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DRAW RESONANCE REVISITED∗

MICHAEL RENARDY†

Abstract. We consider the problem of isothermal fiber spinning in a Newtonian fluid with no
inertia. In particular, we focus on the effect of the downstream boundary condition. For prescribed
velocity, it is well known that an instability known as draw resonance occurs at draw ratios in excess
of about 20.2. We shall revisit this problem. Using the closed form solution of the differential
equation, we shall show that an infinite family of eigenvalues exists and discuss its asymptotics. We
also discuss other boundary conditions. If the force in the filament is prescribed, no eigenvalues exist,
and the problem is stable at all draw ratios. If the area of the cross section is prescribed downstream,
on the other hand, the problem is unstable at any draw ratio. Finally, we discuss the stability when
the drawing speed is controlled in response to changes in cross section or force.
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1. Formulation of the problem. Fiber spinning is a manufacturing process
used in making textile or glass fibers. A highly viscous fluid is extruded vertically
from a nozzle. It is then cooled by the ambient air and solidifies. The solidified fiber
is then wound on a spool at the end of the spinline.

Many physical effects are potentially significant in the study of this problem:
viscosity, inertia, gravity, surface tension, cooling, elasticity, and air drag may all be
relevant. In this paper, we focus on the simplest model and study the influence of
varying boundary conditions. We assume that the force in the fiber is purely due to
viscous effects, and we ignore temperature dependence. We use a one-dimensional
model based on slender geometry and cross-sectional averaging. Let u(x, t) denote
the axial speed and A(x, t) the area of the cross section. The spinneret is located at
x = 0 and the spool is at x = L. The conservation of mass implies that

At + (uA)x = 0.(1)

If only viscous forces contribute, the tension in the fiber is given by 3ηAux, where η
is the viscosity. The requirement of constant tension in the fiber leads to

(Aux)x = 0.(2)

Boundary conditions in industrial processes are notoriously ill defined. It is cus-
tomary to assume that A and u are given at the spinneret: A(0, t) = A0, u(0, t) = u0.
This of course, is an idealization; in reality there is a transition to an upstream flow,
which cannot be described by the one-dimensional model. At the spool, it is sensible
to prescribe either the speed or the force with which the fiber is wound. One might
also consider control strategies where the flow is monitored and the speed of the spool
adjusted to achieve a given objective. Since the goal of the manufacturing process is
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1262 MICHAEL RENARDY

a fiber of uniform cross section, a control strategy might aim to keep the cross section
constant. We shall consider what happens in the case of perfect success of such a
control, i.e., when constant area is imposed as a boundary condition. We shall thus
focus on the following three boundary conditions:

1. Prescribed speed: u(L, t) = u1.
2. Prescribed force: A(L, t)ux(L, t) = F , where F denotes the force divided by

the elongational viscosity 3η.
3. Prescribed cross section: A(L, t) = A1.

It is easy to see that the problem admits the steady solution

us(x) = u0e
kx, As(x) = A0e

−kx,(3)

where, respectively,

ekL = u1/u0, k = F/(A0u0), ekL = A0/A1(4)

for the three choices of boundary conditions. The dimensionless quantity q = ekL is
called the draw ratio.

2. Linear stability. The stability of the steady solution was first analyzed by
Kase, Matsuo, and Yoshimoto [5] and Pearson and Matovich [6]. For subsequent
reviews and textbook chapters, see also [2, 7, 9, 10]. We note that much of the litera-
ture on draw resonance is concerned with the effect of additional physical mechanism,
which are not included in our analysis. Inertia, elasticity, and cooling generally have
a stabilizing effect, while surface tension and shear thinning are destabilizing. This
paper, on the other hand, will focus purely on the case of Stokes flow and investigate
the effect of varying the downstream boundary condition. In the case of prescribed
speed, an instability known as draw resonance is found for draw ratios in excess of
about 20.2, while no such instability is found for prescribed force. In [8], the case of
a linear combination of speed and force is also investigated; as expected, the stability
threshold increases from 20.2 to infinity as the relevant coefficient is varied. The case
of prescribed cross section does not seem to have been analyzed in the literature. We
shall see that this boundary condition leads to instability at all draw ratios.

