Critical behavior at \textit{m}-axial Lifshitz points: Field-theory analysis and ϵ-expansion results

H. W. Diehl
Fachbereich Physik, Universität-Gesamthochschule Essen, D-45117 Essen, Federal Republic of Germany and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24601

M. Shpot
Fachbereich Physik, Universität-Gesamthochschule Essen, D-45117 Essen, Federal Republic of Germany
(Received 30 May 2000)

The critical behavior of \textit{d}-dimensional systems with an \textit{n}-component order parameter is reconsidered at \textit{(m,d,n)-Lifshitz points}, where a wave-vector instability occurs in an \textit{m}-dimensional subspace of R^d. Our aim is to sort out which ones of the previously published partly contradictory ϵ-expansion results to second order in $\epsilon=4+m/2-d$ are correct. To this end, a field-theory calculation is performed directly in the position space of $d=4+m/2-\epsilon$ dimensions, using dimensional regularization and minimal subtraction of ultraviolet poles. The residua of the dimensionally regularized integrals that are required to determine the series expansions of the correlation exponents η_{d2} and η_{d4} and of the wave-vector exponent β_{d} to order ϵ^{2} are reduced to single integrals, which for general $m=1,\ldots,d-1$ can be computed numerically, and for special values of m, analytically. Our results are at variance with the original predictions for general m. For $m=2$ and $m=6$, we confirm the results of Sak and Grest [Phys. Rev. B \textbf{17}, 3602 (1978)] and Mergulhão and Carneiro’s recent field-theory analysis [Phys. Rev. B \textbf{59}, 13954 (1999)].

\section{I. Introduction}

A Lifshitz point1–4 is a critical point at which a disordered phase, a spatially homogeneous ordered phase, and a spatially modulated phase meet. In the case of a \textit{d}-dimensional system with an \textit{n}-component order parameter, it is called an \textit{(m,d,n)-Lifshitz point} (or \textit{m}-axial Lifshitz point) if a wave-vector instability occurs in an \textit{m}-dimensional subspace. Such multiphase points are known to occur in a variety of distinct physical systems, including magnetic ones,5,6 ferroelectric crystals,7 charge-transfer salts,8,9 liquid crystals,10 systems undergoing structural phase transitions11 or having domain-wall instabilities,12 and the \textit{ANNNI} model.13,14 A survey covering the work related to them till 1992 has been given by Selke,4 which complements and updates an earlier review by Hornreich.3 Recently there has also been renewed interest in various aspects of the problem,15–19 including the effects of surfaces on the critical behavior at Lifshitz points.20–22

From a general vantage point, critical behavior at Lifshitz points is an interesting subject in that it presents clear and simple examples of anisotropic scale invariance. Epitomized also by dynamic critical phenomena near thermal equilibrium,23 and known to occur as well in other static equilibrium systems (e.g., uniaxial dipolar ferromagnets), this kind of invariance has gained increasing attention in recent years since it was found to be realized in many non-equilibrium systems such as driven diffusive systems24 and in growth processes.25

Systems at Lifshitz points are good candidates for studying the general aspects of anisotropic scale invariance.26,27 For one thing, the continuum theories representing the universality classes of systems with short-range interactions at \textit{(m,d,n)-Lifshitz points} are conceptually simple; second, they involve the degeneracy m as a parameter, which can easily be varied between 1 and \textit{d}. A thorough understanding of critical behavior at such Lifshitz points is clearly very desirable.

The problem has been studied decades ago by means of an ϵ expansion about the upper critical dimension1,28–30

\begin{equation}
\left.d^{*}(m) =4+\frac{m}{2}, \quad m \leq 8.\right)
\end{equation}

Other investigations employed the dimensionality expansion about the lower critical dimension11 $d_{\text{\textit{\textit{k}}}}(m)=2+m/2$ for $n \geq 3$, or the $1/n$ expansion.2,32,33 Unfortunately, the ϵ-expansion results to order ϵ^{2} one group of authors28,29 obtained for the correlation exponents η_{d2} and η_{d4} and the wave-vector exponent β_{d} are in conflict with those of Sak and Grest30 for the cases $m=2$ and $m=6$.

In order to resolve this long-standing controversy, Mergulhão and Carneiro’s recent presentation of a reanalysis of the problem based on renormalized field theory and dimensional regularization. Exploiting the form of the resulting renormalization-group equations, they were able to derive various (previously given) general scaling laws one expects to hold according to the phenomenological theory of scaling. However, their calculation of critical exponents was limited in a twofold fashion: They treated merely the special cases $m=2$ and $m=6$, in which considerable simplifications occur. Their results for η_{d2} and η_{d4} to order ϵ^{2}, agree with Sak and Grest’s30 but disagree with Mukamel’s.28 Second, the exponent β_{d} (an independent exponent that does not follow from these correlation exponents via a scaling law) was not considered at all by them. Thus it is an open question whether Sak and Grest’s or Mukamel’s $O(\epsilon^{2})$ results for β_{d} with $m=2$ and $m=6$ are correct. Furthermore, for other values of m, the published $O(\epsilon^{2})$ results28,29 for the exponents η_{d2}, η_{d4}, and β_{d} remain unchecked. It is the purpose of this

0163-1829/2000/62(18)/12338(12)/15.00
work to fill these gaps and to determine the ϵ expansion of
the critical exponents η_{12}, η_{d4}, and β_{q} for general values of
m to order ϵ^2.

Technically, we employ dimensional regularization in
conjunction with minimal subtraction of poles in ϵ. This way
of fixing the counterterms appears to us somewhat more con-
venient than the use of normalization conditions (as was
done in Refs. 17 and 18). In order to overcome the rather
demanding technical challenges, we have found it useful to
work directly in position space. Thus the Laurent expansion
of the distributions to which the Feynman graphs of the
primitively divergent vertex functions correspond in position
space must be determined to the required order in ϵ.

The source of the technical difficulties is that these Feyn-
man graphs, at criticality, involve a free propagator $G(x)$
which is a generalized homogeneous rather than a homoge-
neous function, because of the anisotropic scale invariance
of the free theory. While such a situation is encountered also
in other cases of anisotropic scale invariance, the scaling
function associated with $G(x)$ turns out to be a particularly
complicated function in the present case of a general
(m,d,n)-Lifshitz point. (For general values of m, it is a sum
of two generalized hypergeometric functions.)

In the next section, we recall the familiar continuum
model describing the critical behavior at a (m,d,n)-Lifshitz
point and discuss its renormalization. In Sec. III details of
our calculation are presented, and our results for the renor-
malization factors are derived. Then renormalization-group
equations are given in Sec. IV, which are utilized to deduce
the general scaling form of the correlation functions, to iden-
tify the critical exponents, and to derive their scaling laws as
well as the anticipated multi-scale-factor universality. This is
followed by a presentation of our ϵ-expansion results for the
critical exponents η_{12}, η_{d4}, and β_{q}. Section V contains a
brief summary and concluding remarks. Finally, there are
two Appendices to which some computational details have
been relegated.

