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ABSTRACT

The cloud computing paradigm is realized through large scale distributed resource manage-

ment and computation platforms such as MapReduce, Hadoop, Dryad, and Pregel. These

platforms enable quick and efficient development of a large range of applications that can

be sustained at scale in a fault-tolerant fashion. Two key technologies, namely resource vir-

tualization and feature-rich enterprise storage, are further driving the wide-spread adoption

of virtualized cloud environments. Many challenges arise when designing resource manage-

ment techniques for both native and virtualized data centers. First, parameter tuning of

MapReduce jobs for efficient resource utilization is a daunting and time consuming task.

Second, while the MapReduce model is designed for and leverages information from native

clusters to operate efficiently, the emergence of virtual cluster topology results in overlaying

or hiding the actual network information. This leads to two resource selection and placement

anomalies: (i) loss of data locality, and (ii) loss of job locality. Consequently, jobs may be

placed physically far from their associated data or related jobs, which adversely affect the

overall performance. Finally, the extant resource provisioning approach leads to significant

wastage as enterprise cloud providers have to consider and provision for peak loads instead

of average load (that is many times lower).

In this dissertation, we design and develop a resource management framework to address the

above challenges. We first design an innovative resource scheduler, CAM, aimed at MapRe-

duce applications running in virtualized cloud environments. CAM reconciles both data

and VM resource allocation with a variety of competing constraints, such as storage utiliza-

tion, changing CPU load and network link capacities based on a flow-network algorithm.

Additionally, our platform exposes the typically hidden lower-level topology information to

the MapReduce job scheduler, which enables it to make optimal task assignments. Second,

we design an online performance tuning system, mrOnline, which monitors the MapReduce

job execution, tunes the parameters based on collected statistics and provides fine-grained

control over parameter configuration changes to the user. To this end, we employ a gray-



iii

box based smart hill-climbing algorithm that leverages MapReduce runtime statistics and

effectively converge to a desirable configuration within a single iteration. Finally, we tar-

get enterprise applications in virtualized environment where typically a network attached

centralized storage system is deployed. We design a new protocol to share primary data de-

duplication information available at the storage server with the client. This enables better

client-side cache utilization and reduces server-client network traffic, which leads to overall

high performance. Based on the protocol, a workload aware VM management strategy is

further introduced to decrease the load to the storage server and enhance the I/O efficiency

for clients.
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Chapter 1

Introduction

Cloud computing is a radical transformation underway in data centers and enterprises for

increasing resource and administrative utilization and reducing energy consumption, acqui-

sition and maintenance costs [1, 2]. Cloud computing has emerged as a model, offering

infrastructure, platform and software as a service, from which users access resources from

anywhere anytime on demand. It has been widely supported by large companies such as

Amazon [3], Google [4], Microsoft [5, 6], Salesfore [7], Rackspace [8]. Small businesses es-

pecially startups have swiftly embraced cloud computing because of the benefits it offered.

By hosting applications on a cloud platform, customers save the capital expense of investing

and maintaining expensive servers. Cloud enables customers to access resources instantly

and to provision, de-provision without intervention of third parties. Cloud service providers

offer the illusion of infinite computing resources available on demand, allowing customers to

require any quantity of resources at any time, which helps small businesses to scale up the

infrastructure as their businesses expand. Moreover, because of the capability of per usage

metering and billing, customers can provision additional resources as the load increases, and

de-provision resources as the load decreases. The ”pay-as-you-go” model releases customers

from the burden of worrying about the maintenance of infrastructure, instead allows them

to focus on the core business [9].

Cloud commonly refers to infrastructure, platform and software that are presented as a ser-

vice remotely. In particular, cloud provides several service models. First one is infrastructure

as a service (IaaS). Providers usually offer virtual machine resources and the capability to

elastically provision resources to users from their large virtual machine (VM) pools running

within data centers by pay-as-you-go model. Cloud users or enterprise employees install

operating system images and their entire software stacks on allocated VMs. Examples are

Amazon EC2 and Rackspace cloud. Platform as a service (PaaS) [1] delivers a computing

platform typically including operating system, programming language execution environ-

1
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ment, databases, and web servers. Application developers can develop and run their software

solutions on a cloud platform without the cost and complexity of buying and managing the

underlying hardware and software layers. A use case is MapReduce in the cloud. Examples

are Amazon Elastic MapReduce and Window Azure. In the software as a service (SaaS)

model, cloud providers install and operate application software in the cloud and cloud users

access the software from cloud clients. Cloud users do not manage the cloud infrastructure

or platforms on which applications are running. This eliminates the need to install and run

applications on cloud users’ own computers simplifying maintenance and support. Exam-

ples are Google App Engine. A use case is virtualized desktop environments(VDE) which

decouple desktop environments from physical devices that are used to access them.

In this dissertation, we choose two typical cloud services: MapReduce in the cloud and VDE.

MapReduce is an established framework for processing large-scale data-intensive applica-

tions. MapReduce allows developers to write applications that can easily scale to thousands

of machines without worrying about the task distribution and failure recovery details. The

MapReduce model helps businesses to process massive quantities of data in a reasonable

time and extract valuable insights hidden. In particular, for many applications, such as

converting archived media into a streaming format for Internet delivery, the processing is

needed only once, and hence the resources required for processing are also needed only for a

specific duration. Combining the MapReduce framework with the cloud provides a number

of unique advantages. It is particularly appealing for organizations that need to analyze large

amounts of data without having to acquire and manage large cluster resources. Users do not

need to own cluster resources required to run jobs, which removes the entry barrier, enabling

even small businesses to perform detailed analysis on their data. An organization can focus

on its core business instead of being occupied by low level cluster maintenance. The cloud

provides the flexibility of dedicating as many or as few VMs and storage resources as needed

based on the required turnaround time. Users only pay for resources for the duration of time

they are used.

VDE gains popularity in recent years because it delivers constant secure virtual desktop

accesses to end users, simplifies desktop management and provides flexible dynamic IT

infrastructure by decoupling applications, data, desktops with resource elasticity to meet

businesses and end users’ need. The VDE solution aims to provide the best option for

both administrators and end users; it allows administrators to manage virtual desktops in a

centralized manner, and let end-users access fully functional desktop environments through

thin-clients by adopting a server-centric computing model. The creation, deletion and mi-
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gration of virtual desktops and the deployment of new software update can be done with

a few clicks while end users can access the virtual desktop anywhere any time securely. In

VDEs, all the user data are stored in data centers and backed up through enterprise level

redundant maintenance systems. Even if a user’s device is lost or stolen, any critical data

is less likely to be compromised. Moreover, it enables enterprises to dramatically lower the

hardware, operational and the maintenance costs by centrally consolidating and dynamically

managing virtual desktops.

The research in this dissertation aims to develop efficient resource management techniques

for the two focused cloud services. The techniques proposed should be able to improve the

application performance and scalability of the system by carefully managing the storage and

compute resources and mitigating the I/O bottleneck. The goal of this dissertation is to

assist in answering several open questions. How to design efficient resource allocation and

management techniques for better resource utilization, better application performance? How

to design optimization techniques to help improve the scalability of storage system?

In this chapter, we provide the necessary background for understanding the research done

in this dissertation. More detailedly, Section 1.1 presents challenges and problems related

to the two cloud services that we endeavor to address. Section 1.2 summarizes the research

contributions of this dissertation. Section 1.3 describes an outline of the remains of this

dissertation.

1.1 Challenges of Resource Management in Cloud

Computing

Cloud resource management [10–12] serving as the core enabling technology for cloud com-

puting orchestrates resources from a large number of computers and presents an uniform

view to users and applications. It supports functionalities such as supporting a remote and

secure interface for creating, destroying, configuring and monitoring virtual resources, dy-

namically managing resources, providing configurable resource allocation policies, elastically

provisioning resources based on organizations’ needs [13]. However, building a scalable cloud

resource management system while meeting the requirements of flexibility, performance iso-

lation, efficiency is challenging. Cloud management systems such as Amazon EC2 [14] have

low machine utilization efficiency due to the low consolidation ratio by statically mapping

one VM to a fixed number of physical CPUs and memories. Moreover, cloud providers allow
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users to control resource requests through parameter configuration. It is important to assist

users in easily issuing accurate resource requests without extra efforts. Finally, as the scale

of cluster increases, the current resource management techniques can hardly catch up with

the scale speed. The centralized storage infrastructure usually limits the number of VMs

deployed in the cloud. Thus, it is critical for cloud service providers to design cloud manage-

ment systems and tools that offer scalability, high performance, reliability, availability and

security for rapid and wide adoption of cloud services.

The resource management of MapReduce in the cloud requires the collaboration between

users and MapReduce service providers. From the providers’ perspective, they should be

able to place the data and VM effectively to avoid unnecessary network traffic and guaran-

tee efficient resource utilization; from the users’ perspective, they need to provide accurate

resource requests which typically depend on application characteristics. Thus, we approach

the problem from both cloud providers’ perspective 1.1.1 and from users’ perspective 1.1.2.

For VDEs, one of the key problem is that enterprises suffer from expensive centralized stor-

age system provisioning for peak loads 1.1.3. In the following, we present an overview of

problems and challenges involved in the two targeted cloud services that we address in this

dissertation.

1.1.1 Performance Degradation of MapReduce in Virtualized

Clouds

While cloud offers great promise, MapReduce suffers performance degradation because of

several reasons discussed as follows. The storage infrastructure of existing cloud environ-

ments is poorly suited for MapReduce computation. Clouds are typically built on commodity

clusters with node-local disks for their cost-effectiveness and scalability. Several issues affect

the turnaround time of MapReduce jobs running in these cloud environments.

First, running MapReduce jobs in the cloud has an expensive ingestion phase, where the

dataset needs to be copied from a central persistent store into the compute cluster for pro-

cessing. For large datasets, ingestion represents a significant portion of the turnaround time.

Moreover, clouds feature a stateless model where any data and VMs copied to the phys-

ical/hypervisor cluster are discarded once the job is completed. Subsequent jobs require

transferring the data again.

Alternatively, it may be possible to have the MapReduce tasks access the data directly from
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the remote store via suitable remote data access protocols such as NFS, iSCSI [15], or Fi-

breChannel [16]. Such remote access has several disadvantages. For one, all data would have

to be accessed over the network. MapReduce model achieves its efficiency by ensuring that

tasks can access their data locally. Thus, fetching data over the network severely affects job

performance. Furthermore, the bisectional bandwidth between the compute cluster and the

central store can easily become a bottleneck. A large number of tasks, all accessing their

data from the central store, can quickly saturate the link and render the system inefficient.

A further alternative is to co-locate the data with the compute cluster. However, spreading

out the data across the local disks of cluster nodes constrains the scheduling choices available

for placing VMs. VMs accessing the data located on a particular node must all be placed on

that node, but other constraints such as the amount of memory or licenses may not permit

this. Providing reliability of persistent data located on the hypervisor cluster is also a chal-

lenge. Data stored on a centralized storage device is typically protected from disk failures

through internal replication. Providing a similar replication facility across disjoint local file

systems storing the data is difficult. A cluster file system may be used to combine the local

storage attached to individual nodes in the cluster, but most existing cluster file systems are

designed for a central storage model in a storage area network (SAN), and perform poorly on

local storage [17]. For example, cluster file systems typically stripe files across all available

disks in the cluster to maximize throughput, whereas such a strategy limits the performance

in commodity clusters where network is the bottleneck.

Similar issues also apply to the VM images that compose a MapReduce job. The virtual

image files need to be copied to the hypervisor nodes before starting a job, which introduces

an exceptionally high startup latency. As before, running directly from the remote storage is

not a scalable solution while co-locating the images with the cluster limits scheduling choices.

Second, the cloud masks the physical topology of the underlying infrastructure, which can

potentially inhibit optimal scheduling of MapReduce tasks. The MapReduce model is de-

signed for and leverages information from the native clusters to operate efficiently, whereas

the cloud presents a virtual cluster topology. For instance, the VMs associated with a job

may be placed across multiple racks. However, this information is not typically visible to the

application. Furthermore, the cloud may also change the initial assignment by migrating the

VMs to different nodes in the cluster based on runtime load and other constraints. While

these functions add flexibility, they also make application-level scheduling challenging. This

results in two placement anomalies: (1) Loss of data locality, where a task may be placed

away from the physical location of its data; and (2) Loss of job locality, where a task may be
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placed away from the physical locations of other tasks with which it communicates. Map-

intensive jobs are adversely affected by loss of data locality, and reduce-intensive jobs are

impacted by loss of job locality.

Third, the multi-tenant cloud environment may result in interference between MapReduce

applications and other applications sharing the environment. Scheduling decisions made at

the beginning of the job may become invalid during the course of the job, when VMs are

migrated around or due to changing workloads. The optimal allocation of resources might

become suboptimal leading to poor performance.

1.1.2 Inaccurate Resource Requests through Job Parameter Con-

figuration

MapReduce framework exposes resource requesting knobs through parameter configuration

to users allowing them to request the amount of resources needed within a given quota. While

MapReduce framework enables users to scale up applications easily, writing good MapRe-

duce applications requires specialized system-level skills and extra effort as users also have

to provide application specific job/system parameters requesting needed resources. These

parameters are crucial and affect performance significantly. Inaccurate resource requests

can lead to resource underutilization or over-utilization and performance degradation. For

example, consider the configuration parameter, “io.sort.mb” that controls the amount of

buffer memory to use when sorting files, and thus setting it to suboptimal values can lead to

unnecessary I/Os and consequently increased task running time. Moreover, different appli-

cations require different values for “io.sort.mb” depending on the HDFS [18, 19] block size

and the map task output size. Similarly, applications vary in demands, e.g., MapReduce

application Grep [20] requires less sort space than Terasort [21] since Grep usually outputs

fewer data than Terasort in map phase. The importance of such performance tuning is

highlighted by a simple web search turning up a list of best practices for MapReduce tuning

guides [22–26]. These documents show multiple orders of performance gain for applications

under tuned parameters compared to the default settings. Recent research, e.g., Starfish [27],

shows that MapReduce application performance depends on the size and content of data sets,

job characteristics, the cluster hardware configuration, and more importantly configuration

parameters.

Unfortunately, MapReduce job parameter tuning is a daunting and time consuming task,

mainly due to the fact that the parameter configuration space is huge. The number of per-
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Figure 1.1 The traditional offline performance tuning for MapReduce applications.

formance related parameters in Hadoop [19] is more than 70. Moreover, it is difficult for a

user to figure out the optimal value for a parameter without first having a deep understand-

ing of the MapReduce application characteristics. To address this challenge, the current

approach is to use offline performance tuning technique. As shown in Figure 1.1, traditional

offline tuning first comes up with a configuration based on a default setting or a rough un-

derstanding of application characteristics. Next, test runs of the application are executed

with profiling enabled and data such as job performance counters, system monitoring logs

and the profiling outputs is collected. The user then feeds those results to a performance

advisor or manually analyzes the statistics and generates a new configuration. The process

is usually repeated for multiple runs until a desired configuration is reached. The selected

configuration is then employed while running the application on production clusters.

There are multiple drawbacks of the above traditional performance tuning for MapReduce.

First, the process is time consuming since it requires many test runs, and each run can only

try a single configuration. This is further exacerbated when the application involves long

running jobs. Second, the offline approach is not cost effective if the tuning is done for an

application that will only run for few times or perhaps just once. The users would rather

simply run their applications without tuning, leading to inefficient resource utilization. In

addition, as shown in Starfish [27], the optimal configuration also depends on data sets and

cluster hardware configuration. So, the users would have to adjust the parameters each

time they change input data sets or run applications on different clusters. Moreover, no

one configuration fits for all tasks within one job. MapReduce jobs also commonly exhibit

data skew [28] that requires different amount of resources based on the different sizes of data

being processed. Finally, the traditional offline tuning statically tunes the parameters once

and use the configuration throughout the whole life cycle of a MapReduce job. However,

the job characteristics and cluster utilization are dynamic, and static tuning cannot adapt

to such variations and thus cannot avoid performance-degrading cluster hot spots.
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1.1.3 Storage Limitation of VDE

Within the VDE, the storage infrastructure is typically realized using shared storage box(es)

that offer management features preferred by system administrators [29]. These rich features

include high availability, fault tolerance, distributed resource scheduling, site recovery man-

agement, storage migration, etc., which are not easy or even impossible to achieve using just

local storage.

However, the virtual desktop deployment suffers significant capital costs from enterprise

storage. In order to support the high scalability enabled by virtualization technology, the

shared storage must be provisioned in a way that is easy to scale. Moreover, the shared

storage needs to support not only average IOps from end users, but also the peak load such

as boot storms, login storms, virus scan storms, and testing developing storms. For example,

boot and login storms usually happen at 9 am on weekdays and virus scan storms happen

at 3 am [30]. While the average IOps from light users are usually 8-10 IOps and from heavy

end users is 14-20 IOps, the login process generates 90-100 IOps per end user on average,

which is around 5 times higher than the load from a heavy end user [31]. Similarly, the login

storm pushes the peak load much higher, which has to be provisioned in order to provide

smooth user experience.

Researchers and vendors have observed that there is a lot of duplicate data within VDEs.

For instance, the virtual images usually are created using the same golden images and the

virtual desktops typically install the same set of applications such as anti-virus software and

web browsers. Based on this observation, the I/O reduction techniques including dedup-

box [32]; atlantis ILIO [33]; Capo [29] have been proposed to reduce the duplicated I/O load

from the shared storage system, and hence improve the storage efficiency. However, those

current approaches require adding on-wire deduplication boxes or cannot detect duplicate

data on write path.

The effectiveness of all the above-mentioned techniques depends on the amount of duplicated

data accessed by VMs running on the same physical hosts. While VMs are usually placed

and managed by a centralized VM manager, suboptimal VM placement can lead to reduced

(or preclude) common data accesses by VMs on the same physical host and thus results

in less I/O reduction. For example, a naive VM placement algorithm that places virtual

desktops belonging to employees from a payroll department and virtual desktops belonging

to employees from a software development department indistinguishably reduces the oppor-

tunity to detect common accesses and affects I/O reduction efficiency. In contrast, placing
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virtual desktops of the payroll department on one set of physical hosts separately from those

of the software development department offers better reduction in I/O.

1.2 Research Contributions

This dissertation proposes an innovative resource management framework for two focused

cloud services, namely MapReduce in the cloud and virtual desktop environment. While

designing the planned framework, we propose innovative approaches and systems to tackle

the challenges of accurate resource requesting through parameter tuning, VM/ data manage-

ment for MapReduce in virtualized clouds and storage scalability of VDE. In the following,

we highlight research contributions that we make in this dissertation.

1. We design, develop and evaluate a cloud resource manager, CAM, to maximize the

locality for MapReduce in the cloud. (1) Data placement: Data is placed within the

cluster based on offline profiling of the jobs that most commonly run on the data.

Rather than accommodating an arbitrary data placement, strategically placing the

data can significantly improve locality. (2) VM/job placement: For a given job, CAM

selects the best possible physical nodes to place the set of VMs that represent the

job. (3) Task placement: In order to further minimize the possibility of a placement

anomaly, CAM exposes, otherwise hidden, compute, storage, and network topologies

to the MapReduce job scheduler such that it makes optimal task assignments. This

is crucial as, for example, what appears to be a directly attached local disk within a

VM could in fact be physically located on a different node. CAM reconciles resource

allocation with a variety of other competing constraints such as storage utilization,

changing CPU load and network link capacities using a flow-network-based algorithm

that is able to simultaneously satisfy the specified constraints. Each placement deci-

sion not only considers the existing data and VM assignments in the cluster, but also

evaluates the cost of readjusting existing assignments in response to data movement

and VM migration to derive the best net configuration possible.

2. We investigate how to easy users’ burden to issue accurate resource requests through

dynamic parameter tuning. Specifically, We design and implement a task-level dy-

namic configuration framework,mrOnline, based on YARN [34], the second generation

of open-source MapReduce implementation. mrOnline enables different configuration
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for each map and reduce task, thus providing for high performance. We then de-

sign a gray-box based smart hill-climbing algorithm to systematically search through

the MapReduce parameter space. We support aggressive and conservation tuning

strategies for two use cases. To improve the search quality and reduce convergence it-

eration, we propose tuning rules for key parameters. We evaluate mrOnline on YARN

and present an experimental performance evaluation on a 19-node cluster. Our re-

sults demonstrate that compared to default YARN settings, our approach achieves

an efficiency improvement of 22% for dynamically tuned applications. Moreover, for

applications that run multiple times, mrOnline can expedite the test runs and reduce

job execution time by up to 30%. Our results show that mrOnline offers an effective

means to improve MapReduce application performance.

3. We propose a holistic cache system to improve the scalability of storage system infras-

tructure for VDEs. In particular, we examine (1) host side caching, (2) data transfer

within hosts and between storage server and hosts, and (3) storage server side de-

duplication in a holistic manner, and realize a software-only solution that obviates

the need to provision for peak loads without employing extra memory or adding on-

wire de-duplication boxes. We design and implement SeaCache in the context of

the NFS protocol for client/storage interactions in consolidated data centers offering

a novel holistic approach to support consolidated workloads. More specifically, we

present read/write content sharing algorithms and a collective cache in the context of

an integrated framework and compare the alternate algorithms using real-world traces.

4. To improve the I/O workload similarities between VMs thus guaranteeing the effec-

tiveness of deduplication techniques like SeaCache for VDE, we design, develop and

evaluate a VM placement and migration system, SMIO, in Xen platform. SMIO

detects I/O similarity between VMs, migrates the VMs based on the I/O similarity

benefit and the migration costs. We also propose a multi-phase filtering technique to

improve the quality of our clustering result and the final migration plan. Evaluation

using trace driven simulation shows that SMIO can effectively detect the similarity

between different sets of VMs and improve the performance of storage system.
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1.3 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we discuss the related work

and background technologies that lay the foundation of the research conducted in this dis-

sertation. In Chapter 3, from service providers’ perspective, we introduce a topology-aware

min-cost-flow based resource manager, CAM, which aims to alleviate placement anoma-

lies and performance degradation of MapReduce jobs when hosting MapReduce clusters

in the cloud. We discuss how CAM adopts a three level approach to mitigate the inef-

ficient resource allocation and placement anomalies. We also present an evaluation using

both micro-benchmark and macro-benchmark to show the effectiveness of CAM compared

against a state-of-the-art resource manager. In Chapter 4, we explore how we can help

users to issue accurate resource requests by enabling dynamic online performance tuning

from users’ perspective. We describe how we enable dynamic task level configuration and

systematically search through the configuration space using a gray-box based hill climbing

algorithm. To increase the convergence speed of our search algorithm, we also incorporate a

set of MapReduce specific tuning rules. An implementation and evaluation using a 20-node

cluster demonstrate the effectiveness of our approach. In Chapter 5, we explain the design

of SeaCache to improve the storage scalability and efficiency of centralized storage system in

VDEs. We explore different caching protocols and compare their efficiency in terms of I/O

reduction, latency reduction and system overhead. We present a detailed implementation

and simulation methodology to show that SeaCache effectively reduces I/O bandwidth con-

sumption. In Chapter 6, we study how workload similarity aware VM placement can help

improve the I/O reduction efficiency of techniques such as SeaCache. We describe a hierar-

chical clustering algorithm to cluster VMs with high I/O similarities together and a greedy

migration algorithm with the goal of minimizing migration overhead. Finally, we details a

series of experiments to illustrate that SMIO can help enhance I/O reduction efficiency. We

then conclude the dissertation in Chapter 7 including a discussion of future directions based

on our resource management framework.



Chapter 2

Related Work

As this dissertation focuses on different aspects of resource management in clouds, namely

the VM and data management, MapReduce performance tuning for efficient resource uti-

lization and storage scalability of VDEs, we summarize the state of the art that is close

related to these problem spaces in this Chapter. More specifically, we review the resource

management and VM management approaches, MapReduce performance tuning techniques

followed by a discussion of I/O de-duplication mechanisms adopted for improving scalability

of storage system.

2.1 Resource Management for MapReduce in the Cloud

We present a number of research efforts related to resource management techniques for host-

ing MapReduce in both native clusters and virtualized clusters in this section, which is

pertinent to our topology aware resource manager CAM described in Chapter 3.

Resource allocation for MapReduce in the cloud has received a lot of attention in recent

works [35–39]. The project closest to our proposed resource manager, CAM, is a resource

allocation system called Purlieus, developed by Palanisamy et al. [35]. Purlieus arrives at

a job-local data and VM placement solution according to heuristics specifically developed

for different job types, such as Map-input or Reduce-input heavy. The system defines both

data and VM locality, as well as physical machine load, which are similar to the notion of

VM closeness and Hotspots in CAM. Unlike Purlieus, CAM employs a min-cost flow based

approach, which can consider both VM migration as well as delayed scheduling to arrive at a

global optimal placement. Additionally, CAM optimizes for Storage utilization, which allows

it to do data, as well as CPU utilization, load balancing, consequently improving the overall

VM placement. Moreover, CAM uses both the actual location of data and network topology

12
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as its inputs, whereas Purlieus relies on the virtual topology which may be different from

the physical topology.

