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ABSTRACT

Aims. This work reports on radiative transition rates and electron impact excitation collision strengths for levels of the 3s23p, 3s3p2,
3s24s, and 3s23d configurations of Si ii.
Methods. The radiative data were computed using the Thomas-Fermi-Dirac-Amaldi central potential, but with the modifications in-
troduced by Bautista (2008) that account for the effects of electron-electron interactions. We also introduce new schemes for the
optimization of the variational parameters of the potential. Additional calculations were carried out with the Relativistic Hartree-Fock
and the multiconfiguration Dirac-Fock methods. Collision strengths in LS-coupling were calculated in the close coupling approxima-
tion with the R-matrix method. Then, fine structure collision strengths were obtained by means of the intermediate-coupling frame
transformation (ICFT) method which accounts for spin-orbit coupling effects.
Results. We present extensive comparisons between the results of different approximations and with the most recent calculations and
experiments available in the literature. From these comparisons we derive a recommended set of g f -values and radiative transition
rates with their corresponding estimated uncertainties. We also study the effects of different approximations in the representation of the
target ion on the electron-impact collision strengths. Our most accurate set of collision strengths were integrated over a Maxwellian
distribution of electron energies and the resulting effective collision strengths are given for a wide range of temperatures. Our results
present significant differences from recent calculations with the B-spline non-orthogonal R-matrix method. We discuss the sources of
the differences.
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1. Introduction

Singly ionized silicon (Si ii) is prominent in ultra-violet (UV)
and optical spectra of various astrophysical plasmas. In terms
of absorption spectra, in the spectral range longward of 912 Å
Si ii has 8 absorption line complexes connected to the ground
term 3s23p 2P◦. In photoionized plasmas with electron temper-
atures (Te) of the order of 104 K and electron densities (ne) ≤
104 cm−3 the relative optical depths of troughs from the two
ground state levels depend on ne. Hence, this dependence can
be used as diagnostic of ne (e.g. Dunn et al. 2009). On this
regard, the lines centered at 1814 Å (3s23p 2P◦ – 3s3p2 2D)
are particularly convenient because of their unusually small os-
cillator strengths, such that these, among all other Si ii lines,
are the most likely to be in the linear part of the curve of
growth and their column densities can be accurately measured.
Unfortunately, though, the determination of accurate and reliable
oscillator strengths for these transitions is particularly difficult

� Tables 6 and 7 containing the present g f -values, A-values, and ef-
fective collision strengths are only available in electronic form at the
CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/508/1527

and has been the subject of much theoretical and experimental
efforts.

Si ii is also prominent in emission spectra of various kinds
of objects. In the upper chromosphere and lower transition
region in the Sun and late-type stars line ratios among the
Si ii 1814 Å multiplet and the intercombination (3s23p 2P◦ –
3s3p2 4P) multiplet near 2335 Å are potentially useful density
diagnostics. However, until recently the best electron impact col-
lision strengths of Dufton & Kingston (1991) led to predicted
line ratios that disagreed with observations (Judge et al. 1991).
Similarly, theoretical models of emission spectra of Broad Line
Regions of Active Galactic Nuclei fail to reproduce the observed
intensities by factors of a few; a problem that was named by
Baldwin et al. (1996) the “Si ii disaster”.

Despite considerable theoretical work on oscillator strengths
there is still considerable spread in the results, particularly for
those transitions of most astronomical interest, such as those of
the 1814 Å complex. This is because the upper 2D term of these
transitions is made of a mixture of the 3s3p2 and 3s23d con-
figurations, which produce strong cancellation in the oscillator
strengths and makes the f -values very difficult to compute. Also
for these transitions, there has been much spread in experimen-
tal g f -values. Measurements based on the electron beam phase
shift method (Savage & Lawrence 1966; Curtis & Smith 1974)
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could be inaccurate for very long lifetimes. Absolute emission
measurements on an arc (Hofmann 1969) are often uncertain
owing to the difficult control and calibration of the instrument.
Determinations based in comparisons of equivalent widths of
the weak 1810 Å lines to stronger lines in astronomical spectra
(Shull et al. 1981; Van Buren 1986) are unreliable due to blends
and saturation of the stronger lines (Jenkins 1986). The latest,
and probably most accurate determination of g f -values for these
lines was done with the time-resolved laser-induced fluorescence
technique Bergeson & Lawler (1993).

The oscillator strengths for the intercombination transitions
(3s23p 2P◦ – 3s3p2 4P) have also been subject of controversy.
These transitions arise due to spin-orbit mixing of the metastable
term 3s3p2 4P with the 2S, 2P, and 2D terms. The difficulty then
comes from the fact that the g f -values are sensitive to core-
valence and core-core correlations, in addition to the valence-
shell effects. The results of some of the most recent calculations
(Froese Fischer et al. 2006) differ from experimentally measured
transition probabilities (Calamai et al. 1993) by ∼30%.

But beyond providing accurate oscillator strengths by tailor-
ing atomic structure representations on each type of transition of
interest, it is important to try constructing a single representation
that yields reasonably accurate energies and oscillator strengths
for all levels and transitions considered simultaneously. This is
because various practical applications will require such a gen-
eral atomic representation for subsequent scattering calculations
(e.g. electron impact excitation, photoionization, and recombi-
nation). One of the most widely used methods for this purpose is
based on the Thomas-Fermi-Dirac-Amaldi (TFDA) central po-
tential to generate optimized one-electron orbitals, which repre-
sent the atomic structure through configuration interaction (CI)
expansions and can also be used for close-coupling representa-
tions of the scattering problem. Recently, Bautista (2008) intro-
duced a correction to the TFDA potential that accounts for the
effects of electron-electron interactions on the radial wavefunc-
tion and yield a considerably improved representation of the sys-
tem. It is thus interesting to apply this new approach to get the
best possible representation of the important Si ii system.

In the present paper, to complement and expand the work
with the TFDA potential we also compare with the results of
the Hartree-Fock Relativistic (HFR), and the multi-configuration
Dirac-Fock (MCDF) methods. This general multiplatform ap-
proach was successfully employed in our previous studies of
the K-shell spectra of Fe, O, Ne, Mg, Si, S, Ar, Ca, and Ni
(e.g. Bautista et al. 2003; García et al. 2005; Palmeri et al.
2003a,b, 2008a,b). This has the advantage that allows for consis-
tency checks and inter-comparison. It also helps to reveal which
physical processes are important for any given transition, since
these different platforms employ different approaches to, for
example, relativistic effects and orthogonal vs. non-orthogonal
orbitals.