II. THE MODEL AND ITS RENORMALIZATION

We consider the standard continuum model representing
the universality class of a (m,d,n)-Lifshitz point with the
Hamiltonian

$$
\mathcal{H}[\phi] = \frac{1}{2} \int d^{d}x \left(\rho_{0}(\nabla_{\perp} \phi)^{2} + \sigma_{0}(\Delta_{\parallel} \phi)^{2} + (\nabla_{\perp} \phi)^{2} + \tau_{0} \phi^{2} + \frac{u_{0}}{12} |\phi|^{4} \right).
$$

(2)

Here $\phi(x) = (\phi_{1}, \ldots, \phi_{n})$ is an n-component order-
parameter field. The coordinate $x \in \mathbb{R}^{d}$ has an m-dimensional
parallel component, x_{\parallel}, and a $(d-m)$-dimensional perpen-
dicular one, x_{\perp}. Likewise, ∇_{\parallel} and ∇_{\perp} denote the associated parallel and perpendicular components of the gradient oper-
ator ∇, while Δ_{\parallel} means the Laplacian ∇_{\parallel}^{2}. At the level of
Landau theory, the Lifshitz point is located at $\rho_{0} = \tau_{0} = 0$.

The Hamiltonian is invariant under the transformation

$$
\begin{align*}
x_{\parallel} &\rightarrow a x_{\parallel}, & x_{\perp} &\rightarrow a^{-m/2} x_{\perp}, \\
\sigma_{0} &\rightarrow a^{4} \sigma_{0}, & \rho_{0} &\rightarrow a^{2} \rho_{0}, & \tau_{0} &\rightarrow \tau_{0},
\end{align*}
$$

(3)

Thus, appropriate invariant interaction constants are
$u_{0}\sigma_{0}^{-m/4}, \rho_{0}\sigma_{0}^{-1/2},$ and τ_{0}, and the dependence on the parallel
coordinates is through the invariant combination
$\sigma_{0}^{-1/4} x_{\parallel}^{2}$.

Dimensional analysis yields the dimensions $[]:

$$
[x_{\parallel}] = [\sigma_{0}]^{1/4} \mu^{-1/2}, & [x_{\perp}] = \mu^{-1}, \\
[\tau_{0}] = \mu^{-2}, & [\rho_{0}] = [\sigma_{0}]^{1/2} \mu, \\
[u_{0}] = [\sigma_{0}]^{m/4} \mu^{\epsilon} & \text{ with } \epsilon = d^{*}(m) - d, \\
[\phi_{i}(x)] = [\sigma_{0}]^{-m/4} \mu^{d - 2 - m/2 + 2}/2),
$$

(4)

where μ is an arbitrary momentum scale. Let

$$
G_{i_{1},\ldots,i_{N}}^{(N)}(x_{1}, \ldots, x_{N}) = \langle \phi_{i_{1}}(x_{1}) \cdots \phi_{i_{N}}(x_{N}) \rangle_{\mathrm{cum}}
$$

(5)

denote the connected N-point correlation functions (cumulants)
and $\Gamma_{i_{1},\ldots,i_{N}}^{(N)}(x_{1}, \ldots, x_{N})$ denote the corresponding
vertex functions. Using power counting one concludes that
the ultraviolet (uv) singularities of these functions can be
absorbed through the reparametrizations

$$
\phi = Z_{\phi}^{1/2} \phi_{\text{ren}},
$$

(6a)

$$
\rho_{0} - \rho_{0c} = \mu^{2} Z_{\rho} \tau,
$$

(6b)

$$
\sigma_{0} - Z_{\sigma} \sigma,
$$

(6c)

$$
\rho_{0} - \rho_{0c} \sigma_{0}^{-1/2} = Z_{\rho} \rho
$$

(6d)

where

$$
A_{d,m} = S_{d-m} S_{m} = \frac{4 \pi^{d/2}}{\Gamma\left(d - m/2\right) \Gamma(m/2)}
$$

(7)

is a convenient normalization factor we absorb in the renor-
malized coupling constant. Here

$$
S_{D} = \frac{2 \pi^{D/2}}{\Gamma(D/2)}
$$

(8)

is the surface area of a D-dimensional unit sphere.

The quantities τ_{0c} and ρ_{0c} correspond to shifts of the
Lifshitz point. In our perturbative approach based on dimen-
sional regularization they vanish. If we wanted to regularize
the uv singularities via a cutoff Λ (restricting the integrations
over parallel and perpendicular momenta by $|q_{\parallel}| \lesssim \sigma_{0}^{-1/4} \Lambda$
and $|q_{\perp}| \lesssim \Lambda$), they would be needed to absorb uv singulari-
ties quadratic and linear in Λ, respectively.

In the renormalization scheme we use, the renormaliza-
tion factors Z_{ϕ}, Z_{σ}, Z_{τ}, Z_{ρ}, and Z_{μ}, for given values of the
parameters ϵ, n, and m, depend just on the dimensionless
renormalized coupling constant a; that is, they are independent
of σ, τ, and ρ. This follows from the fact that the primitive
divergences of the momentum-space vertex functions
$\Gamma^{(2)}(q)$ and $\Gamma^{(3)}(q_{1}, \ldots, q_{3})$, at any order of
$u_{0}\sigma_{0}^{-m/4}$, are poles in ϵ whose residua depend linearly on
The sake of brevity, we will usually suppress these variables, scaling function V and y, where Z and τ are of first order in u; for Z_u and Z_τ they are of order u^2; and Z_r is defined through integrals. This gives $Z = 1 + \sum_{i=1}^{\infty} a^{(r)}(u,m,n) \epsilon^{-i}$.

III. OUTLINE OF COMPUTATION AND PERTURBATIVE RESULTS

We compute the leading nontrivial contributions to these renormalization factors. In the cases of Z_{ϕ}, Z_{σ}, and Z_{ρ}, whose $\mathcal{O}(u)$ contributions vanish, these are of order u^2; for Z_u and Z_τ they are of first order in u.

To this end we expand about the Lifshitz point, using the free propagator $G(x) = \int \frac{d^d q}{q} \sigma_0 q^4 + q^2_\perp$.

Here the (dimensionally regularized) momentum-space integral is defined through

$$\int q_{\perp} \cdots \int q_{\perp} \int q \int_{\mathbb{R}^m} \int_{\mathbb{R}^{d-m}} \cdots$$

Let $r_1 = |x_1|$ and $r_\perp = |x_\perp|$. Then the free propagator can be written in the scaling form

$$G(x) = r_{\perp}^{-2+\epsilon} \sigma_0^{-m/4} \Phi(x)$$

with

$$\Phi(u) = \Phi(u,m,d) = \int \frac{d^d q}{q} q^4 + q^2_\perp$$

where $\vec{u} \in \mathbb{R}^d$ is a vector of length u and arbitrary orientation, while e_\perp means the unit vector x_{\perp}/r_{\perp}. Note that the scaling function Φ depends parametrically on m and d. For the sake of brevity, we will usually suppress these variables, writing $\Phi(u,m,d)$ only when special values of m and d are chosen or when we wish to stress the dependence on these parameters.

