estimated fundamental 

matrix. In other words, the maximum allowed distance from a keypoint to an epipolar line 

is Fpixels, beyond which the point is considered as an outlier. This outlier constraint can 

be expressed as: 

 

|| xi
T Fijxj || > F = max(max(wi, hi), max(wj, hj)) × 0.006 (4.1) 
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where xi = [ui, vi, 1]T and xj = [uj, vj, 1]T are homogenous coordinates of the matched 

keypoints in image i and j, respectively, Fij is the estimated Fundamental matrix from 

RANSAC iterations, and (wi, hi) and (wj, hj) are the dimension of image i and j, respectively. 

If the number of final inliers is less than 16, all of the matches are removed for that image 

pair. Otherwise, the fundamental matrix returned by RANSAC is further refined by running 

the Levenberg-Marquardt algorithm, minimizing the distance to the epipolar line for all the 

inliers. 

 

Upon receiving the inliers from the F-matrix module, the H-matrix module finds a 

homography matrix using the RANSAC with normalized Direct Linear Transform [48] for 

every image pair. The outlier constraint is in the form of 

 

|| xi -Hijxj || > H = max(max(wi, hi), max(wj, hj)) × 0.004 (4.2) 

 

where xi = [ui, vi, 1] and xj = [uj, vj, 1] are homogenous coordinates of the inliers after 

fitting to fundamental matrix, and Hij is the estimated homography matrix from RANSAC 

iterations, and (wi, hi) and (wj, hj) are the dimension of image i and j, respectively. Then, the 

percentage of number of inliers with homography matrix, H-score, is calculated and 

recorded. The H-score will be used in final Structure-from-Motion stage and image-based 

cyber-content authoring method to select the proper image sets. 

 

Since the pair-wise image matching is the most performance bottleneck in 3D 
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where dm is the minimum matching distance among all keypoints in the track and dk is the 

matching distance of each keypoint in the track. We call this procedure as a track ratio-test 

and the TR is typically set to 0.3. In addition to the track ratio-test that removes the 

inconsistent keypoints for each track, the Cleaner module also removes inconsistent tracks 

by observing the length of each track. If the length of a track is less than TL, which means 

that the track is seen by only TL cameras, that track will not be considered in 3D 

reconstruction. The TL can be set to 3 or 4 for very accurate 3D modeling if the input 

photographs were taken with specific purpose and have numerous overlapping images of 

target scene. However, the TL is typically set to 2 since we target an unordered set of 

photographs taken at random locations. 

 

Finally, the Feature Compactor module extracts and merges the feature descriptors of 

keypoints that are remaining in the set of consistent tracks. This process significantly 

reduces the disk space consumption as well as the speed of I/O task in the next stage. 

 

4.2.4 Structure-from-Motion/Model Compaction Stage 
 

The final stage of the HD4AR 3D reconstruction is the Structure-from-Motion (SfM)/Model 

Compaction stage that estimates a set of camera parameters, such as focal length, radial 

distortion coefficient, rotation matrix, and translation vector, for each base image and a 3D 

location for each track. Similar to the Bundler, this stage uses an incremental approach, 

recovering a few cameras at a time. Once the 3D point cloud is reconstructed, the Structure-

from-Motion (SfM)/Model Compaction stage also extracts and imposes a representative 
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and the locations of where the feature points are actually extracted in the images. To 

significantly enhance the speed of this optimization, we adopt a GPU-based Parallel Bundle 

Adjustment approach [51]. 

 

Then, the SfM algorithm goes through iterations to calibrate camera parameters of each 

additional input image using the already triangulated 3D points and matching information 

between the images. This calibration is done using PnP (Perspective n-Point) camera 

estimation method with RANSAC and Levenberg-Marquardt optimization [48]. If the 

algorithm successfully recovers camera parameters of an additional base image, it registers 

the new camera and runs the Local Bundle Adjustment, i.e., optimizing only the newly 

added cameras. This camera registration fails in the event that an additional input image 

does not have any matched feature points against the previously registered images. After 

Local Bundle Adjustment, the component triangulates the 3D points seen by the newly 

registered cameras and pre-filters 3D points which have high re-projection error. Through 

extensive experiments, we realized that this pre-filtering step is vital for accurate 3D 

modeling. Very little number of high-error 3D points can destroy an entire shape of 3D 

point cloud even with the Bundle Adjustment which tries to minimize overall mean re-

projection error. The outlier threshold for this pre-filtering based on re-projection error is 

set to the same value used in the F-matrix module of the Robust Matching stage. 

 

Finally, the Global Bundle Adjustment is run to optimize entire 3D points currently 

retrieved and all parameters of currently registered cameras. During this optimization, 
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however, it is possible that some 3D points still have a high re-projection error while other 

3D points have a very small re-projection error, resulting in a small mean re-projection 

error. The ultimate purpose of the 3D reconstruction is user localization and/or mobile 

augmented reality, not the visual representation of target scene, it is very important to 

reduce such noise in the 3D point cloud by removing 3D points with a high re-projection 

error. To achieve this, the SfM algorithm in the HD4AR uses a double-threshold scheme for 

the post-filtering stage. The first threshold is for controlling the target Mean Squared Error 

(MSE) of the Bundle Adjustment. This threshold value is set to be 0.25 pixel2 so that the 

target average re-projection error of entire 3D point cloud is equal to 0.5 pixels. Another 

threshold, which called an absolute re-projection threshold, is for removing individual 3D 

points from a 3D point cloud. The absolute re-projection threshold is adaptively calculated 

based on the current distribution of re-projection errors of each base image. Nevertheless, 

the maximum value of this threshold is set to be 4.0 pixels so that no 3D points in the final 

3D point cloud have a re-projection error greater than 4.0 pixels. After post-filtering stage, 

if the registered camera has the number of visible 3D points less than 16, that camera is 

removed from 3D reconstruction as it will not provide an accurate estimation of camera 

parameters due to small number of visible points. The entire SfM procedure including the 

Global Bundle Adjustment and post-filtering is iteratively executed until there are no more 

cameras to register. Due to the algorithmic enhancements and parallelization, the HD4AR 

3D reconstruction is up to 30 times faster than the Bundler package. In Section 4.4, 

experimental results of this new SfM algorithm are discussed in detail. 
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Once the 3D points and camera parameters of input images are successfully recovered, the 

Model Compactor module finally collects image feature descriptors for all triangulated 

tracks and creates a representative descriptor for each 3D point to enable direct 2D-to-3D 

matching. As described in [15, 16, 18, 36], a direct 2D-to-3D matching method have a 

considerable potential for fast and accurate model-based localization. We propose to use 

minimum-distance criteria, rather than averaging image descriptors proposed by Sattler et 

al. [36], as the HD4AR should be able to handle binary descriptors, such as FREAK or 

BRISK. The process of generating 3D representative descriptors can be summarized as 

follows:   

 

For each 3D point (Xn) in the 3D point cloud model, 

1) Find a list of base images (I1, …, Ik) and their corresponding 2D image points 

(x1, ..., xk) that participated in triangulation of Xn during the 3D reconstruction. 

2) Collect image feature descriptors (d1, …, dk) at discovered 2D image points (x1, …, 

xk), where each descriptor is typically a 64-dimensional (SURF, FREAK, BRISK) 

or 128-dimensional (SIFT, SURF) vector. 

3) For each descriptor in (d1, …, dk), sum Hamming (FREAK,  BRISK) or Euclidean 

(SIFT) distances to all other descriptors in the set. 

4) Select the descriptor, which has the minimum summation value, as a representative 

descriptor of the 3D point (Xn). 

 

Due to this representative descriptors approach, the localization time will depend on the 
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number of 3D points in the point cloud, not on the number of input images used in 3D 

reconstruction, resulting faster localization compared to existing model-based localization 

methods. The details of new direct 2D-to-3D matching for model-based localization will be 

discussed in Section 4.3. 

 

4.3 Model-based 6-DOF Localization/Augmentation Using Direct 2D-to-
3D Matching 

 

4.3.1 Hybrid Mobile/Cloud Architecture 

 

Once the HD4AR has the 3D physical model of the target scene, it can accurately localize 

and augment new photographs captured by a mobile device. Figures 4.2 and 4.10 

summarize this process from a high-level perspective. As shown in Figure 4.10, the HD4AR 

uses the client-server architecture – with the mobile devices as the client – to upload images 

taken from the mobile devices to the server for 3D reconstruction and user localization 

purposes. The entire system consists of the following components: 

 

 Client application: the HD4AR client application runs on Android or iOS devices. 

This application captures the images and uploads them to the server. It also has the 

capability of drawing cyber objects on top of a single image and attaching arbitrary 

documents as cyber objects. 

 Server – image-based 3D reconstruction: this component generates a SfM-based 

3D point cloud from initial base images and runs on a cloud computing platform. 
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By developing a new direct 2D-to-3D matching algorithm, which will be presented in 

following subsection, and putting major image processing load on the server, the model-

based localization and augmentation of the HD4AR can be done in near real-time. 

Furthermore, due to the client-server architecture, the performance of localization does not 

depend on the computing power of the mobile devices, and thus, the system can easily 

support multiple types of commodity mobile devices if devices have a capability of camera 

imaging and network communication. 

 

4.3.2 Direct 2D-to-3D Matching with 3D Physical Model 

 

To localize a user and display surrounding cyber-information on top of the imagery, a user 

first takes a picture of the objects, which he/she wishes to query for information about, and 

uploads the photograph to the HD4AR server. Upon receiving the photo from user’s mobile 

device, the server runs feature detection and extraction on the received image, finds 

correspondences between the image and the underlying 3D physical model. Finding 2D-to-

3D correspondences between the 2D feature points detected on the new image captured by 

a mobile device and the 3D points in the physical model can be accelerated using a direct 

2D-to-3D matching algorithm. While existing works match feature descriptors of the image 

to an entire set of feature descriptors from all base images used in 3D reconstruction to find 

correspondences (2D-to-2D-to-3D matching), which incurs unnecessary descriptor 

comparisons, the HD4AR only compares feature descriptors of the image to the 

representative descriptors of each 3D point in the 3D physical model, resulting in near real-

time localization and augmentation. The representative descriptors of 3D point cloud model 
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(see Section 4.2.4) are cached in the server in form of a k-d tree structure and Fast 

Approximate Nearest Neighborhood (FANN) searching algorithm [46, 47] is used for  

rapidly finding correspondences between 2D image feature descriptors and 3D 

representative descriptors. In addition, the proposed method of direct 2D-to-3D matching 

and extracting 3D representative descriptors work well for both vector-based real-number 

descriptors and the binary descriptors. Due to this new direct 2D-to-3D matching, the 

localization time now depends on the size of the 3D physical model, i.e., the number of 3D 

points, not on the number of base images used in 3D reconstruction. In addition, this 

approach does not only create representative descriptors of 3D points, but also provides 

higher probability of finding 2D-to-3D correspondences as it selects the descriptor, which 

has the minimum distance across all base images, as a representative descriptor for each 3D 

point. As we will discuss in Section 4.4, the proposed direct 2D-to-3D matching approach 

speeds up the localization by a factor of 162 compared to the Bundler. 

 

After discovering 2D-to-3D correspondences, the camera calibration algorithm is 

performed by solving Direct Linear Transformation (DLT) equation followed by a 

Levenberg-Marquardt optimization [48]. This model-based camera calibration results in 6-

DOF (degrees-of-freedom) localization in 3D space and thus gives high localization 

accuracy despite possible variation in the position and orientation of the user within the 

reconstructed scene. If the server successfully estimates the camera pose information, it 

determines what cyber-information is within the camera’s field of view and where the 
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information should appear. This decision is done by first projecting each vertex of 3D 

cyber-information onto the localized camera: 
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(4.4) 

 

where [X, Y, Z, 1]T is a 3D vertex point of cyber-information, [R|T] is an estimated 3x3 

rotation matrix and an estimated 3x1 translation vector, (fx fy) is a camera focal length 

expressed in pixel units, (cx cy) is a principal point of the camera, and [x, y, 1]T is a resulting 

projected points in image pixels. Next, the simple visibility test is performed to determine 

whether the 3D cyber-information appears in current image or not. 

 

ܸሺݔ, ሻݕ ൌ ൜
1, 0 ൑ ݔ ൑ ,ݓ 0 ൑ ݕ ൑ ݄
0, ݁ݏ݅ݓݎ݄݁ݐܱ

 (4.5) 

 

where w is image width and h is image height. The visible cyber-information is then sent 

back to user’s mobile device with positional information and semantics. Finally, the user’s 

mobile device renders the returned visible cyber-information on the top of captured-image. 