LATE [36] improves MapReduce performance in the cloud by performing effective specu-

lative execution to reduce the job running time, while ignoring speculative task locality.

CAM is different from LATE in that it couples the data placement, VM placement, and task

placement to systematically improve data locality for MapReduce in the cloud.

There are several efforts that focus on MapReduce task scheduling in terms of data locality

and fairness. Mantri [40] manages outliers in a resource and cause aware manner on native

cluster. Delay scheduling [41] target fairness scheduling while maximize the map tasks lo-

cality on native clusters by delaying a task multiple times. Although delay scheduling offers

a simple technique to provide better locality, it does not consider global scheduling, thus it

loses the opportunity for achieving better performance. Moreover, the effectiveness of delay

scheduling relies on the assumption that most tasks comprise of either small or long jobs.

Quincy [39] uses similar graph techniques, but it differs from CAM in terms of problem

space and associated flow network construction. Quincy strikes a balance between fairness

and data locality, while CAM focuses on optimizing data/VM placement of MapReduce ap-

plications in the cloud. As a result, the factors encoded in the flow graph (VM closeness,

Hotspot, etc.) are fundamentally different from that of Quincy’s.

2.2 Virtual Machine Management

A plethora of VM placement and migration techniques are proposed in the cloud to optimize

for minimizing network traffic, energy, meeting SLA requirement and so on [42–47]. The

VM placement problem is essentially a bin-packing problem for which various heuristics are

applied.

In order to support efficient consolidation for reducing power consumption within virtual-

ized data centers, Verma [48] et al. propose two static consolidation approaches, correlation

based placement and peak clustering based placement. Correlation based placement tries to

provision individual applications based on off-peak demand while carefully controlling the

SLA violation risk, and to add co-location constraints of positively correlated applications

to prevent placement on the same physical hosts. However, this approach yields unbalanced

workloads across active servers and is not scalable. Peak clustering based placement uses a
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two-level envelop of original time series to cluster workload and place applications sorted in

power-efficient order into minimal number of physical hosts.

Entropy [49] targets the problem of placing VMs in minimum number of physical hosts,

while mitigating migration overhead to save energy. Entropy first formulates the problem as

a n dimensional bin packing problem (constraint satisfaction problem), which is solved using

Choco library, and then calculates a migration plan. This work also attempts to reduce the

number of migrations by considering a migration cost model.

Recon [50] aims to minimize the number of physical hosts in a virtualized data center by

analyzing historical data. It formulates the placement as an optimization problem and uti-

lize AMPL and CPLEX to solve the problem. The solution attempts to discover the CPU

utilization that exhibits complementary behavior. The goal here is to provide a tool for users

to explore the solution space offline instead of a tool to help placing VMs for cloud providers

as is the focus of SMIO discussed in Chapter 6. Recon does not discuss the scalability of the

approach and focuses only on CPU utilization.

With the goal of minimizing the overall network traffic among VMs within data centers,

Xiaoqiao et al. [51] formulate the network traffic aware VM placement as an optimization

problem, and prove it as an NP hard problem that is computationally equivalent to quadratic

assignment problem. In order to solve the problem, they designed a two-level hierarchical

algorithm that assumes that the traffic pattern among VMs are known, and uses it to map

the VMs to a cluster followed by mapping the VMs to each physical host. It is an approxima-

tion heuristic based on network traffic pattern and topologies in data centers, which assigns

VM pairs with heavy communication traffic to physical hosts with fast connection. With

the same goal, Starling [52] proposes to monitor network traffic by maintaining a dynamic

affinity matrix of exponential average over its past values and migrate VMs within a time

window using distributed greedy heuristics. When the benefits of rearrangement exceed a

threshold (estimated based on memory size and available bandwidth link), the migration is

executed.

Due to the dynamic workload fluctuation within virtualized data centers, it is important to

detect and remove the hot spots by migrating VMs. Sandiper [53] discusses a system that

detects hot spots and migrates VMs based on a greedy heuristic algorithm to alleviate hot

spots. Two approaches to detect hot spots include black-box, which is OS and application

unaware, and gray-box, which on the other hand gathers information from OS and appli-

cations. Black-box approach is unobtrusive, however, gray-box approach is more effective.

The main idea of the greedy migration algorithm is to move the VMs from the most loaded
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host to the least loaded host while at the same time trying to minimize data copied in the

migration process.

The above techniques are complementary to our proposed VM placement method, SMIO, in

that none of the works aims to optimize I/O performance by placing VM strategically. Given

the different goal of SMIO, we formulate the problem differently. We mainly consider the

I/O workload similarity when grouping and placing VMs, however, the mechanisms above

can be incorporated into our framework. Moreover, such work is different from CAM, the

system optimized for running MapReduce in the cloud because it does not consider job

characteristics which are critical for managing MapReduce instances in the cloud.

2.3 Parameter Tuning of MapReduce Framework

This section reviews the research related to our dynamic online performance tuning system,

mrOnline introduced in Chapter 4, which aims to assist users in requesting accurate resource

needs through parameter configuration for running MapReduce applications. We group the

related works into three categories: 1) research works focusing on MapReduce configuration

parameter tuning which solve a similar problem space as mrOnline; 2) projects targeting

MapReduce performance tuning from other aspects such as optimizing UDF data flows; 3)

research papers relevant to performance tuning from other areas including network parameter

configuration, etc.

MapReduce Configuration Parameter Tuning: There are several works [27, 54, 55].

that have focused on MapReduce job configuration tuning in recent years. Herodotos et

al. [27, 54, 55] proposed a cost based optimization technique to help users identify good job

configurations for MapReduce applications. Their system consists of a profiler to get concise

statistics including data flow information and cost estimation, a what-if engine to reason

about the impact of parameter configuration settings, and a cost based optimizer to find

good configurations through invocations of the what-if engine. The effectiveness of their sys-

tem depends on the accuracy of the what-if engine that uses a mix of simulation and model

based estimation. mrOnline is different from this work in that mrOnline finds desirable con-

figuration parameters through real test runs on real systems. Additionally, mrOnline uses

task level dynamic configuration to avoid multiple what-if iterations, and unlike such prior

approaches is also able to adjust to dynamic cluster runtime status, e.g., network congestion

or I/O congestion.
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Gunther [56] is another offline tuning method that uses a Genetic Algorithm to identify

good parameter configurations, tries one configuration per test run, and can take 20 − 40

test runs. In contrast, mrOnline can tune within a single job run. Moreover, mrOnline is a

gray box approach that effectively exploits MapReduce runtime statistics, while Gunther is

a black-box approach. In addition, we identify the two use cases; aggressive tuning aims to

reduce the number of test runs, while conservative tuning can help improve the performance

of jobs that only run once. Gunther cannot help in either case.

AROMA [57] aims to automate the resource allocation and job configuration for hetero-

geneous clouds and is aimed at satisfying SLAs while minimizing cost. AROMA uses a

two-phase machine learning and optimization framework based on support vector machine

based performance models. The two phase technique is composed of a offline and online

phase. The offline phase classifies executed jobs using k-mediod clustering algorithm using

CPU, network, and disk utilization patterns, while the online phase captures the resource

utilization signature of tested applications. Finally, AROMA find near optimal resource al-

location and configuration parameters based on a pattern matching optimization method.

Compared with mrOnline, AROMA does not support dynamic configuration. Moreover,

AROMA has to first collect application resource utilization signatures before finding a near

optimal configuration. This is not suitable for jobs that run once.

Parameter tuning guides [22–26] are also proposed by industry and vendors to help MapRe-

duce non-experts to set desirable values for their applications. However, these tuning guides

are based on heuristics. The burden is still on the end users to try out multiple parameter

combinations, which is time consuming and cumbersome as discussed in Section 1.1.2.

MapReduce Performance Tuning: Performance tuning of MapReduce framework [58–

61] has gained a lot of attention from industry and research. MANIMAL [58] focuses on the

efficiency of query processing of MapReduce framework and utilizes static program analysis

techniques on user-defined functions (UDFs) to detect standard query optimization oppor-

tunities. To bridge the performance gap of MapReduce and parallel DBMS, Hadoop++ [61]

tries to inject optimization into UDFs, which makes query processing pipeline explicit and

present it as DB style physical query execution plan. This work has a different focus than

mrOnline. SUDO [62] analyzes UDFs to identify beneficial functional properties to optimize

data shuffling for MapReduce frameworks by utilizing program analysis techniques. PerfX-

plain [60] provides a tool for non-expert users to tune MapReduce performance. This tool

auto-generates an explanation for the queries comparing two jobs, which can help identify

the reasons why inefficiency or unexpected behavior happens. However, this work does not
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provide clear guidelines of what job configuration parameters should be used. Jiang et al. [59]

provides a performance study of MapReduce, pinpointing factors that impact MapReduce

performance including I/O, indexing, record decoding, grouping schemes and block level

scheduling in database context. Although these works share with mrOnline the goal to im-

prove MapReduce application performance, these systems differs from mrOnline because of

different optimization aspects and different targeted environments. Moreover, to the best of

our knowledge, mrOnline is unique in its focus on YARN-based systems.

Simulation based performance tuning [63, 64] techniques have also explored. Our own pre-

vious work, MRPerf [63], utilizes a simulation methodology to capture various factors that

impact Hadoop performance. Similarly, Mumak [64] is designed as a MapReduce simulator

for researchers to prototype features and predict their behavior and performance. These

projects do not tune configuration parameters as such and only provide means to estimate

application performance on given configurations.

Parameter Tuning in Other Areas: A number of search techniques are proposed to

find good configuration with high probability [65, 66] in other research areas as well. Re-

cursive random search [65] is a black box optimization approach that employs a heuristic

search algorithm for tuning network parameter configurations. Smart hill climbing, designed

for server parameter tuning, is another black box optimization approach that is designed

to improve the recursive random search algorithm. Smart hill climbing adopts a weighted

LHS technique to improve the random sampling on the first phase. Moreover, the algorithm

learns from past and searches the space using steepest descent direction and improves the

search efficiency. The tuning algorithm of mrOnline is inspired by smart hill climbing algo-

rithm. However, since the targeted problem is different, the challenges faced in mrOnline

are different from the above algorithms.

iTuned [67] concentrates on tuning database configuration parameters by adaptive sampling

and uses an executor to support online experiments through a cycle staling paradigm. This

approach is not suitable for MapReduce systems. JustRunIt [68] is an experiment based

management system for virtualized data centers. It shares with mrOnline the goal of tun-

ing parameters using actual experiments that are cheaper, simpler and more accurate than

performance models or simulations. However, the approach is not simply applicable to

MapReduce.
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2.4 I/O Deduplication

Optimization
Focus

Strategy Research Projects

De-duplication Venti [69], REBL [70], IBM N Series SS [71], De-
dup FS [72]

Storage Server Optimized Index Struc-
tures

De-dup FS [72], Sparse-Indexing [73], Founda-
tion [74]

Back Reference Track-
ing

Backlog [75]

Host / Storage
Server

Caching Hints Exclusive caching [76], Write-hints [77], X-
RAY [78]

Interactions Hash-value Passing CASPER [79], DeDe [80], Pastiche [81]
Optimize On-wire
Transfers

LBFS [82], TAPER [83], Capo [84]

Host Memory De-duplication,
Compression

Difference Engine [85], ESX Server [86],
Satori [87], I/O De-dup [88]

Cooperative Caching Cooperative Cache [89], LAC [90], Shark [91]

Table 2.1 Classification of related research.

In this section, we classify several prior research works (Table 2.1) related to our research,

especially SeaCache 5 and SMIO 6, in optimizing the I/O path based on where the optimiza-

tions are made, namely: 1) at the host; 2) at the storage server; or 3) during the interactions

between the host and the storage server.

Storage Systems De-duplication Management: A number of works have explored

identifying and removing redundancy from stored data to optimize storage usage. Venti [69]

utilizes SHA hashes on fixed-sized blocks of data to avoid having to store multiple copies of

duplicate data for archival storage. REBL [70] introduces the idea of super-fingerprints to

further optimize the amount of data needed for identifying duplicates, thus improving per-

formance. The IBM N Series Storage Systems [71] offers a near-line version of de-duplication

techniques in a real system implementation. Similarly, De-duplication File System [72] uti-

lizes techniques such as compact in-memory data structures for identifying duplicates, and

improved on-disk locality to yield high efficiency.

Research on the storage server side optimizations also include design of advanced data

structures to improve de-duplication efficiency, e.g., in large-scale file systems [72], stream

processing [73], and user storage [74], etc. Finally, Backlog [75] offers means for efficiently

supporting features such as defragmentation and migration in the presence of de-duplication.
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These techniques are complementary to SeaCache. We focus on communicating the data

de-duplication information between the storage server and the hosts. SeaCache optimizes

the data transfer and latency by leveraging this de-duplication information without any

dependency on the underlying topology (primary or backup).

Host / Storage Server Interaction Optimizations: The prior art on obtaining better

cache utilization at hosts and storage servers by treating them as an integrated unit offers

optimizations, such as exclusive caching [76], sharing write-hints [77], and inferring accesses,

e.g., with X-RAY [78], which are complementary to our work. The integrated caching frame-

works focus on reducing duplicate data between different tiers of storage caches. However,

in SeaCache, the main focus is on avoiding transfer of duplicate data between storage servers

and client VMs on hosts.

Distributed hash management techniques such as those employed in CASPER [79] and Pas-

tiche [81] deal with storing content hashes at the hosts so that they can choose the most cost

effective replica from among a set of storage servers. Similarly, de-centralized de-duplication

(DeDe) [80] uses techniques where a set of hosts communicate with each other to de-duplicate

data. Such techniques can be leveraged in SeaCache both for transferring de-duplication

information between the host and storage server, as well as for host buffer management.

Finally, the on-wire bandwidth reduction techniques, e.g., in LBFS [82] and TAPER [83], are

different from SeaCache in that these techniques keep track of the data being sent between

the hosts and the storage servers and try to not send duplicates. These techniques are not

integrated with the host buffer management techniques, and so the hosts can continue to

send data requests to the storage servers even if they have the data cached, and similarly

the storage server will do the necessary processing associated with a data request even if it

has previously sent the data to the host. Capo [84] leverages the fact that most of the VM

disk images are the linked clones from a small set of “golden images” and uses a bit-map

to eliminate the duplicate read requests. However, unlike SeaCache, Capo cannot detect

duplicate reads outside of golden images or duplicate writes.

Host Cache Management: The host side client caching research primarily consists of how

to compress and de-duplicate the client cache (e.g., Difference Engine [85], ESX Server [86],

and Satori [87]), and how to avoid sending duplicate read data request to disks (e.g., I/O

De-duplication [88]). The cache replacement algorithms and the transferring of cache state

to the storage server techniques employed in SeaCache are complementary to the previous

host side cache de-duplication/compression strategies and can be employed in that context.

Moreover, in SeaCache, the de-duplication algorithms on host and storage server can share
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de-duplication information to eliminate the CPU intensive recomputation of content sharing

attributes.

These I/O reduction mechanisms serve as a base for our proposed workload similarity-aware

VM placement, SMIO, in that simply adapting our technique can not immediately benefit

the storage system performance without using the I/O reduction approaches. On the other

hand, the effectiveness of the mechanisms all depends on the I/O workload similarity among

VMs. In the above works, the efficiency would suffer if the I/O workload similarity in the

same physical host is low. In contrast, SMIO aims to improve the I/O similarity among

VMs running on the same physical host, thus improves the efficiency and scalability of the

storage system.

Cooperative Caching: Cooperative caching techniques focus on designing efficient eviction

algorithms and meta-data indices to aggregate distributed client caches as a unified cache

and to facilitate fast lookup. N-chance forwarding [89] assigns more weight to singlets that

have only one copy of data in the cache by forwarding singlets to random peers. LAC [90]

forwards the evicted data block to peers based on data reuse distance and dynamic client

synchronization. Shark [91] designs a locality aware distributed index to enable clients to

locate nearby copies of data.

These techniques are orthogonal to SeaCache, as SeaCache introduces the de-duplication

concept into the cooperative cache and focuses on how cooperative caching can help to re-

duce I/O bandwidth consumption. In our SMIO system, we offer an alternate solution for

mitigating the I/O demand to storage server other than use cooperative cache. Moreover,

in the case where a group of VMs have similar I/Os for a relatively long time period, our

placement will eliminate the associated network traffic (at the cost of one-time migration),

which cooperative cache can not.

2.5 Chapter Summary

In this chapter, we discuss the related work on resource management of MapReduce in the

cloud, the virtual machine management, the parameter tuning and I/O reduction technique

for VDEs. The framework presented in this dissertation targets to provide efficient resource

management approaches for both MapReduce in the cloud and VDEs with the main objec-

tive of improving resource utilization efficiency and application performance in a transparent

and efficient manner.



Chapter 3

Topology-aware Minimum-cost-flow
Based Resource Management

Hosting MapReduce platform on virtualized clouds enables enterprises especially startups

to focus on the core business without acquiring or maintaining any large cluster resources.

However, as MapReduce is originally designed to run on bare metal clusters, it suffers from

performance degradation due to placement anomalies and resource scheduling inefficiency.

Reasons come from the fact that clouds overlay network and storage topology information

from MapReduce framework and encounter scheduling conflicts and interference between

MapReduce applications.

In this chapter, we present CAM, a platform that is designed to host MapReduce applications

in virtualized clouds. CAM provides a cluster file system that supports an uniform file sys-

tem name-space across the cluster by integrating the discrete local storage of the individual

nodes. The shared file system enables a VM to be placed on any cluster node or subsequently

migrated as necessary. We leverage GPFS [92] in CAM to query and specify the physical

locations of an image and its replicas, which can then be used for CAM-directed placement of

VMs and data. CAM avoids the placement anomalies with an innovative resource scheduler

for the cloud, especially designed for improving the performance of MapReduce jobs. CAM

reconciles both data and VM resource allocation with a variety of competing constraints,

such as storage utilization, changing CPU load and network link capacities. CAM uses a

flow-network-based algorithm that is able to optimize MapReduce performance under the

specified constraints – not only by initial placement, but by readjusting through VM and

data migration as well. Additionally, CAM exposes, otherwise hidden, lower-level topology

information to the MapReduce job scheduler so that it makes near-optimal task assignments.

21
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Figure 3.1 CAM architecture components.

3.1 Architecture

CAM is designed as an extension to IBM ISAAC product [93]. ISAAC implements key cloud

functions such as creating and deleting VMs and their persistent volumes, placing the VMs

based on load and capacity, maintaining availability of cloud services through clustering and

fail-over mechanisms. The architectural components of CAM are implemented as exten-

sions to related counterparts in ISAAC. In particular, we have integrated ISAAC with the

GPFS-SNC [92] file system to provide a suitable cluster file system needed by CAM, and

have extended ISAAC to support data and VM placement based on techniques we describe

in Section 3.3. Figure 3.1 illustrates the components of CAM and their interactions when

deployed in a cloud environment. The physical resources supporting the cloud consists of a

cluster of hypervisor (physical) nodes with local storage directly attached to the individual

nodes.

3.1.1 GPFS-SNC Storage Layer

CAM uses GPFS-SNC [92] to provide its storage layer. GPFS-SNC is designed as a cloud

storage platform, which supports timely and resource-efficient deployment of VMs. GPFS-

SNC manages the local disks directly attached to a cluster of commodity physical machines.

More specifically, it has a number of unique features that make it a cloud-friendly storage

system. First, GPFS-SNC supports co-locating all blocks of a file at one location, rather

than stripping the file across machines. This enables a VM I/O request to be serviced locally

from the stored location instead of remotely from physical hosts across the network. CAM
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leverages this feature to ensure that co-located VM images are stored at one location and can

be accessed efficiently. Second, GPFS-SNC supports an efficient block-level pipelined repli-

cation scheme, which guarantees fast distributed recovery and high I/O throughput through

fast parallel reads. This feature is useful for CAM for achieving efficient failure recovery.

Finally, GPFS-SNC specifies a user-level API that can be used to query the physical location

of files. CAM uses this API to determine actual block location, and uses this information to

infer storage closeness for data and VM placement.

3.1.2 Topology Awareness

MapReduce task scheduler uses the topology information of the cluster nodes to decide task

assignments. The information is supplied by the user as a part of the job configuration

file when the job is submitted. However, in an attempt to abstract hardware level details

and present a simple interface to the user, existing cloud implementations do not expose

the information about the topology of the cluster or the actual placement of VMs to the

MapReduce scheduler [14]. Furthermore, the initial configuration provided by the user may

become stale when the VMs are moved later.

CAM addresses these issues with three main components that together provide topology

awareness as shown in Figure 3.1. First, the CAM topology server provides the addi-

tional topology information required to enable the MapReduce scheduler to place the tasks

optimally. The topology server is an integral component of the ISAAC cloud service in-

frastructure and provides a REST interface, which the scheduler invokes. The information

exposed by the topology server consists of network and storage topologies, and other dy-

namic node-level information such as CPU load. Second, a set of agents running on the

physical nodes of the cluster periodically collect and convey to the topology server, a va-

riety of pieces of data about the respective node, such as utilization of outbound/inbound

network bandwidth, IO utilization and CPU/memory/storage load. The topology server

consolidates the dynamic information it receives from the agents and serves it along with

topology information about each job running in the cluster. The topology information is

derived from existing VM placement configuration. Third, a new MapReduce task scheduler

interfaces with the topology server to obtain accurate and current topology information.

The scheduler readjusts task placement accordingly whenever a change in the configuration

is observed. Note that CAM needs to provide a different scheduler because the standard

MapReduce scheduler is designed to make the placement decisions only based on a static
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configuration file and only at the beginning of the job [94]. While the MapReduce task sched-

uler is modified to leverage the topology and physical host resource utilization information

in CAM, the MapReduce applications can run without any modification.

The network topology information is represented by a distance matrix that encodes the

distance between each pair of VMs as cross-rack, cross-node, or cross-VM. Current MapRe-

duce task schedulers consider rack and node localities but lack the notion of VM locality.

When two VMs are placed on the same node, they are connected through a virtual network

connection implemented as a part of the hypervisor. By virtue of the fact that the VMs share

the same node hardware, the virtual network provides a high-speed medium that is signifi-

cantly faster than the inter-node or inter-rack links. The network traffic between the VMs

on the same node does not have to pass through the external hardware link. The network

virtual device simply forwards the traffic in-memory through highly optimized ring buffers.

CAM extends the MapReduce scheduler to consider this fine-grain locality information to

make optimal placement choices for the tasks.

API Description

int get VM distance(string vm1, string

vm2)

Returns the distance between two
VMs.

struct block location

get block location(string src, long

offset, long length)

Returns the actual location of blocks.

int get vm networkinfo(string VM,

struct networkinfo)

Returns the network utilization infor-
mation of physical host on which the
VM is running.

int get vm diskinfo(string vm, string

device, struct diskinfo)

Returns disk utilization information.

int get VM cpuinfo(string vm, struct

cpuinfo)

Returns CPU utilization information of
the physcial host on which the VM is
running.

Table 3.1 The key APIs provided by CAM to the MapReduce scheduler.

The storage topology information is provided as a mapping between each virtual device

containing the dataset and the VM to which the device is local. In the native hardware

context, a SATA disk attached to a node can be directly accessed through the PCI bus. In

the cloud, however, the physical blocks belonging to a VM image attached to a VM could

be located on a different node. Even though a virtual device might appear to be directly

connected to the VM, the image file backing the device could be across the network, and
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potentially closer to another VM in the cluster than the one it is directly attached to in the

virtual setup. The topology server queries the physical image location through the GPFS

API and presents the information to the MapReduce scheduler.

The specific APIs provided by the topology server is described in Table 3.1. get V M distance,

provides MapReduce task scheduler with hints of the network distance between two VMs.

The distance is estimated based on observed data transfer rates between the VMs, and is

expressed in units of bandwidth. get block location, enables MapReduce to get the actual

block location instead of the location of a VM, thus guaranteeing data locality. The rest of

the calls are used to facilitate the MapReduce task scheduler to query the I/O and CPU

contention information related to network and disk utilization. The MapReduce task sched-

uler can leverage this additional information to make smarter decisions, such as placing I/O

intensive tasks on physical hosts that have idle I/O resources.

3.2 CAM Usage Model

CAM is a cloud platform with specific interfaces and support for running MapReduce jobs.

The dataset to be processed is initially placed on GPFS. This is in contrast to most cloud

models, which segregate storage and compute resources, and require the dataset to be moved

from the storage cloud to the compute cloud for processing. Co-locating storage and compute

clusters avoids the expensive ingestion phase for each job run. Data placed in this manner

can be used by each subsequent job in CAM.

