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PLATE EQUATION∗
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Abstract. We prove the existence of an invariant measure for the von Karman plate equation
with random noise. The nonlinear term which symbolizes the von Karman equation inhibits the
standard procedure for the existence of an invariant measure. We propose a technically different
approach to handle such intricate nonlinear equations.
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1. Introduction. In this paper, we will establish the existence of an invariant
measure for a certain class of stochastic evolution equations with application to the
stochastic von Karman plate equation. An invariant measure is an important object
in stochastic dynamics. If the initial condition has the probability distribution equal
to an invariant measure, then the probability distribution of the evolving solution is
invariant in time. Some general results on the existence of invariant measures for
stochastic evolution equations are presented in [6] and [7]. The basic method for the
existence of invariant measures is due to Krylov and Bogolyubov [12]. However, there
are some important equations which are not covered by the known theorems. Here
we still follow the Krylov–Bogolyubov method, but with technically different adap-
tation, which has been motivated by the von Karman equation. For our method, we
assume that the stochastic process associated with solutions has the Markov property
with mean energy bounded uniformly in time, and that the probability distribution
of the process is locally continuous with respect to a weaker norm. Typically, the first
assumption is satisfied by a wide class of stochastic evolution equations with suit-
able dissipation. However, we need an additional condition for tightness of a family
of probability measures which will yield an invariant measure. For parabolic equa-
tions, the regularizing property is crucially used to obtain tightness of a sequence of
probability measures whose weak limit is an invariant measure; see [2]. Hyperbolic
equations do not possess the regularizing property. But if the noise term has addi-
tional regularity in space variables and if more regular initial data can generate more
regular solutions with a higher-order norm bounded uniformly in time, tightness of
probability measures can be obtained in the same manner. There are equations which
belong to neither case. The von Karman plate equation is a typical example. The
advantage of this proposed approach lies in the second assumption, which is fairly
mild and can be satisfied by equations such as the von Karman equation. We will
highlight the utility of this procedure through the specific example of the von Karman
equation.

The initial-boundary value problem for the von Karman plate is formulated as
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1690 JONG UHN KIM

follows:

utt + αut + Δ2u− [u, v] =

∞∑
j=1

gj
dBj

dt
in (0, T ) ×G,(1.1)

Δ2v + [u, u] = 0 in (0, T ) ×G,(1.2)

u =
∂u

∂ν
= 0, v =

∂v

∂ν
= 0 on [0, T ] × ∂G,(1.3)

u = u0(x), ut = u1(x) at t = 0.(1.4)

Here G is a bounded domain in R2 with smooth boundary ∂G, Δ is the Laplacian in
R2, ∂

∂ν is the normal derivative on ∂G, and the bracket [·, ·] is defined by

[u, v] =
∂2u

∂x2

∂2v

∂y2
+

∂2v

∂x2

∂2u

∂y2
− 2

∂2u

∂x∂y

∂2v

∂x∂y
.(1.5)

Viscous damping is represented by a positive constant α, and Bj ’s are mutually inde-
pendent standard Brownian motions over a given stochastic basis. When the right-
hand side of (1.1) is replaced by a deterministic term, the existence of a weak solution
to (1.1)–(1.4) was proved in [15], and more regular solutions were obtained in [4] and
[8]. In fact, the weak solution belongs to the natural function class. Nevertheless, the
uniqueness of the weak solution had been an open problem until the work of [1] and
[8]. The existence and uniqueness of a solution to the stochastic problem (1.1)–(1.4)
can be proved through a standard procedure based upon the known results from the
deterministic case. The existence of statistical solutions was established in [3] and
[10]. At present, the significant issue is the existence of an invariant measure.

Plate equations are neither hyperbolic nor parabolic while there is no regularizing
property. In [4], it was shown that for large α > 0 depending on the magnitudes of
the given data, the bound of the global solution in a stronger norm is uniform in
time. However, for small α > 0, it is not known whether such an estimate is valid.
Probably, it may not be true. This feature puts the above problem in a new category,
which necessitates a technically different approach. Here we proceed in the opposite
direction. Instead of trying to find uniform estimates in a stronger norm, we imbed
the natural energy space into a larger function class, and obtain a probability measure
on this larger space as a limit of a tight family of probability measures. We then prove
that this is in fact an invariant measure on the original smaller space. For this, we
need to show that the probability distribution of the solution depends continuously
on initial data in a weaker norm for fixed time on each closed ball in the natural
energy space. The main advantage of this procedure is that we do not need any
additional estimates uniform in time other than uniform estimates in the natural
energy space. Hence, we do not need either the assumption that α > 0 is large or
additional regularity of the noise term. We expect this procedure to be applied to
other equations which behave like (1.1). Finally, the anonymous referee has informed
the author that the idea of using a weaker topology was already used for interacting
diffusions in [14] and for stochastic parabolic equations in [16] and [17].