As shown in Figure 4.11, the HD4AR can precisely localize and augment photographs with 

various test cases and it implies that the HD4AR remains stable under different viewpoint of 

the user’s mobile device. 
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4.4.1 3D Reconstruction 

 

The 3D reconstruction experiments were conducted on a single Amazon EC2 instance 

server with 22.5 GB memory and two Intel Xeon X5570 processors running Ubuntu 

version 12.04. An NVIDIA Tesla M2050 graphic card was used for GPU computations. The 

image data sets used to create the 3D point clouds can be roughly categorized as: 1) outdoor: 

construction site or existing buildings on the street, and 2) indoor: car interior, kitchen, or 

office room. Table 4.1 presents the summary of data sets that cover different scales of target 

objects and scenes. 

 

Table 4.1 Dataset specification for 3D reconstruction 

Environment Name 
Scale 

description 
Number of base 

images 
Image 

resolution 
Camera 
model 

outdoor 

patton building 40 2592 × 1944 
Samsung 

Galaxy Nexus

knu building 50 2592 × 1458 
Samsung 

Galaxy Nexus

parliament landmark 52 4752 × 3168 
Canon 

EOS 50D 

rtfr construction site 113 3264 × 2448 
Apple 

iPhone 4S 

cfta construction site 80 2144 × 1424 
Nikon 
D300S 

rh construction site 155 2144 × 1424 
Nikon 
D300 

indoor 

dashboard car dashboard 27 2592 × 1944 
Samsung 

Galaxy Nexus

engine car engine parts 32 3264 × 2448 
Apple 

iPhone 4S 

kitchen home kitchen 47 2048 × 1536 
Samsung 

Galaxy Nexus

ikea office store 44 3264 × 2448 
Apple 

iPhone 4S 
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An entire 3D reconstruction procedure of the HD4AR was run on each data set to produce 

the 3D physical models. To demonstrate the performance gains of the HD4AR resulting 

from track compression, double-threshold filtering, parallelized matching, etc., the 

following metrics were measured: 

 

 Number of registered images: how many pre-collected photographs were calibrated. 

This metric measures the completeness of the 3D reconstruction process if the data 

set was properly collected. Higher numbers of calibrated cameras will increase the 

reliability of the positional information of 3D points triangulated during the 3D 

reconstruction. 

 Number of 3D points: how many 3D points were successfully triangulated. Larger 

numbers of 3D points increase the probability of direct 2D-to-3D matching and 3D 

localization success for mobile augmented reality. 

 Mean re-projection error: overall mean re-projection error is computed by 

projecting each 3D point into each calibrated camera of the base images in order to 

measure the positional error of generated 3D physical models. This metric measures 

the robustness and accuracy of the 3D physical model and affects the accuracy of 

3D localization for mobile augmented reality. 

 Point cloud size: how much disk space is consumed by a single 3D physical model. 

The point cloud size is a key concern if multiple physical models are cached in the 

server simultaneously. 

 Elapsed time: how long does it take to generate a single 3D physical model. A 
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specific aim of our framework was reducing this time in order to rapidly enable 

mobile augmented reality using 3D point cloud models. 

 

Tables 4.2-4.4 compare the overall results of 3D reconstruction on the outdoor building 

photographs, i.e., “patton”, “knu”, and “parliament” data sets. Although there are many 

factors that influenced the performance, such as the number of base images, the image sizes, 

and the texture of the target scenes, the HD4AR 3D reconstruction was 304-2,875% faster 

than the Bundler for all building-scale outdoor data sets we studied. The performance gain 

was significant when binary descriptors, i.e., the FREAK and BRISK, were used. 

Specifically, the HD4AR achieved 1,169-2,875% of performance gain with binary 

descriptors, and produced 3D physical models within 20 min. Even with same SIFT 

descriptor used in the Bundler package, the HD4AR was up to 9.419 times faster. 

 

Next, the HD4AR significantly reduces the memory consumption of 3D physical models as 

it only records the representative descriptors of each 3D point, while the Bundler stores all 

feature descriptors from the entire set of base images. In addition, the Bundler uses the 

SIFT descriptor, which is 128-dimensional real-number vector, so it consumes a lot of disk 

space to store information related to 3D physical models for localization (called registration 

in the Bundler) and mobile augmented reality. Specifically, the HD4AR achieved 1,860-

2,759% of memory gain with binary descriptors. Memory consumption is important when 

multiple mobile clients perform online localization simultaneously with different 3D 

physical models. Large file sizes prevent from pre-loading multiple models into memory 
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Table 4.2 Performance of 3D reconstruction for “patton” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

40 / 40 40 / 40 40 / 40 40 / 40 40 / 40 

Number of 
3D points 

129,693 147,798 72,000 47,163 46,318 

Mean 
re-projection error 

0.661 pixels 0.578 pixels 0.596 pixels 0.502 pixels 0.498 pixels

Point cloud size 
(memory gain) 

446.90 MB 
(1×) 

331.00 MB 
(1.35×) 

72.80 MB 
(6.14×) 

16.30 MB 
(27.42×) 

16.20 MB 
(27.59×) 

Elapsed time 
(performance gain) 

8,571 sec 
(1×) 

2,824.424 sec
(3.035×) 

923.932 sec
(9.277×) 

300.358 sec 
(28.536×) 

298.095 sec
(28.753×) 

 

 

Table 4.3 Performance comparison of 3D reconstruction for “knu” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

50 / 50 49 / 50 50 / 50 49 / 50 49 / 50 

Number of 
3D points 

37,356 51,730 40,858 32,827 33,122 

Mean 
re-projection error 

0.681 pixels 0.504 pixels 0.673 pixels 0.595 pixels 0.552 pixels

Point cloud size 
(memory gain) 

223.16 MB 
(1×) 

104.00 MB 
(2.15×) 

41.38 MB 
(5.39×) 

12.02 MB 
(18.57×) 

11.97 MB 
(18.64×) 

Elapsed time 
(performance gain) 

4,424 sec 
(1×) 

469.687 sec
(9.419×) 

314.944 sec
(14.047×) 

321.040 sec 
(13.78×) 

378.303 sec
(11.694×) 
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Table 4.4 Performance comparison of 3D reconstruction for “parliament” data set 

Package Bundler(a) HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

- 52 / 52 52 / 52 52 / 52 52 / 52 

Number of 
3D points 

- 431,559 273,166 223,886 234,343 

Mean 
re-projection error 

- 0.649 pixels 0.674 pixels 0.604 pixels 0.606 pixels

Point cloud size 
(memory gain) 

- 
0.99 GB 

(-) 
328.15 MB 

(-) 
91.77 MB 

(-) 
96.01 MB 

(-) 

Elapsed time 
(performance gain) 

- 
10,800 sec 

(-) 
1,396.002 sec

(-) 
1,332.656 sec 

(-) 
1,279.646 sec

(-) 

(a) The Bundler failed to create 3D point cloud due to image size and out of memory problem. 

 

and reduce server-side localization speed due to increased disk I/O and memory swapping. 

In our experience, the file I/O for reading 3D physical model for localization takes about 6 

sec when the 3D point cloud size excesses 300 MB, and it is about 70% of the entire 

model-based localization process if the server does not cache the point cloud in the memory.  

 

Finally, the mean re-projection errors show that the HD4AR generated more accurate 3D 

point clouds for the building-scale outdoor data sets. The HD4AR achieved mean re-

projection errors less than 0.673 pixels and less than the results from the Bundler for all 

cases. The mean re-projection error represents how accurate the resulting 3D point cloud 

and the calibrated camera parameters are, as the re-projection error is calculated by 

projecting each 3D point into each calibrated camera of the base images and computing the 
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distance to the position of original image feature point. The experimental results illustrate 

that the generated 3D point clouds with the HD4AR have only 1-pixel mean re-projection 

error and well-represent the target scenes. 

 

One interesting result is that the Bundler failed to create a 3D physical model for the 

“parliament” data set. As shown in Table 4.1, the “parliament” images were taken by a 

high-end DSLR camera, and therefore, the images are very high-resolution with large file 

sizes. During the 3D reconstruction with these high resolution images, the Bundler package 

caused the out of memory problem and could not process the data set. However, as shown 

in Table 4.4, the HD4AR well-handled the “parliament” data set and successfully produced 

the dense large-scale 3D physical models. Except the SIFT descriptor, the HD4AR only 

took about 20 min to generate hundreds of thousands 3D points. Figure 4.12 shows the 

generated 3D physical models from all building-scale outdoor data sets using the BRISK 

descriptor. 

 

While binary descriptors achieved a huge gain on both reconstruction speed and memory 

consumption on the outdoor data sets, they produced little less dense 3D point clouds. The 

outdoor images typically have a plenty of textures and therefore, the invariance properties 

of feature descriptors shown in Figure 4.5 affect the number of true matches between 

photographs taken at random location and orientation. A key question is whether or not the 

reduction in point cloud density impacts mobile client localization. Based on visual analysis 

of the point clouds presented in Figure 4.12, we believe that the reduced density of the 3D  
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the jobsites during real-world construction activities. Again, the HD4AR outperformed the 

Bundler and was 594-1,639% faster for outdoor construction data sets. In addition, the 

HD4AR achieved the memory gain up to 1,740% and all generated 3D physical models 

have mean re-projection error smaller than 1.379 pixels. Figure 4.13 shows the generated 

3D physical models from all outdoor construction data sets using the BRISK descriptor. 

 

As demonstrated in Tables 4.5-4.7 and Figure 4.13, we can conclude that the HD4AR 

successfully generates 3D physical models for street-scale construction jobsites, even with 

the binary feature descriptors. 

 

 

Table 4.5 Performance comparison of 3D reconstruction for “rtfr” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

113 / 113 112 / 113 113 / 113 112 / 113 113 / 113 

Number of 
3D points 

48,493 40,526 81,197 81,140 81,909 

Mean 
re-projection error 

1.375 pixels 1.254 pixels 1.086 pixels 1.379 pixels 1.356 pixels

Point cloud size 
(memory gain) 

263.27 MB 
(1×) 

89.97 MB 
(2.93×) 

79.31 MB 
(3.32×) 

35.57 MB 
(7.40×) 

36.80 MB 
(7.15×) 

Elapsed time 
(performance gain) 

14,989 sec 
(1×) 

1,535.326 sec
(9.763×) 

2473.289 sec
(6.060×) 

1740.730 sec 
(8.611×) 

1832.693 sec
(8.179×) 
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Table 4.6 Performance comparison of 3D reconstruction for “cfta” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

80 / 80 80 / 80 80 / 80 80 / 80 80 / 80 

Number of 
3D points 

29,164 10,680 10,627 12,266 15,042 

Mean 
re-projection error 

0.698 pixels 0.594 pixels 0.709 pixels 0.580 pixels 0.615 pixels

Point cloud size 
(memory gain) 

133.60 MB 
(1×) 

41.11 MB 
(3.25×) 

13.80 MB 
(9.68×) 

7.82 MB 
(17.08×) 

10.23 MB 
(13.06×) 

Elapsed time 
(performance gain) 

5,086 sec 
(1×) 

600.155 sec
(8.474×) 

855.769 sec
(5.943×) 

698.884 sec 
(7.277×) 

447.473 sec
(11.366×) 

 

 

Table 4.7 Performance comparison of 3D reconstruction for “rh” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

155 / 155 155 / 155 155 / 155 149 / 155 151 / 155 

Number of 
3D points 

59,533 27,247 36,854 31,738 41,097 

Mean 
re-projection error 

0.818 pixels 0.603 pixels 0.703 pixels 0.567 pixels 0.600 pixels

Point cloud size 
(memory gain) 

247.08 MB 
(1×) 

60.00 MB 
(4.12×) 

38.80 MB 
(6.37×) 

14.20 MB 
(17.40×) 

18.10 MB 
(13.65×) 

Elapsed time 
(performance gain) 

16,070 sec 
(1×) 

980.450 sec
(16.390×) 

2475.513 sec
(6.494×) 

1329.698 sec 
(12.085×) 

1371.612 sec
(11.716×) 
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Table 4.8 Performance comparison of 3D reconstruction for “dashboard” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

27 / 27 27 / 27 27 / 27 27 / 27 27 / 27 

Number of 
3D points 

5,210 5,806 9,179 7,962 5,962 

Mean 
re-projection error 

0.881 pixels 0.677 pixels 0.967 pixels 0.767 pixels 0.755 pixels

Point cloud size 
(memory gain) 

34.64 MB 
(1×) 

12.10 MB 
(2.86×) 

8.83 MB 
(3.92×) 

2.80 MB 
(12.37×) 

2.17 MB 
(15.96×) 

Elapsed time 
(performance gain) 

736 sec 
(1×) 

93.031 sec 
(7.911×) 