The placement of data is driven by the nature of MapReduce jobs that are typically run on

the data. For instance, if the dataset is primarily used as input for various pattern search

jobs, data locality is likely to be more important than task locality. The user can specify the

nature of expected workloads, or the workload characteristics can be automatically derived

based on previously observed I/O patterns.

The user submits a MapReduce job by providing the application, e.g., relevant java class

files, indicating a previously uploaded dataset corresponding to the job, and the number and

type of VMs to be used for the job. Each VM typically supports several MapReduce task

slots depending on the number of virtual CPUs and virtual RAM allocated to the VM. The

more the number of VMs assigned to a job, the quicker the job finishes.

CAM determines an optimal placement for the set of new VMs requested by the user by
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Figure 3.2 Setup of CAM for supporting MapReduce in the cloud.

considering a variety of factors such as current workload distribution among the cluster

nodes, distribution of the input dataset required by the job, and the physical locations of

the required master VM images. The images required to boot the VMs on the selected nodes

are created from the respective master images using a copy-on-write mechanism provided by

GPFS, which allows fast provisioning of a VM image instance without requiring a data copy

of the master image. The job class files are copied into the cloned VM image by mounting

the image as a loopback file system. These changes are private to the cloned image. Next,

the data images are attached to the VMs and the respective device files are mounted within

the VM for the MapReduce tasks to access the data contained within them.

Figure 3.2 illustrates the setup. Each machine is equipped with local disks. There is a

distributed file system installed on top of these physical machines. The VM image files are

stored in the distributed file system. Moreover, there is a cloud manager that allocates the

resources for MapReduce jobs, and manages the data placement and VM placement.

3.3 Min-Cost Flow Based Placement

In this Section, we present how CAM manages Data and VM placement using a min-cost

flow based approach. In our model, we assume that it is possible for the cloud provider

to profile a job and estimate its characteristics such as job type (Map-Reduce intensive,

Map intensive, or Reduce intensive), and input, output and intermediate data sizes. For

our current implementation, we rely on user-provided or predetermined job descriptions to

identify a job’s type. However, the system can be easily extended to determine the amount
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of time an application spends in different phases (Map, Reduce), and use this information to

determine a job’s type. For example, a job that spends more than 30% of the time in Map

can be considered as Map-intensive.

3.3.1 Data Placement

We express the problem of optimally placing data in a given cloud cluster architecture as an

instance of the well-known min-cost flow problem [39]. To achieve this, we break down the

placement problem into three sub-problems, namely guaranteeing VM closeness, avoiding

hotspots, and balancing physical storage utilization according to different job types. We

capture the three constraints via similarly named factors in our model. VM closeness ex-

presses how close data should be placed to VMs so that the network traffic between the

corresponding VMs is minimized. Hotspot factor expresses the expected load on a machine,

and identifies machines that do not have enough computational resource to support the

VM(s) assigned to them. To avoid a hotspot, data needs to be placed on the least-loaded

machine. This can be determined by measuring the current computational resource load of

the machine and adding it to the expected computational requirements of the VMs that will

work with the data to be placed on the machine. Storage utilization expresses the percentage

of total physical machine storage space that is in use.

Job VM Hotspot Storage
Type closeness factor utilization

MR-intensive Yes Yes Yes
M-intensive No Yes Yes
R-intensive No No Yes

Table 3.2 Significance of considered cost factors for different job types.

Table 3.2 shows the significance of the three factors on the performance of different MapRe-

duce workloads. For workloads that are both Map and Reduce intensive, related data should

be placed close together and on the least loaded machine. For Map intensive workloads, the

data should be placed on the least loaded machine, but does not necessarily need to be

placed close together due to the light shuffle traffic in such workloads. For Reduce intensive

workloads, the only concern is the storage utilization of the machine on which the VM is

to be placed. For all types of workloads, it is desirable to place data evenly across racks to
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minimize the need to rearrange data over time for supporting migrating VMs.

We use these factors in constructing a min-cost flow graph that encodes the factors. Then

we employ an extended solver to minimize the global cost of the graph, thus solving the

original problem of determining how data should be placed in the virtualized cloud.

Figure 3.3 Sample network topology for data placement.

Figure 3.4 Flow graph for sample data placement.

Figure 3.3 shows a sample network topology, which consists of six physical nodes (p1, . . . , p6)

organized into three racks (r1, r2, r3) with one master rack/switch (r4) connecting the racks.

Note that our model can support any topology where the network traffic can be estimated.

There are several challenges when min-cost flow is used in our problem space. First, the

three factors described above have to be encoded into the graph. Second, the correlation

between different VMs images placement has to be encoded (which is shown to be non-

trivial [39]). The flow-network model is aimed at minimizing the flow cost, however, we
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employ the model to also consider VM closeness as an objective, which requires it to solve

correlated constraints, i.e., a set of VMs would have to be placed together, but it does not

matter where. Third, the three factors capture different costs that are not directly compa-

rable to each other. For instance, VM closeness of 1 may signify the cost of copying 1 GB of

data within a local rack, where as Hotspot factor of 1 may signify the cost of using a physical

machine that has 1% more load than the least-loaded machine in the cluster. The two costs

are clearly not the same. Thus, we need a way to formulate the three factors in the same

units for encoding them into a min-flow graph.

In contrast to the extant data placement techniques that work at the granularity of the data

blocks, our unit of data placement is a VM image. Such coarse placement is justified in

CAM as the goal is to ensure that an entire image is available at one location. Moreover,

our underlying storage layer of GPFS-SNC avoids striping the data across different physical

machines, thus making block-level placement unnecessary.

We address these challenges as follows. Consider the corresponding min-cost flow graph for

Figure 3.3 as shown in Figure 3.4. Here, two data items d1 and d2 with requests for 5 and 2

VM images, respectively, are submitted to the cloud. The number of VM images requested

by a data item is denoted as the data item’s supply for our flow graph. Conversely, we add

a sink node S to the graph, that can “support” the VMs. The number of VMs that a sink

node can handle is assigned as a demand value. In our example, S has a demand −7 and

is the only place that can receive all the flows. Each flow graph edge has two parameters

attached to it, the capacity of the edge and the cost for a flow to go through the edge. The

data nodes, represented by d1 and d2 in the graph, have outgoing links to each rack with VM

closeness as costs. The Hotspot factor is encoded in the links from the racks to each physical

node p within its range. Note that even though r4 serves as a switch between the racks, it

is shown in the graph as directly connected to all the physical nodes. This is to ensure that

the least-loaded machine can be chosen for Map-intensive jobs without being constrained by

the network topology. All the physical nodes, p1, . . . , p6, are linked to the sink node with

Storage utilization as link costs. Note that there is no direct link from data item node dj to

the associated physical host pi. This is to support scaling up the system, as otherwise the

number of links in the graph will increase with increasing number of data items and physical

nodes (much faster than the number of racks). Consequently, making it inefficient to solve

for min-flow on the graph.

Table 3.3 provides the details of how we encode the various factors and system information

in our min-cost flow graph. Ndj is the number of VM images requested by dataset dj . αjk
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Data set Rack Physical Sink
dj rk host pi S

Supply
∑

(Ndj ) 0 0 -
∑

(Ndj )

Incoming N/A Ndj Rack Physical
link from host

Outgoing Rack Physical Sink N/A
link to (Ndj , αjk) host (Capi, γi)
(cap., cost) (Capi, βi)

Table 3.3 Values assigned to the flow graph for data placement used in CAM.

captures VM closeness. The cost, αjk, of outgoing link from the dataset dj to physical host

pi on which the data is placed on rack rk is estimated conservatively by the traffic in the

shuffle phase as follows:

αjk = sizeintermediate ∗
numReducer − 1

numReducer

∗ distancemax, (3.1)

where distancemax is the maximum network distance between any two nodes in the rack rk,

and sizeintermediate and numReducer are the total size of data output by the Map phase and

the number of reducers, respectively, of the MapReduce job running on data set dj . Note

that given its higher distancemax a higher level rack/switch, e.g., r4 in our example, would

have a higher α than the lower racks, e.g., r1, r2 and r3, based on this formula. The Hotspot

factor is captured using βi for physical node pi, and is estimated by the current and expected

load as follows:

βi = a ∗ (loadexp + loadcurr − loadmin), (3.2)

where loadcurr and loadmin represent the current load and minimum current load, respec-

tively. a is a parameter that acts as a knob to tune the weight of the Hotspot factor with

respect to other costs. Moreover, based on guidelines from [35] the expected load is deter-

mined as loadexp =
∑

j(ρj/(1 − ρj) ∗ CRes(dj), where ρj = λj/µj. Here, λj represents the

number of dj’s associated jobs that arrive within a give time interval, µj represents the mean

time for each VM to process a block, and CRes(dj) represents the compute resources re-

quired by jobs running on data set dj. Storage utilization of a physical node pi is captured by

γi, which is determined by the current storage utilization compared with minimum storage
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utilization of all pis.

γi = b ∗ (storageUtilpi − storageUtilmin) (3.3)

Here, b is another parameter used to fine tune the weight of Storage utilization with respect

to the other two factors. Finally, Capi = freespacepi/sizeV MImg, is a conservative estima-

tion of the capacity of each physical host calculated as the ratio of the available storage

capacity of pi and the size of the VM image. We assume that all VM images have the same

size (10 GB in our experiments) when initially uploaded to the cloud.

To enable the graph to capture the correlation between VM image placement for one data

request, we extend the solver to take into account an additional parameter for each edge,

split factor, which specifies whether flows from a node are allowed to be split across different

links, and is either true or false. In our example, split factor for all the links from d1 and d2

are set to false. This implies that all the flows from data nodes will wholly go through one

of the r1, . . . , r4, but will not be split between the racks.

Once a new data upload request comes in, the cloud server updates the graph and computes

a global optimal solution. The graph is updated as follows. First, the graph is cleaned of

data and state from the previous iteration. This is done by deleting the data nodes that

correspond to the datasets that have finished uploading, and their outgoing links from the

graph. Next, the cost of the edges corresponding to the Hotspot factor and Storage utiliza-

tion of the physical nodes where the data was stored need to be updated using equations 3.2

and 3.3. Then, a new data node dj is created for the new data upload request with edges

to each rack node rk with costs calculated based on the above equation 3.1. Once the graph

is updated, a new min-flow value is calculated, which is then used by the cloud scheduler.

This process ensures that the cloud scheduler is timely provided with updated information

to accommodate varying loads.

3.3.2 VM Placement

The goal of VM placement is to maximize the global data locality and job throughput. Our

model considers both VM migration and delayed scheduling of a job as part of the optimal

solution. Delaying a job is used to explore better data locality opportunities that can arise

in the near future, while minimizing time wasted during the waiting. Migrating a VM be-
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longing to a job enables our scheduler to make room for other suitable jobs or to explore

better location opportunity. There are two assumptions that we make about how VMs are

migrated. First, we assume that once the VMs for a job are allocated, the job will not be

suspended or killed. There is no preemption, which guarantees that the job will have some

quota of resources at all times during its life span. Second, even if some of the VMs belonging

to a job get migrated, their total number remains the same. We model the VM placement

as minimum cost flow problem, which has similar characteristics to the min-cost flow based

data placement.

Figure 3.5 Flow graph for VM placement.

An example graph for VM placement is shown in Figure 3.5. Each job vj is submitted to the

system at the source node with the number of requested VMs, Nvj , as the value of supply.

The goal of the VM allocator is to either keep the job unscheduled (allocate 0) or allocate

Nvj VMs for each request. There is a single sink node, S, in the system with demand equal

to minus the sum of the supply. The request from each job acts as a flow that goes either

through the rack nodes, rk, or through the unscheduled nodes, uj, and finally to the sink. If

a job is unscheduled, none of its VMs are allocated. Otherwise, the flow goes through the

physical nodes, pi. Each job vj has a “preferred” node prj that has outgoing links to a set

of physical hosts that would be preferable for vj to be scheduled on. Based on the min-cost

solution, a allocation scheme with min-cost can be easily derived. If the VMs are allocated

to the highest level rack, it implies that the VMs can be allocated arbitrarily to any set of

nodes in the VMs under the rack. Once vj is scheduled, a “running” node (ruj) is added to
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the graph to keep track of information about the execution of vj , which is then used by the

solver to direct migration decisions.

The job type information is modeled as the cost of the edge from each job to the rack nodes

in our flow based graph. The higher level rack has higher cost than the lower lever rack

in terms of reduce traffic. We use conservative approximation to compute bounds on data

transfer costs. The cost to the highest level rack is estimated by worst case VM arrangement

with regards to the map and reduce traffic. Similar rules apply to the lower level rack. The

cost of the edges to the unscheduled nodes are set to be increased over time so that delayed

jobs get allocated sooner than recently submitted jobs. This cost also controls when a job

stops waiting for better locality, and thus offers a knob to tune the trade-off between data

locality and latency. The aggregated unscheduled nodes control how many VMs can remain

unscheduled, which is another system parameter to control the system resource utilization

and data locality trade-off. The cost of the edges to running nodes set is increased over time

and is job-progress aware. For example, a reduce intensive job run during the reduce phase

might not be suitable for migration to make room for a contending job request.

Similarly as for data placement, we provide means for expressing the cost of reading data

across different level of racks, migrating VMs, and delay scheduling in the same units. For

example, we can choose that the copying of 1 GB data across rack local switch costs the

same as copying 0.5 GB data across one level higher rack, or the same as setting up of and

starting one VM, or the same as delaying a VM execution by say 10 seconds.

Job node Preferred Running Unscheduled Unscheduled Rack node Physical host Sink
set node set node set node set aggregator node set node set

supply
∑

(Nvj
) 0 0 0 0 0 0 −

∑
(Nvj

)

Incoming N/a job job job all unschedule job; rack; preferred physical
link from nodes higher nodes set; host;

rack running unscheduled
nodes set aggregator

Outgoing Rack(Nvj
, ρj) Physical Physical Unscheduled Sink Physical Sink N/A

link to Prefer(Nvj
, θj ) host host aggregator (Nunsched, 0) host (Nvm, 0)

(cap., cost) Run(Nvj
, φj) (di, 0) (ri, 0) (Nvj

, 0) (Nrk
, 0)

U(Nvj
, ǫj)

flow Nvj
0/Nvj

0/Nvj
0/Nvj

0/Nunsched 0, Nrk
0, 1

∑
(Nvj

)

Table 3.4 Values assigned to the flow graph for VM placement used in CAM.

We categorize the various nodes in the graph into different types as shown in Table 3.4.

• Preferred node set (prj): These graph nodes point to a set of physical nodes pi that

have a job vj ’s associated dataset stored on them. An edge from a preferred node to

pi has the cost of 0 and the capacity of the number of VM disk images stored on pi.
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• Running node set (ruj): These are dynamically added nodes that point to pis that are

currently hosting the vj’s VMs. An edge from ruj to pi has a cost of 0 and the capacity

of the number of VMs running on pi.

• Unscheduled node set (uj): These nodes provide information about currently unsched-

uled jobs. uj has an outgoing edge with capacity of Nvj and cost 0 to a unscheduled

aggregator.

• Unscheduled aggregator node (ua): The graph contains a single unscheduled aggre-

gator. u has an outgoing edge with cost 0 to the sink with capacity of Nunsched =
∑

(Nvj )−M+Midle, where M is the total number of VMs that the cluster can support

and Midle denotes the number of idle VM slots allowed in the cluster.

• Rack node set (rk): The rack node rk represents a rack in the topology of the cluster.

It has outgoing links with cost 0 to its subracks or, if it is at the lowest level, to physical

nodes. The links have capacity Nrk that is the total number of VM slots that can be

serviced by its underlying nodes.

• Physical host node set (pi): Each physical host pi has an outgoing link to the sink with

capacity the number of VMs that can be accommodated on the physical host Nvm and

cost 0.

• Sink S: The single sink node with demand −
∑

(Nvj ).

• Job node set (vj): This set represents each job node vj with supply NVj
. It has multiple

outgoing edges corresponding to the potential VM allocation decisions for vj. These

edges are discussed in the following:

– Rack node set rk: An edge to rk indicates that rk can accommodate vj . The cost

of the edge is ρj that is calculated by the map and reduce traffic cost. If the

capacity of the edge is greater than Nvj , it implies that the VMs of vj will be

allocated on some pis on the rack.

– Preferred node set (prj): An edge from job vj to the job wide preferred nodes set

prj has capacity Nvj and cost θj . The cost is estimated by only the reduce phase

traffic, because in this case map traffic is assumed to be 0.

– Running node set (ruj): A link from job vj has capacity of Nvj and cost φj = c∗T ,

where T is the time the job has been executing on the set of machines and c is a

constant used to adjust the cost relative to other costs.
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– Unscheduled node set (uj): An edge to the job-wide unscheduled node uj has

capacity Nvj and cost ǫj , which corresponds to the penalty of leaving job vj un-

scheduled. ǫj = d ∗ T , where T is the time that job vj is left unscheduled and d

is a constant used to adjust the cost relative to other costs. The split factor for

this link is marked as true, which means the allocation of all the VMs are either

satisfied or be delayed until the next round.

When a VM allocation request is submitted, the flow graph is updated to calculate a new

global optimal solution for the VM scheduler. Similar to the update process for data place-

ment, the graph is cleaned by removing unnecessary nodes and edges. For example, for each

finished job vj , the associated nodes including the unscheduled node uj, the preferred node

prj and the running node ruj are deleted from the graph since the job has released its VM

resources. Then, the costs of edges related to the jobs that are still running are updated

according to Table 3.4 to reflect the jobs’ current state. Next, a set of new nodes and edges

are added into the graph for the current VM allocation request, namely, a job node, a related

unscheduled node, and a preferred node. Moreover, the corresponding edge costs are again

calculated as described in Table 3.4.

Once the solver outputs a min-cost flow solution, the VM allocation assignment can be ob-

tained from the graph by locating where the associated flow leads to for each VM request

vj . Flow to an unscheduled node indicates that the VM request is skipped for the current

round. If the flow leads to a preferred nodes set, the VM request is scheduled on that set

of nodes. Finally, if the flow goes to a rack node, it implies that the VMs from the job are

assigned to arbitrary hosts in that rack.

The number of flows sent to a physical host through rack nodes or preferred nodes set is not

higher than the number of available VMs of each physical hosts. This is guaranteed by the

specified link capacity from physical host to sink. Thus, all VM requests that are allocated

will be matched to a corresponding physical host.

3.4 Evaluation

In this section we show the effectiveness of our approach through a set of Hive [95] based,

I/O-bound micro-benchmarks running on a real cluster. We evaluate CAM’s network and

storage topology awareness against vanilla Hadoop, as to our best knowledge, CAM is the
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first technique that reintroduces the concept of data locality by exposing topology infor-

mation in a cloud setting. We also compare CAM’s data and VM placement against a

state-of-the-art technique using a mix of workloads on a large simulated cluster.

3.4.1 Micro-Benchmark Results

In this section, we use an I/O intensive workload based on a Hive benchmark to show the

effectiveness of topology awareness and storage awareness for task placement. The reported

numbers are averages across three runs of a test.

Our cluster consists of 4 RHEL 6.0 physical machines that use KVM as the hypervisor. Each

machine has two quad-core 2.4 GHz Intel E5620 processors and 48 GB of main memory. The

machines are organized in one rack and are connected to a dedicated Gigabit switch. We

launched 23 VMs, 1 master and 22 slaves, on the four physical hosts. Each VM is configured

with 1 GB of main memory and two 2.4 GHz vCPUs. Each VM has one map slot and one

reduce slot, with a map block size of 64 MB. MapReduce fair scheduler is employed.

Number of jobs 21 9 7 4 3 3 3

Map tasks / job 1 2 10 50 100 200 400

Table 3.5 Distribution of job sizes in terms of number of map tasks used for micro-benchmark
tests.

We generate a job submission schedule with 50 I/O-intensive Grep jobs using Poisson dis-

tribution with job inter-arrival time 10 seconds. To make the comparison consistent, we

generate the submission schedule with a submission duration of 554 seconds, record it into

a file and use it throughout the experiments. The size distribution of each Grep job for this

experiment is shown in Table 3.5 and is based on the experiments performed by Zaharia et

al. [41]. Thus, our schedule is representative of a typical workload of a production MapRe-

duce cluster with a mix of many small jobs with a single map task per job, and a few large

jobs with more than 100 map tasks per job. The input for the Grep jobs is generated using

Teragen [96], with each map file consisting of 100 M records of size 0.1K for a total input

size of 10 MB.
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3.4.1.1 Impact of Network Topology Awareness

In our first experiment, we use our submission schedule to evaluate the impact of network

topology awareness in a CAM-based implementation of Hadoop [96]. For this purpose, we

measure the execution time for our schedule. We also measure the achieved locality expressed

as the percentage of total Map tasks that are scheduled on the VMs (for VM locality) or

physical nodes (for node locality) that have the associated data. As a base case for com-

parison we use vanilla Hadoop, which is unaware of the actual network topology and in this

case cannot determine if two VMs are running on the same node or not.

System VM Node Average
locality locality execution time

Hadoop 29.1% 42.6% 48.3 s

CAM-based Hadoop 29.0% 49% 34.2 s

Table 3.6 Impact of network topology awareness on Hadoop performance.
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Figure 3.6 Breakdown of observed locality for jobs with different number of map tasks, with and
without network topology awareness.

The results are shown in Table 3.6. We observe that by exposing topology information to

Hadoop, the node locality is improved by 6.4%, and the average job execution time reduces

by 8%. Figure 3.6 shows a break-up of the node locality in terms of the number of map tasks

for the two studied cases. Observe that network topology information effectively improves

the node locality for jobs with 10 and 50 map tasks by 8% and 9%, respectively. Jobs with

more than 50 map tasks see a decreasing improvement, because with the increased number

of maps in the small cluster the chance of co-locating map tasks on the same node also
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increases. However, topology awareness is important even in such a small cluster as most

MapReduce jobs have fewer than 50 map tasks [41]. Note that the relatively good perfor-

mance of vanilla Hadoop is due to the fact that the test cluster consists of a small number

of physical hosts located on the same rack.

3.4.1.2 Impact of Storage Topology Awareness

System Average execution time

Hadoop 65.6 s

CAM-based Hadoop 48.3 s

Table 3.7 Impact of storage topology awareness on Hadoop performance.

In our next experiment, we observe the impact of providing storage topology hints to Hadoop.

For this test, we use the 22 VM slaves with local data, and then migrate 6 of the VM images

from one physical host to another. This makes 27% (= 6/22) of the data to become remote.

Once again we measure the average job execution time for our schedule. The results are

sown in Table 3.7. We observe that storage awareness can help improve the MapReduce

execution time for our job schedule by 26.5%, on average.

These results show that CAM-based Hadoop can provide better performance for Hadoop

tasks by exposing network and storage topology information to the Hadoop scheduler.

3.4.2 Macro-Benchmark Results

Number of jobs 38 16 14 8 6 6 4 8

Map tasks / job 1 2 10 50 100 200 400 800

Table 3.8 Distribution of job sizes in terms of number of map tasks used for macro-benchmark
tests.

In our next set of experiments, we show the effectiveness of our approach. For this pur-

pose, we extend the simulator PurSim [35] to include the min-cost flow data placement, VM

placement, network awareness, and storage awareness mechanisms described in Section 3.3.

PurSim is a network flow level discrete event simulator that simulates the MapReduce ex-
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ecution semantics. Similarly as in previous tests, we generate a schedule with job size

distribution based on Zaharia et al. [41] shown in Table 3.8. For these experiments the

interarrival time is randomly generated between 60 and 90 seconds.

3.4.2.1 Data and VM Placement

In this section, we evaluate the effectiveness of min-cost flow (MCF) Data and VM placements

used in CAM. We consider three types of MapReduce workloads, namely Map-intensive,

MapReduce-intensive, and a workload with a mix of Map, MapReduce, and CPU-intensive

jobs.
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Figure 3.7 Execution time for Map-intensive
workloads.
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Figure 3.8 Fraction of data accessed remotely
for Map-intensive workloads.
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Figure 3.9 Execution time for MapReduce-
intensive workloads.

0 %

20 %

40 %

60 %

80 %

100 %

Hybrid MCF

P
e
rc

e
n
ta

g
e
 o

f 
c
ro

s
s
 r

a
c
k
 t
ra

ff
ic

VM placement 

LLA data placement
MCF data placement

Figure 3.10 Fraction of data accessed re-
motely for MapReduce-intensive workloads.

We consider two data placement strategies, namely load and locality aware (LLA) data

placement and MCF data placement. We also consider two VM placement strategies, namely

Hybrid VM placement and MCF VM placement. The LLA and Hybrid strategies are defined

in Purlieus, and are used as a baseline for comparison to CAM’s MCF based approach.
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Figure 3.11 Execution time for Mixed work-
loads.
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Figure 3.12 Fraction of data accessed re-
motely for Mixed workloads.

