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SHORT WAVE STABILITY FOR INVISCID SHEAR FLOW∗

MICHAEL RENARDY†

Abstract. We consider the linear stability of inviscid shear flows. While it is well known that
discontinuous velocity profiles lead to short wave instabilities and ill-posedness, known examples
of instability for smooth profiles have a short wave cutoff; i.e., there is a critical wave number
beyond which no unstable eigenvalues exist. This paper proves a result to this effect under suitable
assumptions on the base flow profile.
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1. Introduction. The linear stability of inviscid shear flows has been studied
extensively over the past century. I refer to [1, 2, 3] for reviews. Discontinuous velocity
profiles lead to the Kelvin–Helmholtz instability which has unbounded growth rates
in the limit of high wave numbers. In contrast, the instabilities in shear flows with
smooth velocity profiles appear to be long wave instabilities. That is, there is cutoff
at some maximal wave number αm such that there are no unstable eigenvalues for
α > αm.

Although all known examples appear to satisfy this, I have not been able to find
a proof in the literature. Almost half a century ago, Howard [4] proved such a result
for a special case. He assumes that all inflection points of the base flow profile U
occur at the same value Ui and that U ′′/(U − Ui) is bounded and of one sign.

The objective of this paper is to prove the nonexistence of unstable eigenvalues
for large α in more general velocity fields. In the proof, it turns out that the crucial
difficulty for the analysis occurs at critical points of U rather than inflection points.
A critical point of U is a point where U ′ = 0.1

We shall need the following assumptions:
1. All critical points are isolated. Moreover, in a neighborhood of each critical

point yc, U ′′(y)(U(y) − U(yc)) is nonnegative.
2. If yc is a critical point, and U(y) = U(yc), then y is also a critical point.

The first assumption is satisfied for all analytic velocity profiles. I suspect that
the second assumption is not necessary, but I do not know how to avoid it in the
proof. Even if the second assumption does not hold, it will be shown that growth
rates of unstable modes must approach zero at an exponential rate as α→ ∞.

2. Proof of short wave stability. Our goal is the following result.
Theorem 2.1. Let U(y) be an analytic function defined for y ∈ [0, 1]. Moreover,

assume U has the following property: If U ′(y0) = 0 for some y0 ∈ [0, 1], then U ′(y) = 0
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2008; published electronically December 17, 2008. This research was supported by the National
Science Foundation under grant DMS-0707727.

http://www.siam.org/journals/siap/69-3/72090.html
†Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123 (renardym@math.vt.

edu).
1This usage of the word “critical”, which is common in calculus of variations, should not be

confused with a totally unrelated usage of the same word, which also occurs in hydrodynamic stability
studies.
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764 MICHAEL RENARDY

for every y with U(y) = U(y0). Then there exists α0 such that, for α > α0, all
eigenvalues c of the Rayleigh equation (equation (21.17) in [2]),

(2.1) (U(y) − c)(ψ′′(y) − α2ψ(y)) − U ′′(y)ψ(y) = 0,

with boundary condition ψ(0) = ψ(1) = 0 are real.
The assumptions allow, for instance, monotone velocity profiles, profiles with a

single maximum or minimum, and periodic profiles with one maximum and minimum.
For the proof, let us assume c is an eigenvalue which is not real. We can write

the equation in the form

(2.2) ψ′′ − α2ψ =
U ′′

U − c
ψ.

We multiply by the conjugate of ψ and integrate, which yields

(2.3)
∫ 1

0

|ψ′|2 + α2|ψ|2 dy = −
∫ 1

0

U ′′(y)(U(y) − c̄)
|U(y) − c|2 |ψ|2 dy.

With c = cr + ici, this yields the two separate equations
∫ 1

0

|ψ′|2 + α2|ψ|2 dy = −
∫ 1

0

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy,

0 =
∫ 1

0

U ′′(y)
(U(y) − cr)2 + c2i

|ψ|2 dy.(2.4)

The overall strategy of the proof is to show that, for large α, contributions to the
right-hand side of the first equation in (2.4) are either negative or not large enough
to balance the left-hand side. Clearly, we have

(2.5)
∣∣∣∣U

′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

∣∣∣∣ � α2

unless U(y)− cr is small of order α−2. To focus the discussion further, we divide the
points in [0, 1] into the following two categories:

1. y is a regular point if U ′(y) �= 0.
2. y is a critical point if U ′(y) = 0.

Since we assumed U to be analytic, all but finitely many points are regular. We shall
call y a δ-regular point if the distance from the nearest critical point is at least δ.

The next lemma will be used repeatedly in what follows.
Lemma 2.2. Let x0 ∈ [0, 1], and for given u ∈ L2[0, 1], let

(2.6) Lu(x) =
1

x− x0

∫ x

x0

u(ξ) dξ.