The present paper is organized as follows: in the next sec-
tion we describe the calculations of oscillator strengths and tran-
sition rates. In Sect. 3 we present the calculations of collision
strengths, including some new techniques specifically designed
for the present problem. Our discussion of the results and con-
clusions are presented in Sect. 4.

2. Radiative calculations

The Breit-Pauli Hamiltonian for an N-electron system is
given by

Hbp = Hnr + H1b + H2b (1)

where Hnr is the usual non-relativistic Hamiltonian, and H1b and
H2b are the one-body and two-body operators. The one-body rel-
ativistic operators

H1b =

N∑
n=1

fn(mass) + fn(d) + fn(so) (2)

represent the spin-orbit interaction, fn(so), and the non-fine
structure mass-variation, fn(mass), and one-body Darwin, fn(d),
corrections. The two-body corrections

H2b =
∑
n>m

gnm(so) + gnm(ss) + gnm(css) + gnm(d) + gnm(oo), (3)

usually referred to as the Breit interaction, include, on the one
hand, the fine structure terms gnm(so) (spin-other-orbit and mu-
tual spin-orbit) and gnm(ss) (spin-spin); and on the other, the
non-fine structure terms: gnm(css) (spin-spin contact), gnm(d)
(Darwin) and gnm(oo) (orbit-orbit).

The oscillator strengths ( f -values) for dipole allowed transi-
tions have equivalent forms in length and velocity gauges as

f jk ≡ 2m(Ek − E j)

�2
|〈| j|x|k〉|2 = i2m

�2
|〈| j|v|k〉|2. (4)

The radiative rates (A-values) for electric dipole and quadrupole
transitions are respectively given in units of s−1 by the
expressions

AE1(k, i) = 2.6774 × 109(Ek − Ei)
3 1
gk

S E1(k, i) (5)

AE2(k, i) = 2.6733 × 103(Ek − Ei)
5 1
gk

S E2(k, i) (6)

where S (k, i) is the line strength, gk is the statistical weight of
the upper level, and energies are in Rydberg units and lengths in
Bohr radii.

Similarly for magnetic dipole and quadrupole transitions, the
A-values are respectively given by

AM1(k, i) = 3.5644 × 104(Ek − Ei)3 1
gk

S M1(k, i) (7)

AM2(k, i) = 2.3727 × 10−2(Ek − Ei)5 1
gk

S M2(k, i). (8)

Due to the strong magnetic interactions in this ion, the magnetic
dipole line strength is assumed to take the form

S M1(k, i) = |〈|k|P|i〉|2 (9)

where

P = P0 + P1 =

N∑
n=1

{l(n) + σ(n)} + Prc. (10)

P0 is the usual low-order M1 operator while Prc includes the
relativistic corrections established by Drake (1971).

In the present work we employ three different computational
packages to study the properties of the strongly correlated con-
figurations 3s23p, 3s3p2, 3s23d, and 3s24s of Si ii.
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autostructure, an extension by Badnell (1986, 1997) of
the atomic structure program superstructure (Eissner et al.
1974), computes fine-structure level energies, radiative and
Auger rates in a Breit-Pauli relativistic framework. Single
electron orbitals, Pnl(r), are constructed by diagonalizing the
non-relativistic Hamiltonian, Hnr, within a statistical Thomas-
Fermi-Dirac-Amaldi (TFDA) model potential V(λnl) (Eissner &
Nussbaumer 1969). The λnl scaling parameters are optimized
variationally by minimizing a weighted sum of the LS term ener-
gies. LS terms are represented by configuration-interaction (CI)
wavefunctions of the type:

Ψ(LS ) =
∑

i

ciφi. (11)

Bautista (2008) introduced a modification to the TFDA model
potential that accounts in part for the effects of electron-electron
correlations on the radial wavefunctions by means of additional
higher order terms in the potential whose strength is controlled
by variational parameters. We will refer to this potential as c-
TFDA. This formalism also proposed a new optimization tech-
nique of the variational parameters by minimizing the difference
between predicted, including spin-orbit coupling and relativistic
effects, and experimental term averaged energies. The numerical
functional used for this optimization was:

F =
∑

i

|Eobs
i − Etheo

i | + ε
Eobs

i

(12)

with Eobs
i and Etheo

i the observed and theoretical energies respec-
tively of term i and

ε = max{0, (Ecore − E0
core)}.

This last term acts as a penalty to the functional whenever
the new core energy exceeds that found from the standard
TFDA minimization. This numerical functional was modified
again for the present work as shown in Sect. 2.2.

HFR

In the Hartree-Fock Relativistic code (hfr) by Cowan (1981),
a set of orbitals are obtained for each electronic configuration by
solving the Hartree-Fock equations for the spherically averaged
atom. The equations are the result of the application of the varia-
tional principle to the configuration average energy. Relativistic
corrections are also included in this set of equations, i.e. the
Blume-Watson spin-orbit, mass-variation and one-body Darwin
terms. The Blume-Watson spin-orbit term comprises the part of
the Breit interaction that can be reduced to a one-body operator.

The multi-configuration Hamiltonian matrix is constructed
and diagonalized in the LS Jπ representation within the frame-
work of the Slater-Condon theory. Each matrix element is a sum
of products of Racah angular coefficients and radial integrals
(Slater and spin-orbit integrals), i.e.

〈a|H|b〉 =
∑

i

ca,b
i Ia,b

i . (13)

The radial parameters, Ia,b
i , can be adjusted to fit the available ex-

perimental energy levels in a least-squares approach. The eigen-
values and the eigenstates obtained in this way (ab initio or semi-
empirically) are used to compute the wavelength and oscillator
strength for each possible transition.
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Fig. 1. Partial Grotrian diagram of Si ii showing the 22 lowest Levels in
8 LS terms and the dipole and intercombination line multiplets observ-
able in the UV spectral region.

MCDF

The multi-configuration Dirac-Fock (MCDF) method considers
the Dirac Hamiltonian for a N-electron atomic system given
in au by:

HD ≡
N∑

i=1

[
cαi × pi − (βi − 1)c2 − Z

ri

]
+

N∑
i� j

1
ri j
, (14)

where c is the speed of light and α and β are the Dirac ma-
trices. The atomic state function (ASF) is given as an expan-
sion over j j-coupled configuration state functions (CSFs), which
in turn are constructed from Slater determinants built on four-
component Dirac orbitals. The MCDF method is implemented in
the computer package GRASP2K, described by Joönsson et al.
(2007).