The integration over q_\perp in Eq. (13) yields

$$\Phi(u) = (2\pi)^{-d-m/2} \int_{q_{\perp}} q^{d-m-2} K_{d-m/2-1}(q^2_\perp) e^{i \cdot q}$$

Upon introducing spherical coordinates $q = |q_\perp|$ and $q_{\perp}(\theta_1, \ldots, \theta_{d-m})$ for q_\perp, with $d\Omega_{\perp} = \sin^{d-2}\theta_{d-m} d\theta_{d-m} 2d\Omega = \sin^{m-2}\theta_{m-1} d\theta_{m-1} |d\Omega|$, one can perform the angular integrations. This gives

$$\Phi(u) = \frac{V^{(m-2)/2}}{(2\pi)^{d/2}} \int_0^\infty dq q^{d-m-2} e^{i \cdot q}.$$
\[
(r_+^p, \varphi(r)) = \int_0^\infty dr r^{-p} \left[\varphi(r) - \sum_{j=0}^{p-2} \frac{r^j}{j!} \varphi^{(j)}(0) \right] - \frac{r^{p-1}}{(p-1)!} \varphi^{(p-1)}(0) \theta(1-r). \tag{21}
\]

Using these results, the leading terms of the Laurent expansions of \(G^2, \varphi\) can be determined in a straightforward manner. However, it should be noted that the functions \(\psi_3, x_1\) introduced in Eq. (17) are not \textit{a priori} guaranteed to have the usually required strong properties of test functions (continuous partial derivatives of all orders and sufficiently fast decay as \(|x| \to \infty\)). In particular, one may wonder whether the dependence on the variable \(r_+ \sqrt{r_\perp}\) of \(\varphi\) in Eq. (17) does not imply that derivatives such as \(\nabla_\perp \psi_3\) become singular at the origin. Closer inspection reveals that this is not the case since the problematic term \(\sim r_\perp^{-1}\) involves the vanishing angular integral \(\int d\Omega_\perp x_1 \varphi(\ldots)\).

One obtains
\[
\frac{(G^2, \varphi)}{S_{d-m}} = \frac{\psi_3(0)}{\varepsilon} + (r_+^{-1} \frac{\psi_3^\perp}{\varepsilon^2} \varphi_\perp(\varepsilon)) + O(\varepsilon^0),
\tag{22}
\]
and
\[
\frac{(G^3, \varphi)}{S_{d-m}} = \frac{\psi_3^\perp(0)}{4 \varepsilon} \left[(r_+^{-3} \psi_3 \varphi_\perp(r_+)) + O(\varepsilon^0) \right]. \tag{23}
\]
From its definition in Eq. (17) we see that the residuum \(\psi_3(0)\) on the right-hand side of Eq. (22) reduces to a simple expression \(\propto \varphi(0)\). We thus arrive at the expansion
\[
G^2(x) = \frac{J_{0,m}(m, d^*)}{A_{d,m}} \delta(x) + O(\varepsilon^0),
\tag{24}
\]
where \(J_{0,m}\) is a particular one of the integrals
\[
J_{p,r}(m, d) = \int_0^\infty u^{m-1+p} \Phi^*(v, m, d) dv.
\tag{25}
\]
In order to convert the Laurent expansion (23) into one for \(G^3(x)\), we must compute \(\psi_3^\perp(0)\). This in turn requires the calculation of the following angular average:
\[
\frac{\partial^2}{\partial r^2} \varphi(r_+ \sqrt{r_\perp}; r_\perp, \Omega) \bigg|_{r=0} = \frac{2}{4!} \left(x_1 \cdot \nabla \right)^4 \varphi(0) + \frac{(\nabla \varphi)(0)}{4m(m+2)} + \frac{(\nabla_\perp \varphi)(0)}{4m}.
\]
Using this in conjunction with Eq. (23) gives
\[
G^3(x) = \frac{J_{0,m}(m, d^*) \Delta_\perp^3 \delta(x) + J_{0,m}(m, d^*) \Delta_\perp^3 \delta(x)}{16 m(m+2) \varepsilon} + O(\varepsilon^0).
\tag{26}
\]
A convenient way of computing the renormalization factor \(Z_\rho\) is to consider the vertex function \(\Gamma^{(2,1)}\) with a single insertion of the operator \(\frac{1}{2} \delta(y)^2\), which we depict as \(\Psi_{+}\). Its one-loop contribution \(\frac{\Psi_{+}}{\partial_{+}}\) is proportional to \(G^2(x-y)\).

Hence the required Laurent expansion follows from that of the latter quantity.

Let us introduce coefficients \(b_r(m)\) for the leading nontrivial contributions to the renormalization factors \(Z_r\), writing in the form
\[
Z_a = 1 + b_a(m) \frac{u}{9} + O(u^2),
\tag{34}
\]
\[
Z_r = 1 + b_r(m) \frac{n+2}{3} u + O(u^2),
\tag{35}
\]
in order to compute the \(O(u^2)\) term of \(Z_\rho\), we consider the two-point vertex function with an insertion of the operator \(\frac{1}{2} f^d \nabla \phi^2\) (to which \(\rho_0\) couples). We represent such an insertion by the vertex \(\phi\). At the Lifshitz point \(\tau = 0\), the leading nontrivial contribution to this vertex function is given by the two-loop graph \(\phi \phi \phi \phi \phi \phi \). The upper line involves the convolution
\[
- \left(\nabla \phi \phi \nabla \phi \phi \phi \right)(x) = \sigma_0^{(m+2)/4} \frac{1}{2} \int_0^\infty \frac{q_0^2 e^{i q \cdot v} + q_1^2 e^{i q_1 \cdot v} + q_2^2 e^{i q_2 \cdot v}}{2(2\pi)^{d/2}}
\tag{29}
\]
where
\[
\Xi(v) = \Xi(v, m, d) = \frac{1}{2(2\pi)^{(d-m)/2}} \int_0^\infty \frac{q_0^2 e^{i q_0 \cdot v} + q_1^2 e^{i q_1 \cdot v} + q_2^2 e^{i q_2 \cdot v}}{2(2\pi)^{(d-m)/2}}
\tag{30}
\]
is the analog of the scaling function \(\Phi(v)\) [cf. Eq. (12)]. Proceeding as in the case of the latter, one obtains
\[
\Xi(v) = \frac{1}{2(2\pi)^{(d-m)/2}} \int_0^\infty \frac{q_0^2 e^{i q_0 \cdot v} + q_1^2 e^{i q_1 \cdot v} + q_2^2 e^{i q_2 \cdot v}}{2(2\pi)^{(d-m)/2}}
\tag{31}
\]
whose pole term can be worked out in a straightforward fashion by the techniques employed above. One finds
\[
\frac{G^2(x) \nabla \phi \phi \nabla \phi \phi \phi (x)}{A_{d,m}} = \frac{I_1(m, d^*) \Delta_\perp \delta(x)}{4m \varepsilon} + O(\varepsilon^0)
\tag{32}
\]
with
\[
I_1(m, d) = \int_0^\infty u^{m-1} \Phi^2(v, m, d) \Xi(v, m, d) dv.
\tag{33}
\]
and

$$Z_s = 1 + b_s(m) \frac{n^2 + 2}{3} \frac{u^2}{\epsilon} + \mathcal{O}(u^3), \quad s = \phi, \sigma, \rho.$$ \hspace{1cm} (36)

From the pole terms of $G^2(x - y)$ given in Eq. (24) one easily deduces that

$$b_\mu(m) = 3 b_x(m) = \frac{3}{2} J_{0,2}(m, d^*)_s.$$ \hspace{1cm} (37)