Then the operator L is a bounded mapping from L2[0, 1] into itself.
This result follows immediately from Theorem 11.8 in [5], but for the sake of

keeping this paper self-contained, I shall give the proof.
Let v(x) = Lu(x). We have u = ((x− x0)v)′, and hence 2uv− v2 = ((x− x0)v2)′

(in particular, this implies that (x−x0)v2 is continuous, since 2uv− v2 is integrable).
Consequently,

(2.7)
∫ 1

0

2uv dx = (1 − x0)v(1)2 + x0v(0)2 +
∫ 1

0

v2 dx,
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SHORT WAVE STABILITY 765

which implies ‖v‖ ≤ 2‖u‖. Here and in what follows, ‖ · ‖ refers to the norm in
L2(0, 1).

We shall begin with an estimate for regular points.
Lemma 2.3. Let z be a 2δ-regular point, and let cr = U(z̃) where |z − z̃| < δ/2.

Then there is a constant C, depending on δ but not on z and c, such that

(2.8)

∣∣∣∣∣
∫ z+δ

z−δ

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy
∣∣∣∣∣ ≤ C(‖ψ‖2 + ‖ψ‖1/2‖ψ′‖3/2).

If z is close to the boundary, the interval [z − δ, z + δ] may not be contained in
[0, 1]. In this case, however, we can simply extend ψ by zero outside of [0, 1]. Due to
the boundary condition ψ(0) = ψ(1) = 0, this continuation is still in H1.

Clearly, there is a lower bound for U ′ on the set of all δ-regular points. Let q(δ)
be this lower bound. Then we have |U(y) − cr| ≥ q(δ)δ/2 if |y − z̃| > δ/2. In this
range of y, we can therefore estimate the integrand by

(2.9)
2 max |U ′′|
δq(δ)

|ψ|2.

Hence we only need to concern ourselves with

(2.10)
∫ z̃+δ/2

z̃−δ/2

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy.

In this integral, we set

(2.11) ψ(y) = ψ(z̃) + (y − z̃)χ(y)

and

(2.12) |ψ(y)|2 = |ψ(z̃)|2 + (y − z̃)(ψ(y)χ̄(y) + χ(y)ψ̄(z̃)).

According to Lemma 2.2 above, we have ‖χ‖ ≤ 2‖ψ′‖, and from the trace theorem (see
(3.18) in [5]) we have |ψ(z̃)|2 ≤ C(‖ψ‖2 + ‖ψ‖‖ψ′‖) for some constant C. Moreover,

(2.13)
U ′′(y)(U(y) − cr)(y − z̃)

(U(y) − cr)2 + c2i

is bounded. Consequently, we find∣∣∣∣∣
∫ z̃+δ/2

z̃−δ/2

U ′′(y)(U(y) − cr)(y − z̃)
(U(y) − cr)2 + c2i

(ψ(y)χ̄(y) + χ(y)ψ̄(z̃)) dy

∣∣∣∣∣
≤ C(δ)(‖ψ‖‖χ‖ + |ψ(z̃)|‖χ‖ ≤ C(δ)(‖ψ‖2 + ‖ψ′‖3/2‖ψ‖1/2).(2.14)

It remains to estimate

(2.15) |ψ(z̃)|2
∣∣∣∣∣
∫ z̃+δ/2

z̃−δ/2

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

dy

∣∣∣∣∣.
In this last integral, we substitute U(y) as a new variable to obtain the new integral

(2.16)
∫ U(z̃+δ/2)

U(z̃−δ/2)

U ′′(y(U))(U − cr)
U ′(y(U))[(U − cr)2 + c2i ]

dU.
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766 MICHAEL RENARDY

The interval of integration contains the symmetric interval |U − cr| < δq(δ)/2, and
outside this interval, the integrand is bounded by a constant C(δ). Next, we write

(2.17)
U ′′(y(U))
U ′(y(U))

=
U ′′(z̃)
U ′(z̃)

+ (U − cr)S(U),

where S(U) is a continuous function. By symmetry, we then find

(2.18)
∫ cr+δq(δ)/2

cr−δq(δ)/2

U ′′(y(U))(U − cr)
U ′(y(U))[(U − cr)2 + c2i ]

dU =
∫ cr+δq(δ)/2

cr−δq(δ)/2

(U − cr)2S(U)
(U − cr)2 + c2i

dU.

The integrand in the latter integral is bounded by a constant. This completes the
proof of Lemma 2.3.

We next consider the neighborhood of a critical point.
Lemma 2.4. There exist ε > 0 and K > 0 such that, if y0 is in an ε-neighborhood

of a critical point yc, and cr = U(y0), then

(2.19)
∫ 1

0

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy ≥ −K‖ψ‖2.

We exploit the second equation of (2.4) to obtain that

(2.20)
∫ 1

0

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy =
∫ 1

0

U ′′(y)(U(y) − U(yc))
(U(y) − cr)2 + c2i

|ψ|2 dy.

