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ABSTRACT

A key problem in mobile computing is providing people access to necessary cyber-
information associated with their surrounding physical objects. Mobile augmented reality is
one of the emerging techniques that address this key problem by allowing users to see the
cyber-information associated with real-world physical objects by overlaying that cyber-
information on the physical objects’ imagery. As a consequence, many mobile augmented
reality approaches have been proposed to identify and visualize relevant cyber-information
on users’ mobile devices by intelligently interpreting users’ positions and orientations in 3D
and their associated surroundings. However, existing approaches for mobile augmented
reality primarily rely on Radio Frequency (RF) based location tracking technologies (e.g.,
Global Positioning Systems or Wireless Local Area Networks), which typically do not
provide sufficient precision in RF-denied areas or require additional hardware and custom

mobile devices.

To remove the dependency on external location tracking technologies, this dissertation
presents a new vision-based context-aware approach for mobile augmented reality that
allows users to query and access semantically-rich 3D cyber-information related to real-

world physical objects and see it precisely overlaid on top of imagery of the associated



physical objects. The approach does not require any RF-based location tracking modules,
external hardware attachments on the mobile devices, and/or optical/fiducial markers for
localizing a user’s position. Rather, the user’s 3D location and orientation are automatically
and purely derived by comparing images from the user’s mobile device to a 3D point cloud

model generated from a set of pre-collected photographs.

A further challenge of mobile augmented reality is creating 3D cyber-information and
associating it with real-world physical objects, especially using the limited 2D user
interfaces in standard mobile devices. To address this challenge, this research provides a
new image-based 3D cyber-physical content authoring method designed specifically for the
limited screen sizes and capabilities of commodity mobile devices. This new approach does
not only provide a method for creating 3D cyber-information with standard mobile devices,
but also provides an automatic association of user-driven cyber-information with real-world

physical objects in 3D.

Finally, a key challenge of scalability for mobile augmented reality is addressed in this
dissertation. In general, mobile augmented reality is required to work regardless of users’
location and environment, in terms of physical scale, such as size of objects, and in terms of
cyber-information scale, such as total number of cyber-information entities associated with
physical objects. However, many existing approaches for mobile augmented reality have
mainly tested their approaches on limited real-world use-cases and have challenges in

scaling their approaches. By designing fast direct 2D-to-3D matching algorithms for

il



localization, as well as applying caching scheme, the proposed research consistently
supports near real-time localization and information association regardless of users’

location, size of physical objects, and number of cyber-physical information items.

To realize all of these research objectives, five research methods are developed and
validated: 1) Hybrid 4-Dimensional Augmented Reality (HD*AR), 2) Plane transformation
based 3D cyber-physical content authoring from a single 2D image, 3) Cached k-d tree
generation for fast direct 2D-to-3D matching, 4) double-stage matching algorithm with a
single indexed k-d tree, and 5) K-means Clustering of 3D physical models with geo-
information. After discussing each solution with technical details, the perceived benefits

and limitations of the research are discussed with validation results.
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1 Introduction

Automated, inexpensive, and fast access to surrounding cyber-information associated with
real-world physical objects in the field has significant potential to improve real-world tasks,
such as decision-making during construction or facility management activities. For example,
fast access to construction cyber-information, which is usually in form of specifications,
drawings, or schedule information, can help construction project managers to proactively
identify construction mistakes, decide on corrective actions, and minimize cost and delays

due to performance discrepancies [1].

Augmented Reality (AR) is an emerging technique that allows users to see real-world
physical objects and their associated cyber-information overlaid on top of imagery of them.
Mobile augmented reality is a variant of augmented reality that uses a mobile device’s
camera to capture real-world imagery and a mobile device’s sensors to derive what cyber-
information should be visible in the camera imagery, as shown in Figure 1.1. A key
challenge of mobile augmented reality is that it relies on precisely localizing a user in order
to determine what is visible in their camera view. The localization must be performed in the
field without constraining the individual’s whereabouts to a specially equipped area such as
custom augmented reality “caves” with pre-deployed external infrastructure for location
tracking. In other words, mobile augmented reality must work regardless of users’ location

and environment, and deliver relevant cyber-information precisely and quickly.
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Figure 1.1 An example of mobile augmented reality applications, (a) Facility management

application, (b) Tourism application

Several key characteristics directly determine the reliability and utility of mobile
augmented reality approaches: 1) user localization, which determines the users’ viewpoint
and derives what real-world physical objects that are in current scene, in order to interpret
users’ surrounding contexts and deliver relevant cyber-information to users, 2) the speed of
determining which cyber-information is associated with physical objects in order to
deliver/visualize the cyber-information in the correct position, 3) the usability of methods
for creating 3D cyber-information and associating it with relevant real-world physical
objects using mobile devices, 4) the robustness of the system and ability to work with
dynamically changing environments, and 5) the scalability of the cyber-physical
information association system, both in terms of physical scale, such as size of objects, and
in terms of cyber-information scale, such as total number of cyber-information entities
associated with physical objects. The purpose of this study is to address key research gaps

in each of these areas that are not filled by current state-of-the-art augmented reality



research approaches.

Over the past decade, many research projects related to mobile augmented reality have
focused on the first key component, i.e., accurate user localization, to realize mobile
augmented reality on various types of mobile devices [2-6]. Prior localization approaches
have primarily used Global Positioning Systems (GPS), Wireless Local Area Networks
(WLAN), or Indoor GPS for positioning the user within the physical world [7-10]. The
main drawback of these Radio Frequency (RF) based location tracking technologies is their
high degree of dependency on pre-installed infrastructure, such as GPS satellites or wireless
transceivers, and susceptibility to noise in commodity mobile device hardware [11], which
makes their applications either highly inaccurate or impractical to use in many cases. Some
research has focused on developing infrastructure-independent location tracking approaches
[12, 13]. These approaches are typically based on inertial measurements and make use of
highly accurate accelerometers and gyroscopes which are attached to users. However, these
sensor-based approaches suffer from accumulated drift errors which grow with the distance

traveled by the users.

Accordingly, the vast majority of prior work on mobile augmented reality either requires
external sensors or very high computing resources to achieve a high-level of localization
accuracy, and thus do not work well with commodity smartphones. In addition, very little
research has examined the scalability issues of mobile augmented reality and fast cyber-

physical information association. Despite the recent advances in mobile devices,



commodity smartphones still have limited processing power, inaccurate GPS sensors, and

noisy accelerometers or gyroscopes.

Given the recent popularity and rising availability of smartphones in United States,
however, robust mobile augmented reality systems that operate on commodity smartphone
platforms should be developed to expand the number of context-aware applications. This
study seeks to develop new approaches, algorithmic techniques, and hybrid mobile/cloud
computing architectures that 1) support augmented reality on commodity smartphones, 2)
can rapidly associate cyber-information with arbitrary real-world 3D objects, 3) provide
millimeter-accuracy information association in near real-time without requiring external
sensors or environmental constraints, 4) are extremely robust and resistant to environmental
changes, such as users are moving from outdoor to indoor where GPS or other RF signals
are typically denied and cannot be used for localization, and 5) can dynamically scale the

augmented reality services from room-level to city-level scale.

A key differentiator of this research is its use of image-based localization from smartphone
camera sensors and ability to localize users with respect to arbitrary marker-less 3D objects.
The proposed mobile augmented reality approach, called as Hybrid 4-Dimensional
Augmented Reality (HD4AR) [14-18], provides reliable identification of the location and
orientation of the user based on photographs taken by existing and already available
commodity smartphones. The HD*AR not only provides the location and orientation of the

user, but also provides high-precision visualization of semantically-rich 3D cyber-



information over real-world imagery in an augmented reality (AR) format. Rather than
using imprecise mobile GPS and/or wireless sensors, as in existing mobile AR approaches,
the HD*AR allows users to take pictures using smartphones for accurate localization in 3D

and high-precision augmentation.

The remainder of this dissertation is organized as follows: After demonstrating open
research problems in mobile augmented reality through a motivating example in Chapter 2,
Chapter 3 presents prior research on mobile augmented reality and research gaps in prior
work. In Chapter 4, technical details of the HD*AR with empirical validation are discussed.
The method for creating 3D cyber-information with a single 2D image is then illustrated in
Chapter 5. In Chapters 6-7, new solution approaches for faster image-based
localization/augmentation in large scale of usage, such as street-level mobile augmented
reality, are presented. Specifically, Chapter 6 discusses a cached approach for the HD*AR
and Chapter 7 discusses the method for combining and/or clustering 3D point cloud models
used in the HDAR. Finally, the dissertation concludes by summarizing contributions and

identifying possible future work in Chapter 8.



2 Key Challenges of Mobile Augmented Reality

In this chapter, a motivating example is provided to illustrate the challenges of associating
cyber-information with real-world physical objects. Specifically, a construction progress
monitoring process from the Architectural, Engineering, Construction and Facility
Management (AEC/FM) domain is used as it typically requires millimeter-level association
of cyber-information, such as 3D blueprints of construction plans, with real-world
construction building elements in challenging environments that are continually changing.
After the motivating example is presented, open research problems on cyber-physical
information association system, i.e., mobile augmented reality system, are presented and

discussed in the context of the example.

2.1 Motivating Scenario

As a motivating example, a scenario where a field engineer is concerned about the
construction progress and quality of a concrete foundation wall will be discussed. With the
current best practices on construction sites, as shown in Figure 2.1, the field engineer would
return to a construction trailer or office and open 2D construction drawings (at best a 3D
Building Information Model (BIM)), project specifications, and the schedule to find out
when the construction of this element is expected to be finished and what is the required
quality of the outcome. Once the drawings and/or 3D building model are opened, the field

engineer must navigate the model to determine which, of possibly hundreds or thousands of
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Figure 2.1 The current best practices for construction progress monitoring

walls, to figure out where the foundation wall of concern is. Moreover, once the
information is obtained, the field engineer may need to return to the construction site to
compare the information that was retrieved to the actual construction status of the real
foundation wall. Because there is no easy way to directly query the cyber-information for
the wall, the field engineer may not notice a discrepancy and will not be able to decide on a

corrective action to minimize the impact of the discrepancy.

Instead, it would be beneficial if the field engineer can use the foundation wall itself to
query for the needed building plan information directly from the site using a picture of the
foundation wall as the basis for the query. This is exactly the type of real-world process

where mobile augmented reality can be used to improve the speed and accuracy of decision



making. With mobile augmented reality, the picture from field engineer provides all
information that is needed to localize the user with respect to their environment, and thus
reduce the information available down to what is relevant to the current scene. Given the
close proximity of construction elements, the location and orientation of the picture needs
to be accurately estimated and relevant cyber-information should be precisely visualized

and overlaid on top of each associated construction elements.

2.2 Open Research Problems in Mobile Augmented Reality

2.2.1 Problem 1: Need for Accurate User Localization

To deliver relevant building plan information to a field engineer, as described in the
motivating example, the mobile augmented reality system first has to precisely identify
his/her location to determine which construction elements are in the current viewpoint and
how their associated 3D schematic and specifications should be visualized on top of
photograph. More specifically, 3D localization, which identifies a user’s position and
orientation simultaneously, is required to deliver relevant information even with significant
changes in the user’s viewpoint, as shown in Figure 2.2. This 3D localization is often called
6-DOF (degrees-of-freedom) localization — three degrees from 3D rotational angles and
three degrees from 3D translation distances. The accuracy of 6-DOF localization directly
impacts the reliability of mobile augmented reality. In the context of the motivating
example discussed in Section 2.1, the 6-DOF localization must be accurate to within 3-50

millimeters in order to correctly visualize a 3D schematic on top of a foundation wall. The



Figure 2.2 Needs for accurate user localization: cyber-information should be appeared precisely at

significantly different viewpoint

current best practice for creating and visualizing 3D building plans on top of physical
construction elements is to use high-end laser scanners, which typically provide single
point position accuracy of approximately 12 mm and element recognition accuracy of 50
mm [1]. However, these approaches do not support mobility and on-site localization and
their cost is in the $100,000 range. As a consequence, most research projects related to
mobile augmented reality are primarily focused on accurate user localization with
inexpensive mobile devices. Although the required level of accuracy depends on the target
application, most mobile augmented reality systems have shown meter-level localization
errors, which make them difficult to use in many practical scenarios, such as monitoring the
manufacture of electronic circuit boards or monitoring construction progress. In addition,
most prior research leverages specially manufactured sensors and/or devices due to the

imprecision of commodity mobile device GPS sensors and noisy accelerometers.



2.2.2 Problem 2: Need for 3D Cyber-physical Content Authoring

Once the field engineer’s location and his/her viewpoint are identified, a mobile augmented
reality system then has to search for the associated 3D schematics or plan information that
should appear in the current view. Figure 2.3 shows an example of 3D cyber-information
associated with real-world physical objects. Since the delivery of relevant cyber-
information to end-users is the ultimate goal of mobile augmented reality, the amount of
available cyber-information determines the usefulness of the system. If there is no proper
information to be delivered, localization results will be useless in the aspect of mobile
augmented reality. Therefore, the capability of creating such 3D cyber-information and
associating it with real-world physical objects is one of the key components in developing
mobile augmented reality systems. For example, the system should provide a way of
making notes on construction elements and associating them with real-world physical

objects so that other engineers can see the notes overlaid on top of corresponding elements

Figure 2.3 3D cyber-information associated with real-world physical models
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through mobile augmented reality. However, the question of how to conveniently and
accurately register even simple 3D content using a mobile device and 2D interface is still

an open problem [19].

2.2.3 Problem 3: Need for Scalable Mobile Augmented Reality System

There are typically 5,000-30,000 building elements with their related specifications on a
construction site and the physical scale of jobsites varies from tens of meters to hundreds of
meters. Considering this variability, in terms of number of cyber-physical items and
physical scales of target scene, it is difficult to design and implement general and near real-
time mobile augmented reality system, especially with commodity smartphones which have
limited resource of computing powers. Prior research has primarily tested their mobile
augmented reality approaches on limited real-world use-cases, such as few office objects in
the room. Up-to-date, there is no research that has analyzed scalability with respect to both
the total number of cyber-information items and the physical scales of objects in the
physical environment. Techniques are needed that can accurately operate at multiple
different physical scales, such as on a remote control, indoor office room, large outdoor
building, or entire outdoor street scene. In addition, the system should provide consistent
and high-precision localization during the operation at dynamically changing scales and

with large numbers of cyber-information items.
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3 Related Work and Research Gaps

This chapter discusses the current state of knowledge and research gaps for each research
problem outlined in Chapter 2, i.e., “Problem 1: Need for accurate user localization”,
“Problem 2: Need for 3D Content Authoring and Association”, and “Problem 3: Need for

Scalable Mobile Augmented Reality System”.

3.1 Research Gap 1: Fine-grained 3D Localization with Mobile Devices

3.1.1 Overview

Based on the techniques used for estimating a location and pose of the user’s mobile device,
prior work on user localization can be roughly categorized into: 1) sensor-based
localization which tracks the position using GPS and/or inertial, geomagnetic sensors
attached to users, 2) marker-based localization which identifies the mobile device’s camera
position and orientation by leveraging pre-defined optical markers and image processing
techniques, 3) visual simultaneous localization and mapping (visual SLAM) which utilizes
parallel threads for simultaneously tracking and mapping visual features from images, and
4) model-based localization which uses pre-constructed 3D models of the physical world as
priori information to identify relative location and orientation of mobile devices. Table 3.1
summarizes and evaluates each category of prior research and presents qualitative
assessment on localization accuracy and computational time. The desired values are based

on the motivating scenario discussed in Chapter 2, i.e., real-world construction progress
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Table 3.1 Qualitative comparison of localization techniques for mobile augmented reality systems

Metrics Sensor-based Marker-based Visual SLAM Model-based Desired

Localization 5 35, @ 05— 2mm® 0.5-20mm® 0.5-20 mm© Under 20 mm
Accuracy

LOC;‘;Z:;‘"“ 100 — 200 msec 20 — 140 msec 20 —40 msec ~ 5-240sec  Under 3 sec
External GPS satellite,

Infrastructure R transmitters Optical markers Not needed Not needed Not needed

Resistant to

drifts and error X v X v v
accumulation
Scale well to » 9 N v v
large scene
Supports v v v x v

mobility

@ GPS Covered area; ® Markers within 3m distance; © Objects within 10m distance.

monitoring scenario. For image-based localizations, such as marker-based, visual SLAM,
and model-based localizations, the localization accuracy is typically computed in image
pixel unit, i.e., projecting 3D objects or optical markers into mobile device’s image sensor
using recovered camera location and orientation and computing the pixel distance between
projected points and corresponding image points where subjects actually appeared on the
image, as shown in Figure 3.1. The measured image pixel errors, i.e. mean re-projection
errors, can be converted to real-world distance metric, such as centimeters or millimeters,
by using camera focal length, the dimension of camera image sensor, and the size of images.
The details of image-based localizations will be further discussed in following subsection
and the details of image pixel error conversion to real-world distance metric will be

discussed in Section 4.4.
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Figure 3.1 The definition of localization accuracy for image-based localizations

3.1.2 Gaps in Existing Research

The majority of prior work on user localization has relied on positioning systems, such as
GPS or WLAN sensors [7, 9], or combined it with inertial measurers such as gyroscope
sensors [12, 13]. Exploiting GPS sensors works well in outdoor environments but does not
support indoor environments, and is unreliable in dense urban environments where a clear
line of sight to the GPS satellite is unavailable. In addition, the use of GPS and inertial
sensors in commodity smartphones introduces significant challenges due to the limited
accuracy of GPS receiver and the noise presented in sensor data [11]. For example, the
noise in geomagnetic heading values can cause jitter in onscreen information presentation.
The indoor environment also imposes various challenges on location discovery due to

dense multipath effects and building material dependent propagation effects. There are
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many potential technologies and techniques that are suggested to offer the same
functionality as a GPS indoors, such as WLAN, Ultra-Wide Band (UWB) and Indoor GPS.
By tagging users with appropriate receivers/tags and deploying a number of nodes (e.g.,
access points, receivers, transmitters, etc.) at fixed positions indoors, the location of tagged
users can be tracked by triangulation [12, 20]. However, the accuracy of using network
infrastructure for 6-DOF localization is still questionable and their reliance on pre-installed

infrastructures causing challenges in scalability.

