
Hive crash course

 A beginner’s guide

Introduction

Hive is a framework designed for data warehousing that runs on top of Hadoop. It enables

users to run queries on the huge volumes of data. Its basic function is to convert SQL

queries into MapReduce jobs.

Installation

Prerequisites:

- Java 6

- Cygwin (for Windows only).

- Hadoop version 0.20.x.

1. Download stable release at http://hive.apache.org/downloads.html

2. Unpack a tarball at suitable place:

3. Set environment:

The Hive Shell

The shell is the primary way to interact with Hive by issuing commands in HiveQL which is

a dialect of SQL. To list TABLES (in order to see if HIVE works):

For fresh install, the command takes a few seconds to run since it is lazily creating the

metastore database on your machine.

% tar xzf hive-z.y.z-bin.tar.gz

cd hive-z.y.z-bin/bin

export HIVE_HOME=$PWD

export PATH=$HIVE_HOME/bin:$PATH

hive> SHOW TABLES;

OK

Time taken: 10.425 seconds

In order to run Hive shell in non-interactive mode use –f switch and provide name of file.

For short scripts you can use -e option (the final semicolon is not required):

In both interactive and non-interactive modes, Hive will print information to standard

error. You can suppress these messages using the -S option.

RUNNING HIVE

Hive uses Hadoop so you must have hadoop in your path or run the following:

In addition, you must create /tmp and /user/hive/warehouse (aka

hive.metastore.warehouse.dir) and set them chmod g+w in HDFS before you can create a

table in Hive.

Commands to perform this setup:

You can also set HIVE_HOME

RUNNING HCATALOG

% hive -f script.q

% hive -e 'SELECT * FROM dummy'

export HADOOP_HOME=<hadoop-install-dir>

$ <hadoop-directory>/bin/hadoop fs -mkdir /tmp

$ <hadoop-directory>/bin/hadoop fs -mkdir /user/hive/warehouse

$ <hadoop-directory>/bin/hadoop fs -chmod g+w /tmp

$ <hadoop-directory>/hadoop fs -chmod g+w /user/hive/warehouse

$ export HIVE_HOME=<hive-install-dir>

$HIVE_HOME /hcatalog/hcatalog/sbin/hcat_server.sh$

$HIVE_HOME/hcatalog/sbin/hcat_server.sh

RUNNING WEBHCat (Templeton)

To run the WebHCat server from the shell in Hive release 0.11.0 and later:

CONFIGURATION

Hive by default gets its configuration from <install-dir>/conf/hive-default.xml.The location

of the Hive configuration directory can be changed by setting environment variable:

They can be changed by (re)defining them in

Log4j configuration is stored in

RUNTIME CONFIGURATION

Hive queries are executed using map-reduce queries, therefore the behavior of such

queries can be controlled by the Hadoop configuration variables.

The CLI command 'SET' can be used to set any Hadoop (or Hive) configuration variable

The second command shows all the current settings. Without the -v option only the

variables that differ from the base Hadoop configuration are displayed.

$HIVE_HOME/hcatalog/sbin/webhcat_server.sh

HIVE_CONF_DIR

<install-dir>/conf/hive-site.xml.

<install-dir>/conf/hive-log4j.properties

hive> SET

mapred.job.tracker=myhost.mycompany.

com:50030;

hive> SET -v;

HIVE, MAP-REDUCE AND LOCAL-MODE

Hive compiler generates map-reduce jobs for most queries. These jobs are then submitted

to the Map-Reduce cluster indicated by the variable

This points to a map-reduce cluster with multiple nodes, Hadoop also offers an option to

run map-reduce jobs locally on the user's workstation. To enable local mode of execution,

the user can enable the following option:

Starting with release 0.7 Hive supports local mode execution. To enable this, the user can

enable the followig option

ERROR LOGS

Hive uses log4j for logging. By default logs are not emitted to the consol by the CLI. The

default logging level is WARN for Hive releases prior to 0.13.0. Starting with Hive 0.13.0 ,

the default logging level is INFO. The logs are stored in the folder

HIVE SERVICES:

The Hive shell is only one of several services that you can run using the hive command.

You can specify the service to run using the --service option:

 cli

The command line interface to Hive (the shell). This is the default service

mapred.job.tracker

hive> SET mapred.job.tracker=local

hive> SET mapred.job.tracker = local

 /tmp/<user.name>/hive.log

 % hive --service [name]

 hiveserver

Runs Hive as a server exposing a Thrift service, enabling access from a range of

clients written in different languages. Applications using the Thrift , JDBC and

ODBC connectors need to run a Hive server to communicate with Hive. Set the

HIVE_PORT environment variable to specify the port the server will listen on

(defaults to 10,000)

hwi

 Hive Web Interface - alternative to the shell. Use the following commands:

 Jar

The Hive equivalent to hadoop jar, a convenient way to run Java applications

that includes both Hadoop and Hive classes on the classpath.

 metastore

By default, the metastore is run in the same process as the Hive service. Using

this service, it is possible to run the metastore as a standalone (remote) process.