2. Existence of invariant measures. Let {Ω,Ft,F , P} be a given stochastic
basis and let E(·) denote the expectation with respect to P. Suppose that X(t, s; z), 0 ≤
s ≤ t < ∞ is a pathwise unique solution of a certain stochastic evolution equation
such that X(s, s; z) = z. We assume

(I) X(·, s; z) is a Ξ-valued continuous process adapted to {Ft}t≥s for each z ∈ Ξ
and s ≥ 0, where Ξ is a separable Banach space.
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STOCHASTIC VON KARMAN PLATE EQUATION 1691

We define a function

P(s, z; t,Γ) = P (X(t, s; z) ∈ Γ) for each Γ ∈ B(Ξ), 0 ≤ s ≤ t < ∞, z ∈ Ξ,(2.1)

where B(Ξ) is the Borel σ-algebra of Ξ. We assume
(II) P(·, ·; ·, ·) is a time-homogeneous transition probability function. In other

words, it satisfies the following conditions:
(i) P(s, z; t, ·) is a probability measure over {Ξ,B(Ξ)} for all z ∈ Ξ and 0 ≤

s < t < ∞;
(ii) P(s, ·; t,Γ) is B(Ξ)-measurable for all 0 ≤ s < t < ∞ and Γ ∈ B(Ξ);
(iii) for all 0 ≤ s < t < ξ < ∞ and Γ ∈ B(Ξ),

P(s, z; ξ,Γ) =

∫
Ξ

P(s, z; t, dy)P(t, y; ξ,Γ);

(iv) P(s, ·; t, ·) = P(s + h, ·; t + h, ·) for all 0 ≤ s < t < ∞ and h > 0.
(III) There is some z ∈ Ξ such that

E(‖X(t, 0; z)‖Ξ) ≤ M for all t ≥ 0(2.2)

for some positive constant M.
(IV) There is a Banach space Υ such that Ξ ⊂ Υ, the imbedding Ξ → Υ is contin-

uous, and each closed ball of finite radius in Ξ is a compact subset of Υ. Furthermore,
for each bounded continuous function ψ on Ξ, there is a sequence of continuous func-
tions {ψk}∞k=1 on Υ such that ψk is bounded uniformly in k and

lim
k→∞

ψk(y) = ψ(y) for each y ∈ Ξ.(2.3)

(V) For each fixed 0 ≤ t < ∞, and each fixed closed ball S of finite radius in Ξ,
if {zn}∞n=1 is a sequence in S such that

zn → z in Υ,(2.4)

then

E(φ(X(t, 0; zn))) → E(φ(X(t, 0; z)))(2.5)

for every bounded continuous function φ on Υ.
Remark. If Ξ has a Schauder basis, the second part of assumption (IV) is automat-

ically satisfied by using the continuous projection onto finite-dimensional subspaces.
In fact, this is the case when we consider application to the von Karman plate equa-
tion.

Theorem 2.1. Under the assumptions (I)–(V), there is an invariant measure
for the above process X(·). In other words, there is a probability measure μ on Ξ such
that ∫

Ξ

E(ψ(X(t, 0; y)))μ(dy) =

∫
Ξ

ψ(y)μ(dy)(2.6)

for all t ≥ 0 and every bounded continuous function ψ on Ξ.
Proof. Choose z ∈ Ξ in the above assumption (III), and define a probability

measure μT for each T > 0 by

μT (Γ) =
1

T

∫ T

0

P (X(t, 0; z) ∈ Γ)dt(2.7)
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1692 JONG UHN KIM

for each Γ ∈ B(Ξ). This is well defined because P (X(·, 0; z) ∈ Γ) is B([0,∞))-
measurable. For this measurability, we argue as follows. For each bounded continuous
function φ on Ξ, E(φ(X(t, 0; z))) is continuous in t by assumption (I). Let Γ be a closed
subset of Ξ and χΓ(·) be the characteristic function of Γ. Then, there is a sequence
of nonnegative bounded continuous functions {φk}∞k=1 on Ξ such that φk(y) ↓ χΓ(y)
as k → ∞ for each y ∈ Ξ. Hence, E(φk(X(t, 0; z))) converges to E(χΓ(X(t, 0; z))) as
k → ∞ for each t. Hence, P (X(·, 0; z) ∈ Γ) is B([0,∞))-measurable. Let S be the
collection of all subsets Γ such that P (X(·, 0; z) ∈ Γ) is B([0,∞))-measurable. Then,
S is a Dynkin system which includes all closed subsets of Ξ. Thus, S contains B(Ξ).

