Transplacental Transmission of a North American Isolate of *Leishmania infantum* in an Experimentally Infected Beagle

Author(s): Alexa C. Rosypal, Gregory C. Troy, Anne M. Zajac, Glenn Frank, and David S. Lindsay

Published By: American Society of Parasitologists

DOI: http://dx.doi.org/10.1645/GE-483R.1

summer (June) showed no clinical signs of disease, while histologic examination of the intestines showed only a minimal coccidial infection. This indicates that as fish grow older and, presumably, increasingly more immunocompetent, or as water temperatures increase and stabilize, the fish may be able to eradicate the parasites or become more resistant to infection, reinfestation, or pathologic effects (Steinhagen et al., 1998; Paperna, 1999). This is fortunate, because no chemotherapeutics are approved by the U.S. Food and Drug Administration for treatment of piscine coccidiosis (Center for Veterinary Medicine, 2000). Piscine coccidiosis is also not considered a notifiable or significant disease by the World Organization for Animal Health (Office International des Epizooties, 2003), and thus, development of treatments for this disease has received limited attention. Therefore, prevention of clinical coccidiosis currently depends on maintaining a proper environment, providing optimal nutrition, and reducing stress among fish populations.

The authors wish to thank Sheila M. Mitchell, Kathy Lowe, and Virginia Viers for technical assistance with transmission electron microscopy. This project was supported in part by USDA/CSREES grant 2003-34951-13918 and the VT Commercial Fish and Shellfish Technology (CFAST) Program.

LITERATURE CITED

ABSTRACT: Leishmania infantum, an etiologic agent of zoonotic visceral leishmaniasis, is widespread among foxhounds in the United States. Although sand flies are widely distributed throughout the United States, epidemiological data do not support a major role for sand flies in the transmission of L. infantum in foxhounds in this country. Congenital transmission of human visceral leishmaniasis is reported in humans and might also occur in dogs. We have previously isolated L. infantum from Virginia foxhounds and used this isolate (LIVT-1) to experimentally infect beagles. Four female beagles, chronically infected with LIVT-1, were bred to a male beagle chronically infected with L. infantum chagasi. One beagle was able to maintain her pregnancy, and 4 puppies were delivered by cesarean section. One puppy was malformed and autolytic at delivery, and tissues were not collected or analyzed. The remaining puppies were killed at the time of cesarean section, and selected tissues were collected for parasite culture and PCR. Promastigotes were not cultured from tissues in any of the puppies. Leishmania sp. DNA was detectable by PCR in liver, bone marrow, and heart from all 3 puppies and in the spleen, lymph node, kidney, and placenta in 2 puppies. Placental tissue from the dam was PCR negative. This is the first report of maternal transmission of a North American isolate of L. infantum from an experimentally infected dog.

Leishmaniasis is a vectorborne disease caused by infection with Leishmania spp.; these parasites are usually transmitted by phlebotomine sand flies. Studies have suggested that transmission might also occur by sexual contact (Catone et al., 2003), blood transfusions (Owens et al., 2001; Giger et al., 2002), and direct contact (Lainson and Bray, 1964; Nuwayri-Salti and Khansa, 1985). Rare cases of congenital transmission have been documented in humans (Low and Cooke, 1926; Nyakundi et al., 1988; Yadav et al., 1989; Etoom et al., 1992; Meinecke et al., 1999). Similarly, it has been suggested that maternal transmission can occasionally occur in dogs (Mancianti and Sozzi, 1995; Masucci et al., 2003).

Leishmania infantum, an etiologic agent of human visceral leishmaniasis, is widespread among foxhounds in the United States (Rosypal et al., 2003). Sand flies are present throughout much of the country, particularly in the southeast (Young and Perkins, 1984). However, epidemiological data do not support a role for sand flies in the transmission of L. infantum. This suggests that an alternative mode of transmission could maintain infections in U.S. foxhounds. The risk of zoonotic spread from infected dogs to humans is currently unknown for the United States. In this study, we determined whether vertical transmission can occur in dogs infected with a North American isolate of L. infantum.

Intact female beagles (n = 4) were experimentally infected with promastigotes of the LIVT-1 strain of L. infantum originally isolated from a naturally infected foxhound from Virginia (Rosypal et al., 2003). All of the dogs had clinical signs compatible with canine leishmaniasis. The parasite had been reisolated from the beagles by culture of lymph node and bone marrow aspirates, and it was detectable by polymerase chain reaction (PCR) conducted on bone marrow (A. Rosypal, unpubl. obs.). The female dogs were bred to a male beagle chronically infected with L. infantum chagasi both by natural service and by artificial insemination. Before breeding, semen was collected from the male dog and placed in Leishmania sp. culture media (30% f/v fetal bovine serum, 1% penicillin/streptomycin, 2% human urine, in Grace’s Insect Media) at 25 C.
One of the 4 dogs became pregnant and was able to sustain the pregnancy, but the other 3 dogs either did not conceive or did not maintain their pregnancies. For this reason, the following data were collected from a single female dog that sustained her pregnancy. Four puppies were delivered by cesarean section on day 60 of gestation (normal gestation period = 63 days) to preclude the possibility of transvaginal transmission during natural birth. Puppies were either unable to breathe at birth or were killed immediately following delivery. One puppy was nonviable and deformed at the time of delivery and tissues were not collected. Portions of liver, femoral bone marrow, spleen, heart, lymph node, kidney, and placental tissues were collected from the remaining 3 puppies for parasite culture and PCR.