111.330 sec
(6.611×) 

104.675 sec 
(7.031×) 

60.373 sec 
(12.191×) 

 

 

Table 4.9 Performance comparison of 3D reconstruction for “engine” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

10 / 32 31 / 32 21 / 32 12 / 32 10 / 32 

Number of 
3D points 

6,708 35,292 28,051 10,381 9,653 

Mean 
re-projection error 

2.166 pixels 0.692 pixels 0.756 pixels 0.650 pixels 0.644 pixels

Point cloud size 
(memory gain) 

101.80 MB 
(1×) 

63.74 MB 
(1.60×) 

25.70 MB 
(3.96×) 

3.44 MB 
(29.59×) 

3.14 MB 
(32.42×) 

Elapsed time 
(performance gain) 

2,007 sec 
(1×) 

225.727 sec
(8.891×) 

196.240 sec
(10.227×) 

167.355 sec 
(11.992×) 

179.663 sec
(11.171×) 
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Table 4.10 Performance comparison of 3D reconstruction for “kitchen” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

47 / 47 47 / 47 47 / 47 47 / 47 46 / 47 

Number of 
3D points 

9,091 8,159 11,441 8,852 7,517 

Mean 
re-projection error 

1.047 pixels 0.855 pixels 1.020 pixels 0.890 pixels 0.893 pixels

Point cloud size 
(memory gain) 

27.02 MB 
(1×) 

19.00 MB 
(1.42×) 

12.20 MB 
(2.22×) 

3.50 MB 
(7.72×) 

3.22 MB 
(8.39×) 

Elapsed time 
(performance gain) 

922 sec 
(1×) 

59.522 sec 
(15.490×) 

57.249 sec 
(16.105×) 

68.164 sec 
(13.526×) 

76.288 sec 
(12.086×) 

 

 

Table 4.11 Performance comparison of 3D reconstruction for “ikea” data set 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Number of 
registered images 

34 / 44 43 / 44 39 / 44 40 / 44 36 / 44 

Number of 
3D points 

3,013 7,375 6,350 14,868 9,043 

Mean 
re-projection error 

2.308 pixels 0.781 pixels 1.284 pixels 0.788 pixels 0.790 pixels

Point cloud size 
(memory gain) 

24.69 MB 
(1×) 

16.30 MB 
(1.52×) 

5.98 MB 
(4.13×) 

5.35 MB 
(4.62×) 

3.37 MB 
(7.33×) 

Elapsed time 
(performance gain) 

1,533 sec 
(1×) 

98.420 sec 
(15.576×) 

145.863 sec
(10.510×) 

167.802 sec 
(9.136×) 

126.222 sec
(12.145×) 
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Contrast to outdoor data sets, binary descriptors worked better than the SIFT descriptor for 

all indoor data sets except the “engine” data set, in terms of metrics presented in Tables 4.8-

4.11, e.g., the number of 3D points, point cloud size, elapsed time, etc. The “engine” data 

set was a photo collection from an actual user who was a beginner to use SfM-based 3D 

reconstruction. The overlapping portion between the images in the “engine” data set was 

relatively low, i.e., 5-10%, and therefore, it was difficult to register an entire image set 

using the proposed 3D reconstruction algorithm. Nevertheless, the HD4AR with the SIFT 

descriptor successfully registers almost every image. The HD4AR with other descriptors 

also produced more dense point clouds compared to the Bundler and resulted smaller mean 

re-projection errors. In addition, the generated physical models for the “engine” data set 

were able to provide mobile augmented reality services with the proposed model-based 6-

DOF localization method. The details of localization results will be discussed in Section 

4.4.2. Figure 4.14 shows the generated 3D physical models from all indoor data sets using 

the FREAK descriptor 

 

Based on experimental results discussed in this section, we illustrate the potential of the 

HD4AR 3D reconstruction for rapidly creating 3D point clouds from real-world data sets. 

Due to enhancements presented in Section 4.2, such as combination of binary feature 

descriptor, post-filtering during the SfM, and hardware/software parallelism, the HD4AR 

took 1-3 min to generate a 3D point cloud for indoor images and 5-20 min for outdoor 

images with binary descriptors. Compared to the Bundler, the most widely-used SfM 

package using an incremental approach, the HD4AR achieved the performance gain up to 
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BRISK, are appropriate for fast 3D reconstruction and still generate accurate 3D point 

clouds with less memory consumption. Furthermore, the HD4AR successfully generates 3D 

point clouds purely based on images and does not require any constraints on photographs, 

such as geo-tag, ordered sequence, etc. In all cases, the maximum re-projection error is few 

image pixels, and therefore, generated 3D point clouds well-represent target scene and can 

be used for mobile augmented reality. 

 

4.4.2 Model-based 6-DOF Localization/Augmentation 

 

In order to measure the capability of model-based localization with generated 3D physical 

models, the localization tests were performed on each 3D physical model. All the photos 

were newly taken by smartphones, such as Apple iPhone 4S and Samsung Galaxy Nexus, at 

random location. A group of images were tested for on spot localization using the client-

server architecture and 4G LTE connections to assess the mobility of the HD4AR.  

 

In this experiment, we measured the localization performance with the sequential requests 

from a single device as well as with the multiple simultaneous requests of localization from 

several client devices. This is particularly important as the HD4AR server can handle 

parallel localization requests from client devices simultaneously, which leads to the 

increased system capacity. For example, if two users attempt to query cyber-information at 

the same time by submitting two separate localization requests, both user requests will be 

processed simultaneously and augmentation results will be presented within the same 1-2 

sec time span. Considering the number of smart devices these days, this feature shows the 
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scalability in implementing the proposed solution for near real-time exchange of 

information among numerous users. 

 

The performance of the Bundler package was measured and compared to that of the 

HD4AR to demonstrate the performance gains on localization. Since the Bundler package 

does not provide on spot localization and cyber-information association, we only compared 

the offline localization speed of the Bundler to that of the HD4AR. To demonstrate the 

augmentation capability of the HD4AR, 3D cyber-information is pre-associated to the 3D 

physical models using the 3D content authoring method proposed in this study. The 

proposed approach for 3D cyber-physical content authoring will be fully discussed in 

Chapter 5. During the localization/augmentation experiment, following metrics were 

measured: 

 

 Localization success-ratio: how many new photographs are successfully localized. 

Due to the model-based localization approach, the success in localization means 

that the system was able to solve the camera calibration equation, i.e., Direct Linear 

Transformation equation followed by a Levenberg-Marquardt optimization, using 

given 2D-to-3D correspondences between image and 3D physical model. 

 Mean number of 2D-to-3D matches: average number of 2D-to-3D correspondences 

found in a single photograph using the proposed direct 2D-to-3D matching 

algorithm. The found correspondences are used in the camera calibration equation 

to estimate a complete pose of the camera. Due to the limitation of the Bundler 
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package, this metric cannot be measured for the Bundler. 

 Mean re-projection error: overall mean re-projection error that computed by 

projecting each 3D point into the localized photographs. Specifically, the re-

projection error is the distance between projected 3D points and original image 

feature points in 2D-to-3D matching results. The value of this metric indicates the 

accuracy of localization. This metric is also not measured for the Bundler. 

 Mean localization time (sequential requests): how long does it take to localize a 

single photograph on average with sequential requests from a single device. The 

localization time consists of feature detection/extraction time, direct 2D-to-3D 

matching time, and camera calibration time. 

 Mean localization time (parallel requests): how long does it take to localize a single 

photograph on average with parallel requests from multiple devices. Specifically, 

the HD4AR server runs sixteen parallel threads for localization where each thread 

can handle a single photograph at a time. Since the Bundler does not support 

parallel processing, this metric cannot be measured for the Bundler. 

 

Tables 4.12-4.14 compare the overall results of model-based 6-DOF localization on the 3D 

physical models of outdoor buildings, i.e., “patton”, “knu”, and “parliament” models. The 

proposed direct 2D-to-3D matching with 3D representative descriptors achieved the 

significant performance gain even with sequential localizations. In all cases, the HD4AR 

rapidly localized photographs submitted by client devices, and was 1,960-11,533% faster 

than the Bundler. The HD4AR was about 20 times faster than the Bundler even with the 
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same SIFT descriptor due to the proposed direct 2D-to-3D matching. As we outlined in 

Section 4.3, the Bundler does the 2D-to-2D-to-3D matching and compares the newly 

submitted image to an entire set of base images. 

 

Within the HD4AR system, the SIFT descriptor produced the minimum mean re-projection 

error, which means the most accurate localization, but it was significantly slower than other 

descriptors, i.e., the SURF, FREAK, and BRISK, due to time consuming computations and 

a twice longer dimension of descriptors. On the other hand, the SURF descriptor enabled 

fast localizations, but caused the most erroneous results among the tested descriptors. As 

we will discuss throughout this section, the mean re-projection errors from the SURF 

descriptor were even worse in the case of indoor localizations. Finally, the binary 

descriptors also achieved the significant performance gain compared to the Bundler and 

resulted mean re-projection errors in the range of 0.872-1.189 pixels. If we only focus on 

the binary descriptors, the performance gain compared to the Bundler was 9,791-11,081% 

for building-scale outdoor data sets. 

 

One of the interesting measurements for localization is the mean re-projection error, which 

is represented in image pixel units. Since a camera is projecting an entire 3D scene in front 

of the camera into 2D image space, it is difficult to map this mean re-projection error into 

real-world distance metric, such as centimeters or millimeters. For example, a small pixel 

error will result the significant error in real-world if the subject is very far from the camera. 
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Table 4.12 Performance comparison of 6-DOF localization for “patton” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

50 / 50 
(100%) 

49 / 50 
(98%) 

49 / 50 
(98%) 

50 / 50 
(100%) 

49 / 50 
(98%) 

Mean number of  
2D-to-3D matches 

- 9,143 3,576 2,146 2,145 

Mean 
re-projection error 

- 0.627 pixels 0.895 pixels 0.872 pixels 0.812 pixels

Mean  
localization time 

(sequential requests) 

242.775 sec 
(1×) 

12.389 sec 
(19.596×) 

2.105 sec 
(115.333×) 

2.191 sec 
(110.806×) 

2.312 sec 
(105.006×) 

Mean  
localization time 

(parallel requests) 
- 

3.527 sec 
(-) 

0.663 sec 
(-) 

0.514 sec 
(-) 

0.754 sec 
(-) 

 

 

Table 4.13 Performance comparison of 6-DOF localization for “knu” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

50 / 50 
(100%) 

50 / 50 
(100%) 

49 / 50 
(98%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

Mean number of  
2D-to-3D matches 

- 2,258 1,521 1,241 1,204 

Mean 
re-projection error 

- 0.808 pixels 1.300 pixels 1.189 pixels 1.070 pixels

Mean  
localization time 

(sequential requests) 

120.820 sec 
(1×) 

6.057 sec 
(19.947×) 

1.173 sec 
(103.001×) 

1.234 sec 
(97.909×) 

1.347 sec 
(89.696×) 

Mean  
localization time 

(parallel requests) 
- 

1.600 sec 
(-) 

0.369 sec 
(-) 

0.346 sec 
(-) 

0.507 sec 
(-) 
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Table 4.14 Performance comparison of 6-DOF localization for “parliament” models 

Package Bundler(a) HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

- 
40 / 40 
(100%) 

40 / 40 
(100%) 

40 / 40 
(100%) 

40 / 40 
(100%) 

Mean number of  
2D-to-3D matches 

- 6,362 670 449 465 

Mean 
re-projection error 

- 0.613 pixels 1.226 pixels 0.928 pixels 0.897 pixels

Mean  
localization time 

(sequential requests) 
- 

6.193 sec 
(×) 

1.831 sec 
(×) 

2.391 sec 
(×) 

2.693 sec 
(×) 

Mean  
localization time 

(parallel requests) 
- 

2.684 sec 
(-) 

0.784 sec 
(-) 

0.768 sec 
(-) 

0.847 sec 
(-) 

(a) The Bundler failed to create 3D point cloud due to image size and out of memory problem. 

 

As a consequence, the distance from camera to target subject must be considered when 

converting a mean re-projection error into a real-world distance metric: 

 

݁௠௠ ൌ
݁௣௜௫௘௟
௣݂௜௫௘௟

∙ ݀௠௠ ൌ
݁௣௜௫௘௟
௣௜௫௘௟ݓ

∙
௠௠ݓ

௠݂௠
∙ ݀௠௠ (4.6) 

 

where emm is a real-world distance error in millimeter unit, epixel is a localization re-

projection error in pixel units, fpixel is a focal length in pixel unit, dmm is a distance from 

camera center to target subject in millimeter unit, wpixel is an image width in pixel units, and 

wmm and fmm are a camera CCD sensor width and a focal length in millimeter unit, 

respectively. For example, by using an Equation 4.6 and the camera parameters of Apple 
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iPhone 4S, i.e., wmm = 4.54, fmm = 4.28, wpixel = 3,264, the experimental results shown in 

Tables 4.12-4.14 can be interpreted as the HD4AR localization had 1.992-4.225 mm error if 

Apple iPhone 4S was used to take a picture and the subject was 10 meters away from the 

camera . 