We now proceed to define

μ̃T (Γ) = μT (Γ ∩ Ξ)(2.8)

for each Γ ∈ B(Υ). Since the imbedding Ξ → Υ is continuous, Γ∩Ξ is a Borel subset
of Ξ for each Γ ∈ B(Υ). Hence, μ̃T is well defined and is a probability measure over
{Υ,B(Υ)}. For any ε > 0, there is a positive number rε such that

P (‖X(t, 0; z)‖Ξ ≤ rε) > 1 − ε for all t ≥ 0(2.9)

which follows from assumption (III). Since the ball

Srε = {y ∈ Ξ | ‖y‖Ξ ≤ rε}(2.10)

is a compact subset of Υ by assumption (IV), the family of probability measures
{μ̃T }T>0 is tight. Hence, there is a sequence {μ̃Tk

}∞k=1 and a probability measure μ̃
over {Υ,B(Υ)} such that Tk ↑ ∞ as k → ∞, and∫

Υ

φ(y)μ̃Tk
(dy) →

∫
Υ

φ(y)μ̃(dy) as k → ∞(2.11)

for every bounded continuous function φ on Υ. Since Srε is a closed subset of Υ, it
follows from (2.9) that

1 − ε ≤ lim sup
k→∞

μ̃Tk
(Srε) ≤ μ̃(Srε).(2.12)

Since ε > 0 is arbitrary and each Borel subset of Ξ is also a Borel subset of Υ, μ̃(Ξ) = 1
and the restriction of μ̃ to B(Ξ), written as μ, is a probability measure over {Ξ,B(Ξ)}.
Choose any bounded continuous function φ on Υ, and fix any ε > 0. Then, there is
r > 0 such that

μ̃Tk
(Sr) = μTk

(Sr) > 1 − ε for all k ≥ 1.(2.13)

Fix t > 0, and let

f(y) = E(φ(X(t, 0; y))) =

∫
Ξ

P(0, y; t, dw)φ(w).(2.14)

Then, by assumption (V), f(y) is continuous on Sr with respect to the norm of Υ.
Since Sr is a closed subset of Υ, we can extend f to f̃ on Υ with the same bound such
that f(y) = f̃(y) for every y ∈ Sr. This follows from the Tietze extension theorem.

It is easy to see that∫
Υ

f̃(y)μ̃Tk
(dy) =

∫
Υ\Sr

f̃(y)μ̃Tk
(dy)(2.15)

+

∫
Sr

μ̃Tk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w)
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STOCHASTIC VON KARMAN PLATE EQUATION 1693

and, by (2.13),∣∣∣∣
∫
Sr

μ̃Tk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w) −
∫

Ξ

μ̃Tk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w)

∣∣∣∣ < Mε,(2.16)

where M is a positive constant such that |φ(y)| ≤ M, for all y ∈ Υ. Here we note that
φ is also a continuous function on Ξ with respect to the norm of Ξ. It follows from
assumption (II) that∫

Ξ

μTk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w)(2.17)

=
1

Tk

∫ Tk

0

(∫
Ξ

P(0, z; s, dy)

∫
Ξ

P(0, y; t, dw)φ(w)

)
ds

=
1

Tk

∫ Tk

0

(∫
Ξ

P(0, z; s + t, dy)φ(y)

)
ds

=
1

Tk

∫ Tk+t

t

(∫
Ξ

P(0, z; η, dy)φ(y)

)
dη.

But we have

lim
k→∞

∣∣∣∣ 1

Tk

∫ Tk+t

t

(∫
Ξ

P(0, z; η, dy)φ(y)

)
dη −

∫
Ξ

μTk
(dy)φ(y)

∣∣∣∣ = 0,(2.18) ∫
Ξ

μTk
(dy)φ(y) =

∫
Υ

μ̃Tk
(dy)φ(y),(2.19)

and

lim
k→∞

∫
Υ

μ̃Tk
(dy)φ(y) =

∫
Υ

μ̃(dy)φ(y) =

∫
Ξ

μ(dy)φ(y).(2.20)

In the meantime, it holds that

lim
k→∞

∫
Υ

f̃(y)μ̃Tk
(dy) =

∫
Υ

f̃(y)μ̃(dy),(2.21) ∣∣∣∣
∫

Υ

f̃(y)μ̃(dy) −
∫
Sr

f(y)μ(dy)

∣∣∣∣ < Mε,(2.22) ∫
Sr

f(y)μ(dy) =

∫
Sr

μ(dy)E(φ(X(t, 0; y))),(2.23)

and ∣∣∣∣
∫
Sr

μ(dy)E(φ(X(t, 0; y))) −
∫

Ξ

μ(dy)E(φ(X(t, 0; y)))

∣∣∣∣ < Mε.(2.24)

Thus, it follows from (2.15)–(2.24) that∣∣∣∣
∫

Ξ

μ(dy)E(φ(X(t, 0; y))) −
∫

Ξ

μ(dy)φ(y)

∣∣∣∣ < 4Mε.(2.25)

Since ε > 0 is arbitrary, we have∫
Ξ

μ(dy)E(φ(X(t, 0; y))) =

∫
Ξ

μ(dy)φ(y)(2.26)
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1694 JONG UHN KIM

for all bounded continuous function φ on Υ for each t > 0. Next choose any bounded
continuous function ψ on Ξ, and let {ψk}∞k=1 be the sequence in assumption (IV).
Then, for each k ≥ 1, we have∫

Ξ

μ(dy)E(ψk(X(t, 0; y))) =

∫
Ξ

μ(dy)ψk(y).(2.27)

By passing k → ∞, we have∫
Ξ

μ(dy)E(ψ(X(t, 0; y))) =

∫
Ξ

μ(dy)ψ(y).(2.28)

This completes the proof.

