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Hard-core repulsive interactions in even-parity electron pairings for heavy-fermion systems
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By studying the Anderson lattice Hamiltonian with spin-orbit coupling using an auxiliary boson

method, we have examined the hard-core repulsive interactions in heavy-fermion materials. As a
consequence of the anisotropy of the repulsive interaction, all lower-order partial-wave Cooper
pairings in the even-parity channel are strongly impeded.

The recent discovery of heavy-fermion superconductors
has aroused great interest among condensed-matter physi-
cists. ' Although experiments have provided evidence
that these superconductors are unconventional, the origin
of the attractive interaction and the precise type of the
Cooper pairing remain controversial. Both p-wave and
d-wave ' Cooper pairings have been suggested. We note
that in all the theoretically proposed d-wave pairings,
the anisotropy of the hybridization between the conduction
and the local f states in heavy-fermion materials has not
been taken into account. It is the purpose of this paper to
examine the effect of this anisotropy on the possible Coop-
er pairings. We have studied the Anderson lattice model,
taking into account the anisotropic hybridization, and we
have found that the hard-core repulsive interaction of the
quasiparticle Cooper pairs is anisotropic and of even pari-
ty. As a consequence, all the lower-order partial-wave
Cooper pairings in even-parity channels are strongly im-
peded. The d-wave component of the repulsive interaction
is found to be much larger than the recently reported weak
attractive interaction due to the intersite scattering. 9

The hard-core repulsive interaction in the Kondo prob-
lem was first studied by Nozieres' for a single-impurity
Kondo Hamiltonian in the strong-coupling limit. The two
electrons with opposite spins interact via a virtual process
on the Kondo impurity, and the interaction is found to be
repulsive. This conception has been confirmed recently to
be also true for the Kondo lattice, where the interactions
between two quasiparticles with different spins produced
by scattering at the same Kondo ions is repulsive.
In previous investigations, the hybridization between the
conduction states and the Kondo ions or f states is as-
sumed to be isotropic for simplicity, such as in the SU(N)
Anderson lattice model (where one assumes both the con-
duction electron and the f electron have degeneracy N).
The repulsive interaction in such cases is isotropic. This
has been used to argue strongly against s-wave pairings in
heavy-fermion superconductivity. The hybridization in
real materials is, however, anisotropic. Therefore, the
transformation from the original f-electron states to the
quasiparticle states in heavy-fermion systems is anisotrop-
ic, the wave function of the quasiparticle depends strongly
on the orientation of the particle momentum, and the
hard-core repulsive interaction can have higher partial-

wave components.
To examine the above idea quantitatively, we consider

the Anderson lattice Hamiltonian

H =g s'gCtr~Ctn+ g sffimfim

+ g (Vi, ~e' 'CjfJ;~+H.c.) (1)
JNz t, cr,m, i

with the constraint g ft f; ( 1 at each site.
In Eq. (1), the conduction electron is assumed to be a

plane wave, and m is the magnetic quantum index, run-
ning in the case of Ce + from —

2 to 2. The hybridiza-
tion matrix element is assumed to have the form given
by Coqblin and Schrieffer, ' Vi, = (N/2) 'I2VkP (k),
where%=2J+1=6, and

i/2 i/2

p (k) = — ( —i)'o Y3, -ii2 (k) .
3

For simplicity, we shall assume a constant density of states
po for the conduction electrons per spin, and assume Vk to
be a constant V.

We shall study the Hamiltonian using an auxiliary bo-
son technique developed for the Kondo problem by Cole-
man' and Read and Newns. ' The technique has been
very recently applied to study the quasiparticle interac-
tions in the SU(N) Anderson lattice. '620 It is straight-
forward to apply the method to the present Hamiltonian.
Let r; and Bt be the amplitude and phase of the auxiliary
Bose field describing an f hole (empty f-electron state) at
site i, and A.; =k;+8,9;, with k; the constraint scalar field.
After taking a gauge transformation'9 f; f; e' ', the
system may be described in the functional integral form by
the fermion fields and two scalar fields r and X.

We approximately describe the physical system in the
mean-auxiliary-field theory and treat the Auctuation
around the mean field as an interaction part. The mean
values of the Bose fields are determined by a variational
scheme. The solutions of the mean-field theory are regard-
ed as the noninteracting system. Further, the interaction
part is approximated by Gaussian fluctuations. Details are
to be found in Refs. 9 and 19.
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The noninteracting fermion system in the functional in-
tergral form is described by a single-particle Lagrangian.
The resulting hybridized bands consist of twofold lower
and upper extended states, and fourfold-degenerate local-
ized f bands with energy Tp=eI Ep, —with Ep the mean
value of the field iX. Tp is of the order of the Kondo tem-
perature. The dispersions of the lower ( —) and upper
(+ ) bands are given by

kg

—kyar&

C (k, k)
I 4

D(k —k)

