Prevalence of Agglutinating Antibodies to *Neospora caninum* in Raccoons, *Procyon lotor*

Author(s): David S. Lindsay, Jennifer Spencer, Charles Rupprecht, and Byron L. Blagburn

Published By: American Society of Parasitologists

URL: http://www.bioone.org/doi/full/10.1645/0022-3395%282001%29087%5B1197%3APOAATN%5D2.0.CO%3B2

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
Prevalence of Agglutinating Antibodies to Neospora caninum in Raccoons, Procyon lotor

David S. Lindsay, Jennifer Spencer*, Charles Rupprecht†, and Byron L. Blagburn*, Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 1410 Prices Fork Road, Blacksburg, Virginia 24061-0342; *Department of Pathobiology, College of Veterinary Medicine, Auburn University, Alabama 36849-5519; and †Rabies Section, Viral and Rickettsial Zoonoses Branch, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333. email: lindsayd@vt.edu

ABSTRACT: Neospora caninum is an apicomplexan parasite that causes neonatal neuromuscular disease in dogs and abortions in cattle. Dogs are the only proven definitive host. Little is known about the prevalence of antibodies to this parasite in wildlife. Sera from 99 raccoons (Procyon lotor) were examined for agglutinating antibodies to N. caninum using the modified agglutination test employing formalin-fixed tachyzoites as antigen. Raccoons originated in Florida (n = 24, collected in 1996), New Jersey (n = 25, collected in 1993), Pennsylvania (n = 25, collected in 1999), and Massachusetts (n = 25, collected in 1993 and 1994). Ten (10%) had antibodies to N. caninum; 9 had titers of 1:50, and 1 (1%) had a titer of 1:100. The present study indicates that raccoons have minimal exposure to N. caninum. The sera were also tested for agglutinating antibodies to Toxoplasma gondii and 46 (46%) were positive; 16 had titers of 1:50, 8 had titers of 1:100, and 22 had titers of ≥1:500.

Neospora caninum is recognized as a cause of neonatal neuromuscular disease in dogs and abortion in cattle worldwide (reviewed by Dubey and Lindsay, 1996; Lindsay and Dubey, 2000). Dogs are a definitive host and excrete coccidial oocysts in their feces after ingesting N. caninum tissue cysts (McAllister et al., 1998; Lindsay, Dubey, and Duncan, 1999; Lindsay, Upton, and Dubey, 1999). However, little is known about the prevalence of the parasite in wildlife populations. Neospora caninum antibodies have been found in coyotes (Lindsay et al., 1996), dingos (Barber et al., 1997), and red foxes (Barber et al., 1997; Buxton et al., 1997; Simpson et al., 1997), suggesting a role for wild canids in the epidemiology of neosporosis. Dubey et al. (1999) found that 162 (41%) of 400 white-tailed deer (Odocoileus virginianus) from northeastern Illinois had agglutinating antibodies to N. caninum. A fatal case of neosporosis has been found in a 2-mo-old black-tailed deer fawn (O. hemionus columbianus) from California (Woods et al., 1994). These reports suggest that a sylvatic cycle may exist for N. caninum. Little is known about the prevalence of N. caninum in wild omnivores. Omnivores would have exposure to both the tissue cyst and oo-
The prevalence study was done to determine the prevalence of antibodies to *N. caninum* in raccoons (*Procyon lotor*) using a formalin-fixed whole tachyzoite agglutination test (Packham et al., 1998).

Sera samples from 99 raccoons were collected as part of part of a rabies surveillance program. Raccoons originated in Florida (n = 24, collected in 1996), New Jersey (n = 25, collected in 1993), Pennsylvania (n = 25, collected in 1999), and Massachusetts (n = 25, collected in 1993 and 1994). No information on age or sex of the raccoons is available. Frozen sera were sent to the Center for Molecular Medicine and Infectious Diseases, Virginia Tech, Blacksburg, Virginia, for agglutination testing. A modification of the *N. caninum* tachyzoite agglutination described by Packham et al. (1998) was used to test sera at dilutions of 1:50, 1:100, and 1:500 (Walsh et al., 2000). Sera were also tested for antibodies to *Toxoplasma gondii* using RH strain tachyzoites as antigen in the agglutination test.

Agglutinating antibodies to *N. caninum* were found in 10 (10%) of the 99 raccoons (Table I). Titers of 9 raccoons were 1:50, and 1 raccoon had a titer of 1:100.

Agglutinating antibodies to *T. gondii* were found in 46 (46%) of the 99 raccoons (Table I). Sixteen (16%) had titers of 1:50, 8 (8%) had titers of 1:100, and 22 (22%) had titers of ≥1:500. Seven of the 10 *N. caninum*-positive raccoons also had antibodies to *T. gondii*. The *T. gondii* titers of these 7 raccoons were 1:100 (1 raccoon) and ≥1:500 (6 raccoons).

The results of this study suggest raccoons have little exposure to *N. caninum* oocysts or tissue cysts in prey because of the low (10%) seroprevalence. If raccoons with serological titers to both *N. caninum* and *T. gondii* are omitted from the results, then the prevalence decreases to 3 (3%) out of 99 raccoons. The prevalence of *N. caninum* in white-tailed deer is much higher, at 41% (Dubey et al., 1999).

Dubey et al. (1993) fed 2 raccoon tissues from mice infected with the NC-1 strain of *N. caninum*. These raccoons did not develop clinical signs and did not seroconvert to *T. gondii* using the tachyzoite agglutination test, latex agglutination test, or indirect hemagglutination test, but 1 did develop low Sabin-Feldman dye test titers. No serological testing for *N. caninum* was reported in these animals (Dubey et al., 1993).

The 46% prevalence of *T. gondii* observed in raccoons in the present study is similar to reports where large numbers of raccoons have been examined. Mitchell et al. (1999) found that 184 (49%) of 379 raccoons from Illinois had agglutinating antibody titers to *T. gondii*. This was similar to that found by Dubey et al. (1992), who found that 215 (50%) of 427 raccoons collected from several states (93 from Pennsylvania, 45 from New Jersey, 72 from South Carolina, 68 from Virginia, 30 from Iowa, and 119 from Ohio) were seropositive in the agglutination test. However, Hill et al. (1998) reported that 134 (15%) of 858 raccoons from Iowa had antibodies to *T. gondii* in the agglutination test.

Additional studies need to be done in wildlife to determine the prevalence of *N. caninum* in nondomestic hosts. This may lead to a better understanding of the epidemiology of neosporosis on farms.

We thank Kay Carlson, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, for technical assistance. Supported in part by a Clinical Research Grant from the Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech to D.S.L.

LITERATURE CITED