DNA was extracted from tissue samples with a commercial kit (DNA Mini Kit, Quiagen®, Valencia, California). For each 50-μl reaction, 1 μl of DNA was added to 45 μl of Platinum® PCR Supermix (Invitrogen® Life Technologies, Carlsbad, California) in a 0.5-ml thin-walled microcentrifuge tube. To the reaction tube, 2 μl of primers 13A and 13B were added; these primers amplify a conserved minicircle region of kinetoplast DNA from all species of Leishmania (Rodgers et al., 1990).

Optimal PCR amplification conditions consisted of initial denaturation at 95 C for 2 min; 38 cycles of denaturation at 94 C for 30 sec, annealing at 62 C for 30 sec, and extension at 68 C for 30 sec; and a final extension at 72 C for 10 min. PCR product (1 μl) was used as template DNA in a second 50-μl reaction and was subjected to the same cycling conditions described. PCR products were electrophoresed on a 2% agarose gel and with size markers to detect the 116-bp PCR product. DNA extracted from LIVT-1 promastigotes was used a positive control, and a negative control without DNA was included. To determine the sensitivity of the PCR assay, DNA was extracted from a known number of LIVT-1 promastigotes. Tenfold serial dilutions of DNA were made and subjected to PCR. DNA detection limit was <1 organism.

Promastigotes were not cultured from any puppy tissues. Parasites were not isolated from the sire’s semen culture. The expected 116-bp product was amplified by PCR in liver, bone marrow, and heart tissue from all 3 puppies (Table I). Leishmania sp. DNA was also detectable in spleen, lymph node, kidney, and placental tissues from 2 puppies. No PCR product was detectable in testes collected at necropsy from the sire (data not shown). Leishmania sp. DNA was demonstrable by PCR in uterine tissue collected at necropsy from the dam (data not shown). Placental tissue from the dam was PCR negative. In the placenta. American Journal of Trop-ical Medicine and Hygiene 46: 57–62.

LITERATURE CITED

mania donovani transmission by packed RBC transfusion to anemic dogs in the United States. Transfusion 42: 381–383.

The Finding of Echinostoma (Trematoda: Digenea) and Hookworm Eggs in Coprolites Collected From a Brazilian Mummified Body Dated 600–1,200 Years Before Present

L. Sianto, K. J. Reinhard*, M. Chame, S. Chaves, S. Mendonça, M. L. C. Gonçalves, A. Fernandes, L. F. Ferreira, and A. Araújo, Escola Nacional de Saúde Pública—Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; *School of Natural Resources Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340. e-mail: adauto@ensp.fiocruz.br

ABSTRACT: The identification of parasites from ancient cultures expands our list of parasites infective to extant humans. A partially mummified human body from the archeological site of Lapa do Boquete, Minas Gerais State, Brazil, was recently discovered. It was interred between 600 and 1,200 yr ago. Dietary analysis showed that the mummified body was from a society that had a mixed subsistence of agriculture and gathering of wild foods. Coprolites from the body contained numerous helmhnt eggs. The eggs were identified as those of Echinostoma sp. and hookworm. Hookworm infection in pre-Columbian populations is already established, but this is the first evidence of Echinostoma sp. eggs found in human coprolites. The diagnosis of a true infection, as opposed to false parasitism, is discussed. The possibility of Echinostoma ilocanum infection is discussed, as this is a common species found in humans in the Asiatic region, which could have been introduced in South America in the pre-Columbian period. Alternative possibilities are also considered, including indigenous Brazilian Echinostoma species.

One of the most significant contributions of archeology to parasitology is the documentation of parasite species infective to ancient humans that are not known from the present clinical literature. In some cases, false parasitism is implicated, such as the find of Cryptocotyle lingua eggs in an Alaskan Yupik mummy (Zimmerman, 1998). False parasitism occurs when parasite eggs are passed in the feces of a subject who is not infected with the parasite. In other cases, real infection is implicated, such as the discovery of acanthocephalan eggs in archeological sites of the Great Basin of North America (Fry, 1970). Diagnosing infection from the archeological record is only possible when the physical remains analyzed are of human origin and when the dietary practices of the human population are known (Reinhard et al., 1987; Reinhard, 1988). If these 2 criteria are met, then the possibility of confusing false parasitism with true infection can be reduced.

Archeologists recently excavated the cave, Lapa do Boquete. This site is situated in the Piruçu River Valley of northern Minas Gerais State, Brazil. The region is characterized by cerrado vegetation com-