C (-k, -k')
-k cd -kcr&

C (k, -k')
3

D(k'+ k)

C , ,(-tk, T')

I

k cr4

-k cT

Eg—= —,
'

[al, +T p~ j(air —Tp) +4a ], (3)

where a =(Tp —p)/2pp, p is the Fermi energy, and we
assume p 0 in this paper. Equation (3) is similar to that
found by the Gutzwiller variational approach. ' The ex-
tended states are the combinations of conduction- and f
electron states:

FIG. 1. Diagrammatic representation of the quasiparticle
(solid lines) Cooper-pair vertex function, which involves an auxi-
liary boson exchange (wiggly lines). The C's are vertices, which
are anisotropic, giving rise to the higher-order partial-wave com-
ponents of the hard-core repulsive interaction.

we have found that
A+(ka) =+ (cosg)CI, + (sing) gP (k)f~,

(k ) =(sing)C„—(cos&) g p (k)f~,

(4a)

(4b)

D„' =2NV ppJit, t

D,x = —i42N V(1+ ~ J2)/a =Dg, '

D~' = —(Tp-~) -'(I+ -' J3),
where ()l, is defined by equation cot@=a/(Tp Eg ). In
Eqs. (4) we have used conduction-electron spin index o to
denote the pseudospin of the quasiparticle because of the
one-to-one correspondence between them. Equations (4)
are identical to the results of the Korringa-Kohn-Rostoker
equation approach, and the Green's-function
method.

The excitations of the noninteracting system are quasi-
particles described by Eq. (4b) with energy close to p.
The mass enhancement of quasiparticles is m*/m
= [2(Tp —itt)pp] )) 1. Quasiparticles interact with each
other due to the fluctuations of the auxiliary Bose fields.
The boson propagator D(ro, q) is a 2X2 matrix corre-
sponding to the fluctuation parts of the fields r and k. In
the random-phase approximation,

D '(rp, q) =Dp '(cp, q) —II(rp, q), (5)

where Do are the bare boson propagators given in the
mean-field theory, and H are the boson self-energies given
by various one-loop fermion diagrams. At zero frequency,

where J„ is a function of q, given by

f(Eg )(Tp —p) "8gpqp+G„

„), (Eg Eg )(Tp —Eg )"(al, —a—l, )

x g P .(k)P'. (k')P*.(k)P .(k') .
m, m', o,a'

(7)

In Eq. (7), G„ is the reciprocal vector, k and k' are
within the first Brillouin zone. The angular part of the
summation over k in Eq. (7) can be carried out for a quad-
ratic bare conduction band, but the expression is lengthy.
At the limit q ~ 0, we have J„(q~ 0) y/2, with
y= (ppkF/2 ),and kF the Fermi momentum. 1 & y & 2,
and y is close to 1 if p =0.

To study the superconductivity, we consider the
quasiparticle- Cooper-pair scattering process represented
diagrammatically in Fig. 1. We shall adopt the static ap-
proximation to calculate the vertex at the Fermi surface.
We than have

I . . . ,(k, —k; —k', k') =g [C(,'), (k,k')C(J), ( —k, —k')D(J(k' —k) —C,'), (k, —k')C(J), ( —k,k')D;~(k'+k)] . (8)

In Eq. (8), the first term is the direct interaction, and the
second term is the exchange interaction. The C's are the
vertices arising from the anisotropic hybridization of Eq.
(2) and the resulted anisotropic orthogonal transformation
of Eq. (4b). The indices i and j represent field r or A. . The
C's are given by

C ' (k, k') = —J2N Vk cosek, sin9k, +P* (k')P (k),
(9)

C (k, k') =i (cos8k, )zg P (k)P* (k')

The vertex of Eq. (8) can be decomposed into even-parity

part and odd-parity part:

r'"'"(k,k') = —,
' [r(k, —k; —k', k')+r(k, —k k', —k')],

(10)

I ~~(k k') = —,
' [I (k, —k —k', k') —I (k, —k k' —k') ]

where the pseudospin indices are hidden.
The even-parity part of the vertex is the interaction be-

tween the pseudospin singlet Cooper pairs, where
a.i+ o2 =o3+ a4 =0. Under the random-phase approxi-
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mation, we obtain

r'"'"(k,k') = —,
' (T, —i )w(k, k')

1 + 1

1+S(k' —k) 1+S(k'+ k)

where

S(q) = s Js —
i'2 Jijs+ i'6 (J2)'

1
—

6 J3+ 2 J2 —
2 Ji

and W(k, k') is the
from the anisotropic

w(k, k') =
2

anisotropic angular function arising
hybridization

p .(i)p'. (i')p'. (i)p .(i').