3. Application to the stochastic von Karman equation. In this section,
we present technical preliminaries to apply Theorem 2.1 to (1.1)–(1.4) and formulate
the results.

Let {φk}∞k=1 be a complete orthonormal basis for L2(G) where each φk is an
eigenfunction of ⎧⎨

⎩
Δ2φk = λkφk in G,

φk =
∂φk

∂ν
= 0 on ∂G.

(3.1)

Throughout this paper, 〈·, ·〉 stands for the inner product of L2(G). It is easy to see
that

〈Δ2φj , φk〉 = 〈Δφj ,Δφk〉 = λjδjk for all j, k ≥ 1.(3.2)

Wm,p(G), Hm(G), and Hm
0 (G) denote the usual Sobolev spaces. Some of them can

be characterized in terms of {φk}∞k=1:

H2
0 (G) ∩H4(G) =

{
f =

∞∑
k=1

akφk |
∞∑
k=1

λ2
k|ak|2 < ∞

}
,(3.3)

Hs
0(G) =

{
f =

∞∑
k=1

akφk |
∞∑
k=1

λ
s/2
k |ak|2 < ∞

}
, 0 ≤ s ≤ 2, s �= 1

2
,
3

2
,(3.4)

H−s(G) =

{
f =

∞∑
k=1

akφk |
∞∑
k=1

1

λ
s/2
k

|ak|2 < ∞
}
, 0 ≤ s ≤ 2, s �= 1

2
,
3

2
.(3.5)

We define the operator G on H−2(G) by

Gh =
∞∑
k=1

1

λk
akφk(3.6)

for h =
∑∞

k=1 akφk ∈ H−2(G). Obviously, G is the inverse of Δ2 with the clamped
boundary conditions. It is easy to see that for all f, g ∈ L2(G),

|〈f,Gg〉| ≤ ‖f‖H−2(G)‖g‖H−2(G)(3.7)

and

〈f,Gf〉 = ‖f‖2
H−2(G).(3.8)
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STOCHASTIC VON KARMAN PLATE EQUATION 1695

The following estimate was proved in [5] and [9]:

‖G[f, g]‖W 2,∞(G) ≤ C‖f‖H2(G)‖g‖H2(G)(3.9)

for all f, g ∈ H2(G).
Throughout this paper, {Bj}∞j=1 is a sequence of mutually independent standard

Brownian motions over the stochastic basis {Ω,F ,Ft, P}, where P is a probability
measure over the σ-algebra F , {Ft} is a right-continuous filtration over F , and F0

contains all P -negligible sets. E(·) denotes the expectation with respect to P. When
X is a Banach space, B(X ) denotes the set of all Borel subsets of X . An X -valued
function h is said to be F-measurable if h−1(O) ∈ F for all O ∈ B(X ). This coincides
with strong measurability for Bochner integrals when the range of h is separable.
For 1 ≤ p < ∞, Lp(Ω;X ) denotes the set of all functions h which are X -valued and
strongly measurable with respect to F such that∫

Ω

‖h‖pX dP < ∞.

For general information on stochastic processes, see [11].
We assume the following condition on the noise term in (1.1). Each gj depends

only on the space variables, and

∞∑
j=1

‖gj‖2
L2(G) < ∞.(3.10)

Under this assumption, we have the following existence result.
Theorem 3.1. For each T > 0 and (u0, u1) ∈ H2

0 (G)×L2(G), there is a unique
solution u of (1.1)–(1.4) such that (u, ut) is adapted to {Ft}, and

(u, ut) ∈ L2(Ω;C([0, T ];H2
0 (G) × L2(G))).(3.11)

Here u satisfies (1.1) in the following sense. For almost all ω ∈ Ω, it holds that

〈ut(t2), ψ〉 − 〈ut(t1), ψ〉 +

∫ t2

t1

〈Δu,Δψ〉 dt(3.12)

+α

∫ t2

t1

〈ut, ψ〉 dt +

∫ t2

t1

〈[u,G[u, u]], ψ〉 dt =

∞∑
j=1

∫ t2

t1

〈gj , ψ〉 dBj

for all ψ ∈ H2
0 (G) and all 0 ≤ t1 < t2 ≤ T.

Theorem 3.2. There is an invariant measure on H2
0 (G)×L2(G) for (1.1)–(1.4).

4. Proof of Theorems 3.1 and 3.2. Let us define χN ∈ C∞
0 (R) for each N ≥ 1

by

χN (y) =

{
1 for |y| ≤ 2N,
0 for |y| ≥ 3N.