Figures 3.7, 3.9, and 3.11 show the average execution time for the three workloads consid-

ered. Similarly, Figures 3.8, 3.10, and 3.12 plot the percentage of total data (for the tests)

that is accessed remotely across the rack under each combination of VM and data place-

ments for the three studied workloads. For the Map-intensive workload, the combination of

MCF VM and data placement produces a 3x speedup over the baseline, which is due to a

3.3x decrease in relative cross rack traffic. On the other hand, the same combination for the

MapReduce-intensive traffic produces an 8x speedup with a corresponding 3 fold decrease

in network traffic. The MCF placements see the best speedup of 8.6x verses the baseline for

the mixed workload, due to the fact that they all but eliminate cross network traffic.

For all workload types using either the MCF data placement combined with the baseline VM

placement, or conversely using the MCF VM placement with the baseline data placement,

produces a significant speedup. Hence, the MCF graphs constructed for both placement

optimization problems successfully optimize the respective factors and produce an optimal

solution. Note that combining both techniques does not yield further significant benefit.

3.4.2.2 Impact of Network Topology Awareness

Network topology VM locality Average job
awareness execution time

Unaware 82% 24.6 s

Aware 99% 22.4 s

Table 3.9 Impact of network topology awareness on Hadoop performance.

In this experiment, we configure our VM cluster to run 100 jobs simultaneously on 192

VMs using Hadoop fair share scheduling mechanism. Table 3.9 shows that network topology
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Figure 3.13 Impact of network topology awareness on locality of map tasks broken down in
terms of number of map tasks.

awareness improves the map tasks locality on average by 7%, and reduces the average job

execution time by 9%. Figure 3.13 shows the breaks up for the percentage of map VM local-

ity with respect to the number of map tasks. We observe that network topology awareness

is most effective for jobs that have less than 50 map tasks, improving locality by 24.2% on

average.

3.4.2.3 Impact of Storage Topology Awareness
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Figure 3.14 Impact of storage topology awareness on MapReduce performance in terms of per-
centage of remote VM images.

In our next experiment, we demonstrate the effectiveness of providing storage topology infor-

mation hints to MapReduce. We vary the number of VM image files that are placed remotely

with respect to the physical node where the VM is to be run. First, we measure how loss
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of VM image locality affects the average execution time. Figure 3.14 shows the results. We

observe that as more VMs are placed remotely, the average job execution time increases. For

example, with 80% remote VM images, the average MapReduce job execution time worsens

36% compared to the all local images case (0%). As seen from the previous experiments,

CAM-based Hadoop achieves all local images using the storage topology information, and

thus offers an effective solution for VM placement.
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Figure 3.15 Impact of storage topology awareness on MapReduce performance.

Next, we measure the locality of map tasks achieved with varying VM images placed re-

motely from their physical host. Figure 3.15 shows the percentage of the number of local

map tasks with varying remote VM images. We see that without exposing storage topology

information, the locality of map tasks is decreased. Conversely, the amount of data accessed

remotely across the rack increased. Thus, by exposing storage locality, CAM can minimize

the cross rack traffic due to remotely accessing VM images.

3.4.3 Scalability of CAM

We now discuss the scalability of our min-cost flow model. In our macro-benchmark experi-

ments we found the overhead to be negligible in a cluster of size 192 after repeated tests. As

shown in Quincy [39], even for a large cluster size (thousands of nodes) a similarly-sized flow

network can be solved in a few seconds, which is significantly smaller than the running time

of typical MapReduce jobs. That is because techniques such as successive approximation

push-relabel can process large-scale graphs efficiently. Moreover, the overhead of the solver

is incurred only once, when the job is submitted for scheduling.
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In summary, CAM offers to simultaneously meet the different constrains to co-locate VM

and data on physical hosts, and improves overall MapReduce in the cloud application per-

formance.

3.5 Chapter Summary

In this Chapter, we have presented the design of CAM, an innovative resource scheduler de-

signed to address performance degradation of MapReduce jobs when running in virtualized

clouds. CAM adopts a three level approach to avoid placement anomalies due to inefficient

resource allocation: placing data within the cluster that run jobs that most commonly op-

erate on the data; selecting the most appropriate physical nodes to place the set of virtual

machines assigned to a job; and exposing, otherwise hidden, compute, storage and network

topologies to the MapReduce job scheduler. CAM uses a flow-network-based algorithm that

is able to reconcile resource allocation with a variety of other competing constraints such

as storage utilization, changing CPU load and network link capacities. Evaluation of our

approach using both micro-benchmarking and simulation on a 23 VM cluster shows that

compared to a state-of-the-art resource allocator, CAM reduces network traffic and average

MapReduce job execution time by a factor of 3 and 8.6, respectively.



Chapter 4

MapReduce Online Performance
Tuning

As we mentioned in Chapter 1, efficient resource utilization relies on the partnership between

cloud providers and users. We have introduced a min-cost flow resource manager for hosting

MapReduce clusters in the cloud for service providers in Chapter 3. We then present a user

level tool that helps enhance the accuracy of resource requests. The two together guarantee

efficient resource management of MapReduce in the cloud.

Within MapReduce framework, developers specify required resources for their applications

through parameter configuration. However, MapReduce job parameter tuning is a daunt-

ing and time consuming task. The parameter configuration space is huge. More than 70

parameters impact job performance. It is also difficult for users to figure out the optimal

value without first having a clear understanding of the MapReduce application characteris-

tics. The key challenge is to systematically explore the configuration space to determine a

near-optimal configuration. Extant offline tuning approaches are slow and inefficient as they

rely on multiple test runs and significant human effort.

In this Chapter, we propose an online performance tuning system, mrOnline, to improve

MapReduce application performance. mrOnline monitors the job execution, tunes the

parameters based on collected statistics and provides fine-grained control over parameter

configuration changes. Particularly, our system allows each task to have a different config-

uration in parallel instead of using the same configuration for all the tasks. We design a

gray-box based smart hill climbing algorithm that can effectively converge to a global optimal

configuration with high probability.

mrOnline improves single Hadoop job performance via online performance tuning, as well as

expedites the performance tuning process by reducing the number of test runs by employing

a finer grain online process (multiple configurations per test run). mrOnline provides the

44
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ability to tune multiple jobs performance in a multi-tenant environment. Moreover, mrOn-

line considers dynamic cluster utilization information to help MapReduce applications avoid

hot spots. mrOnline does not require any modification to user programs, which makes it

user friendly and encourages the adoption of it.

The rest of the chapter is organized as follows. Section 4.1 presents the introduction of

YARN, the classification of configuration parameters and two use cases mrOnline focusing

on. Section 4.2 discusses the system architecture of mrOnline after which comes the expla-

nation of task level dynamic configuration. In Section 4.4, we detail the design of gray-box

based hill climbing algorithm to systematically search for optimal configuration parameters

followed by the description of tuning rules for various key job configuration parameters. Sec-

tion 4.7 demonstrates the effectiveness of mrOnline compared against default configuration

through a serial of experiments. Section 4.8 summarizes the chapter.

4.1 Background of mrOnline

In this section, we first describe enabling technologies for mrOnline, and then identify two

specific use cases for which we have designed mrOnline.

4.1.1 YARN

mrOnline is designed and implemented on YARN [34], the latest generation of the publicly

available Hadoop platform. We choose YARN as it provides many advantages over traditional

Hadoop. Hadoop is designed as a monolithic framework, which tightly couples the MapRe-

duce programming model with distributed resource management. This leads to misuse of the

MapReduce programming model in order to just leverages the large scale compute resources

provided by enterprises, research organization and other institutes. For instance,users sub-

mit map-only applications to launch any number of processes in the cluster [34] or submit

applications which have map function implemented as reduce tasks when the map quota is

limited [97]. Moreover, Hadoop employs a centralized scheduler for managing the tasks of

all jobs. This is becoming a performance bottleneck as the number of jobs submitted to a

Hadoop cluster grows. Traditional Hadoop implementation also does not support changing

the Map or Reduce slot configurations between different jobs, which precludes dynamically

adapting to variations during a job’s life-cycle and reduces efficiency.
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YARN has been designed to address these limitations in Hadoop. YARN separates the

computational programming models from resource management, and supports frameworks

other than MapReduce such as Giraph [98, 99], Spark [100, 101], and Storm [102]. In this

paper, we focus on tuning parameters of the MapReduce programming model running on

top of YARN. However, YARN provides for means to extend our approach to support per-

formance tuning of other frameworks as well. Another useful feature of YARN is that it

delegates application related scheduling to per-application masters than can use application

specific resource scheduling, thus providing for higher scalability. For this purpose, YARN

manages cluster-wide resources through a key concept, “containers.” A container is a re-

source scheduling unit that specifies the number of CPUs, the memory needed, etc. Different

MapReduce applications can request different size of containers from YARN as needed by

the application. For example, an application master is responsible for specifying the num-

ber of needed containers, the size of each container, the mapping between the containers

and tasks etc. mrOnline leverage this flexibility offered by containers to design a task-level

configuration framework.

4.1.2 Parameter Classification

We focus on parameters that impact application performance and are suitable for dynamic

configuration. The optimal values of these parameters depend on the application character-

istics, the size and the content of input data and the cluster step. We classify performance

related parameters into three categories based on when a modified parameter can become

effective.

The first category includes parameters that are difficult to change after the applica-

tion is started. The number of maps, the number of reducers, slow start (mapre-

duce.job.reduce.slowstart.completedmaps) are three key parameters that fall into this cate-

gory. Slow start is a parameter that specifies how many maps should be completed before

launching the first reduce tasks. Starting reduce tasks early helps overlap the map tasks ex-

ecution with the shuffle phase. However, starting reduce tasks too early occupies the cluster

resources needed by map tasks. The optimal value is application specific.

The second category consists of parameters that cannot be changed on the fly for already

running tasks but impact the tasks that will be launched in the near future. Examples in-

clude io.sort.mb, the number of virtual cores in containers, the memory size of containers,
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and parameters specifying reduce buffer size. Specifying the right value for this category of

parameters can reduce disk I/Os and improve the cluster utilization.

The third category consists of parameters that can be changed on the fly and become effec-

tive immediately. For example, mapred.inmemmerge.threshold, io.sort.spill.percent fall into

this category. These two parameters control the threshold of when to spill out data into

disk. mrOnline can even try multiple values within a task for parameters in this category

thus enhance the tuning efficiency.

mrOnline currently supports tuning of parameters in the second and third category. Tuning

of parameters in the first category can be done using simulation tools, such as MRPerf [63].

Moreover, we also consider the mrOnline-enabled tuning of parameters in the first category

in our ongoing research.

4.1.3 Use Cases of mrOnline

There are two use cases we considered when designing mrOnline. The first use case is to

expedite test runs by trying out multiple task executions in a single test run. In this way, we

can reduce the tuning process significantly. The second use case is to improve performance

of applications that are executed only once. mrOnline employs different strategies for these

two use cases.

Use Case One: Expediting test runs. In this use case, we aggressively and systematically

search for different parameter configurations aimed at finding the optimal values. We first

design and implement a task level configuration framework that enables testing of different

parameter configurations in a single test run. We then propose a gray-box based smart hill

climbing algorithm to find the optimal configuration. The quality of the generated solution

depends on the number of tasks executed in a single test run. If too few tasks are executed,

the configuration quality can be improved by multiple test runs. We also improve the al-

gorithm convergence efficiency by monitoring and modeling the runtime statistics into the

algorithm.

Use Case Two: Improve the application performance in a single run. For this use case, we

conservatively tune the configurations mostly based on the observed runtime statistics. For

example, if we observe extra spills are written to disk, we increase the sort buffer in map

phase. Our main goal here is to improve the performance instead of searching for optimal

configuration.
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Figure 4.1 mrOnline System Architecture.

4.2 Architecture of mrOnline

The overall architecture of mrOnline is shown in Figure 4.1. mrOnline is based on YARN

that, unlike Hadoop centralized job tracker, has a resource manager that manages cluster

resources, the execution cycle of distributed application-specific masters, and tracks node

liveness. To support dynamic configuration, mrOnline has to modify the YARN resource

manager to support allocation of different-sized containers for different applications. The

Node manager is akin to the task tracker of Hadoop, and runs on each slave node and is

responsible for managing the containers running locally. However, YARN delegates the task

tracking functions to per application components. mrOnline implements the sub-components

within each node manager to leverage the existing features such as resource monitoring.

mrOnline consists of a centralized master component, online tuner, which is a daemon that

can runs on the same machine as the resource manager of YARN or on a dedicated machine.

Online tuner controls a number of distributed slave components that run within the node

manager on the slave nodes of YARN cluster.

Online tuner is composed of three components: a monitor, a tuner and a dynamic configu-

rator. The monitor works together with the slave monitors that run within node managers

on each slave node to periodically monitor application statistics. More specifically, the slave

monitors gather the statistics of tasks running locally and node statistics and send the infor-

mation to the centralized monitor. The centralized monitor then aggregates the information,

summarizes it if necessary and pass the information to the tuner.

The tuner implements the tuning strategies and algorithms, which decide what parameters

should be changed and what new values should be assigned to each parameter for each ap-
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plication task. It then generates the new configurations for each application and each task.

Finally, the dynamic configurator takes the new configuration from the tuner and distributes

the lists of new parameters to the slave configuration components. The slave configurators

are responsible for activating the new changes for tasks running locally.
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Figure 4.2 mrOnline tuning process.

Figure 4.2 illustrates the tuning process of mrOnline. After storing input datasets in HDFS, a

user launches the application using a default configuration or a configuration based on rough

understanding of application characteristic. The real time performance monitor monitors

runtime statistics include per task information such as task progress rate, CPU, memory

utilization, the number of spill records, I/O utilization and per node resource utilization

information and sends them to performance advisor that is the tuner component in Fig-

ure 4.1. Performance advisor calculates new configurations and sends them to the dynamic

configuration manager. The configuration manager then changes the configuration for each

task correspondingly. The tuning process can iterate for multiple runs until a desirable con-

figuration is generated. mrOnline supports aggressive and conservative strategies for the two

use cases described in section 4.1. The performance tuning advisor can also be extended to

communicate with other performance tuning tools, and the tuning knowledge can also be

stored in a tuning knowledge base.

4.3 Task-level Dynamic Configuration

We extend YARN to support task level dynamic configuration. In contrast to traditional

YARN applications that use a configuration throughout the task execution, mrOnline enables

YARN applications to have different configurations for each tasks.
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Within the YARN framework, when the dynamic configurator gets new lists of tasks, con-

figurations mappings, it writes per task configuration files to the working directory of the

corresponding application. When tasks are assigned to containers running on remote slave

nodes, the slave configurator is responsible for downloading the changed configuration file

for the launched tasks. The launched tasks then read the changed configuration files thus

changing the configuration that might be different from the original job configuration file.

Current YARN supports the same container size for all map tasks or all reduce tasks only.

We extend the resource scheduler to support requests that require different size of containers.

More specifically, we extend the hash map data structure to keep track of the size of the

requested containers and the corresponding operations.

API Description

List<String> getConfigurableJobParameters

(JobID jid)

Returns the set of configurable pa-
rameters for the job with job ID
jid and associated tasks that are
currently running or will run in the
future.

List<String> getConfigurableTaskParameters

(JobID jid, TaskID tid)

Returns the set of configurable pa-
rameters for the tasks with job and
task IDs jid and tid, respectively.

int setJobParameters (JobID jid,

Map<String,String> kv)

Sets the parameters for a job with
ID jid.

int setTaskParameters (JobID jid, TaskID

tid, Map<String,String> kv)

Sets the parameters for a task with
job and task IDs jid and tid, re-
spectively.

int setTaskParameters (JobID jid,

Map<String,String> kv)

Sets the parameters for all the tasks
associated with a job with ID of
jid.

Table 4.1 Key APIs provided by the Dynamic Configurator of mrOnline.

The key APIs supported by dynamic configurator of mrOnline is described in Table 4.1.

getConfigurableJobParameters and getConfigurableTaskParameters return the set of

configurable parameters for a specified job or task. The other three APIs set the job or

task configuration parameters with specified values. The APIs also enable other tuning

algorithms to tune the job parameters easily if needed.
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4.4 Gray Box based Hill Climbing

Algorithm 1 Gray Box based Hill Climbing.

1: Initialize LHS parameters k, m, n, the threshold of neighborhood size Nt, the shrink factor f

and the threshold of global search g.
2: local search = 1, global search = 1
3: config[m] = LHS sampling(m)
4: Ccur=best(config[m])
5: Nccur=adjust neighbor(Ccur)
6: While global search < g do
7: if local search == 1 then
8: while NCcur > Nt do
9: config[n]=LHS sampling(n)
10: Ccandi=best(config[n])
11: if(cost(Ccandi) < cost(Ccur))
12: Ccur=Ccandi

13: Nccur=adjust neighbor(Ccur)
14: else
15: Nccur=shrink neighbor(Ccur)
16: endif
17: endwhile
18: local search = 0
19: endif
20: config[m]=LHS sampling(m)
21: Ccandi=best(config[m])
22: if(cost(Ccandi) < cost(Ccur))
23: Ccur = Ccandi

24: Nccur=adjust neighbor(Ccur)
25: local search = 1
26: else
27: global search++
28: endif

29: endwhile

In this section, we present the design of our tuner that systematically searches through the

configuration space and finds a desirable configuration given a specific application, data set

size and cluster configuration. More specifically, we introduce a gray-box based hill climbing

algorithm to tune the job parameter configurations for YARN applications. Our gray-box

based hill climbing is inspired by smart hill climbing algorithm [66]. Smart Hill Climbing

is an algorithm that was developed to provide black-box optimization for web application

server configuration. Our approach provides three desirable properties: 1) it supports prob-

abilistic guarantees on how close the determined configuration to the optimal configuration;
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2) it effectively tolerates the noise in evaluated cost from various factors such as resource con-

tentions; 3) it adopts weighted latin hypercube sampling (LHS) technique that helps improve

the sampling quality and increase the convergence speed. The intuition in applying LHS is

to partition the probability distributions of each parameter into equal probability intervals

and sample a value from each interval. In addition to challenges we face when applying the

algorithm, we also consider monitored information to speed up the search process. Thus,

our algorithm is a gray-box based method.

Algorithm 1 describes the detailed approach we have devised in mrOnline. Our algorithm

has two phases, a global search and a local search phase. The global search phase aims to

find the promising local area to explore through efficient space filling sampling strategy. The

local search phase narrows down the search neighborhood size by recursively applying LHS

search until the neighborhood size is smaller than a predefined threshold.

The algorithm parameters are first initialized including the number of LHS intervals k, the

number of sampled configurations in global search phase m, the number of sampled configu-

rations in local search phase n, the threshold of neighborhood size Nt and the shrink factor

f . The LHS interval indicates the granularity of each parameter interval. In our evaluation,

we use k = 24. Shrink factor f controls the ratio of the current neighborhood size to the

shrunken neighborhood size. After the initialization, we enter the global search phase, by

using LHS to generate m configurations. We then configure the first m tasks to use the

generated m configurations. The monitor then periodically monitors the application perfor-

mance that is then plugged into equation 4.1 to estimate the cost of each configuration (we

explain how we determine y later). We choose the configuration Ccur that has lowest esti-

mated cost as the current search point and set the neighborhood size based on Ccur. Next, we

go to local search phase. It iteratively applies LHS sampling with n sampled configurations

on the updated neighborhood with the center point Ccur. The dynamic configurator uses

the newly calculated configurations to configure the newly launched tasks dynamically and

the monitor component then gathers the execution statistics of launched tasks. A candidate

configuration Ccandi is chosen based on the updated minimum estimated cost. The algorithm

compares the estimated cost of the candidate configuration Ccandi and the current best con-

figuration. If the candidate configuration is better than the current configuration, it implies

that there is a high possibility that we can find a better configuration from the neighborhood

with center configuration Ccandi. Otherwise, the algorithm will shrink the neighborhood size

with the same center point Ccur with shrink factor f . The local search phase is terminated

until a global search finds a local point with a neighborhood size smaller than a predefined
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threshold Nt. This implies that the algorithm finds a local optimal point.

After the local search phase, the algorithm enters the global search phase again to find a

promising area. If it finds a point that is better than the current local optimal configura-

tion, the system enters the local search phase to refine the search, otherwise after a specified

number of iterations g, the algorithm terminates.

There are several challenges we have to address in order to incorporate this gray-box hill

climbing algorithm into our online tuning system. In the following, we discuss these chal-

lenges and our proposed solutions.

Mapping sampled configurations to tasks: Our monitor keeps track of the launched

tasks and their associated configuration, as well as queued tasks both with and without

assigned configurations. Given the fact that the tasks are independent from each other in

YARN, when the configurations are generated, our tuning system randomly chooses a task

from the queued task list and assign one of the configurations to the task. The configuration

is then further adjusted based on the task related information.

Estimating cost of executed tasks: Equation 4.1 shows how we estimate the cost of each

task. We consider four factors: CPU utilization, memory utilization, ratio of the number of

spill records to the number of map output or combiner output, and ratio of task execution

time to the max task execution time. The goal of this formula is to reduce the task execution

time and the number of spill records of all the tasks, while keeping the memory and CPU

fully utilized. The allocated resources should be fully utilized while allocating more resources

can compete with other tasks thus lowering down resource utilization.

y = (1.0− umem) + (1.0− ucpu) + numspill/nummapoutput + Ttask/Tmaxtask. (4.1)

Utilizing tuning rules to reduce the number of convergence iterations and re-

sizing the neighborhood size: We consider the statistics collected from the monitor for

enhancing search quality. We detail the tuning rules in Section ??.

Moreover, the dependencies between the parameters are also considered into the algorithm.

For example, the memory size of map should be always greater than the memory size of

io.sort.mb. The mapreduce.reduce.shuffle.input.buffer.percent should be always greater

than the mapreduce.reduce.shuffle.merge.percent.

Since a job with a small number of map tasks can restrict mrOnline to try out all the pa-

rameters listed in table 4.2, considering these tuning rules helps us to converge to a suitable
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configuration quickly. In the evaluation section, we quantify how the tuning effectiveness

would be affected by the length of the job.

Configuration Parameters Default Value

Memory tuning

mapreduce.map.memory.mb 1 GB
mapreduce.reduce.memory.mb 1 GB
mapreduce.task.io.sort.mb 100
mapreduce.map.sort.spill.percent 0.8
mapreduce.reduce.shuffle.input.buffer.percent 0.7
mapreduce.reduce.shuffle.merge.percent 0.66
mapreduce.reduce.shuffle.memory.limit.percent 0.25
mapreduce.reduce.merge.inmem.threshold 1000
mapreduce.reduce.input.buffer.percent 0.0

CPU tuning

mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1
mapreduce.task.io.sort.factor 10
mapreduce.reduce.shuffle.parallelcopies 5

Table 4.2 The key configuration parameters tuned in mrOnline.

4.5 Tuning Rules

Section 4.4 discussed means for finding a desirable configuration using gray-box based hill

climbing algorithm. In this section, we present the guidelines that we incorporate into the

algorithm for tuning for our two target use cases. Here, we focus on CPU and memory re-

lated parameters, as shown in Table 4.2. Other parameters are tuned using the hill climbing

algorithm without incorporating additional tuning rules.

The tuning rules are aimed at improving the cluster resource utilization by adjusting the

container resource to meet the task requirement and alleviate over- or under- utilization,

as well as to reduce extra I/O traffic by carefully tuning the memory buffer options. The

current implementation of mrOnline provides per task configuration, with application wide

auto-configuration, e.g., selection of the number of mappers and reduces, being the focus of

our ongoing work.



4.5 Tuning Rules 55

4.5.1 Tuning Guideline for the Two Use Cases

Use Case One: The goal in this case is to reduce the number of test runs and find a near

optimal configuration for the YARN application. mrOnline is temporarily allowed to have

worse performance than the default configuration as it searches through the configuration

space comprehensively and monitors the changes and their impact. Therefore, we adopt an

aggressive strategy to try out as many cases as possible in a wave pattern. We first update

several parameters at once, and then adjust the parameter setting strategies in the next wave

based on the collected statistics from the previous wave. Moreover, mrOnline controls the

YARN application execution flow by holding off the launching of new tasks until the tasks in

the previous waive are finished. This strategy slows down the test run execution, but allows

the gray-box search algorithm to find a near optimal configuration with high confidence.

Use Case Two: In this case, we target to improve job performance in a single run. Thus,

we adopt a conservative approach. We start the job with default values in the first wave and

tune the parameters based on the collected information in the next. Moreover, mrOnline

does not interrupt the application task scheduling sequence, thus minimizing the negative

impact of the gray-box algorithm. The slave configurator running on each slave node uses

the updated configuration file if available. If the configuration file is not present, the task is

launched with default configuration.