 

Figure 4.14 shows the example of localization/augmentation results from the HD4AR with 

the BRISK descriptor for building-scale outdoor images. The 3D physical models generated 

from the HD4AR were fed into a multi-view stereo algorithm [52, 53] to increase the 

density of point clouds for visualization purposes. The generated dense point clouds were 

not used for the localization and only for visualizing the models to end-users. The dense 3D 

physical models associated with 3D cyber-information are shown in Figure 4.15a. Figure 

4.15b illustrates the HD4AR localization results in 3D space and corresponding augmented 

photographs are shown in Figure 4.14c. In addition to experimental results shown in Tables 

4.12-4.14, the augmented photographs empirically show that camera poses were 

successfully recovered, and thus the cyber-information, e.g., window information on the 

“patton” model, is precisely overlaid on photographs from different viewpoints. 
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compares the image descriptors to 3D representative descriptors, and thus, the elapsed time 

only depends on the size of the physical model, resulting significant performance gain. 

With the binary descriptors, the HD4AR was up to 160 times faster than the Bundler and the 

mean re-projection errors were between 1.000-2.511 pixels. The localization error is 

slightly higher than the building-scale outdoor cases, but is still in the range of few image 

pixels. Figure 4.16 shows the example of localization/augmentation results from the 

HD4AR with the BRISK descriptor for construction jobsite photographs. The augmented 

photographs show that the HD4AR precisely delivered/visualized associated cyber-

information in street-scale outdoor environment. 

 

Another interesting measurement for localization is the mean number of 2D-to-3D matches. 

This measurement indicates the number of found correspondences between image feature 

points and 3D points in a single photograph. As shown in Tables 4.2-4.7 and 4.12-4.17, the 

measured numbers of 2D-to-3D matches is much smaller than the number of 3D points in 

the 3D physical models. This might be due to the fact that submitted photographs from the 

client devices only cover the part of the target scene, experience different illumination 

conditions, or are low quality photographs caused by camera shake. Nevertheless, the 

HD4AR accurately and rapidly localized the submitted photograph with small number of 

2D-to-3D correspondences, and this fact leads to a cached k-d tree approach to further 

accelerate the direct 2D-to-3D matching algorithm. By caching and maintaining highly 

queried 3D points in the small memory, we can further reduce the localization time. The 

details of a cached k-d tree approach will be fully discussed in Chapter 6. 
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Table 4.15 Performance comparison of 6-DOF localization for “rtfr” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

49 / 50 
(98%) 

49 / 50 
(98%) 

46 / 50 
(92%) 

49 / 50 
(98%) 

50 / 50 
(100%) 

Mean number of  
2D-to-3D matches 

- 907 1,300 1,692 1,637 

Mean 
re-projection error 

- 1.969 pixels 2.702 pixels 2.511 pixels 2.435 pixels

Mean  
localization time 

(sequential requests) 

177.725 sec 
(1×) 

6.190 sec 
(28.712×) 

2.214 sec 
(80.273×) 

2.847 sec 
(62.425×) 

3.059 sec 
(58.099×) 

Mean  
localization time 

(parallel requests) 
- 

1.594 sec 
(-) 

0.707 sec 
(-) 

0.904 sec 
(-) 

0.811 sec 
(-) 

 

 

Table 4.16 Performance comparison of 6-DOF localization for “cfta” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

50 / 50 
(100%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

Mean number of  
2D-to-3D matches 

- 621 328 555 695 

Mean 
re-projection error 

- 0.696 pixels 1.697 pixels 1.189 pixels 1.000 pixel 

Mean  
localization time 

(sequential requests) 

72.488 sec 
(1×) 

2.879 sec 
(25.178×) 

0.795 sec 
(91.180×) 

0.857 sec 
(84.583×) 

0.856 sec 
(84.682×) 

Mean  
localization time 

(parallel requests) 
- 

0.732 sec 
(-) 

0.215 sec 
(-) 

0.184 sec 
(-) 

0.188 sec 
(-) 
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Table 4.17 Performance comparison of 6-DOF localization for “rh” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

50 / 50 
(100%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

Mean number of  
2D-to-3D matches 

- 467 495 470 601 

Mean 
re-projection error 

- 0.886 pixels 1.584 pixels 1.102 pixels 1.466 pixels

Mean  
localization time 

(sequential requests) 

122.467 sec 
(1×) 

2.467 sec 
(49.642×) 

0.755 sec 
(162.208×) 

0.765 sec 
(160.088×) 

0.914 sec 
(133.990×) 

Mean  
localization time 

(parallel requests) 
- 

1.026 sec 
(-) 

0.321 sec 
(-) 

0.254 sec 
(-) 

0.291 sec 
(-) 

 

Finally, Tables 4.18-4.21 compare the localization results for indoor scenarios. For the 

indoor test cases, i.e., “dashboard”, “engine”, “kitchen”, and “ikea” models, the HD4AR 

was 708-4,704% faster than the Bundler. Since the indoor images are typically texture-less 

and results less number of feature descriptors compared to outdoor images, the performance 

gain from feature descriptors is slightly reduced. However, the HD4AR with the SURF, 

FREAK, and BIRSK descriptors are still 2,321-4,704% faster than the Bundler and took at 

most 2 sec to localize a single photograph. Due to the proposed direct 2D-to-3D matching, 

the HD4AR with the SIFT descriptor was also 708-1,206% faster than the Bundler. 

 

Especially, for “engine” and “ikea” data sets, the Bundler failed to localize all tested 

photographs. As shown in Tables 4.9 and 4.11, the Bundler produced the higher mean re-

projection error in 3D reconstruction for “engine” and “ikea” data sets, and the resulting 3D 
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Table 4.18 Performance comparison of 6-DOF localization for “dashboard” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

40 / 40 
(100%) 

39 / 40 
(97.5%) 

40 / 40 
(100%) 

40 / 40 
(100%) 

40 / 40 
(100%) 

Mean number of  
2D-to-3D matches 

- 381 391 486 375 

Mean 
re-projection error 

- 1.250 pixels 2.514 pixels 1.909 pixels 1.947 pixels

Mean  
localization time 

(sequential requests) 

34.407 sec 
(1×) 

3.432 sec 
(10.025×) 

0.794 sec 
(43.334×) 

0.907 sec 
(37.935×) 

0.930 sec 
(36.997×) 

Mean  
localization time 

(parallel requests) 
- 

0.928 sec 
(-) 

0.344 sec 
(-) 

0.312 sec 
(-) 

0.353 sec 
(-) 

 

 

Table 4.19 Performance comparison of 6-DOF localization for “engine” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

0 / 45 
(0%) 

45 / 45 
(100%) 

42 / 45 
(93.3%) 

41 / 45 
(91.1%) 

41 / 45 
(91.1%) 

Mean number of  
2D-to-3D matches 

- 2,717 2,611 1,232 1,162 

Mean 
re-projection error 

- 1.213 pixels 1.642 pixels 2.033 pixels 2.200 pixels

Mean  
localization time 

(sequential requests) 

49.667 sec 
(1×) 

7.016 sec 
(7.079×) 

2.140 sec 
(23.209×) 

1.950 sec 
(25.470×) 

2.282 sec 
(21.765×) 

Mean  
localization time 

(parallel requests) 
- 

1.868 sec 
(-) 

0.569 sec 
(×) 

0.534 sec 
(×) 

0.616 sec 
(×) 
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Table 4.20 Performance comparison of 6-DOF localization for “kitchen” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

50 / 50 
(100%) 

49 / 50 
(98%) 

49 / 50 
(98%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

Mean number of  
2D-to-3D matches 

- 457 487 411 373 

Mean 
re-projection error 

- 1.149 pixels 1.981 pixels 1.766 pixels 1.748 pixels

Mean  
localization time 

(sequential requests) 

23.894 sec 
(1×) 

1.981 sec 
(12.062×) 

0.508 sec 
(47.035×) 

0.496 sec 
(48.173×) 

0.529 sec 
(45.168×) 

Mean  
localization time 

(parallel requests) 
- 

0.547 sec 
(-) 

0.176 sec 
(-) 

0.167 sec 
(-) 

0.174 sec 
(-) 

 

 

Table 4.21 Performance comparison of 6-DOF localization for “ikea” models 

Package Bundler HD4AR 

Descriptor SIFT SIFT SURF FREAK BRISK 

Localization 
success-ratio 

0 / 45 
(0%) 

44 / 45 
(97.8%) 

31 / 45 
(68.9%) 

44 / 45 
(97.8%) 

43 / 45 
(95.6%) 

Mean number of  
2D-to-3D matches 

- 450 227 714 480 

Mean 
re-projection error 

- 1.394 pixels 3.801 pixels 2.301 pixels 2.416 pixels

Mean  
localization time 

(sequential requests) 

38.955 sec 
(1×) 

4.356 sec 
(8.943×) 

0.914 sec 
(42.62×) 

1.022 sec 
(38.116×) 

1.115 sec 
(34.937×) 

Mean  
localization time 

(parallel requests) 
- 

1.188 sec 
(-) 

0.270 sec 
(-) 

0.251 sec 
(-) 

0.262 sec 
(-) 
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capacity to provide high-precision localization with maximum error up to few image pixels. 

With the HD4AR and the binary descriptors, the localization/augmentation of single image 

took about 0.5-3.0 sec in all cases. Thus, the HD4AR can provide near real-time localization 

and augmentation capabilities for both indoor and outdoor environments. 

 

4.5 Contributions and Significance 
 

The proposed HD4AR approach, a vision-based marker-less method using SfM-based 3D 

point cloud models, was designed with the intent of bringing high-precision mobile 

augmented reality to end-users without requiring external sensors or infrastructures. As a 

consequence, the HD4AR promises the applicability of model-based localization on the 

field of high-precision mobile augmented reality. The HD4AR rapidly generates a 3D point 

cloud model, which roles as a reference model for localization, and provides near real-time, 

high-precision localization and augmentation solely based on the photograph. The 

experimental results shown in Section 4.4 indicate the robustness of the system to dynamic 

changes of viewpoint, camera resolution, and scale of objects, which are typically observed 

in many practical mobile augmented reality applications. 

 

Based on discussion in this Chapter, we can conclude that the HD4AR – hybrid 

mobile/cloud model-based localization on SfM-based 3D physical model – has successfully 

filled the “Research Gap 1: Fine-grained 6-DOF Localization with Mobile Devices”, and 

“Research Gap 3: Near Real-time Cyber-physical Information Association at Dynamically 

Varying Environmental Scales”. Table 4.22 compares the proposed approach with all 
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related works reviewed in Section 3.1. The proposed approach purely localizes users based 

on images from mobile devices and works well for both indoor and outdoor environment 

without requiring any sensors or infrastructures for localization. Also a bootstrapping 

process of the system is significantly accelerated by proposing a new parallelized 3D 

reconstruction pipeline. The HD4AR provides high-precision 6-DOF localization where 

uncertainty level is 0.613-2.511 pixels and near real-time localization/augmentation, which 

takes 0.5-3.0 sec to localize a single image. Through the extensive experiments, we also 

proved that the binary descriptors work well for both 3D reconstruction and model-based 6-

DOF localization. Finally, the proposed approach successfully supports on spot localization 

through the client-server architecture and is scalable for multi-user scenarios. 

 

 

 

Table 4.22 Validation of the HD4AR approach 

Metrics Sensor-based Marker-based Visual SLAM Model-based HD4AR 

Localization 
Accuracy 

1.5 – 35 m (a) 0.5 – 2 mm (b) 0.5 – 20 mm (c) 0.5 – 20 mm (c) 2 – 8 mm (c) 

Localization 
Speed 

100 – 200 msec 20 – 140 msec 20 – 40 msec 5 – 240 sec 0.5 - 3.0 sec 

External 
Infrastructure 

GPS satellite Optical markers Not needed Not needed Not needed 

Resistant to 
drifts and error 
accumulation 

×  ×   

Scale well to 
large scene 

 × ×   

(a) GPS Covered area; (b) Markers within 3m distance; (c) Objects within 10m distance. 
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5 Plane Transformation based 3D Cyber-physical Content 

Authoring from A Single 2D Image 

 

5.1 Overview of Solution Approach to Research Gap 2 
 

As discussed in Sections 2.2 and 3.2, the mobile augmented reality system should provide a 

way of making cyber-information and associating it with real-world physical objects so that 

other users can see generated cyber-information overlaid on top of corresponding objects in 

the photograph. For high-precision mobile augmented reality, which provides 6-DOF 

localization in 3D space, all deliverable cyber-information should also have 3D positional 

information so that the cyber-information can be properly projected in to the photograph 

with the recovered 6-DOF pose of a camera. 