In the meantime, several research groups have proposed marker-based mobile augmented
reality to remove the dependency on mobile sensors or pre-installed network infrastructures
[19-24]. These works track users’ position and orientation using image processing
techniques, i.e., matching the image captured by users’ mobile devices to special, pre-
defined 2D patterns (markers). Although marker-based localization has shown to work well
in both indoor and outdoor environments and does not require additional sensors, yet the
visual markers need to be attached to every real-world physical object of interest. Tagging
hundreds to thousands of objects with 2D markers in the case of large-scale environments,
such as street scenes, or construction site, is impractical and does not scale well to handle

various distances to objects.

The advent of computer vision methods over the past decade has led to new research on the
application of image-based localization methods for marker-less mobile augmented reality

systems. Due to the independency on pre-installed infrastructure, inertial measurers, and/or
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optimal markers, vision-based localization methods have gained significant attention in the
computer vision community, as well as in the augmented reality community [1, 19, 25-36].
A group of these works have focused on visual Simultaneous Localization and Mapping
(SLAM) [26, 29, 31], which simultaneously constructs a sparse 3D map from visual
features and localizes a device using generated map, with parallel threads of tracking and
mapping (PTAM) [28] method. However, visual SLAM methods mostly focus on small-
scale environment, such as indoor office room, and suffer from inconsistent loop closure
problem when the scale becomes larger, such as outdoor buildings on the street. In addition,
in the context of augmented reality, the visual SLAM methods are difficult to associate
arbitrary 3D cyber-information with physical objects as the 3D coordinates of the map are
varying from the devices and their initial locations of calibration. As a consequence, the
visual SLAM methods require either an offline-learned 3D model or manual association of
3D cyber-information, whenever users initiate the SLAM method with different devices.
Another drawback of visual SLAM methods is that the performance of localization depends
on the used devices. All the computations need to be done on the board of the devices, and
thus, the localization speed relies on the computing power of mobile devices. The
dependency on used mobile devices makes visual SLAM methods difficult to structure the
general large-scale mobile augmented reality system, typically in form of server-client

architecture, which allows people to collaboratively add or query cyber-information.

Finally, another group of computer vision based works has shown that a set of overlapping

images can be used to extract very accurate 3D geometry of stationary subjects, such as
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buildings under construction, in form of 3D point cloud model. After extracting the 3D
point cloud of the subjects through the Structure-from-Motion (SfM) algorithm that
estimates the 3D position of the visual features through image feature extraction, pair-wise
matching, initial triangulation, and the Bundle Adjustment [32] optimization process, the
3D point cloud model can be used as a prior knowledge to compute 2D-to-3D
correspondences for precisely localizing mobile camera imagery [33-36]. Using a 3D point
cloud for user localization, i.e., model-based localization, permits mobile augmented reality
systems to accurately estimate the 3D position and 3D orientation of the new photograph
purely based on the image [14-18], and therefore, it does not have any hardware constraints
on mobile devices, such as stereo cameras, GPS sensors, or motion tracking sensors.
Furthermore, recent advances in SfM [37-39] enable the easy creation of large scale 3D
point clouds from an unordered set of images and extend model-based localization methods

to large scene such as street-level or city-level scale.

Although this body of computer vision research has shown the potential and high-accuracy
of model-based reasoning, most of the recent model-based localization methods assume
that those point clouds are already available at the beginning of the localization process.
The 3D point cloud generation process, also called as 3D reconstruction, is often separated
from the localization process and the 3D reconstruction is done in an offline preparation
step. Despite the scalability of recent approaches in SfM, however, collecting image data
and processing them to prepare a 3D point cloud still takes considerable amount of time.

The Bundler [39], a widely-used StM software package, takes from hours to a day to
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generate a 3D point cloud even with small numbers of input images. This time-consuming
preparation of 3D point cloud prevents using model-based localization in mobile
augmented reality, especially when users want to model a daily changing scene such as
construction site. Furthermore, the low speed of model-based localization (typically 5 — 240
sec) and the lack of on spot localization methods make their applications difficult to use in
mobile augmented reality. One of the objectives of the proposed research is to overcome
these challenges in model-based localization methods by optimizing both 3D reconstruction
and localization processes, and make it available on mobile devices to provide near real-

time mobile augmented reality.

3.2 Research Gap 2: 3D Cyber-physical Content Authoring from a 2D
interface

3.2.1 Overview

Another important capability in mobile augmented reality is being able to author and
associate cyber-content with the real-world physical objects around the user. Prior work has
assumed that this content is already available and focused on mobile augmented reality
systems with fast and accurate user localization. Creating and associating cyber-information
with physical objects on-the-fly, however, is challenging due to the complexity of spatially
associating cyber-information with the geometry of arbitrary real-world objects, such as
engine parts or windows on the building, in a 3D space and using a small 2D mobile device

interface.
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Existing work on 3D content authoring can be roughly categorized into: 1) 3D drawing
methods which use 3D design tools to create 3D contents, 2) gesture recognition based
methods, which track the motions of the users’ fingers or other tools in order to draw 3D
contents into the virtual 3D space. All of these methods require specific devices to support
3D content authoring and manual association with real-world physical objects, and thus, do
not work well with commodity smartphones. Table 3.2 summarizes and evaluates 3D cyber-
physical content authoring methods in each category and presents metrics for qualitative

comparison.

3.2.2 Gaps in Existing Research

Despite the great efforts to facilitate onsite activities through mobile augmented reality,
most of research has mainly focused on retrieving existing cyber-information and

displaying them over imagery captured by mobile devices in form of augmented reality

Table 3.2 Qualitative comparison of 3D content authoring techniques for mobile augmented reality

systems
Metrics 3D drawings Gesture recognition Desired
External
3D framework CAD Not needed Not needed
. Personal Commodity
Device type Computer Gloves, pens smartphones
Automatic
association with x x v
real-world objects
Supports mobility x v v
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overlays without proposing methods that can easily and quickly create cyber-information

and associate it with real-world physical objects.

A number of 3D drawing methods for content authoring have been discussed by several
works for mobile augmented reality systems [1, 3, 12, 24, 25]. However, all of these works
used existing commercial 3D drawing tools to create 3D cyber-information and manually
geo-tagged or aligned cyber-information to real-world physical objects. The main problem
with this approach is that it requires specific 3D design frameworks (e.g., Computer Aided
Design (CAD) tool) and devices (e.g., mouse, pen, etc.), which are not available on

commodity mobile devices.

More recently, some research have focused on intuitive methods for 3D content authoring,
such as gesture recognition based methods [40, 41]. These methods track the movements of
users’ fingers or pen, create virtual objects corresponding to those movements, and
visualize them on top of the camera view. Although they provide more straightforward
methods than 3D drawing based methods, the user interface is still complicated and
difficult to draw 3D virtual objects accurately. In addition, they also require special devices,
such as gloves or sensor-attached pens, and do not provide automatic association of created
cyber-information with real-world physical objects. One of the objectives of the proposed
research is to overcome these limitations and provide a practical method for 3D cyber-

physical content authoring on a 2D mobile device interface with no external hardware.
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3.3 Research Gap 3: Near Real-time Cyber-Physical Information
Association at Dynamically Varying Environmental Scales

3.3.1 Overview

Since model-based localization methods provide sufficient accuracy for high-precision
cyber-physical information association scenarios, such as identifying the buttons on a car
dashboard, overlaying construction information on walls, etc., this study focuses on model-
based localization techniques for high-precision mobile augmented reality systems. In
addition, model-based localization techniques are only approaches that do not require any
external infrastructures, such as GPS satellites, wireless network sensors, or fiducial/optical
markers, as described in Section 3.1. As a consequence, existing work on model-based
localization methods has been analyzed for performance comparison at different
environmental scales, such as room-level, or street-level. Table 3.3 summarizes and
evaluates existing model-based localization techniques and presents metrics for qualitative

comparison.

3.3.2 Gaps in Existing Research

Lim et al. [35] and Sattler et al. [36] proposed near real-time model-based localization
methods. However, their test cases consist of only a single 3D point cloud model at room-
level scale and their approaches were not true mobile augmented reality as they were

unable to provide cyber-information delivery/visualization functionality and the mobility.
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Table 3.3 Qualitative comparison for scalability of mobile augmented reality systems

Metrics Model-based Desired
Model scale room-street object-street
prep;\r/gt)icz)i time 324 hr 0.1-1hr
3D pl;i;:ilfeflrn?gdels Single Multiple

in the system (Hundreds of models)

Number of
cyber-information items 0-10° 10° - 10*
in the system

Localization/
Augmentation 5 —240 sec Under 3 sec
Speed

Supports mobility X v

Applications of model-based localization methods in augmented reality systems can be
found in [1, 25]. These systems were designed for context-aware AEC/FM applications to
enhance construction progress monitoring processes. The 3D point cloud model is
generated from pre-collected photographs of a construction site and the system uses the
extracted model at street-level scale to localize users. Although their systems precisely
determine the users’ location and deliver relevant construction project information to end-
users, yet it could not conduct user localization in the field for on-site decision making
purposes. With their systems, field personnel have to take photographs and bring them back
to the office to process each photograph. Even after field personnel bringing photographs
back to the office, localizing a single photograph to see the cyber-information overlaid on
top of imagery takes tens of seconds with a high-end personal computer at the office.

Considering the applications and the current limits from these works, a new approach,
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which takes at most 1-3 seconds regardless of operating scales and provides mobility with

commodity smartphones, should be developed.

In addition, all aforementioned works on model-based localization were based on the 3D
point clouds generated by the SfM framework in the Bundler package. To produce a single
3D point cloud, the Bundler package typically takes from hours to days depending on the
number of input images, due to exhaustive computations in pair-wise feature matching and
non-linear multi-dimensional Bundle Adjustment optimization on a single-thread CPU.
This considerable amount of time for 3D point cloud preparation also prevents developing
general mobile augmented reality systems using model-based localization for dynamically
varying environmental scales. The details of model preparation, i.e., 3D reconstruction, will

be further discussed in Section 4.2.
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4 Hybrid 4-Dimensional Augmented Reality (HD4AR)

4.1 Overview of Solution Approach to Research Gaps 1 and 3

To fill the “Research Gap 1: Fine-grained 6-DOF Localization with Mobile Devices”, and
“Research Gap 3: Near Real-time Cyber-physical Information Association at Dynamically
Varying Environmental Scales”, a new type of mobile augmented reality, Hybrid 4-
Dimensional Augmented Reality (HD*AR), is proposed and developed. The HD*AR uses a
model-based localization approach, which takes advantage of a pre-constructed 3D point
cloud of target scene to identify a mobile device’s relative location and orientation. Since
the 3D point cloud generated from a set of overlapping photographs represents an accurate
3D geometry of real-world physical objects, it is often called as 3D physical model.
Consequently, the HD*AR requires a 3D reconstruction process that rapidly and robustly

generates a 3D physical model from pre-collected photographs.

As discussed in Section 3.1, using a 3D physical model for localization permits the system
to estimate the complete pose (6-DOF) of the camera, and therefore can support high-
accuracy augmented reality applications, such as construction progress monitoring where
millimeter-level precision is needed. Due to time-consuming preparation of 3D point cloud
[1, 25, 37-39], however, using a 3D physical model for localization is often considered as
an impractical solution for mobile augmented reality. To overcome this challenge, a new
parallelized 3D reconstruction process, which combines different image feature descriptors,

operates across cores in a multi-core CPU and GPU for fast operations, and thus is suitable
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for mobile augmented reality, is designed and developed. The algorithmic details and

enhancements of the new fast 3D reconstruction process will be presented in Section 4.2.

Once the 3D physical model is available, a user can take a new photo at a random location
and his/her location and orientation are determined by comparing the new image to the
generated 3D physical model. Specifically, the system attempts to estimate extrinsic camera
parameters, i.€., a rotation matrix and a translation vector of the camera, to find the relative
position of the user’s camera (mobile device). After recovering a complete pose of the
user’s camera, the system can decide what cyber-information should appear in the user’s
photograph. However, existing model-based localization methods take tens of seconds even
with a high-end personal computer to localize a single image, which is not suitable for
mobile augmented reality with commodity mobile devices. Therefore, a new model-based
6-DOF localization method using a direct 2D-to-3D matching algorithm, which takes at
most few seconds to localize a photograph, is devised and developed. In addition, the
HD®AR uses the client-server architecture to further increase the localization speed. The
smartphone as the client uploads new photographs to the server for localization and the
major image processing load is located on the server. The details of a new model-based
localization method will be discussed in Section 4.3. Figures 4.1 and 4.2 summarize the
overall procedures of the HD'AR, from initial 3D reconstruction to localization/

augmentation process.
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Bootstrapping: 3D Reconstruction and associating 3D cyber-information

I. Collect 15-50 images of target scene
II. Create a 3D physical model with Structure-from-Motion (SfM) algorithm

II1. Associate 3D cyber-information (e.g., project specifications, field reports)
TRND E ‘ it H

Figure 4.1 Initial 3D Reconstruction: Bootstrapping of HD*AR
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Figure 4.2 Model-based 6-DOF localization and augmentation of HD*AR

4.2 New Parallelized Structure-from-Motion for 3D Physical Model
Generation

As described in Section 4.1, an initial 3D point cloud must be created to serve as a

reference model for model-based localization and/or mobile augmented reality. In addition,
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this 3D physical model must be generated quickly for fast initialization of the system.
Generating this 3D physical model requires a collection of overlapping base images of the
target scene and processing these images using the SfM algorithm that estimates the 3D

positions of 2D image feature points.

To accelerate the speed of SfM-based 3D reconstruction, computer vision researchers have
proposed several methods separately from mobile augmented reality applications and none
of these works are feasible for mobile augmented reality using 3D physical models. First,
the Bundler package has been developed by Snavely et al. [39]. Snavely et al. have created
the first structured pipeline for 3D point cloud modeling from an unordered set of large-
scale internet photo collections. The Bundler uses the SIFT (Scale Invariant Feature
Transformation) descriptor [42] for feature extraction, which has good invariance properties
but requires multiple layers of computation for each spatial scale, and thus is time
consuming. In addition, the pair-wise image matching in the Bundler is performed on a
single-thread CPU, and therefore the processing time grows exponentially with the size of
image set. More recently, a cloud computing scheme has been introduced to accelerate the
entire SfM procedure [37]. A cloud computing has achieved a remarkable performance gain
on very large-scale 3D reconstruction by distributing tasks over several hundreds of cores.
However, using several hundreds of cores is often not feasible and the system is still based
on CPU-based SIFT descriptor. Another approach uses both GPU-based SIFT and an image
clustering scheme on a cloudless system [38]. The proposed system, however, limits the

number of feature points per image due to memory bandwidth of the GPU and its purpose
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is estimating the pose of base cameras to recover the surface of the scene rather than

creating an accurate 3D point cloud for user localization or augmented reality.

To further speed up 3D reconstruction task and enable fast initialization of mobile
augmented reality system, a new parallelized SfM framework, which supports new types of
feature descriptors to replace the time-consuming SIFT descriptor, is developed and used in
the HD*AR. Compared to vector-based real-number descriptors, such as SIFT or SURF
(Speeded Up Robust Features) [43], the HD'AR takes advantage of binary feature
descriptors, which consist of a binary bit-string rather than a vector of real-numbers, to
reduce memory consumption and computational complexity of image processing in both
3D reconstruction and localization. The advantages of using binary descriptors are that 1) it
requires much less memory than real-number descriptors and 2) it can use the Hamming
distance for descriptor matching, which is faster than the Euclidian distance comparison.
However, binary descriptors are typically considered as a trade-off, providing less
robustness against image rotation or scaling. While some research have compared the
robustness of binary descriptors against 2D image rotation and scaling, no research has
argued the impact of binary descriptors on 3D reconstruction and compared different
feature descriptors using a single unified SfM-based 3D reconstruction framework.
Through the extensive experiments, we realize that recently proposed binary descriptors,
such as BRISK (Binary Robust Invariant Scalable Keypoint) [44] or FREAK (Fast REtinA

Keypoint) [45], have a strong potential for accurate 3D reconstruction. As a consequence,
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CPU-based SIFT, GPU-based SURF, CPU-based BRISK and CPU-based FREAK are

comprehensively analyzed and compared within the HD'AR.

A new filtering approach is also developed for accurate 3D reconstruction and the structure
of 3D physical model is optimized for further application, such as fast model-based
localization and/or mobile augmented reality. In addition, an entire 3D reconstruction
process exploits hardware/software parallelism including parallelized nearest neighbor
searching to scale the performance of 3D reconstruction. The proposed parallelized SfM
framework follows some of the original algorithmic steps in [39], but significantly alters

others in order to vastly accelerate the process, improve robustness, and improve accuracy.

As aforementioned, the key modifications that make the most substantial impact on
performance are: 1) the combination of different feature detectors and descriptors to
optimize the 3D reconstruction performance, 2) new filtering approach for reducing noise
in the 3D point clouds and improving localization accuracy, 3) memory-efficient point
cloud structure for mobile augmented reality and 4) a parallelized multicore CPU and GPU
hardware implementation for faster processing. Figure 4.3 illustrates the overview of the
HD*AR 3D reconstruction process, consisting of four algorithmic stages. The details of

each algorithmic stage are further discussed in the following subsections.
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Input: Image #1 ... #N (from commodity smartphones)

Feature Detector/Extréctor (SIFT, SURF, FREAK, BRISK)
| |

Robust Matcher (FANN and Matrix Estimation)
|

Track Creator / Feature Compactor
|

Structure-from-Motion (SfM) / Model Compactor

Output: 3D Point Cloud & 3D Point Features

Figure 4.3 New parallelized SfM process for mobile augmented reality

4.2.1 Feature Detection/Extraction Stage

The first stage of the 3D reconstruction is the Feature Detection/Extraction process which
extracts image keypoints and feature descriptors for each base image. Figure 4.4 shows the
overall structure of the Feature Detection/Extraction stage. To find a set of image keypoints,
a feature detection algorithm is first run on each input image. The CPU-based SIFT and
GPU-based SURF are implemented and used in the Defector module. Both SIFT and SURF
are invariant to image scaling and rotation and thus appropriate for 3D reconstruction from
unordered photographs. However, the SIFT and SURF algorithms use slightly different
ways of detecting feature points. The SIFT builds a set of image pyramids and filters each
layer with Difference of Gaussians (DoG) [42]. On the other hand, the SURF creates a

stack without downsampling for higher levels in the pyramid and it filters the stack using a
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Figure 4.4 Overall structure of Feature Detection/Extraction stage

box filter approximation of second-order Gaussian partial derivatives to speed up the

processing time [43].