We linearize at the steady solution and consider exponentially varying perturba-
tions:

u(x, t) = us(x) + ũ(x)eλt, A(x, t) = As(x) + ã(x)eλt.(5)

The linearized equations are

λã + (usã + Asũ)x = 0, (Asũx + ã(us)x)x = 0.(6)

It is advantageous to make the transformation z = ekx. The steady solution
then takes the form us(z) = u0z, As(z) = A0/z. The linearized equations (6) are
transformed to

λã + kz(zu0ã + A0ũ/z)z = 0, (A0ũz + zu0ã)z = 0.(7)

We can rewrite these equations in the form

λ

ku0

ã

A0
+ z

ã

A0
+ z2 ãz

A0
− ũ

u0z
+

ũz

u0
= 0,

ũz

u0
+ z

ã

A0
= C1.(8)

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DRAW RESONANCE REVISITED 1263

We simplify by setting λ/(ku0) = μ, ã/A0 = a, ũ/u0 = u. This is equivalent to
nondimensionalizing the equations by scaling the velocity and area with their steady
state values at the spinneret, length along the filament with 1/k, and time with
1/(ku0). The resulting dimensionless equations are

μa + za + z2az −
u

z
+ uz = 0,

uz + za = C1.(9)

We can now solve the second equation for a:

a =
C1 − uz

z
.(10)

After inserting this into the first equation, we obtain

−u + (−μ + z)uz + μC1 − z2uzz = 0.(11)

Clearly, u = μC1 is a particular solution, and u = z−μ is a particular solution of the
homogeneous equation. We can then obtain the full solution using the reduction of
order method:

u(z) = μC1 + (z − μ)C2 + C3(−zeμ/z + (μ− z)Ei(μ/z));(12)

see also [8]. Here Ei is the exponential integral defined for z > 0 by

Ei(x) =

∫ z

−∞

et

t
dt,(13)

where the integral is understood in the principal value sense (see Ch. 5 of [1]).
We have the boundary conditions u(1) = a(1) = 0 at the spinneret and one of

the following three at the take-up point:
1. Fixed speed: u(q) = 0.
2. Fixed force: uz(q) + qa(q) = 0.
3. Fixed cross section: a(q) = 0.

The requirement of a nontrivial solution leads to the following characteristic equa-
tions. For fixed speed,

(eμ − eμ/q)q + (q − μ)(Ei(μ) − Ei(μ/q)) = 0.(14)

For fixed force,

eμ = 0.(15)

For fixed cross section,

Ei(μ) − Ei(μ/q) = 0.(16)

3. Remarks on well-posedness. For the case of fixed force, no eigenvalues
exist, and indeed it can be shown for this case that any initial disturbance will decay
to zero in finite time. To see this, we note that the linearized equations (9) (without
the assumption of exponential time dependence) are

at + z2az −
u

z
= 0,

uz + za = 0.(17)
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1264 MICHAEL RENARDY

We can integrate the second of these equations to find

u = −
∫ z

1

ya dy.(18)

For any given initial data a(z, 0) = a0(z), we can now solve the equation using the
iterative procedure

u1 = 0,

ant + z2anz − un

z
= 0, an(1, t) = 0, an(z, 0) = a0(z),

un+1 = −
∫ x

0

yan dy.(19)

It follows by induction that

a(z, t) = 0(20)

for 1 < z < Z(t), where

Z ′(t) = Z(t)2, Z(0) = 1.(21)

The solution will thus become identically zero as soon as Z(t) reaches the value q.
For the case of prescribed speed, a rigorous proof of well-posedness and spectrally

determined growth can be given along similar lines as [4]. The case of prescribed
cross section is somewhat different and will be discussed now. In this case, the linear
problem, again without the assumption of exponential time dependence, is

at + za + z2az −
u

z
+ uz = 0,

uz + za = φ(t),(22)

where φ(t) is a function to be determined after the boundary conditions are imposed.
We can integrate the second equation to find

u(z, t) = −
∫ z

1

ya(y, t) dy + (z − 1)φ(t)(23)

and insert this result into the first equation. This yields

at + z2az +
1

z

∫ z

1

ya dy +
φ(t)

z
= 0.(24)

We next set a = b + γ/z, where γ is independent of z, and b satisfies

∫ q

1

b(z, t)χ(z) dz,(25)

with χ to be determined. We shall denote the projections of a onto b and γ/z by P
and Q.

We want χ to be such that we also have

∫ q

1

z2bzχ(z) dz = 0.(26)
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DRAW RESONANCE REVISITED 1265

We note that the boundary condition a(1, t) = a(q, t) = 0 leads to b(1, t) = qb(q, t).
We now integrate by parts to find

∫ q

1

z2bzχdz = −
∫ q

1

b(z2χ)′ dz + q2b(q, t)χ(q) − b(1, t)χ(1).(27)

We achieve our objective if

d

dz
(z2χ) = Kχ, χ(1) = qχ(q)(28)

for some constant K. This leads to

χ(z) =
1

z2
e−K/z, e−K =

1

q
e−K/q.(29)

