Toxoplasmosis in Three Species of Native and Introduced Hawaiian Birds

Author(s): Thierry M. Work, J. Gregory Massey, David S. Lindsay, and J. P. Dubey
Published By: American Society of Parasitologists
URL: http://www.bioone.org/doi/full/10.1645/0022-3395%282002%29088%5B1040%3ATITSON%5D2.0.CO%3B2
Toxoplasmosis in Three Species of Native and Introduced Hawaiian Birds

Thierry M. Work, J. Gregory Massey*, David S. Lindsay†, and J. P. Dubey‡, Hawaii Field Station, National Wildlife Health Center, U.S. Geological Survey, P.O. Box 50167, Honolulu, Hawaii 96850; *Hawaii Department of Land and Natural Resources, 2600 Piholo Road, Makawao, Hawaii 96785; †Virginia Tech, 1410 Prices Fork Road, Blacksburg, Virginia 24061-0342; ‡Epidemiology and Systematics Laboratory, Parasite Biology, Animal Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Building 1001, BARC-East, Beltsville, Maryland 20507-2350. e-mail: thierry_work@usgs.gov

ABSTRACT: Toxoplasma gondii was found in endemic Hawaiian birds, including 2 nene geese (Nesochen sandvicensis), 1 red-footed booby (Sula sula), and an introduced bird, the Erckels francolin (Francolinus erckelii). All 4 birds died of disseminated toxoplasmosis; the parasite was found in sections of many organs, and the diagnosis was confirmed by immunohistochemical staining with anti–T. gondii–specific polyclonal antibodies. This is the first report of toxoplasmosis in these species of birds.

Toxoplasma gondii can cause mortality and subclinical infections in many species of warm-blooded animals including birds (Dubey and Beattie, 1988; Literák et al., 1992; Dubey, 2002). In tropical island ecosystems, T. gondii has been documented only on islands with feral cats, underlining the fact that felids are the only known definitive hosts (Wallace et al., 1972). In Hawaii, T. gondii has significantly affected reintroduction programs for the endangered Hawaiian crow (Work et al., 2000). This article documents acute toxoplasmosis in 3 other species of endemic and introduced Hawaiian birds, including nene goose (Nesochen sandvicensis), the red-footed booby (Sula sula), and Erckels francolin (Francolinus erckelii).

Two endangered Hawaiian goose (nene) goslings housed in a sand enclosure were found dead 3 days apart in August 1994 at a private zoo on Maui. Gross examination revealed both birds (1 male, 1 female) to be in excellent body condition with adequate fat reserves. The only significant gross lesion in the female included focal congestion of the liver, marked splenomegaly, heavy wet lungs, and locally extensive fibroinud exudates on the jejunal mucosa. The main gross lesions in the male included marked hemorrhage and consolidation of the left lung, marked splenomegaly, and linear brown areas of discoloration on the large intestinal mucosa.

Histology in the female gosling revealed severe interstitial mononuclear pneumonia with intracytoplasmic tachyzoites, focal lytic hepatic necrosis, focal neuronal necrosis, severe lymphoid depletion, and severe, diffuse, nonsuppurate inflammation and necrosis of the myocardium and skeletal muscles associated with tachyzoites. There also was full-thickness necrosis of the intestinal wall extending through the lamina propria and muscularis associated with marked mononuclear response and tachyzoites. Significant microscopic findings in the male gosling included focal necrosis and marked mononuclear interstitial infiltrates associated with tachyzoites in the lung, mild focal necrosis and nonsuppurative inflammation associated with myocardial necrosis, severe lymphoid depletion, and tachyzoites in the spleen and tissue cysts with bradyzoites in the adrenal. Tissue cysts positive for BAG-1 were seen in the brain, lung, and heart (Fig. 1A–C). The brain was not examined.

In February 1995, a free-ranging Erckel’s francolin was found dead on Kauai. This was a female adult in excellent body condition. Significant gross lesions included focal discoloration of the liver and heart, heavy wet mottled lungs, and a crop distended with ingesta. Histology revealed mild focal acute hepatocellular necrosis, severe myocardial necrosis and mononuclear inflammation, mild focal cerebral gliosis, and severe diffuse splenic necrosis associated with tachyzoites (Fig. 1D).

The fourth case was a red-footed booby adult that was found weak on the Oahu Island in November 1998. The bird was admitted for rehabilitation at a local zoological park and died 40 days later. Significant gross lesions included heavy wet lungs that sank in formalin, friable spleen, and engorged cerebral vasculature. Histology revealed marked diffuse necrosis and mononuclear inflammation in the lungs associated with tachyzoites, suppurative perportal inflammation of the liver, severe mononuclear inflammation associated with tachyzoites in the heart, focal neuronal necrosis of the cerebrum associated with bradyzoites,
Figure 1. Toxoplasma gondii and associated lesions in birds from Hawaii. A, B, and E, hematoxylin and eosin stain; C and D, immunohistochemical stain with anti-T. gondii antibodies. (A–C) Lungs of nene goose. Note necrosis, infiltration by mononuclear cells, and individual tachyzoites (arrows) and groups of tachyzoites. Tachyzoites in B appear half the size of those in C. (D) Necrosis of myocardium of Erckel’s francolin. Numerous tachyzoites (arrows) are in the lesion. (E) Cerebrum of red-footed booby. Note perivascularitis (arrow) and 3 tissue cysts (arrowheads).
prominent mononuclear cell hyperplasia in the spleen, and focal necrosis and nonsuppurative inflammation in the adrenal (Fig. 1E). Tissue cysts positive for BAG-1 were seen in intestines, lung, brain, and heart.

Protozoans in all 4 birds reacted to anti-T. gondii but not to anti-S. neurona polyclonal antibodies.

The nene acquired infection in captivity, and it is likely that their environment (sand substrate) was conducive to the spread of toxoplasmosis by ingested feces from feral cats that were commonly observed in the vicinity. The source of infection for the francolin and the booby is less clear. The francolin may have acquired T. gondii through ingestion of oocysts from cat feces or a transport host (Wallace, 1973). We suspect that the booby acquired infection in the wild and not in captivity. Birds undergoing rehabilitation at the zoological park are caged and housed on concrete, which is cleaned daily, thus minimizing potential exposure to cat feces. On the other hand, feral cats are common around the largest red-footed booby colony on Oahu at the Kaneohe Marine Corps Air Station, and we suspect that the bird acquired the infection there.

Lesions in these birds were similar to those of other avian species infected with T. gondii (Dubey, 2002). The presence of tachyzoites in multiple organs suggested that the disease was more fulminant in the geese and francolin, and the presence of ingesta in the proventriculus of the latter suggested acute death. Presence of bradyzoites in the brain of the booby suggested a more chronic infection. In all cases, the heart and lung were the organs most commonly and severely affected.

In addition to Hawaii (Work et al., 2000), this article extends the geographic range of avian toxoplasmosis to 3 more islands (Maui, Kauai, and Oahu). Feral cats are present on all these islands, thereby providing opportunities for infection of avian hosts. This article also reinforces the fact that T. gondii is capable of infecting a wide variety of birds with disparate life histories, including upland game birds (Francolin), pelagic seabirds (Booby), and low-elevation–grazing anseriforms (nene geese). The fact that so few birds of these species have been documented with T. gondii suggests that these cases were accidental infections. To date, we have no evidence that T. gondii poses a severe threat to populations of these birds.

LITERATURE CITED