Next, the Extractor module extracts feature descriptors at the detected image keypoints.
These extracted feature descriptors will be used as the basis for pair-wise image matching.
The CPU-based SIFT, GPU-based SURF, CPU-based FREAK and CPU-based BRISK are
implemented and used in this module. In contrast to SIFT and SURF, the FREAK uses
retinal sampling patterns to compare image intensities and produces a cascade of binary
strings [44]. The BRISK also assembles a bit-string descriptor from intensity comparisons
retrieved by dedicated sampling of each keypoint neighborhood [45]. These resulting
binary descriptors consume much less disk space compared to vector-based real-number

descriptors, such as SIFT and SURF, and use the Hamming distance instead of Euclidian
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distance for descriptor matching. After extracting feature descriptors, the pixel color
information of detected keypoints is read by the Color Reader module. The color
information will be used later to assign colors to each 3D point for visualization purpose.

Then, all outputs are stored as binary files for faster Input/Output (I/O) tasks.

To investigate how feature detector and feature descriptor affect the performance and
quality of 3D reconstruction, we have tested four different detector-descriptor combinations
in our experiments, i.e., SIFT-SIFT, SURF-SURF, SURF-FREAK, and SURF-BRISK. To
simplify the name of these combinations, we refer to them as SIFT, SURF, FREAK, and
BRISK, respectively. Figure 4.5 shows invariant properties of each combination against 2D
image rotation and scaling. From this simple test result, we can infer that all these
combinations will work well for 3D reconstruction. The detailed experimental results of 3D

reconstruction are presented and fully discussed in Section 4.4.
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Figure 4.5 Results of descriptor invariance test on a real-world imagery: (a) rotational invariance

test, (b) scaling invariance test
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4.2.2 Robust Matching Stage

The next step is finding correspondences between all image pairs (i.e., pair-wise matching)
using extracted feature descriptors. For binary feature descriptors (FREAK and BRISK),
the FANN Matcher module first creates hierarchical clustering k-d trees of each image
descriptors and runs the Fast Approximate Nearest Neighbors (FANN) searching algorithm
[46] to rapidly find the two nearest neighbors of each descriptor in the image. For vector-
based real number descriptors (SIFT and SURF), the FANN Matcher module runs
randomized k-d tree searching algorithm with four parallel trees to improve the search
speed [47]. With all recovered nearest neighbor results, the FANN Matcher module finally
performs the distance ratio-test [42] with threshold value 0.5 to remove suspicious matches.
In addition, if more than one feature descriptor matches the same feature in the opposite

image, it removes all of matches for that image pair.

After the distance ratio-test, the F-matrix module robustly estimates a fundamental matrix
and further removes outliers for every image pair using the RANSAC (RANdom SAmple
Consensus) algorithm with the eight-point algorithm [48]. This filtering process removes
false matches using an epipolar geometry constraint given by the estimated fundamental
matrix. In other words, the maximum allowed distance from a keypoint to an epipolar line
is or pixels, beyond which the point is considered as an outlier. This outlier constraint can

be expressed as:

| xi' Fijx; | > o = max(max(w;, %), max(w;, %)) x 0.006 4.1
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where x; = [u;, v;, 1]" and xj = [u;, v, 11" are homogenous coordinates of the matched
keypoints in image i and j, respectively, F; is the estimated Fundamental matrix from
RANSAC iterations, and (w;, 4;) and (w;, h;) are the dimension of image i and j, respectively.
If the number of final inliers is less than 16, all of the matches are removed for that image
pair. Otherwise, the fundamental matrix returned by RANSAC is further refined by running
the Levenberg-Marquardt algorithm, minimizing the distance to the epipolar line for all the

inliers.

Upon receiving the inliers from the F-matrix module, the H-matrix module finds a
homography matrix using the RANSAC with normalized Direct Linear Transform [48] for

every image pair. The outlier constraint is in the form of

| xi -Hjjx; || > oy = max(max(w;, h;), max(w;, h))) x 0.004 (4.2)

where x; = [u;, vi, 1] and X; = [u;, vj, 1] are homogenous coordinates of the inliers after
fitting to fundamental matrix, and Hj; is the estimated homography matrix from RANSAC
iterations, and (w;, ;) and (wj, h;) are the dimension of image i and j, respectively. Then, the
percentage of number of inliers with homography matrix, H-score, is calculated and
recorded. The H-score will be used in final Structure-from-Motion stage and image-based

cyber-content authoring method to select the proper image sets.

Since the pair-wise image matching is the most performance bottleneck in 3D
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reconstruction, each image pair is processed on different threads with lock-free
parallelization of the FANN searching to shorten the overall processing time. Figure 4.6
shows the overall structure of the Robust Matching stage. Due to the FANN searching and
multi-threading of the tasks, the performance of pair-wise matching is significantly

improved compared to an existing SfM package, e.g., the Bundler package.

4.2.3 Track Creation/Feature Compaction Stage

The Track Creation/Feature Compaction stage first creates tracks from matching results,
where a track is a connected set of matching keypoints across multiple images. Figure 4.7

illustrates the overall procedures of this stage. Through extensive experiments, we found
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Figure 4.6 Overall structure of Robust Matching stage
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Figure 4.7 Overall structure of Track Creation/Feature Compaction stage

that some false matches can still survive in the matching stage even after robust tests, such
as distance ratio-test and fitting to the fundamental matrix, were performed. This situation
is likely to happen when the target scene has repeated patterns, such as multiple similar
windows in the building. If these surviving false matches are organized into tracks, the SfM

procedure may generate a very noisy 3D point cloud model.

Therefore, we have designed and included a track ratio-test in the track creation stage to
remove false matches from each track by comparing all the matching distances of the
keypoints inside the track. If one of the matching keypoints connected to a track has very
high distance than others, that keypoint is erased from the track. In other words, the

Cleaner module removes a keypoint from the track if

d, / dir < oTR (4'3)
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where d, is the minimum matching distance among all keypoints in the track and dj is the
matching distance of each keypoint in the track. We call this procedure as a track ratio-test
and the orr is typically set to 0.3. In addition to the track ratio-test that removes the
inconsistent keypoints for each track, the Cleaner module also removes inconsistent tracks
by observing the length of each track. If the length of a track is less than o, which means
that the track is seen by only or. cameras, that track will not be considered in 3D
reconstruction. The o, can be set to 3 or 4 for very accurate 3D modeling if the input
photographs were taken with specific purpose and have numerous overlapping images of
target scene. However, the oyp is typically set to 2 since we target an unordered set of

photographs taken at random locations.

Finally, the Feature Compactor module extracts and merges the feature descriptors of
keypoints that are remaining in the set of consistent tracks. This process significantly

reduces the disk space consumption as well as the speed of I/O task in the next stage.

4.2.4 Structure-from-Motion/Model Compaction Stage

The final stage of the HD*AR 3D reconstruction is the Structure-from-Motion (SfM)/Model
Compaction stage that estimates a set of camera parameters, such as focal length, radial
distortion coefficient, rotation matrix, and translation vector, for each base image and a 3D
location for each track. Similar to the Bundler, this stage uses an incremental approach,
recovering a few cameras at a time. Once the 3D point cloud is reconstructed, the Structure-

from-Motion (SfM)/Model Compaction stage also extracts and imposes a representative

37



feature descriptor for each 3D point, making 3D point clouds ready for direct 2D-to-3D
matching used in model-based localization. Figure 4.8 shows the overall structure of the
stage and Figure 4.9 shows an example of 3D point clouds generated by the proposed

framework using real-world construction element and static building photos.

The SfM stage first starts with an initial image pair to recover camera parameters using
Nistér’s five-point algorithm [49], and triangulates their feature points using polynomial

method [50]. As discussed in [39], this initial pair should have a large number of matched
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Figure 4.9 3D physical models from the HD*AR 3D reconstruction: (a) initial base images, (b) 3D

point clouds — resulting 3D point clouds well-represent the target construction element and building.

feature points, but also have a long separation distance between the cameras to avoid
getting stuck in local minimum during the optimization process. To fulfill this requirement,
the SfM module selects an initial image pair which has the lowest H-Score among all
possible pairs of images. However, our experiments have shown that the H-score should be
greater than 0.25 and the number of matches between selected pair should be greater than
200 to generate the most accurate 3D point cloud. Therefore, these conditions are also taken
account into initial image pair selection. After calibrating the camera parameters and
triangulating feature points of initial image pair, the Bundle Adjustment optimization [32] is
run to minimize the overall mean re-projection error, i.e., the difference between predicted

2D positions of the feature points in the photographs given their triangulated 3D positions
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and the locations of where the feature points are actually extracted in the images. To
significantly enhance the speed of this optimization, we adopt a GPU-based Parallel Bundle

Adjustment approach [51].

Then, the SfM algorithm goes through iterations to calibrate camera parameters of each
additional input image using the already triangulated 3D points and matching information
between the images. This calibration is done using PnP (Perspective n-Point) camera
estimation method with RANSAC and Levenberg-Marquardt optimization [48]. If the
algorithm successfully recovers camera parameters of an additional base image, it registers
the new camera and runs the Local Bundle Adjustment, i.e., optimizing only the newly
added cameras. This camera registration fails in the event that an additional input image
does not have any matched feature points against the previously registered images. After
Local Bundle Adjustment, the component triangulates the 3D points seen by the newly
registered cameras and pre-filters 3D points which have high re-projection error. Through
extensive experiments, we realized that this pre-filtering step is vital for accurate 3D
modeling. Very little number of high-error 3D points can destroy an entire shape of 3D
point cloud even with the Bundle Adjustment which tries to minimize overall mean re-
projection error. The outlier threshold for this pre-filtering based on re-projection error is

set to the same value used in the F-matrix module of the Robust Matching stage.

Finally, the Global Bundle Adjustment is run to optimize entire 3D points currently

retrieved and all parameters of currently registered cameras. During this optimization,
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however, it is possible that some 3D points still have a high re-projection error while other
3D points have a very small re-projection error, resulting in a small mean re-projection
error. The ultimate purpose of the 3D reconstruction is user localization and/or mobile
augmented reality, not the visual representation of target scene, it is very important to
reduce such noise in the 3D point cloud by removing 3D points with a high re-projection
error. To achieve this, the STM algorithm in the HD*AR uses a double-threshold scheme for
the post-filtering stage. The first threshold is for controlling the target Mean Squared Error
(MSE) of the Bundle Adjustment. This threshold value is set to be 0.25 pixel® so that the
target average re-projection error of entire 3D point cloud is equal to 0.5 pixels. Another
threshold, which called an absolute re-projection threshold, is for removing individual 3D
points from a 3D point cloud. The absolute re-projection threshold is adaptively calculated
based on the current distribution of re-projection errors of each base image. Nevertheless,
the maximum value of this threshold is set to be 4.0 pixels so that no 3D points in the final
3D point cloud have a re-projection error greater than 4.0 pixels. After post-filtering stage,
if the registered camera has the number of visible 3D points less than 16, that camera is
removed from 3D reconstruction as it will not provide an accurate estimation of camera
parameters due to small number of visible points. The entire SfM procedure including the
Global Bundle Adjustment and post-filtering is iteratively executed until there are no more
cameras to register. Due to the algorithmic enhancements and parallelization, the HD*AR
3D reconstruction is up to 30 times faster than the Bundler package. In Section 4.4,

experimental results of this new SfM algorithm are discussed in detail.
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Once the 3D points and camera parameters of input images are successfully recovered, the
Model Compactor module finally collects image feature descriptors for all triangulated
tracks and creates a representative descriptor for each 3D point to enable direct 2D-to-3D
matching. As described in [15, 16, 18, 36], a direct 2D-to-3D matching method have a
considerable potential for fast and accurate model-based localization. We propose to use
minimum-distance criteria, rather than averaging image descriptors proposed by Sattler et
al. [36], as the HD*AR should be able to handle binary descriptors, such as FREAK or
BRISK. The process of generating 3D representative descriptors can be summarized as

follows:

For each 3D point (X,) in the 3D point cloud model,

1) Find a list of base images (I, ..., Ix) and their corresponding 2D image points
(x1, ..., Xx) that participated in triangulation of X, during the 3D reconstruction.

2) Collect image feature descriptors (d;, ..., di) at discovered 2D image points (x, ...,
xx), where each descriptor is typically a 64-dimensional (SURF, FREAK, BRISK)
or 128-dimensional (SIFT, SURF) vector.

3) For each descriptor in (d, ..., dx), sum Hamming (FREAK, BRISK) or Euclidean
(SIFT) distances to all other descriptors in the set.

4) Select the descriptor, which has the minimum summation value, as a representative

descriptor of the 3D point (X,).

Due to this representative descriptors approach, the localization time will depend on the
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number of 3D points in the point cloud, not on the number of input images used in 3D
reconstruction, resulting faster localization compared to existing model-based localization
methods. The details of new direct 2D-to-3D matching for model-based localization will be

discussed in Section 4.3.

4.3 Model-based 6-DOF Localization/Augmentation Using Direct 2D-to-
3D Matching

4.3.1 Hybrid Mobile/Cloud Architecture

Once the HD*AR has the 3D physical model of the target scene, it can accurately localize
and augment new photographs captured by a mobile device. Figures 4.2 and 4.10
summarize this process from a high-level perspective. As shown in Figure 4.10, the HD*AR
uses the client-server architecture — with the mobile devices as the client — to upload images
taken from the mobile devices to the server for 3D reconstruction and user localization

purposes. The entire system consists of the following components:

s Client application: the HD*AR client application runs on Android or i0S devices.
This application captures the images and uploads them to the server. It also has the
capability of drawing cyber objects on top of a single image and attaching arbitrary
documents as cyber objects.

*  Server — image-based 3D reconstruction: this component generates a SfM-based

3D point cloud from initial base images and runs on a cloud computing platform.
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Figure 4.10 The client-server architecture of HD*AR and the sequence of localization/augmentation

The initial base images can be uploaded to the server via the HD*AR client app or a
web-based interface.

* Server — user localization: this component takes a single image captured on a
mobile device as input and derives a 3D position and orientation of the mobile
device with respect to the 3D point cloud by solving a Direct Linear Transform
(DLT) equation followed by a Levenberg-Marquardt optimization [48].

* Server — back-projection: this component takes the position of the 2D cyber objects
in the photograph as input and computes the 3D position of cyber information using
the underlying 3D point cloud model and calibrated camera parameters. The details

of back-projection and content authoring method will be discussed in Chapter 5.
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By developing a new direct 2D-to-3D matching algorithm, which will be presented in
following subsection, and putting major image processing load on the server, the model-
based localization and augmentation of the HD'AR can be done in near real-time.
Furthermore, due to the client-server architecture, the performance of localization does not
depend on the computing power of the mobile devices, and thus, the system can easily
support multiple types of commodity mobile devices if devices have a capability of camera

imaging and network communication.

4.3.2 Direct 2D-to-3D Matching with 3D Physical Model

To localize a user and display surrounding cyber-information on top of the imagery, a user
first takes a picture of the objects, which he/she wishes to query for information about, and
uploads the photograph to the HD*AR server. Upon receiving the photo from user’s mobile
device, the server runs feature detection and extraction on the received image, finds
correspondences between the image and the underlying 3D physical model. Finding 2D-to-
3D correspondences between the 2D feature points detected on the new image captured by
a mobile device and the 3D points in the physical model can be accelerated using a direct
2D-to-3D matching algorithm. While existing works match feature descriptors of the image
to an entire set of feature descriptors from all base images used in 3D reconstruction to find
correspondences (2D-to-2D-to-3D matching), which incurs unnecessary descriptor
comparisons, the HD'AR only compares feature descriptors of the image to the
representative descriptors of each 3D point in the 3D physical model, resulting in near real-

time localization and augmentation. The representative descriptors of 3D point cloud model
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(see Section 4.2.4) are cached in the server in form of a k-d tree structure and Fast
Approximate Nearest Neighborhood (FANN) searching algorithm [46, 47] is used for
rapidly finding correspondences between 2D image feature descriptors and 3D
representative descriptors. In addition, the proposed method of direct 2D-to-3D matching
and extracting 3D representative descriptors work well for both vector-based real-number
descriptors and the binary descriptors. Due to this new direct 2D-to-3D matching, the
localization time now depends on the size of the 3D physical model, i.e., the number of 3D
points, not on the number of base images used in 3D reconstruction. In addition, this
approach does not only create representative descriptors of 3D points, but also provides
higher probability of finding 2D-to-3D correspondences as it selects the descriptor, which
has the minimum distance across all base images, as a representative descriptor for each 3D
point. As we will discuss in Section 4.4, the proposed direct 2D-to-3D matching approach

speeds up the localization by a factor of 162 compared to the Bundler.

After discovering 2D-to-3D correspondences, the camera calibration algorithm is
performed by solving Direct Linear Transformation (DLT) equation followed by a
Levenberg-Marquardt optimization [48]. This model-based camera calibration results in 6-
DOF (degrees-of-freedom) localization in 3D space and thus gives high localization
accuracy despite possible variation in the position and orientation of the user within the
reconstructed scene. If the server successfully estimates the camera pose information, it

determines what cyber-information is within the camera’s field of view and where the
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information should appear. This decision is done by first projecting each vertex of 3D

cyber-information onto the localized camera:

X M 0 : (4.4)
ﬁ4=[o f, @FR Y
1

1 0 0 1

where [X, ¥, Z, 1]" is a 3D vertex point of cyber-information, [R|T] is an estimated 3x3
rotation matrix and an estimated 3x1 translation vector, (f; f;) is a camera focal length
expressed in pixel units, (c, ¢,) is a principal point of the camera, and [x, y, 11" is a resulting
projected points in image pixels. Next, the simple visibility test is performed to determine

whether the 3D cyber-information appears in current image or not.

1, 0<x<w,0Zy<h (4.5)
0, Otherwise

an={
where w is image width and /4 is image height. The visible cyber-information is then sent
back to user’s mobile device with positional information and semantics. Finally, the user’s
mobile device renders the returned visible cyber-information on the top of captured-image.
As shown in Figure 4.11, the HD*AR can precisely localize and augment photographs with
various test cases and it implies that the HD*AR remains stable under different viewpoint of

the user’s mobile device.
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Figure 4.11 HD'AR localization and augmentation: cyber-information is precisely overlaid on

user’s photograph despite the significant change of viewpoint.