Set the METASTORE_PORT environment variable to specify the port the server

will listen on.

HIVE CLIENTS

If you run Hive as a server , then there are number of different mechanisms

for connecting to it from applications:

 Thrift Client

Makes it easy to run Hive commands from a wide range of programming

language. Thrift bindings for Hive are available for C++, Java , PHP, Python and

Ruby.

 JDBC Driver

Hive provides a Type 4(pure Java) JDBC driver, defined in the class

 ODBC Driver

The Hive ODBC Driver allows applications that support the ODBC protocol to

connect to Hive. It is still in development so you should refer to the latest

instructions on the hive.

 % export ANT_LIB=/path/to/ant/lib

 % hive --service hwi

org.apache.hadoop.hive.jdbc.HiveDriver

PARTITIONS

Hive organizes tables into partitions - a way of dividing a table into coarse-grained parts

based on the value of a partition column, such as date. Tables or partitions may be further

subdivided into buckets, to give extra structure to the data thay may be used for more

efficient queries. Partitions are defined at table creation time using the PARTITIONED BY

clause, which takes a list of column definitions. For the hypothetical log files example, we

might define a table with records comprising a timestamp and the log line itself.

When we load data into a partitioned table, the partition values are specified explicitly:

At the file system level, partitions are simply nested subdirectories of the table directory.

After loading few more files into the logs table, the directory structure might look like this:

We can ask Hive for the paritions in a table using:

The columns definitions in the PARTITIONED BY clause are full-fledged table columns,

called partition columns; however, the data files do not contain values for these columns

CREATE TABLE logs (ts BIGINT, line STRING)

PARITIONED BY (dt STRING , country STRING) ;

LOAD DATA LOCAL INPATH

'input/hive/partitions/file1' INTO TABLE logs

PARTITION (dt='2001-01-01', country='GB');

/user/hive/warehouse/logs/dt=2010-01-01/country=GB/file1

/file2

/country=US/file3

 /dt=2010-01-02/country=GB/file4

/country=US/file5

/file6

hive> SHOW PARITIONS logs;

dt=2001-01-01/country=GB

dt=2001-01-01/country=US

dt=2001-01-2/country=G

dt=2001-01-02/country=US

since they are derived from the directory names. You can use partitions’ columns in

SELECT statements in the usual way. Hive performs input pruning to scan only the relevant

partitions. For example:

will only scan file1, file2 and file4. Notice, too, that the query returns the values of the dt

partition column, which Hive reads from the directory names since they are not in the data

files.

BUCKETS

There are two reasons why to organize tables (or partitions) into buckets.

- to enable more efficient queries

- to make sampling more efficient

We use the CLUSTERED BY clause to specify the columns to bucket on and the number of

buckets:

Here we are using the user ID to determine the bucket (which Hive does by hashing the

value and reducing modulo the number of buckets), so any particular bucket will effectively

have a random set of users in it. The data within a bucket may additionally be sorted by one

or columns.

To populate the bucketed table, we need to set the hive.enforce.bucketing property to true,

sot that Hive knows to create the number of buckets declared in the table definitions. Then

it is a matter of just using the INSERT command:

SELECT ts, dt, line

FROM logs

WHERE country='GB';

CREATE TABLE bucketed users (id INT,

name STRING)

CLUSTERED BY (id) INTO 4 BUCKETS;

CREATE TABLE bucketed_users (id INT, name STRING)

CLUSTERED BY (id) SORTED BY (id ASC) INTO 4

BUCKETS;

INSERT OVERWRITE TABLE bucketed_users

SELECT * FROM users;

;

We can sample the table by using the TABLESAMPLE clause, which restricts the query to a

fraction of the buckets in the table rather than the whole table:

Sampling a bucketed table is very efficient, since the query only has to read the buckets that

match the TABLESAMPLE clause.