All values of y where U(y) = U(yc) are critical points, and there is a finite number of
these. Each of them has a neighborhood on which U ′′(y)(U(y)−U(yc)) is nonnegative.
If we choose ε small enough, then |U(y)− cr| has a positive lower bound outside these
neighborhoods. The lemma follows.

To prove the theorem, we need to bound the right-hand side in the first equation
of (2.4). Lemma 2.3 gives a bound of the form

(2.21) C(‖ψ‖2 + ‖ψ‖1/2‖ψ′‖3/2)

in the neighborhood of regular points. Lemma 2.4 gives an upper bound of the form
K‖ψ‖2 in the neighborhood of critical points. By combining the two, we find that
the right-hand side in the first equation of (2.4) cannot balance the left-hand side if
α is large and ψ is nontrivial, which is the desired result.

We note that the assumption of analyticity was used only to ensure that the
number of critical points is finite and that (U(y) − U(yc))U ′′(y) is nonnegative in a
neighborhood of each critical point.

Without the assumption that U assumes its critical values only at critical points,
we can still prove that the growth rate of unstable modes must tend to zero at an
exponential rate as α→ ∞.

Theorem 2.5. Let U be any analytic function on [0, 1]. Then there exists a
function s(α), with s(α) → 0 for α → ∞, such that, if c is a nonreal eigenvalue of
the Rayleigh equation, and α is sufficiently large, then there exists a critical point yc

with |c − U(yc)| ≤ s(α). Moreover, there exist constants C and k such that |αci| ≤
C|c− U(yc)| exp(−k|α|).

The first statement, that cr must be close to a critical value of U when α is large,
follows from the proof of the previous theorem. Now let ρ be a nonnegative function
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which vanishes in an ε-neighborhood of the critical points but is equal to 1 at distance
more than 2ε from the critical points. We multiply the Rayleigh equation by ρψ̄ and
integrate. The result is

(2.22)
∫ 1

0

ρ(|ψ′|2 + α2|ψ|2) dy = −
∫ 1

0

U ′′(y)(U(y) − c̄)
|U(y) − c|2 ρ|ψ|2 dy −

∫ 1

0

ρ′ψ′ψ̄ dy.

With the help of Lemma 2.3, this yields the estimate

(2.23)
∫ 1

0

ρ(|ψ′|2 + α2|ψ|2) dy ≤ C(‖ψ‖2 + ‖ψ‖1/2‖ψ′‖3/2).

Now let yc be a critical point, and let χ be a smooth function which is equal to 1
in an ε-neighborhood of yc and has support in a 2ε-neighborhood of yc. We can choose
ε such that U ′′(U − U(yc)) is nonnegative on the support of χ. We shall also assume
that cr = U(y1), where y1 is within ε/2 of yc. We multiply the Rayleigh equation by
χψ̄ and integrate. The result is

(2.24)
∫ 1

0

χ(|ψ′|2 + α2|ψ|2) dy = −
∫ 1

0

U ′′(y)(U(y) − c̄)
|U(y) − c|2 χ|ψ|2 dy −

∫ 1

0

χ′ψ′ψ̄ dy.

Taking the imaginary part of this identity, we conclude that

(2.25) |ci|
∣∣∣∣∣
∫ 1

0

U ′′

|U − c|2χ|ψ|
2 dy

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

0

χ′ψ′ψ̄ dy

∣∣∣∣∣.
For large α, the solutions of the Rayleigh equation have exponential asymptotics as
long as we stay away from points where U−c is small (see Theorem 26.3 in [6]). Since
the support of χ′ is separated from the points where |U − c| is small, we can conclude
that there is a bound of the form

(2.26)

∣∣∣∣∣
∫ 1

0

χ′ψ′ψ̄ dy

∣∣∣∣∣ ≤ C exp(−k(ε)|α|)‖ψ‖2.

Next, we consider the real part of (2.24), which we write in the form
∫ 1

0

χ

(
|ψ′|2 + α2|ψ|2 +

U ′′(U − U(yc))
|U − c|2 |ψ|2

)
dy

=
∫ 1

0

U ′′(cr − U(yc))
|U − c|2 χ|ψ|2 − χ′ Re (ψ′ψ̄) dy.(2.27)

We can now use (2.25) and (2.26) to bound the right-hand side by

(2.28) C

(
1 +

|cr − U(yc)|
|ci|

)
exp(−k(ε)|α|)‖ψ‖‖ψ′‖.

By combining this result with (2.23), we conclude that we have a bound of the form

(2.29) ‖ψ′‖2 + α2‖ψ‖2 ≤ |cr − U(yc)| exp(−k(ε)|α|)
|ci| ‖ψ‖‖ψ′‖.

This is not possible if |αci| 
 |cr − U(yc)| exp(−k(ε)|α|).
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