Computational Linguistics PJ
-Event Extraction from Newswires and Twitter

Client: Mohamed Magdy

by Tianyu Geng, Wei Huang, Ji Wang, and Xuan Zhang

May, 1st, 2014
Blacksburg, VA
Table of Contents

1. Introduction
2. Approach & Results
3. Discussion
4. Conclusion
1. Problem to Solve

Motivation: Big data era, much news, much tweets, but...

- Key info in news & tweets?
- Relation between news & tweets?

Objects:

1. Summarize key events in news & tweets
2. Explore correlation between news & tweets
2. Approach Overview

Main Process

1. Fetch text from news & tweets respectively
2. Preprocess texts: stemming, stop-word…
3. Extract events from news and tweets
 Event: [Topic, Named entities(who, where, when)]
4. Link Twitter Events to News events
2.1 Overall Architecture

Event Extraction Sys.
Pre-processor
LDA
NER

Correlation

Event Extraction Sys.
Pre-processor
LDA
NER
2.2 Data Set

Datasets (Feb, 18th ~ Apr, 18th):

1) **4084 news** about “Ukraine Crisis” from Reuters.

 ![Reuters](https://example.com/reuters-icon.png) ![CNN](https://example.com/cnn-icon.png) ![Fox News](https://example.com/fox-news-icon.png) ![NBC News](https://example.com/nbc-news-icon.png)

 | 4084 | N/A | N/A | N/A |

2) About **130,000 tweets** about “Ukraine Crisis” from Twitter.
2.3.1 News Analysis Pipeline

Event: [Topic, Named entities (who, where, when)]

Fetch & Parse

1. LDA
2. NER

Compose

Topics

Named Entities

Event 2

Event 1

- Russia
- Sanction
- Obama
- Bank

Who: Obama

When: Mar, 13

Where: Ukraine

LDA: Latent Dirichlet Allocation
NER: Named Entity Recognition
2.3.2 Topic Extraction (LDA)

Source:
- News titles
- Key paragraphs

Tools:
- Mallet
- JGibbLDA

News Titles
- Title 01
- Title 02
- Title ...
- Title X

News Paragraphs most relevant with the Titles
- Paragraph 11
- Paragraph 12
- Paragraph ...
- Paragraph 1M
- Paragraph 21
- Paragraph 22
- Paragraph ...
- Paragraph 2N
- Paragraph ...
- Paragraph X1
- Paragraph X2
- Paragraph ...
- Paragraph XX

Topic Extraction (LDA)
Result of Topic Modeling

- **Extract topics from news titles**
 - **Strength:** titles are good summaries of the news
 - **Weakness:** small data set

- **Extract topics from key paragraphs**
 - **Strength:** large data set
 - **Weakness:** more noise

Our experience:
- For news with homogeneous topics (e.g. Ukraine crisis news): Titles are better choice
- For news with heterogeneous topics (e.g. Monthly news of Apple Inc.): Key paragraphs are better
- **Problems:** Overlap & Noise in about 25% topics
Efforts to Improve Topic Modeling

- **Cluster the news by their titles before LDA**
 - No good result. News titles are short texts, thus the title vectors are too sparse to be clustered accurately.

- **Cluster the news by entire article before LDA**
 - No good result. There is too much noise in the news body, which deteriorates the clustering result.

- **Split the entire dataset into datasets with shorter periods**
 - Topics with finer-granularity obtained.
 - However, more noise emerged compared to topics from the entire data set.

Suggestions from Dr. Fox
2.3.3 Named Entity Extraction

- Hard to find Named Entities (WHO, WHERE, WHEN) in topics.
- We need to search NEs in relevant news paragraphs

Search relevant paragraphs by Apache Lucene
Extract Named Entities - Methods

- Paragraphs \in Topic e (Stanford NER)
 - Named Entities Set
 - When
 - Where
 - Who

Suggestions from client

Method 1
- Count term-frequency for each NE
 - Top 5 When
 - Top 5 Where
 - Top 5 Who

Method 2
- FP-Growth
- Frequent patterns
 - Combine patterns based on date, Count each combination’s frequency
 - High-frequency combinations
Extract Named Entities - Results

Topic: [crimea, ukraine, russian, troops, border]

Method 1: High-frequency 3W named entities

WHO: NATO; Oleksander Turchinov; Kerry; Lavrov; Vladimir Putin;

WHEN: Mar 15, 2014; Thursday; Apr 16, 2014; Mar 3, 2014; Mar 24, 2014;

