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Using the nonperturbative Lanczos recursion scheme an analytic approximation to the ground-
state energy of the single-impurity Anderson model is obtained. Calculations are carried out to a
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5x5 matrix truncation. Comparisons are made with the exact Bethe-ansatz result.

I. INTRODUCTION

In recent years, lanthanides have received a great deal
of attention as model systems for the phenomenon of
mixed valence. > These systems are characterized by lo-
calized f orbitals of energy close to the Fermi energy
which interact strongly with the conduction band. This
occurs when the electronic configurations [4f]" and
[4f17*! are nearly degenerate in energy but are energeti-
cally isolated due to the large on-site Coulomb repulsion.

The simplest model Hamiltonian to describe such
mixed-valence systems is the Anderson model.® This
model may describe both the mixed-valence system for a
single rare-earth ion or a periodic lattice of ions. In this
work we shall look only at the single-impurity Anderson
model (SIAM) for which there are a number of exact re-
sults. Using the Bethe-ansatz technique, Wiegmann*
demonstrated that the Anderson Hamiltonian is exactly
solvable under certain conditions. Kawakami and Okiji’
extended Wiegmann’s work and obtained an explicit ex-
pression for the ground-state energy. Their calculations
were performed by numerically solving a set of 200~300
coupled integral equations.

Recently, Mancini, Potter, and Bowen® and Bowen and
Mancini’ applied a finite-matrix numerical truncation
scheme to study the ground state properties of the SIAM.
For small truncations, 18 X 18, the results of this variation-
al calculation®® were in close agreement with the exact
Bethe-ansatz results.” The nature of the calculation
presented in this work is also variational. This approach
utilizes an analytic truncation scheme rather than a nu-
merical one. We shall employ the nonperturbative Lanc-
zos scheme (tridiagonalization)'®'? to evaluate the
ground-state energy of the SIAM.

A critical first step in this method is the choice of an ap-
proximate ground-state wave function | ¢o) whose overlap
with the exact ground state | o) is nonvanishing. As in
any variational calculation, the choice of | go) is a vital
determining factor in how rapidly the method converges
to the exact ground state. However, maximizing the over-
lap of the approximate ground-state wave function with
the exact wave function must be tempered with maintain-
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ing computational tractability.

The calculations up to the 4Xx4 truncation were done
manually. An order of magnitude of the number of terms
which needed to be evaluated is easily obtained. It is
found that the diagonal matrix elements vary with powers
of the Hamiltonian as H, H3, H®, H’, and so forth. The
Hamiltonian given by Eq. (2.1) contains five terms. Thus
evaluation of the 4x4 truncation required the analysis of
approximately 57=15625 matrix elements. It is clear
that this method becomes prohibitive very rapidly. Re-
cently Massano'® has developed a computer program
which evaluates the necessary matrix elements symboli-
cally. This program has served as both a check for the
manual calculations as well as to supply the necessary ma-
trix elements for the 5x5 truncation.

The paper is organized as follows. In Sec. II we define
the Anderson Hamiltonian and outline the Lanczos
scheme. This section will also briefly discuss the analytic
structure of the tridiagonal energy matrix whose lowest ei-
genvalues yield an upper bound on the ground-state ener-
gy. In Sec. III we compare our result for the ground-state
energy to that of Kawakami and Okiji.> In Sec. IV we
summarize with concluding remarks.

II. METHOD

The Anderson Hamiltonian? was first proposed in 1961
to describe magnetic impurities in metals. A recent re-
view of this model is given by Czycholl.'* The Anderson
Hamiltonian is given by

H -kznk,ssk,s +YE,N,+UN;N,
25 5

+kZV(k)(clI.sfs +fstck,s) . @.1)

Here ¢f; and f,T create conduction electrons in Bloch
states k,s and localized f electrons, respectively. The oc-
cupation number operator for d electrons is given by
nks =ciscks and for the localized f orbitals of N, = SATR
where s =1, represents the spin states. The first term of
the Hamiltonian describes the band electrons with energy
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ks of the host metal. The second term represents the en-
ergy of an electron in an (unperturbed) f orbital. The pa-
rameter U represents the Coulomb interaction energy be-
tween two f electrons at the impurity site and V (k) is the
f-d hybridization integral between the two bands taken in
this work to be independent of k. We note similarities be-
tween the mixing term appearing in Eq. (2.1) and that
which arises in band-structure calculations. In the latter
case the transition between d orbitals and the conduction
band is treated by introducing the mixing of matrix ele-
ments. However, in the present case, the f orbitals are lo-
calized for a finite time before hybridization occurs.

We choose our method of calculation to be the nonper-
turbative Lanczos recursion scheme (tridiagonaliza-
tion).!!12 Let |¢;) be a normalized trial ket which has
nonzero overlap with the exact ground-state wave function
of the system under consideration. The Lanczos scheme is
then generated by operation of the Hamiltonian on this
ket yielding the following (tridiagonal) form:

2.2)

Physically, the new kets which are being generated repre-
sent higher-order particle-hole excitations from the
ground state. Explicitly, for | ¢;)= | ¢o) our trial ground-
state wave function,

Hlo)=mi—i|¢i-0+mii| o) +myier| 9ie1).