With χ thus determined, (24) can be decomposed as follows:

γt − γ + zQ

(
1

z

∫ z

1

yb dy

)
+ φ(t) = 0,

bt + z2bz + P

(
1

z

∫ z

1

yb dy

)
= 0.(30)

The solution procedure is now obvious. We solve the second equation for b with the
boundary condition b(1, t) = qb(q, t), and after b is determined, the first equation, and
the condition γ(t) = −b(1, t), determine φ(t). Well-posedness and spectral growth are
obvious from this reformulation of the equations. We note that the boundary condition
for b is a two-point condition rather than an upstream condition. This is reflected in
the nature of the eigenspectrum below; the limit of the real part of large eigenvalues
will be a finite number rather than −∞.

We note that a general discussion of boundary conditions for the hyperbolic sys-
tems arising in viscoelastic flows is given in [3]; in the context of that discussion the
Newtonian case is degenerate, even if inertia is included.

4. Asymptotics of large eigenvalues. In this section, we focus on the asymp-
totic behavior of large eigenvalues. It is instructive to look at this case for a number
of reasons. As we shall see, some instabilities can be predicted from the analysis of
this limit. The asymptotic formula also gives insights into the qualitative nature of
the eigenspectrum; it shows that there are infinitely many eigenvalues and that they
line up along a curve and shows what the approximate spacing is.

We begin with the simpler case of fixed cross section.
We use the asymptotic expansion of the exponential integral for large argument

[1]:

Ei(μ) = πi sgn(Imμ) +
eμ

μ

(
1 + O

(
1

μ

))
.(31)

Using this, we can approximate the characteristic equation by

eμ = qeμ/q,(32)

which leads to

μ =
q

q − 1
(2nπi + ln q).(33)
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1266 MICHAEL RENARDY

Since ln q/(q − 1) is positive, we find an infinite family of unstable eigenvalues for
any value of q. For q = 2 the following table compares the eigenvalues found from
the asymptotic formula (33) with exact roots of the characteristic equation found by
Newton’s method:

n Result from (33) Exact eigenvalue
1 1.38629 + 12.5664i 1.35405 + 12.42i
2 1.38629 + 25.1327i 1.37705 + 25.0552i
3 1.38629 + 37.6991i 1.38204 + 37.6467i
4 1.38629 + 50.2655i 1.38387 + 50.226i
5 1.38629 + 62.8319i 1.38473 + 62.8002i

For the case of fixed speed, we need to carry the approximation of the exponential
integral a little further:

Ei(μ) = πi sgn(Imμ) +
eμ

μ

(
1 +

1

μ
+

2

μ2
+ O

(
1

μ3

))
.(34)

Using this, we obtain the approximate characteristic equation

eμ−μ/q = − q3

(q − 1)μ2
.(35)

For large |μ|, we obtain the following asymptotic formula for the eigenvalues

μn =
q

q − 1

(
2nπi + ln

(
q3

q − 1

)
− 2 ln

(
2nπ

q

q − 1

))
.(36)

Here n is any integer. For n → ∞, the real parts of these eigenvalues tend to −∞
logarithmically, i.e., they are stable.

Since the asymptotic approximation depends on |μ/q| being large in addition to
|μ|, the first few eigenvalues are predicted poorly if q is large. The following table
illustrates this behavior for q = 20.218, the value at which onset of draw resonance
occurs:

n μn given by (36) Exact eigenvalue
1 2.40565 + 6.61013i 4.66015i
2 0.947223 + 13.2203i −0.738622 + 11.4532i
3 0.094096 + 19.8304i −1.20379 + 18.2453i
4 −0.511207 + 26.4405i −1.55854 + 25.0014i
5 −0.980716 + 33.0506i −1.85118 + 31.7307i
10 −2.43915 + 66.1013i −2.8734 + 65.1607i
20 −3.89758 + 132.203i −4.0729 + 131.605i
50 −5.82551 + 330.506i −5.86414 + 330.225i

Another limit which can be approached by asymptotics is that of large draw ratio. If
we consider the case μ → ∞, q → ∞ in (14) with the expectation that μ/q → 0, the
balance of leading order terms yields

eμ + ln q = 0,(37)

i.e.,

μn = (2n− 1)iπ + ln ln q.(38)

Since q must be really large for ln ln q to be considered “large,” this approximation is
not useful in practice. For q = 5 ∗ 108, a totally unrealistic value of course, we have

iπ + ln ln q = 2.99724 + 3.14159i, 3iπ + ln ln q = 2.99724 + 9.42478i,(39)

compared to exact eigenvalues of 2.72203+3.471i and 2.76567+9.63623i, respectively.
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DRAW RESONANCE REVISITED 1267

5. Control strategies. In this section, we consider how the onset of draw res-
onance is affected if we add a control which adjusts the drawing speed in response to
observed fluctuations. Since the goal of the manufacturing process is a uniform thread,
it seems natural to change the speed in response to fluctuations in the cross-sectional
area. This leads to a downstream boundary condition

u(q) − εa(q)(40)

to be imposed on (9). Intuitively, we would be tempted to increase the drawing speed
when the cross section becomes larger, i.e., ε > 0.