4.4 Experimental Results and Validation

This section presents experimental results and the validation of the proposed mobile
augmented reality system — HD'AR. As described in Sections 4.1-4.3, the HDAR
combines model-based localization with SfM-based 3D point cloud model, and therefore,
two separate experiments, i.e., 3D reconstruction and model-based 6-DOF localization,
were performed and validated. In order to assess improvements provided by the HD*AR,
each experimental result was compared to the result from the Bundler package, the most
widely-used SfM package using incremental approach. The details of the data set
specifications and validation metrics are discussed in the following subsections. After
showing experimental results, the overall validation of the solution approach will be

summarized.
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4.4.1 3D Reconstruction

The 3D reconstruction experiments were conducted on a single Amazon EC2 instance

server with 22.5 GB memory and two Intel Xeon X5570 processors running Ubuntu

version 12.04. An NVIDIA Tesla M2050 graphic card was used for GPU computations. The

image data sets used to create the 3D point clouds can be roughly categorized as: 1) outdoor:

construction site or existing buildings on the street, and 2) indoor: car interior, kitchen, or

office room. Table 4.1 presents the summary of data sets that cover different scales of target

objects and scenes.

Table 4.1 Dataset specification for 3D reconstruction

. Scale Number of base Image Camera
Environment Name o . . .
description images resolution model
oy Samsung
patton building 40 2592 x 1944 Galaxy Nexus
oy Samsung
knu building 50 2592 x 1458 Galaxy Nexus
. Canon
parliament landmark 52 4752 x 3168 EOS 50D
outdoor —
L pple
rtfr construction site 113 3264 x 2448 Phone 4S
cfta construction site 80 2144 x 1424 Nikon
D300S
. . Nikon
rh construction site 155 2144 x 1424 D300
dashboard  car dashboard 27 2592 x 1944 Samsung
Galaxy Nexus
. . Apple
' engine car engine parts 32 3264 x 2448 Phone 4S
indoor S
kitchen  home kitchen 47 2048 x 1536 amsuie
Galaxy Nexus
. Apple
ikea office store 44 3264 x 2448 ‘Phone 4S
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An entire 3D reconstruction procedure of the HD*AR was run on each data set to produce
the 3D physical models. To demonstrate the performance gains of the HD*AR resulting
from track compression, double-threshold filtering, parallelized matching, etc., the

following metrics were measured:

*  Number of registered images: how many pre-collected photographs were calibrated.
This metric measures the completeness of the 3D reconstruction process if the data
set was properly collected. Higher numbers of calibrated cameras will increase the
reliability of the positional information of 3D points triangulated during the 3D
reconstruction.

*  Number of 3D points: how many 3D points were successfully triangulated. Larger
numbers of 3D points increase the probability of direct 2D-to-3D matching and 3D
localization success for mobile augmented reality.

* Mean re-projection error: overall mean re-projection error is computed by
projecting each 3D point into each calibrated camera of the base images in order to
measure the positional error of generated 3D physical models. This metric measures
the robustness and accuracy of the 3D physical model and affects the accuracy of
3D localization for mobile augmented reality.

* Point cloud size: how much disk space is consumed by a single 3D physical model.
The point cloud size is a key concern if multiple physical models are cached in the
server simultaneously.

* FElapsed time: how long does it take to generate a single 3D physical model. A
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specific aim of our framework was reducing this time in order to rapidly enable

mobile augmented reality using 3D point cloud models.

Tables 4.2-4.4 compare the overall results of 3D reconstruction on the outdoor building
photographs, i.e., “patton”, “knu”, and “parliament” data sets. Although there are many
factors that influenced the performance, such as the number of base images, the image sizes,
and the texture of the target scenes, the HD*AR 3D reconstruction was 304-2,875% faster
than the Bundler for all building-scale outdoor data sets we studied. The performance gain
was significant when binary descriptors, i.e., the FREAK and BRISK, were used.
Specifically, the HD'AR achieved 1,169-2,875% of performance gain with binary
descriptors, and produced 3D physical models within 20 min. Even with same SIFT

descriptor used in the Bundler package, the HD*AR was up to 9.419 times faster.

Next, the HD*AR significantly reduces the memory consumption of 3D physical models as
it only records the representative descriptors of each 3D point, while the Bundler stores all
feature descriptors from the entire set of base images. In addition, the Bundler uses the
SIFT descriptor, which is 128-dimensional real-number vector, so it consumes a lot of disk
space to store information related to 3D physical models for localization (called registration
in the Bundler) and mobile augmented reality. Specifically, the HD*AR achieved 1,860-
2,759% of memory gain with binary descriptors. Memory consumption is important when
multiple mobile clients perform online localization simultaneously with different 3D

physical models. Large file sizes prevent from pre-loading multiple models into memory
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Table 4.2 Performance of 3D reconstruction for “patton” data set

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 40/ 40 40/ 40 40/ 40 40/ 40 40/ 40
registered images
Number of 129,693 147,798 72,000 47,163 46,318
3D points
Mean . . . . .
I 0.661 pixels  0.578 pixels  0.596 pixels  0.502 pixels  0.498 pixels
re-projection error
Point cloud size 446.90 MB 331.00 MB 72.80 MB 16.30 MB 16.20 MB
(memory gain) (1x) (1.35%) (6.14x%) (27.42%) (27.59%)
Elapsed time 8,571 sec 2,824.424 sec 923932 sec  300.358 sec  298.095 sec
(performance gain) (1%) (3.035%) (9.277x) (28.536%) (28.753x%)
Table 4.3 Performance comparison of 3D reconstruction for “knu” data set
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 50/50 49 /50 50/50 49 /50 49/50
registered images
Number of 37,356 51,730 40,858 32,827 33,122
3D points
Mean . . . . .
L 0.681 pixels  0.504 pixels  0.673 pixels  0.595 pixels  0.552 pixels
re-projection error
Point cloud size 223.16 MB 104.00 MB 41.38 MB 12.02 MB 11.97 MB
(memory gain) (1x) (2.15%) (5.39x%) (18.57x) (18.64x)
Elapsed time 4,424 sec 469.687 sec  314.944 sec  321.040 sec  378.303 sec
(performance gain) (1x) (9.419x%) (14.047x) (13.78%) (11.694x)
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Table 4.4 Performance comparison of 3D reconstruction for “parliament” data set

Package Bundler® HD*AR
Descriptor SIFT SIFT SURF FREAK BRISK

Number of

. . - 52/52 52/52 52/52 52/52
registered images

Number of

. - 431,559 273,166 223,886 234,343
3D points

Mean

I - 0.649 pixels  0.674 pixels  0.604 pixels  0.606 pixels
re-projection error

Point cloud size i 0.99 GB 328.15 MB 91.77 MB 96.01 MB
(memory gain) ) ) ) )
Elapsed time i 10,800 sec  1,396.002 sec 1,332.656 sec 1,279.646 sec
(performance gain) ) ) -) ()

@ The Bundler failed to create 3D point cloud due to image size and out of memory problem.

and reduce server-side localization speed due to increased disk I/O and memory swapping.
In our experience, the file I/O for reading 3D physical model for localization takes about 6
sec when the 3D point cloud size excesses 300 MB, and it is about 70% of the entire

model-based localization process if the server does not cache the point cloud in the memory.

Finally, the mean re-projection errors show that the HD*AR generated more accurate 3D
point clouds for the building-scale outdoor data sets. The HD*AR achieved mean re-
projection errors less than 0.673 pixels and less than the results from the Bundler for all
cases. The mean re-projection error represents how accurate the resulting 3D point cloud
and the calibrated camera parameters are, as the re-projection error is calculated by

projecting each 3D point into each calibrated camera of the base images and computing the

53



distance to the position of original image feature point. The experimental results illustrate
that the generated 3D point clouds with the HD*AR have only 1-pixel mean re-projection

error and well-represent the target scenes.

One interesting result is that the Bundler failed to create a 3D physical model for the
“parliament” data set. As shown in Table 4.1, the “parliament” images were taken by a
high-end DSLR camera, and therefore, the images are very high-resolution with large file
sizes. During the 3D reconstruction with these high resolution images, the Bundler package
caused the out of memory problem and could not process the data set. However, as shown
in Table 4.4, the HD*AR well-handled the “parliament” data set and successfully produced
the dense large-scale 3D physical models. Except the SIFT descriptor, the HD*AR only
took about 20 min to generate hundreds of thousands 3D points. Figure 4.12 shows the
generated 3D physical models from all building-scale outdoor data sets using the BRISK

descriptor.

While binary descriptors achieved a huge gain on both reconstruction speed and memory
consumption on the outdoor data sets, they produced little less dense 3D point clouds. The
outdoor images typically have a plenty of textures and therefore, the invariance properties
of feature descriptors shown in Figure 4.5 affect the number of true matches between
photographs taken at random location and orientation. A key question is whether or not the
reduction in point cloud density impacts mobile client localization. Based on visual analysis

of the point clouds presented in Figure 4.12, we believe that the reduced density of the 3D
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Figure 4.12 3D reconstruction results for building-scale outdoor data sets with BRISK descriptor: (a)
initial base images, (b) 3D point clouds from the HD*AR, and (c) 3D point clouds with estimated

camera position of input base images

point clouds would not affect model-based 6-DOF localization since all 3D point clouds
well-represent the target scenes. Rather, the smaller number of 3D points accelerates the
direct 2D-to-3D matching by focusing on the most significant feature points and therefore
improves localization speed. The performance of localization will be further discussed in

following subsection.

Tables 4.5-4.7 compare the overall results of 3D reconstruction on the outdoor construction

jobsite photographs, i.e., “rtfr”, “cfta”, and “rh” data sets. These data sets were collected on
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the jobsites during real-world construction activities. Again, the HD*AR outperformed the
Bundler and was 594-1,639% faster for outdoor construction data sets. In addition, the
HD*AR achieved the memory gain up to 1,740% and all generated 3D physical models
have mean re-projection error smaller than 1.379 pixels. Figure 4.13 shows the generated

3D physical models from all outdoor construction data sets using the BRISK descriptor.
As demonstrated in Tables 4.5-4.7 and Figure 4.13, we can conclude that the HD*AR

successfully generates 3D physical models for street-scale construction jobsites, even with

the binary feature descriptors.

Table 4.5 Performance comparison of 3D reconstruction for “rtfr” data set

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 113/113 112/113 113/113 112/113 113/113

registered images

Number of

. 48,493 40,526 81,197 81,140 81,909
3D points

Mean

re-projection error 1.375 pixels ~ 1.254 pixels  1.086 pixels  1.379 pixels  1.356 pixels

Point cloud size 263.27 MB 89.97 MB 79.31 MB 35.57 MB 36.80 MB

(memory gain) (1x) (2.93%) (3.32%) (7.40%) (7.15%)
Elapsed time 14,989 sec  1,535.326 sec 2473.289 sec 1740.730 sec  1832.693 sec
(performance gain) (1%) (9.763x) (6.060x) (8.611x) (8.179%)
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Table 4.6 Performance comparison of 3D reconstruction for “cfta” data set

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 80 /80 80/ 80 80 /80 80 /80 80 / 80
registered images
Number of 29,164 10,680 10,627 12,266 15,042
3D points
Mean . . . . .
I 0.698 pixels  0.594 pixels  0.709 pixels  0.580 pixels  0.615 pixels
re-projection error
Point cloud size 133.60 MB 41.11 MB 13.80 MB 7.82 MB 10.23 MB
(memory gain) (1x) (3.25%) (9.68x) (17.08%) (13.06%)
Elapsed time 5,086 sec 600.155 sec ~ 855.769 sec  698.884 sec  447.473 sec
(performance gain) (1%) (8.474x) (5.943x) (7.277x) (11.366%)
Table 4.7 Performance comparison of 3D reconstruction for “rh” data set
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 155/ 155 155/ 155 155/ 155 149 /155 151/ 155
registered images
Number of 59,533 27,247 36,854 31,738 41,097
3D points
Mean . . . . .
L 0.818 pixels  0.603 pixels  0.703 pixels  0.567 pixels  0.600 pixels
re-projection error
Point cloud size 247.08 MB 60.00 MB 38.80 MB 14.20 MB 18.10 MB
(memory gain) (1x) (4.12%) (6.37%) (17.40x) (13.65x)
Elapsed time 16,070 sec 980.450 sec  2475.513 sec  1329.698 sec  1371.612 sec
(performance gain) (1x) (16.390x) (6.494x) (12.085x) (11.716x)
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Figure 4.13 3D reconstruction results for street-scale construction jobsites with BRISK descriptor:
(a) initial base images, (b) 3D point clouds from the HD*AR, and (c) 3D point clouds with

estimated camera position of input base images

To assess the capability of indoor 3D reconstruction, various images were collected and
processed with the HD®AR. Tables 4.8-4.11 compare the overall results of 3D
reconstruction on the indoor data sets, i.e., “dashboard”, “engine”, “kitchen”, and “ikea”.
For the indoor data sets, the HD'AR was 661-1,558% faster than the Bundler and achieved
the memory gain up to 3,242%. Regardless of used feature descriptors, all generated 3D
physical models have mean re-projection errors within the range between 0.644 and 1.284
pixels, while the Bundler has the errors up to 2.308 pixels. In addition, all 3D point clouds

were generated within 3 min for indoor data sets we studied.
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Table 4.8 Performance comparison of 3D reconstruction for “dashboard” data set

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 27/27 27127 27127 27/27 27/27
registered images
Number of 5,210 5,806 9,179 7,962 5,962
3D points
Mean . . . . .
I 0.881 pixels  0.677 pixels  0.967 pixels  0.767 pixels  0.755 pixels
re-projection error
Point cloud size 34.64 MB 12.10 MB 8.83 MB 2.80 MB 2.17 MB
(memory gain) (1x) (2.86%) (3.92x) (12.37%) (15.96%)
Elapsed time 736 sec 93.031 sec 111.330 sec ~ 104.675 sec 60.373 sec
(performance gain) (1%) (7.911x) (6.611x) (7.031x) (12.191x%)
Table 4.9 Performance comparison of 3D reconstruction for “engine” data set
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 10/32 31/32 21/32 12/32 10/32
registered images
Number of 6,708 35,292 28,051 10,381 9,653
3D points
Mean . . . . .
L 2.166 pixels  0.692 pixels  0.756 pixels  0.650 pixels  0.644 pixels
re-projection error
Point cloud size 101.80 MB 63.74 MB 25.70 MB 3.44 MB 3.14 MB
(memory gain) (1x) (1.60x%) (3.96x%) (29.59x) (32.42x)
Elapsed time 2,007 sec 225727 sec  196.240 sec  167.355sec  179.663 sec
(performance gain) (1x) (8.891x%) (10.227x) (11.992x) (11.171x)
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Table 4.10 Performance comparison of 3D reconstruction for “kitchen” data set

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 47/ 47 47/ 47 47/ 47 47/ 47 46/ 47
registered images
Number of 9,091 8,159 11,441 8,852 7,517
3D points
Mean

I 1.047 pixels
re-projection error

0.855 pixels

1.020 pixels

0.890 pixels

0.893 pixels

Point cloud size 27.02 MB 19.00 MB 12.20 MB 3.50 MB 3.22 MB
(memory gain) (1%) (1.42x) (2.22x) (7.72%) (8.39%)
Elapsed time 922 sec 59.522 sec 57.249 sec 68.164 sec 76.288 sec
(performance gain) (1x) (15.490x) (16.105x) (13.526x%) (12.086x)
Table 4.11 Performance comparison of 3D reconstruction for “ikea” data set
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Number of 34/ 44 43/ 44 39/ 44 40 / 44 36/ 44
registered images
Number of 3,013 7,375 6,350 14,868 9,043
3D points
Mean . . . . .
L 2.308 pixels  0.781 pixels  1.284 pixels  0.788 pixels  0.790 pixels
re-projection error
Point cloud size 24.69 MB 16.30 MB 5.98 MB 5.35 MB 3.37 MB
(memory gain) (1x) (1.52%) (4.13%) (4.62%) (7.33%)
Elapsed time 1,533 sec 98.420 sec 145.863 sec  167.802 sec  126.222 sec
(performance gain) (1%) (15.576x%) (10.510x%) (9.136%) (12.145%)
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Contrast to outdoor data sets, binary descriptors worked better than the SIFT descriptor for
all indoor data sets except the “engine” data set, in terms of metrics presented in Tables 4.8-
4.11, e.g., the number of 3D points, point cloud size, elapsed time, etc. The “engine” data
set was a photo collection from an actual user who was a beginner to use SfM-based 3D
reconstruction. The overlapping portion between the images in the “engine” data set was
relatively low, i.e., 5-10%, and therefore, it was difficult to register an entire image set
using the proposed 3D reconstruction algorithm. Nevertheless, the HD*AR with the SIFT
descriptor successfully registers almost every image. The HD*AR with other descriptors
also produced more dense point clouds compared to the Bundler and resulted smaller mean
re-projection errors. In addition, the generated physical models for the “engine” data set
were able to provide mobile augmented reality services with the proposed model-based 6-
DOF localization method. The details of localization results will be discussed in Section
4.4.2. Figure 4.14 shows the generated 3D physical models from all indoor data sets using

the FREAK descriptor

Based on experimental results discussed in this section, we illustrate the potential of the
HD*AR 3D reconstruction for rapidly creating 3D point clouds from real-world data sets.
Due to enhancements presented in Section 4.2, such as combination of binary feature
descriptor, post-filtering during the SfM, and hardware/software parallelism, the HD*AR
took 1-3 min to generate a 3D point cloud for indoor images and 5-20 min for outdoor
images with binary descriptors. Compared to the Bundler, the most widely-used SfM

package using an incremental approach, the HD*AR achieved the performance gain up to
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Figure 4.14 3D reconstruction results for room-scale indoor data sets with FREAK descriptor: (a)
initial base images, (b) 3D point clouds from the HD*AR, and (c) 3D point clouds with estimated

camera position of input base images

2,875%. By considering all the results shown in Tables 4.2-4.11, we can conclude that the
proposed parallelized SfM approach works well with both indoor and outdoor data sets, i.e.,
from room-level to street-level scales, and achieves significant gains on both speed and

accuracy compared to existing work. The binary feature descriptors, such as FREAK and
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BRISK, are appropriate for fast 3D reconstruction and still generate accurate 3D point
clouds with less memory consumption. Furthermore, the HD*AR successfully generates 3D
point clouds purely based on images and does not require any constraints on photographs,
such as geo-tag, ordered sequence, etc. In all cases, the maximum re-projection error is few
image pixels, and therefore, generated 3D point clouds well-represent target scene and can

be used for mobile augmented reality.

4.4.2 Model-based 6-DOF Localization/Augmentation

In order to measure the capability of model-based localization with generated 3D physical
models, the localization tests were performed on each 3D physical model. All the photos
were newly taken by smartphones, such as Apple iPhone 4S and Samsung Galaxy Nexus, at
random location. A group of images were tested for on spot localization using the client-

server architecture and 4G LTE connections to assess the mobility of the HD*AR.