H | ¢0) =moo| ¢o)+mo1 | 91) (2.3)
with

moo™={go| H | ¢0), (2.4a)

mo1={¢o| H| ¢} =mq, (2.4b)

BRIEF REPORTS

and from Eq. (2.3)

| o) ==t = moo) | 40 (2.5
mo

Putting this result for | ¢;) back into Eq. (2.4b) yields for

mo)

mé ={go| H?| 90) —méo
=(go| H?| 90) —{g0| H | 90)%. (2.6)

We see then that the matrix elements m;; of the tridiago-
nal energy matrix M may be represented by ground-state
matrix elements of powers of the Hamiltonian. The set of
kcts) | ¢:) are generated in a manner analogous to Egq.
2.5

III. RESULTS

We have chosen the singlet initial state to be the empty
impurity orbital and the filled Fermi sphere with pairs of
scattering states with opposite spins

| o) =|F)|0)f. (3.1

Here | F) represents the filled Fermi sea while |0) ¢ is the
unoccupied localized f orbital. We assume a unit density
of conduction electrons

{1, -D/2<s<D/2,
p-

0, otherwise, (3.2)

where D =1 is the width of the conduction band. All cal-
culations were performed for the particle-hole symmetric
case where U = —2E;.

TABLE I. Using the recursion relation given by Eq. (2.2) the first five states are generated. Each
successive state may be related to the initial state |go)=|F)|0,. Note that m; ;j=(¢;| H|¢,) and

m; j™==m;.i.

| 90> = | F)| 0),

| 1) =—L (H = mw) | 60}
mjpo

|¢2)--l—[(H—mn)|¢1>—m1o|¢o)]
mi2

=L = mu) = (H = mao) = mool | 60)
m;j2 mio

| 63 =——[(H —m2) | 629 —ma | o1)]
m23

m23

| 94) -;[(H'-mu) | 93> —ms2| 9201
mis
msg

mi2

1

n—1,n

|¢n>-

-;{(H—mn)—l— [(H—Mzz)—-l— [(H—m“)—l—(H"'moo) —Moo]
ma3 my2 mio

-1 {(H-mn)#[(ﬂ—mu)—‘-—(y—mm)~mm1 —ﬂ(ﬂ—mm)J | 60)
m2 mpo mjo

! (H-moo)]
mpo

-z [(H"'mu)"l—(H—mOo)—mOo]}ltpo)
mio

[(H—m,.—|,n—1) | ¢n-l>—mn-—l,n—2 | ¢n—2)]
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FIG. 1. Comparison of the ground-state energy Eo(U) for
various truncations (a) 2x2, (b) 3x3, (c) 4x4, and (d) 5x5.
Also plotted is the exact Bethe-ansatz result.

Using the recursion relation (2.2) the energy matrix M
is generated. The eigenvalues of this matrix are then
determined, the lowest of which represents an upper
bound to the ground-state energy. Table I lists the states
generated using (2.2). Actual calculations are carried out
by relating each of the |¢,) back to | o) and then per-
forming the necessary integrals over the flat density of
states given in (3.2). However, a necessary intermediate
step involves normal ordering the long strings of operators
which arise from taking the powers of the Hamiltonian
(2.1). A computer program developed by Massano!? is
able to perform this normal ordering as well as carry out
the necessary integrals. Details of this program will be
given elsewhere. The matrix elements of the 4 x4 trunca-
tion were first performed manually and then checked by
computer. The 5x5 truncation was necessarily done by
the computer.

The ground-state energy Ey, as a function of U, is plot-
ted in Fig. 1 in units which are consistent with Ref. 5.
Also plotted is the exact Bethe-ansatz result of Ref. 5.
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FIG. 2. Plot of the ground-state energy as a function of 1/N
where N represents the size of the matrix truncation. Each
curve represents a fixed value of U.

FIG. 3. Plot of the quantity A,, = | E{*” (U) —E$>*P’ (U) |
which represents a qualitative measure of the rate of conver-
gence for different truncations.

We see that the two results are in good agreement. A
more rapid convergence to the exact result would be ob-
tained by increasing the size of the (truncated) basis.
This would entail generating a larger matrix M according
to (2.2) and determining its eigenvalues. The 5X5 trun-
cation calculated here was performed on an IBM
XT-type PC. The storage capacity of such a small
machine was taken to its limit by the enormous amount of
requisite operator algebra. Any further work would re-
quire the speed and memory capabilities of a large main-
frame computer.

In Fig. 2 the ground-state energy E is plotted as a
function of 1/N where N is the dimension of the matrix
truncation. Each curve represents different values of the
Coulomb repulsion U. We note the rapid convergence as
witnessed by the nearly flat tail of each curve. It is evi-
dent that those points which would appear on the line
where the abscissa vanishes represent our best estimate to
the exact ground-state energy.

In Fig. 3 we have plotted the quantity

éNXN)

A @) =|EL (W) —EFP ()], (3.3)
where r and p represent different truncation sizes. This
quantity gives a qualitative measure of the rate of conver-
gence by measuring the energy differences between suc-
cessive truncations as a function of the parameter U. We
see that the curves A3s and Ay4s are nearly flat and have
values less than 0.5. Thus truncating our basis at the 5% 5
level yields convergence to within three decimal places.
Hence we conclude that the large amount .of labor neces-
sary to proceed to higher truncations will not enhance the
rate of convergence significantly. This reinforces our ob-
servation above that our best estimates for E¢ would be
that obtained by extrapolation of those curves in Fig. 1.

IV. CONCLUSION

Using the nonperturbative Lanczos scheme we have ob-
tained an analytic result for the ground state of the
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single-impurity Anderson model. The choice of a trial ket
| o) is dictated primarily by our desire to use a calcula-
tionally manageable starting point as well as satisfying the
requirement that the ground state be singlet. The amount
of requisite algebra dictated by the method rapidly be-
comes prohibitive for manual calculations and must be

performed by computer. The method, which is variational
in nature, is not restricted to any particular range of pa-
rameter space. We find this to be an advantage over per-
turbative schemes; however, the enormous number of
operator manipulations required with this method war-
rants careful consideration.
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