4.5.2 Memory Tuning

The first part of Table 4.2 shows parameters that decide the memory allocation of map and

reduce tasks and the memory allocation for the sub-phases within those tasks. These pa-

rameters need to be chosen carefully. If the memory is set to too big, it would waste memory

resources that can be allocated to other containers, thus reducing the cluster utilization. In

contrast, if the memory is set to too small, it would incur resource contention leading to ex-

tra disk operations (even out of memory errors), thus degrading performance. The optimal

values of these parameters depend on the input data size, the map/reduce function, and the

output data size.

To tune the memory allocation of map and reduce tasks, we adjustmapreduce.map.memory.mb

and mapreduce.reduce.memory.mb. For aggressive tuning, we obey the hill climbing algo-

rithm using LHS sampling to try memory options within the predefined memory range. After

we get the task execution time and the memory utilization of map or reduce tasks that ran in
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the previous wave, we adjust memory bounds as follows to help our hill climbing algorithm

to narrow down the search space of these two parameters. If we observe memory utilization

to be beyond 90% that may cause over-utilization, we increase the memory lower bounds to

the 80 percentile of sampled memory value. We also decrease the memory upper bounds to

80 percentile of sampled memory value when detecting memory under-utilization (50% of

memory utilization). When the tasks have data skew and exhibit heterogeneous behavior,

mrOnline keeps track of the 80 percentile value, and adjusts the bounds based on them. For

conservative tuning, we try different memory values only when they have high probability

to yield better results. For the first wave, we conservatively use the default value and collect

statistics. We then estimate the memory size needed by the map or reduce tasks using this

information. If memory is underutilized, our hill climb algorithm tries the lower value with

a higher probability, otherwise, it tries the higher value with a higher probability.

The next finer grain level of memory parameter tuning includes three key parameters:

mapreduce.task.io.sort.mb in map phase, andmapReduce.reduce.shuffle.input.buffer.percent

and mapReduce.reduce.input.buffer.percent in reduce phase. These memory allocation pa-

rameters affect the application efficiency in that they control the number of spill records

written to local disks. If enough memory is allocated both in map and reduce phases, the

number of spill records would be minimized. The mapreduce.tasks.io.sort.mb should not

exceed the memory size of map tasks.

Ideally, the number of spill records in map phase should equal the number of map output

records. The number of spill records in reduce phase should equal zero. Otherwise, the

number of spill records is 3× the number of map output records in the worst case. However,

allocating more than needed memory would cause memory contention between the buffers

and application logic, which negatively impact the MapReduce job performance. The optimal

size of memory buffer depends on the job characteristics and cluster resource information.

The approach used for tuning mapreduce.task.io.sort.mb is to configure the buffer size based

on map output size by continuously monitoring the number of spill records and the size of

map outputs. For conservative tuning, the value is set as the default value in the beginning.

As the first few map tasks are started, the buffer size is set to the estimated map output

size. If the ratio of increased number of spill records to increased map output records is

greater than one, we increase the lower bound to 80 percentile of the sampled values, since

the current parameter value is not big enough to hold the map or combine outputs. If the

ratio is one, mrOnline decreases the upper bound to 80 percentile of the sample values. For

aggressive tuning, the rule is similar, except that before we get any statistics, we try multiple
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values as determined by our hill climbing algorithm.

The parameter mapreduce.map.sort.spill.percent decides when to spill out mapreduce data

to disk. It enables pipelining between map functions and disk writes. When the io.sort.mb

is big enough, the value of mapreduce.map.sort.spill.percent should be set high to ensure

that disk writes are not triggered. Thus, for both aggressive and conservative tuning, we set

the value to 0.99. If spilling extra records is unavoidable, we reset the value to default.

For tuning buffers in reduces phase, we calculate the buffer size based on the estimated

reduce input size. For conservative tuning, in the beginning, the value is set as default, the

reduce input size is estimated by monitoring the number of spill records and the sum of size

of partitions generated by each map output to a particular reducer.

The parameter MapReduce.reduce.input.buffer.percent decides when to write the merged

reduce output to disk. For example, when the reduce function requires only small amount of

memory, mapreduce.shuffle.input.buffer.percent is set equal to the shuffle buffer to avoid

any spills written to disk. Specifically, we use the memory utilization statistics from node

manager to decide the memory usage of reducers.

The parameter mapreduce.reduce.shuffle.merge.percent controls the trigger of memory

to disk merge pipelining shuffle and memory-disk merge. It cannot exceed the reduce

buffer size. For conservative tuning, the value is initially set as default value, when shuf-

fle buffer is big enough to accommodate all the reduce input, the value can be set equal

to shuffle buffer to avoid additional disk I/Os. Otherwise, for safety, the value is set to

mapreduce.reduce.shuffle.input.buffer.percent−0.04 which has the same value difference

with mapreduce.reduce.shuffle.input.buffer.percent in YARN default configuration.

Finally, we set mapreduce.reduce.merge.inmem.threshold to 0, which allows Hadoop to

depend only on memory consumption to trigger the merge.

4.5.3 CPU Tuning

YARN supports allocating different number of CPUs to map and reduce tasks. The param-

eter yarn.nodemanager.resource.cpuvcores manages the number of CPU virtual cores that

can be allocated for containers running in each slave node. If the value is 32, then on a

8-core machine, each virtual core has 1/4 share of a physical core. Given that the number of
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physical cores per machine is fixed, a larger value yields smaller share per virtual core. This

parameter is not suitable for dynamic tuning.

The parameters mapreduce.map.cpu.vcores and mapreduce.reduce.cpu.vcores directly con-

trol the CPU allocation of map and reduce tasks. The basic tuning rule is to allocate

enough CPU resources to map and reduce tasks without sacrificing the cluster utilization.

For conservative tuning, we start with the default value of 1, and collect container utiliza-

tion information from the node manager. If full CPU utilization is observed, we increase the

allocation by 1. If the task execution time is reduced and cluster-wide CPU utilization does

not decrease, we continue to increase the virtual core allocation.

The parameter mapreduce.reduce.shuffle.parallelcopies determines the concurrent trans-

fers executed by reduce tasks during shuffle. The desirable value depends on the amount

of shuffled data. Higher amount leads to high number of parallel shuffles. For conservative

tuning, starting from default value, we increase the parameter in increments of 10 until the

task execution time is not improved any further.

The parameter mapreduce.task.io.sort.factor controls the concurrency of disk to disk merge

with a default value of 10. The optimal value depends on the amount of data to be merged.

For conservative tuning, we increase the value by 20 until the task execution time stops

showing improvement.

This summarizes all the guidelines we incorporate into mrOnline for parameter tuning. The

provided API of the dynamic configurator is flexible, and can be used to easily incorporate

additional tuning logic for more parameters as necessary.

4.6 Implementation

We describe the implementation of mrOnline in this section. We implement mrOnline based

on Yarn-2.1.0. The online tuner is implemented as a daemon which includes the three com-

ponents mentioned in Section 4.2 as three daemon threads. More specifically, the three

components are implemented by extending the AbstractService class within YARN. The

AbstractService is a class that maintains a couple of service state and a list of service state

change listeners. Once the service state has been changed, the service state change listeners

are informed. The online tuner is implemented by extending CompositeService class within

YARN. The CompositeService is a class that consists a list of AbstracService. It has a
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shutdown hook that allows the child services within the composite service to be shut down

gracefully when the JVM is shut down. Leveraging this feature, the online tuner and its

child components can be shut down gracefully.

The monitor periodically gets each job counter from YARN through JobClient interface. It

then sends the job ID and job counters to the tuner. The monitor also gets the task level

counter and cluster level information such as the CPU, memory, network I/O, disk I/O from

each slave nodes.

The tuner takes the input from the monitor and decides what parameters have to be changed

and what values should these parameters be set to by using gray-box hill climbing algorithm

and tuning rules described in Section 4.4,4.5.

After the tuner generates the list of parameters needed to be changed, it sends them to

the dynamic configurator. The dynamic configurator sends the list of parameters to YARN

through the JobClient interface. The hacks implemented in YARN then pick up the values

and change the parameters accordingly.

4.7 Evaluation

In this section, we show the effectiveness of our approach on a 19 node cluster. We start by

demonstrating the performance improvement of MapReduce applications using aggressive

tuning strategy of mrOnline for use case one. We then show that mrOnline can generate

desirable configurations yielding better application performance using conservative perfor-

mance tuning for use case two. Next, an experiment illustrating the impact of job size on the

effectiveness of mrOnline is conducted. Finally, we exhibit that mrOnline can also improve

application performance in a multi-tenant environment.

4.7.1 Methodology

Each node on our 19 node cluster has two Intel Quad-core Xeon E5462 2.80 GHz CPU,

12 MB L2 cache, 8 GB memory, a 320 GB Seagate ST3320820AS P SATA disk, and a

gigabit network card. One node works as the master and the rest 18 nodes work as slaves.

Nine nodes are on one rack while ten nodes are on the other rack. Two racks are connected

with a 24 port switch.
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Benchmark Input Input Shuffle Output #Map, Job
Data Size Size Size #Reduce Type

bigram wikipedia 90.5G 80.8G 27.6G 676,200 Shuffle
inverted-index wikipedia 90.5G 38G 10.3G 676,200 Map
wordcount wikipedia 90.5G 30.3G 8.6G 676,200 Map
text search wikipedia 90.5G 2.3G 469m 676,200 Compute
bigram freebase 100.8G 84.8G 77.8G 752,200 Shuffle
inverted-index freebase 100.8G 21G 11G 752,200 Compute
wordcount freebase 100G 16.7G 9.4G 752,200 Map
text search freebase 100.8G 906m 229m 752,200 Compute
Terasort synthetic 100G 100G 100G 752,200 Shuffle
bbp N/A 0 252K 0 100,1 Compute

Table 4.3 The benchmarks and their characteristics.

We compare against the default configuration in terms of 1)job execution time; 2) spill

records; 3) CPU utilization and I/O utilization. The parameters used are mostly the same

as the values specified at Hadoop Wiki [19]. We use block size of 128 MB, number of virtual

cores available for container allocation is 28 ( 4 for data node and node manager daemons),

memory available for container allocation is 6 GB ( 2 GB for data node and node manager

daemons).

Table 4.3 shows the MapReduce applications we used to evaluate mrOnline. In addition to

Terasort, word-count(WC), text search (Grep) and BBP which is distributed with Hadoop

release, we add two more interesting applications bigram and inverted index. Bigram [103]

counts all unique sets of two consecutive words in a set of documents. Inverted-index [103]

generates word to document indexing from a list of documents. BBP is a map/reduce pro-

gram that uses Bailey-Borwein-Plouffe to compute exact digits of Pi, it is a compute intensive

application. We classify the applications into three categories which include Map intensive,

Shuffle intensive and Compute intensive. Map intensive means that map phase consume the

most large part of the execution time mostly doing I/Os. Shuffle intensive jobs spend the

largest part of time in shuffle phase while compute intensive jobs spendslargest part of time

in Map phase doing computation.

We use two data sets for the four applications including bigram, inverted-index, wordcount

and text search. Wikipedia [104] have the original data set size of 45 GB. We concatenate

two copy of Wikipedia data set together to generate a larger data set size of 90 GB. Note

that this will not change the workload characteristic of the dataset. Freebase [105] is an open

source data set released by Google. It is a knowledge graph database for structuring human
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knowledge which is used to support the collaborative web based data oriented applications.

The dataset used by Terasort is generated by Teragen.

To consider the variance due to irregular events such as network, disk I/O congestions, hard-

ware and file system errors, we repeat each experiment for four times, and use the average

value.

4.7.2 Performance Improvement of Use Case One
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Figure 4.3 Comparison of job execution time
for mrOnline and default configuration on
Wikipedia data set for Use Case One.
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Figure 4.4 Comparison of job execution time
for mrOnline and default configuration on Free-
base data set for Use Case One.
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Figure 4.5 Comparison of number of spill
records for mrOnline and default configuration
on Wikipedia dataset.
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Figure 4.6 Comparison of number of spill
records for mrOnline and default configuration
on Freebase dataset.

In this experiment, we evaluate the effectiveness of mrOnline for use case one which use

aggressive tuning. We first run mrOnline together with each application, and get a best

parameter configuration generated by mrOnline. We then use the configuration to run the

application and compare against applications running with the default configuration. Since
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we have around 600−800 number of maps and 200 number of reducers, we finish our gray-box

based hill climbing algorithm within a test run.

Figure 4.3,4.4 show the average job execution time of the four applications on data set

wikipedia and freebase besides application Terasort in Figure 4.3. The job execution time

is improved by 23%,25%,11%,14% and 19% for Terasort, bigram, inverted index, word-

count, textsearch respectively. For freebase dataset, the performance enhancement is 30%,

18%,20%,25% respectively. mrOnline improves the performance mainly due to three factors:

1) it effectively reduces the number of spill records written and read from disks; 2) it im-

proves the resource utilization by tuning the container size for mappers and reducers; 3) it

detects near-optimal value for other performance related parameters.

To further understand the effectiveness of mrOnline, we present how mrOnline reduce the

number of spill records. Figure 4.5,4.6 show the number of spill records generated by Map

tasks using configuration of mrOnline comparing against default configuration. X-axis shows

the four applications on wikipedia and freebase dataset while Terasort in Figure 4.5 uses

synthetic dataset. Y-axis shows the number of spill records in Giga. Optimal refers to the

number of records generated by combiner in Map phase or generated by Map function if

combiner is not existed. It represents the optimal number of spill records an optimal config-

uration would produce. We can see that the spill records are effectively reduce to optimal

results for all applications on both Wikipedia and Freebase dataset and for Terasort.

4.7.3 Performance Improvement for Use Case Two
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Figure 4.7 Comparison of job execution time
for mrOnline and default configuration on
Wikipedia dataset for Use Case Two.
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Figure 4.8 Comparison of job execution time
for mrOnline and default configuration on Free-
base dataset for Use Case Two.

In this experiment, we compare the job execution time of mrOnline using the conservative
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tuning strategy comparing against YARN default configuration on Wikipedia, Freebase and

synthetic data sets. Conservative tuning is beneficial for applications that run once since the

goal is to improve performance but not to find the best configurations. We run mrOnline

together with the applications and measure the job execution time. For synthetic data set of

Terasort and Wikipedia data set of other four applications, mrOnline reduces the execution

time by 16%, 7%, 8%, 8%, 9% respectively. For data set Freebase, mrOnline shows a similar

trend which improves performance by 22%, 13%, 14%, 17% respectively. mrOnline reduces

the execution time by up to 22% because it improves the cluster utilization by adjusting the

container size, alleviates the I/O contention by reducing the spill records and searches for

the optimal values for other performance related parameters.

This experiment demonstrates that mrOnline can effectively reduce job execution time for

applications that run once or few times. Users do not need to worry about tuning application

parameters before running jobs enjoying a free ride on performance speedup.

4.7.4 The Impact of Job Size on Performance Tuning Effectiveness
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Figure 4.9 Comparison of job execution time for mrOnline and default configuration on Terasort
with different data set size .

We next study how the tuning effectiveness of mrOnline is impacted by job size. In this

experiment, we use Terasort and run it with different sizes of input data sets ranging from

2 GB to 100 GB. The number of reducers is around 1/4 of the number of mappers. For

example, we have 4 reducers and 16 mappers for a job with a size of 2 G, 12 reducers and

46 mappers for another job with a size of 6 G. We run mrOnline for a single run together

with each job and generate a configuration using aggressive tuning. We then use this config-

uration to run the job again and compare against YARN default configuration. We can see
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that mrOnline reduces job execution time marginally for jobs with sizes smaller than 10 GB.

The reason is that mrOnline does not have enough number of mappers or enough number

of reducers to search through the configuration space. Jobs finishing before mrOnline fail to

find good configurations. For jobs that are greater than 20 G, mrOnline becomes effective

and reduces job execution by 21%, 23%, and 20% for Terasort with job sizes of 20 G, 60 G

and 100 G respectively. After the job input data set size is greater than 20 G the effective-

ness of mrOnline does not further improve since the numbers of mappers and reducers are

sufficient for mrOnline to find near-optimal configurations.

4.7.5 The Tuning Efficiency for Multi-tenant Environment
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Figure 4.10 Job execution time of Terasort and BBP.

In our next experiment, we demonstrate that mrOnline is particularly useful in a multi-tenant

environment. We run two MapReduce applications Terasort and BBP simultaneously us-

ing fair sharing scheduling algorithm. We configure Terasort with an input data set size of

60 GB using 448 mappers and 200 reducers and configure BBP to compute 0.5 M digits.

We then execute mrOnline with aggressive tuning and produce desirable configurations for

the two applications. Figure 4.10, 4.11, 4.12 represent the experimental results collected by

running applications using configurations generated from mrOnline and using YARN default

configuration.

Figure 4.10 shows the job execution time of Terasort and BBP. We can see that mrOnline

reduce job execution time by 13% and 28% for Terasort and BBP respectively.

To further understand the performance impact of mrOnline, we examine the memory utiliza-

tion and CPU utilization of Terasort and BBP. Figure 4.11 illustrates the memory utilization

while Figure 4.12 shows the CPU utilization. Terasort-m stands for the average utilization
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Figure 4.11 Memory utilization of Terasort
and BBP.
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Figure 4.12 CPU utilization of Terasort and
BBP.

of all Mappers while Terasort-r stands for the average utilization of all Reducers. BBP-m

and BBP-r have a similar meaning yet they are for application BBP. We observe that, by

using the default configuration, the memory utilization of Terasort and BBP is below 50%.

In contrast, mrOnline improves the memory utilization of the two applications to above 80%

for both map tasks and reduce tasks. For CPU utilization, we see that, except the mappers

of BBP, all the CPU utilization is below 25%. mrOnline improves the CPU utilization by

assigning fewer CPUs to Terasort and reducers of BBP. Note that the CPU utilization of

the mappers of BBP is around 99%. mrOnline identifies this as CPU over-utilization, and

allocates more CPU cores to BBP. Moreover, we note that the number of spill records of

Terasort is reduced from 1.8 G to 0.6 G as compared to the default configuration. Reduc-

ing the number of spill records is beneficial especially when disk I/O is the performance

bottleneck.

This experiment shows that mrOnline can effectively increase the memory utilization and

CPU utilization for Terasort and BBP and thus reduce the job execution time. In other

words, in this multi-tenant experiment where CPU is a bottleneck for BBP, mrOnline suc-

cessfully identifies idle CPUs and requests part of them to BBP. Thus, we have demonstrated

that mrOnline can mitigate hot-spots in the cluster and improve system utilization.

4.8 Chapter Summary

While MapReduce job parameter configuration impacts performance significantly, in current

implementations, the parameter tuning burden is placed on the application programmers.

This is not ideal, especially because the application programmer may not have enough

system-level expertise to select the best configuration, consequently leading to system inef-

ficiency and degraded application performance. In this paper, we presented the design of
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mrOnline, a platform that enables task-level dynamic configuration tuning to improve perfor-

mance of MapReduce applications. mrOnline expedites the test runs by trying out multiple

configurations within a single test run. Given the large MapReduce parameter space, how to

effectively find a near optimal solution is challenging. To this end, we proposed a gray-box

based hill climbing algorithm to systematically search through the space and find a desirable

configuration. To speedup the convergence iteration of our hill climbing algorithm, we lever-

age MapReduce runtime statistics and design tuning rules for some of the key parameters.

We have implemented mrOnline on the YARN framework, and our evaluation shows that on

a 19-node cluster and across a suit of five representative applications, mrOnline achieves an

average performance improvement of up to 30%.



Chapter 5

Cooperative Storage-Level
De-Duplication for I/O Reduction

We have introduced resource management techniques we designed for hosting MapReduce

clusters in the cloud in Chapter 3 and Chapter 4. We then discuss the approaches we devised

to improve the storage scalability and efficiency for VDEs in this and next chapters.

Data centers are increasingly being re-designed for workload consolidation in order to reap

the benefits of better resource utilization, power savings, and physical space savings. Among

the forces driving savings are server and storage virtualization technologies. As more consol-

idated workloads are concentrated on physical machines e.g., the virtual density is already

very high in virtual desktop environments, and will be driven to unprecedented levels with

the fast growing high-core counts of physical servers the shared storage layer must respond

with virtualization innovations of its own such as de-duplication and thin provisioning. A

key insight is that there is a greater synergy between the two layers of storage and server

virtualization to exploit block sharing information than was previously thought possible.

In this Chapter, We reveal the synergy via developing a systematic caching system, Sea-

Cache, to explore the storage and virtualization servers interactions. We also quantitatively

evaluate the I/O bandwidth and latency reduction that is possible between virtual machine

hosts and storage servers using real-world trace driven simulation. Moreover, we present a

proof of concept NFS implementation that incorporates our techniques to quantify their I/O

latency benefits.

67
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5.1 System Design

This section describes the key design aspects of SeaCache and how de-duplication information

is cooperatively shared between storage server and hosts.

5.1.1 Design Rationale

A traditional approach to I/O bandwidth saving is to not modify the host and storage

server software stack, instead to introduce dedicated nodes for de-duplication, i.e., de-dup

boxes [82], both at the host and the storage server. These boxes keep track of the data

blocks through a content sharing information/index (CSI) database of all the blocks they

have been sent and received, and work together to avoid writing multiple copies of data to

the disk. A CSI entry usually consists of a block identifier and the corresponding hash value

calculated using collision resistant hash functions such as SHA-1 [106]. Similarly, SeaCache

assumes that hash collision from SHA-1 is lower than memory bit flip errors due to cosmic

rays for all practical purposes.

In the de-dup box approach, the box is a separate entity and it is not aware of the host-side

or storage server-side cache contents. Thus, read requests from different clients will always

be sent to the storage server even if the data already exists in the host cache. Furthermore,

the storage server side block de-duplication information is not leveraged, and thus, this data

is maintained separately at the de-dup boxes and at the storage server. By integrating

host-side cache with server-side de-duplication, we can explore the opportunity to build a

cooperative I/O de-duplication solution between host and storage server.

5.1.2 Architecture

Figure 5.1 shows the overall architecture of SeaCache. The target environment comprises

host physical machines with multiple clients (VMs), which interact with a storage server

for persistent data storage. The main software components include a specialized page cache

manager on the host, a de-duplication system on the storage server, a storage server cache-

tracker that keeps track of the host cache contents, and a protocol for sharing CSI between

the hosts (cooperative caching) and the shared storage server.
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Figure 5.1 SeaCache system architecture overview.

When data is written to the storage server, it is de-duplicated (either in-line or as a back-

ground process) as follows. The contents are hashed at the granularity of a block, and the

hash information is saved in the CSI data structure. The CSI is then compared to and, if

not already present, stored in a CSI database. Each entry of the CSI database is a tuple

consisting of the logical block number (LBN), and the block’s hash value. If a logical block’s

CSI matches one already in the CSI database, it indicates that the logical block is a duplicate

and its contents are not written to the disk. Thus, a physical block could potentially map to

multiple logical blocks. The information about mapping of logical blocks to a physical block

is maintained by the storage server in a mapping structure, CSI-Map, which has an entry

for every physical block (in use).

tim
e
lin

e

Host

Storage 

Server 

Read#(vm1,101)

Read(vm1,101)

vm1 101

51

Vm1(101,103)

Vm2(106)

51
51

tim
e
lin

e

Host

Storage 

Server 

Read(vm1,101)

Read(vm2,106)

vm1 101

vm1 101

51
51

vm2 106

51

51

51

SS-Push

(b)

W/ Tracker

(a)

tim
e
lin

e

Host

Storage 

Server 

Write(vm1,102)

Write#

(vm2,104,51)

vm1 102

vm1 101

55

vm2 104

51

OK

Write Path

(c)

OK

55

vm1 10151

vm1 10255

tim
e
lin

e

Host1
Storage 

Server 

Read(vm1,101)

Read(vm2,105)

vm1 101

vm1 101

51
51

vm2 105

51

51

Host2

vm3 107

Vm3 108

Read#(53)

53

54

53
53

53

Cooperative Cache

(d)

vm1 10151

vm1 103

vm2 106 Read

Vm2(106)

Figure 5.2 SeaCache protocols using CSI-Map information.

Figure 5.2 illustrates the read and write protocols included in SeaCache. We detail each

protocol in the next few sections.
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5.1.3 Read Protocols in SeaCache
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Figure 5.3 An example logical to physical block mapping.

In the following discussion, we present our read protocols using an example physical block

usage scenario illustrated in Figure 5.3.

Basic Protocol When a logical block, e.g., 101, for VM1 is not found in the host’s cache,

the host first requests the CSI for the LBN (Read#) from the storage server, instead of send-

ing a regular read request. The storage server looks up the associated CSI-Map entry and

returns the content identifier, which in this example is Hash 51. The host maintains a local

CSI-Map cache, which it uses to determine that Hash 51 is not present at the host. The host

then sends an actual data request for LBN 101. Upon receipt of the block from the storage

server, the host also updates its local CSI-Map cache to store the mapping information.