2.1. Energy levels and radiative rates

Our calculations concentrate on the 15 lowest levels, of the
Si ii system. This is 8 LS terms from configurations 3s23p,
3s3p2, 3s24s, 3s23d, and 3s24p. A Grotrian diagram of the ions
is presented in Fig. 1 which shows the levels and the UV optical
and intercombination transitions of interest.

2.1.1. Calculations with HFR

In the physical model adopted in HFR calculations, we suppose
that the Si+ ion can be represented by three valence electrons
surrounding a Ne-like Si4+ ionic core with ten electrons oc-
cupying the 1s22s22p6 closed subshells. The intravalence cor-
relation is then considered by the explicit introduction, in the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913179&pdf_id=1
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model, of the 52 following configurations: 3s23p + 3s24p +
3s25p + 3s24f + 3s25f + 3s3p3d + 3s3p4d + 3s3p5d + 3s3p4s +
3s3p5s + 3s3d4p + 3s3d5p + 3p24p + 3p25p + 3p24f + 3p25f +
3d24p + 3d25p + 3d24f + 3d25f + 3p3 (odd parity) and 3s3p2 +
3s24s + 3s25s + 3s23d + 3s24d + 3s25d + 3s3p4p + 3s3p5p +
3s3p4f + 3s3p5f + 3s3d2 + 3s4s2 + 3s4p2 + 3s4d2 + 3s4s5s +
3s3d4s+ 3s3d5s+ 3s3d4d+ 3s3d5d+ 3p23d + 3p24d + 3p25d +
3p24s + 3p25s + 3p3d4p + 3p4s4p + 3d24s + 3d25s + 3d24d +
3d25d +3d3 (even parity). Core-valence correlation is then con-
sidered by including a core-polarization (CPOL) potential and a
correction to the dipole operator as described in many previous
papers (see e.g. Quinet et al. 1999, 2002). These corrections are
used with a value of the dipole polarizability equal to 0.16 a3

0, as
computed by Johnson et al. (1983) for Si V, and a cut-off radius
equal to 0.53 a0 which corresponds to the HFR expectation value
of 〈r〉 for the outermost core orbital, i.e. 2p. This method is then
combined with a well-established least-squares optimization of
the radial parameters in order to minimize the discrepancies be-
tween the Hamiltonian eigenvalues and the available experimen-
tal energy levels for the 3s23p, 3s24p, 3s3p2, 3s24s, 3s25s, 3s23d,
3s24d, 3s25d and 3s3p4p configurations.

2.1.2. Calculations with MCDF

Here, we carried out two MCDF calculations. The first one, here-
after referred to as MCDF1, was focused on our radiative param-
eters for the intercombination transitions 3s23p 2P◦ − 3s3p2 4P,
and the second one, hereafter referred to as MCDF2, on those of
the allowed transitions 3s23p 2P◦ − 3s3p2 2D.

In MCDF1, CI expansions are built including the valence-
valence correlation through single and double excitations from
3s23p J = 1/2, 3/2 + 3s3p2 J = 1/2, 3/2, 5/2 extending the orbital
active set up to 5g in 4 steps. The final number of CSFs gener-
ated was 2127. For 3 of the steps, we selected an “extended op-
timal level”, EOL, optimization option (Dyall et al. 1989; Parpia
et al. 1996) on the lowest 5 levels using the same weight for the
5 ASFs. In the first step, no excitation was allowed, the active set
was limited up to 3p, and all the core and valence orbitals were
variational. The second step consisted in extending the expan-
sion through single and double excitations increasing the active
set up to 3d. Here, only the 3d orbital was variational, while
freezing all the others to their values of the preceding optimiza-
tion step. In the third step, the expansions were further extended
increasing the active set up to 4f. All n = 4 orbitals were opti-
mized while freezing all others in a similar procedure as in the
second step. In the final optimization step, only the n = 5 were
variational freezing all the other orbitals to their preceding step
values.

In MCDF2, we used the same procedure as in MCDF1
except that the excitations were from 3s23p J = 1/2, 3/2 +
3s3p2 J = 3/2, 5/2 and the EOL option was selected on the first,
second, fifth and sixth levels. Here the final number of CSFs used
in the MCDF expansions was 1832.

2.1.3. Calculations with AUTOSTRUCTURE

We performed calculations with various different configurations
expansions, starting with models similar to those of previously
published work and then evolving to more sophisticated tech-
niques and larger configuration expansions.

Table 1 presents the configurations included in 7 basic ex-
pansions studied. The various configuration expansions (CEs)
are named CE1, CE2, ..., CE6 and are tabulated in such a way

Table 1. Configurations included in various expansions used for Si ii.

CE1 2s22p63s23p, 2s22p63s3p2, 2s22p63s3p3d,
2s22p63s3d2, 2s22p63p3, 2s22p63p23d,
2s22p63p3d2, 2s22p63d3, 2s22p63s23d,
2s22p63s24s, 2s22p63s24p, 2s22p63s24d,
2s22p63s25s, 2s22p63s25p, 2s22p63s25d,
2s22p63s3p4s, 2s22p63s3p4p, 2s22p63s3d4p,
2s22p63s3d4d, 2s22p63s4p2, 2s22p63s4s5s,
2s22p63p24s, 2s22p63p3d4p, 2s22p63d24s

CE2 2s22p63s24f, 2s22p63s25f

CE3 2s22p53s23p2, 2s22p53s23p3d, 2s22p53s23p4s

CE4 2s23p43s23p3, 2s22p43s23p23d, 2s22p43s23p24s

CE5 2s2p63s23p2, 2s2p63s23p3d, 2s2p63s23p4s

CE6 2s22p53s23p4p, 2s22p53s23p4d, 2s22p43s23p24p,
2s22p43s23p24d, 2s22p33s23p4, 2s22p33s23p33d,
2s22p33s23p34s, 2s22p33s23p34p, 2s22p33s23p34d

that each CE includes the configurations of all previous CEs.
In other words, CE1 includes the 24 configurations listed at the
top of Table 1, CE2 includes all 24 configurations from CE1
plus 2s22p63s24f, CE3 includes the 25 configuration from CE1
and CE2 plus 3 more, and CE6 includes all 48 configurations in
the table.