STORAGE FORMATS

There are two dimensions that govern table storage in Hive: the row format and the file

format. The row format dictates how rows, and the fields in a particular row, are stored. In

Hive parlance, the row format is defined by a SerDe, a portmanteau word for a Serializer-

Deserializer .When you create a table with no ROW FORMAT or STORED AS clauses, the

default format is delimited text, with a row per line. The default row delimiter is not a tab

character, but the Control-A character from the set of ASCII control codes (it has ASCII code

1). The choice of Control-A, sometimes written as ^A in documentation, came about since it

is less likely to be a part of the field text than a tab character. There is no means for

escaping delimiter characters in Hive, so it is important to choose ones that don't occur in

data fields. The default collection item delimiter is a Control-B character, used to delimit

items in an ARRAY or STRUCT, or key-value pairs in a MAP. The default map key delimiter

is a Control-C character, used to delimit the key and value in a MAP. Rows in a table are

delimited by a newline character.

Thus, the statement:

is identical to the more explicit

hive> SELECT * FROM bucketed_users

 > TABLESAMPLE (BUCKET 1 OUT OF 4 ON id);

 0 Nat

 4 Ann

CREATE TABLE ...;

BINARY STORAGE FORMATS: Sequence files and RCFiles

Hadoop's sequence file format is a general purpose binary format for sequences of records

(key-value pairs). You can use sequence files in Hive by using the declaration

One of the main benefits of using sequence files is their support for splittable compression.

If you have a collection of sequence files that were created outside Hive, then Hive will read

them with extra configuration. If, on the other hand, you want tables populated from Hive

to use compressed sequence files for their storage, you need to set a few properties to

enable compression:

RCFIle(Record Columnar File) – is another binary storage format. They are similar to

sequence files, except that they store data in a column-oriented fashion. RCFile breaks up

the table into row splits, then within each split stores the values for each row in the first

column, followed by the values for each row in the second column, and so on. In general,

column-oriented formats work well when queries access only a small number of columns

in the table. Conversely, row-oriented formats are appropriate when a large number of

columns of a single row are needed for processing at the same time. Use the following

CREATE TABLE clauses to enable column-oriented storage in Hive:

CREATE TABLE ...

 ROW FORMAT DELIMITED

 FIELDS TERMINATED By '\001'

 COLLECTION ITEMS TERMINATED by '\002'

 MAP KEYS TERMINATED BY '\003'

 LINES TERMINATED by '\n'

 STORED AS TEXTFILE;

 STORED AS SEQUENCE FILE in CREATE TABLE statement

hive> SET hive.exec.compress.output=true;

hive> SET mapred.output.compress=true;

hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;

hive> INSERT OVERWRITE TABLE;

Example:

Let's use another SerDe for storage. We'll use a contrib SerDe that uses a regular

expression for reading the fixed-width station metadata froma a text file

When we retrieve data from the table, the SerDe is invoked for deserialization, which

correctly parses the fields for each row:

MAD REDUCE SCRIPT

Using an approach like Hadoop Streaming, the TRANSFORM, MAP and REDUCE clauses

make it possible to invoke an external script or program from Hive.

Example - script to filter out rows to remove poor quality readings.

 We can use the script as follows

CREATE TABLE ...

ROW FORMAT SERDE,

'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'

STORED AS RCFILE;

hive>CREATE TABLE stations (usaf STRING, wban STRING, name STRING) ROW

FORMAT SERDE'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'

WITH SERDEPROPERTIES(

"input.regex" = "(\\d{6} (\\d{5}) (.{29}) .*"

);

hive>LOAD DATA LOCAL INPATH "inpt/ncdc/metadata/stations-fixed-width.txt"

INTO TABLE stations;

hive> SELECT * FROM stations LIMIT 4;

010000 99999 BOGUS NORWAY

010003 99999 BOGUS NORWAY

010010 99999 JAN MAYEN

010013 99999 ROST

import re

import sys

for line in sys.stdin:

 (year, temp, q) = line.strip().split()

 if (temp != "9999" and re.match("[01459]", q))

 print "%s\t%s" % (year, temp)

DDL OPERATIONS

Hive Data Definition Language is a dialect of SQL, that transforms SQL statements into

MapReduce jobs. Documentation can be found at

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

Examples:

Creating Hive Tables

Creates a table called pokes with two columns, the first being an integer and the other a string.

Creates a table called invites with two columns and a partition column called ds. The partition column is a

virtual column. It is not part of the data itself but is derived from the partition that a particular dataset is loaded

into. By default tables are assumed to be of text input format and the delimiters are assumed to be ^A(ctrl-a).