(4.1)

Then, it follows from (3.9) that

‖χN (‖u‖H2(G))[u,G[u, u]] − χN (‖w‖H2(G))[w,G[w,w]]‖L2(G)(4.2)

≤ CN‖u− w‖H2(G)
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1696 JONG UHN KIM

for all u,w ∈ H2(G) and for some positive constant CN . We now fix N ≥ 1 and
consider the modified problem

utt + αut + Δ2u + χN (‖u‖H2
0 (G))[u,G[u, u]] =

∞∑
j=1

gj
dBj

dt
in (0, T ) ×G,(4.3)

u =
∂u

∂ν
= 0 on [0, T ] × ∂G,(4.4)

u = u0(x), ut = u1(x) at t = 0.(4.5)

By the general existence theorem in [6], for each T > 0 and (u0, u1) ∈ H2
0 (G)×L2(G),

there is a pathwise unique solution u of (4.3)–(4.5) such that (u, ut) is adapted to {Ft},
and

(u, ut) ∈ L2(Ω;C([0, T ];H2
0 (G) × L2(G))).(4.6)

This is still true when (u0, u1) is F0-measurable and (u0, u1) ∈ L2(Ω;H2
0 (G)×L2(G)),

which follows from Kotelenez [13].
We introduce the projection Pm of L2(G) onto the subspace that is spanned by

{φ1, . . . , φm}, and set

um = Pmu.(4.7)

By taking the nonlinear term as a given function, we use the argument in [6, pp. 121–
123] to obtain the following representation formula. For almost all ω ∈ Ω,

〈ut(t2), ψ〉 − 〈ut(t1), ψ〉 +

∫ t2

t1

〈Δu,Δψ〉 dt + α

∫ t2

t1

〈ut, ψ〉 dt(4.8)

+

∫ t2

t1

〈χN (‖u‖H2
0 (G))[u,G[u, u]], ψ〉 dt =

∞∑
j=1

∫ t2

t1

〈gj , ψ〉 dBj

for all ψ ∈ H2
0 (G) and all 0 ≤ t1 < t2 ≤ T. Thus, it follows that

d(umt) = (−Δ2um − αumt − χN (‖u‖H2
0 (G))Pm[u,G[u, u]])dt(4.9)

+

∞∑
j=1

PmgjdBj for each m ≥ 1.

By Ito’s rule, we have, for all 0 ≤ t1 < t2 ≤ T and m ≥ 1,

‖umt(t2)‖2
L2(G) + ‖Δum(t2)‖2

L2(G)(4.10)

= ‖umt(t1)‖2
L2(G) + ‖Δum(t1)‖2

L2(G) − 2α

∫ t2

t1

‖umt‖2
L2(G) dt

− 2

∫ t2

t1

〈χN (‖u‖H2
0 (G))Pm[u,G[u, u]], umt〉 dt

+ 2

∞∑
j=1

∫ t2

t1

〈Pmgj , umt〉 dBj +

∞∑
j=1

∫ t2

t1

‖Pmgj‖2
L2(G)dt.

It follows from (3.9) that

‖χN (‖u‖H2
0 (G))Pm[u,G[u, u]] − χN (‖u‖H2

0 (G))[um,G[um, um]]‖L2(G)(4.11)

≤ ‖χN (‖u‖H2
0 (G))(Pm[u,G[u, u]] − [u,G[u, u]])‖L2(G)

+CN‖u− um‖H2
0 (G)
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STOCHASTIC VON KARMAN PLATE EQUATION 1697

and ∫ t2

t1

2〈[um,G[um, um]], umt〉dt = ‖Δvm(t2)‖2
L2(G) − ‖Δvm(t1)‖2

L2(G),(4.12)

where vm = G[um, um]. We now define a stopping time

τN = inf{t > 0 | ‖u(t)‖H2
0 (G) ≥ N}.(4.13)

By combining these and passing m → ∞, we arrive at

‖ut(t2)‖2
L2(G) + ‖Δu(t2)‖2

L2(G) + ‖Δv(t2)‖2
L2(G)(4.14)

= ‖ut(t1)‖2
L2(G) + ‖Δu(t1)‖2

L2(G) + ‖Δv(t1)‖2
L2(G)

− 2α

∫ t2

t1

‖ut‖2
L2(G)dt + 2

∞∑
j=1

∫ t2

t1

〈gj , ut〉 dBj +

∞∑
j=1

∫ t2

t1

‖gj‖2
L2(G)dt

for all 0 ≤ t1 ≤ t2 ≤ τN and for almost all ω ∈ Ω, where v = G[u, u]. In the same way,
we can also derive

〈ut(t2), u(t2)〉 +
α

2
‖u(t2)‖2

L2(G)(4.15)

= 〈ut(t1), u(t1)〉 +
α

2
‖u(t1)‖2

L2(G)

−
∫ t2

t1

(‖Δu‖2
L2(G) + ‖Δv‖2

L2(G) − ‖ut‖2
L2(G))dt +

∞∑
j=1

∫ t2

t1

〈gj , u〉dBj

for all 0 ≤ t1 ≤ t2 ≤ τN and for almost all ω ∈ Ω. We now write uN = u to signify the
dependence of u on χN (·). It follows from the Burkholder–Davis–Gundy inequality
that

E

(
sup

0≤t≤τN∧T

∣∣∣∣
∞∑
j=1

∫ t

0

〈gj , uNt〉 dBj

∣∣∣∣
)

(4.16)

≤ ME

( ∞∑
j=1

∫ τN∧T

0

‖gj‖2
L2(G)‖uNt‖2

L2(G) dt

)1/2

≤ δE

(
sup

0≤t≤τN∧T
‖uNt‖2

L2(G)

