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Abstract

This thesis details the development and implementation of an attitude and orbit determining
Kalman filter algorithm for a satellite in a Molniya orbito applythe KalmanFilter for orbit
determinationthe equations of motion of the two body problem wepagatedt si ng Cowel |
formulation Four types of perturbing forces were added toptmpagatednodel in order to
increase theccuracyof the orbit prediction. These four perturbing forces are Easthteness
atmospheric draglunar gravitationalforces and solar radiation pressure. Two cases were
studied, the first beinthe implementation of site track measurements when the satellite was over
the groundstation It is shown that large errors, upwardsofety metersgrow as time from last
measuement input increases. The next case studiedcaatsnuousmeasurement inputs from a
GPSreceiver on board the satelliteroughoutthe orbit. This algorithm greatly decreased the
errors seen in the orbitetermining algothm due to the accuracy of the sensor as well as the
continuous measurement inputs throughout the .dtbig shown that the accuracy of the orbit
determining Kalman filter also depends on the length of time between each measurement update.
The errors decresa as the time between measurement updates decidazethe Kalman filter

is applied to determanthe satelliteattitude. The rotational equations of motion prepagated

usi ng CGormuatiohaddsnumerical integration. To increase the fidelityhef model four
disturbing torques are included in the rotational equations of motion mgdeity gradient

torque, solar pressure torque, magnetic torque, and aerodynamic teogueases were tested
corresponding to four differemdn board attitude etermining sensors: magnetometer, Earth
sensor, sun sensor, and star tracker. A controlled altitude path was chosen tcastrdeyof

each of these cases and it was shown that the algorithm using star tracker measurements was
three hundretimes moreaccurate than that of the magnetometer algorithm.
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Chapterl

Introduction

This thesis demonstrates how Kalman Filters can be used tondetea satellites orbit and
atttude Up to date and accurate knowledge of
for a satellite to perform the mission it was designed for @rmmunicate with the satellite
ground stabn. Onboard attitude and orbit determination typically uggs a multitude of
sensors and is computatiolyakxpensive This chaptemwill explain the motivation behind this
thesis as well as the fictitious satellite and orbit used in this Kalman Filter model.

1.1 Background and Motivation

The goal of this thas is to accurately computke orbit and attitudeof a satellitewith as little
computational effort as possible. Although-lamard processingcapabilities have greatly
increased in the pastouple of decads, it is still a priority to minimize the amoutinof
computational effort required by the-board processorahile maintaining adesiredlevel of
accuracy Kalman Filters allow for accumtprediction of a given statat(itude, position,
velocity etc) without requiring expansive past data to be stamddcomputedwhich allows for
efficient orboard computation. The dmard computation, along with the sers that measure
the satelliteorbit and attitude, make up thttitude determination systeofi the satellite. Satellite
attitudedeterminingsystemsvary in size but typically consisif four to five onboard sensors as
well as the necessary processing equipméné goal of this thesis is to develop attitude
determining system which utilizes a sma#r number of sensors antg computationdy
inexpensiveso that it can beémplemened on a small payloadIf a small payload is able to
autonomouly determine the host satelliterbit and attitude it would reduce the number of
interfaces needed between the host and payload, reducing the coynfiexiicomes with
integrating payloads to host satellites. The first step in developing a mininitiéade

determinatiorsystem is to define the physical characteristics of the satellite. This is done in the

following section.

a
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1.2 The Satellite

To accuately estimate the orbit and attitudé a satellite the physicalspects of the satellite
must first be defineThe fictitious satellite used in this thesias a cylindrical shapeith two
solar arrayon either side othe cylinder.Figure 11 shows the dimensions of the satelbiied
defines the orientation of the satellitethe bodyframe.
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Figure 1.1:.Dimensions and orientation of satellite used in this thesis

The satellites dimensions are needed to calculate the moment of inertia matrix, which will
be essentiain determining how environmenttdrqueaffectsthe satelliteattitude The principal
moment of inertia matrix can be calculateing the parallel axitheorem:

0 0 &1 1) i i

wherei s the vector originating at the satelftecenter of mass and pointingthe origin of a

chosen reference framg, ‘O is the moment of inertia matrix for the given object &ds that

objects moment ahertiamatrix with respect to the reference frardeln this case, the origin of

the reference frame is choosen to be the center of the cylinder. The position of each solar array
and connecting rod is defined with respect to the origin of the cylinder. Once the moment of
inertia matrices for each rod anday are calculated with respect to the cylindanigin, they

can be added together:

§O) O O ‘O ‘O ©



The principal axes theorem can be used again to tratistatetal moment of inertia matrix from
the center of the cylinder to tisea t e kenter bfenass.
© 0 ai i) i

Once the total moment of inertia matrix has been formed, eigenvalue decomposition can be used

to find the principal moments and axes of inertia. For this satellite, the principal moment of
inertia matrix is

© T CTT T Tt
@) nm O m T CTT@Ww T
m 1 O T T QT

This matrix will be used to determine how the satellite rotates with respe ¢enter of mass
underenvironmental and controlled torquéssatellite is stable about the major and minagsax
and unstable about the semajor axis. From the principal moment of inertia mati@®,

‘O 'O, therefore this satellite is unstable aboutdhaxis.

Notice that the orientation of the satelite s ol ar aver thapesod of the orlet s
since theywill always be oriented with the normal of the array pointing towards the sun. This
necessity means therincipalmoment of inertia matrix for the satellit@riesdepending on the
satellite posiion in the orbit. Therefore, theeffects ofthe disturbing torques on the satellite,
which depend on the moment of inertia matrix, depend on the position of the satellite in its orbit.
In order to determine the attitude of the satethte position of thesatelliteis neededThis will
be further discussed in Chapter 4.

Not only are the dimegions of the satelliteeededo estimate the orbit and attitude of the
satellite, other characteristics are required, such as center of solar pressure, center of drag etc.
Table 1.1 defines these characteristicshesatelliteused in this thesis

Mass m 800 kg

Average crossectional area A 8 nf

Coefficient of drag Cp 2.2

Coefficient of Reflectivity Cr 0.6

Center of mass 0 0 0
Center of aerodynamic pressuBga 0 0 -0.5m
Center of solar pressur€s, 0 0 -0.8 m

Tablel.1: Characterigcs of Satellite



1.3 The Orbit

For this thesis, the chosen orbit is telniya orbit, seen in Figure 1.Zr’he Molniya orbit is a
highly elliptical orbit with an inclination of 63.4 degrees and pembdne half of a sidereal day.
Inthisorbith e s at el | i Eatlivariesddragtidalty oveomepériod.As seen in Figure

1.3, d perigee thaltitude of the satellités roughly 5000 km and at apogee #igtude of the
satelliteis over 40,000 km. As will be explained in Chapter 2, a satellite at apogee in the
Molniya orbit is traveling much slower than when it is at perigee. This allows for nearly
persistent collectioby a s at e | vhiletae @psgee s neakirgy ahissorbissentialfor
communication satellites.

Molniya Orbit

Top View Side View

Figure 1.2 View of Molniya Orbit used in this thesis

In this thesis, theMolniya orbit was chosen because tb large variation in altitude. Both

perturbing orbil forces and disturbingnvironmentakorques aghg on the satellite vary with

altitude. As shown in Figure 1.3he forces and torques strongest at the safsllapogee are
differentthanthose forces and torques affecting the satellites motion when it is at péigee.

lower altitudes a satellite expences a considerable more amount of drag due to thboEsirt
atmosphere. Also atlomart h or bi t, a satel |l it eblatesessmioch e af f ¢
is theincrease inmass around the equatorial region. At high#itudes, upwards of 10,000
kilometers perturbing forces such as solar radiation pressure and gravitational attraction from

the Moona f f ect t h e . Siree thefolcas inkuénsinglerorbii and attitude of the



satellitevary overjust oneperiod theattitude determinatioaystem must take in to consideration
more perturbing forces and torques than a satatflitn orbit where the attitude does not vary
greatly
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Figure 13: Altitude of Satellite in Molniya Orbit

The ground track of th&olniya orbit is seen in Figure 1.4Vhen the satellite isit
apogee above30 degrees latitugehe satellite is traveling much slower than when it is at
perigee, below30 degrees latitude. In this thesikg fictitious satellite ground station is in
Sydney, AustraliaSincethe Earth rotates 180 degrees durgagh satelliteorbit, the satellite
only passes by this ground station every other ofilsierefore a full day must go by before the
satellite can passver theground statiorand collect orbit determining informatioAs discussed
in Chapter 3, this makes orbit determining algorithms usiibg tsack measurementess
accurate thamlgorithmswith on-board sensordue to the limitedime in which the satellite is
getting measurement updatedso, snce the ground statiom this thesisis located at the
perigee of the satellite orbit, thember of measurements gathered and providédet@nrboard
Kalman filter is even more limited since theund station is only imiew for roughly an hour.