Later, when the host sends a CSI request for LBN 106 for VM2, the response Hash 51 is

already in the cache, and a subsequent read request to storage server for LBN 106 is avoided.

This basic protocol saves network bandwidth between the host and the storage server by

avoiding the necessity to put the data block on the wire. However, it introduces an extrane-

ous round of CSI request messages to be exchanged for every read I/O request missed from

client caches.

Protocol with Tracker We can eliminate CSI requests by keeping track of the content

of the host cache using the cache-tracker at the storage server. Figure 5.2(a) displays the

storage server-Host protocol using this approach. Here, the host uses a traditional request

for reading LBN 101 of VM1. The storage server replies with data and its hash, Hash 51,

back to the host. The storage server learns that Hash 51 is stored in host cache. Later,

when the host requests a read for LBN 106 for VM2, the storage server simply returns the

CSI-Map entry that points to the already present Hash 51 in the host cache.

In this approach, we require the storage server to accurately track the host cache contents
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by the read requests and eviction information. Therefore, whenever the host evicts data

from its cache, it needs to inform the storage server by piggybacking eviction information

on its next message to the storage server (not shown in the figure). Note that no additional

separate message is needed. This approach facilitates the cooperative cache between hosts

(detailed in Section 5.1.5). This optimization avoids additional round trip time (RTTs) for

CSI requests for which the host has to communicate with the storage server to get the hash

value of the requested block.

Maintaining a CSI-Map within the storage server might seem to consume additional mem-

ory. However, such tracking is worthwhile because it allows the storage server to leverage the

hosts cache space to exploit more de-duplication and thus reduce read I/O. In our design,

each data block is 4 kilobytes, while hash-entry is 24 bytes. Therefore, we can map 170×

more blocks in cache using the CSI-Map instead of caching the actual data. Handling the

additional eviction information for remote cache-tracker of hosts may require additional stor-

age server CPU cycles. However, we argue that there is a large disparity in computational

power versus I/O latency. For instance, a 3 GHz processor has 3 million compute cycles to

spare for every 1 millisecond of latency from the I/O subsystem. Therefore, we argue that

compute overhead is not an issue in this case.

Storage Server Push request, storage server-Push, or via an asynchronous callback that

sends the associated CSI-Map entry from the storage server to the host. Figure 5.2(b) illus-

trates the storage server-Push. In this case, when the host requests the data for LBN 101

for VM1, the storage server replies with not only the data but also the CSI-Map entry for

the associated hash value, which in this case indicates that LBNs 101 and 103 of VM1 and

LBN 106 of VM2 all map to Hash 51. The extra information is stored in the host’s CSI-Map

cache. Later, when the host wants to read LBN 106 for VM2, it already knows that the

associated hash value Hash 51 and that its contents are already in the host cache. Thus, no

extra CSI request is sent. The CSI-Maps piggybacked by the storage server determines the

quality of I/O reduction using this approach. If the storage server is aware of the topology

information of the data-center/cloud, the storage server can choose to send back the CSI

entry of VMs on a particular host, improving the I/O reduction. Furthermore, it is better

to send back the CSI information that resides in the cache only. Thus, this approach is sen-

sitive to the knowledge and understanding of the workload characteristics to obtain optimal

performance.
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5.1.4 Write Protocol in SeaCache

Consistency In virtual environments, there are no shared writes. Each virtual machine will

only be able to access the virtual image file attached to it. Therefore, we focus our discussion

to such share-nothing environment.

Figure 5.2(c) demonstrates a basic protocol for I/O reduction on the write path, which is

similar to the read path protocol. Initially the VM1 on the host writes a block with LBN

102 whose original hash value is Hash 52. The host calculates the new hash value Hash

55, determines that it is not in its local cache and sends a request to write the data to the

storage server. Now, the second write request by VM2, LBN 104, with hash value changed

from Hash 52 to Hash 51 is a cache hit. In this case, the host sends only the metadata to the

storage. If the storage server is able to map the hash value to the actual data, it replies with

success and no further action needs to be done. If the storage server replies with failure, the

host will now need to send the actual data.

In order to check whether a block represented by the hash value sent back by any host

is actually present, the storage server needs to perform a CSI-Map lookup. Most storage

servers cannot keep the entire CSI-Map of their blocks in the primary caches. Any design or

solution to seek CSI-Map from the secondary-level cache will add additional latency to the

I/O request. If the storage server performs I/O reduction on only CSI maps in the primary

cache, some write path I/O reduction opportunities will be missed.

By integrating content sharing information into storage server and host, the de-duplication

workload can be distributed across hypervisor and storage server. Once the hash value of

the blocks are calculated the storage server can simply leverage that information to reduce

the usage of computational and disk I/O resources, which in turn can benefit the foreground

read/write requests service.

5.1.5 Protocol for Cooperative Cache in SeaCache

It is straight forward to expand the read/write CSI protocol to build a cooperative cache be-

tween multiple hosts and storage server based on our deployment architecture as described

in Section 5.1.2. Cooperative cache aggregates the cache space from all hosts to further

distribute the I/O load away from the storage server. To implement such cooperative our

deployment architecture as described in Section 5.1.2. Cooperative cache aggregates the
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cache space from all hosts to further distribute the I/O load away from the storage server.

To implement such cooperative cache, efficient meta-data lookup and request forwarding

mechanisms are needed. The host cache tracker offers an ideal data structure for meta-data

lookup. If more than one host is keeping the required data, the storage server can randomly

choose one to forward the requests to.

Figure 5.2 (d) describes the working of SeaCache. When the first read request from host 1

arrives at the storage server, the storage server checks for the block(Hash 51) in its cache. If

the block is not found, the server checks its remote cache-tracker for availability of the block

in any of the remote hosts. In the above figure, the hash value Hash 51 is not found in the

cooperative cache. Therefore, the storage server fetches the data block from disk and sends

back both Hash 51 and the data block. When a second request arrives, the storage server

determines that the hash value of the requested block is Hash 53, which is not stored in its

cache but stored in the cache of host 2. The server delegates the block request to the client

at host 2, which then sends the data directly to host 1.

SeaCache requires host 1 to directly receive data from host 2, which is not supported by tra-

ditional RPC calls. However, RPC delegation as proposed by Anderson et. al. [107] should

suffice as an elegant alternative here. The delegation protocol creates a reply token, allow-

ing the reply token to be relayed from node to node until some node answers the request.

Without this technique, we would need two RPC calls one to communicate with the storage

sever and another one to communicate with host 2 to get the data.

We can further mitigate the cache-misses in SeaCache protocol by enhancing the cache

replacement algorithm inside the host. The enhanced LRU or ELRU host cache manager

uses CSI information from storage server to determine the block to evict from its cache. In-

stead of evicting the least recently accessed block, this algorithm also weighs in the sharing

count of the block before evicting it. Specifically, we choose the least shared block within

the last n blocks to be evicted. A larger n may yield a higher hit ratio but may have a higher

eviction overhead. In Section 5.3, we explore the impact of n on the efficiency of the host

cache algorithm. This sharing count metric becomes important in context of SeaCache as it

is more likely to improve the cache hit for highly referenced blocks.
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5.2 Experimentation Methodology

In this section, we discuss both a simulator and a proof-of-concept implementation of Sea-

Cache, and the workloads we have used for experimentation.

5.2.1 Simulator Framework
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Figure 5.4 Simulation framework to evaluate SeaCache.

In order to test our protocols in a controlled setting and explore the large configuration

space, we have built a realistic system-level simulator. Figure 5.4 shows the modules of the

simulator and their interactions.

Trace File Parser: This main module takes preprocessed trace files as input, parses them,

and reconstructs the read and write commands to drive the simulation.

Virtual Machine: This main module implements a model of the client Physical Machine:

This is another main module that models a host using specified configuration settings. It

supports a host cache that can be configured to use either a HostLRU or enhanced HostLRU

caching policy.

Storage Server: This main module models a storage server with an LRU cache, host-cache

content tracker, and CSI-Map sharing features. It further uses the Cache Tracker module

to keep track of content of host caches.

Support Modules: These modules facilitate the main modules. The LRU Cache module
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provides a content-based cache implementation that can be instantiated by the main modules

as needed. The Metrics and Parameters modules are linked with all the main modules

to enable flexible configuration, and produce different observable metrics. Specifically, the

Metrics module keeps track of hit ratio, I/O bandwidth usage, latency of each request,

total number of commands, number of read/write commands, number of logical blocks etc.

The Parameters module takes charge of parsing the configuration file and setting up the

corresponding module. Example parameters include cache size and policy, number of hosts,

and number of storage server.

Finally, the configuration file provides an easy means for exploring the design space without

modifying the source code. The modularity and flexibility of this framework greatly speeds

up the simulation process.

5.2.2 Implementation

We have implemented a proof-of-concept read protocol prototype of SeaCache, specifically

the CSI-Map sharing solution by modifying the NFS v3 protocol, client and server compo-

nents in Linux 2.6.32.15, using about 1200 lines of C code.

The implementation setup comprises of Linux-based hosts running OracleR© Virtual

Box 3.2.8 to provide client VMs. The clients run Windows XP SP3 with disks mounted via

NFS. We use a write-through cache policy to ensure that we can use NFS v3 close-to-open

consistency model. For computing CSI, we simply use the offset of the block and assume it

to be a sufficiently unique content identifier. This is in-line with similar assumptions made

in hypervisor design, which uses this concept to maintain a common base disk for multiple

VMs by separating overwrites using snapshots for their VDI environments [108].

NFS Client: We trap nfs readpage(s), nfs readpage result, and nfs wb page NFS calls to

enable CSI sharing and to service client block requests. The CSI-Map maintains two data-

structures: (a) A Fid-Offset hashtable, which maps (file-handle, offset) to the actual PBNs;

and (b) a CSI hashtable, which maps to a list of Fid-Offset entries that have the same

content. The macro implementation of uthash [109] was used for the hashtable implemen-

tation. CSI-Map also supports an LRU list for removing (writing to disk) least-used entries

if needed. The client nfs3 xdr readargs and nfs3 xdr readres RPCs are modified to marshal

the SS-Push. Note that some of the data structures in CSI-Map have been built in antici-

pation of incorporating and integrating protocol information exchange with an NFS server
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that supports a de-duplicated file system, such as OpenDeDup [110].

NFSD Server: The NFS server maintains an exception list for all files opened by a par-

ticular NFS client. This list identifies block offsets that have been modified by any of

the open files. This information is marshalled into a RPC to the client by modifying the

nfss3svc decode readargs and nfs3svc encode readres.

We instrumented the Linux kernel to identify the cache hits and misses to our cache as well

as the latency observed by each request. For testing, the clients ran typical OS operations

such as booting, virus scan, and compilation of source code.

5.2.3 Workloads

In this section, we briefly describe the real-world traces that we have used to drive our

evaluation of SeaCache.

CIFS Network Traces includes I/O traces collected over a period of four months from two

large-scale enterprise storage servers deployed at a company which uses Common Internet

File System (CIFS) as the network protocol and hosts about 1500 employees.

VDI Traces comprise of traces collected for two weeks from a system that was supporting 9

VMs in an in-house Virtual Desktop Environment. Here, in order to separate user-generated

I/O from other accesses we disabled any anti-virus program on all the VMs. The VMs read

17.3 GB and write 6.1 GB data per day on average.

Due to resource consolidation efforts, in addition to exhibiting general usage characteristics,

the VDI environment exhibits some interesting spikes in I/O requirements at certain times

of the day. In VDE, login/boot storms are generated on storage boxes where a large spike

of read requests are created as users login/boot to their desktop. Such a storm is highly

predictable because most corporate users start using their computers around the same time,

e.g., 9 am. In certain VDEs, the scheduled 3 am virus scan triggers a virus-scan storm. These

are read intensive storms that could be mitigated as most of the clients request identical set

of blocks from the storage server. Similarly, write intensive storms such as a patch update

or virus update can be configured to occur in the trace periodically.

Test-Dev Trace: An enterprise level test-development environment uses resources contin-

uously to 1) deploy/compile code, 2) install builds, and 3) perform QA activities. The QA
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integrated test environment often consists of a number of sub-environments where each sub-

environment is associated with the testing of a particular feature being developed. Thus, at

any given point in time, one of the above three processes are running for each of the QA

sub-environments. We recreated such a test-dev environment for trace collection. In our

setup, there were around 20 build-test VMs (each of which contained a sub-environment)

on a physical host. Since most test-dev cycles are almost identical, we emulated a larger

setup by replicating the traces and using simple Poisson arrival process to vary the start time

of each instance of a test-dev cycle, finally giving us our Test-Dev trace. Within a single

Test-Dev environment, while 40 MB data is read, 250 MB data is written. This is a write

intensive trace.

5.3 Evaluation

We evaluate SeaCache using our simulator and our prototype implementation of Sec-

tion 5.2.2. In our simulator, we configure the cache size of each VM to be 256 MB, each

physical host to accommodate 10 VMs at most, and the cache size of storage server to be

4 GB. Most of our experiments measure the I/O bandwidth consumption between storage

server and physical hosts, which are illustrated as bars, and the average latency of the I/O

requests, which are illustrated as stars on the same graphs. In the following, we present the

details of our experiments and observations.

5.3.1 CSI Sharing Protocol Analysis

In our first set of experiments, we use our simulator to analyze the different CSI sharing

protocol algorithms described in Section 5.1 using the CIFS, VDI and Test-Dev workloads.

The protocols being analyzed are as follows: 1) Baseline protocol that does not transfer any

CSI information, and we use it as the baseline to compare to when reporting performance

improvement results; 2) Dedup-Read approach used by de-duplication box on read path;

3) W/Tracker CSI sharing protocol algorithms described in Section 5.1 using the CIFS, VDI

and Test-Dev workloads. The protocols being analyzed are as follows: 1) Baseline protocol

that does not transfer any CSI information, and we use it as the baseline to compare to when

reporting performance improvement results; 2) Dedup-Read approach used by de-duplication
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box on read path; 3) W/Tracker where the storage server exactly tracks the host cache con-

tents; 4) SS-Push where the storage server exactly tracks the host cache and pushes back

more CSI to clients; 5) Coop-Cache using cooperative cache with SS-push; 6) Dedup-RW

approach used by de-duplication box both on read and write path; 7) SeaCache in which

all the proposed features are enabled including read, write path and cooperative cache. For

these experiments, the file system block size was set to 4KB, and the network and disk

latencies (obtained from real experiments) are modeled as 7.5 ms and 5 ms, respectively.
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Figure 5.5 I/O bandwidth consumption and average latency under CIFS trace.

CIFS Trace In this experiment, we analyze how much data is transferred between the

storage server and 72 hosts for all of the above mentioned algorithms using CIFS trace. The

trace involves 717 clients reading 17.2 GB and writing 7.3 GB of data. Figure 5.5 shows the

I/O bandwidth consumption (in GB) and the average latency of CIFS trace. Note that, we

consider the amount of data that will be exchanged between the hosts and the storage server

as the measure of bandwidth consumption, as reducing this data results in better utilization

of the available I/O bandwidth.

Baseline performs worse than the other algorithms by consuming 19.5 GB bandwidth with

average latency of 8.92 ms because it does not share CSI information. Dedup-Read reduces

I/O bandwidth consumption by 8.7% and lowers the average latency down to 8.6 ms by

eliminating duplicate read requests. For our two read path protocol variants, W/ Tracker

and SS-push, the total I/O bandwidth reduction is about the same with Dedup-Read, while

the latency is reduced down to 7.4 ms. This shows our two variants can effectively remove

the extra I/O consumed by Dedup-Read.
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Dedup-RW reduces I/O bandwidth consumption by 17.3%, while Coop-Cache and SeaCache

reduce I/O bandwidth 17.9% and 26.5%, respectively. We see that SeaCache outperforms

Dedup-RW by 9.2% in terms of bandwidth reduction and 25% in terms of latency. This is be-

cause SeaCache effectively optimizes the read path and redistributes the read path workloads

to other physical hosts.
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Figure 5.6 I/O bandwidth consumption and average latency under virus-scan storm.

Virus Scan in VDI Trace Figure 5.6 shows the I/O bandwidth consumption and average

latency in VDI environment for a Virus-Scan Storm under different protocols and different

number of VMs. The three groups of bars in the graph are: 10 VMs on a single host, 20 VMs

on two hosts, and 40 VMs on 4 hosts. Within each group, the I/O bandwidth consumption

and average latency per I/O are presented. It is observed that SeaCache is the best protocol

compared with other six variants, as it achieves up to 96% I/O saving and 97% latency

reduction compared with Baseline. The more clients are involved, the more benefits we

can get from SeaCache. We can see that when 40 VMs are running, SeaCache outperforms

Dedup-RW by 6% and 7% in corresponding I/O and latency reduction, respectively. Note

that, even when the number of VMs running virus scan traces increases from 10 to 40, the

I/O load seen by server increases by only 1.4 X under SeaCache, while Baseline saw the

load increase by 4 X .

Two Weeks VDI Trace For this experiment, we traced the VDI environment for two

weeks. Here since we have only 9 VMs involved, to show the effectiveness of SeaCache, we

configure each physical machine to host at most 3 VMs. Thus, in this experiment, a total
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Figure 5.7 I/O consumption on persistent
VDI traces for two weeks of usage.
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Figure 5.8 Average latency per I/O on per-
sistent VDI traces for two weeks of usage.

of 3 physical hosts are used.

Figure 5.7 and Figure 5.8 show I/O bandwidth consumption and average latency, respec-

tively, under different scenarios for the VDI trace. The x-axis here represents each day of

the two weeks trace duration. Baseline perform significantly worse compared to any of the

CSI sharing algorithms in terms of the amount of data transferred between hosts and stor-

age server as well as the latency. This experiment shows that the performance of SeaCache

consistently exceeds Dedup-RW by up to 14% in I/O saving and 24% in latency reduction.
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Figure 5.9 I/O bandwidth consumption and access latency under Test-Dev traces.

Test-Dev Trace Similar to Figure 5.6, Figure 5.9 shows the I/O bandwidth consumption

and average latency under different algorithms for the test-dev trace. The Dedup-R and our

read path optimizations do not gain significant benefits because the test-dev trace is write
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intensive with write ratio of 86%. On the other hand Dedup-R/W and SeaCache can effec-

tively reduce the duplicate writes. However, SeaCache does not win much over Dedup-R/W

in this case since SeaCache focuses more on read path optimization (improving 1% in data

saving and 3% in latency reduction). As in the previous experiment, increasing the number

of VMs running the trace from 10 to 40 only results in a 1.8 X increase in the I/O load seen

by the storage server, where as Baseline experienced a 4 X load increase.

The above experiments show that SeaCache can enable data center managers to provision

storage servers for average loads instead of peak loads, and consequently improve the overall

efficiency of the center.

5.3.2 Efficiency of Enhanced Host Cache
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Figure 5.10 Enhanced LRU in host cache for persistent VDI traces.

In our next experiment, we use the simulator to test whether enhanced LRU (ELRU) algo-

rithm that takes CSI information into account can perform better in comparison to basic

LRU for host cache management. Figure 5.10 shows the results for the two weeks of VDI

traces under SeaCache. Here, ELRU-n implies that the least shared entry within the last

n LRU entries is evicted, e.g., ELRU-1 is the same as LRU. It is observed that ELRU-n

performs slightly better than LRU; improving 1.5% in bandwidth saving and 1.5% in la-

tency reduction. The main reason for this behavior is that LRU already accounts for recent

accesses. Thus, if a shared block is being accessed multiple times by different VMs, it is not

evicted as it is often not the least recently used block.
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5.3.3 Storage Cache Efficiency
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Figure 5.11 Impact of CSI on storage server cache for data blocks.

In this experiment, we compare the impact of adding more memory to the storage server for

storing data blocks (without CSI sharing protocol) with a storage server that uses our CSI

sharing protocol but does not use extra cache. Note that the I/Os shown here are for data

that is not present in the client cache, which are sent to the storage server. For this test,

we pick the 5th day of VDI traces, as that yields decent performance under W/ Tracker. As

shown in Figure 5.11, W/ Tracker is able to perform better against the one with the extra

cache (as much as 16 GB) for mitigating disk I/O. This is because any CSI-Map hit causes

the storage server to respond to the host with just CSI information. In contrast, although

any storage server data cache hit eliminates disk I/O, it does not prevent the transmission

of the larger payload to the host. The key insight here is that the CSI sharing protocols

reduce the size of payload that needs to be serviced back by the storage server, which dras-

tically reduces the average latency experienced by the hosts. This is an important result

because it emphasizes that the capital spent on provisioning larger caches on the storage

server can now be moved to the hosts. Finally, more hosts can be served using a single

storage server, especially for workloads that are friendly to our protocols, such as VDI or

Test-Dev environments.
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5.3.4 Implementation Results

In this experiment, we use our prototype implementation to show that CSI sharing is a fea-

sible idea. To this end, we traced the I/O requests of booting Windows XP-SP3 one after

the other 100 s apart. Each boot of VM requests about 400 MB of data.

Network CSI-Map Average
Hit (%) Cache Hit (%) Latency (ms)

Baseline VM1 100.00 - 8.58
Baseline VM2 100.00 - 7.29

SS-Push VM1 99.00 01.00 8.97
SS-Push VM2 64.56 35.44 3.39

Table 5.1 Average latency per I/O on VM boot.

First, we compare the overhead introduced by CSI sharing in terms of average latency of

booting the first VM for both Baseline and SS-Push. Table 5.1 shows that the overhead is

negligible. Next, we observe the latency for booting the second VM. The CSI-Map cache hits

drastically reduce the average latency of blocks requested on booting the second VM: about

35% of SS-Push requests for VM2 were identical to that for VM1, and these were cache hits

in the CSI-Map. That shows that host can absorb the boot storm with out impacting the

storage server, which would drastically reduce the design requirement on storage server from

handling peak loads to average load.
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Figure 5.12 Latency of each I/O request on booting two VM’s one after another.
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Next, we measured the request latency for each I/O request as shown in Figure 5.12. We

have marked three regions on the figure: hits-1, hits-2 and hits-3. Hits-1 presents the region

where the SS-Push for VM1 re-requests blocks again post boot. These requests are absorbed

by the CSI-Map cache and therefore we observe no latency in servicing these requests. The

regions hits-2 and hits-3 mark requests by SS-Push for VM2 that has not been modified by

VM1. We observed that the average latency for block-reads for VM2 dropped by 62%. With

better CSI-Map between blocks and content, we expect to obtain a high rate of hits on a

boot workload. This approach is very useful when tens of VM’s are booted on a host, and

the approach can mitigate boot-storms or virus-scan storms using a software-only solution.

5.4 Chapter Summary

In this Chapter, we presented an integrated approach, SeaCache, which incorporates host

side caching, storage server to host data transfer and de-duplication information sharing

protocols, and a storage server side de-duplication mechanism. SeaCache allows data center

operators to (a) not provision resources for peak loads (for VDI type workloads) and (b)

not procure extra hardware resources such as caches or on-wire de-duplication boxes. In

this regard, we present: 1) algorithms for how storage server side de-duplication information

can be leveraged to optimize storage server to host data transfers and host side caching;

and 2) how host side client cache information can be leveraged at the storage servers to ef-

ficiently perform data transfer operations. We analyzed the proposed algorithms using three

real-world workload traces and the results support our hypothesis that looking at these three

system design areas in an integrated manner leads to overall bandwidth and latency benefits.

Our experiments show that compared to dedup-box, SeaCache improves the I/O saving by

up to 14% and latency reduction by up to 25%. Moreover, the results prove that SeaCache

effectively absorbs the peak load under Virus-scan storm and Test-Dev traces. We have

also developed a proof-of-concept implementation of SeaCache with an NFS client using a

modified NFS protocol (that is CSI sharing protocol aware) and made the necessary changes

at the NFS server to further validate that the approach is viable.



Chapter 6

I/O Similarity Aware Virtual
Machine Management

As we mention in Chapter 5, scaling shared storage to support large VDE deployments

poses issues of sustaining high performance while managing the high cost of provisioning

large storage volumes. I/O reduction techniques, such as SeaCache, aiming at improving the

performance and scalability of shared storage have been proposed based on the observation

that virtual environments exhibit a large number of common data accesses between different

VMs. However, without taking such similarity into account, VMs with similar I/O accesses

may get placed on different physical hosts, reducing potential for I/O reduction and leading

to suboptimal performance.

In this Chapter, we design SMIO, a VM placement system that monitors the I/O accesses of

VMs, and places VMs with similar I/O accesses on the same physical host to improve the I/O

reduction efficiency, which in turn helps improve the performance and scalability of shared

storage system. We then evaluate the effectiveness of SMIO for read-intensive workloads and

for read/write workloads compared to a system that does not employ similar-access-aware

VM placement.