In this experiment, we measured the localization performance with the sequential requests
from a single device as well as with the multiple simultaneous requests of localization from
several client devices. This is particularly important as the HD*AR server can handle
parallel localization requests from client devices simultaneously, which leads to the
increased system capacity. For example, if two users attempt to query cyber-information at
the same time by submitting two separate localization requests, both user requests will be
processed simultaneously and augmentation results will be presented within the same 1-2

sec time span. Considering the number of smart devices these days, this feature shows the
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scalability in implementing the proposed solution for near real-time exchange of

information among numerous users.

The performance of the Bundler package was measured and compared to that of the
HD®AR to demonstrate the performance gains on localization. Since the Bundler package
does not provide on spot localization and cyber-information association, we only compared
the offline localization speed of the Bundler to that of the HD*AR. To demonstrate the
augmentation capability of the HD*AR, 3D cyber-information is pre-associated to the 3D
physical models using the 3D content authoring method proposed in this study. The
proposed approach for 3D cyber-physical content authoring will be fully discussed in
Chapter 5. During the localization/augmentation experiment, following metrics were

measured:

* Localization success-ratio: how many new photographs are successfully localized.
Due to the model-based localization approach, the success in localization means
that the system was able to solve the camera calibration equation, i.e., Direct Linear
Transformation equation followed by a Levenberg-Marquardt optimization, using
given 2D-to-3D correspondences between image and 3D physical model.

*  Mean number of 2D-to-3D matches: average number of 2D-to-3D correspondences
found in a single photograph using the proposed direct 2D-to-3D matching
algorithm. The found correspondences are used in the camera calibration equation

to estimate a complete pose of the camera. Due to the limitation of the Bundler
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package, this metric cannot be measured for the Bundler.

Mean re-projection error: overall mean re-projection error that computed by
projecting each 3D point into the localized photographs. Specifically, the re-
projection error is the distance between projected 3D points and original image
feature points in 2D-to-3D matching results. The value of this metric indicates the
accuracy of localization. This metric is also not measured for the Bundler.

Mean localization time (sequential requests): how long does it take to localize a
single photograph on average with sequential requests from a single device. The
localization time consists of feature detection/extraction time, direct 2D-to-3D
matching time, and camera calibration time.

Mean localization time (parallel requests): how long does it take to localize a single
photograph on average with parallel requests from multiple devices. Specifically,
the HD*AR server runs sixteen parallel threads for localization where each thread
can handle a single photograph at a time. Since the Bundler does not support

parallel processing, this metric cannot be measured for the Bundler.

Tables 4.12-4.14 compare the overall results of model-based 6-DOF localization on the 3D
physical models of outdoor buildings, i.e., “patton”, “knu”, and “parliament” models. The
proposed direct 2D-to-3D matching with 3D representative descriptors achieved the
significant performance gain even with sequential localizations. In all cases, the HD*AR
rapidly localized photographs submitted by client devices, and was 1,960-11,533% faster

than the Bundler. The HD*AR was about 20 times faster than the Bundler even with the
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same SIFT descriptor due to the proposed direct 2D-to-3D matching. As we outlined in
Section 4.3, the Bundler does the 2D-to-2D-to-3D matching and compares the newly

submitted image to an entire set of base images.

Within the HD*AR system, the SIFT descriptor produced the minimum mean re-projection
error, which means the most accurate localization, but it was significantly slower than other
descriptors, i.e., the SURF, FREAK, and BRISK, due to time consuming computations and
a twice longer dimension of descriptors. On the other hand, the SURF descriptor enabled
fast localizations, but caused the most erroneous results among the tested descriptors. As
we will discuss throughout this section, the mean re-projection errors from the SURF
descriptor were even worse in the case of indoor localizations. Finally, the binary
descriptors also achieved the significant performance gain compared to the Bundler and
resulted mean re-projection errors in the range of 0.872-1.189 pixels. If we only focus on
the binary descriptors, the performance gain compared to the Bundler was 9,791-11,081%

for building-scale outdoor data sets.

One of the interesting measurements for localization is the mean re-projection error, which
is represented in image pixel units. Since a camera is projecting an entire 3D scene in front
of the camera into 2D image space, it is difficult to map this mean re-projection error into
real-world distance metric, such as centimeters or millimeters. For example, a small pixel

error will result the significant error in real-world if the subject is very far from the camera.
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Table 4.12 Performance comparison of 6-DOF localization for “patton” models
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 50/50 49/50 49/50 50/50 49 /50
success-ratio (100%) (98%) (98%) (100%) (98%)
Mean number of
D-t0-3D matches - 9,143 3,576 2,146 2,145
Mean ; 0.627 pixels  0.895 pixels  0.872 pixels  0.812 pixels
re-projection error
locahﬁfﬁl e 242775sec 12389sec 2105 sec 2.191 sec 2312 sec
(sequential requests) (1x) (19.596x) (115.333x%) (110.806x) (105.006x%)
Mean 3.527 sec 0.663 sec 0.514 sec 0.754 sec
localization time - “) “) ) )
(parallel requests)
Table 4.13 Performance comparison of 6-DOF localization for “knu” models
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 50/50 50/50 49/50 50/50 50/50
success-ratio (100%) (100%) (98%) (100%) (100%)
Mean number of
D-t0-3D matches - 2,258 1,521 1,241 1,204
.M can - 0.808 pixels  1.300 pixels  1.189 pixels  1.070 pixels
re-projection error
1oca111;§if111 ime 120.820sec 6,057 sec 1.173 sec 1.234 sec 1.347 sec
(sequential requests) (1x) (19.947x) (103.001x) (97.909x) (89.696x)
Mean 1.600 sec 0.369 sec 0.346 sec 0.507 sec
localization time - “) ) “) )
(parallel requests)
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Table 4.14 Performance comparison of 6-DOF localization for “parliament” models

Package Bundler® HD*AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization i 40/40 40/40 40/40 40/40
success-ratio (100%) (100%) (100%) (100%)

Mean number of

2D-to-3D matches ) 6,362 670 449 465

Mean

re-projection error - 0.613 pixels  1.226 pixels  0.928 pixels  0.897 pixels

Mean
localization time -
(sequential requests)

6.193 sec 1.831 sec 2.391 sec 2.693 sec
() () () ()

Mean
localization time -
(parallel requests)

2.684 sec 0.784 sec 0.768 sec 0.847 sec
) ) ) )

@ The Bundler failed to create 3D point cloud due to image size and out of memory problem.

As a consequence, the distance from camera to target subject must be considered when

converting a mean re-projection error into a real-world distance metric:

€pixel €pixel Wmm
_°p . __p . -d (46)
mm

€mm = mm
f pixel

Wpixel mm

where eny 1s a real-world distance error in millimeter unit, ey 1s a localization re-
projection error in pixel units, fyixel 1S a focal length in pixel unit, dnm is a distance from
camera center to target subject in millimeter unit, wyixl 1s an image width in pixel units, and
Wmm and fum are a camera CCD sensor width and a focal length in millimeter unit,

respectively. For example, by using an Equation 4.6 and the camera parameters of Apple
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iPhone 48, i.e., Wnm = 4.54, fum = 4.28, Wpixe = 3,264, the experimental results shown in
Tables 4.12-4.14 can be interpreted as the HD*AR localization had 1.992-4.225 mm error if
Apple iPhone 4S was used to take a picture and the subject was 10 meters away from the

camera .

Figure 4.14 shows the example of localization/augmentation results from the HD*AR with
the BRISK descriptor for building-scale outdoor images. The 3D physical models generated
from the HD*AR were fed into a multi-view stereo algorithm [52, 53] to increase the
density of point clouds for visualization purposes. The generated dense point clouds were
not used for the localization and only for visualizing the models to end-users. The dense 3D
physical models associated with 3D cyber-information are shown in Figure 4.15a. Figure
4.15b illustrates the HD*AR localization results in 3D space and corresponding augmented
photographs are shown in Figure 4.14c. In addition to experimental results shown in Tables
4.12-4.14, the augmented photographs empirically show that camera poses were
successfully recovered, and thus the cyber-information, e.g., window information on the

“patton” model, is precisely overlaid on photographs from different viewpoints.
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Figure 4.15 Localization/Augmentation results for building-scale outdoor data sets: (a) Target 3D
model associated with 3D cyber-information, (b) 6-DOF localization result from the HD*AR server,

and (c) Augmentation results from the HD*AR client

Tables 4.15-4.17 compare the overall results of model-based 6-DOF localization on the
outdoor construction jobsite models, i.e., “rtfr”, “cfta”, and “rh” models. Again, the HD*AR
outperformed the Bundler and was 2,518-16,221% faster for outdoor construction data sets.
The localization results for construction jobsites clearly show the strength of the proposed
direct 2D-to-3D matching algorithm. For “rtfr”, “cfta”, and “rh” models, the number of
base images used for 3D reconstruction was relatively large compared to other data sets, as
shown in Table 4.1. Consequently, the Bundler took much longer time for localizing a

photograph as it performs 2D-to-2D-to3D matching. On the contrast, the HD'AR only
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compares the image descriptors to 3D representative descriptors, and thus, the elapsed time
only depends on the size of the physical model, resulting significant performance gain.
With the binary descriptors, the HD*AR was up to 160 times faster than the Bundler and the
mean re-projection errors were between 1.000-2.511 pixels. The localization error is
slightly higher than the building-scale outdoor cases, but is still in the range of few image
pixels. Figure 4.16 shows the example of localization/augmentation results from the
HD*AR with the BRISK descriptor for construction jobsite photographs. The augmented
photographs show that the HD'AR precisely delivered/visualized associated cyber-

information in street-scale outdoor environment.

Another interesting measurement for localization is the mean number of 2D-to-3D matches.
This measurement indicates the number of found correspondences between image feature
points and 3D points in a single photograph. As shown in Tables 4.2-4.7 and 4.12-4.17, the
measured numbers of 2D-to-3D matches is much smaller than the number of 3D points in
the 3D physical models. This might be due to the fact that submitted photographs from the
client devices only cover the part of the target scene, experience different illumination
conditions, or are low quality photographs caused by camera shake. Nevertheless, the
HD®AR accurately and rapidly localized the submitted photograph with small number of
2D-to-3D correspondences, and this fact leads to a cached k-d tree approach to further
accelerate the direct 2D-to-3D matching algorithm. By caching and maintaining highly
queried 3D points in the small memory, we can further reduce the localization time. The

details of a cached k-d tree approach will be fully discussed in Chapter 6.
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Table 4.15 Performance comparison of 6-DOF localization for “rtfr” models

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 49 /50 49 /50 46 /50 49 /50 50/50
success-ratio (98%) (98%) (92%) (98%) (100%)
Mean number of
ID-t0-3D matches - 907 1,300 1,692 1,637
Mean ; 1.969 pixels ~ 2.702 pixels  2.511 pixels  2.435 pixels
re-projection error
locahﬁfﬁl e 177725sec 6190 sec 2214 sec 2.847 sec 3.059 sec
(sequential requests) (1x) (28.712x) (80.273x) (62.425x) (58.099x)
Mean 1.594 sec 0.707 sec 0.904 sec 0.811 sec
localization time - “) “) “) “)
(parallel requests)
Table 4.16 Performance comparison of 6-DOF localization for “cfta” models
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 50/50 50/50 50/50 50/50 50/50
success-ratio (100%) (100%) (100%) (100%) (100%)
Mean number of
2D-to-3D matches i 621 328 335 695
Mean - 0.696 pixels  1.697 pixels  1.189 pixels  1.000 pixel
re-projection error
1oca111;§if111 ime | 72488sec  2879sec  0.795sec  0.857sec  0.856sec
(sequential requests) (1x) (25.178x) (91.180x) (84.583x) (84.682x)
Mean 0.732 sec 0.215 sec 0.184 sec 0.188 sec
localization time - “) ) “) )
(parallel requests)




Table 4.17 Performance comparison of 6-DOF localization for “rh” models

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 50/50 50/50 50/50 50/50 50/50
success-ratio (100%) (100%) (100%) (100%) (100%)
Mean number of - 467 495 470 601

2D-to-3D matches

Mean

re-projection error - 0.886 pixels  1.584 pixels  1.102 pixels  1.466 pixels

Mean
localization time
(sequential requests)

122.467 sec 2.467 sec 0.755 sec 0.765 sec 0.914 sec
(1x) (49.642x) (162.208x) (160.088x) (133.990x)

Mean
localization time -
(parallel requests)

1.026 sec 0.321 sec 0.254 sec 0.291 sec
) ) ) )

Finally, Tables 4.18-4.21 compare the localization results for indoor scenarios. For the
indoor test cases, i.e., “dashboard”, “engine”, “kitchen”, and “ikea” models, the HD*AR
was 708-4,704% faster than the Bundler. Since the indoor images are typically texture-less
and results less number of feature descriptors compared to outdoor images, the performance
gain from feature descriptors is slightly reduced. However, the HD*AR with the SUREF,
FREAK, and BIRSK descriptors are still 2,321-4,704% faster than the Bundler and took at
most 2 sec to localize a single photograph. Due to the proposed direct 2D-to-3D matching,

the HD*AR with the SIFT descriptor was also 708-1,206% faster than the Bundler.

Especially, for “engine” and “ikea” data sets, the Bundler failed to localize all tested
photographs. As shown in Tables 4.9 and 4.11, the Bundler produced the higher mean re-

projection error in 3D reconstruction for “engine” and “ikea” data sets, and the resulting 3D
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Figure 4.16 Localization/Augmentation results for street-scale construction jobsites: (a) Target 3D
model associated with 3D cyber-information, (b) 6-DOF localization result from the HD*AR server,

and (c) Augmentation results from the HD*AR client

point clouds from the Bundler did not work well for model-based localization. However, as
shown in Tables 4.19 and 4.21, the HD*AR was able to provide localization/augmentation
results on those data sets although the SURF descriptor has the worst localization success-
ratio and mean re-projection error among all tested descriptors. Figure 4.17 shows the

localization and augmentation results for indoor data sets using the FREAK descriptor.
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Table 4.18 Performance comparison of 6-DOF localization for “dashboard” models

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 40/ 40 39/40 40/ 40 40 /40 40/ 40
success-ratio (100%) (97.5%) (100%) (100%) (100%)
Mean number of
2D-to-3D matches ) 381 391 486 375
Mean ; 1.250 pixels ~ 2.514 pixels  1.909 pixels  1.947 pixels
re-projection error
locahﬁfﬁl e 34407sec 3432 sec 0.794 sec 0.907 sec 0.930 sec
(sequential requests) (1x) (10.025%) (43.334x) (37.935%) (36.997x)
Mean 0.928 sec 0.344 sec 0.312 sec 0.353 sec
localization time - “) “) “) )
(parallel requests)
Table 4.19 Performance comparison of 6-DOF localization for “engine” models
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 0/45 45/ 45 42 /45 41/45 41/45
success-ratio (0%) (100%) (93.3%) (91.1%) (91.1%)
Mean number of
2D-t0-3D matches - 2,717 2,611 1,232 1,162
Mean i 1213 pixels  1.642 pixels  2.033 pixels  2.200 pixels
re-projection error
1oca111;§if111 e 49667sec  7.016 sec 2.140 sec 1.950 sec 2.282 sec
(sequential requests) (1x) (7.079x%) (23.209%) (25.470%) (21.765%)
Mean 1.868 sec 0.569 sec 0.534 sec 0.616 sec
localization time -
) () () )

(parallel requests)
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Table 4.20 Performance comparison of 6-DOF localization for “kitchen” models

Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 50/50 49 /50 49 /50 50/50 50/50
success-ratio (100%) (98%) (98%) (100%) (100%)
Mean number of
2D-to-3D matches i 457 487 4l 373
Mean ; 1.149 pixels  1.981 pixels  1.766 pixels  1.748 pixels
re-projection error
locahﬁfﬁl e 23894sec  1.981 sec 0.508 sec 0.496 sec 0.529 sec
(sequential requests) (1x) (12.062x) (47.035x) (48.173%) (45.168x)
Mean 0.547 sec 0.176 sec 0.167 sec 0.174 sec
localization time - “) “) “) )
(parallel requests)
Table 4.21 Performance comparison of 6-DOF localization for “ikea” models
Package Bundler HD'AR
Descriptor SIFT SIFT SURF FREAK BRISK
Localization 0/45 44 /45 31/45 44 /45 43 /45
success-ratio (0%) (97.8%) (68.9%) (97.8%) (95.6%)
Mean number of
2D-to-3D matches i 450 227 714 480
Megn - 1.394 pixels  3.801 pixels  2.301 pixels  2.416 pixels
re-projection error
1oca111;§if111 e 38955sec  4356sec  0.914sec 1.022 sec 1.115 sec
(sequential requests) (1x) (8.943%) (42.62%) (38.116x%) (34.937x)
1oca111;§f121 e ) 1.188sec  0270sec  0251sec 0262 sec
) ) ) )

(parallel requests)
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engine

kitchen

ikea

Figure 4.17 Localization/Augmentation results for room-scale indoor data sets: (a) Target 3D model
associated with 3D cyber-information, (b) 6-DOF localization result from the HD*AR server, and (c)
Augmentation results from the HD*AR client

In this section, we illustrate the potential of the HD*AR for successfully providing high-
precision mobile augmented reality using model-based localization. The HD*AR localizes a
given photograph solely based on the content of images captured by mobile devices and

does not require any sensors or infrastructures for localization. Furthermore, it has a

71



capacity to provide high-precision localization with maximum error up to few image pixels.
With the HD*AR and the binary descriptors, the localization/augmentation of single image
took about 0.5-3.0 sec in all cases. Thus, the HD*AR can provide near real-time localization

and augmentation capabilities for both indoor and outdoor environments.

4.5 Contributions and Significance

The proposed HD*AR approach, a vision-based marker-less method using SfM-based 3D
point cloud models, was designed with the intent of bringing high-precision mobile
augmented reality to end-users without requiring external sensors or infrastructures. As a
consequence, the HD*AR promises the applicability of model-based localization on the
field of high-precision mobile augmented reality. The HD*AR rapidly generates a 3D point
cloud model, which roles as a reference model for localization, and provides near real-time,
high-precision localization and augmentation solely based on the photograph. The
experimental results shown in Section 4.4 indicate the robustness of the system to dynamic
changes of viewpoint, camera resolution, and scale of objects, which are typically observed

in many practical mobile augmented reality applications.