W(x) = ,' P,(x)+ ,',—P,(x)+ ,'—P4(x)-, (i3b)

with Pl(x) the 1th Legendre polynomial.
To compare with the previous work, we note that for the

isotropic hybridization, W(k k') in Eq. (11) equals l. If
we neglect function S(q) for I '"'" and consider the spin- —,

'

case, namely, the orbital angular momentum of the local-
ized electron being zero, Eq. (11) essentially recovers the
hard-core repulsion obtained by Nozieres. If we assume
P (k) 8, and let a have degeneracy N, we recover the
result of the SU(N) model of Lavagna, Millis, and Lee.

I '"'" in Eq. (11) may be separated into two parts. The
first part is the vaiue evaluated by setting S(q) 0, and

I I
m, m, cJ, cJ

(i3a)
A A A A

For our model, W(k, k') is a function of x k. k'only, and

the second part is the contribution from S(q). The first
part I t'1 is independent of the momentum of the boson
propagators as well as the lattice structure. It may be
identified as the hard-core interaction of the Cooper pair.
If we denote po the quasiparticle density of states per
pseudospin at the Fermi surface po =

porn '/m, then
por„'„2 W(k k'). We arrive at the conclusion that the
hard-core interactions on the all l =0, 2, and 4 partial
wave pairings I I~' are repulsive:

(i4)

The vertex contributed from the momentum-dependent
part of the boson propagators I ~ 1 can be calculated nu-
merically. In the case the bare conduction-electron disper-
sion is quadratic, we findzs that within the jellium approxi-
mation poI = —0.03y, po I"2' = —0.04y, where y is or-
der of 1 as we mentioned earlier. We see that the correc-
tion to the hard-core interaction from the fully random-
phase approximation is about 20% only. Both s- and d-
wave pairings are not favored. The physical picture
presented here is qualitatively different from that in the
SU(N) model, where only s-wave pairing is suppressed.

We now study the odd-parity part of the vertex, which is
the interaction between the triplet pseudospin Cooper
pairs. We find that the hard-core interaction vanishes in
the odd-parity channel. This is expected. The hy-
bridization matrix Vi, has definite parity: p ( —k)—p (k). The product of the two vertices in the vertex
of Eq. (8) always has even parity. The triplet pairing in-
teraction is purely due to the q dependence of the boson
propagators, and is given by

po r~d ...,(k,k') ——1 1

2 1+S(k' —k) g P ., (i)P...(i) (P...(k )P.'.,(i')+P.*.,(i')P.*.,(i')1 .1+S(k'+k)
(is)

The total pseudospin z component of the triplet Cooper
pair is not conserved because of spin-orbit coupling. Equa-
tion (1S) provides a microscopic basis to study the triplet
superconductivity and the Fermi liquid theory in the
presence of spin-orbit coupling. Some parametrization
schemes on this subject have been forwarded by Ueda and
Rice, 2 and Monier, Scharnberg, Tewordt, and Scho-
pohl. %e shall leave these for future work.

We have also used Goldstone-Feynman diagrammatic
technique to calculate the hard-core interaction for
Hamiltonian (1), and the identical results are obtained.
We note that the anisotropic function W(x) enters into
the logarithmic divergent part interaction when one con-
siders the ladder diagrams of Cooper-pair scatterings.
Therefore this anisotropy truly affects the Cooper pairings.

In conclusion, we have studied the Anderson lattice
model including spin-orbit coupling and anisotropic hy-
bridization using the auxiliary boson method. The
quasiparticle- Cooper-pair scattering vertex shows strong
hard-core repulsive interactions on all s wave, d wave, and
I 4 partial ~aves in even-parity channel. We like to ern-
phasize that d-wave pairing is as unfavorable as s wave.
The hard-core vertex function may correspond to the con-
tact interaction in spin-fluctuation model for He. The an-

(

isotropic hard-core vertex therefore suggests that an ap-
propriate spin-fluctuation model for the heavy-fermion
materials should take into account the momentum depen-
dence of the contact interaction, especially for the purpose
of studying superconductivity. We note that the mean-
field solutions of Hamiltonian (1) are not the exact solu-
tions in the large-degeneragy (N) limit. We may regard
the mean-field theory and the random-phase approxima-
tion as an approach independent of 1/N expansion.

Although the quantitative results presented in this paper
apply to the symmetric J 2 case, we believe the qualita-
tive results examined in this paper should apply to all
heavy-fermion systems exhibiting Kondo eA'ect. The an-
isotropy in hybridization is a general feature in Ce and U
compounds, the suppression of Cooper pairings in even-
parity channel is a consequence of this anisotropy. This
makes both s- and d-wave pairing unlikely in heavy-
fermion superconductivity.

Gne of us (F.C.Z.) wishes to express his deep gratitude
to T. M. Rice for his inspiration and many useful discus-
sions. The work has been partly supported by the Swiss
National Science Foundation.
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