6.1 System Design

6.1.1 Design Rationale

The goal of SMIO is to efficiently detect I/O similarities among different VMs, cluster the

VMs with similar workloads together and place the clustered VMs on the same physical host

85
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if migration benefits exceed costs. The system needs to periodically re-adapt to the workload

changes by creating better VM placements when possible.

A straw man approach is to use a centralized VM placement manager to periodically col-

lect I/O access information from each VM. The I/O information is collected by installing

an I/O monitoring component on each VM. The monitor computes the hash value of each

block being accessed on the VM using collision resistant hash functions, such as SHA-1 [106],

and periodically sends a list of collected hash values to the centralized placement manager.

The manager uses the gathered information to cluster VMs with similar accesses, which can

then be assigned to a physical machine (PM) together. Moreover, the manager can use the

information to adapt to changes in workload characteristics.

While effective, the centralized approach is not scalable as the massive number of hash val-

ues from thousands of VMs being periodically sent to the manager will consume a large

fraction of available network bandwidth and compete with the applications’ communication,

thus reducing overall system performance. Moreover, as the number of VMs increases, the

bandwidth of centralized manager will easily become a bottleneck. To address the problem,

we design a hierarchical approach, where individual hosts/VMs collect local I/O access in-

formation, process it, and only report a summary to the centralized manager. However, the

approach still requires a central manager to collect the global information from all hosts to

make proper VM clustering decisions. We design SMIO to address the above challenges.

Specifically, the design goals of our system are as follows:

• Scalability: the VM placement manager should be able to quickly generate a solution

for thousands of VMs, and the solution time should grow very slowly if at all.

• Low overhead: the work performed at hosts and VMs for collection and processing of

the I/Os should minimally impact the performance of VMs.

• Low bandwidth consumption: the communication between the VM placement manager

and the hosts should be minimal.

• Dynamicity: the VM placement manager should be able to dynamically reconfigure

the placement topology to better adapt to the detected I/O workload changes.

6.1.2 Terminology

Here, we introduce the terminology that we have used.
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• Cluster: A cluster consists of one or more VMs. (ci, cj) denotes a cluster merged from

cluster ci and cluster cj.

• Cluster size (sci): the number of VMs within cluster ci

• λci: Num of unique blocks accessed by cluster ci

• αci: I/O similarity of cluster ci,
∑vmj∈ci

vmj
λvmj

− λci.

• βjk: I/O saving of block bk accessed by VM vmj within cluster ci, 1− 1/(the number

of VMs accessing the block within cluster ci).

• βvmj
: I/O saving of VM vmj,

∑

βjk for all unique blocks accessed by VM vmj within

cluster ci.

• Data sharing matrix MDSk
: It is defined as









− (α12) · · · (α1n)
...

. . .
...

· · · (α(n−1)n)









, where n refers to the number of clusters. MDSk
represents the αi,j of cluster (i, j)

under a distinct hash value range taken in charged by host k.

• Migration cost (mcost(c, dst)): the migration cost incurred by moving cluster c, to

physical host dst.

6.1.3 System Overview

The architecture overview of SMIO is shown in Figure 6.1, where it runs on the Xen plat-

form [111]. The targeted environment comprises of a shared storage system for persistent

data storage and hosts organized in racks. The shared storage system eliminates the need to

migrate the VM disk image files during migration, and only requires moving the in-memory

VM state. Each host supports a number of VMs and has a distributed hash table (DHT)

node running in the most privileged VM (Dom0). Each VM has an I/O monitor running in

its guest OS. The I/O monitor traps the application I/O accesses at the block level, computes

the hash values and sends it to the hosts corresponding DHT node periodically. Each DHT

node is responsible for a distinct hash range. A VM placement manager runs on a dedicated
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Figure 6.1 The overall system architecture.

host, which implements most of the intelligence of SMIO. The Xen hypervisor on every host

receives instruction from VM placement manager for VM placement and migration. The

VM placement manager collects information from DHT nodes in each host and uses hierar-

chical clustering (HC) [112] to generate a VM placement scheme. Hierarchical clustering is

a widely used data analysis tool, which successively merges similar groups of points to cre-

ate clusters of similar items. Compared with k-means [113] or k-medoids [114], hierarchical

clustering does not require specification of the number of clusters k, which is an unknown in

our environment. After the clustering scheme is generated, a migration execution algorithm

is invoked to determine the actual placement of each cluster.

We adopt a bottom-up approach for hierarchical clustering. Each VM starts as a cluster with

only itself as a member, then merges with other VMs (clusters) are performed successively

until the algorithm can no longer find a suitable cluster to merge with based on the defined

clustering criteria. The criteria factors in improved I/O similarity between the clusters to

be merged and the cost of migrating the associated VMs. This is critical, as while merging

clusters with high I/O similarity are preferred, the resulting migration overhead may negate

the benefits. Such cases may arise, for example, when the two candidate clusters are far

apart in terms of network distance. Once a suitable clustering plan is determined, a VM mi-

gration executor generates a migration plan aiming at minimizing the number of migrations,

resulting network traffic, and migration time.



6.1 System Design 89

6.1.4 Net Benefit Modeling of Hierarchical Clustering

In order to cluster the VMs more effectively, SMIO defines the net benefits of a merged

cluster c as shown in equation 6.1.

γc = Sblock ∗ (αc −

i∈c
∑

i

βvmi
)− a ∗mcost(c,DST ) (6.1)

Sblock is the storage block size, a is a parameter used to adjust the weight between benefit

and migration cost, βvmi
is the I/O saving of vmi within the cluster composing of VMs

residing on the same physical host as vmi. The first term Sblock ∗ (αc −
∑i∈c

i βvmi
) quantifies

the improved similarity by merging two clusters and represents the number of block accesses

can be saved in the current epoch if its member VMs are placed together compared with the

I/O saving under current placement.

We purposely do not consider the frequency accessed by a single VM, instead we valued the

frequency accessed by multiple VMs. The reason is that the former can benefit itself from

mechanisms like SeaCache without the need to place similar VMs together. If each VM is

placed separately, the unique blocks accessed by each VM will be requested from the storage

server once. The subsequence accesses to an unique block from the same VM will be satisfied

by the host cache. If VM 1 accesses block 1 at the first time, block 1 will be requested from

storage. After that, the accesses to block 1 from VM 1 will hit the cache, but the accesses

to block 1 from VM 2 will still go to storage since VM 2 is in a different host. Thus, the

total accesses to the storage server from all separately placed VMs will be the sum of the

unique block accesses from each VM. If the VMs in a cluster are placed together, only the

unique blocks accessed by the cluster will be requested from the storage server once. The

subsequence accesses to an unique block from the same VM or different VMs in this cluster

will be satisfied by the host cache. For example, VM 1 is the first one in the cluster to access

block 1, and the request of block 1 goes to the storage server. After that, the access to

block 1 from VM 1 or other VMs in the cluster will not go to the storage server. Thus, the

total accesses to the storage server from all VMs in the same host will be the total number

of unique blocks accessed by the cluster. Therefore, the improved benefit is defined as the

above.

Calculation of the migration cost needs careful consideration. Under a shared storage in-

frastructure that does not require migrating the VM disk image files, the migration cost of

grouping two clusters mainly depends on the allocated memories of clusters and the network
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distance between them. Network distance here refers to the hops required to transfer the

in-memory data from one host to another. The larger the allocated memory clusters have

and the longer the distance, the higher network traffic they would incur, thus leading to

higher migration cost. The reason is that a typical live VM migration involves copying the

memory pages from the source host to the destination host across the network.

In HC, the DST is null because we do not know which PM to place the cluster yet. We

estimate the migration cost of grouping two clusters as the smaller of the allocated memo-

ries size among the two clusters times the network distance between the two clusters. The

allocated memory size of a cluster is the sum of the allocated memory size of its children.

The network distance is the minimum network distance between any child pairs from the two

clusters. This is an optimistic estimation since the actual migration cost cannot be better

than the migration cost estimated here. For example, consider that VM 1 with memory size

of 1G and VM 2 with memory size of 2G have high similarity and the network distance is 1,

i.e., they are located within the same rack. The migration cost in this case is 1G ∗ 1 = 1G.

However, in reality, two other cases can happen. The migration executor might decide to

move VM 2 to the host of VM 1 with a migration cost of 2G ∗ 1 = 2G, or both VM 1 and

VM 2 are moved to some other host with network distance d resulting in a migration cost

of 3G ∗ d.

In our system, we adopt a two-phase migration cost estimation approach. We estimate opti-

mistically in hierarchical clustering to improve the quality of the cluster, which values both

similarity and migration cost. For instance, consider if (VM 1, VM 2) have slightly better

similarity than (VM 1, VM 3), but the migration cost of (VM 1, VM 2) is much higher

than (VM 1, VM 3) due to far apart network distance or large allocated VM memory. It

would be desirable to cluster (VM 1, VM 3) rather than cluster (VM 1, VM 2). Without

the rough estimation in hierarchical clustering, it would be difficult to execute the migration

plan in migration phase, and the possibilities for improve system performance are hampered.

Later on in the migration execution phase, SMIO again estimates the migration cost more

accurately and compares it with the similarity improvement achieved by migrating clustered

VMs to a host together. The estimation of migration cost in the second phase has much

higher accuracy because it has the global actual migration information. Further details of

this are provided in Section 6.1.8.
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Algorithm 2 The hierarchical clustering algorithm used in SMIO.

VM manager:
Epoch current epoch;
On every t1 minutes:
n=0;
while true do
send to all DHT nodes: getDSMatrix(n, current epoch, null);getBetaValue;
Gather all MDS, list of βvm values from all DHT node;
Calculate global data sharing matrix by

∑

MDSi
;

Calculate and Sort the γ entries decreasingly;
Group the cluster pairs which can fit into a physical host and have highest value of γ;
if new schemes generated == false then
break;

end if
n++;
Broadcast the new scheme to all DHT nodes;

end while
Send the generated plan to VM migration executor.
Start a new epoch by increasing current epoch by one and send to all DHT nodes;

DHT node:
Hashtable ht dht; List βvm

Epoch current epoch;
Onreceive getDSMatrix(n, current epoch, null) from VM manager:
Send message MDS to VM manager;
Onreceive getBetaValues from VM manager:
Calculate and send list of βvm values to VM manager;
Onreceive the new scheme:
Update the MDS for new cluster (i, j), delete column j, row j, update column i, row i,
based on the definition.
Onreceive start new epoch e′ from VM manager:
Clean up the hashtable ht dht and the data sharing matrix MDS, list βvm;
Current epoch=e′;
Onreceive list of block hashes from a I/O monior:
Update the data sharing matrix MDS;
Merge the list of block hashes into ht dht;

I/O monitor:
Hashtable ht iotrace;
Sampling I/O accesses, store it in Hashtable ht iotrace;
On every t2 sec, sends calculated block hashes to DHT nodes, cleans up ht iotrace;
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6.1.5 Hierarchical Clustering in VM Manager

Note that some of the VMs might not have similarity with other VMs. In this case, other

orthogonal placement algorithms [51, 53] can be used to determine the placement of these

VMs since I/O similarity does not have an impact for such cases. Similarly, for VMs that

are launched without any prior collected I/O information, such placement algorithms can be

used to do the initial placement until the SMIO VM manager processes and suggests an I/O

similarity-based clustering scheme. The detailed algorithm is illustrated in Algorithm 2.

In SMIO, the VM manager and each DHT node maintain an epoch number current epoch

as the local variable that is used to synchronize between VM manager and all DHT nodes. If

a DHT node is out of synchronization, it is excluded in the current epoch. The DHT node’s

epoch number is then updated to join the next new scheme calculation. Every t1 minutes,

the VM manager starts a new epoch by increasing the epoch number by 1 and launches a

new round of hierarchical clustering.

Each DHT node maintains a hash table ht dht and a data sharing matrix MDS. The keys

in ht dht are block hashes (all falls in the specific range), and the value for each key is a

list of VMs which accessed this block during the current epoch. Note that, the keys in the

hash tables belonging to different DHTs do not have any overlap. It receives a list of hash

values from I/O monitors periodically.

At the end of each epoch, the VM manager launches the hierarchical clustering algorithm

to generate a new placement scheme. The clustering criteria shown in Equation 6.2 here is

similar to the one defined at Section 6.1.4 yet adjusted to the hybrid distributed version.

γc = Sblock ∗ (

dhtk∈DHT
∑

dhtk

(αc −

i∈c
∑

i

βvmi
))− a ∗mcost(c, null) (6.2)

With the purpose of obtaining the criteria for the system, The VM manager first gathers

data similarity matrices MDS from all DHT nodes that have the same epoch number with

iteration number 0. It then calculates the global data sharing matrix by summing up all the

gathered data similarity matrices, followed by calculating the γ values of all cluster pairs

sorting them in a decreasing order. Next the manager groups the cluster pairs into a new

cluster, which can fit into a physical host and have γ greater than the threshold thsim. The

algorithm will not group two clusters together as a new cluster if the two clusters cannot

fit into a physical host due to resource constraints. This makes sure that the cluster gen-

erated by the manager does not exceed the capacity of a physical host. If there are new
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clusters generated, the VM manager will broadcast the new generated grouping scheme to

all DHT nodes. Upon receiving a new grouping scheme, the DHT nodes update the Mds for

each new cluster (i, j) by deleting column j, row j, updated column i, row i as described in

Section 6.1.7. The VM manager then proceeds to the next iteration for the current epoch.

If no more new clusters are generated, the VM manager sends the placement plan to VM

migration executor, starts and sends out a new epoch number current epoch + 1 and ter-

minates the current algorithm iteration. On receiving the new epoch number, DHT nodes

clean up their hashtables and their data sharing matrices MDS.

VM3 VM4VM1 VM2 VM5 VM6

C7 C8

C9 C10

Figure 6.2 An example execution of hierarchical clustering.

Figure 6.2 shows an example execution of the hierarchical clustering algorithm. Initially,

VM 1 to VM 6 each are separate clusters. After gathering the data sharing similarity

matrices and calculating the global I/O similarity matrix, the VM manager determines to

group (VM1, V M3) and (VM2, V M5) into new clusters C7 and C8, which have the first

two highest I/O similarity ratio greater than threshold thsim. VM4 and VM6 can not be

paired because the I/O / similarity ratio is lower than thsim. In the second iteration, the

VM manager groups C7, V M6 into cluster C10, C8, V M4 intro cluster C9. In the third it-

eration, VM manager finishes the current algorithm. C9 and C10 cannot be further merged

because no physical hosts can fit cluster (C9, C10).

6.1.6 I/O Monitor

The I/O monitor inside each VM traps the block level data, calculates the hash value of

sampled blocks, stores the block hashes as keys in its hashtable ht iotrace. The value for

each hash key is simply null. We use a hash table to quickly identify the redundant I/O

within a single VM and report unique blocks. Popular blocks within a VM should not affect
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the similarities between VMs.

Every t2 seconds, the I/O monitor periodically sends the hashes of unique blocks accessed

by the VM during (current− t2, current], namely the collected hash keys, to corresponding

DHT nodes. The keys are sent to the DHT nodes based on hash ranges and not directly to

the VM manager. This distributes the network traffic across participating physical hosts,

thus avoiding saturating the network bandwidth to the VM manager.

We implement the I/O monitoring process by modifying an existing I/O tracer for linux

kernel, called blktrace, to also record the I/O content. The kernel space component of the

tracer transfers the I/O events onto the userspace one, which among other things computes

the fingerprint and passes that to the DHT node periodically. We would also like to mention

that we chose to implement this in the VM itself, rather than doing in Dom0 as it was easy

to modify an existing tool (blktrace). I/O monitoring and hash value computation can also

be done in Dom0, which would be less intrusive to the VM users. That might also have

lower overhead than in-the-VM approach used currently in SMIO.

In order to make I/O monitoring lightweight, SMIO samples the I/O accesses with uniform

distribution [115] and only compute the hash value of sampled data blocks. The sampling

significantly reduces the monitoring overhead in terms of CPU and memory utilization.

6.1.7 DHT Node Operation

DHT nodes work cooperatively with the VM manager to implement the hierarchical cluster-

ing algorithm. Each DHT node is in charge of a distinct range of block hash values. Assuming

the block hash values are uniformly distributed, the work will be evenly distributed among

the DHT nodes. DHT nodes help in offloading the computation and network traffic from

the VM manager by grouping and summarizing the data sharing information between VMs

before sending to the VM manager. This greatly increases the scalability of SMIO.

Each DHT node maintains a list of metadata info (Lm)of each VM including the λ value

and βVM value, both are 0 by default, the current VM placement topology information. The

ht dht is initially empty at the beginning of each epoch. The data sharing matrix MDS at

each DHT node initially has 0 for all its α values in the matrix at the beginning of each

epoch.

Then at every t2 seconds, a DHT node receives a list of block hashes from an I/O monitor i
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which monitors the accessed blocks in VMi. While the DHT node merges the received block

hashes into its own hash table ht dht, it also updates Lm and MDS. The update algorithm

is as below:

For each block hash hash from I/O monitor i (or VMi), it looks up the hash table ht dht.

If a block hash hash is already a key in ht dht and VMi is not in the VM list, it adds the

VM of this I/O monitor VMi to the VM list for this key, increase αi of Lm. For each VM j

in this VM list, it also increases the number of common unique blocks αij (if i < j) or αji

(if i > j) by 1. If hash is not a key in ht dht, it adds the key-value pair (hash, V Mi) into

ht dht.

On receiving getDSMatrix and getBetaValues, the DHT node iterate through the hash table,

for each entry, iterate through the VM list, for each VM i, get its PM and the number of

VMs nvm which belonges to the same PM, βvmi
+ = 1 − 1/nvm, it sends VM manager the

MDS and Lm.

On receiving the newly generated grouping scheme from VM manager, assuming i < j with-

out loss of generality, for each newly merged cluster pairs (i, j), cluster i is updated to include

all VMs previously belonging to cluster j and becomes new cluster i′. Cluster j is removed

after getting the new cluster i′. The new cluster i′ has the same column/row index as cluster

i. This cluster to VM mapping information is also maintained in the VM manager.

In addition to updating the cluster-VM mapping, the data sharing matrix is also updated

upon receiving the new grouping scheme from the VM manager. Row i in MDS is updated

as follows. For each cluster index k (k > i), walk through the hash table ht dht to get the

number of common blocks αijk accessed by cluster i, cluster j and cluster k. The number of

common blocks αi′k accessed by cluster(i, j) and cluster k is calculated by αik + αjk − αijk.

Column i is updated similarly for each cluster index k (k < i). After column i, row i are

updated, column j, row j are deleted from matrix MDS. As such, the updated matrix will

be collected by VM manager for the next iteration.

6.1.8 Migration Execution

Once a new clustering scheme is generated, the migration executor is responsible for com-

puting a migration plan. This plan specifies the host for each cluster. Since the hierarchical

clustering may generate more clusters than the number of hosts, multiple clusters may share

a single host.
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One policy in the migration plan is to place an entire cluster rather than part of it in a

host if possible since the purpose of this work is to put VMs with similar I/Os together.

Under this condition, we try to minimize the migration cost. Computing a migration plan

that minimizes the migration overhead is NP-hard because the well known NP-hard multi-

dimensional knapsack problem can be reduced to it. Therefore, we design a greedy heuristic

algorithm to determine the migration plan.

The main idea of this greedy algorithm is that initially each host has zero VMs or clusters

assigned. Then the algorithm picks a cluster i and assigns it to a host j, based on the net

benefit γij of the cluster i can bring if the resource requirement does not exceed the physical

limit. We next describe how to pick a cluster and a host in details. The definition of net

benefit in Equation 6.3 is similar to the one described in Section 6.1.4.

γij = Sblock ∗ (αci −

k∈ci
∑

k

βvmk
)− a ∗mcost(ci, pmj) (6.3)

For clusters with sc > 1, γ < 0 means the benefit is less than the migration cost, the corre-

sponding assignment is unqualified; if the cluster in its entirety is residing on host j, then

γ = 0. Clusters with sc = 1 have γ = 0 if they are on host j, γ < 0 if not. Next, we describe

the algorithm in detail.

To decide which cluster to pick and the placement of it, the algorithm maintains a sorted

list of γ values in decreasing order. Unqualified assignment with negative γ for clusters with

cluster size greater than one is not in the sorted γ list. The algorithm picks the highest γ,

assigns the corresponding cluster i to host j. The move is feasible because if host j does

not have sufficient CPU, network, memory resources to fit cluster i, the γ value is −∞. The

affected γs are updated to reflect the placement decision just made. Specifically, the γkj are

set to −∞ thus removed from γ list if any unassigned clusters k can not fit host j. The

γiks of cluster i are deleted from γ list for each host k. The algorithm repeats the process

until not positive γ values in the list. At this point, the unassigned clusters with cluster

size greater than one will not be clustered. These clusters are then broken into clusters with

size one, the corresponding γ values are updated and inserted into the γ list. The process is

repeated until all clusters are placed.

After the new placement topology is generated, the migration executor needs to make sure

that the new calculated placement topology actually outperforms the current placement

topology before the actual migration. This is done by comparing the total benefit (amount

of accesses saved) by changing from current placement to a new placement with the total
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Workload Training Center Biobench1 Biobench2 TestDev

Similarity medium medium varied strong
Duration 2.5 hours 1.5 hours 46 min 36min
Read 28.9G 419G 407.7G 47.9G
write 30.5G 29G 10.2G 16.3G
# of requests 201K 495K 456K 4.1M
# of clients (VMs) 280 12 12 8

Table 6.1 Workload characteristics.

migration cost of this change. For the comparison, we compute µs for each physical host of

new placement topology, the µ′s for each physical host of current placement topology, the

migration cost υs for each VM needed migration. The benefit-cost metrics Φ here is dfined

in Equation 6.4.
∑

i∈P

(µi − µ′

i) ∗ Sblock − a ∗
∑

i∈Mset

υi (6.4)

In Equation refeq:phi, P is the set of physical hosts, Mset is the set of VMs required migra-

tion. The cluster for µi of host i is the VMs assigned or residing on host i. If Φ > 0, then the

new calculated placement topology have a high possibility to yield better performance than

the current solution after migration. Otherwise, the current migration plan is abandoned

without changing the placement topology at this round.

The output of the algorithm is a list of clusters and the new destination host for each; the

migration is triggered after the algorithm is terminated. Note that it is common to have

clusters with cluster size one stay on the same host according to the computed migration

plan.

6.2 Evaluation

We use trace driven simulations to evaluate the effectiveness of SMIO. In this section, we

first describe the traces we collected, then we give details of the simulator, followed by a

description of the experiments conducted.
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6.2.1 Methodology

6.2.1.1 Workloads

We collected and used four different traces for our experiments, which are summarized in

Table 6.1. The traces are classified into different similarity level, namely strong, medium

and varied, based on the I/O accesses they exhibit. Strong similarity means different clients

(VMs) have higher possibility to access the same data contents in a relatively small time

frame, whereas varied similarity means different clients have a lower possibility to access the

same data contents or access the same data contents at different time. Within the trace file,

for each I/O access we collect the type of I/O (read/write command), the timestamp, the

IP address of hosts, the file name, the offset and the size of the I/O and a list of hash values

computed from actual data.

Training center traces: Running VMs within a training center is another common use

case that presents similar I/O workloads. For example, in a TOEFL English Test training

center, all the classes have the same time durations of typically 45 minutes. The first class

usually begins at 8am with 4 classes packed in the morning. Within a class section, VMs

owned by each student is likely to show similar I/O workloads. For example, VMs in a lis-

tening test section are going to retrieve the same audio file as students are instructed by the

teacher to listen to a particular content. VMs in a speaking test section retrieve same spoken

instructions but write different I/O contents to the shared storage as the audios recorded

from different students are different. We collect the traces of a total of 280 students within

5 listening sections and 2 speaking sections. Each section comprises of 40 students. The

VMs from the listening sections present strong similarity correlation, while the VMs from

the speaking section show weak similarity correlation. The 7 sections begin at the same time

with a total interval of 2.5 hours.

Bioinformatics benchmarking traces: These traces capture a typical scenario within

scientific research centers such as national labs or university labs where users perform bio-

informatics related research. Users in this case usually focus on the research of a particular

DNA and protein and run search queries against corresponding databases. We use Blast [116]

to demonstrate such a use case and collect the traces. Blast is a widely used DNA/protein

sequence searching application. In our setup, three databases are used: NR with size of 17 G,

NT with size of 14 G, and HTGS with size of 6 G. Our bio-benchmark 1 (biobench1) has 4

clients running on queries against each database with a total of 12 clients. Clients searching
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against the same database run queries with different parameters representing the case that

users are tweaking the parameters. Our bio-benchmark 2 (biobench2) has a similar setup

except that clients searching against the same database run a set of 4 queries in different

orders representing the cases that users are collaborating on research of same types of protein

or nucleotide sequences. The similarities between VMs are varied in these traces.