Based on discussion in this Chapter, we can conclude that the HD'AR — hybrid
mobile/cloud model-based localization on SfM-based 3D physical model — has successfully
filled the “Research Gap 1: Fine-grained 6-DOF Localization with Mobile Devices”, and
“Research Gap 3: Near Real-time Cyber-physical Information Association at Dynamically

Varying Environmental Scales”. Table 4.22 compares the proposed approach with all
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related works reviewed in Section 3.1. The proposed approach purely localizes users based
on images from mobile devices and works well for both indoor and outdoor environment
without requiring any sensors or infrastructures for localization. Also a bootstrapping
process of the system is significantly accelerated by proposing a new parallelized 3D
reconstruction pipeline. The HD*AR provides high-precision 6-DOF localization where
uncertainty level is 0.613-2.511 pixels and near real-time localization/augmentation, which
takes 0.5-3.0 sec to localize a single image. Through the extensive experiments, we also
proved that the binary descriptors work well for both 3D reconstruction and model-based 6-
DOF localization. Finally, the proposed approach successfully supports on spot localization

through the client-server architecture and is scalable for multi-user scenarios.

Table 4.22 Validation of the HD*AR approach

Metrics Sensor-based Marker-based Visual SLAM Model-based HD*AR

Localization 15-35m @ 05-2mm® 05-20mm®© 05-20mm© 2_8mm®©
Accuracy
Locsa‘;fea;“m 100 — 200 msec 20— 140 msec 20 —40 msec ~ 5—240sec 0.5 - 3.0 sec
External GPS satellite Optical markers Not needed Not needed Not needed
Infrastructure
Resistant to
drifts and error x v X v v
accumulation
Scale well to v % % v v

large scene

@ GPS Covered area; ® Markers within 3m distance; © Objects within 10m distance.

79



S Plane Transformation based 3D Cyber-physical Content

Authoring from A Single 2D Image

5.1 Overview of Solution Approach to Research Gap 2

As discussed in Sections 2.2 and 3.2, the mobile augmented reality system should provide a
way of making cyber-information and associating it with real-world physical objects so that
other users can see generated cyber-information overlaid on top of corresponding objects in
the photograph. For high-precision mobile augmented reality, which provides 6-DOF
localization in 3D space, all deliverable cyber-information should also have 3D positional
information so that the cyber-information can be properly projected in to the photograph

with the recovered 6-DOF pose of a camera.

The most straightforward method for this 3D content authoring is preparing a 3D drawing
of target object or building and manually aligning it to physical objects [1], as shown in
Figure 5.1. Although this approach can deliver a plenty of information to end users, it
always require manual association and a 3D drawing generated by specific 3D design
frameworks, such as CAD tools. However, the question of how to conveniently and
accurately create even simple 3D content using a mobile device and 2D interface is still an

open problem [19].
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Figure 5.1 An example of 3D cyber-physical model: (a) 3D point cloud of construction site, (b) 3D

building plan model aligned with the point cloud (Adopted from [1])

Therefore, a new approach, which can create 3D cyber-contents and associate them with the
3D physical objects using a single 2D image, is developed to fill the “Research Gap 2: 3D
Cyber-physical Content Authoring from 2D Interface”. With this approach, a user can
easily create and associate new 3D cyber-information by simply drawing a polygon on the
photograph, and thus can work with commodity smartphones which typically have 2D user

interfaces.

To enable 3D content authoring from a single 2D image, the proposed approach makes use
of 1) plane image transformation to automatically find 2D correspondences of user inputs
on other images and 2) camera parameters, such as focal length, radial distortion coefficient,
rotational and translational matrix, recovered during the HD*AR 3D reconstruction, to

accurately triangulate 2D user inputs and derive 3D positional information of them. The
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details of the proposed approach, i.e., “Plane Transformation based 3D Cyber-physical

Content Authoring from A Single 2D image”, will be discussed in the following section.

5.2 3D Content Authoring with Homography

The proposed 3D content authoring method from a single 2D image is based on plane
image transformation, i.e., a homography matrix. By its definition, the homography is an
invertible transformation in a projective space that maps an image plane to another image
plane. For example, each pixel in image plane #1 can be transformed to another image

plane #2 via homography matrix:

X X
1 1

where H is an estimated 3x3 homography matrix, (x;, y;) is a pixel coordinates in image
plane #1, and (x,, ») is a transformed pixel coordinates of (x, y;) in the image plane #2. As
shown in Figure 5.2, one image plane can be accurately transformed to another image plane
using estimated homography matrix. The homography matrix between two images can be
automatically found using the RANSAC with normalized Direct Linear Transform

algorithm [48], as discussed in Section 4.2.2. By using Equation 5.1 and the estimated

homography matrix, we can find the correspondences of 2D points between two images.

Since the HD'AR 3D reconstruction discussed in Section 4.2 estimates homography

matrices between every base image pair and keeps those matrices in the 3D physical model,
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Figure 5.2 Homography transformation: (a) image 1, (b) image 2, (c¢) image 1 is transformed to

image plane 2 using estimated homography matrix

we can utilize these homography matrices to find correspondences of a user-created 2D
element on each base image. For example, windows drawn by the user can be correctly
found on other base images using estimated homography matrices, as illustrated in Figure
5.3a and 5.3b. To increase the accuracy of found correspondences, we only investigate base
images which H-Score is greater than 0.85. As outlined in Section 4.2, the H-Score is the
percentage of number of inliers during the feature matching stage with estimated
homography matrix. The higher H-score means that two images have many matches
survived after fitting into the homography matrix, and therefore the estimated homogrpahy

matrix accurately describes the plane transformation between those images.
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Using this 2D correspondence information as well as intrinsic and extrinsic camera
parameters recovered during 3D reconstruction, our method then triangulates each vertex of
the user-created polygon to impose 3D positional information to user-created 2D element.
If the estimated 2D correspondences of user-created element are not located within the
image dimension of the base image, that correspondence information is discarded for
triangulation. In addition, if the recovered camera parameters of the base image had a mean
re-projection error higher than 1.0 pixel during the 3D reconstruction, that base image is
also discarded for triangulation. With these constraints, we found that 3-8 base cameras
were typically participated in the triangulation. The experimental results of 3D content

authoring will be discussed in Section 5.3.

The polynomial method [50] is used for triangulation to handle the noise presented in user
measurements and automatically found 2D correspondences. After fixing camera
parameters and running Bundle Adjustment to further minimize a mean re-projection error
of the triangulated polygon, the resulting 3D element is well-aligned with the existing 3D
physical model as shown in Figure 5.3c. Once this user-created element has 3D positional
information, it can be precisely overlaid on other photographs from different viewpoints

using the HD*AR model-based localization, as shown in Figure 5.3d.

This simple and robust 3D cyber-physical content authoring method based on homography
can help users create 3D cyber-information easily by drawing a simple polygon on a single

2D image. In addition, the proposed approach automatically associates user-created cyber-
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Figure 5.3 The proposed 3D cyber-physical content authoring method: (a) A user marks windows
on the photograph, (b) Using the estimated homographies, the system automatically finds
correspondences of windows for each base image, (c) The system triangulates window elements
using camera information of base images (which is recovered during the 3D reconstruction), (d)
Mobile augmented reality: user-created window contents can be precisely overlaid on other

photographs from different viewpoint.

information with the underlying 3D physical model, and therefore, users do not have to
manually positioning and associating 3D cyber-information in 3D geometry. As a
consequence, the proposed approach can be used in any commodity smartphones which
typically have a capability of showing an image on their displays and tracking user’s touch
points to draw the polygon. Figure 5.4 shows an example of 3D cyber-physical models, i.e.,
3D cyber-information associated with 3D physical models, generated from the proposed

method.
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Figure 5.4 3D cyber-physical models from the proposed method: (a) user-input on a 2D image, (b)
Generated cyber-information in 3D geometry: 3D cyber-information is well-aligned to 3D physical

models.

5.3 Experimental Results and Validation

This section presents experimental results and the validation of the proposed 3D content
authoring method. Since it is impractical to measure the ground truth position of every
physical object on the 3D point cloud model, which often consists of sparse 3D points, we
focused on demonstrating the capability of generating 3D cyber-information from 2D
interface using commodity smartphones and empirically made a decision whether cyber-

information was accurately associated with physical objects or not. In addition to visual
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analysis, however, we also measured the mean re-projection error of triangulated 3D
elements against the base images that were participated in triangulation. All the
experiments were conducted on a single Amazon EC2 instance server with 22.5 GB

memory and two Intel Xeon X5570 processors running Ubuntu version 12.04.

The experiment for 3D cyber-physical content authoring is performed in following
procedure: 1) let users draw polygons on interesting objects on the single image with
smartphones, 2) perform the proposed content authoring method and visualize generated
3D cyber-information with 3D point cloud model to see the accuracy of 3D cyber-
information triangulation, and 3) test localization/augmentation on different location and
viewpoint to verify that created 3D cyber-information is indeed well-associated in 3D

geometry. The test tool for augmentation was based on the HD*AR discussed in Chapter 4.

Table 5.1 shows the results of 3D cyber-physical content authoring with the proposed
method. In all cases from indoor to outdoor data sets, the proposed method successfully
generated 3D contents from user inputs on a single 2D image. During the estimation of 2D
correspondences of user inputs on other base images using estimated homography matrices,
we only used the base images which H-score is greater than 0.85 in order to increase the
accuracy of triangulation. As a consequence, only 2-8 base images were participated in
triangulation and the mean re-projection errors of the triangulated elements were in the
range between 0.268-3.443 pixels. Figures 5.5-5.7 show the visual analysis results of the

3D cyber-physical content authoring with the proposed method. For example, a user drew
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Table 5.1 3D cyber-physical content authoring results with 3D physical models generated by
BRISK descriptor

Number of vertices Number of base

Environment Name for user-driven images participated M can
AR . re-projection error
elements in triangulation

patton 15 8 2.619 pixels
knu 4 4 0.268 pixels
parliament 4 6 0.777 pixels

Outdoor
rtfr 4 4 3.443 pixels
cfta 12 6 1.464 pixels
Rh 4 5 0.914 pixels
dashboard 20 4 0.432 pixels
engine 4 2 1.276 pixels

Indoor

kitchen 4 2 0.205 pixels
ikea 4 3 0.686 pixels

several windows on “patton” image and the proposed method precisely triangulated and
associated them with corresponding objects in the “patton” 3D physical model, as shown in
Figure 5.5. Similarly, user-created cyber-buttons on “dashboard” image were successfully
associated with the buttons in the “dashboard” 3D physical model, as shown in Figure 5.7.
Once these user-created elements were successfully attached and aligned to 3D physical
models, users can see this cyber-information precisely overlaid on the photograph taken

from different locations and orientations (see Figures 5.5¢, 5.6¢, and 5.7¢).
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patton

parliament

Figure 5.5 Results of 3D cyber-physical content authoring with the proposed method on building-
scale outdoor data sets. (a) user-created information on the 2D image, (b) 3D elements driven from
the user-created 2D elements, and (c) augmentation results of the user-created 3D cyber-information

on another smart device on the site
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Figure 5.6 Results of 3D cyber-physical content authoring with the proposed method on street-scale
outdoor data sets. (a) user-created information on the 2D image, (b) 3D elements driven from the
user-created 2D elements, and (c) augmentation results of the user-created 3D cyber-information on

another smart device on the site
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Figure 5.7 Results of 3D cyber-physical content authoring with the proposed method on room-scale
indoor data sets. (a) user-created information on the 2D image, (b) 3D elements driven from the
user-created 2D elements, and (c) augmentation results of the user-created 3D cyber-information on

another smart device on the site
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From experimental results shown in this section, we can conclude that the proposed method
successfully creates 3D cyber-information solely based on user inputs on a single 2D image.
By using a plane transformation, i.e., a homography matrix, to automatically find
correspondences of user-created elements and triangulating all of those 2D correspondences
using the recovered camera parameters, the proposed method automatically associates user-
created cyber-information with corresponding physical objects in 3D geometry. As a result,
users do not require manual association and a priori knowledge of the coordinates of

underlying 3D physical model to create 3D cyber-information.

5.4 Contributions and Significance

Based on discussion in this Chapter, we can conclude that the solution approach, “Plane
Transformation based 3D Cyber-physical Content Authoring from A Single 2D Image”, has
successfully filled the “Research Gap 2: 3D Cyber-physical Content Authoring from 2D
Interface”. Table 5.2 compares the proposed approach with all related works reviewed in
Section 3.2. The plane transformation based 3D content authoring purely creates 3D cyber-
information using user inputs from a single 2D image and supports automatic association of
generated cyber-contents (e.g., product manual, history, website) to real-world 3D physical
objects. In addition, the proposed method can be used with any commodity mobile devices
if the devices have a capability of showing an image on the screen. The interface of the
proposed method only requires a capability of drawing polygons on the image, and thus is
intuitive and straightforward. The convenient method for 3D cyber-physical content

authoring is especially important for designing and developing mobile augmented reality
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applications where users can create and share cyber-information with each other in form of

augmented reality overlays.

Table 5.2 Validation of the proposed approach — plane transformation based 3D cyber-physical

content authoring from a single 2D image

Plane transformation
Metrics 3D drawings Gesture recognition based
3D content authoring

External
3D framework CAD Not needed Not needed
Automatic
association with X X v
real-world objects
Supports mobility x v v
Device type Personal Gloves, pens Commodity smartphones
P Computer P y p
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6 Cached k-d tree Generation for Fast Direct 2D-to-3D

Matching

6.1 Overview of Solution Approach to Research Gap 3

As discussed in Chapter 4, the proposed HD*AR approach, a vision-based marker-less
method using SfM-based 3D physical models, provides near real-time mobile augmented
reality with millimeter-level of information association. The HD*AR show the robustness
of the proposed approach to dynamic changes of viewpoint and scale of objects. Despite the
accuracy and near real-time performance of the HD*AR, however, the localization speed
needs to be further accelerated to provide better user experience. With binary descriptors,

the HD*AR still takes 0.5-3.0 sec to localize a single photograph.

To fill the “Research Gap 3: Near Real-time Cyber-physical Information Association at
Dynamically Varying Environmental Scale”, here a new approach for further accelerating
the HD*AR localization/augmentation speed is designed and developed. As described in
Section 4.3, the HD*AR augmentation process is simply done by projecting 3D vertex
points of cyber-information into an image plane using recovered camera parameters.
However, the localization process requires a set of resource-intensive algorithms, such as
direct 2D-to-3D matching algorithm, which performance depends on the number of 3D
points in the 3D physical model. As a consequence, the longer localization time typically

takes place at the outdoor data sets since the resulting 3D physical models are dense due to
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a plenty of textures from the objects.

The matching complexity of the direct 2D-to-3D matching with a k-d tree proposed in
Section 4.3 depends on the number of 3D points and the number of feature descriptors from

a new image to be localized. Specifically, the upper bound of this matching complexity is:

O (M log N) (6.1)

where N is the number of 3D points in the point cloud and M is the number of feature
descriptors from a new image. For outdoor data sets we studied in Section 4.4, the value of
N is typically in the range between 30,000 and 200,000, while the value of M is 10,000-
20,000. As shown in Equation 6.1, the larger N obviously results the longer matching time.
If users create a 3D physical model of street or city using several hundreds of pre-collected
photographs, the resulting model will consist of hundreds of thousands 3D points, and thus,
a direct 2D-to-3D matching algorithm may take tens of seconds. Therefore, the methods of

reducing the complexity of this direct 2D-to-3D matching are designed and proposed.

6.2 Caching 3D Representative Descriptors with Localization Patterns

Removing the dependency on the number of 3D points in Equation 6.1 can be expected to
significantly reduce the overall matching time. To realize this, we developed a new
approach that generates a constant size of cached k-d tree from 3D representative

descriptors and using it for direct 2D-to-3D matching. By caching and maintaining highly
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queried 3D points into a small size of £-d tree, the matching time and localization time are

expected to be reduced.

With the proposed caching approach, a key question then becomes how to select which 3D
points and their corresponding representative descriptors should be located in a cached k-d
tree to provide high localization success-ratio and accurate localization results. To provide
fast and reliable localization results, therefore, the proposed approach exploits the facts that
1) the HD*AR accurately and rapidly localizes a new photograph with small number of 2D-
to-3D correspondences and 2) localization requests from users may have a geospatial
pattern, e.g., taking a picture only at facade of building. As a consequence, the most
frequently matched 3D points during the previous localizations and their corresponding 3D

representative descriptors are cached and used for fast direct 2D-to-3D matching.

The procedure of caching 3D points and corresponding representative descriptors can be

summarized as follows:

1) After the 3D reconstruction process of the HD*AR, create a “cache” list which size
is equal to the number of 3D points in the 3D physical model. Each element of the
list consists of (hit count, Index of 3D point) pair. The list will be maintained during
an entire AR cycle of the HD*AR.

2) After the direct 2D-to-3D matching stage in the HD*AR localization, increase the

hit count by 1 for all 3D points which exist in resulting 2D-to-3D correspondences.
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3) Sort the “cache” list in decreasing order. The upper part of the list is the most
frequently matched 3D points.

4) Extract 3D points and their corresponding representative descriptors according to
the point indices of first NV elements of the “cache” list. Typically the range of N is
1,000-10,000, depending on the size of the 3D physical model.

5) Generate a cached k-d tree using extracted 3D representative descriptors and use it

for fast direct 2D-to-3D matching.

The localization process of the HD*AR is slightly modified to handle fast direct 2D-to-3D
matching with a cached &-d tree. Upon receiving a new photograph from the client device,
the HD*AR server first matches image feature descriptors of the new photograph against a
cached k-d tree to find 2D-to-3D correspondences. If the number of correspondences is less
than 16 or the HD*AR was unable to calibrate the camera with resulting correspondences,
the HD*AR runs normal model-based 6-DOF localization discussed in Section 4.3 as a
fallback solution. After the localization process, the HD*AR updates the “cache” list and re-

generates a cached k-d tree using updated information.

With a cached £-d tree, the complexity of direct 2D-to-3D matching is reduced to:

O (Mlog N) — O (M) (6.1)

as N goes to constant. Since M is the number of feature descriptors of new photograph to be
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localized and is completely a random number, it is difficult to remove the dependency of
matching algorithm on M. However, by creating and using a constant size of 3D points, the
proposed approach is believed to produce a similar level of matching times regardless of

number of 3D points in the 3D physical model.

Figure 6.1 visualizes an example of cached 3D points after 25 random localization requests
from client devices. The size of cache was set to 5,000 points so that the number of nodes
in a cached k-d tree could not exceed 5,000. From Figure 6.1b, we can infer that the user
localization requests mostly took place at the one side of the building in this test scenario
and indeed had a geospatial pattern. By utilizing a cached k-d tree, the performance of the
HD"AR localization is up to 262% faster than the results provided in Chapter 4. The details

of experimental results for the proposed approach will be fully discussed in Section 6.3.