 

The most straightforward method for this 3D content authoring is preparing a 3D drawing 

of target object or building and manually aligning it to physical objects [1], as shown in 

Figure 5.1. Although this approach can deliver a plenty of information to end users, it 

always require manual association and a 3D drawing generated by specific 3D design 

frameworks, such as CAD tools. However, the question of how to conveniently and 

accurately create even simple 3D content using a mobile device and 2D interface is still an 

open problem [19]. 
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details of the proposed approach, i.e., “Plane Transformation based 3D Cyber-physical 

Content Authoring from A Single 2D image”, will be discussed in the following section. 

 

5.2 3D Content Authoring with Homography 
 

The proposed 3D content authoring method from a single 2D image is based on plane 

image transformation, i.e., a homography matrix. By its definition, the homography is an 

invertible transformation in a projective space that maps an image plane to another image 

plane. For example, each pixel in image plane #1 can be transformed to another image 

plane #2 via homography matrix: 

 

ݏ ቈ
ଶݔ
ଶݕ
1
቉ ൌ ۶ ቈ

ଵݔ
ଵݕ
1
቉ (5.1) 

 

where H is an estimated 3×3 homography matrix, (x1, y1) is a pixel coordinates in image 

plane #1, and (x2, y2) is a transformed pixel coordinates of (x1, y1) in the image plane #2. As 

shown in Figure 5.2, one image plane can be accurately transformed to another image plane 

using estimated homography matrix. The homography matrix between two images can be 

automatically found using the RANSAC with normalized Direct Linear Transform 

algorithm [48], as discussed in Section 4.2.2. By using Equation 5.1 and the estimated 

homography matrix, we can find the correspondences of 2D points between two images. 

 

Since the HD4AR 3D reconstruction discussed in Section 4.2 estimates homography 

matrices between every base image pair and keeps those matrices in the 3D physical model, 
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Using this 2D correspondence information as well as intrinsic and extrinsic camera 

parameters recovered during 3D reconstruction, our method then triangulates each vertex of 

the user-created polygon to impose 3D positional information to user-created 2D element. 

If the estimated 2D correspondences of user-created element are not located within the 

image dimension of the base image, that correspondence information is discarded for 

triangulation. In addition, if the recovered camera parameters of the base image had a mean 

re-projection error higher than 1.0 pixel during the 3D reconstruction, that base image is 

also discarded for triangulation. With these constraints, we found that 3-8 base cameras 

were typically participated in the triangulation. The experimental results of 3D content 

authoring will be discussed in Section 5.3. 

 

The polynomial method [50] is used for triangulation to handle the noise presented in user 

measurements and automatically found 2D correspondences. After fixing camera 

parameters and running Bundle Adjustment to further minimize a mean re-projection error 

of the triangulated polygon, the resulting 3D element is well-aligned with the existing 3D 

physical model as shown in Figure 5.3c. Once this user-created element has 3D positional 

information, it can be precisely overlaid on other photographs from different viewpoints 

using the HD4AR model-based localization, as shown in Figure 5.3d. 

 

This simple and robust 3D cyber-physical content authoring method based on homography 

can help users create 3D cyber-information easily by drawing a simple polygon on a single 

2D image. In addition, the proposed approach automatically associates user-created cyber-  
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analysis, however, we also measured the mean re-projection error of triangulated 3D 

elements against the base images that were participated in triangulation. All the 

experiments were conducted on a single Amazon EC2 instance server with 22.5 GB 

memory and two Intel Xeon X5570 processors running Ubuntu version 12.04. 

 

The experiment for 3D cyber-physical content authoring is performed in following 

procedure: 1) let users draw polygons on interesting objects on the single image with 

smartphones, 2) perform the proposed content authoring method and visualize generated 

3D cyber-information with 3D point cloud model to see the accuracy of 3D cyber-

information triangulation, and 3) test localization/augmentation on different location and 

viewpoint to verify that created 3D cyber-information is indeed well-associated in 3D 

geometry. The test tool for augmentation was based on the HD4AR discussed in Chapter 4. 

 

Table 5.1 shows the results of 3D cyber-physical content authoring with the proposed 

method. In all cases from indoor to outdoor data sets, the proposed method successfully 

generated 3D contents from user inputs on a single 2D image. During the estimation of 2D 

correspondences of user inputs on other base images using estimated homography matrices, 

we only used the base images which H-score is greater than 0.85 in order to increase the 

accuracy of triangulation. As a consequence, only 2-8 base images were participated in 

triangulation and the mean re-projection errors of the triangulated elements were in the 

range between 0.268-3.443 pixels. Figures 5.5-5.7 show the visual analysis results of the 

3D cyber-physical content authoring with the proposed method. For example, a user drew  
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Table 5.1 3D cyber-physical content authoring results with 3D physical models generated by 

BRISK descriptor 

Environment Name 
Number of vertices

for user-driven 
elements 

Number of base 
images participated 

in triangulation 

Mean 
re-projection error

Outdoor 

patton 15 8 2.619 pixels 

knu 4 4 0.268 pixels 

parliament 4 6 0.777 pixels 

rtfr 4 4 3.443 pixels 

cfta 12 6 1.464 pixels 

Rh 4 5 0.914 pixels 

Indoor 

dashboard 20 4 0.432 pixels 

engine 4 2 1.276 pixels 

kitchen 4 2 0.205 pixels 

ikea 4 3 0.686 pixels 

 

several windows on “patton” image and the proposed method precisely triangulated and 

associated them with corresponding objects in the “patton” 3D physical model, as shown in 

Figure 5.5. Similarly, user-created cyber-buttons on “dashboard” image were successfully 

associated with the buttons in the “dashboard” 3D physical model, as shown in Figure 5.7. 

Once these user-created elements were successfully attached and aligned to 3D physical 

models, users can see this cyber-information precisely overlaid on the photograph taken 

from different locations and orientations (see Figures 5.5c, 5.6c, and 5.7c). 
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From experimental results shown in this section, we can conclude that the proposed method 

successfully creates 3D cyber-information solely based on user inputs on a single 2D image. 

By using a plane transformation, i.e., a homography matrix, to automatically find 

correspondences of user-created elements and triangulating all of those 2D correspondences 

using the recovered camera parameters, the proposed method automatically associates user-

created cyber-information with corresponding physical objects in 3D geometry. As a result, 

users do not require manual association and a priori knowledge of the coordinates of 

underlying 3D physical model to create 3D cyber-information. 

 

5.4 Contributions and Significance 
 

Based on discussion in this Chapter, we can conclude that the solution approach, “Plane 

Transformation based 3D Cyber-physical Content Authoring from A Single 2D Image”, has 

successfully filled the “Research Gap 2: 3D Cyber-physical Content Authoring from 2D 

Interface”. Table 5.2 compares the proposed approach with all related works reviewed in 

Section 3.2. The plane transformation based 3D content authoring purely creates 3D cyber-

information using user inputs from a single 2D image and supports automatic association of 

generated cyber-contents (e.g., product manual, history, website) to real-world 3D physical 

objects. In addition, the proposed method can be used with any commodity mobile devices 

if the devices have a capability of showing an image on the screen. The interface of the 

proposed method only requires a capability of drawing polygons on the image, and thus is 

intuitive and straightforward. The convenient method for 3D cyber-physical content 

authoring is especially important for designing and developing mobile augmented reality 



 

 

93

applications where users can create and share cyber-information with each other in form of 

augmented reality overlays. 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Validation of the proposed approach – plane transformation based 3D cyber-physical 

content authoring from a single 2D image 

Metrics 3D drawings Gesture recognition
Plane transformation 

based 
3D content authoring 

External 
3D framework 

CAD Not needed Not needed 

Automatic 
association with

real-world objects 
× ×  

Supports mobility ×   

Device type 
Personal 

Computer 
Gloves, pens Commodity smartphones 
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6 Cached k-d tree Generation for Fast Direct 2D-to-3D 

Matching 

 

6.1 Overview of Solution Approach to Research Gap 3 

 

As discussed in Chapter 4, the proposed HD4AR approach, a vision-based marker-less 

method using SfM-based 3D physical models, provides near real-time mobile augmented 

reality with millimeter-level of information association. The HD4AR show the robustness 

of the proposed approach to dynamic changes of viewpoint and scale of objects. Despite the 

accuracy and near real-time performance of the HD4AR, however, the localization speed 

needs to be further accelerated to provide better user experience. With binary descriptors, 

the HD4AR still takes 0.5-3.0 sec to localize a single photograph. 

 

To fill the “Research Gap 3: Near Real-time Cyber-physical Information Association at 

Dynamically Varying Environmental Scale”, here a new approach for further accelerating 

the HD4AR localization/augmentation speed is designed and developed. As described in 

Section 4.3, the HD4AR augmentation process is simply done by projecting 3D vertex 

points of cyber-information into an image plane using recovered camera parameters. 

However, the localization process requires a set of resource-intensive algorithms, such as 

direct 2D-to-3D matching algorithm, which performance depends on the number of 3D 

points in the 3D physical model. As a consequence, the longer localization time typically 

takes place at the outdoor data sets since the resulting 3D physical models are dense due to 
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a plenty of textures from the objects. 

 

The matching complexity of the direct 2D-to-3D matching with a k-d tree proposed in 

Section 4.3 depends on the number of 3D points and the number of feature descriptors from 

a new image to be localized. Specifically, the upper bound of this matching complexity is: 

 

O (M log N) (6.1) 

 

where N is the number of 3D points in the point cloud and M is the number of feature 

descriptors from a new image. For outdoor data sets we studied in Section 4.4, the value of 

N is typically in the range between 30,000 and 200,000, while the value of M is 10,000-

20,000. As shown in Equation 6.1, the larger N obviously results the longer matching time. 

If users create a 3D physical model of street or city using several hundreds of pre-collected 

photographs, the resulting model will consist of hundreds of thousands 3D points, and thus, 

a direct 2D-to-3D matching algorithm may take tens of seconds. Therefore, the methods of 

reducing the complexity of this direct 2D-to-3D matching are designed and proposed. 

 

6.2 Caching 3D Representative Descriptors with Localization Patterns 

 

Removing the dependency on the number of 3D points in Equation 6.1 can be expected to 

significantly reduce the overall matching time. To realize this, we developed a new 

approach that generates a constant size of cached k-d tree from 3D representative 

descriptors and using it for direct 2D-to-3D matching. By caching and maintaining highly 
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queried 3D points into a small size of k-d tree, the matching time and localization time are 

expected to be reduced. 

 

With the proposed caching approach, a key question then becomes how to select which 3D 

points and their corresponding representative descriptors should be located in a cached k-d 

tree to provide high localization success-ratio and accurate localization results. To provide 

fast and reliable localization results, therefore, the proposed approach exploits the facts that 

1) the HD4AR accurately and rapidly localizes a new photograph with small number of 2D-

to-3D correspondences and 2) localization requests from users may have a geospatial 

pattern, e.g., taking a picture only at façade of building. As a consequence, the most 

frequently matched 3D points during the previous localizations and their corresponding 3D 

representative descriptors are cached and used for fast direct 2D-to-3D matching. 

 

The procedure of caching 3D points and corresponding representative descriptors can be 

summarized as follows: 

 

1) After the 3D reconstruction process of the HD4AR, create a “cache” list which size 

is equal to the number of 3D points in the 3D physical model. Each element of the 

list consists of (hit count, Index of 3D point) pair. The list will be maintained during 

an entire AR cycle of the HD4AR. 

2) After the direct 2D-to-3D matching stage in the HD4AR localization, increase the 

hit count by 1 for all 3D points which exist in resulting 2D-to-3D correspondences. 
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3) Sort the “cache” list in decreasing order. The upper part of the list is the most 

frequently matched 3D points. 

4) Extract 3D points and their corresponding representative descriptors according to 

the point indices of first N elements of the “cache” list. Typically the range of N is 

1,000-10,000, depending on the size of the 3D physical model. 

5) Generate a cached k-d tree using extracted 3D representative descriptors and use it 

for fast direct 2D-to-3D matching. 