The pole terms proportional to $\Delta_\phi \delta(x)$, $\Delta_\sigma \delta(x)$, and $\Delta_\rho \delta(x)$ of the two-loop graphs considered above are absorbed by counterterms involving the renormalization factors Z_ϕ, $\bar{Z}_\sigma = Z_\sigma Z_\phi$, and $\bar{Z}_\rho = Z_\rho Z_\phi Z_\sigma^{1/2}$, respectively. Utilizing the Laurent expansions (27) and (31), one finds that their coefficients are given by

$$b_\phi(m) = - \frac{1}{24} \frac{1}{d^* - m} \frac{J_{0,3}(m, d^*)}{A_{d^*,m}},$$ \hspace{1cm} (38)

$$\bar{b}_\sigma(m) = - \frac{1}{96} \frac{1}{m(m + 2)} \frac{J_{4,3}(m, d^*)}{A_{d^*,m}},$$ \hspace{1cm} (39)

and

$$\bar{b}_\rho(m) = \frac{1}{8m} \frac{I_{1,3}(m, d^*)}{A_{d^*,m}}.$$ \hspace{1cm} (40)

The coefficients b_σ and b_ρ are related to these via

$$b_\sigma(m) = \bar{b}_\rho(m) - b_\phi(m)$$ \hspace{1cm} (41)

and

$$b_\rho(m) = \bar{b}_\sigma(m) - \frac{1}{2} b_\phi(m) - \frac{1}{2} \bar{b}_\rho(m).$$ \hspace{1cm} (42)

IV. RENORMALIZATION-GROUP EQUATIONS AND ϵ-EXPANSION RESULTS

The reparametrizations (6) yield the following relations between bare and renormalized correlation and vertex functions:

$$G^{(N)}(x_\perp, x_\perp) = Z_\phi^{-N/2} G^{(N)}_{\text{ren}}(x_\perp, x_\perp),$$ \hspace{1cm} (43a)

$$\Gamma^{(N)}(x_\perp, x_\perp) = Z_\phi^{-N/2} \Gamma^{(N)}_{\text{ren}}(x_\perp, x_\perp),$$ \hspace{1cm} (43b)

where x_\perp and x_\perp stand for the set of all parallel and perpendicular coordinates on which $G^{(N)}$ and $\Gamma^{(N)}$ depend. For conciseness, we have suppressed the tensorial indices i_1, \ldots, i_N of these functions and will generally do so below.

Upon exploiting the invariance of the bare functions under a change $\mu \rightarrow \tilde{\mu}(l) = \mu l$ of the momentum scale in the usual fashion, one arrives at the renormalization-group equations

$$\left[D_\mu + \frac{N}{2} \eta_\phi \right] G^{(N)}_{\text{ren}} = 0,$$ \hspace{1cm} (44)

with

$$D_\mu = \mu \frac{\partial}{\partial \mu} + \beta_\mu \partial_\mu - \eta_\sigma \sigma \partial_\sigma - (2 + \eta_\tau) \tau \partial_\tau - (1 + \eta_\rho) \rho \partial_\rho,$$ \hspace{1cm} (46)

where the beta and eta functions are defined by

$$\beta_\mu = \mu \frac{\partial}{\partial \mu} \ln Z_\mu, \quad \iota = \phi, \sigma, \rho, \tau, u,$$ \hspace{1cm} (47)

and

$$\eta_\iota = \mu \frac{\partial}{\partial \mu} \ln Z_\iota, \quad \iota = \phi, \sigma, \rho, \tau, u.$$ \hspace{1cm} (48)

To solve the renormalization-group (RG) equations (43) via characteristics, we introduce flowing variables through

$$\frac{d}{dl} \tilde{u}(l) = \beta_\mu \tilde{u}(l), \quad \tilde{u}(1) = u,$$ \hspace{1cm} (50)

$$\frac{d}{dl} \bar{\sigma}(l) = - \eta_\sigma \bar{u}(l) \bar{\sigma}, \quad \bar{\sigma}(1) = \sigma,$$ \hspace{1cm} (51)

$$\frac{d}{dl} \bar{\rho}(l) = - [1 + \eta_\rho \tilde{u}(l)] \bar{\rho}, \quad \bar{\rho}(1) = \rho,$$ \hspace{1cm} (52)

and

$$\frac{d}{dl} \bar{\tau}(l) = - [2 + \eta_\tau \tilde{u}(l)] \bar{\tau}, \quad \bar{\tau}(1) = \tau.$$ \hspace{1cm} (53)

The flow equation (50) for the running coupling constant $\tilde{u}(l)$ can be solved for l to obtain

$$\ln l = \int_\mu \tilde{u} \frac{dx}{\beta_\mu(x)}.$$ \hspace{1cm} (54)

For $\epsilon > 0$, the beta function $\beta_\mu(u)$ is known to have a nontrivial zero u^*, corresponding to an infrared-stable fixed point. Expanding about this fixed point gives the familiar asymptotic form

$$\tilde{u}(l) = u^* + (u - u^*) l^{\omega_u} + \mathcal{O}(l^{2 \omega_u})$$ \hspace{1cm} (55)

in the infrared limit $l \rightarrow 0$, where

$$\omega_u = \frac{d \beta_\mu}{du} (u^*)$$ \hspace{1cm} (56)

is positive.

The solutions to the other flow equations, (51)–(53), can be conveniently written in terms of the anomalous dimensions $\eta_\iota^* = \eta_\iota(u^*)$ and the renormalization-group-trajectory integrals.
The crossover exponent
\[\varphi = \nu_{12}(1 + \eta_{\sigma}^g) \] (67)

as well as the correlation lengths
\[\xi_\parallel = \mu^{-1} l_\parallel \approx \mu^{-1} [E_{\sigma}^g(u)]^{-\nu_{12}} \] (68)

and
\[\xi_\perp = \left[\frac{\alpha(l_c)}{\mu^2 l_c^2} \right]^{1/4} \approx \mu^{-1/2} [E_{\sigma}^g(u)]^{1/4} [E_{\parallel}^g(u)]^{-\nu_{14}}. \] (69)

In terms of these quantities the asymptotic critical behavior of \(G_{\text{ren}}^{(N)} \) becomes
\[G_{\text{ren}}^{(N)}(x_1, x_\perp; \rho, \tau, u, \sigma, \mu) \approx \frac{\mu^{-\eta_{\sigma}^g} \xi_\parallel}{E_{\sigma}^g} \left(\frac{E_{\parallel}^g}{\xi_\parallel} \right)^{1/4} \frac{(\mu l \tau)^{1/4}}{\xi_{\text{ren}}^{1/4}} \approx \frac{\xi_\parallel}{\xi_{\text{ren}}^{1/4}} \] (70)

with
\[G_{\text{ren}}^{(N)}(x_1, x_\perp; \rho) \equiv G_{\text{ren}}^{(N)}(x_1, x_\perp; \rho, \pm 1, u, 1, 1). \] (71)

The result is the scaling form expected according to the phenomenological theory of scaling. As it shows, the scaling function \(G_{\text{ren}}^{(N)} \) is universal, up to a redefinition of the nonuniversal metric factors associated with the relevant scaling fields, i.e., \(E_{\sigma}^g \), \(E_{\perp}^g \), \(E_{\parallel}^g \), and \(E_{\phi}^g \). (Note that \(E_{\sigma}^g \), whose change would affect the overall amplitude of \(G_{\text{ren}}^{(N)} \), as usual corresponds to a metric factor associated with the magnetic scaling field; see, e.g., Ref. 35.)