In this thesis &alman filter is used to determine the orbit and attitudéne$atellite in a
Molniya orbit. The algorithm requires an accunawedel to predict the satellitebit and attitude
and thenupdates the predictions withput measurementsom on board sensors or ground
station communicationn Chapter 2the general theory behind Kalméhers is explained. In



Chapter 3, the Kalman filter is applieddetermine theatellite orbitoy first propagating the two
body equations of motionatdena d di ng i n pertur bi noplatthess ces due

=t 120 ~90 =60 30 i) U 50 30 120 150

Figure 1.4: Molniya OrbiGroundTrack

atmospheric drag, gravitational effect of the Moon and solar radiation pressure. Then two cases
are studied, the first being the input measurements coming from the ground gsatigrihe
pointing of the ground antenna tracking the satelliteptovide the satellite with its range,
azimuth and elevatioriFor this case the measurement input only occurs for atbriefonce a

day. The second case uses an-bmard GPS receiver to update the filter with position
measurements throughout the orbit.

Then inChapter 4the Kalman filter method iappliedto determine the satellite attitude
taking in to consideratiothe disturbingtorques a satellite experiences over the period of its
orbit. Similar to the orbit determination, the satellites attitude is determined by propagating the
rotational equations of motion and adding in the following disturbance torques: gravity gradient,
aerodynanic drag, solar radiation pressure and magnetic torque. The attitude determining
algorithm is then updatieusing measurements froome of bur possibleon-board sensorsach
with different error magnitude§ he sensors are: magnetometer, Earth sen&n aensor and
star tracker.



Chapter 2

Fundamentals of Kalman Filters

The Kalman Filter, developed by Rudolf E. Kalman is a linear quadratic estimator that uses a
series of measurements, which contain a level of noisénacduraciesover time to estimate a
systems current state. The Kalman Filter has numerous applications and in this thesis the
Kalman Filter will be used to estimate satellite orbit and attitude using variouypes of

measurement inputs. There are two mainstages t he Kal man Fi |l tege al gor
and then aficorrecd stage In the prediction stage, the algorithm uses models, such as the
equations of motion for an orbiting satellite

the st atteaGsnt i eece phlise eccufsvhenrar neeastirément received The
algorithm updates thestimated state with the measurement data with a certain level of weighted
average. The algorithm then begins the predict phase all over afais.recursive algorithm

TimeUpdate Measurement Update

6at NERA 6a/ 2NNBO

Figure 2.1: The two main steps in a Kalman Filter
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allows for real time state calculation without requiring past data and measurémbeatstored
Since only the currenttate anddata from thenext measurement are required, necessary data
storage is minimal.

The Kalman filter uses measurements and
systems state over tim&he dynamic model is &inear, timevarying finite-dimersional state
space systerdefined as

w0 Oowo U
w0 Oowo U

where @ 0 is the state vectpfOO0 is thestatematrix and0 is the process noisé o is the
observatiormatrix, w 0 is the output vectoandv is the observation noise

Forthis thesis, the Kalman filter is used to determine the orbit and attitude of the satellite. In
the case of orbit determination, the state meit made up of the satelliposition and veloity

relative to an inertial Eartltentered reference frame amsl w6 OO0 OO0 . For
attitude determination, the state vector is made up of anglestasdof the satellitbody frame

with respect to its orbital framev 0 [ I T [ [ | .Thesetwo cases will be explained
further in Chapter 3 and Zhe next few sections explain three types of Kalman filters and their
different elements.

2.1 Kalman Filter

The basic Kalman filtecan beapplied to systems with line@aquations of motion. Thi€alman
Filter uses the state transition matgx,to propagate the stasnd its errorexactly since the
equations of motion are lineafhe inputs of thdilter are the initialstate,& , initial stateerror,

| , the covariance of the process noidle the covariance of the observation noigeand the
measurementst. The covariance of the process nadlews formeasurement noise and enables
the tuning of the filter. Therocess andbservatiomoise isassumed to be zero mean Gaussian
white noise.