 

The localization process of the HD4AR is slightly modified to handle fast direct 2D-to-3D 

matching with a cached k-d tree. Upon receiving a new photograph from the client device, 

the HD4AR server first matches image feature descriptors of the new photograph against a 

cached k-d tree to find 2D-to-3D correspondences. If the number of correspondences is less 

than 16 or the HD4AR was unable to calibrate the camera with resulting correspondences, 

the HD4AR runs normal model-based 6-DOF localization discussed in Section 4.3 as a 

fallback solution. After the localization process, the HD4AR updates the “cache” list and re-

generates a cached k-d tree using updated information. 

 

With a cached k-d tree, the complexity of direct 2D-to-3D matching is reduced to:  

 

O (M log N) → O (M) (6.1) 

 

as N goes to constant. Since M is the number of feature descriptors of new photograph to be 
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6.3 Experimental Results and Validation 

 

This section presents experimental results and the validation of the proposed caching 

approach for fast model-based localization using direct 2D-to-3D matching. In order to 

assess improvements provided by the proposed approach, the HD4AR model-based 6-DOF 

localization discussed in Section 4.3 was performed on both cached models and non-cached 

models. In addition, only outdoor models were considered during this experiment as the 

outdoor models typically have larger number of 3D points and take longer localization time 

(2-3 sec) compared to indoor models. All 3D physical models used in this experiment, i.e., 

“patton”, “knu”, and “parliament” models, came from the results discussed in Section 4.4 

and the details of the used physical models are reviewed in Table 6.1. In order to minimize 

feature extraction time during the localization, the BRISK descriptor is used in this 

experiment. The same photographs used in Section 4.4.2 were tested again for the proposed 

caching approach and the same metrics presented in Tables 4.12-4.14 were measured for 

performance comparison. Also, a half of test photographs were randomly selected to pre-

train the “cache” list discussed in Section 6.2. All experiments were conducted on a single 

Amazon EC2 instance server with 22.5 GB memory and two Intel Xeon X5570 processors 

running Ubuntu version 12.04. An NVIDIA Tesla M2050 graphic card was used for GPU 

computations. The fallback solution – returning to normal model-based localization when 

the proposed caching approach failed to localize the photograph – was disabled during the 

experiment to assess the effect of the cache size on the localization success ratio. 

 

During the experiment, different cache sizes, i.e., 1,000, 2,000, 5,000, and 10,000 points,  
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Table 6.1 3D physical models tested for direct 2D-to-3D matching with a cached k-d tree approach 

Environment 
Model 
Name 

Number of  
3D points 

Mean 
re-projection error 

from 3D reconstruction 

Outdoor 

patton 46,318 0.498 pixels 

knu 33,122 0.552 pixels 

parliament 234,343 0.606 pixels 

 

were mainly tested to validate the effect of the cache size on the performance. As discussed 

in Section 4.4.2, the average number of 2D-to-3D matches on outdoor building-scale data 

sets with BRISK descriptor was 1,271 points, meaning that the HD4AR found about 1,000 

points on average and used those 2D-to-3D correspondences to successfully recover the 

camera’s location and orientation. Consequently, we can expect that the very small cache 

sizes, i.e., below 1,000 points, will achieve very low localization success-ratio. Tables 6.2-

6.4 summarize the localization results of the proposed caching approach with very small 

cache sizes, i.e., 100- 500 points. As expected, the proposed approach with small cache size 

achieved very low localization success-ratio, which was in the range of 2-65%. As shown in 

Tables 6.2-6.4, the localization success-ratio depends on the gap between the average 

number of 2D-to-3D matches of non-caching localization and tested cache sizes. 

Specifically, the localization success-ratio significantly dropped when the gap between the 

average number of 2D-to-3D matches of non-caching localization and cache size was large. 

In the remaining of this section, therefore, we have mainly focused on cache sizes above 

1,000 points to validate the effect of cache size on both localization speed and accuracy. 
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Table 6.2 Localization results with very small cache sizes for “patton” model 

Package HD4AR HD4AR with caching approach 

Cache size - 100 200 500 

Localization 
success-ratio 

49 / 50 
(98%) 

12 / 50 
(24%) 

12 / 50 
(24%) 

13 / 50 
(26%) 

Mean number of  
2D-to-3D matches 

2,145 50 94 191 

Mean 
re-projection error 

0.812 pixels 0.716 pixels 0.979 pixels 0.975 pixels 

Mean  
localization time 

(sequential requests) 

2.312 sec 
(1×) 

1.241 sec 
(1.863×) 

1.246 sec 
(1.856×) 

1.254 sec 
(1.844×) 

Mean  
localization time 

(parallel requests) 

0.754 sec 
(1×) 

0.432 sec 
(1.745×) 

0.435 sec 
(1.733×) 

0.442 sec 
(1.706×) 

 

 

Table 6.3 Localization results with very small cache sizes for “knu” model 

Package HD4AR HD4AR with caching approach 

Cache size - 100 200 500 

Localization 
success-ratio 

50 / 50 
(100%) 

1 / 50 
(2%) 

26 / 50 
(52%) 

31/ 50 
(62%) 

Mean number of  
2D-to-3D matches 

1,204 8 20 41 

Mean 
re-projection error 

1.070 pixels 0.770 pixels 1.326 pixels 1.334 pixels 

Mean  
localization time 

(sequential requests) 

1.347 sec 
(1×) 

0.697 sec 
(1.933×) 

0.747 sec 
(1.803×) 

0.781 sec 
(1.725×) 

Mean  
localization time 

(parallel requests) 

0.507 sec 
(1×) 

0.304 sec 
(1.668×) 

0.334 sec 
(1.518×) 

0.347 sec 
(1.461×) 
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Table 6.4 Localization results with very small cache sizes for “parliament” model 

Package HD4AR HD4AR with caching approach 

Cache size - 100 200 500 

Localization 
success-ratio 

40 / 40 
(100%) 

16 / 40 
(40%) 

21 / 40 
(52.5%) 

26/ 40 
(65%) 

Mean number of  
2D-to-3D matches 

465 32 49 80 

Mean 
re-projection error 

0.897 pixels 0.654 pixels 0.743 pixels 0.793 pixels 

Mean  
localization time 

(sequential requests) 

2.693 sec 
(×) 

0.974 sec 
(2.765×) 

0.979 sec 
(2.751×) 

0.998 sec 
(2.698×) 

Mean  
localization time 

(parallel requests) 

0.847 sec 
(1×) 

0.284 sec 
(2.982×) 

0.292 sec 
(2.901×) 

0.300 sec 
(2.823×) 

 

Table 6.5 compares the detail results of the caching approach on “patton” model which 

number of 3D points is 46,318 points.  As shown in Table 6.5, the proposed caching 

approach achieved the fastest localization with the smallest cache size, while mean re-

projection error remained the similar level to that of localizations without cache. However, 

the localization success-ratio with the small size of cache, i.e., 1,000-2,000 points, was 

slightly decreased compared to non-cache localization. This is due to the fact that a pre-

trained cache does not properly cover the entire target scene as we selected the random 

photographs for caching 3D points. Nevertheless, the caching approach achieved 80-98% 

of localization success ratio and was 118-126% faster than the non-cache localization in all 

cases. To further demonstrate the acceleration factor of the proposed approach on direct 2D-

to-3D matching, we also measured elapsed times for each step in localization, i.e., feature 

extraction time, and the matching/calibration time. As shown in Table 6.6, the matching and 
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calibration speed is improved by the caching approach, while the feature extraction time 

remains constant. Therefore, we can conclude that the proposed approach, which uses a 

cached k-d tree for matching, reduces overall localization time by reducing search space of 

direct 2D-to-3D matching. If we only consider the direct 2D-to-3D matching procedure, the  

 

Table 6.5 Performance comparison of model-based 6-DOF localization for “patton” model 

Package HD4AR HD4AR with caching approach 

Cache size - 1,000 2,000 5,000 10,000

Localization 
success-ratio 

49 / 50 
(98%) 

40 / 50 
(80%) 

44 / 50 
(88%) 

49 / 50 
(98%) 

49 / 50 
(98%) 

Mean number of  
2D-to-3D matches 

2,145 134 228 438 748 

Mean 
re-projection error 

0.812 pixels 0.962 pixels 0.927 pixels 1.047 pixels 1.060 pixels

Mean  
localization time 

(sequential requests) 

2.312 sec 
(1×) 

1.314 sec 
(1.760×) 

1.484 sec 
(1.558×) 

1.692 sec 
(1.366×) 

1.836 sec 
(1.259×) 

Mean  
localization time 

(parallel requests) 

0.754 sec 
(1×) 

0.477 sec 
(1.581×) 

0.547 sec 
(1.378×) 

0.583 sec 
(1.378×) 

0.627 sec 
(1.203×) 

 

Table 6.6 Details of localization time for sequential requests on “patton” model 

Package HD4AR HD4AR with caching approach 

Cache size - 1,000 2,000 5,000 10,000 

BRISK feature  
extraction time 

0.785 sec 0.785 sec 0.785 sec 0.785 sec 0.785 sec 

Matching/ 
calibration time 

(performance gain) 

1.527 sec 
(1×) 

0.529 sec 
(2.887×) 

0.698 sec 
(2.188×) 

0.907 sec 
(1.684×) 

1.050 sec 
(1.454×) 
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Tables 6.7-6.8 compare the detail results of the caching approach on “knu” model, which 

number of 3D points is 33,122 points. Again, the proposed caching approach achieved the 

fastest localization with the smallest cache size, while mean re-projection error was slightly 

increased. For “knu” model, however, the localization success-ratio was not decreased even 

with small cache sizes. As shown in Figure 6.3, the cached 3D models were well-trained 

and covered the entire target scene even when cache size was 1,000 points. The 

performance gain of the caching approach is 118-158% on localization and 131-226% on 

direct 2D-to-3D matching. As the “knu” model has less number of 3D points than “patton” 

model, the performance gain is slightly decreased. However, the proposed approach was 

faster than the non-cache localization and achieved the overall localization time under 1 sec 

for “knu” model. 

 

Table 6.7 Performance comparison of model-based 6-DOF localization for “knu” model 

Package HD4AR HD4AR with caching approach 

Cache size - 1,000 2,000 5,000 10,000 

Localization 
success-ratio 

50 / 50 
(100%) 

49 / 50 
(98%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

50 / 50 
(100%) 

Mean number of  
2D-to-3D matches 

1,204 87 157 338 561 

Mean 
re-projection error 

1.070 pixels 1.457 pixels 1.504 pixels 1.536 pixels 1.396 pixels

Mean  
localization time 

(sequential requests) 

1.347 sec 
(1×) 

0.854 sec 
(1.577×) 

0.959 sec 
(1.405×) 

1.033 sec 
(1.304×) 

1.138 sec 
(1.184×) 

Mean  
localization time 

(parallel requests) 

0.507 sec 
(1×) 

0.386 sec 
(1.313×) 

0.414 sec 
(1.225×) 

0.440 sec 
(1.152×) 

0.470 sec 
(1.079×) 
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Finally, the proposed caching approach was applied to a large-scale model, i.e., “parliament” 

model. The number of 3D points in “parliament” model is 234,343 points. Tables 6.9-6.10 

compare the results of the caching approach on “parliament” model and Figure 6.4 presents 

the cached 3D physical models with different cache sizes. As shown in Tables 6.9-6.10, the 

localization with a cache significantly improved the localization speed and matching speed 

for “parliament” model. The proposed approach was 196-262% faster than the non-cache 

localization and the direct 2D-to-3D matching was up to 465% faster. In addition, the mean 

re-projection error remained the similar level to that of non-cache localization even with 

cache size of 1,000 points. From these results, we can conclude that the proposed caching 

approach has improved the performance of model-based 6-DOFlocalization on large-scale 

physical models and provides reliable and accurate localization results. 