The rational for these configurations and the progression of
various calculations carried is as follows:

– AST1: this calculation uses the expansion CE1 that keeps
the 2s and 2p shells closed and promotes the three remain-
ing electrons among orbitals with principal quantum number
n = 3−5 and orbital angular momentum l = 0−2. The TFDA
potential was used and the orbitals were optimized in the
standard autostructure procedure minimizing the ener-
gies of the lowest 8 LS terms. Fine structure coupling and
relativistic corrections are introduced as perturbations after
optimizing the orbitals. From this calculation the core energy
of the system is −578.40 Ry. Table 1 compares the calculated
energies relative to the ground level with experimental val-
ues from NIST (2008). The results are rather unsatisfactory
with energy differences scattered between −19% and 35%.
Even more troublesome are the g f -values that result from
this calculation, particularly those for the 1814 Å multiplet,
which are considerably overestimated with respect to the ex-
perimental determination of Bergeson & Lawler (1993) (see
Fig. 2). This is because it is difficult to represent 3s23p and
3s3p2 states simultaneously with orthogonal orbitals, owing
to polarization and orbital relaxation effects.

– AST2: for this calculation we use the same expansion CE1
as in AST1 but with the use of the c-TFDA potential of
Bautista (2008) optimized against the experimental term en-
ergies using the functional of Eq. (12). This gave a core en-
ergy of −578.34 Ry, which is slightly higher than in AST1.
Yet, the calculated energies here agree much better with
experiment than from AST1, with most terms within 5%
of experiment with the exception of the two excited lev-
els 3s23p 2P◦3/2, from the ground multiplet, and 3s3p2 4P j.
Together with the changes in calculated energies there are
also significant changes in the predicted g f -values for the
1814 Å and 1531 Å multiplets, as illustrated in Fig. 2.

– AST3: this calculation is just like AST2, but we now add
the configurations 3s24f and 3s25f (i.e. CE2). We find that
the f orbitals have an important effect on increasing the
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Fig. 2. Evolution of the g f -values for transitions in Si ii from our different calculations AST1, ..., AST9 and comparison with previous determi-
nations. The square points depict our results in the length gauge (blue) and velocity gauge (red). The solid horizontal lines depict experimental
determinations by Shull et al. (1981) (magenta), Van Buren (1986) (blue), Schectman et al. (1988) (green), Bergeson & Lawler (1993) (black).
The dashed lines depict theoretical results of Froese Fischer et al. (2006), (blue), Tayal (2007) (red), Nahar (1988) (green).

polarizability of configurations that include d orbitals, such
as the 3s3d2, and 3p23d. Thus, by including nf configurations
in the expansion we find different optimization for the core.
When including these nf orbitals one has to include enough
nd configurations in order to reach convergence in the solu-
tion. But, various configurations such as 3d, 3d2, 4d, and 5d
are already included since CE1. In the course of the calcula-
tions we checked on the contributions of 5d and 5f and they
were found to be small. Thus, we believe that the calculation
is nearly converged. In this calculation the core energy im-
proves to −578.38 Ry and the agreement between calculated
and experimental energies with respect to the ground level
also improves a little. Despite the relatively minor changes
in the calculated energies between this calculation and the
previous one there are large changes in the g f -values for the
1814 Å and 1264 Å multiplets, with a drop of ∼0.8 dex for
the former and a rise of ∼0.9 dex for the latter.

– AST4, AST5, AST6, and AST7: for these calculations we
progressively add new configurations by opening the 2s and
2p orbitals, with one 2p electron promotions in AST4 (CE3),
two 2p electron promotions in AST5 (CE4), one 1s electron
promotions in AST6 (CE5) and three 2p electron promotions
in AST7 (CE6). By this point the computational time in op-
timizing all orbitals of the potential has become exceedingly

long, going from a few minutes in the AST1 calculation to
several hours in the AST7 calculation. For this reason, and
with the purpose to see the effects of increasing CI we did not
optimize again the orbitals for these calculation, but instead
chose the same scaling parameters as in AST3. Despite the
large increase in CI in these computations we find no signifi-
cant change in either the calculated energies, see Table 2. The
calculated core energies also remain constant at −578.38 Ry
for AST4, AST5, and AST6 and −578.39 Ry for AST7. The
computed f -values are also unaltered by CI, except for those
of the 1814 Å multiplet which seem to converge asymptot-
ically. Nonetheless, for this and most of the other transi-
tions the difference between length and velocity gauges of
the f -values is uncomfortably large. It is clear now that in-
creasing the amount of CI in the calculations beyond that
of the AST7 calculation will not improve the quality of the
results. Instead, we need to turn our attention towards the
optimization of the orbitals.

– AST8: for this calculation we decided to return to the sim-
plest expansion CE1, but try a different optimization tech-
nique. Because the f -values for the 1814 Å multiplet is so
sensitive to cancellation in the mixing of the 3s3p2 2D and
3s23d 2D states it is crucial to reproduce the experimental
energies of the levels as accurately as possible. Thus, we

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913179&pdf_id=2
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Table 2. Comparison of level energies (Ry) for Si ii.

Level Exp. AST1 AST2 AST3 AST4 AST5 AST6 AST7 AST8 AST9
Difference from experiment(%)