The correlation exponents \(\eta_{12} \) and \(\eta_{14} \) are given by
\[\eta_{12} = \frac{\eta_{\sigma}^g}{2} \] (72)

and
\[\eta_{14} = \frac{2 + \eta_{\sigma}^g}{2 + \eta_{\phi}^g}. \] (73)

This can be seen either by taking the Fourier transform of the above result (70) with \(N = 2 \) or else by solving directly the renormalization-group equation of \(\Gamma_{\text{ren}}^{(2)}(q_\perp, q_\parallel) \). In order to identify the wave-vector exponent \(\beta_q \), we utilize the scaling form
\[\Gamma_{\text{ren}}^{(2)}(q_\perp, q_\parallel; \tau, \rho, u) \approx |\tau| Y_\parallel(q_\parallel, q_\perp, \xi_\parallel; \rho) |\tau|^{-\nu_{12}} \] (74)

of the inverse susceptibility \(\Gamma^{(2)} \) and argue as in Ref. 28. On the helical branch \(T_{\text{hel}}(\rho) \) of the critical line, the inverse susceptibility vanishes at \(q_\parallel = (q_\parallel, 0) \neq 0 \). Hence in the scaling regime, the line \(T_{\text{hel}}(\rho) \) is determined by the zeroes of the scaling function \(Y(\rho, 0, q_\perp) \). Denoting these as \(p_c \) and \(q_c \), we obtain the relations
\[q_c = p_c \xi_\parallel^{-1/4} \approx p_c |\tau|^{\nu_{14}} \] (75)

and
\[\rho = q \varphi |\tau|^{\varphi}, \quad (76) \]

which yield
\[q^{\frac{\varphi}{2}} \sim |\tau|^{\beta_q}, \quad (77) \]

with
\[\beta_q = \frac{\nu_{t4}}{\varphi} = \frac{2 + \eta_{s}^{*}}{4(1 + \eta_{s})}, \quad (78) \]

where the last equality follows upon substitution of Eqs. (67) and (66) for \(\varphi \) and \(\nu_{t4} \), respectively.

To compute the exponent functions (48) and the \(\beta \) function (47), we insert the residua of the renormalization factors (34)–(36) into Eq. (49) and express \(b_{s} \) in terms of \(b_{u} \) using Eq. (37). We thus obtain
\[\eta_{i}(u) = -2 \frac{n+2}{3} b_{s}(m) u^2 + O(u^3), \quad s = \phi, \sigma, \rho, \quad (79) \]

\[\eta_{i}(u) = -2 \frac{n+2}{3} b_{s}(m) u^2 + O(u^3), \quad s = \phi, \sigma, \rho, \quad (79) \]

\[\nu_{t2} = \frac{1}{2} + \frac{n+2}{4(n+8)} \epsilon + O(\epsilon^2), \quad (83) \]

\[\eta_{t2} = -2 \frac{27(n+2)}{(n+8)^2} \frac{b_{s}(m)}{b_{s}(m)^2} \epsilon^2 + O(\epsilon^3) = O(\epsilon^3) + \frac{27(n+2)}{(n+8)^2} \epsilon^2 \]

\[\eta_{t4} = -4 \frac{27(n+2)}{(n+8)^2} \frac{b_{s}(m)}{b_{s}(m)^2} \epsilon^2 + O(\epsilon^3) = O(\epsilon^3) - \frac{27(n+2)}{(n+8)^2} \epsilon^2 \]

\[\varphi = \frac{1}{\nu_{t2}} = 1 + \frac{27(n+2)}{(n+8)^2} \frac{b_{s}(m)}{b_{s}(m)^2} + O(\epsilon^3) = 1 + O(\epsilon^3) - \frac{27(n+2)}{(n+8)^2} \epsilon^2 \]

\[\eta_{u}(u) = -\frac{n+2}{3} b_{u}(m) u + O(u^2), \quad (80) \]

\[\beta_{u}(u) = -u \left[-\frac{n+8}{9} b_{u}(m) u + O(u^2) \right]. \quad (81) \]

From the last equation we can read off the \(\epsilon \) expansion of \(u_{\ast} \), the nontrivial zero of \(\beta_{u} \):
\[u_{\ast} = \frac{9}{n+8} \frac{\epsilon}{b_{u}(m)} + O(\epsilon^2). \quad (82) \]

Evaluation of the above exponent functions at this fixed-point value gives us the \(\epsilon \) expansions of the anomalous dimensions \(\eta_{s}^{*} \). Substituting these into the expressions (65)–(67), (72), (73), and (78) for the critical exponents yields

\[
\begin{align*}
\nu_{t2} &= \frac{1}{2} + \frac{n+2}{4(n+8)} \epsilon + O(\epsilon^2), \\
\eta_{t2} &= -2 \frac{27(n+2)}{(n+8)^2} \frac{b_{s}(m)}{b_{s}(m)^2} \epsilon^2 + O(\epsilon^3) = O(\epsilon^3) + \frac{27(n+2)}{(n+8)^2} \epsilon^2, \\
\eta_{t4} &= -4 \frac{27(n+2)}{(n+8)^2} \frac{b_{s}(m)}{b_{s}(m)^2} \epsilon^2 + O(\epsilon^3) = O(\epsilon^3) - \frac{27(n+2)}{(n+8)^2} \epsilon^2, \\
\varphi &= \frac{1}{\nu_{t2}} = 1 + \frac{27(n+2)}{(n+8)^2} \frac{b_{s}(m)}{b_{s}(m)^2} + O(\epsilon^3) = 1 + O(\epsilon^3) - \frac{27(n+2)}{(n+8)^2} \epsilon^2, \\
\eta_{u}(u) &= -\frac{n+2}{3} b_{u}(m) u + O(u^2), \\
\beta_{u}(u) &= -u \left[-\frac{n+8}{9} b_{u}(m) u + O(u^2) \right].
\end{align*}
\]

\[
\begin{align*}
0.02152 & \quad \text{for } m = 1, \\
0.02195 & \quad \text{for } m = 2, \\
0.02231 & \quad \text{for } m = 3, \\
0.02263 & \quad \text{for } m = 4, \\
0.02290 & \quad \text{for } m = 5, \\
0.02313 & \quad \text{for } m = 6, \\
0.01739 & \quad \text{for } m = 1, \\
0.01646 & \quad \text{for } m = 2, \\
0.01564 & \quad \text{for } m = 3, \\
0.01488 & \quad \text{for } m = 4, \\
0.01418 & \quad \text{for } m = 5, \\
0.01353 & \quad \text{for } m = 6, \\
0.00827 & \quad \text{for } m = 1, \\
0.01097 & \quad \text{for } m = 2, \\
0.01334 & \quad \text{for } m = 3, \\
0.01548 & \quad \text{for } m = 4, \\
0.01743 & \quad \text{for } m = 5, \\
0.01920 & \quad \text{for } m = 6, \\
0.02781 & \quad \text{for } m = 1, \\
0.05487 & \quad \text{for } m = 2, \\
0.07856 & \quad \text{for } m = 3, \\
0.09980 & \quad \text{for } m = 4, \\
0.11904 & \quad \text{for } m = 5, \\
0.13658 & \quad \text{for } m = 6,
\end{align*}
\]
We have expressed the results in terms of the coefficients $b_\rho(m), \bar{b}_\rho(m), \bar{b}_\rho(m)$, and $\tilde{b}_\rho(m)$, which according to Eqs. (37)–(40) are proportional to the integrals $J_{0.2}(m,d^s)$, $J_{0.3}(m,d^s)$, $J_{4.3}(m,d^s)$, and $I_1(m,d^s)$, respectively. These integrals are defined by Eqs. (25) and (33). The first one of them—the one-loop integral $J_{0.2}(m,d)$—is analytically computable for general values of d and m. The result is