 

Table 6.9 Performance comparison of model-based 6-DOF localization for “parliament” model 

Package HD4AR HD4AR with caching approach 

Cache size - 1,000 2,000 5,000 10,000 

Localization 
success-ratio 

40 / 40 
(100%) 

37 / 40 
(92.5%) 

37 / 40 
(92.5%) 

40 / 40 
(100%) 

40 / 40 
(100%) 

Mean number of  
2D-to-3D matches 

465 104 178 337 442 

Mean 
re-projection error 

0.897 pixels 0.990 pixels 0.906 pixels 0.858 pixels 0.872 pixels

Mean  
localization time 

(sequential requests) 

2.693 sec 
(×) 

1.027 sec 
(2.622×) 

1.134 sec 
(2.375×) 

1.301 sec 
(2.070×) 

1.377 sec 
(1.956×) 

Mean  
localization time 

(parallel requests) 

0.847 sec 
(1×) 

0.345 sec 
(2.455×) 

0.369 sec 
(2.295×) 

0.415 sec 
(2.041×) 

0.439 sec 
(1929×) 
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6.4 Contributions and Significance 
 

Based on discussion in this Chapter, we can conclude that the solution approach, i.e., 

“Cached k-d tree generation for Fast Direct 2D-to-3D matching”, is a novel approach that 

brings caching scheme into a direct 2D-to-3D matching algorithm used in model-based 

localization. No existing work to date attempts to improve the speed of model-based 

localization by tackling the complexity of direct 2D-to-3D matching. By removing the 

dependency on number of 3D points, the proposed approach provides near real-time 

localization/augmentation results regardless of number of 3D points in the 3D physical 

model. Table 6.11 summarizes the proposed approach with all related works reviewed in 

Section 3.3. With the proposed approach, the localization time now takes at most 1.5 sec for  

 

Table 6.11 Validation of the proposed approach – cached k-d tree generation for fast direct 2D-to-

3D matching 

Metrics Model-based 
HD4AR with  

caching approach 

Model scale room-street object-street 

Model 
preparation time 

3 – 24 hr 0.1 – 1 hr 

Number of  
3D physical models 

in the system 
Single Single(a) 

Number of  
cyber-information items 

in the system 
0 – 103 100 – 104 

Localization/ 
Augmentation 

Speed 
5 – 240 sec 0.5 – 1 sec 

Supports mobility ×  

(a) The scenario for multiple models will be discussed in Chapter 7 
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large-scale physical models. In addition, it still achieves the high-precision localization with 

maximum error of few image pixels. Therefore, the proposed caching approach for fast 

localization successfully fills the “Research Gap 3: Near Real-time Cyber-Physical 

Information Association at Dynamically Varying Environmental Scales”.  
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7 Multi-model based 6-DOF Localization for Blinded 

Localization Requests 

 

7.1 Overview of Solution Approach to Research Gap 3 

 

To fill the “Research Gap 3: Near Real-time Cyber-physical Information Association at 

Dynamically Varying Environmental Scale”, new solution approaches for large-scale 

model-based 6-DOF localization are developed and validated in this chapter.  

 

All solution approaches presented in Chapters 4-6 assume that there is only a single 3D 

physical model in the system or users know which model should be used for localization 

and augmentation. For example, let us assume that separate point cloud models were 

created for different locations/objects in the HD4AR server. Then, users are required to 

choose the model from a list on the client device and enable model-based localization with 

respect to the corresponding 3D physical model. This strategy is impractical when the 

number of physical models is enormous and/or users do not know which model should be 

used for localization and augmentation. To overcome this issue and provide near real-time 

localization/augmentation service in the presence of multiple 3D physical models, we 

develop a new approach which can handle the localization requests that do not know the 

target physical model for localization. Throughout this chapter, we will refer the 

localization request that do not indicate the target 3D physical model as blinded localization 

request. 
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7.2 Double-stage Matching Algorithm with A Single Indexed k-d tree 

 

The straightforward way for finding an appropriate model for blinded localization is 

matching a new image from users to all 3D physical models in the server sequentially. Then, 

the localization is done when the certain 3D model successfully localizes a given 

photograph. Obviously, this sequential matching is very time-consuming and is inefficient 

if the target model exists at the end of the model list. Specifically, the upper bound of this 

sequential matching complexity is: 

 

O (K M log N) (7.1) 

 

where K is the number of models that exist in the server, N is the number of 3D points in 

each physical model, and M is the number of feature descriptors from a new image to be 

localized. For outdoor data sets we studied in Section 4.4, the value of N is typically in the 

range between 30,000 and 200,000 while the value of M is 10,000-20,000. 

 

Instead of time-consuming sequential matching, we propose to create a single indexed k-d 

tree and use it to find the target model for blinded localization requests. Specifically, a 

single k-d tree is created by concatenating all 3D representative descriptors from multiple 

models, and model index information is imposed to each 3D representative descriptor. After 

matching a new image against this single indexed k-d tree, the 3D physical model that has 

the largest number of 2D-to-3D matches will be the model to be used for localization and 

augmentation. Then, the model-based 6-DOF localization or caching approach discussed in 
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Chapters 4 and 6 can be used to localize a given photograph. The procedure of this double-

stage matching algorithm with a single indexed k-d tree can be summarized as follows: 

 

1) Concatenate all 3D representative descriptors from 3D physical models presented in 

the HD4AR server. Also, the model index information is imposed to each 3D 

representative descriptor to indicate which model has the corresponding descriptor. 

2) Upon receiving a blinded localization request from the client, perform the direct 

2D-to-3D matching between given image and a generated indexed k-d tree. 

3) By using found 2D-to-3D correspondences and the model index information, count 

the number of 2D-to-3D matches for each 3D physical model. 

4) Take N models that have the largest number of matches. Then, perform the model-

based 6-DOF localization for each model in parallel. The value of N is typically set 

to 1-3. 

5) Select the localization result which has the minimum re-projection error and return 

it to the client. 

 

The proposed double-stage matching algorithm can be reduced to a single-stage matching 

as the result of first-stage matching already includes the 2D-to-3D correspondences of the 

target model. However, the reason of double-stage matching is for the case that several 

models have very similar visual features and thus are not clearly distinguished from each 

other through first-stage matching. For example, if two 3D physical models A and B are 

created for the same building, it is possible that some of 2D-to-3D correspondences found 
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in the first-stage matching belong to model A while some of 2D-to-3D correspondences 

belong to model B. As discussed in Chapters 4 and 6, the less number of 2D-to-3D 

correspondences decreases the accuracy of localization. Therefore, we utilize the first-stage 

matching results only for finding candidate target models and perform the second-stage 

matching in parallel to get the most accurate localization results. 

 

With the proposed approach, the complexity of blinded localization is reduced to:  

 

O (K M log N) → O (M log K + 2M log N) (7.2) 

 

where K is the number of models that exist in the server, N is the number of 3D points in 

each physical model, and M is the number of feature descriptors from a new image. The 

details of the performance gain provided by the proposed single indexed k-d tree approach 

will be fully discussed in Section 7.4. 

 

7.3 K-means Clustering of 3D Physical Models with Geo-information 

 

Another way of finding a target model for blinded localization requests is exploiting the 

geo-information which can be easily obtained by modern commodity smartphones. This 

approach segments large-scale 3D physical models into several clusters and automatically 

finds an appropriate cluster to localize and augment a new photograph sent from the client 

device. To cluster 3D physical models, we use GPS latitude and longitude values measured 

by mobile device and recorded in the image in form of EXIF (Exchangeable Image File 
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Format) tag. There is no need for accurate GPS values as we only use this information for 

clustering purposes. The overall steps for clustering a 3D physical model are: 

 

1) Partitioning base images: All base images participated in 3D reconstruction are 

divided into several clusters using latitude and longitude values of each base image. 

In order to find the proper number of clusters, hierarchical clustering analysis [54] 

is first used to estimate starting values for the K-means algorithm [55]. Based on 

the resulting number of clusters, the K-means algorithm is performed to partition 

base images to each cluster with the nearest mean of GPS values. Specifically, K-

means algorithm partitions n base images into k clusters that each base image 

belongs to each cluster with the nearest mean: 

 

argmin෍ ෍ || ௝ܺ െ ௜||ଶߤ

௑ೕ∈ௌ೔

௞

௜ୀଵ

 
(7.3) 

 

where k is the number clusters, μi is the mean of GPS values for Si cluster. After 

computing center of each cluster and all images are assigned to each closet clusters, 

the cluster centers are recomputed based on the mean values of all GPS values in 

the cluster. This procedure is done iteratively until the variance of each cluster is 

small enough [56].  

2) Clustering a 3D physical model: Once the base images are successfully partitioned, 

we segment the 3D point clouds by selecting 3D points and their corresponding 



 

 

116

representative descriptors that are observed by base images in each cluster. As a 

consequence, each clustered point clouds contains less 3D points compared to 

initial 3D physical models, resulting smaller scale. 

 

The localization process is slightly modified to handle clustered 3D physical models. With 

the proposed approach, upon receiving a new photograph from the client device, the 

HD4AR server first finds the nearest cluster by comparing GPS values recorded in the new 

photograph to mean value of each cluster. After finding the nearest cluster, the server 

performs existing model-based 6-DOF localization method discussed in Chapters 4 and 6 to 

compute a complete pose of the camera. If the new photograph does not include GPS tag, 

the server attempts to localize the image with all clusters in parallel. Although the proposed 

approach requires mobile devices to enable GPS sensors during the AR cycle, the clustering 

approach can handle blinded localization requests by reading a GPS value recorded in the 

image and also result faster localization due to smaller scale of 3D point clouds. The details 

of experimental results will be fully discussed in following section. 

 

7.4 Experimental Results and Validation 

 

This section presents experimental results and the validation of the proposed solution 

approaches, i.e., “Double-stage Matching Algorithm with A Single Indexed k-d tree” and 

“K-means Clustering of 3D Physical Models with Geo-information”. Therefore, two 

separate experiments, i.e., Multiple-model based localization and Localization with 

Clustered 3D Physical Models, were performed and validated. The details of the data set 
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specifications and validation metrics are discussed in the following subsections. After 

showing experimental results, the overall validation of solution approaches will be 

summarized. 

 

7.4.1 Multiple-model Based Localization 

 

The multiple-model based localization was first tested with the proposed double-stage 

matching algorithm using a single indexed k-d tree. To emulate an environment where 

multiple 3D physical models exist in the server, we used total 200 physical models 

generated from the 3D reconstruction process discussed in Section 4.2. Among 200 

physical models, the 10 models came from the results presented in Section 4.4.1. The 

details of test scenarios are summarized in Table 7.1. The server side of the HD4AR for 

localization was running on Ubuntu version 12.04 with 8 GB memory and a 4-core Intel i5-

2520M processor. Also, the BRISK descriptor is used for this experiment. 

 

Table 7.1 3D physical model specifications for multi-model based localization experiment 

Number of 3D models Total number of 3D points Total point cloud size 

10 484,006 201.21 MB 

20 1,238,784 503.33 MB 

60 2,647,207 1.07 GB 

100 3,374,138 1.38 GB 

200 4,095,305 1.70 GB 
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In order to validate that the proposed approach can successfully find target models for 

blinded localization requests, a group of successfully localized photographs from Section 

4.4.2 were tested without designating the target models. In addition, only the performance 

of sequential localizations from a single client device was measured. Tables 7.2 shows the 

overall results of the proposed double-stage matching approach for multi-model based 

localizations. As shown in Table 7.2, the proposed double-stage matching algorithm with a 

single indexed k-d tree approach successfully found target models for all blinded 

localization requests regardless of the number of models in the system. In addition, the 

proposed approach rapidly and accurately localized all tested photographs even in the 

presence of 200 models in the system. The mean localization times for multi-model based 

localizations were in the range between 1.360-2.623 sec and the mean re-projection errors 

were within 1.507-1.532 pixels. 

 

Table 7.2 Performance comparison of multi-model based localization 

Number of models 
in the system 

10 20 60 100 200 

Localization 
success-ratio 

235 / 235 
(100%) 

235 / 235 
(100%) 

235 / 235 
(100%) 

235 / 235 
(100%) 

235 / 235 
(100%) 

Mean number of  
2D-to-3D matches 

523 524 537 537 537 

Mean 
re-projection error 

1.531 pixels 1.532 pixels 1.513 pixels 1.511 pixels 1.507 pixels

Mean  
localization time 

1.360 sec 1.568 sec 2.054 sec 2.343 sec 2.623 sec 
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To further demonstrate the performance factors of the proposed approach, we also 

measured the elapsed times for each step in localization, i.e., target model searching time, 

feature extraction time, and the matching/calibration time. As shown in Table 7.3, the target 

model searching time, which corresponds to the first-stage matching time in the proposed 

approach, only took 0.482-1.799 sec in our test scenarios where the number of models are 

varied from 10 to 200. As expected in Section 7.2, the target model searching time is not 

proportional to the number of models. Even in the presence of 200 models, the target model 

searching with the proposed approach took under 2 sec. From experimental results shown 

in this section, we can conclude that the proposed approach successfully handles the 

blinded localization requests and provides near real-time localization/augmentation in the 

presence of multiple 3D physical models in the system. In addition, the experimental results 

imply that the double-stage matching algorithm with a single indexed k-d tree approach can 

be extended to hundreds of 3D physical models without significantly reducing the 

localization performance. 