)
+

M2T

4δ

∞∑
j=1

‖gj‖2
L2(G)

for all δ > 0 and for some positive constant M independent of N and T. Thus, we
can derive from (4.14)

E

(
sup

0≤t≤τN∧T
(‖uNt(t)‖2

L2(G) + ‖ΔuN (t)‖2
L2(G) + ‖ΔvN (t)‖2

L2(G))

)
(4.17)

≤ C(‖u0‖2
H2

0 (G) + ‖u1‖2
L2(G) + ‖G[u0, u0]‖2

H2
0 (G)) + CT

∞∑
j=1

‖gj‖2
L2(G)

for some constant C independent of N and T > 0. Thus, we find that

P (τN ≤ T ) ≤ CT /N
2 → 0 as N → ∞.(4.18)
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1698 JONG UHN KIM

Since τN1
≤ τN2

for N1 < N2, it follows that

lim
N→∞

τN = τ∞ ≥ T for almost all ω ∈ Ω.(4.19)

Since T is arbitrary,

τN ↑ ∞ as N → ∞(4.20)

for almost all ω ∈ Ω. By the pathwise uniqueness of uN , we have uN1 = uN2 on
[0, τN1

∧ τN2 ] for almost all ω ∈ Ω, and we can define

u(t) = uN (t) for t ∈ [0, τN ].(4.21)

Then, this u is the desired solution. Now (4.8) implies (3.12). Since each (uN , uNt) is
adapted to {Ft}, (u, ut) is adapted to {Ft}. By Fatou’s lemma, we derive from (4.17)
and (4.20) that

E

(
sup

0≤t≤T
(‖ut(t)‖2

L2(G) + ‖Δu(t)‖2
L2(G) + ‖Δv(t)‖2

L2(G))

)
(4.22)

≤ C(‖u0‖2
H2

0 (G) + ‖u1‖2
L2(G) + ‖G[u0, u0]‖2

H2
0 (G)) + CT

∞∑
j=1

‖gj‖2
L2(G)

for all T > 0, where v = G[u, u].
For the proof of pathwise uniqueness, we suppose that (ũ, ũt) is another solution

of (1.1)–(1.4) in L2(Ω;C([0, T ];H2
0 (G) × L2(G))). Then, u− ũ satisfies

utt − ũtt + α(ut − ũt) + Δ2(u− ũ) + [u,G[u, u]] − [ũ,G[ũ, ũ]] = 0(4.23)

for almost all ω ∈ Ω. Since (u, ut) and (ũ, ũt) belong to C([0, T ];H2
0 (G) × L2(G))

for almost all ω, we can apply the same argument as for the deterministic case to
conclude that u ≡ ũ for almost all ω ∈ Ω. This completes the proof of Theorem 3.1.

Next we will obtain uniform estimates. Fix any λ such that

0 < λ < min(1, α, λ1),(4.24)

where λ1 is the first eigenvalue of (3.1), and define

Q(t) = ‖ut(t)‖2
L2(G) + ‖Δu(t)‖2

L2(G) + ‖Δv(t)‖2
L2(G)(4.25)

+λ〈ut(t), u(t)〉 +
α

2
λ‖u(t)‖2

L2(G).

By virtue of (4.20) and (4.21), u satisfies (4.14) and (4.15) for all 0 ≤ t1 < t2 < ∞
and for almost all ω. Since integrability is guaranteed by (4.22), it follows from (4.14)
and (4.15) that

E(Q(t2)) − E(Q(t1)) = −λ

∫ t2

t1

E(‖Δu‖2
L2(G) + ‖Δv‖2

L2(G))dt(4.26)

− (2α− λ)

∫ t2

t1

E(‖ut‖2
L2(G)) dt +

∫ t2

t1

∞∑
j=1

‖gj‖2
L2(G)dt
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STOCHASTIC VON KARMAN PLATE EQUATION 1699

for all 0 ≤ t1 < t2 < ∞. We can derive

d

dt
E(Q(t)) ≤ −cE(Q(t)) +

∞∑
j=1

‖gj‖2
L2(G)(4.27)

for all t > 0, where c is a positive constant depending on α, λ1, and λ. This yields

E(Q(t)) ≤ CM for all t ≥ 0,(4.28)

where M is a constant such that Q(0) ≤ M, and CM is a constant depending on M
and the last term of (4.27). By virtue of (4.24), this yields (2.2).

According to the above argument for the existence of solutions, we could take any
s ≥ 0 as the initial time and ζ = (ζ0, ζ1) as the initial value for the Cauchy problem
(1.1)–(1.3) if ζ is H2

0 (G)×L2(G)-valued Fs-measurable such that ζ ∈ L2(Ω;H2
0 (G)×

L2(G)), and G[ζ0, ζ0] ∈ L2(Ω;H2
0 (G)). We now write X(t, s; ζ) = (u, ut), where u is

the solution of (1.1)–(1.3) for t ≥ s satisfying (u(s), ut(s)) = ζ. Then, X(·, s; ζ) ∈
L2(Ω;C([s, T ];H2

0 (G)×L2(G))) for all T > s, and (4.28) holds for all t ≥ s. For each
0 ≤ s < t, z ∈ H2

0 (G) × L2(G), and Γ ∈ B(H2
0 (G) × L2(G)), we set as in (2.1)

P(s, z; t,Γ) = P (X(t, s; z) ∈ Γ).