$$J_{0.2}(m,d) = \frac{2^-2-e}{(2\pi)^d} \Gamma^2\left(1 - \frac{m}{4}\Gamma\left(2 - \frac{m}{4}\right)\right).$$

(89)

giving

$$b_\rho(m) = \frac{3}{8} \frac{\Gamma\left(1 - \frac{m}{4}\Gamma\left(1 - \frac{m}{4}\right)\right)}{(2\pi)^{d+4}}.$$

(90)

The fixed-point value that results when this value of $b_\rho(m)$ is inserted into Eq. (82) is consistent with the one found in calculations based on Wilson’s momentum-shell integration method.28

The integrals $J_{0.3}(m,d^s)$, $J_{4.3}(m,d^s)$, and $I_1(m,d^s)$, and hence the coefficients $b_\rho(m), \bar{b}_\rho(m),$ and $\tilde{b}_\rho(m)$, can be calculated numerically for any desired value of m, using the explicit expressions for the scaling functions $\Phi(v; m, d^s)$ and $\Xi(v; m, d^s)$ given in Eqs. (A4) and (A5) of Appendix A. (As discussed there, the numerical evaluation of these integrals for general values of m requires some care because $\Phi(v; m, d^s)$ is a difference of two terms, each of which grows exponentially as $v \to \infty$.) In this manner one arrives at the values of the ϵ^2 terms given in the second lines of Eqs. (84)–(88).

In Fig. 1 the coefficients of the ϵ^2 terms of some of these exponents are depicted for the scalar case, $n = 1$. As one sees, they have a smooth and relatively weak m dependence, especially for η_{12} and η_{14}.

In the special cases $m = 2$ and $m = 6$, the functions $\Phi(v; m, d^s)$ and $\Xi(v; m, d^s)$ become sufficiently simple [see Eqs. (A6)–(A8)], so that the required integrations can be done analytically. This leads to

$$b_\rho(2) = -\frac{1}{54} \frac{1}{(4\pi)^8},$$

(91a)

$$\bar{b}_\rho(2) = \frac{1}{162} \frac{1}{(4\pi)^3},$$

(91b)

$$\tilde{b}_\rho(2) = \frac{1}{18} \frac{1}{(4\pi)^9},$$

(91c)

$$b_\rho(6) = -\frac{16}{9} \frac{1 - 3 \ln 3}{(4\pi)^{12}},$$

(92a)

$$\bar{b}_\rho(6) = \frac{14}{81} \frac{1}{(4\pi)^{12}},$$

(92b)

and

$$\tilde{b}_\rho(6) = \frac{8}{9} \frac{1 + 6 \ln 3}{(4\pi)^{12}}.$$

(92c)

If these analytical expressions for the coefficients are inserted into the expansions (85), (86), and (88) of η_{12}, η_{14}, and β_q with $m = 2$ and $m = 6$, then Sak and Grest’s results for those two values of m are recovered (which in turn agree with Mergulhão and Carneiro’s findings for η_{12} and η_{14}).

As was mentioned already in the Introduction, these results for $m = 2$ and $m = 6$ disagree with Mukamel’s.28 More generally, our $\mathcal{O}(\epsilon^3)$ results (84)–(88), for all values of $m = 1, \ldots, 6$, turn out to be at variance with the latter author’s. The case $m = 1$ was also studied by Hornreich and Bruce,29 who calculated $\eta_{14}(m = 1)$ and $\beta_q(m = 1)$ to order ϵ^2. Their results agree with Mukamel’s and hence disagree with ours.

Upon extrapolating the series expansions (84)–(88) one can obtain exponent estimates for three-dimensional sys-
tem. Unfortunately, there exist in the literature only very few predictions of exponent values produced by other means with which we can compare our’s.4 Utilizing high-
temperature series techniques, Redner and Stanley37 found
the estimate \(\beta_q = 0.5 \pm 0.15\) for the case of a uniaxial
\((m,d,n) = (1,3,1)\) Lifshitz point. This is in conformity with
the value \(\beta_q = 0.519\) one gets by setting \(\epsilon = 1.5\) in the corre-
sponding \(m = 1\) result of Eq. (88). A more recent high-
temperature series analysis by Mo and Ferer38 yielded \(2 \beta_q =
1\). For the susceptibility exponent

\[
g_{\gamma} = \frac{\nu_{12}(2 - \eta_{12})}{\nu_{14}(4 - \eta_{14})},
\tag{93}
\]

the correlation exponent \(\nu_{14}\), and the specific-heat exponent

\[
\alpha_l = 2 - m \nu_{14} - (d - m) \nu_{12}
\tag{94}
\]

of the \((m,d,n) = (1,3,1)\) Lifshitz point these authors ob-
tained the results \(\gamma_{1} = 1.62 \pm 0.12\), \(\nu_{14} = 1.63 \pm 0.10\), and \(\alpha_l = 0.20 \pm 0.15\). Utilizing these numbers to compute \(\eta_{14}\) via
the scaling law implied by Eq. (93), \(\eta_{14} = 4 - \gamma_l / \nu_{14}\), yields \(39\)
\(\eta_{14} = 0.02 \pm 0.5\). This may be compared with the value \(\eta_{14} =
-0.019\) one finds from Eq. (86) upon setting \(\epsilon = 1.5\).

As a further quantity for which Mo and Ferer’s results38
yield an estimate that can be compared with our \(O(\epsilon^2)\) re-
results we consider the ratio \(\beta_l / \gamma_l\). Substituting their exponent
values into \(\beta_l = (2 - \alpha_l - \gamma_l) / 2\) yields \(39\)
\(\beta_l = 0.09 \pm 0.135\) and \(\beta_l / \gamma_l = 0.055 \pm 0.094\). From the asymptotic form (12) of
\(C^{(N=1)}_{\text{ren}}\) one reads off the scaling law

\[
\beta_l = \frac{\nu_{12}}{2} (d - m - 2 + \eta_{12}) + \frac{\nu_{14}}{2} m.
\tag{95}
\]

which may be combined with relation (93) for \(\gamma_l\) to conclude that

\[
\beta_l = \frac{\nu_{12}}{\gamma_l} \cdot \frac{d - m - 2 + \eta_{12} + m \nu_{14}}{2(2 - \eta_{12})}.
\tag{96}
\]

We now set \(m = n = 1\) and \(\epsilon = 1.5\) in Eqs. (84) and (85). This
gives \(\nu_{14} / \nu_{12} = 0.488\) and \(\eta_{12} = 0.039\). Then we insert these
numbers into Eq. (96) with \(d = 3\), obtaining \(\beta_l / \gamma_l = 0.134\).