Browsing through tables

Lists all of the tables

Shows the list of columns

hive> ADD FILE /path/to/is_good_quality.py;

hive> FROM records2

 > SELECT TRANSFORM(year, temperature, quality)

 > USING 'is_good)quality.py'

 > AS year, temperature;

1949 111

1949 78

1950 0

1950 22

1950 -11

hive> CREATE TABLE pokes (foo INT, bar STRING);

hive> CREATE TABLE invites (foo INT, bar STRING)

PARTITIONED BY (ds STRING);

hive> SHOW TABLES;

hive> DESCRIBE invites;

Altering and Dropping Tables

Table names can be changed and columns can be added or replaced.

Note that REPLACE COLUMNS replaces all existing columns and only changes the table's schema, not the data.

The table must use a native SerDe. REPLACE COLUMNS can also be used to drop columns from the table's

schema:

DROPPING TABLES

DML OPERATIONS

The Hive DML operations are documented in:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML

Examples:

Loads a file that contains two columns separated by ctr-a into pokes table.
'LOCAL' signifies that the input is on the local file system. If 'LOCAL' is omitted then it looks for the file in HDFS.

The keyword 'OVERWRITE' signifies that existing data in the table is deleted. If the 'OVERWRITE' keyword is

omitted, data files are appended to existing data sets.

hive> ALTER TABLE events RENAME TO 3koobecaf;

hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);

hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');

hive> ALTER TABLE invites REPLACE COLUMNS

 >(foo INT, bar STRING, baz INT COMMENT 'baz replaces new_col2');

hive> ALTER TABLE invites REPLACE COLUMNS

 > (foo INT COMMENT 'only keep the first column');

hive> DROP TABLE pokes

hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt'

hive> OVERWRITE INTO TABLE pokes;

hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE invite

PARTITION (ds='2008-08-15');

hive> LOAD DATA LOCAL INPATH './examples/files/kv3.txt' OVERWRITE INTO TABLE invites

PARTITION (ds='2008-08-08');

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML

The two LOAD statements above load data into two different partitions of the table invites.

Table invites must be created as partitioned by the key ds for this to succeed.

The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS

will result in moving the file/directory.

SQL OPERATIONS

The Hive query operations are documented in:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select

Examples:

Selects column 'foo' from all rows of partition ds=2008-08-15 of the invites table. The results are not stored

anywhere, but are displayed on the console.

Partitioned tables must always have partition selected in the WHERE clause of the statement.

This streams the data in the map phase through the script /bin/cat (like Hadoop streaming) Similarly -

streaming can be used on the reduce side.

WEATHER DATA EXAMPLE

Create table to hold the weather data using the CREATE TABLE statement

ROW FORMAT clause is particular to HiveQL. It says that each row in the data file is tab-delimited text.

For exploratory purposes let's populate records with data from sample.txt

hive> LOAD DATA INPATH '/user/myname/kv2.txt';

hive>OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');

hive> SELECT a.foo FROM invites a WHERE a.ds='2008-08-15';

hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM

 invites a WHERE a.ds='2008-08-15';

hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar)

AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';

Hive> CREATE TABLE records (year STRING, temperature INT , quality INT)

 > ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select

sample.txt

In this example, we are storing Hive tables on the local filesystem (fs.default.name is set to

its default value of file:///). Tables are stored as directories under Hive's warehouse

directory, which is controlled by the hive.metastore.warehouse.dir, and defaults to

/user/hive/warehouse. Thus, we can run Linux command:

The OVERWRITE keyword in the LOAD DATA statement tells Hive to delete any existing files in the directory for

the table. If it is omitted, then the new files are simply added to the table's directory (unless they have the same

names, in which case they replace the old files).

After loading data we can run a query.

What is remarkable is that Hive transforms this query into a MapReduce job , which it

executes on our behalf, then prints the results to the console. We see that Hive is able to

execute SQL queries against raw data stored in HDFS.

USER-DEFINED FUNCTIONS

User Defined Function (UDF) has to be written in Java, the language that Hive itself is

written in. There are three types of UDF in Hive:

- regular UDFs - operates on a single row and produces a single row as its output,

most functions, such as mathematical functions and string functions, are of this

type

1950 0 1

1950 22 1

1950 -11 1

1949 111 1

1949 78 1

hive > LOAD DATA LOCAL INPATH 'input/ncdc/micro-tab/sample.txt'

 > OVERWRITE INTO TABLE records;

% ls /user/hive/warehouse/records/sample.txt

hive> SELECT year , MAX(temperature)

 > FROM records

 > WHERE temperature != 9999

 > AND (quality = 0 OR quality = 1 OR quality = 4 quality = 5 OR quality = 9)

 > GROUP BY year;

 1949 111

 1950 22

- UDAFs (user-defined aggregate functions) - works on multiple input rows and

creates single output row, include COUNT and MAX functions

- UDTFs (user-defined table-generating functions) - operates on a single row and

procudes multiple rows a table - as output

TABLE GENERATING FUNCTION EXAMPLE

Consider a table with a single column, x, which contains arrays of strings.