 

Table 7.3 Details of localization time from the proposed single indexed k-d tree approach 

Number of models 
in the system 

10 20 60 100 200 

Target model 
searching time 

0.482 sec 0.738 sec 1.222 sec 1.509 sec 1.799 sec 

BRISK feature  
extraction time 

0.570 sec 0.573 sec 0.571 sec 0.578 sec 0.566 sec 

Matching/ 
calibration time 

0.308 sec 0.257 sec 0.261 sec 0.256 sec 0.258 sec 
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7.4.2 Localization with Clustered 3D Physical Models 

 

To validate the clustering approach discussed in Section 7.3, we enabled the GPS sensor 

installed in smartphones and recorded its values in form of EXIF tag during a photo 

collection for 3D reconstruction. Then, the HD4AR 3D reconstruction procedure discussed 

in Section 4.2 was performed on newly collected base images. During the 3D 

reconstruction, the FREAK descriptor is used to minimize feature extraction time and 

memory consumption. The resulting 3D physical model was then partitioned into three 

clusters using GPS values of each base image and K-means clustering algorithm. The final 

results of 3D reconstruction and clustering are summarized in Table 7.4. The results show 

that the 3D physical model was successfully reconstructed and well-partitioned into three 

clusters. Figure 7.1 visualizes the original 3D physical model and its corresponding clusters, 

showing that the original physical model was geologically partitioned. 

 

Table 7.4 Results of 3D reconstruction and clustering 

 
Original 3D 

physical model
Cluster #1 Cluster #2 Cluster #3 

Number of  
base images 

66 15 21 30 

Number of 
3D points 

70,906 24,178 23,098 27,528 

Mean 
re-projection error 

0.523 pixels 0.511 pixels 0.553 pixels 0.608 pixels 

GPS mean value 
(latitude, longitude) 

(37.2290, 
-80.4225) 

(37.2293, 
-80.4227) 

(37.2289, 
-80.4227) 

(37.2290, 
-80.4222) 
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was running on Windows 7 with 8 GB memory and a 4-core Intel i7-870 processor. As 

observed in Table 7.5, the experimental results show that the clustering approach 

successfully found the target cluster by using geo-location data of the given photograph and 

resulted in 100% success-ratio of localization. The mean re-projection error of localized 

photographs with each cluster presents single-pixel error in all cases. In addition, the 

proposed approach accelerates the overall localization speed up to 154% with the tested 

data set, without reducing success-ratio and mean re-projection error. 

 

To further demonstrate the acceleration factor of the proposed approach, we also measured 

elapsed times for each step in localization, i.e., cluster selection time, feature extraction 

time, and the matching/calibration time. As shown in Table 7.6, the matching and 

calibration took the longer time when the size of 3D physical model (i.e., number of 3D 

points) is larger, while the feature extraction time remained constant. Therefore, the 

proposed clustering approach, which segments the large-scale physical model into smaller 

 

Table 7.5 Performance of model-based 6-DOF localization with clustered 3D physical models 

 
Original 3D 

physical model
Cluster #1 Cluster #2 Cluster #3 

Localization 
success-ratio 

75 / 75 
(100%) 

25 / 25 
(100%) 

25 / 25 
(100%) 

25 / 25 
(100%) 

Mean 
re-projection error 

0.958 pixels 0.937 pixels 0.960 pixels 1.037 pixels 

Mean  
localization time 

(performance gain) 

2.735 sec 
(1×) 

1.897 sec 
(1.442×) 

1.782 sec 
(1.535×) 

1.934 sec 
(1.414×) 
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Table 7.6 Details of the localization time with clustered 3D physical models 

 
Original 3D 

physical model
Cluster #1 Cluster #2 Cluster #3 

Cluster 
selection time 

0 sec 3.5 × 10-7 sec 3.5 × 10-7 sec 3.5 × 10-7 sec 

BRISK feature  
extraction time 

0.759 sec 0.775 sec 0.755 sec 0.760 sec 

Matching/ 
calibration time 

(performance gain) 

1.976 sec 
(1×) 

1.122 sec 
(1.761×) 

1.027 sec 
(1.924×) 

1.174 sec 
(1.683×) 

 

physical models, not only supports the blinded localization requests, but also reduces 

overall localization time by reducing the size of 3D physical model. If we only consider the 

direct 2D-to-3D matching procedure, the matching/calibration time was up to 1.924 times 

faster than the non-clustered model-based localization. 

 

7.5 Contributions and Significance 
 

Based on discussion in this Chapter, we can conclude that the solution approaches, i.e., 

“Double-stage Matching Algorithm with A Single Indexed k-d tree” and “K-means 

Clustering of 3D Physical Models with Geo-information” successfully fills the “Research 

Gap 3: Near Real-time Cyber-Physical Information Association at Dynamically Varying 

Environmental Scales”. Specifically, the proposed solution approaches can provide near 

real-time, high-precision mobile augmented reality in the presence of hundreds of 3D 

physical models in the system. Table 7.7 summarizes the proposed approach with all related 

works reviewed in Section 3.3. All previous work related to model-based localization 
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methods only considers the case when there is a single model in the system. 

 

As discussed in Section 7.4, the proposed double-stage matching algorithm using a single 

indexed k-d tree can rapidly find target models for blinded localization requests and 

successfully localize the photographs under 3 sec with 200 physical models in the system. 

In addition, a new clustering approach using geo-information is developed and validated to 

handle large-scale physical models and further accelerate the model-based localization 

speed. The large-scale physical models can be successfully partitioned into several clusters 

using the proposed approach and the blinded localization requests can always be matched 

against correct clusters by using geo-information obtained through the sensor installed in 

commodity mobile devices. 

 

Table 7.7 Validation of the proposed approaches for multi-model based 6-DOF localization 

Metrics Model-based 
HD4AR with  

solution approaches 

Model scale room-street object-street 

Model 
preparation time 

3 – 24 hr 0.1 – 1 hr 

Number of  
3D physical models 

in the system 
Single 

Multiple 
(Hundreds of models) 

Number of  
cyber-information items 

in the system 
0 – 103 100 – 104 

Localization/ 
Augmentation 

Speed 
5 – 240 sec 1 – 2 sec 

Supports mobility ×  
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8 Conclusions 

 

This dissertation presents a new, fast, and scalable Structure-from-Motion (SfM) approach 

for high-precision mobile augmented reality systems. To develop solution approaches, 

current open research problems and research gaps in mobile augmented reality are first 

scrutinized. Based on our investigation provided in this dissertation, current research gaps 

in mobile augmented reality can be summarized as: 1) fine-grained 6-DOF localization with 

mobile devices, 2) 3D cyber-physical content authoring from 2D interface, and 3) near real-

time cyber-physical information association at dynamically varying environmental scales. 

 

To fill these research gaps, total five solution approaches are developed and validated: 1) 

Hybrid 4-Dimensional Augmented Reality (HD4AR), 2) Plane transformation based 3D 

cyber-physical content authoring from a single 2D image, 3) Cached k-d tree generation for 

fast direct 2D-to-3D matching, 4) Double-stage matching algorithm with a single indexed 

k-d tree, and 5) K-means Clustering of 3D physical models with geo-information. In 

following sections, the contributions of each solution approach are summarized and the 

future work of this study is identified. 

 

8.1 Summary of Contributions 

 

Provide near real-time millimeter-accuracy overlay of cyber-information associated with 

real-world physical objects in 3D geometry using commodity mobile devices (completed 
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and presented in Chapter 4).  

To fill the first research gap, a novel hybrid approach, which combines model-based 6-DOF 

localization and SfM-based model generation, is developed and validated. The overall 

approach is called Hybrid 4-Dimensional Augmented Reality (HD4AR) which purely 

localizes users based on images from a mobile device and does not require any sensors or 

infrastructures for mobile augmented reality. By introducing a new parallelized SfM 

process, which accelerates an existing 3D reconstruction pipeline by a factor of 30, the 

HD4AR makes model-based localization feasible in mobile augmented reality and provides 

much shorter model preparation time compared to existing work. In addition, the proposed 

model-based 6-DOF localization method using direct 2D-to-3D matching speeds up 

existing works by a factor of 160. The HD4AR only takes 0.5-3.0 sec to localize a single 

photograph and the uncertainty level of localization is 0.613-2.511 pixels. Finally, 

experimental results show that the HD4AR can provide millimeter-level information 

association accuracy in both indoor and outdoor environment, from room-level to street-

level scales. 

 

Enable 3D cyber-physical content authoring from limited 2D user interfaces (completed 

and presented in Chapter 5).  

Along with the HD4AR approach, a new plane transformation based 3D cyber-physical 

content authoring approach is proposed and validated to fill the second research gap. The 

proposed approach purely creates 3D cyber-information using user inputs on a single 2D 

image and automatically associates user-created cyber-information with corresponding 
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physical objects in 3D geometry. Validation results show that all user-created elements on 

2D images can be accurately triangulated and associated with objects in 3D physical 

models, and the generated 3D cyber-information can be precisely overlaid on other 

photographs taken at completely different locations. By considering a fact that the 3D 

content authoring from 2D interface is still an open problem, the proposed approach can 

address the open research problem and make 3D cyber-physical content authoring feasible 

on any commodity mobile devices. 

 

Provide a localization method which operates in near real-time at large-scale 

environment (completed and presented in Chapter 6). 

Another solution approach, i.e., a cached k-d tree generation, is suggested and validated to 

further enhance the model-based localization speed with large-scale 3D physical models. 

By grafting caching scheme into direct 2D-to-3D matching algorithm, the matching 

complexity is significantly reduced. No existing work to date attempts to improve the speed 

of model-based localization by tackling the complexity of direct 2D-to-3D matching. By 

removing the dependency of direct 2D-to-3D matching on number of 3D points, the 

proposed approach provides near real-time localization/augmentation results regardless of 

number of 3D points in the 3D physical model. With the proposed approach, the 

localization time now takes at most 1 sec for large-scale physical models. In addition, it 

still achieves the high-precision localization with the maximum error of up to 1 image pixel. 

 

 



 

 

128

Provide a fast cyber-physical information association method for multiple and combined 

physical scales (completed and presented in Chapters 7-8). 

Finally, two solution approaches, i.e., double-stage matching algorithm with a single 

indexed k-d tree and K-means Clustering of 3D physical models with geo-information, are 

developed and validated to provide high-precision mobile augmented reality in the 

presence of multiple physical models in the system. The proposed double-stage matching 

algorithm can rapidly find the target models for blinded localization requests and 

successfully localize the photographs in near real-time even with hundreds of 3D physical 

models in the system. As a consequence, the mobile augmented reality systems can be 

easily extended to tons of users creating different 3D physical models separately, and the 

users do not require a priori knowledge of target model for multiple-model based 6-DOF 

localization. In addition, a new clustering approach using geo-information is developed to 

handle large-scale physical models and further accelerate the localization speed. The large-

scale physical models can be successfully partitioned using the proposed approach and the 

blinded localization requests can always be matched against correct clusters by using geo-

information obtained through the sensor installed in commodity mobile devices. 

 

By combining all these proposed solution approaches, which simplify and speed up the 

process of accurately obtaining relevant cyber-information, the output of research can be 

used in many practical context-aware applications, such as construction progress 

monitoring or monitoring the manufacture of electronic circuit boards, etc. Since the 

proposed solution can work with commodity smartphones and does not depend on external 
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devices, such as GPS satellites, optical markers, or geomagnetic sensors, the application of 

the solution in the field is expected to be inexpensive and practical. 

 

8.2 Future Work 

 

While this study presents the promising results toward near real-time high-precision mobile 

augmented reality by developing hybrid mobile/cloud model-based localization on SfM-

based 3D physical models, some research challenges needs to be addressed for better 

mobile augmented reality applications: 

 

1) Real-time localization/augmentation: although the HD4AR achieves near real-time 

localization regardless of environmental constraints, some applications, such as 

AR-based video gaming, may require real-time augmented reality. A possible 

solution is to develop a hybrid approach using both image and supplemental sensors 

installed in commodity smartphones. For example, key frames in the video are 

localized through model-based approach proposed in this study while intermediate 

frames are localized through inertial or geomagnetic sensors. 

2) Minimal number of base images: we typically collected about 50-100 images for 

each target scene to produce 3D physical models. This number came from our 

empirical experiments, and therefore, the relationship between number of base 

images and the quality of 3D point cloud should be further analyzed to guide users 

to take a minimal number of base images for bootstrapping. 
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3) Robustness against reflective surfaces: the HD4AR is based on intensity-based 

image feature descriptors, such as SIFT, SURF, FREAK, or BRISK, which compare 

the intensity of pixels to discover orientation and response of feature points. As a 

consequence, the proposed approach may not work well with images that only 

show reflective surfaces such as metals, mirrors, or glass curtain walls of the 

building. These surfaces reflect all surrounding scenes and make the system 

difficult to find correspondences among the images. One possible method to 

address this is to require images to be taken farther from these elements so other 

non-reflective elements can also be presented in the scene. 
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