Lemma 4.1. Choose any bounded continuous function ψ on H2
0 (G) × L2(G),

t > s ≥ 0. Then,

E(ψ(X(t, s; z))) =

∫
H2

0 (G)×L2(G)

P(s, z; t, dy)ψ(y)(4.29)

is continuous in z ∈ H2
0 (G) × L2(G).

Proof. Let {zn}∞n=1 be a sequence in H2
0 (G)×L2(G) such that zn → z in H2

0 (G)×
L2(G). Let us fix any t > s ≥ 0. By (4.22), we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E

(
sup

s≤η≤t
‖X(η, s; z)‖H2

0 (G)×L2(G)

)
≤ M,

E

(
sup

s≤η≤t
‖X(η, s; zn)‖H2

0 (G)×L2(G)

)
≤ M for all n ≥ 1

(4.30)

for some positive constant M. Let us fix any ε > 0 and any bounded continuous func-
tion ψ on H2

0 (G)×L2(G). Since H2
0 (G)×L2(G) is a Polish space and P (X(t, s; z) ∈ ·)

is a probability measure over {H2
0 (G)×L2(G),B(H2

0 (G)×L2(G))}, there is a compact
subset K of H2

0 (G) × L2(G) such that

P (X(t, s; z) ∈ K) > 1 − ε.(4.31)

By virtue of (4.30), there is some R > 0 such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P

(
sup

s≤η≤t
‖X(η, s; zn)‖H2

0 (G)×L2(G) ≤ R

)
> 1 − ε for all n ≥ 1,

P

(
sup

s≤η≤t
‖X(η, s; z)‖H2

0 (G)×L2(G) ≤ R

)
> 1 − ε.

(4.32)

By taking R larger, we also have

K ⊂ {y ∈ H2
0 (G) × L2(G) | ‖y‖H2

0 (G)×L2(G) ≤ R}.(4.33)
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1700 JONG UHN KIM

Let us fix such R and write for each n

An =

{
sup

s≤η≤t
‖X(η, s; zn)‖H2

0 (G)×L2(G) ≤ R

}
(4.34)

⋂{
sup

s≤η≤t
‖X(η, s; z)‖H2

0 (G)×L2(G) ≤ R

}
⋂

{X(t, s; z) ∈ K}.

We will estimate the integral on the right-hand side of

|E(ψ(X(t, s; z))) − E(ψ(X(t, s; zn)))|

≤
∫
An

|ψ(X(t, s; z)) − ψ(X(t, s; zn))| dP + 6Mε,
(4.35)

where M is a positive constant such that |ψ(y)| ≤ M for all y. By means of (3.9), we
can derive from (4.23) that

‖X(t, s; z) −X(t, s; zn)‖2
H2

0 (G)×L2(G) ≤ CR‖zn − z‖2
H2

0 (G)×L2(G)(4.36)

for all ω ∈ Ãn, where Ãn ⊂ An and P (An\Ãn) = 0, and CR is a constant independent
of n. Since ψ is continuous on H2

0 (G) × L2(G) and K is compact, there is δ > 0 such
that

|ψ(x) − ψ(y)| < ε(4.37)

for every x ∈ K, y ∈ H2
0 (G) × L2(G) satisfying ‖x − y‖H2

0 (G)×L2(G) < δ. Hence, it

follows from (4.36) that there is N ≥ 1 such that for all n ≥ N,∫
An

|ψ(X(t, s; z)) − ψ(X(t, s; zn))| dP < ε,(4.38)

which yields

|E(ψ(X(t, s; z))) − E(ψ(X(t, s; zn)))| < ε + 6Mε(4.39)

for all n ≥ N. Thus, E(ψ(X(t, s; z))) is continuous in z.
This implies that P(s, ·; t,Γ) is B(Ξ)-measurable for all 0 ≤ s < t < ∞ and

Γ ∈ B(Ξ). This can be seen by the same argument as in the previous proof of the
measurability of P (X(·, 0; z)).

Lemma 4.2. X(·) has the Markov property, and its transition probability function
is time-homogeneous.