The example file has the following contents, where ^B is a representation of the Control-B

character to make it suitable for printing:

example.txt

After running a LOAD DATA command, the following query confirms that the data was

loaded correctly:

Next, we can use the explode UDTF to transform this table. This function emits a row for

each entry in the array, so in this case the type of the output column y is STRING. The result

is that the table is flattened into five rows.

CREATE TABLE arrays (x ARRAY<STRING>)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\001'

COLLECTION ITEMS TERMINATED BY '\002';

a^B

b^B

c^B

d^B

e^B

hive> SELECT * FROM arrays;

 ["a", "b"]

 ["c", "d", "e"]

hive> SELECT explode(x) AS y FROM arrays;

 a

 b

 c

 d

 e

EXAMPLE OF UDF –simple UDF to trim characters.

A UDF must satisfy two properties:

- A UDF must be a subclass of org.apache.hadoop.hive.ql.exec.UDF.

- A UDF must implement at least one evaluate() method.

UDF – strip.

The evaluate() method is not defined by an interface, so it may take an arbitrary number of

arguments, of arbitrary types, and it may return a value of arbitrary type. To use the UDF in

Hive, we need to package the compiled Java class in a JAR file and register the file with Hive.

We also need to create an alias for the Java classname.

The UDF is now ready to be used, just like a built-in function:

Notice that the UDF's name is not case-sensitive.

package com.hadoopbook.hive
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.TEXT;
public class Strip extends UDF {
private Text result = new Text();
public Text evaluate(Text str) {
 if(str == null) {
 return null; }
 result.set(StringUtils.strip(str.toString()));
 return result; }

 public Text evaluate(Text str, String stripChars) {
 if(str == null) {
 return null;
 }
 result.set(StringUtils.strip(str.toString(),
stripChars))
 return result;
 }
}

ADD JAR /path/to/hive/hive-example.jar;

hive> SELECT strip(' bee ') FROM dummy;

 bee

hive> SELECT strip ('banana' , 'ab') FROM dummy;

 nan

CREATE TEMPORARY FUNCTION strip AS 'com.hadoopbook.hive.Strip';

EXAMPLE - function for calculating the maximum of a collection of integers (UDAF).

Definition of aggregate function – Maximum

A UDAF must be a subclass of org.apache.hadoop.hive.ql.exec.UDAF (note the "A" in UDAF)

and contain one or more nested static classes implementing

org.apache.hadoop.hive.ql.exec.UDAFEvaluator.

Lets' exercise our new function:

package com.hadoop.hive;

import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.io.IntWritable;

public class Maximum extends UDAF {

 public static class MaximumIntUDAFEvaluator implements UDAFEvaluator {

 private IntWritable result;

 public void init() {
 result = null;
 }

 public boolean iterate(IntWritable value) {
 if (value == null) {
 return true;
 }

 if (result == null) {
 result = new IntWritable(value.get());
 } else {
 result.set(Math.max(result.get(), value.get()));
 }
 return true;
 }

 public IntWritable terminatePartial() {
 return result;
 }

 public boolean merge(IntWritable other) {
 return iterate(other);
 }

 public IntWritable terminate() {
 return result;
 }

 }

}

hive> CREATE TEMPORARY FUNCTION maximum AS 'com.hadoopbook.hive.Maximum';

hive> SELECT maximum(temperature) FROM records;

 110

IMPORTING DATA SETS

The easiest way to import dataset from relational database into Hive, is to export database

from table to CSV file. After this is accomplished you should create table in hive:

 DDL statement that creates Hive table. Notice that it has fields delimited by coma.

Next load data from local directory.

CONCLUSIONS

The purpose of this tutorial is to give a user a brief and basic introduction to Hive and its

SQL like features. For more in-depth information and instructions on how to explore Hive,

please visit:

https://cwiki.apache.org/confluence/display/Hive/Home#Home-UserDocumentation

hive> CREATE TABLE SHOOTING (arhivesource string, text string, to_user_id string,

from_user string, id string, from_user_id string , iso_language_code string, source string ,

profile_image_url string, geo_type string, geo_coordinates_0 double, geo_coordinates_1

double, created_at string, time int, month int, day int, year int) ROW FORMAT DELIMITED

FIELDS TERMINATED BY ',';

>hive LOAD DATA LOCAL INPATH '/dlrlhive/shooting/shooting.csv' INTO TABLE

shooting;