(@)

Figure 6.1 An example of cached 3D physical model, (a) original 3D physical model, (b) caching

the most frequently matched 3D points during the 25 localization requests. The size of cache is

fixed to 5,000 points
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6.3 Experimental Results and Validation

This section presents experimental results and the validation of the proposed caching
approach for fast model-based localization using direct 2D-to-3D matching. In order to
assess improvements provided by the proposed approach, the HD*AR model-based 6-DOF
localization discussed in Section 4.3 was performed on both cached models and non-cached
models. In addition, only outdoor models were considered during this experiment as the
outdoor models typically have larger number of 3D points and take longer localization time
(2-3 sec) compared to indoor models. All 3D physical models used in this experiment, i.e.,
“patton”, “knu”, and “parliament” models, came from the results discussed in Section 4.4
and the details of the used physical models are reviewed in Table 6.1. In order to minimize
feature extraction time during the localization, the BRISK descriptor is used in this
experiment. The same photographs used in Section 4.4.2 were tested again for the proposed
caching approach and the same metrics presented in Tables 4.12-4.14 were measured for
performance comparison. Also, a half of test photographs were randomly selected to pre-
train the “cache” list discussed in Section 6.2. All experiments were conducted on a single
Amazon EC2 instance server with 22.5 GB memory and two Intel Xeon X5570 processors
running Ubuntu version 12.04. An NVIDIA Tesla M2050 graphic card was used for GPU
computations. The fallback solution — returning to normal model-based localization when
the proposed caching approach failed to localize the photograph — was disabled during the

experiment to assess the effect of the cache size on the localization success ratio.

During the experiment, different cache sizes, i.e., 1,000, 2,000, 5,000, and 10,000 points,
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Table 6.1 3D physical models tested for direct 2D-to-3D matching with a cached &-d tree approach

. Model Number of M ean
Environment . re-projection error
Name 3D points .
from 3D reconstruction
patton 46,318 0.498 pixels
Outdoor knu 33,122 0.552 pixels
parliament 234,343 0.606 pixels

were mainly tested to validate the effect of the cache size on the performance. As discussed
in Section 4.4.2, the average number of 2D-to-3D matches on outdoor building-scale data
sets with BRISK descriptor was 1,271 points, meaning that the HD*AR found about 1,000
points on average and used those 2D-to-3D correspondences to successfully recover the
camera’s location and orientation. Consequently, we can expect that the very small cache
sizes, 1.e., below 1,000 points, will achieve very low localization success-ratio. Tables 6.2-
6.4 summarize the localization results of the proposed caching approach with very small
cache sizes, i.e., 100- 500 points. As expected, the proposed approach with small cache size
achieved very low localization success-ratio, which was in the range of 2-65%. As shown in
Tables 6.2-6.4, the localization success-ratio depends on the gap between the average
number of 2D-to-3D matches of non-caching localization and tested cache sizes.
Specifically, the localization success-ratio significantly dropped when the gap between the
average number of 2D-to-3D matches of non-caching localization and cache size was large.
In the remaining of this section, therefore, we have mainly focused on cache sizes above

1,000 points to validate the effect of cache size on both localization speed and accuracy.
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Table 6.2 Localization results with very small cache sizes for “patton” model

Package HD*AR HD*AR with caching approach
Cache size - 100 200 500
Localization 49 /50 12/50 12/50 13/50
success-ratio (98%) (24%) (24%) (26%)
Mean number of
2D-to-3D matches 2,145 >0 94 191
Mean 0.812 pixels 0.716 pixels 0.979 pixels 0.975 pixels
re-projection error
Mean
localization fime 2.312 sec 1.241 sec 1.246 sec 1.254 sec
(soquential requents) (1%) (1.863%) (1.856%) (1.844x)
1oca111;§$:1 . 0.754 sec 0.432 sec 0.435 sec 0.442 sec
(1%) (1.745%) (1.733%) (1.706x)

(parallel requests)

Table 6.3 Localization results with very small cache sizes for “knu” model

Package HD'AR HD*AR with caching approach
Cache size - 100 200 500
Localization 50/ 50 1/50 26 /50 31/ 50
success-ratio (100%) (2%) (52%) (62%)
Mean number of
2D-to-3D matches 1,204 8 20 41
Megn 1.070 pixels 0.770 pixels 1.326 pixels 1.334 pixels
re-projection error
Mean
localization fime 1.347 sec 0.697 sec 0.747 sec 0.781 sec
(sequential requests) (1) (1.933x) (1.803x) (1.725)
1oca111;§f121 e 0.507 sec 0.304 sec 0.334 sec 0.347 sec
(1x) (1.668x) (1.518x) (1.461%)

(parallel requests)
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Table 6.4 Localization results with very small cache sizes for “parliament” model

Package HD*AR HD*AR with caching approach
Cache size - 100 200 500
Localization 40/ 40 16 /40 21/40 26/ 40
success-ratio (100%) (40%) (52.5%) (65%)
Mean number of
2D-to-3D matches 465 32 49 80
Mean 0.897 pixels 0.654 pixels 0.743 pixels 0.793 pixels
re-projection error
Mean
localization fime 2.693 sec 0.974 sec 0.979 sec 0.998 sec
(sequential requests) 9 (2.765%) (2751 (2.698)
1oca111;§$:1 . 0.847 sec 0.284 sec 0.292 sec 0.300 sec
(1) (2.982x) (2.901%) (2.823x)

(parallel requests)

Table 6.5 compares the detail results of the caching approach on “patton” model which
number of 3D points is 46,318 points. As shown in Table 6.5, the proposed caching
approach achieved the fastest localization with the smallest cache size, while mean re-
projection error remained the similar level to that of localizations without cache. However,
the localization success-ratio with the small size of cache, i.e., 1,000-2,000 points, was
slightly decreased compared to non-cache localization. This is due to the fact that a pre-
trained cache does not properly cover the entire target scene as we selected the random
photographs for caching 3D points. Nevertheless, the caching approach achieved 80-98%
of localization success ratio and was 118-126% faster than the non-cache localization in all
cases. To further demonstrate the acceleration factor of the proposed approach on direct 2D-
to-3D matching, we also measured elapsed times for each step in localization, i.e., feature

extraction time, and the matching/calibration time. As shown in Table 6.6, the matching and
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calibration speed is improved by the caching approach, while the feature extraction time
remains constant. Therefore, we can conclude that the proposed approach, which uses a
cached k-d tree for matching, reduces overall localization time by reducing search space of

direct 2D-to-3D matching. If we only consider the direct 2D-to-3D matching procedure, the

Table 6.5 Performance comparison of model-based 6-DOF localization for “patton” model

Package HD'AR HD*AR with caching approach
Cache size - 1,000 2,000 5,000 10,000
Localization 49 /50 40/ 50 44 /50 49 /50 49/50
success-ratio (98%) (80%) (88%) (98%) (98%)

Mean number of

2D-to-3D matches 2,145 134 228 438 748

Mean

re-projection error 0.812 pixels  0.962 pixels  0.927 pixels  1.047 pixels  1.060 pixels

local lxiﬁl qo 2312se 1314 sec 1.484 sec 1.692 sec 1.836 sec
(sequential requests) (1) (1.760%) (1.558x) (1.366x) (1.259%)
Mean

0.754 sec 0.477 sec 0.547 sec 0.583 sec 0.627 sec

localization time (1) (1.581x) (1.378%) (1.378%) (1.203x%)

(parallel requests)

Table 6.6 Details of localization time for sequential requests on “patton” model

Package HD*AR HD*AR with caching approach
Cache size - 1,000 2,000 5,000 10,000
BRISK feature

. . 0.785 sec 0.785 sec 0.785 sec 0.785 sec 0.785 sec
extraction time

Matching/
calibration time
(performance gain)

1.527 sec 0.529 sec 0.698 sec 0.907 sec 1.050 sec
(1%) (2.887x%) (2.188x%) (1.684x%) (1.454x%)
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Figure 6.2 Cached 3D physical models of the “patton” model, (a) cache size = 1,000 points, (b)
cache size = 2,000 points, (c) cache size = 5,000 points, and (d) cache size = 10,000 points

matching/calibration time was up to 2.887 times faster than the non-cache localization
discussed in Section 4.3. Figure 6.2 visualizes the cached 3D physical models with different
cache sizes. As expected, the smaller cache sizes produced more spare 3D point clouds, but
the proposed approach successfully localized most of photographs even with these sparse

cached 3D point clouds.
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Tables 6.7-6.8 compare the detail results of the caching approach on “knu” model, which
number of 3D points is 33,122 points. Again, the proposed caching approach achieved the
fastest localization with the smallest cache size, while mean re-projection error was slightly
increased. For “knu” model, however, the localization success-ratio was not decreased even
with small cache sizes. As shown in Figure 6.3, the cached 3D models were well-trained
and covered the entire target scene even when cache size was 1,000 points. The
performance gain of the caching approach is 118-158% on localization and 131-226% on
direct 2D-to-3D matching. As the “knu” model has less number of 3D points than “patton”
model, the performance gain is slightly decreased. However, the proposed approach was
faster than the non-cache localization and achieved the overall localization time under 1 sec

for “knu” model.

Table 6.7 Performance comparison of model-based 6-DOF localization for “knu” model

Package HD*AR HD*AR with caching approach
Cache size - 1,000 2,000 5,000 10,000
Localization 50/50 49 /50 50/50 50/50 50/50
success-ratio (100%) (98%) (100%) (100%) (100%)

Mean number of

2D-to-3D matches 1,204 87 157 338 561

Mean

re-projection error 1.070 pixels  1.457 pixels  1.504 pixels  1.536 pixels  1.396 pixels

Mean
localization time
(sequential requests)

1.347 sec 0.854 sec 0.959 sec 1.033 sec 1.138 sec
(1x) (1.577x) (1.405x) (1.304x%) (1.184x%)

Mean
localization time
(parallel requests)

0.507 sec 0.386 sec 0.414 sec 0.440 sec 0.470 sec
(1x) (1.313%) (1.225%) (1.152x%) (1.079x%)
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Table 6.8 Details of localization time for sequential requests on “knu” model

Package HD'AR HD*AR with caching approach
Cache size - 1,000 2,000 5,000 10,000
BRISK feature

. . 0.462 sec 0.462 sec 0.462 sec 0.462 sec 0.462 sec
extraction time

Matching/
calibration time
(performance gain)

0.886 sec 0.392 sec 0.497 sec 0.572 sec 0.677 sec
(1x) (2.260x) (1.783x) (1.549x) (1.309%)

(©) (d)

Figure 6.3 Cached 3D physical models of the “knu” model, (a) cache size = 1,000 points, (b) cache
size = 2,000 points, (c) cache size = 5,000 points, and (d) cache size = 10,000 points
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Finally, the proposed caching approach was applied to a large-scale model, i.e., “parliament”
model. The number of 3D points in “parliament” model is 234,343 points. Tables 6.9-6.10
compare the results of the caching approach on “parliament” model and Figure 6.4 presents
the cached 3D physical models with different cache sizes. As shown in Tables 6.9-6.10, the
localization with a cache significantly improved the localization speed and matching speed
for “parliament” model. The proposed approach was 196-262% faster than the non-cache
localization and the direct 2D-to-3D matching was up to 465% faster. In addition, the mean
re-projection error remained the similar level to that of non-cache localization even with
cache size of 1,000 points. From these results, we can conclude that the proposed caching
approach has improved the performance of model-based 6-DOFlocalization on large-scale

physical models and provides reliable and accurate localization results.

Table 6.9 Performance comparison of model-based 6-DOF localization for “parliament” model

Package HD*AR HD*AR with caching approach
Cache size - 1,000 2,000 5,000 10,000
Localization 40/ 40 37/40 37/40 40/ 40 40 /40
success-ratio (100%) (92.5%) (92.5%) (100%) (100%)

Mean number of

2D-to-3D matches 465 104 178 337 442

Mean

re-projection error 0.897 pixels  0.990 pixels  0.906 pixels  0.858 pixels  0.872 pixels

Mean
localization time
(sequential requests)

2.693 sec 1.027 sec 1.134 sec 1.301 sec 1.377 sec
(%) (2.622x) (2.375%) (2.070x%) (1.956%)

Mean
localization time
(parallel requests)

0.847 sec 0.345 sec 0.369 sec 0.415 sec 0.439 sec
(1x) (2.455%) (2.295%) (2.041x%) (1929x)
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Table 6.10 Details of localization time for sequential requests on “parliament” model

Package HD'AR HD*AR with caching approach
Cache size - 1,000 2,000 5,000 10,000
BRISK feature

. . 0.571 sec 0.571 sec 0.571 sec 0.571 sec 0.571 sec
extraction time

Matching/
calibration time
(performance gain)

2.122 sec 0.456 sec 0.563 sec 0.730 sec 0.806 sec
(1x) (4.654x) (3.769x) (2.907x) (2.633%)

©

Figure 6.4 Cached 3D physical models of the “parliament” model, (a) cache size = 1,000 points, (b)
cache size = 2,000 points, (c) cache size = 5,000 points, and (d) cache size = 10,000 points
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6.4 Contributions and Significance

Based on discussion in this Chapter, we can conclude that the solution approach, i.e.,
“Cached k-d tree generation for Fast Direct 2D-to-3D matching”, is a novel approach that
brings caching scheme into a direct 2D-to-3D matching algorithm used in model-based
localization. No existing work to date attempts to improve the speed of model-based
localization by tackling the complexity of direct 2D-to-3D matching. By removing the
dependency on number of 3D points, the proposed approach provides near real-time
localization/augmentation results regardless of number of 3D points in the 3D physical
model. Table 6.11 summarizes the proposed approach with all related works reviewed in

Section 3.3. With the proposed approach, the localization time now takes at most 1.5 sec for

Table 6.11 Validation of the proposed approach — cached k-d tree generation for fast direct 2D-to-

3D matching
4 .
Metrics Model-based HD AR with
caching approach
Model scale room-street object-street
Model 3-24hr 0.1 1hr
preparation time
Number of
3D physical models Single Single®
in the system
Number of
cyber-information items 0-10° 10° - 10*
in the system
Localization/
Augmentation 5 —240 sec 0.5-1 sec
Speed
Supports mobility X v

@ The scenario for multiple models will be discussed in Chapter 7
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large-scale physical models. In addition, it still achieves the high-precision localization with
maximum error of few image pixels. Therefore, the proposed caching approach for fast
localization successfully fills the “Research Gap 3: Near Real-time Cyber-Physical

Information Association at Dynamically Varying Environmental Scales”.
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7 Multi-model based 6-DOF Localization for Blinded

Localization Requests

7.1 Overview of Solution Approach to Research Gap 3

To fill the “Research Gap 3: Near Real-time Cyber-physical Information Association at
Dynamically Varying Environmental Scale”, new solution approaches for large-scale

model-based 6-DOF localization are developed and validated in this chapter.

All solution approaches presented in Chapters 4-6 assume that there is only a single 3D
physical model in the system or users know which model should be used for localization
and augmentation. For example, let us assume that separate point cloud models were
created for different locations/objects in the HD*AR server. Then, users are required to
choose the model from a list on the client device and enable model-based localization with
respect to the corresponding 3D physical model. This strategy is impractical when the
number of physical models is enormous and/or users do not know which model should be
used for localization and augmentation. To overcome this issue and provide near real-time
localization/augmentation service in the presence of multiple 3D physical models, we
develop a new approach which can handle the localization requests that do not know the
target physical model for localization. Throughout this chapter, we will refer the
localization request that do not indicate the target 3D physical model as bl/inded localization

request.
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7.2 Double-stage Matching Algorithm with A Single Indexed k-d tree

The straightforward way for finding an appropriate model for blinded localization is
matching a new image from users to all 3D physical models in the server sequentially. Then,
the localization is done when the certain 3D model successfully localizes a given
photograph. Obviously, this sequential matching is very time-consuming and is inefficient
if the target model exists at the end of the model list. Specifically, the upper bound of this

sequential matching complexity is:

O (K M log N) (7.1)

where K is the number of models that exist in the server, N is the number of 3D points in
each physical model, and M is the number of feature descriptors from a new image to be
localized. For outdoor data sets we studied in Section 4.4, the value of N is typically in the

range between 30,000 and 200,000 while the value of M is 10,000-20,000.

Instead of time-consuming sequential matching, we propose to create a single indexed A-d
tree and use it to find the target model for blinded localization requests. Specifically, a
single k-d tree is created by concatenating all 3D representative descriptors from multiple
models, and model index information is imposed to each 3D representative descriptor. After
matching a new image against this single indexed -d tree, the 3D physical model that has
the largest number of 2D-to-3D matches will be the model to be used for localization and

augmentation. Then, the model-based 6-DOF localization or caching approach discussed in
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Chapters 4 and 6 can be used to localize a given photograph. The procedure of this double-

stage matching algorithm with a single indexed k-d tree can be summarized as follows:

1)

2)

3)

4)

5)

Concatenate all 3D representative descriptors from 3D physical models presented in
the HDAR server. Also, the model index information is imposed to each 3D
representative descriptor to indicate which model has the corresponding descriptor.
Upon receiving a blinded localization request from the client, perform the direct
2D-to-3D matching between given image and a generated indexed k-d tree.

By using found 2D-to-3D correspondences and the model index information, count
the number of 2D-to-3D matches for each 3D physical model.

Take N models that have the largest number of matches. Then, perform the model-
based 6-DOF localization for each model in parallel. The value of N is typically set
to 1-3.

Select the localization result which has the minimum re-projection error and return

it to the client.

The proposed double-stage matching algorithm can be reduced to a single-stage matching

as the result of first-stage matching already includes the 2D-to-3D correspondences of the

target model. However, the reason of double-stage matching is for the case that several

models have very similar visual features and thus are not clearly distinguished from each

other through first-stage matching. For example, if two 3D physical models 4 and B are

created for the same building, it is possible that some of 2D-to-3D correspondences found
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in the first-stage matching belong to model 4 while some of 2D-to-3D correspondences
belong to model B. As discussed in Chapters 4 and 6, the less number of 2D-to-3D
correspondences decreases the accuracy of localization. Therefore, we utilize the first-stage
matching results only for finding candidate target models and perform the second-stage

matching in parallel to get the most accurate localization results.

With the proposed approach, the complexity of blinded localization is reduced to:

O (K Mlog N) — O (M log K +2M log N) (7.2)

where K is the number of models that exist in the server, N is the number of 3D points in
each physical model, and M is the number of feature descriptors from a new image. The
details of the performance gain provided by the proposed single indexed k-d tree approach

will be fully discussed in Section 7.4.