3s23p 2P◦1/2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3s23p 2P◦3/2 0.002618 –18.8 –17.8 –14.8 –15.0 –15.0 –15.0 –15.1 0.19 –0.12
3s3p2 4P1/2 0.390244 –7.86 –17.4 –11.3 –11.3 –10.9 –10.9 –10.6 –7.06 –7.62
3s3p2 4P3/2 0.391231 –7.90 –17.4 –11.4 –11.3 –10.9 –10.9 –10.6 –7.01 –7.57
3s3p2 4P5/2 0.392828 –7.96 –17.4 –11.4 –11.3 –10.9 –10.9 –10.6 –6.92 –7.48
3s3p2 2D3/2 0.504016 14.5 2.42 1.03 1.00 1.18 1.18 1.42 –0.01 –0.25
3s3p2 2D5/2 0.504160 14.4 2.40 1.01 0.98 1.15 1.16 1.39 –0.02 –0.27
3s24s 2S1/2 0.596884 –0.53 3.31 –0.39 –0.49 –0.59 –0.54 –0.32 15.3 –4.64
3s3p2 2S1/2 0.698626 0.69 1.64 3.23 3.25 3.46 3.46 3.60 2.73 1.78
3s23d 2D3/2 0.722986 35.3 –2.37 1.19 1.13 1.14 1.17 1.29 11.1 10.3
3s23d 2D5/2 0.723136 35.2 –2.39 1.17 1.12 1.12 1.16 1.28 11.1 10.3
3s24p 2P◦1/2 0.739870 22.0 3.40 6.77 6.83 7.03 7.07 6.81 13.9 13.7
3s24p 2P◦3/2 0.740416 22.3 3.41 6.82 6.87 7.08 7.12 6.86 14.0 13.9
3s3p2 2P1/2 0.763660 0.75 5.74 5.52 5.49 5.68 5.71 5.74 4.20 5.01
3s3p2 2P1/2 0.765503 0.69 5.68 5.47 5.44 5.64 5.66 5.70 4.21 5.04

modified the autostructure code use an optimization
functional of the form

F =
∑

i

wi(Eobs
i − Etheo

i )2+

(Eobs
i )2

+ ε, (15)

where the sum goes over fine structure energy levels and wi

is a user defined weight on different levels. For our calcula-
tion we ran this sum for the lowest 15 levels of the Si ii sys-
tem and we weighted the 3s23p 2P◦3/2 and 3s3p2 2DJ levels
5 times as much as the rest. This kind of optimization pro-
vides much better energies for all levels and nearly exact en-
ergies for the 3s23p 2P◦3/2 and 3s3p2 2DJ levels (within 0.2%
of experiment). This optimization also provides a lower
core energy than from previous calculations (−578.42 Ry).
Nevertheless, this optimization does not reduce the differ-
ence between length and velocity forms of the f -values.
An alternative optimization functional that is already avail-
able in autostructure is based on the differences between
length and velocity f -values. This, however, does not work
because it leaves the level energies to change way off from
experiment.
Then, we define a combined functional of the form

F =
∑

i

wi(Eobs
i − Etheo

i )2 + ε

(Eobs
i )2

+
∑

i

∑
j

wi(g f l
i j − g f v

i j)
2

(g f l
i j + g f v

i j)
2
, (16)

where g f l
i j and g f v

i j are the length and velocity forms of the
g f -value for the transition i → j. An optimization of this
kind heavily weighted on the g f -values for the 1260 Å mul-
tiplet yields length and velocity values in very close agree-
ment with each other. These results also agree very well
with the experimental determination of Bergeson & Lawler
(1993). Unfortunately, the obtained g f -values for transitions
involving higher terms seem to deteriorate. This is to be ex-
pected, as the small expansion used here misses important
core-valence and core-core correlations.

– AST9: for this last calculation we use the largest expan-
sion CE6 and optimize the orbitals as in AST8. For a model
expansion of this size numerical optimization becomes

challenging, and the code took 4 days to do so. The resulting
energies are slightly better than in the previous calculation,
and the core energy is predicted at −572.41 Ry. It is found
that the f -values in the length gauge for the 1814 Å multiplet
remain in good agreement with the experiment of Bergeson
& Lawler (1993) although the velocity f -value departed
somewhat. Interestingly, for these transitions the present ve-
locity f -value is lower than the length f -value, contrary to
what was seen in previous calculations. The present differ-
ence between the two forms of the f -value probably owes
to the need of finer optimization of the orbitals, which be-
came computationally prohibitive for the large CI expansion
used here. Another interesting set of f -values are those for
the 1260 Å multiplet, which in the present calculation re-
sult somewhat higher and with greater difference between
length and velocity than from previous calculations. The
present result seems to favor the experimental determina-
tion of Schectman et al. (1988), while the results of previous
calculations seemed very stable and in good agreement with
Froese Fischer et al. (2006) and Tayal (2007).

At this point is worth pointing out the detailed study of Dufton
et al. (1992) on the LS f -value for the 1814 Å transition.
They found that in dealing with the cancelation effects from
contributions from the 3s3p2 2D and 3s23d 2D states one
must pay attention to the calculated energy difference between
these states. In this sense we notice that our prefer calculation
AST8 and AST9 yield energy separations for the 3s3p2 2D and
3s23d 2D states that differ by∼10−11% from experiment, in con-
trast with calculations AST3 through AST7 that reproduce these
energy separation significantly better. However, getting exact en-
ergies is neither sufficient nor guarantee of resulting accurate
g f -vaues. Inspection of Table 1 of Dufton et al. (1992) shows
that essentially the same g f -value can obtained when the en-
ergy difference with respect to experiment was less than 2% and
nearly 11%. By contrast, calculations that predicted energies dif-
fering from experiment by 5 and 7% got g f -values that were off
by roughly a factor of 3. Moreover, we are mostly concerned
with the fine structure g f -values and for that we also need ac-
curate energies for the J resolved levels of the 3s23p 2P and
3s3p2 2D terms and these are best reproduced by the AST8 and
AST9 calculations, as opposed to the AST7 calculation that un-
derestimates the energy of the 3s23p 2P3/2 level by 15%.
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Fig. 3. Evolution of the g f -values for intercombination transition in Si ii
from our different calculations AST1, ..., AST9 and comparison with
experimental values of Calamai et al. (1993). The square points depict
our results in the length gauge (blue) and velocity gauge (red). The ex-
perimental vales are given by the horizontal solid line, with quoted er-
rors given by dashed lines.

On the other hand, it is also known that in computing
g f -values one may not rely only on the agreement between
length and velocity values, because such an criterium can be
misleading if the model potential is oversimplified. Nonetheless,
we believe that the agreement between length and velocity re-
sults in our calculations AST8 and, particularly AST9 is very
significant. AST9 uses the largest CI expansion that we could
handle, which the inner core orbitals to account for polariza-
tion. In addition, this calculation uses the c-TFDA potential to
account for additional electron-electron correlation. Thus AST9
employs the most complex and complete potential that we can
build at this time, then the good agreement between length and
velocity seems meaningful.