Test and development traces: A typical scenario is an enterprise level test development

environment where users usually continuously 1) develop/ edit codes, 2) compile codes, 3)

install builds, and 4) conduct QA activities. Within an enterprise, different departments

might be responsible for developing and testing different products and different teams within

a department might be responsible for developing and testing different features of the same

product. The group of VMs that test different features of the same product will typically

exhibit strong similarities since the majority of the code base is the same. We setup such a

test-dev environment and collect the traces. More specifically, there were four VMs for de-

veloping and testing Linux kernel version 2.6.32.15 and four VMs for developing and testing

Xen 4.2. The 8 VMs read 47.9 G data and write 16.3 G data in total.

6.2.1.2 Simulator Design

Trace driven based simulation allows us to explore a variety of configuration spaces and the

scalability of our system. We developed our simulator based on the one used in Chapter 5.

Our simulator implements all the components shown in Figure 6.1 except the I/O moni-

tor because we collected the traces offline. Particularly, the simulator consists of a DHT

node, hierarchical clustering component and migration execution component. The hierar-

chical clustering component takes traces and configured system parameters as input and

generates clustering schemes that are fed into the migration execution components. The mi-

gration execution component then computes the actual placement of clusters and executes

the migration plan by instructing the SeaCache simulator to change the placement of VMs.

We assume each VM has the same cache size of 1 G, and the storage server cache size is

4 G. The parameters used in the following experiments are threshold thsim of 0.2, decision

interval of 90 seconds, and no sampling unless mentioned otherwise.
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6.2.2 Effectiveness of SMIO

In our first set of experiments, we use our simulator to show the effectiveness of our system

SMIO by comparing with First Fit Decreasing (FFD) [117] placement, the best and worst

placement technique under test development, training center and biobench workloads. FFD

is a greedy approximation algorithm designed for multi-dimensional bin packing problem,

which attempts to place the VMs in the first host that can accommodate the VM. The order

of hosts is sorted according to network architecture initially but fixed in all the algorithm

runs. Particularly, hosts within a rack are neighbors in the host list. The placement of VMs

is processed in the arrival order. The best/worst placement is the best/worst placement

policy that yields the best/worst performance under different traces, which in general con-

sumes the least/most I/O bandwidth between storage server and hosts. We obtained the

best/worst placement manually to the best of our knowledge of the traces used.
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Figure 6.3 I/O bandwidth consumption under training center trace.

Training center trace Figure 6.3 shows how many data is transferred between storage

server and 280 VMs for training data center trace under different number of VMs per host.

The four groups of bars in the graph are 10 VMs/host with 28 hosts in total, 20 VMs/host

with 14 hosts in total, 30 VMs/host with 10 hosts in total and 40 VMs/hosts with 7 hosts in

total. With each group, the I/O bandwidth between hosts and storage servers are illustrated

under FFD placement, SMIO placement and best placement policy. We observed that the

different placement policies significantly impact the I/O bandwidth consumption between

hosts and the storage server. As we can see, SMIO can effectively detect the similarity

between VMs belonging to different sections and yields low I/O bandwidth consumption
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comparable to best placement in all cases. On average, the read path performance of FFD is

4.9 times worse than SMIO while the write path is only 2.1% worse. The reason is that the

students in each listening section of the training center trace listen to same materials most of

the time during the section. This leads to high similarity of read workloads within each lis-

tening section. On the other hand, the students in the speaking section listen to instructions

intermittently and record their speeches most of the time during the section, which results

in nearly zero similarity for the write path I/O traffic. As the number of VMs per hosts

increases, the I/O bandwidth consumptions are all reduced for all placement techniques.
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Figure 6.4 I/O bandwidth consumption un-
der biobench1 trace.
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Figure 6.5 I/O bandwidth consumption un-
der biobench2 trace.

Biobench traces Figure 6.4 and Figure 6.5 show the I/O bandwidth consumption for

biobench1 and biobench2 traces under different placement policies and different number of

VMs per host, namely 12 VMs distributed evenly on 3 hosts, 4 hosts and 6 hosts. In both

traces, SMIO achieves almost the same I/O consumptions as the best placement policy. In

biobench1, the I/O consumptions of the worst placement policy is 1.27, 1.37 and 1.87 times

worse than SMIO for the three number of hosts considered while FFD placement is 1.22,

1.27 and 1.63 times worse than SMIO. In biobench2, the I/O consumption of the worst

placement policy is 1.52, 1.51 and 1.97 times worse than SMIO for the considered scenarios

while FFD placement is 1.35, 1.31 and 1.95 times worse than SMIO for the corresponding

scenarios. It is observed that SMIO again effectively detects the similarity between VMs

working on different data sets and groups the VMs correspondingly. Here we do not show

the I/O consumption of read and write path separately because the traces are read-intensive

with negligible write traffic.



6.2 Evaluation 102

 0

 5

 10

 15

 20

 2VM/h  4VM/hD
a
ta

 r
e
q
u
e
s
te

d
 f
ro

m
 t
h
e
 s

to
ra

g
e
 s

e
rv

e
r 

in
 G

B

worst ffd smio best

Figure 6.6 I/O bandwidth consumption un-
der test development trace.
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Figure 6.7 I/O bandwidth consumption un-
der test development trace.

Test development trace Figure 6.6 shows similar results that SMIO effectively detects

the I/O similarity and achieves the performance as the best placement. To see how the

migration scheme is helping save the I/O consumption, we plot the I/O consumption over

time using test development trace. In the simulator, we record the I/O and print out the

value every 20 seconds. Figure 6.7 illustrates that after monitoring the I/Os for the first 5

minutes, SMIO decides to migrate VMs for new placement and the I/O seen by the storage

server are consistently less than the I/O consumption before migration. Moreover, SMIO

helps to reduce the peak bandwidth requirement by 33%. In total, SMIO reduces the I/O

consumption by 74% compared to the base case.

6.2.3 Parameter Sensitivity Analysis

The performance of SMIO depends on the selection of various thresholds and system pa-

rameters, such as thsim, t1 and t2, which need to be chosen carefully. Lower benefit-costs

threshold thsim indicates that more clusters will be paired up within each iteration, which

results in fewer iterations and faster algorithm convergence. However, it may miss better

pair-up opportunities. For example, cluster 3, 4 might be paired up in nth iteration with

lower thsim, which misses the opportunity to pair cluster 3 with cluster 1, 2 in n + 1th it-

eration. On the other hand, if thsim is set too high, it will increase the number of clusters

with size 1 and deteriorate the quality of generated cluster scheme. In terms of t1, if it is

set too low, unnecessary resources will be wasted. To generate a new VM placement plan,

network bandwidth will be consumed by the VM manager to communicate with DHT nodes

not to mention the computing cycle and memory space utilized by Algorithm 2. If t1 is set
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too high, the potential I/O optimization opportunities will be missed. On the other hand,

interval t2 decides the length of the package delivered to corresponding DHT nodes. Small

t2 would lead to small packages with a larger network package header overhead, whereas

large t2 would lead to outsize packages, which would get large memory overhead since I/O

monitors have to buffer them before sending to DHT nodes.

To quantify the quality of a generated cluster scheme, we use the Φ as discussed in Sec-

tion 6.1.8. The experiments in this section are conducted with 40 VMs per host on 7 hosts.

The results show a general guideline for picking thsim, t1 and t2.

 0

 20

 40

 60

 80

 100

 0.1  0.2  0.4  0.6  0.8 

 0

 20

 40

 60

 80

 100

N
o
rm

a
liz

e
d
 Φ

 (
%

)

N
u
m

b
e
r 

o
f 
U

n
c
lu

s
te

re
d
 V

M
s

Benefit cost threshold

Φ Unclustered VMs

Figure 6.8 Impact of benefit-cost threshold
under training center trace.
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Figure 6.9 Impact of benefit-cost threshold
under biobench2 trace.

6.2.3.1 Impact of Benefit-cost Threshold

This experiment explores the impact of benefit-cost threshold used in hierarchical clustering

on the clustering result under both training center trace and biobench2 trace. In Figure 6.8,

the x-axis is the benefit-cost threshold while the left y-axis is the Φ value. The higher Φ is,

the higher is the quality of the generated clustering scheme. The right y-axis is the number

of clusters with cluster size 1. We prefer this number to be low because such 1-sized clusters

do not provide any useful information about the I/O similarity between VMs. We observe

that as the threshold is increased, the similarity is decreased because the number of clusters

with size 1 is increased from zero to 64 VMs. On the other hand, in Figure 6.9 Φ increases

when the benefit-cost threshold is increased from 0.1 to 0.4 while the number of clusters with

size 1 stays the same. However, when the benefit-cost threshold is increased from 0.4to0.8,

the Φ value actually goes down because the number of clusters with size 1 is increased from
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2 to 8.

6.2.3.2 Impact of Decision Interval
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Figure 6.10 Decision interval and similarity score.

Next, we conduct an experiment to determine how different decision intervals would affect

the similarity score and the number of clusters with size one. In Figure 6.10, we observe that

as the decision interval is increased from 10 seconds to 85 seconds, the similarity score is

increased because more block sharing information is obtained to help hierarchical clustering

to make better clustering decision. However, the similarity score does not keep increasing

and instead decreases as the decision interval is increased up to 120 seconds. The reason

is that SMIO does not adapt to the dynamic workloads as soon as needed with a too long

decision interval. In terms of the number of clusters with size 1, as the decision interval

increases, SMIO can successfully cluster all the VMs.

6.2.3.3 Impact of Sampling Rate

The next experiment demonstrates the relationship between sampling rate of I/O monitor

and the similarity score and the number of clusters with size 1 under hierarchical clustering.

As expected, Figure 6.11 shows that the similarity score positively relates to the sampling

rate. The higher sampling rate yields higher similarity score. This provides a trade-off for

users to adjust. The sampling rate can be dynamically increased when the host has idle sys-
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Figure 6.11 Sampling rate and similarity score.

tem resources and decreased when the VMs use up the system resources. On the other hand,

the number of clusters with size one keeps decreasing as the sampling rate keeps increasing

until to 0.6, which suggests a sweet configuration spot under this setup.

6.2.4 System Overhead and Scalability
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Figure 6.12 Overhead of the I/O Monitoring component.

Monitoring overhead: In this experiment, we measure the overhead of our I/O Monitoring

component under different sampling rates, including without monitoring (baseline), 1 : 10

sampling rate, 1 : 2 sampling rate, and monitoring all I/Os (no sampling). The performance

(speed) is normalized to the baseline performance. Since our monitoring component kicks

in only when there are active I/Os happening to the disk, we test some I/O intensive and
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I/O-CPU intensive applications. The results are shown in Figure 6.12. The first experiment

is a sequential read of a 5 GB file (seqS) under various sampling rates. The experiment shows

that even with no sampling, namely tracing all the I/Os, the observed read speed decreases

by less than 3%. The same is not true for the multi-threaded (2 threads) version of this

experiment (seqM), where we see how higher sampling rate helps to keep the performance

hit in check. For our third experiment, we run the Unix utility dd to copy a 10 GB file.

Again, as this is more “I/O-intensive” than the first experiment, we see a more decreased

transfer speed (in terms of MB/s). Finally, we run the task of Linux kernel compilation,

which is both computation and I/O intensive task. We observe that even with no sampling

the observed read speed reduces by less than 4%. These results show that the overhead of

the I/O monitoring can be kept low with an appropriate sampling rate; thus SMIO offers a

feasible and practical approach to managing VMs.

We are concerned with three aspects of the algorithm, namely memory requirements, compu-

tation overhead, and network usage. We use the following symbols to represent various vari-

ables: N : total number of VMs; Npm : number of VMs per physical machine; M = N/Npm :

total number of physical machines in the cluster; nuio : total number unique I/Os received

by a DHT node during an epoch; nio : total number of I/Os received by a DHT Node during

each epoch. Thus, we can roughly assume that total I/Os done by all the machines in the

cluster nio*M per epoch. As HC is a multi-round process, in which during each round C

represents the total number of clusters (Intially this is N).
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Memory requirements We store collected hashes (16 Bytes / hash) at each I/O monitor

and send them to respective DHT nodes every t2 seconds. 1M memory can easily track

256M I/Os. With a decent t2 value, the memory consumption is negligible. At each DHT

node, the main source of memory consumption is storing the hashtable which depends on

Npm and nio value. Figure 6.13 shows the memory consumption within each DHT node as

the value of nio increases with the number of VM fixed at 1600. The higher Npm, the more

memory is required to store the hashtable. For Npm = 10, capturing hash values represent-

ing 1G data of each VM as well as other data structures only requires 63M of memory size,

which is acceptable for modern physical hosts which typically equipped with 32G or 48G

memory. For the VM manager, the main source of memory consumption is storing the data

sharing matrix and global net benefit matrix. When N = 1600, it requires around 20M to

store the two matrices whose overhead is negligible.
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Figure 6.14 Network bandwidth consumption.

Bandwidth Usage Figure 6.14 shows the network bandwidth consumption of SMIO as

the number of VMs increases up to 1600. Gathering the data sharing matrices from all the

DHT nodes takes the largest portion of the consumption. For data centers up to 600 virtual

machines, the algorithm consumes 411MB network bandwidth. For exceptionally large data

centers with thousands of virtual machines, the matrix is typically observed sparse which

considerably reduce the data amount transferred.

Scalability of SMIO The hierarchical clustering algorithm of SMIO takes no more than

Npm iteration to finish. For ith iteration the size of the newly merged cluster (ci, cj) must be
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Figure 6.15 SMIO Scalability.

at least i+1. The reason is that either ci or cj must be merged at i−1th iteration. Otherwise,

cluster (ci, cj) can be merged at jth < ith iteration. That means, a path consists of merged

clusters can be found from ith iteration up to the first iteration for each cluster merged at ith

iteration. Within each iteration, the manager gathers the computed data sharing matrices

from all DHT nodes, sorts the global matrices, generates the new clustering scheme which

then is broadcast to DHT nodes. Upon received the new clustering scheme, each DHT node

updates their local matrices accordingly. Figure 6.15 shows the algorithm completion time as

the number of VMs grows up to 1600. For data center with up to 1600 VMs, nio = 1G/VM ,

SMIO can finish within half minutes. That means SMIO is scalable.

6.3 Chapter Summary

I/O reduction is a valuable technique to improve storage system scalability in data centers,

especially for VDEs with a shared underlying storage infrastructure. We observed that the

similarity between VMs can improve the effectiveness of I/O reduction mechanisms, and

the dynamic VDE workloads preclude static VM placement. In this context, we presented

SMIO, a system that automatically performs I/O access monitoring, detects I/O similari-

ties, quantifies the benefit and migration costs, calculates placement topology, and launches

migrations that cluster VMs with similar I/O workloads on the same/nearby hosts. SMIO

realizes: 1) a hierarchical clustering algorithm that clusters the VMs with similar I/O ac-

cesses in a hybrid distributed manner; 2) a greedy migration algorithm that computes the

new mapping between VMs and hosts with the goal of eliminating unqualified clusters and

minimizing the migration overhead; and 3) a two phase benefit-migration throttling tech-
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nique that substantially improves the clustering quality, hence effectively improves the I/O

savings between hosts and storage system in VDEs. A trace driven simulation showed that

SMIO can effectively detect I/O similarities between VMs in a timely fashion, determine

the migration plan and improve the storage system performance. Compared with the widely

used FFD placement policy, SMIO can improve the performance of storage system by as

much as 80% for read-intensive workloads and 50% for read/write workloads.



Chapter 7

Conclusion

The dissertation presents the design of a resource management framework for cloud comput-

ing. This framework targets two typical and widely used cloud services: MapReduce in the

cloud and virtual desktop environment. For the cloud service of MapReduce in the cloud,

we tackle the challenges and targeted problems both from cloud providers’ perspective and

users’ perspective. Specifically, we introduce a topology aware min-cost-flow based resource

manager to improve the MapReduce job performance for cloud providers. We also design

a mrOnline system allowing users’ to ease the burden of issuing accurate resource requests

through parameter configuration. The use of presented framework can help improve cluster

utilization and application performance. Moreover, the framework enables I/O bandwidth

deduplication between centralized storage server and physical hosts to enhance storage scal-

ability of VDE. Furthermore, it provides I/O similarity aware VM placement and migration

to guarantee the I/O reduction efficiency.

Our topology-aware min-cost flow based resource manager manages data / VM placement

for MapReduce in multi-tenant virtualized clouds. CAM relies on a three-level approach to

avoid the placement anomalies because of overlaid topology and inefficient resource alloca-

tion. More specially, CAM exposes compute, storage and network topologies to MapReduce

job scheduler, places data according to network traffic of corresponding jobs, expected ma-

chine load and storage utilization and places VMs with a goal of maximizing global data

locality and job throughput. It reduces the network traffic of multiple MapReduce instances

in a multi-tenant environment in which jobs are exhibiting different job characteristics.

Thus, the application performance is considerably improved compared with a start-of-the-art

MapReduce resource scheduler.

From the users’ perspective, we also studies how to automate the parameter configuration

eliminating users’ responsibility to configure per job parameters and request accurate needed

resources from MapReduce job scheduler. Parameter configuration is difficult due to a large

110
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configuration space and dependencies on job characteristics, input data sets and cluster con-

figurations. Traditional offline tuning is time consuming since it requires many test runs to

generate a desirable configuration. Moreover, they cannot avoid cluster hotspots. mrOnline

is offered to address these challenges. One key contribution which lays the foundation of

mrOnline is enabling task level dynamic configuration. It allows to change configurations per

task while the jobs are running. This key system-level improvement leads to huge opportu-

nities to: (i) continuously tunes performance within a single run; (ii) reduces the number of

test runs compared to offline tuning; and (iii) improves MapReduce cluster utilization when

executing multiple jobs concurrently. mrOnline leans on a gray-box hill climbing algorithm

to find a near-optimal configuration through the large configuration space. Moreover, mrOn-

line exploits MapReduce runtime statistics and incorporates tuning rules for key parameters

using aggress and conservative strategies. The evaluation of mrOnline using the two strate-

gies demonstrates that mrOnline can help automate the parameter tuning dynamically and

in a much more efficient way.

For the second cloud service, we focus on investigating effective caching techniques for im-

proving the storage scalability of centralized storage servers. Based on the observation that

lots of duplicate data exist within VDEs, we introduce a holistic caching system, SeaCache.

It consists of a host content addressable cache, storage deduplication and a content shar-

ing protocol. We also observe the following results through our evaluation. Firstly, unlike

current deployments, where virtualized environments are provisioned for peak loads in or-

der to deal with boot storms (e.g. VDI environments) by the customers, SeaCache allows

provisioning for average loads. Secondly, Many solution providers expect their customers to

increase the size of the caches either at the hosts or the storage server in order to deal with

peak workloads. SeaCache allows customers to give away with these cache extensions, thus

providing for higher system efficiency. Finally, SeaCache algorithms are more efficient than

simple on-wire data transfer solutions, where de-duplication boxes are placed at both source

and destination ends to de-duplicate data being transferred across the wire.

The goal of I/O similarity aware VM management is to improve the efficiency of I/O re-

duction techniques including SeaCache. We notice that the effectiveness of I/O reduction

methods depends on the I/O similarity of VMs running on the same physical hosts. The

higher I/O similarity, the higher I/O reduction efficiency. We observe that VMs can exhibit

cluster behavior in terms of I/O similarity. Thus, we propose SMIO which monitors and

detects I/O similarities between VMs, employing hierarchical clustering algorithm to clus-

ter VMS and place or migrate VMs based on the estimated benefits and migration costs.
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The trace driven simulation shows that SMIO can effectively detect I/O similarities between

VMs, decide the migration plan and improve I/O reduction efficiency.

7.1 Future Research

This is a cloud era in which resource management techniques serve as a fundamental enabling

technology. In this dissertation, we have addressed the challenges of managing resources and

enhanced storage scalability of two focused cloud services. Nevertheless, there exists a num-

ber of open questions related to the efficient use of computing resources in the cloud. In

the following, I outline my vision that are natural extensions of the techniques discussed

in this dissertation especially in data analytics performance improvement, areas of resource

management and storage optimization in cloud computing and distributed systems.

7.1.1 Application-attuned Heterogeneous-aware Resource Man-

agement in the Cloud

Large distributed software framework (DSF) deployments such as MapReduce, Pig and Hive,

in the cloud continue to grow in both size and numbers, given the DSFs are cost-effective and

easy to deploy. However, a problem posed by modern applications is that they typically are

complex workflows comprising multiple different kernels. The kernels can be diverse, e.g.,

compute-intensive processing followed by data-intensive visualization, and thus preclude the

use of extant static global optimizations in DSFs.

Another problem faced in evolving DSFs is how to handle increasing heterogeneity in the

underlying infrastructure efficiently. For instance, low-cost, power-efficient clusters that em-

ploy traditional servers along with specialized resources such as FPGAs, GPUs, PowerPC,

MIPS and ARM based embedded devices, and high-end server-on-chip solutions will drive

future DSFs infrastructure. Similarly, high-throughput DSF storage is trending towards hy-

brid and tiered approaches that use large in-memory such as buffers and SSDs in addition

to disks.

Cloud providers usually construct cloud consolidation environment from a variety of machine

classes as the generations of machines evolve overtime with more attractive cost-performance

specifications [12]. Some machines might be even equipped with additional hardware such as
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specialized GPU accelerators [118] or SSDs [119]. In a multi-tenant cloud hosting varieties

of workload ranging from Web applications, databases to MapReduce [120] workloads, the

resource demands from different organizations exhibit a high degree of heterogeneity. The

heterogeneity from machine types and workloads significantly complicates the resource allo-

cation and management in order to ensure high resource usage efficiency without waiting for

a collection of resources allocated at the same time. Thirdly, the fact that workloads might

have affinity or constraints for resources further sophisticates the resource management de-

cisions. Some applications might require VMs with GPU accelerators. Some applications

specifying VMs with 4GHZ CPU cores can not be allocated to machines equipped with 3GHZ

CPU cores. The affinity constraints limits the set of physical machines that VMs can be

migrated to. These factors are not captured well in the current popular virtual infrastructure

managers.

To address the above problems, the following critical challenges have to be tackled. Data

analytic computing substrates such as MapReduce have been designed to run in homoge-

neous environments for applications that are typically composed of a single kernel. Thus,

existing feature implementations such as MapReduce slots and straggler detection, and data

replica placement are not capable of exploiting heterogeneity in both the system architecture

(e.g., different CPUs, embedded devices, GPUs, tiered-storage) and various stages of a work-

flow. Second, current optimizations in compilers and runtime systems are severely limited

in handling user defined functions (UDFs), such as the ones implementing custom mappers,

reducers, and mergers. UDFs currently are treated as black boxes, whose properties and

potential for parallelization on different types of hardware remain unexplored. Third, these

black-box UDFs are increasingly composed into complex dataflows, but the runtime system

remains unaware of their essential characteristics, and as a result, opportunities for many

cross-task and cross-job optimization opportunities are lost.

In this dissertation, I have studied how to allocate and manage cluster resources effectively

to alleviate the placement anomalies for MapReduce instances running in the cloud. It is

useful to extend the research to design an automated, cross layer performance optimization

framework for DSFs which will be able to adapt to varying application and heterogeneous

infrastructure characteristics at runtime to better drive resource management and thus

achieving high performance and efficiency.
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7.1.2 Storage Substrate Optimization for Cloud Infrastructure

While virtualization is a leading enabler for cloud computing especially for PaaS, the key

challenge in this domain is to address the unpredictability of I/O virtualization due to high

disk bandwidth deviations caused by I/O contentions. On the other hand, SSDs, exhibiting

superior random I/O performance, are increasingly deployed in high-end storage systems

such as high throughput key value stores. The advancement of SSDs has opened up new

opportunities to improve the performance isolation in I/O virtualization. In my graduate

research, I have studied the caching protocols de-duplicating I/O accesses to improve stor-

age efficiency in virtualized environments. Here, I am interested in studying how SSDs can

be utilized to deliver stronger performance isolation to avoid interference observed in tradi-

tional hard disks. I am also interested in investigating how the improvement of performance

isolation facilitates the tight time coordination demanded by scientific applications in high

performance computing.

As different DSFs keep emerging, it is interesting to explore how to dynamically share cluster

resources between different DSFs and the corresponding data storage. This will facilitate

data sharing and significantly improve cluster utilization compared with static partitioning.

There are numerous remaining challenges. For example, how to efficiently manage caching

tiers of DSFs hosting applications with different workload characteristics and service level re-

quirements. Web applications and ad-hoc queries on non-SQL databases are latency-sensitive

and interactive applications, which cache small objects. In contrast, MapReduce, like other

batching applications, prefers all or nothing caching policies. I am particularly interested

in studying how to allocate memory for multiple applications that belong to different DSFs

and to build a cluster memory manager coordinating caching tiers.
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