The state transition matri)g, is determined using a Taylor series to determine the state
vector at a certain time t.

L L Lyy L
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Substituting inthe dynamic model equatigives

t

h



Therefore,

I+
I+

wherethe state transition matrix is

o y& .
L . e
3Y0 3 A E

The covariance matrixP, of the predicted state vector is calculated from the previous
covariance matrix, the state transition matrix and the covariance of the process noise

I e

The algorithm computes the observation mati®p, once, at the beginning of the
algorithm. For the orbit determining Kalman filter, the observation matrix is
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The Kal man Filter c athmecobasandg bfihe erdcéss mm#e,aadd j usti
the covariance othe observation noisd,. In this thesis,|F and{ are taken to be diagonal and
constant although this does not have to be the Gasteine the Kalman filter, an initial guess for
each of the noise matrices is selected and the algorithm is run. Theattiees can be changed
in order to improve the resultSor the case of orbit determinatjdhe initial guess for the noise
matrices are
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whereA is the expected errors of each state.

Once the initial inputs are definetknative process begins Ipyopagating thestate and error
covarianceover time Once a measurement occurs, the predicted state and errors areedorrect

ThebasicKalman filter is summarized below.

Kalman Filter

Input {= |- Foh[th }

Output{= h|} }

o L
O
€ T
Prediction
1 1

Update
L F a1 = F =
L L L 5 5 <
IF ol 5 |

State Transition matrix

Observation Matrix

Predicted State

Predicted Error Covariance

Kalman Gain

State Estimate

Error Covariance Estimate

10




A Kalman filter is optimal when the model usetb determine the statmatches the real
system exactly and the variance of the noise is known exatttiiis thesis, aither the model
nor the covariance iknown exacty since the state model for an orbiting satellite can only be
estimatedAlso, in this thesis, thequations of motion areot linear and needo belinearizel
before applying the Kalman filter. This is danehe followingsection

2.2 Kalman Filterfor LinearizedSystem

In a Kalman Filtetthe equations of motion that defirke problemare used to develop the state
matrix,"00 ,. In this thesisthe equations of motiomeed to be linearized in order to apply the
Kalman filter. To do this, the partial derivatives of the equations of matidnperturbationare
taken with respect to each element of the state vector. For orbit determurmsatigronly the two
body equatias of motionthe state matriis
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As will be shown in later chaptersueh of the Kalmariilter developments in determining this

state matrix since each perturbing force and torgffiects the final state matrixThe state
transition matrix is calculated once, at the beginning of the algorithm and includes all the

perturbing forces needed to best estimatesthite. This algorithm is summarized below.

Kalman Filteri LinearizedSystem

Input {= Al WA }

Output{= h|} }

L
3 found one time
< y
E 3Y0 1 %
€ I
Prediction

L predicted with CowerkdictedStaMdet hod

Predicted State Update

Predicted Error Covariance

Update
& a3 =
L F 5 1 F T 9 Kalman Gain
1 ® 1 6f L & TRES) State Update Estimate
L L 1o State Estimate

Error Covariance Estimate
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2.3 Extended Kalmakilter

The Kalman filter used in this thesis is the Extended Kalman Filter (EKF). The difference
between théasicKalman filter and the Extended Kalman filter is that the state transition matrix

is calculated at every time step rather thajusttthe beginning of the algorithm. This is required
since the perturbing forces that make up the state matrix chatiygespect to the satellite
position in the orbit and therefore with tinfeo at every time step, the satellite position must be
used to recalculate the state matrix and state transition matrix. This is computationally expensive
but decreasgthe errors in therbit determining algorithmThe summary of the EKF is seen
below.