Now we look at the results for the intercombination transi-
tions 3s23p 2P◦j−3s3p2 4P j′ . These lines, seen in emission in the

2328−2350 Å spectral range, are very useful density diagnostics
in a variety of astronomical sources. Though, computation of
accurate transition rates, A-values, for these lines is difficult be-
cause the transitions are induced by mixing between the 4P and
even parity doublet states. Hence, the calculated A-values for
the intercombination transitions depend critically on the qual-
ity of the representation of those even parity doublet states.
Figure 3 shows the evolution of the calculated g f -values in
length and velocity forms from our calculations together with the
results of other authors and the experimental determinations of
Calamai et al. (1993). Here we plot our results in the length and

velocity gauges, although none of previous authors present simi-
lar comparisons. It is clear, though, that there are considerable
discrepancies between the two gauges, being the length form
of the g f -values typically in better agreement with experiment.
Other authors, like Tayal (2007) do not even quote their results
in the velocity gauge. Indeed, the velocity form of the g f -value
is typically less stable numerically, since it depends on the first
derivative of the radial wavefunction. Thus, we disregard the ve-
locity g f -values for subsequent analysis. The present g f -values
from autostructure agree within 0.2 dex with experimen-
tal determinations of Calamai et al. (1993), and the agreement
between MCDF results and experiment is even better, within
0.1 dex. On the other hand, the HFR results seem as accurate
as MCDF for some transitions, but significantly discrepant for
others. The results of Tayal (2007) and Froese Fischer et al.
(2006), using a multiconfiguration Hartree-Fock, are comparable
in quality to our HFR results. The results of Dufton & Kingston
(1991), based on the multiconfiguration Hartree-Fock method,
and Nussbaumer (1977), from the use of the TFDA potential,
seem to be of inferior quality.

It seems clear that no one calculation among those performed
here and those reported by other authors can provide ultimate
accuracy g f -values for all transitions simultaneously. Like with
the different calculations, there is significant scatter among the
results of various experimental determinations. Thus, in order to
provide the most reliable set of g f -values possible we take the
statistical average among all theoretical results, i.e. our present
results from AST8 and AST9 and those of other authors. In
computing the average we discard values that depart by more
than 3σ from the average, where σ is the statistical disper-
sion of the data. Both, length and velocity g f -values, are taken
with equal weights in the average. In the case of the recombi-
nation transitions and the 1814 Å multiplet we also include in
the averages the experimental data from Calamai et al. (1993)
and Bergeson & Lawler (1993) respectively with twice as much
weight as the theoretical values. It is noted that our calculation
AST8 that uses the smaller configuration expansion is very well
optimized on the lowest energy terms, for instance the 3s23p 2P◦
and 3s3p2 2D terms, but it deteriorates rapidly for higher exci-
tation terms. Figure 2 depicts our recommended g f -values for
every transition together with the statistical dispersion, which
is probably representative of the true uncertainty. In Table 3 we
show our results for transitions among the lowest 15 levels of the
ion from the AST9, AST9, HFR, and MCDF calculations. The
autostructure results are given in length and velocity gauges
and the MCDF results are given in the corresponding Coulomb
and Babushkin gauges. In the last column of the table are our
recommended values and estimated uncertainties.

3. Collision strengths

The collision strengths for electron impact excitation are com-
puted with the ICFT Breit-Pauli R-matrix package (bprm) based
on the close-coupling approximation of Burke & Seaton (1971)
whereby the wavefunctions for states of an N-electron target and
a colliding electron with total angular momentum and parity Jπ
are expanded in terms of the target eigenfunctions

ΨJπ = A
∑

i

χi
Fi(r)

r
+
∑

j

c jΦ j. (17)

The functions χi are vector coupled products of the target eigen-
functions and the angular components of the incident-electron
functions, Fi(r) are the radial part of the projectile electron

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913179&pdf_id=3
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Table 3. log(g f ) values for transitions among the 15 lowest levels in Si ii.

Lower level Upper level λ (Å) AST8 AST9 HFR MCDF Recom. Error
log(g f )l log(g f )v log(g f )l log(g f )v log(g f ) log(g f )C log(g f )B

3s23p 2P◦1/2 3s3p2 4P1/2 2334.41 –5.00 –4.89 –4.89 –4.55 –4.98 –5.09 –5.10 –5.05 0.14
3s23p 2P◦3/2 3s3p2 4P1/2 2350.17 –5.08 –4.66 –4.94 –4.86 –5.13 –5.11 –5.13 –5.18 0.15
3s23p 2P◦1/2 3s3p2 4P3/2 2328.52 –7.72 –7.28 –7.49 –8.06 –7.19 –6.53 –6.62 –7.39 0.24
3s23p 2P◦3/2 3s3p2 4P3/2 2344.20 –5.32 –4.42 –5.27 –4.59 –5.15 –5.43 –5.44 –5.39 0.16

3s3p2 4P5/2 2334.20 –5.02 –4.20 –4.94 –4.40 –4.80 –4.81 –4.85 –4.99 0.20
3s23p 2P◦1/2 3s3p2 2D3/2 1808.00 –2.39 –2.33 –2.47 –2.90 –2.49 –1.99 –2.03 –2.31 0.16
3s23p 2P◦3/2 3s3p2 2D3/2 1817.45 –3.34 –3.34 –3.45 –4.28 –3.45 –2.82 –2.87 –3.14 0.26

3s3p2 2D5/2 1816.92 –2.20 –2.10 –2.30 –2.72 –2.28 –2.17 0.22
3s23p 2P◦1/2 3s24s 2S1/2 1526.72 –0.24 –0.38 –0.46 –0.51 –0.60 –0.54 0.10
3s23p 2P◦3/2 3s24s 2S1/2 1533.45 +0.05 –0.11 –0.46 –0.51 –0.30 –0.27 0.09
3s23p 2P◦1/2 3s3p2 2S1/2 1304.37 –2.62 –2.07 –0.71 –1.01 –0.64 –0.74 0.09
3s23p 2P◦3/2 3s3p2 2S1/2 1309.27 –3.12 –2.83 –0.47 –0.79 –0.41 –0.49 0.09
3s23p 2P◦1/2 3s23d 2D3/2 1260.42 +0.39 +0.32 +0.49 +0.40 +0.38 +0.38 0.05
3s23p 2P◦3/2 3s23d 2D3/2 1265.02 –0.28 –0.39 –0.58 –0.68 –0.36 –0.40 0.10