WHERE: Ukraine; Crimea; Russia; U.S.; Kiev;

Method 2: High-frequency named entities combinations

[Mar 15, 2014; Ukraine; Crimea; Donetsk; Kharkiv; Arbatskaya Strelka; Oleksander Turchinov]

[Mar 29, 2014; Russia; Ukraine; Crimea; Lavrov; Vladimir Putin]

[Apr 12, 2014; Russia; Moscow; Ukraine; Crimea; NATO]
Extracted Events on a Time Line

- ukraine, yanukovich, crisis, minister, sign, russian, 02/28
- ukraine, crimea, crisis, minister, referendum, vote, 03/08
- russia, bank, sanctions, ukraine, crisis, crimea, 03/12
- ukraine, tensions, data, rise, shares, china, stocks, 03/16
- ukraine, russian, talks, aid, crisis, sanctions, deal, 03/23
- gas, ukraine, russian, russia, europe, talks, energy, 03/26
- crimea, ukraine, russian, troops, border, 03/26
- ukraine, aid, support, house, government, talks, 03/26
- ukraine, crisis, minister, sign, 03/26
- europe, talks, 03/26
- crimea, ukraine, russian, 03/26
- ukraine, crisis, 03/26
- russia, energy, 03/26
- aid, crimea, ukraine, russian, 03/26
- crimea, ukraine, russian, aid, government, 03/26
- crimea, ukraine, russian, troops, border, 04/16
- ukraine, aid, support, house, russian, 04/16
2014/03/08 - 2014/03/14;
Topic: [crimea, ukraine, russia, minister, referendum, ukrainian, vote]
WHO: U.N. Security Council; Arseny Yatseniuk; Vladimir Kirichenko; Obama; Putin;
WHERE: Russia; Crimea; Ukraine; Kiev; China;
Combination: [Mar 9, 2014; Russia; Ukraine; Crimea; United States; Vladimir Kirichenko; Obama]
Combination: [Mar 14, 2014; London; Russia; Ukraine; West; Crimea; Moscow; Arseny Yatseniuk; Kerry; Russian Federation]

2014/03/20 - 2014/03/21;
Topic: [ukraine, house, imf, u.s, bill, white, aid]
WHO: IMF; Senate; White House; House of Representatives
WHERE: Ukraine; WASHINGTON; Kiev; United States;
Combination: [Mar 21, 2014; Ukraine; U.S.; New York; Senate; Royce; House Foreign Affairs Democrat; Nita Lowey; Eliot Engel; House Appropriations Committee; IMF]
2.4.1 Approaches

- Tweets are from IDEAL collection.
- Assign topics to each tweet by LDA.
- Apply Method 2 (FP-Growth) in the NER step of tweets analysis.
2.4.2 Results

News Facts:
Feb 18: The initial riots began
Feb 20: Ukraine Government Snipers Shooting protesters in Kiev

News Facts:
Feb 20/21: President Yanukovych signed a compromise deal with opposition leaders. Then, he left Ukraine.
Tweets Events Samples

● Topic 1
 ○ Keywords: live, snipers, protests, control, here, watch, video
 ○ Events:
 {Feb 18, 2014; European Union; Ukraine}
 {Feb 20, 2014; EU; Ukraine}
 {Feb 20, 2014; Hotel Ukraina; Kiev}
 {Feb 22, 2014; Peter Brookes; Kiev}
 {Mar 06, 2014; EU; Rome}

● Topic 2
 ○ Keywords: today, president, storm, backed, threaten, forces, shooting
 ○ Events:
 {Feb 20, 2014; Yanukovich; Kiev}
2.5 Correlation between Twitter Events & News Events

News Event

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
<th>Term 3</th>
<th>...</th>
<th>Term 7</th>
<th>WHO</th>
<th>WHERE</th>
<th>WHEN</th>
</tr>
</thead>
</table>

Twitter Event

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
<th>Term 3</th>
<th>...</th>
<th>Term 7</th>
<th>WHO</th>
<th>WHERE</th>
<th>WHEN</th>
</tr>
</thead>
</table>

Event Similarity:
Distance between centroids

Vectors in 200-Dimension hyper space

Word2Vec (by Google)
3.1 Issues & Lessons

--- News Analysis

Open Issues:
1. Overlap and noise in the extracted topics
2. Noise in the extracted named entities
3. Similarity model to link the Twitter events to news events

Lessons:
1. Collect more data from other news websites
2. Remove overlap in topics by splitting the data set
3. Remove duplicates from the frequent NE combinations
3.2 Issues, & Lessons
--- Tweets Analysis