Extended Kalman Filter

Input {= Al WA }
Output{= A} }

€ L
Prediction

L predicted with Cowerkdic@dckStadet hod

p
3 0

1 af 11 Predicted State Update

F F E Predicted Error Covariance

Update

® a7 =

Lk F 1 3 F 9 s Kalman Gain
1 L & State Update Estimate

L L 10 State Estimate

F o Lk 5 F Error Covariance Estimate
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Figure 2.2shows howat each time stegthe state and errors are propagated ftoft to ¢ f
and then the state and errors are updated when a measurement is phesarited int O .

n ® h -
.f. e ——
| —

Correct

wh Predict

Figure 2.2: Extend Kalman Filter Representation

Chapter 3 will explain how the Kalman filter is applied in order to determine the position of
the satellite in its orbit. The derivation of the state matrix isléhgthiest step in the process;
requiring the development for individual state matrices for each perturbing force and then
summing them in order to get the final state matrix.nTtveo cases are analyzed, the first
providesthe filter with a group of measementsonceaady i n t he f ormnggf t he
azimuth and elevatiofrom a ground statianThe second case predicts the orbit using position
and velocity measurements from an onboard GPS sensor throughout the duration of the orbit.

Similarly, Chapter4 will estimate the satellitattitude by applyingthe Kalman filter
algorithm Once again, the development of the state matrix will require the most work seeing as
how each disturbing torque influences the matrix. Then four cases are studied pertaineng to
four types of on-board attitude sensors.

14



Chapter3

Orbit Deternnation

In order for a satellite to perform the mission it was designed for, it must accurately determine its
location in spce. Knowledge of the satellite location, called orbit determinaisonised Iy
ground stations to commaurige satellite maintainthe orbit from degradatioor to maneuver the
satellite to a desired locatiofhe positionof a satellite is used for station keeping maneuvers,
mission planning and even collision avoidanddéthough space is a vast place, thecurate
knowledge of thdocation of each satellite sssential tgreventintergalactic space collisions
Having an accurate elmoard orbit determining system allows a satellite angrisindstation to
accurately plan missions and the necessmgeuvershat mission drives.

In this chapter, the fundamentals of orbit determination will be explain as well as the
derivation of theorbit determiningKalman filter used in this thesig.o increase the level of
accuracy of the Kalman filtermultiple orbit perturbing forcesare addel to the algorithm,
making the Kalman filter derivation a lengtbut necessary process. First off, the fundamentals
of orbit determination will be explained. Thehg Kalman filter will be developed in order to
accurately determine the satellite orbiingstwo cases, site track measurements and GPS sensor
measurements.

3.1 Defining a SatelliteOrbit

To define an orbit, an inertial reference frame must be developed such that, at any location, the
satellitebds position and velocityaseaaithrbeee de s (
mutually perpendicular vectomhoseorigin remains fixed wth respect to space. Therefore the

inertial reference frame @ne that is not acceleratingowever, there is no truly inertial location

in space since all points spaceare accelerating. Therefore, for any given problem, a reference

15



frame that is as obke to inertial as possible must be selected. In the case of a satellite orbiting the
Earth, an Earth centered reference frame is inertial enough since the motion of the Earth
throughout space need not be considered. The reference frames that will ivethisetthesis are
explained below.

3.1.1 Reference Frames

First, theEarth Centered Inertiakference frame, or ECI frame, is a reference frame with its
origin at the center of the EartAs shown in Figure 3.1, thealxis points in the direction of
Eart hdés v er n aakis peigtutowardsxthe North Bole Kind thaxis completes the
triad and lies within the equatorial planEhe satellités position can then be defined as the
vecbr, Q in this ECI frame

x 10

Y (km) 4 -

X {km)

Figure 3.1: Earth Centered Reference Frame

The ECI frame remains relativefixed over time, therefore the Earth rotates about the K
axis of the ECI frame. Another reference frame needs to be defined that remains fixed with the
Earth and therefore rotates along with Beeth This reference frame is appropriately called the
Earth Centered Earth Fixed reference frame, or ECEF. This frame is similar to the ECI frame
however theO  points towards the location of the prirmeridian or O degreelngitude

Later on in this chapter, another reference frame will be need#etdomine the satellite
position. This reference frame determines the saf@llpesition as it relates to a point on the
surface of the H&h, such as a ground station. The reference frame is called the Topocentric
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Horizon Coordinate System. It is camnly called SEZ since the vectors that make up the
coordinate system point due south and due east from the ground station as well as directly out, or
zenith, from the ground station. Figure 3.2 shows klwevSEZ frame relates to the ECBRd
EClframe.

kO]