3s23d 2D5/2 1264.73 +0.61 +0.70 +0.61 +0.57 +0.63 +0.62 0.04
3s23p 2P◦1/2 3s3p2 2P1/2 1193.28 +0.041 –0.068 +0.060 +0.082 +0.069 +0.037 0.047
3s23p 2P◦3/2 3s3p2 2P1/2 1197.39 –0.24 –0.22 –0.34 –0.31 –0.21 –0.25 0.04
3s23p 2P◦1/2 3s3p2 2P3/2 1190.42 –0.04 –0.55 –0.68 –0.33 –0.25 –0.29 0.10
3s23p 2P◦3/2 3s3p2 2P3/2 1194.50 +0.39 +0.52 +0.39 +0.38 +0.48 +0.28 0.22
3s3p2 4P1/2 3s24p 2P◦1/2 2605.62 –6.24 –6.45 –7.39 –6.90 –9.34 –6.56 0.34
3s3p2 4P1/2 3s24p 2P◦3/2 2601.56 –6.49 –7.33 –6.54 –6.03 –7.99 –6.50 0.45
3s3p2 4P3/2 3s24p 2P◦1/2 2613.00 –5.75 –6.22 –5.95 –6.10 –5.64 –5.88 0.21
3s3p2 4P3/2 3s24p 2P◦3/2 2608.91 –7.97 –6.61 –7.80 –7.17 –6.63 –6.94 0.40
3s3p2 4P5/2 3s24p 2P◦3/2 2620.90 –4.87 –5.56 –5.00 –5.33 –4.63 –4.97 0.30
3s3p2 2D3/2 3s24p 2P◦1/2 3862.60 –0.73 –0.89 –0.50 –0.90 –0.67 –0.86 0.28
3s3p2 2D3/2 3s24p 2P◦3/2 3853.66 –1.43 –1.58 –1.20 –1.60 –1.37 –1.55 0.28
3s3p2 2D5/2 3s24p 2P◦3/2 3856.02 –0.48 –0.64 –0.25 –0.64 –0.42 –0.62 0.32
3s24s 2S1/2 3s24p 2P◦1/2 6371.36 –0.37 –0.99 –0.11 –0.21 –0.12 –0.32 0.20
3s24s 2S1/2 3s24p 2P◦3/2 6347.10 –0.55 –0.04 –0.20 –0.09 +0.19 –0.01 0.19

and A is an antisymmetrization operator. The functions Φ j are
bound-type functions of the total system constructed with tar-
get orbitals; they are introduced to compensate for orthogo-
nality conditions imposed on the Fi(r) and to improve short-
range correlations. The Kohn variational principle gives rise to
a set of coupled integro-differential equations that are solved by
R-matrix techniques (Burke & Seaton 1971; Berrington et al.
1974, 1978, 1987) within a box of radius, say, r ≤ a. In the
asymptotic region (r > a) exchange between the outer electron
and the target ion can be neglected, and the wavefunctions can
be approximated by Coulomb solutions.

One-body Breit-Pauli relativistic corrections have been in-
troduced in the R-matrix suite by Scott & Burke (1980); Scott &
Taylor (1982). Inter-channel coupling is equivalent to CI in the
atomic structure context.

Because of the large number of configurations and close cou-
pling states in the representation of the target ion the scattering
calculation had to be done in LS-coupling. Then, fine structure
collision strengths were obtained by means of the intermediate
coupling frame transformation (ICFT) method of Griffin et al.
(1998).

Since we have produced a large number of target expansion
to study the quality and the wavefunction it is interesting to
see the effects of these various representations on the collision
strengths. This comparison may be used to asses the accuracy
of the collision strengths. Thus, we performed three different
scattering calculations using target orbitals from models AST1,
AST8, and AST9. For the first two calculations we included only

Table 4. Comparison of Maxwellian averaged collision strengths in
LS-coupling for excitation from the ground term 3s23p 2P◦.

Upper term T (K) Model 9 Difference (%)
model 1 model 8

3s3p2 4P 5000 4.44E+0 1.2 5.7
10 000 4.36E+0 1.4 5.9
20 000 4.43E+0 –2.4 –5.2

3s3p2 2D 5000 1.19E+1 –8.2 –39.8
10 000 1.18E+1 –3.1 –36.4
20 000 1.10E+1 3.9 –34.2

3s24s 2S 5000 2.17E+0 11.0 25.3
10 000 2.18E+0 16.3 27.0
20 000 2.21E+0 15.2 33.1

3s3p2 2S 5000 3.32E+0 –38.1 –52.4
10 000 3.08E+0 –32.7 –54.7
20 000 2.95E+0 –24.4 –59.2

the lowest 12 LS terms in the closed coupling expansion, while
for the calculation with the AST9 target, the most accurate and
extensive, we included the lowest 43 LS terms. All calculations
explicitly include partial waves from states with L ≤ 16 and mul-
tiplicity 1, 3, 5, and 7. The final collision strengths are produced
with an energy resolution of 6 × 10−5 Ry.

Figure 4 compares the LS-coupling collision strengths ob-
tained from the target expansions AST1, AST8, and AST9 for
excitation from the ground term 3s23p 2P◦ to the first four ex-
cited terms 3s3p2 4P, 3s3p2 2D, 3s24s 2S, and 3s3p2 2S.
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Fig. 4. Comparison of collision strengths in LS coupling for excitations
from the ground term to the first five excite terms in Si ii computed with
approximations AST1 (left panels), AST8 (middle panels), and AST9
(right panels).

The results, in terms of Maxwellian averaged effective colli-
sion strengths, of AST1, AST8, and AST9 are also compared in
Table 4 for excitations from the ground term, 3s23p 2P◦, to the
first five excited terms of Si ii. Here, the third column presents
the effective collision strengths from our best model AST9 and
columns fourth and five present the percentage difference from
these as obtained from models AST1 and AST8 respectively.
These comparisons are done for temperatures between 5000 K
and 20 000 K. Excitation rates for higher temperatures are of
little practical interest because under these conditions the ionic
fraction in Si ii is too small. The are two general characteristics
of collision strengths that could lead to variations in their thermal
averages: (i) the background and resonances in the near thresh-
old region, which determine the low temperature (ΔE/kT ≤ 1)
Maxwellian averaged collision strengths and depend on the cou-
pling of the target ion with the continuum; and (ii) the slope of
the continuum towards high energies, which in dipole allowed
transitions depend linearly on the oscillator strength and con-
sequently on the quality of the target representation. It is inter-
esting to see that the results from AST1 and AST9 agree rather
well in terms of the qualitative shape of the collision strengths
and the quantitative Maxwellian averaged rates, within ∼10%,
except for the 3s23p 2P◦−3s3p2 2S transition. This is in contrast
to the large differences in g f -values for essentially all transitions
among levels of the N-electron Si ii target. The good agreement
in collision strengths is because these are dominated by bound-
continuum couplings of the (N+1)-electron system, which seems
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Fig. 5. Collision strengths in JJ-coupling for transitions 3s23p 2P◦1/2–
3s23p 2P◦3/2 (top panel), 3s23p 2P◦3/2−3s3p2 4P3/2 (middle panel), and
3s23p 2P◦3/2−3s3p2 2D5/2 (bottom panel).

to be well represented by the large amount CI in the close cou-
pling expansion.