There also exist Monte Carlo estimates of exponents for
the case of a \((m,d,n) = (1,3,1)\) Lifshitz point.40,41 The more
recent ones, \(\beta_l = 0.19 \pm 0.02\) and \(\gamma_l = 1.40 \pm 0.06\), due to Kaski
and Selke,41 give \(39\) \(\beta_l / \gamma_l = 0.136 \pm 0.02\). In view of the fact
that the importance of anisotropic scaling and its implica-
tions for finite-size effects in systems exhibiting anisotropic
scale invariance42,43 has been realized only more recently, it
is not clear to us how reliable these Monte Carlo estimates
may be expected to be. Note, on the other hand, that the
coefficients of the \(\epsilon^2\) terms of the series (84)–(88) are all
truly small. Thus it is not unlikely that the values one gets for
\(d = 3\) by naive evaluation of these truncated series are fairly
precise, at least for \(m = 1\). [The \(\epsilon^2\) corrections of these ex-
ponents grow with \(m\) because of the factor \((d^8 - 3)^2 = (1\]
\(+ m/2)^2\).]

V. CONCLUDING REMARKS

We have studied the critical behavior of \(d\)-dimensional
systems at \(m\)-axial Lifshitz points by means of an \(\epsilon\) expan-
sion about the upper critical dimension \(d^* = 4 + m/2\). Using
modern field-theory techniques, we have been able to com-
pute the correlation exponents \(\eta_{12}\) and \(\eta_{14}\), the wave-vector
exponent \(\beta_q\), and exponents related to these via scaling laws
to order \(\epsilon^2\). The resulting series expansions, given in Eqs.
(84)–(88), correct earlier results by Mukamel28 and Horn-
rein and Bruce;29 for the special values \(m = 2\) and \(m = 6\), we
recovered Sak and Grest’s30 findings.

To clarify this long-standing controversy, it proved useful
to work directly in position space and to compute the Lau-
rent expansion of the dimensionally regularized distributions
associated with the Feynman diagrams. There are two other
classes of difficult problems where this technique has dem-
strated its potential: field theories of polymerized (teth-
ered) membranes44–46 and critical behavior in systems with
boundaries.35,47 In the present study an additional complica-
tion had to be mastered: The free propagator at the Lifshitz
point, which because of anisotropic scale invariance is a gen-
eralized homogeneous function rather than a simple power of
the distance \(|x - x'|\), involves a complicated scaling function.
For powers and products of simple homogeneous functions, a
lot of mathematical knowledge on Laurent expansions is
available.34 Unfortunately, the amount of explicit mathemati-
cal results on Laurent expansions of powers and products of
generalized homogeneous functions appears to be rather
scarce. Since we had no such general mathematical results at
our disposal, we had to work out the Laurent expansions of
the required distributions by our own tools.

Difficulties of the kind we were faced with in the present
work may be encountered also in studies of other types of
systems with anisotropic scale invariance. Hence the tech-
niques utilized above should be equally useful for field-
theory analyses of such problems.

ACKNOWLEDGMENTS

Part of this work was done while H. W. D. was a visitor at
the Physics Department of Virginia Technical University. It
is a pleasure to thank Beate Schmittmann, Uwe Tauber, and
Royce Zia for their warm hospitality provided during this
visit. M. Sh. would like to thank Kay Wiese for introducing
him to the field theory of self-avoiding membranes and for
numerous helpful discussions. We would also like to express
our gratitude to Malte Henkel and Walter Selke for com-
ments on this work and their interest in it. This work has
been supported by the Deutsche Forschungsgemeinschaft
through the Leibniz program and Sondorforschungsbereich
237 ‘‘Unordnung und grosse Fluktuationen.’’

APPENDIX A: THE SCALING FUNCTIONS \(\Phi(v)\) AND
\(\Xi(v)\)

The scaling functions \(\Phi(v)\) and \(\Xi(v)\) introduced, respec-
tively, through Eqs. (12) and (13) and (28) and (29) are given by
single integrals (15) and (30) of the form

\[
i(v) = v - \mu \int_0^\infty dq q^2 dJ_\mu(qv)K_\nu(q^2).
\tag{A1}
\]

This is a standard integral,48 which for arbitrary values of its
parameters \(\mu\) and \(v\), can be expressed in terms of general-
ized hypergeometric functions \(2F_3\). For the special values
\(\mu = m/2 - 1 \) and \(\nu = 1 - m/4 - \epsilon/2 \) or \(\nu = -m/4 - \epsilon/2 \) for which it is needed, it simplifies, giving

\[
\Phi(\nu; m, \epsilon) = \frac{1}{2^{2+m} \pi^6 (6+m-2 \epsilon)^4} \left[\frac{\Gamma\left(1 - \frac{\epsilon}{2}\right)}{\Gamma\left(\frac{2 + m}{4}\right)} \right] \times _1 F_2 \left(1 - \frac{\epsilon}{2}, 2 + m, \frac{\nu^4}{4} \right)
\]

and

\[
\Xi(\nu; m, \epsilon) = \frac{1}{2^{3+m} \pi^6 (6+m-2 \epsilon)^4} \left[\frac{\Gamma\left(1 - \frac{\epsilon}{2}\right)}{\Gamma\left(\frac{m}{4}\right)} \right] \times _1 F_2 \left(1 - \frac{\epsilon}{2}, 2 + m, \frac{\nu^4}{4} \right) \times _1 F_2 \left(\frac{3}{2} - \frac{\epsilon}{2}, 2, \frac{1 + \frac{\nu^4}{4}}{64} \right). \tag{A2}
\]

At the upper critical dimension, i.e., for \(\epsilon = 0 \), this becomes

\[
\Phi(\nu; m, 4) = \frac{1}{2^{5+m} \pi^6 (6+m)^4} \left[\frac{\Gamma\left(1\right)}{\Gamma\left(\frac{2 + m}{4}\right)} \right] \times _1 F_2 \left(1; \frac{1 + \frac{\nu^4}{4}}{64} \right) - 2^{3/4} \sqrt{\pi} \nu^{2-m/2} I_{m/4} \left(\frac{\nu^2}{4}\right) \tag{A4}
\]

and

\[
\Xi(\nu; m, 4) = \frac{1}{2^{6+m} \pi^6 (6+m)^4} \left[\frac{\Gamma(2m/4)}{\Gamma(2+m/4)} \right] \times _1 F_2 \left(\frac{3}{2}, \frac{2 + m}{4}, \frac{\nu^4}{64} \right) - \frac{2 \nu^2}{\Gamma(2+m/4)} \times _1 F_2 \left(1; \frac{3}{2}, \frac{2 + m}{4}, \frac{\nu^4}{64} \right). \tag{A5}
\]

respectively, where the \(I_\nu(.) \) are modified Bessel functions of the first kind.