7.3 K-means Clustering of 3D Physical Models with Geo-information

Another way of finding a target model for blinded localization requests is exploiting the
geo-information which can be easily obtained by modern commodity smartphones. This
approach segments large-scale 3D physical models into several clusters and automatically
finds an appropriate cluster to localize and augment a new photograph sent from the client
device. To cluster 3D physical models, we use GPS latitude and longitude values measured

by mobile device and recorded in the image in form of EXIF (Exchangeable Image File

114



Format) tag. There is no need for accurate GPS values as we only use this information for

clustering purposes. The overall steps for clustering a 3D physical model are:

1) Partitioning base images: All base images participated in 3D reconstruction are

2)

divided into several clusters using latitude and longitude values of each base image.
In order to find the proper number of clusters, hierarchical clustering analysis [54]
is first used to estimate starting values for the K-means algorithm [55]. Based on
the resulting number of clusters, the K-means algorithm is performed to partition
base images to each cluster with the nearest mean of GPS values. Specifically, K-
means algorithm partitions » base images into k clusters that each base image

belongs to each cluster with the nearest mean:

(7.3)

k
argmin » 3" |1 - il

i=1 Xj€S;

where £ is the number clusters, y; is the mean of GPS values for S; cluster. After
computing center of each cluster and all images are assigned to each closet clusters,
the cluster centers are recomputed based on the mean values of all GPS values in
the cluster. This procedure is done iteratively until the variance of each cluster is
small enough [56].

Clustering a 3D physical model: Once the base images are successfully partitioned,

we segment the 3D point clouds by selecting 3D points and their corresponding
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representative descriptors that are observed by base images in each cluster. As a
consequence, each clustered point clouds contains less 3D points compared to

initial 3D physical models, resulting smaller scale.

The localization process is slightly modified to handle clustered 3D physical models. With
the proposed approach, upon receiving a new photograph from the client device, the
HD*AR server first finds the nearest cluster by comparing GPS values recorded in the new
photograph to mean value of each cluster. After finding the nearest cluster, the server
performs existing model-based 6-DOF localization method discussed in Chapters 4 and 6 to
compute a complete pose of the camera. If the new photograph does not include GPS tag,
the server attempts to localize the image with all clusters in parallel. Although the proposed
approach requires mobile devices to enable GPS sensors during the AR cycle, the clustering
approach can handle blinded localization requests by reading a GPS value recorded in the
image and also result faster localization due to smaller scale of 3D point clouds. The details

of experimental results will be fully discussed in following section.

7.4 Experimental Results and Validation

This section presents experimental results and the validation of the proposed solution
approaches, i.e., “Double-stage Matching Algorithm with A Single Indexed k-d tree” and
“K-means Clustering of 3D Physical Models with Geo-information”. Therefore, two
separate experiments, i.e., Multiple-model based localization and Localization with

Clustered 3D Physical Models, were performed and validated. The details of the data set
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specifications and validation metrics are discussed in the following subsections. After
showing experimental results, the overall validation of solution approaches will be

summarized.

7.4.1 Multiple-model Based Localization

The multiple-model based localization was first tested with the proposed double-stage
matching algorithm using a single indexed k-d tree. To emulate an environment where
multiple 3D physical models exist in the server, we used total 200 physical models
generated from the 3D reconstruction process discussed in Section 4.2. Among 200
physical models, the 10 models came from the results presented in Section 4.4.1. The
details of test scenarios are summarized in Table 7.1. The server side of the HD*AR for
localization was running on Ubuntu version 12.04 with 8 GB memory and a 4-core Intel 15-

2520M processor. Also, the BRISK descriptor is used for this experiment.

Table 7.1 3D physical model specifications for multi-model based localization experiment

Number of 3D models  Total number of 3D points Total point cloud size

10 484,006 201.21 MB
20 1,238,784 503.33 MB
60 2,647,207 1.07 GB
100 3,374,138 1.38 GB

200 4,095,305 1.70 GB
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In order to validate that the proposed approach can successfully find target models for
blinded localization requests, a group of successfully localized photographs from Section
4.4.2 were tested without designating the target models. In addition, only the performance
of sequential localizations from a single client device was measured. Tables 7.2 shows the
overall results of the proposed double-stage matching approach for multi-model based
localizations. As shown in Table 7.2, the proposed double-stage matching algorithm with a
single indexed k-d tree approach successfully found target models for all blinded
localization requests regardless of the number of models in the system. In addition, the
proposed approach rapidly and accurately localized all tested photographs even in the
presence of 200 models in the system. The mean localization times for multi-model based
localizations were in the range between 1.360-2.623 sec and the mean re-projection errors

were within 1.507-1.532 pixels.

Table 7.2 Performance comparison of multi-model based localization

Number of models

in the systom 10 20 60 100 200
Localization 235/235 235/235 235/235 235/235 235/235
success-ratio (100%) (100%) (100%) (100%) (100%)

Mean number of 523 524 537 537 537

2D-t0-3D matches

Mean

re-projection error 1.531 pixels  1.532 pixels  1.513 pixels  1.511 pixels  1.507 pixels

Mean

L . 1.360 sec 1.568 sec 2.054 sec 2.343 sec 2.623 sec
localization time
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To further demonstrate the performance factors of the proposed approach, we also
measured the elapsed times for each step in localization, i.e., target model searching time,
feature extraction time, and the matching/calibration time. As shown in Table 7.3, the target
model searching time, which corresponds to the first-stage matching time in the proposed
approach, only took 0.482-1.799 sec in our test scenarios where the number of models are
varied from 10 to 200. As expected in Section 7.2, the target model searching time is not
proportional to the number of models. Even in the presence of 200 models, the target model
searching with the proposed approach took under 2 sec. From experimental results shown
in this section, we can conclude that the proposed approach successfully handles the
blinded localization requests and provides near real-time localization/augmentation in the
presence of multiple 3D physical models in the system. In addition, the experimental results
imply that the double-stage matching algorithm with a single indexed k-d tree approach can
be extended to hundreds of 3D physical models without significantly reducing the

localization performance.

Table 7.3 Details of localization time from the proposed single indexed k-d tree approach

Number of models

. 10 20 60 100 200
in the system

Target model

. . 0.482 sec 0.738 sec 1.222 sec 1.509 sec 1.799 sec
searching time

BRISK feature

. . 0.570 sec 0.573 sec 0.571 sec 0.578 sec 0.566 sec
extraction time

Matching/

. . . 0.308 sec 0.257 sec 0.261 sec 0.256 sec 0.258 sec
calibration time
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7.4.2 Localization with Clustered 3D Physical Models

To validate the clustering approach discussed in Section 7.3, we enabled the GPS sensor
installed in smartphones and recorded its values in form of EXIF tag during a photo
collection for 3D reconstruction. Then, the HD*AR 3D reconstruction procedure discussed
in Section 4.2 was performed on newly collected base images. During the 3D
reconstruction, the FREAK descriptor is used to minimize feature extraction time and
memory consumption. The resulting 3D physical model was then partitioned into three
clusters using GPS values of each base image and K-means clustering algorithm. The final
results of 3D reconstruction and clustering are summarized in Table 7.4. The results show
that the 3D physical model was successfully reconstructed and well-partitioned into three
clusters. Figure 7.1 visualizes the original 3D physical model and its corresponding clusters,

showing that the original physical model was geologically partitioned.

Table 7.4 Results of 3D reconstruction and clustering

Orloglnal 3D Cluster #1 Cluster #2 Cluster #3
physical model
Number of 66 15 21 30
base images
Number of 70,906 24,178 23,098 27,528
3D points
Mean

re-projection error 0.523 pixels  0.511 pixels  0.553 pixels  0.608 pixels

GPS mean value  (37.2290, (37.2293, (37.2289, (37.2290,
(latitude, longitude)  -80.4225) -80.4227) -80.4227) -80.4222)
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Figure 7.1 Resulting 3D point clouds with the HD*AR and proposed clustering method; (a) Original
3D physical model, (b) cluster #1, (c) cluster #2, and (d) cluster #3

After clustering the 3D physical model, the localization success-ratio, mean re-projection
error, and the elapsed time using clustered 3D physical model were measured and compared
to results using non-clustered single physical model. In this experiment, we only measured
the localization performance with the sequential requests from a single device although the
HDAR can handle multiple requests of localization from several client devices

simultaneously, which leads to increased system capacity. The server side of the HD*AR
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was running on Windows 7 with 8 GB memory and a 4-core Intel 17-870 processor. As
observed in Table 7.5, the experimental results show that the clustering approach
successfully found the target cluster by using geo-location data of the given photograph and
resulted in 100% success-ratio of localization. The mean re-projection error of localized
photographs with each cluster presents single-pixel error in all cases. In addition, the
proposed approach accelerates the overall localization speed up to 154% with the tested

data set, without reducing success-ratio and mean re-projection error.

To further demonstrate the acceleration factor of the proposed approach, we also measured
elapsed times for each step in localization, i.e., cluster selection time, feature extraction
time, and the matching/calibration time. As shown in Table 7.6, the matching and
calibration took the longer time when the size of 3D physical model (i.e., number of 3D
points) is larger, while the feature extraction time remained constant. Therefore, the

proposed clustering approach, which segments the large-scale physical model into smaller

Table 7.5 Performance of model-based 6-DOF localization with clustered 3D physical models

Orl.glnal 3D Cluster #1 Cluster #2 Cluster #3
physical model
Localization 751775 25725 25725 25/25
success-ratio (100%) (100%) (100%) (100%)

Mean

Lo 0.958 pixels  0.937 pixels  0.960 pixels  1.037 pixels
re-projection error

Mean
localization time
(performance gain)

2.735 sec 1.897 sec 1.782 sec 1.934 sec
(1%) (1.442x%) (1.535x%) (1.414x%)
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Table 7.6 Details of the localization time with clustered 3D physical models

Original 3D (- cer#1  Cluster#2  Cluster #3
physical model
Cluster 0 sec 35x 107 sec 3.5x 107 sec 3.5 x 107 sec

selection time

BRISK. feamre 0.759 sec 0.775 sec 0.755 sec 0.760 sec

extraction time

calli\l/)[f;fi}cl)lllll%i/me 1.976 sec 1.122 sec 1.027 sec 1.174 sec
(1x) (1.761x%) (1.924x%) (1.683x)

(performance gain)

physical models, not only supports the blinded localization requests, but also reduces
overall localization time by reducing the size of 3D physical model. If we only consider the
direct 2D-to-3D matching procedure, the matching/calibration time was up to 1.924 times

faster than the non-clustered model-based localization.

7.5 Contributions and Significance

Based on discussion in this Chapter, we can conclude that the solution approaches, i.e.,
“Double-stage Matching Algorithm with A Single Indexed k-d tree” and “K-means
Clustering of 3D Physical Models with Geo-information” successfully fills the “Research
Gap 3: Near Real-time Cyber-Physical Information Association at Dynamically Varying
Environmental Scales”. Specifically, the proposed solution approaches can provide near
real-time, high-precision mobile augmented reality in the presence of hundreds of 3D
physical models in the system. Table 7.7 summarizes the proposed approach with all related

works reviewed in Section 3.3. All previous work related to model-based localization
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methods only considers the case when there is a single model in the system.

As discussed in Section 7.4, the proposed double-stage matching algorithm using a single
indexed k-d tree can rapidly find target models for blinded localization requests and
successfully localize the photographs under 3 sec with 200 physical models in the system.
In addition, a new clustering approach using geo-information is developed and validated to
handle large-scale physical models and further accelerate the model-based localization
speed. The large-scale physical models can be successfully partitioned into several clusters
using the proposed approach and the blinded localization requests can always be matched
against correct clusters by using geo-information obtained through the sensor installed in

commodity mobile devices.

Table 7.7 Validation of the proposed approaches for multi-model based 6-DOF localization
HD*AR with

Metrics Model-based .
solution approaches
Model scale room-street object-street
Model 324 hr 0.1-1hr
preparation time
2D physical models Single Multiple
phy & (Hundreds of models)
in the system
Number of
cyber-information items 0-10° 10° - 10*
in the system
Localization/
Augmentation 5 —240 sec 1 -2 sec
Speed
Supports mobility X v
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8 Conclusions

This dissertation presents a new, fast, and scalable Structure-from-Motion (SfM) approach
for high-precision mobile augmented reality systems. To develop solution approaches,
current open research problems and research gaps in mobile augmented reality are first
scrutinized. Based on our investigation provided in this dissertation, current research gaps
in mobile augmented reality can be summarized as: 1) fine-grained 6-DOF localization with
mobile devices, 2) 3D cyber-physical content authoring from 2D interface, and 3) near real-

time cyber-physical information association at dynamically varying environmental scales.

To fill these research gaps, total five solution approaches are developed and validated: 1)
Hybrid 4-Dimensional Augmented Reality (HD*AR), 2) Plane transformation based 3D
cyber-physical content authoring from a single 2D image, 3) Cached k-d tree generation for
fast direct 2D-to-3D matching, 4) Double-stage matching algorithm with a single indexed
k-d tree, and 5) K-means Clustering of 3D physical models with geo-information. In
following sections, the contributions of each solution approach are summarized and the

future work of this study is identified.

8.1 Summary of Contributions

Provide near real-time millimeter-accuracy overlay of cyber-information associated with

real-world physical objects in 3D geometry using commodity mobile devices (completed
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and presented in Chapter 4).

To fill the first research gap, a novel hybrid approach, which combines model-based 6-DOF
localization and SfM-based model generation, is developed and validated. The overall
approach is called Hybrid 4-Dimensional Augmented Reality (HD*AR) which purely
localizes users based on images from a mobile device and does not require any sensors or
infrastructures for mobile augmented reality. By introducing a new parallelized SfM
process, which accelerates an existing 3D reconstruction pipeline by a factor of 30, the
HD*AR makes model-based localization feasible in mobile augmented reality and provides
much shorter model preparation time compared to existing work. In addition, the proposed
model-based 6-DOF localization method using direct 2D-to-3D matching speeds up
existing works by a factor of 160. The HD*AR only takes 0.5-3.0 sec to localize a single
photograph and the uncertainty level of localization is 0.613-2.511 pixels. Finally,
experimental results show that the HD'AR can provide millimeter-level information
association accuracy in both indoor and outdoor environment, from room-level to street-

level scales.

Enable 3D cyber-physical content authoring from limited 2D user interfaces (completed
and presented in Chapter 5).

Along with the HD*AR approach, a new plane transformation based 3D cyber-physical
content authoring approach is proposed and validated to fill the second research gap. The
proposed approach purely creates 3D cyber-information using user inputs on a single 2D

image and automatically associates user-created cyber-information with corresponding
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physical objects in 3D geometry. Validation results show that all user-created elements on
2D images can be accurately triangulated and associated with objects in 3D physical
models, and the generated 3D cyber-information can be precisely overlaid on other
photographs taken at completely different locations. By considering a fact that the 3D
content authoring from 2D interface is still an open problem, the proposed approach can
address the open research problem and make 3D cyber-physical content authoring feasible

on any commodity mobile devices.

Provide a localization method which operates in near real-time at large-scale
environment (completed and presented in Chapter 6).

Another solution approach, i.e., a cached k-d tree generation, is suggested and validated to
further enhance the model-based localization speed with large-scale 3D physical models.
By grafting caching scheme into direct 2D-to-3D matching algorithm, the matching
complexity is significantly reduced. No existing work to date attempts to improve the speed
of model-based localization by tackling the complexity of direct 2D-to-3D matching. By
removing the dependency of direct 2D-to-3D matching on number of 3D points, the
proposed approach provides near real-time localization/augmentation results regardless of
number of 3D points in the 3D physical model. With the proposed approach, the
localization time now takes at most 1 sec for large-scale physical models. In addition, it

still achieves the high-precision localization with the maximum error of up to 1 image pixel.
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Provide a fast cyber-physical information association method for multiple and combined
physical scales (completed and presented in Chapters 7-8).

Finally, two solution approaches, i.e., double-stage matching algorithm with a single
indexed k-d tree and K-means Clustering of 3D physical models with geo-information, are
developed and validated to provide high-precision mobile augmented reality in the
presence of multiple physical models in the system. The proposed double-stage matching
algorithm can rapidly find the target models for blinded localization requests and
successfully localize the photographs in near real-time even with hundreds of 3D physical
models in the system. As a consequence, the mobile augmented reality systems can be
easily extended to tons of users creating different 3D physical models separately, and the
users do not require a priori knowledge of target model for multiple-model based 6-DOF
localization. In addition, a new clustering approach using geo-information is developed to
handle large-scale physical models and further accelerate the localization speed. The large-
scale physical models can be successfully partitioned using the proposed approach and the
blinded localization requests can always be matched against correct clusters by using geo-

information obtained through the sensor installed in commodity mobile devices.

By combining all these proposed solution approaches, which simplify and speed up the
process of accurately obtaining relevant cyber-information, the output of research can be
used in many practical context-aware applications, such as construction progress
monitoring or monitoring the manufacture of electronic circuit boards, etc. Since the

proposed solution can work with commodity smartphones and does not depend on external
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devices, such as GPS satellites, optical markers, or geomagnetic sensors, the application of

the solution in the field is expected to be inexpensive and practical.

8.2 Future Work

While this study presents the promising results toward near real-time high-precision mobile
augmented reality by developing hybrid mobile/cloud model-based localization on SfM-
based 3D physical models, some research challenges needs to be addressed for better

mobile augmented reality applications:

1) Real-time localization/augmentation: although the HD*AR achieves near real-time
localization regardless of environmental constraints, some applications, such as
AR-based video gaming, may require real-time augmented reality. A possible
solution is to develop a hybrid approach using both image and supplemental sensors
installed in commodity smartphones. For example, key frames in the video are
localized through model-based approach proposed in this study while intermediate
frames are localized through inertial or geomagnetic sensors.

2) Minimal number of base images: we typically collected about 50-100 images for
each target scene to produce 3D physical models. This number came from our
empirical experiments, and therefore, the relationship between number of base
images and the quality of 3D point cloud should be further analyzed to guide users

to take a minimal number of base images for bootstrapping.
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3) Robustness against reflective surfaces: the HD*AR is based on intensity-based
image feature descriptors, such as SIFT, SURF, FREAK, or BRISK, which compare
the intensity of pixels to discover orientation and response of feature points. As a
consequence, the proposed approach may not work well with images that only
show reflective surfaces such as metals, mirrors, or glass curtain walls of the
building. These surfaces reflect all surrounding scenes and make the system
difficult to find correspondences among the images. One possible method to
address this is to require images to be taken farther from these elements so other

non-reflective elements can also be presented in the scene.
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