On the other hand, the target expansion AST8 does yield
a different lay out of resonances on the collision strengths. In
addition, AST8 yields steeper rises in the background collision
strengths for excitation to the 3s24s 2S level and higher lev-
els. This translates into effective collision strengths from AST8
that are systematically lower than those from AST9 by as much
as ∼50%.

It is expected that our results from the AST9 expansion
should be the most accurate due to the good quality of the tar-
get representation and the large amount of CI included for the
(N + 1)-electron system. Nonetheless, the comparison with re-
sults of various target representation allow us to asses the uncer-
tainties in the collision strengths to ∼10%.

Figure 5 shows the collision strengths for a sample of forbid-
den, intercombination, and dipole transitions. We chose the same
transitions as in Tayal (2008) for direct comparison with that
work. Although the collision strengths from both calculations
are roughly similar, there are quantitative differences between
the two sets in terms of resonance structures and absolute level of
the background. It is apparent that the present collision strengths
should yield Maxwellian averages somewhat lower than those
of Tayal.

In Table 5 we compare the present fine structure Maxwellian
averaged collision strengths with those of Tayal (2008) and
Dufton & Kingston (1991). For most transitions our results
are ∼30% lower than those of Tayal, while the results of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913179&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913179&pdf_id=5
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Table 5. Comparison of Maxwellian averaged collision strengths in
JJ-coupling from present calculation (Present), Tayal (2008; Tayal),
and Dufton & Kingston (1991; DK).

Upper level T (K) Present Tayal DK

3s23p 2P◦3/2 5000 4.55 6.19 5.60
10 000 4.45 6.09 5.70
20 000 4.42 5.97 5.77

3s3p2 4P1/2 5000 0.401 0.512 0.550
10 000 0.398 0.515 0.516
20 000 0.392 0.502 0.466

3s3p2 4P3/2 5000 0.612 0.812 0.832
10 000 0.609 0.789 0.780
20 000 0.602 0.769 0.706

3s3p2 4P5/2 5000 0.441 0.615 0.571
10 000 0.458 0.595 0.534
20 000 0.477 0.589 0.488

3s3p2 2D1/2 5000 1.82 2.77 2.76
10 000 1.82 2.74 2.74
20 000 1.75 2.50 2.58

3s3p2 2D3/2 5000 2.05 2.94 2.45
10 000 2.14 2.98 2.44
20 000 2.14 2.80 2.30

3s24s 2S1/2 5000 0.910 1.02 1.24
10 000 0.865 1.06 1.20
20 000 0.857 0.979 1.04

3s3p2 2S1/2 5000 0.887 0.102 0.716
10 000 0.899 0.988 0.840
20 000 0.916 0.988 0.902

Dufton & Kingston lie inbetween those two. That our results are
somewhat lower than those of Dufton & Kingston can be under-
stood from the much larger close coupling expansion used in the
present work. As more scattering channels are open in the cal-
culation, the flow of electrons is redistributed and the collision
strength among low lying levels tends to converge to lower val-
ues. The source of the differences found with respect to Tayal are
less clear, and seems to be due to differences in computational
approach used, i.e. between the orthogonal and non-orthogonal
R-matrix methods.

4. Conclusions

We have carried out extensive calculations of transitions rates
and collision strengths for electron impact excitation for the low-
est 12 levels of the astrophysically important Si ii ion.

In the calculation of radiative data, we paid special atten-
tion to the weak dipole allowed and intercombination transi-
tions, which are of particular interest for plasma diagnostics.
Determination of accurate data for these transitions is particu-
larly challenging, therefore we studied the effects of valence-
valence, valence-core, and core-core interactions with three dif-
ferent methods, i.e. MCDF, HFR, and the central potential
method implemented in autostructure. With MCDF we
could only include valence-valence correlations, as opening of
the n = 2 core resulted in a large number of states that could
not be managed with the computer code grasp. For this rea-
son, we were able to obtain accurate transition rates for the
3s23p 2P◦−3s3p2 4P intercombination transitions only. Both
HFR and autostructure allowed us to investigate valence-
core and core-core interaction by building very large configura-
tion expansions. The accuracy of autostructure calculations
were significantly improved by the use of the c-TFDA poten-
tial of Bautista (2008) and a new technique for optimizing the

variational parameters of this potential. This optimization tech-
nique takes into account the differences between length and ve-
locity gauges of the g f -values, in addition to the accuracy of
predicted energy levels. Our most accurate g f -values were then
compared with previous theoretical and experimental determina-
tions. From these comparisons we derive a recommended set of
g f -values and estimate their uncertainties.

We then proceed to compute electron impact excitation col-
lision strengths with the R-matrix method. We do so by using
various of the targets representations made from the previous
calculations and compare the results. This allows us to iden-
tify the physical effects that affect the accuracy of the com-
puted collision strengths. We also compare our results with
those of previous calculations. The present results agree reason-
ably well with those of Dufton & Kingston (1991), who also
used an orthogonal R-matrix method but with a much smaller
close coupling expansion. On the other hand, the present results
for Maxwellian averaged collision strengths are systematically
lower than those of the recent calculation of Tayal (2008) using
a non-orthogonal R-matrix method. The reasons for these dif-
ferences, that typically amount to ∼30%, are unclear. We argue
that the source of this difference could be in the non-orthogonal
R-matrix approach.

Tables 6 and 7 containing the present g f -values, A-values,
and effective collision strengths are available in electronic form.
The data and atomic model are also to become available through
the TIPTOP1 database and the XSTAR database Bautista &
Kallman (2001).
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