In the special cases \(m = 2 \) and \(m = 6 \), these expressions reduce to simple elementary functions: One has

\[
\Phi(\nu; 2, 5) = \frac{1}{(4\pi)^2} e^{-\nu^2/4}, \tag{A6}
\]

\[
\Xi(\nu; 2, 5) = \frac{1}{2} \Phi(\nu; 2, 5), \tag{A7}
\]

\[
\Phi(\nu; 6, 7) = \frac{1}{(2\pi)^2} \frac{1 - (1 + \nu^2) e^{-\nu^2/4}}{\nu^4}, \tag{A8}
\]

and

\[
\Xi(\nu; 6, 7) = \frac{1}{(4\pi)^2} \frac{1}{\nu^4} \left(1 - e^{-\nu^2/4}\right). \tag{A9}
\]

The reason for the latter simplifications is the following. If \(m = 2 \) or \(m = 6 \) and \(d = d^* = 4 + m/2 \) (upper critical dimension), then Bessel functions \(K_\nu \) with \(\nu = \pm \frac{1}{2} \) are encountered in the integral (A1), which are simple exponentials.\(^{49}\) This entails that the required single integrations can be done analytically to obtain the results (91a)–(92c) for the \(a(K; \epsilon^2) \) coefficients.

For the remaining values of \(m \), i.e., for \(m = 1,3,4,5 \), the required integrals did not simplify to a degree that we were able to compute them analytically. However, proceeding as explained in Appendix B, they can be computed numerically. In the special cases \(m = 2 \) and \(m = 6 \), the results of our numerical integrations are in complete conformity with the analytical ones.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE SCALING FUNCTIONS \(\Phi(\nu) \) AND \(\Xi(\nu) \)

According to Eq. (A4), the scaling function \(\Phi(\nu; m, d^*) \) is a difference of a hypergeometric function \(_1 F_2 \) and a product of a Bessel function \(I_{m/4} \) times a power. If one asks **Mathematica**\(^{50}\) to numerically evaluate expression (A4) for \(\Phi(\nu) \) without taking any precautionary measures, the result becomes inaccurate whenever \(\nu \) becomes sufficiently large. We found that such a direct, naive numerical evaluation fails for values of \(\nu \) exceeding \(\nu_0 \approx 9.5 \). This is because both functions of this difference increase exponentially as \(\nu \to \infty \).

To cope with this problem, we determined the asymptotic behavior of the scaling functions \(\Phi(\nu; m, d^*) \) and \(\Xi(\nu; m, d^*) \) for \(\nu \to \infty \). From the integral representations (13) and (29) of these functions one easily derives the limiting forms

\[
\Phi(\nu; m, d) \sim \Phi^{(a)}(\nu; m, d) \equiv \nu^{-4+2\epsilon} \Phi_{\nu}(m, d) \tag{B1}
\]

and

\[
\Xi(\nu; m, d) \sim \Xi^{(a)}(\nu; m, d) \equiv \nu^{-2+2\epsilon} \frac{\Phi_{\nu}(m, d)}{8(1-\epsilon)}, \tag{B2}
\]

with
\[\Phi_\infty(m,d) = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{e^{i(q_1 \cdot \rho_1)}}{q_1 \cdot q_1 + q_2 \cdot q_2} 2^{(d-m)-5} \pi^2 (-d/2)^2 \Gamma\left(d - 2 \cdot m \cdot 2 \right) \Gamma\left(\frac{3 - d + m}{2} \right). \]
\text{(B3)}

At the upper critical dimension, the latter coefficient becomes

\[\Phi_\infty(m,d^*) = \frac{2^{3-m} \pi^{(6+m)/4}}{\Gamma(m - 2 / 4)}. \]
\text{(B4)}

Note that for \(m=2 \) the asymptotic form (B1) is consistent with the simple exponential form (A6) since \(\Phi_\infty(2,5)=0 \). However, for other values of \(m \), the coefficient (B4) does not vanish. For example, \(\Phi_\infty(6,7) = 1/(8 \pi^3) \), in conformity with expression (A8) for the scaling function \(\Phi(\nu,6,7) \).

In order to obtain precise results for the integrals \(J_{0,3}(m,d^*) \), \(J_{4,3}(m,d^*) \), and \(I_{1,3}(m,d^*) \), on which the coefficients \(b_{\infty}(m) \), \(b_{\infty}(m) \), and \(b_{\infty}(m) \) depend, we proceeded as follows. We split the required integrals as \(f_0 \ldots dv = \int_0^v \ldots dv + \int_v^\infty \ldots dv \), choosing \(v_0 = 9.3 \). In the integrals \(f_0 \ldots dv \), we replaced the integrands by their asymptotic forms obtained upon substitution of \(\Phi \) and/or \(\Xi \) by their large-\(\nu \) approximations \(\Phi^{(\infty)} \) and \(\Xi^{(\infty)} \) given in Eqs. (B1) and (B2), respectively, and then computed these integrals analytically. The integrals \(\int_0^v \ldots dv \) were computed numerically, using MATHEMATICA.\(^{50}\) We checked that reasonable changes of \(v_0 \) have negligible effects on the results. The procedure yields very accurate numerical values of the requested integrals. The reader may convince himself of the precision by comparing the so-determined numerical values of the integrals for \(m=2 \) and \(m=6 \) with the analytically known exact values.

\(^{*} \)Permanent address: Institute for Condensed Matter Physics, 1 Svientsitskii str., 79011 Lviv, Ukraine. Email address: shpot@theo-phys.uni-essen.de

6 For a more complete set of references, see Refs. 3 and 4.

26 To see this within the present calculational scheme, note that \(J_{0,3}(m,d)/S_\infty \) is nothing but the Fourier transform of \(\Phi(\nu,0) \) at zero momentum \(q_1 \). Hence it is equal to the integral \(\int_0^\infty f_0 \ldots dv \) over the square of the Fourier transform of \(\Phi(\nu) \), which can be read off from the Fourier-integral representation (14) of \(\Phi(\nu) \). Upon performing the required angular integrations, one is left with a standard integral, which yields Eq. (89).

30 To see this within the present calculational scheme, note that \(J_{0,3}(m,d)/S_\infty \) is nothing but the Fourier transform of \(\Phi(\nu,0) \) at zero momentum \(q_1 \). Hence it is equal to the integral \(\int_0^\infty f_0 \ldots dv \) over the square of the Fourier transform of \(\Phi(\nu) \), which can be read off from the Fourier-integral representation (14) of \(\Phi(\nu) \). Upon performing the required angular integrations, one is left with a standard integral, which yields Eq. (89).

33 In computing the error bars we have taken a cautious attitude: As smallest and largest values of a ratio of the form \((A \pm a)/B \pm b)\) (with \(A, B, a, \) and \(b\) positive) we have taken the numbers \((A - a)/(B + b)\) and \((A + a)/(B - b)\), respectively. Their deviations from the value \(A/B\) gave us the error bars.
49 Both Sak and Grest (Ref. 30) as well as Mergulhão and Carneiro (Ref. 18) explicitly employed the simple form (A6) of the scaling function in their computations. However, the latter authors (Ref. 18) did not take advantage of working with the simple function (A8) in the case $m = 6$, performing complicated computations in the momentum representation instead. Sak and Grest (Ref. 30), on the other hand, did not present any details of their calculation for the case $m = 6$.
50 MATHEMATICA, version 3.0, a product of Wolfram Research.