Proof. By the uniqueness of solution, it holds that for any 0 ≤ r < s < t and
z ∈ H2

0 (G) × L2(G),

X(t, r; z) = X(t, s;X(s, r; z))(4.40)

for almost all ω. We have to show that

E(ψ(X(t, s;X(s, r; z))) | Fs) = Ps,t(ψ)(X(s, r; z))(4.41)

for almost all ω, for each bounded continuous function ψ on H2
0 (G) × L2(G), where

Ps,tψ(y) = E(ψ(X(t, s; y))).
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STOCHASTIC VON KARMAN PLATE EQUATION 1701

According to the proof of Theorem 3.1, the solution was obtained by the truncation
method. Let XN = XN (t, s; ζ) denote the solution (uN , ∂tuN ) of (4.3)–(4.4) satisfying
(uN (s), ∂tuN (s)) = ζ, where ζ = (ζ0, ζ1) is H2

0 (G)×L2(G)-valued Fs-measurable such
that ζ ∈ L2(Ω;H2

0 (G) × L2(G)) and G[ζ0, ζ0] ∈ L2(Ω;H2
0 (G)). Then, we know that

for each T > s,

X(t, s; ζ) = lim
N→∞

XN (t, s; ζ) in C([s, T ];H2
0 (G) × L2(G))(4.42)

for almost all ω. For each N ≥ 1 and each bounded continuous function ψ on H2
0 (G)×

L2(G), it holds that

E(ψ(XN (t, s; ζ)) | Fs) = PN
s,t(ψ)(ζ)(4.43)

for almost all ω, which follows directly from the argument in [6, p. 250]. Here PN
s,t is

defined by

PN
s,tψ(y) = E(ψ(XN (t, s; y))).

Since ψ is a bounded continuous function, we pass N → ∞ to arrive at

E(ψ(X(t, s; ζ)) | Fs) = Ps,t(ψ)(ζ)(4.44)

for almost all ω. Hence X(·) has the Markov property.
Since gj ’s are independent of time, we can apply the result in [6, p. 251] to see

that the transition probability function is time-homogeneous.
Lemma 4.3. Let SL = {y ∈ H2

0 (G) × L2(G) | ‖y‖H2
0 (G)×L2(G) ≤ L}, and let

{zn}∞n=1 be a sequence in SL such that zn → z in H1
0 (G)×H−1(G). If φ is a bounded

continuous function on H1
0 (G) ×H−1(G), then for each t > 0,

E(φ(X(t, 0; zn))) → E(φ(X(t, 0; z)))(4.45)

as zn → z in H1
0 (G) ×H−1(G).

Proof. Let us fix any t∗ > 0, and write

Yn(t) = X(t, 0; zn) −X(t, 0; z).(4.46)

Suppose that

‖X(t, 0; zn)‖H2
0 (G)×L2(G) ≤ R, ‖X(t, 0; z)‖H2

0 (G)×L2(G) ≤ R(4.47)

for all 0 ≤ t ≤ t∗ for some constant R. It follows from (4.23) and the basic inequality
established in [1] that

‖Yn(t2)‖2
H1

0 (G)×H−1(G) − ‖Yn(t1)‖2
H1

0 (G)×H−1(G)(4.48)

≤ C1 log(1 + λN )

∫ t2

t1

‖Yn(s)‖2
H1

0 (G)×H−1(G) ds + C2t
∗λ−β

N+1

for all 0 ≤ t1 < t2 ≤ t∗, all N ≥ N0, for some constant 0 < β < 1, and for positive
integer N0. Here λN is the Nth eigenvalue of (3.1), and C1 and C2 are positive
constants depending only on β and R. We partition [0, t∗] such that

0 = t0 < t1 < · · · < tK = t∗, tk − tk−1 = t∗/K < β/C1, 1 ≤ k ≤ K.(4.49)
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1702 JONG UHN KIM

By the Gronwall inequality, we can derive from (4.48) that

‖Yn(t)‖2
H1

0 (G)×H−1(G)(4.50)

≤ (‖Yn(tk)‖2
H1

0 (G)×H−1(G) + C2t
∗λ−β

N+1)(1 + λN )C1(t−tk)

for all t ∈ [tk, tk+1], all N ≥ N0, and for each k = 0, . . . ,K − 1. Since λN ↑ ∞ as
N → ∞, we use (4.49) to infer from (4.50) that for given ε > 0, there is εK > 0 such
that if ‖Yn(tK−1)‖H1

0 (G)×H−1(G) < εK ,

‖Yn(tK)‖H1
0 (G)×H−1(G) < ε.(4.51)

By iteration, we find that there is ε1 > 0 such that if ‖zn − z‖H1
0 (G)×H−1(G) < ε1,

(4.51) holds. By the same argument as in the proof of Lemma 4.1, we arrive
at (4.45).

Lemma 4.4. Let ψ be a bounded continuous function on H2
0 (G) × L2(G). Then,

there is a sequence {ψk}∞k=1 such that each ψk is a continuous function on H1
0 (G) ×

H−1(G) bounded uniformly in k, and

ψk(y) → ψ(y) as k → ∞(4.52)

for each y ∈ H2
0 (G) × L2(G).

Proof. It is enough to set

ψk(y) = ψ((Pky1, Pky2)) for y = (y1, y2) ∈ H1
0 (G) ×H−1(G), k = 1, 2, . . . ,(4.53)

where Pk is the projection onto the subspace spanned by {φ1, . . . , φk}.
Finally, we set

Ξ = H2
0 (G) × L2(G), Υ = H1

0 (G) ×H−1(G).

Then, assumptions (I)–(V) follow from the above lemmas, and the proof of Theo-
rem 3.2 is complete.
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