The resulting characteristic equation is

(eμ − eμ/q)q +

(
q +

ε

q
− μ

)
(Ei(μ) − Ei(μ/q)) = 0.(41)

The asymptotic behavior of the eigenvalues can be discussed by the same methods as
above. We obtain

μn ∼ q

q − 1

(
2πni + ln

(
ε

2nπq

)
− sgn(ε)

iπ

2

)
.(42)

For large n, these eigenvalues become stable.
Next, we consider the onset value for draw resonance as a function of ε. The

results are summarized in the following table:

ε Critical draw ratio
0 20.218
10 18.872
20 17.224
30 14.904

Contrary to intuition, the effect of the control is destabililizing, and the critical draw
ratio decreases. For negative ε, if we just track the eigenvalue that is responsible for
draw resonance at ε = 0, the critical draw ratio seems to increase:

ε Critical draw ratio
−20000 200.00
−10000 147.10
−5000 109.13
−1000 57.324
−500 44.843
−100 28.536
−50 25.056
−20 22.420
−10 21.3817

It would be wrong to think, however, that we can achieve stability at any draw ratio
by choosing ε large and negative. In fact, there are new instabilities at low draw ratios
when |ε| is large. We can see this by looking at the asymptotic behavior of eigenvalues
assuming that both |μ| and |ε| are large. The result is

μn ∼ q

q − 1

(
2πin + ln

(
εq

ε + 2πinq(q − 1)

))
.(43)

For q = 4, ε = −100, for instance, this formula yields μ1 = 1.54832 + 9.23897i,
while the actual eigenvalue is 1.21466 + 9.25047i. The instability resulting from this
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1268 MICHAEL RENARDY

eigenvalue persists for q < 8.01516. We thus have two separate instabilities, one
for low draw ratio and another for high draw ratio. The next table shows the first
eigenvalue for ε = −100 as a function of the draw ratio q (the higher eigenvalues are
more stable):

q First eigenvalue
2 1.33788 + 12.9402i
3 1.40897 + 10.04i
4 1.21466 + 9.25047i
6 0.579954 + 8.55471i
8 0.004134 + 8.08557i
10 −0.533251 + 7.66538i
15 −1.59346 + 5.79611i
20 −0.601555 + 4.77314i
25 −0.173004 + 4.58841i
30 0.0558642 + 4.49297i
40 0.31093 + 4.37887i

Another control strategy is to monitor the force in the thread and change the drawing
speed in response. This leads to the boundary condition

u(q) + ε(u′(q) + qa(q)) = 0.(44)

This boundary condition was also considered in [8]. The resulting characteristic equa-
tion is

(eμ − eμ/q)q + (q − μ)(Ei(μ) − Ei(μ/q)) + εeμ = 0.(45)

The behavior of large eigenvalues becomes

μn ∼ q

q − 1

(
2nπi + ln

(
q3

q + ε− 1

)
− 2 ln

(
2nπ

q

q − 1

))
.(46)

We see from this asymptotic formula that a positive ε is stabilizing, as would heuris-
tically be expected. The effect on draw resonance follows the same trend, and the
results show no surprises.

ε Critical draw ratio
−5 5.387
−2 16.786
0 20.218
5 26.561
10 31.632
20 40.137
50 60.37
100 87.468

6. Conclusions. We have investigated the simplest model of fiber spinning in a
viscous fluid, which includes only viscous forces, neglecting all other effects. In this
simple case, the linear stability problem has a closed form solution in terms of an
exponential integral, which can be exploited to gain substantial qualitative insight
into the behavior of the eigenvalues. The stability of the flow depends crucially on
the choice of downstream boundary conditions. If the speed is prescribed, then, as
is well known, the flow becomes unstable beyond a critical draw ratio. On the other
hand, prescribed force leads to no instabilities, while prescribed cross section leads to
instability at all draw ratios. In terms of strategies to control instability, adjustment
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DRAW RESONANCE REVISITED 1269

of the speed in reaction to changes in cross section has an effect opposite of what
is intuitively expected. In addition to changing the threshold for high draw ratio
instabilities, such a control also produces new instabilities at low draw ratios.
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