1. There are very big noise in tweets themselves.
2. It’s not easy to extract Named Entities from tweets.

Lessons:
1. topic model tweets via LDA (Python Gensim)
2. extract name entities from tweets. (PyNER)
3. use FP-Growth algorithm to pick the most high frequency keywords combination in event description.
3.3 Potential Usages

1. A tool for event extraction and news summarization

2. A tool for the “Computational Linguistic” course

3. A component for the IDEAL project

4. A tool to extract pure text from archived web pages
4.1 Conclusion

- Developed an effective tool for web page event extraction
- Explored various methods regarding every step of the event extraction
- More efforts are needed to link the tweets events to news events
4.2 Structure of Deliverables

1. Presentation slides
2. A project report (including tool manual)
3. Source code
 - News event extractor (in Java)
 - Twitter event extractor (in Python)
4. Data
 - Text version of news dataset
 - Output results
Appendix
4.3 Future Work: Opinion Mining

Opinion Mining

News Event 1

Topics
- Who
- What
- When
- Where

News Event 2

Topics
- Who
- What
- When
- Where

Event 1
- Opinion 1
- Opinion 2
- ...
- Opinion N

Event 2
- Opinion 1
- Opinion 2
- ...
- Opinion M
Topics from Clustered News Titles

Cluster 1:
Ukraine Russia say eastern update Russian hit
Ukraine Putin say leader WRAPUP Crimea send
Ukraine update crisis say tension police military
Crimea russian from order after lawmaker official

Cluster 2:
U.S. IMF gas aid bill reform Kerry
Ukraine EU help ukrainian gas crisis export

Cluster 3:
update Russia may Germany trade Merkel government
Ukraine talk House bank White german aid
sanction russian EU against Obama over energy
Russia EU Ukraine sanction Obama war agree
Topics from Clustered News Bodies

Cluster 1:
Russia Ukraine EU warn Moscow Crimea sanction
Russia Ukraine take call say Putin separatist
Ukraine after force U.N. putin vote fear

Cluster 2:
Ukraine after eye over rouble import gas
Crimea emerge bond Bank bank market more
russian say Ukraine gas hit may ukrainian

Cluster 3:
Putin Ukraine Obama call discuss Merkel White
Ukraine update against urges aid after leader
Ukraine minister Yanukovich gas Poland president polish
Ukraine force NATO pm security seize gas
Topics from Key Paragraphs

Topic [0]: [ukraine, reuters, Ukraine, russia, crisis, foreign, president]
Topic [1]: [reuters, kiev, yanukovich, president, viktor, ukrainian, ukraine's]
Topic [2]: [military, nato, reuters, ukraine, u.s, russia, crimea]
Topic [3]: [sanctions, crimea, russia, moscow, reuters, russian, referendum]
Topic [4]: [russian, reuters, crimea, ukraine, ukrainian, forces, military]
Topic [5]: [gas, ukraine, reuters, russia, russian, energy, moscow]
Topic [6]: [percent, ukraine, reuters, march, Ukraine, tensions, u.s]
Topic [7]: [ukraine, reuters, aid, billion, Ukraine, washington, international]
Topic [8]: [russia, putin, ukraine, russian, vladimir, war, president]
Topic [9]: [rating, fitch, ratings, bank, banks, currency, ukraine]
Topics from Splitted Data Sets

Data set 1:
Ukraine, Kiev, protesters, police, team, Games, square
Yanukovich, Ukraine, opposition, crisis, talks, deal, Ukraine's
Hryvnia, bank, assets, record, low, foreign, gains

Data set 2:
Ukraine, U.S, Russia's, war, discuss, crisis, Merkel
Crimea, Ukraine, Russia, Putin, force, back, troops
Ukraine, tensions, China, rise, stocks, tension, ease

Data set 3:
Ukraine, Russia, IMF, aid, crisis, talks, deal
Russia, Crimea, military, Crimea's, vote, Moscow, U.N
Ukraine, Russia, IMF, aid, crisis, talks, deal

Data set 3:
Russian, Ukraine, Ukraine's, military, embassy, agency, suspected
gas, Ukraine, Russia, talks, Europe, supply, debt
Ukraine, Putin, Russia, U.S, data, call, House
Progress: Text Extraction

IN

HTML Source Code

Main Content

Pre-processing (remove tags etc.)

HTML Text (No Tags)

OUT

Body Detection based on line block distribution