Figure 3.2.ECI, ECEF and5EZ Reference Frarge

A satellitebds position c hynhreb parardetessange, b e d
azimuth, and elevation. The range of a satelfite, , is the distance from theatellite to the
ground station. The azimuth of the satellite,is the angle measured from the north, clockwise
to the location beneath the satellite. The elevation of the sat@lliis, the angle to the satellite
measured from the horizon. Theseee parameters can be determined from a ground antenna
pointing toward the satellite and will be used as the site track measuremente of the
Kalman filter cases In order to determine the satellitecation in the ECI frame, using
parameters defineth the SEZ frame, coordinate transformations must occur. A coordinate
transformation takes in to account the rotations required to transform the ECI frame in to the
SEZ frame. Then, any vector in the SEZ frame can be transformed back in to the ECinfdame a
used to define the satellite in the ECI frame. This process is called the transformation of
reference frames and is explained in the next section.
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3.1.2 Transformation between Reference Frames

In order to define a satellites position in tBE€I frame using measurements in the SEZ frame,
the measurementsnust be transformednto the ECI frame. In order to transform vector
components from one reference frame to another, the vector is multiplied by a rotation matrix.
For example, ifavectd? Q Q 'Q needed to be transformed fromab,cframe to au,v,w

frame it would need to be multiplied by a rotation matrix .

Q O U UL Q Y Q

The rotation matrices used to transform the vectorsecin one of three forms depending on
which of the three axes the rotation is about.

p T T AT-O6 m OEF AT—Q NC')E—T-n
Y — m Al© OB+ Y — n p m Y — OB+ AI©OT
n OEF AT-O OB+ nm AT-O Tt T p

Then the final rotation matrix can be developed my multiplyagh of the individual rotation
matrices needed to complete the rotation. For example, the final rotation matrix for a rotation
about the third, first, then second axes is

Y YY'Y

To transform a vector in th8EZ frame to the EC frame, it mustfirst be rotatedcounter
clockwiseabout the Eaxis in order to align the-Axis with the kaxis. This is donéby using a 2
rotation by thenegative ofw 1T 1

AT on m OBN WT O EN n AT1O
Y n WTt m p M T p T
O Eni wn m AT  wm A1 10 n OEN

Another rotation is required to rotate tBexis, which is now théO  axis, to the taxis. This
is done by rotatingounterclockwiseaboutthe K-axis by the angle,, which requires théy
rotation matrix.

AT O OEI_ =

~ ~

Y _  OEI I m

Tt Tt p

So the final rotation comes out to
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The last stepn transforming position vector in the SEZ frame to the ECEF framest the
translation of the origin from a point on the surface offagh to the center of thearth. This is

done using basic addition

i ” i
This transbrmation will be used when measurements of range, azimuth and elevation of a
satellite fromthe ground station are inputted in to the Kalman filter that is estimating the position

of the satellite in terms of the ECI frame.

3.1.3 Orbital Elements

Anotherimportant way to describe a satellebit is using orbital elements. In this thesis, the
effects of the perturbing foes that influence a satellierbit will be described in orbital
elements; therefore a brief overview of these elements is bieee.

Figure 3.3: Depiction of Orbital Elements
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The orbital elements describe the location of the satellite at any given time. Figure 3.3
depicts the orbit of the satellite as an ellipse that is inclined with respect torthe E&d s e qu at
The first of the orbital elements is the semimajor axis of this ellgps€he eccentricity of this
ellipse is the second of the orbital elemestsThe third orbital element is the inclination of the
ellipse with respect to t hei Berightrascensiom qfuhet or i a
ascending nodes, is the angle from thedxis to the ascending node, which is the vector
pointing from the center of the Eartio the point where the orbit crosses the equatorial plane
going from south to noridthe.angl® bebveea thgascaering node,f p e
g,and the |l ocation of the or bdQLlasg, thptaue angmalg,, or
3, i's the angle between the satel QiThege@italc ur r er
elements are all that are needed to find the position and velocity of the satellite in the ECI frame.
Next, the laws thtagovern the motion of a satellite orbiting Earth are explained.

3.2 Laws Governing &atellite Orbit

Kepl amd sN e kavpwhidhswvere firstdevelopedo describe the motion of planets about

the sun are essentiab determme a satelliteorbit. These laws can be appliedany two body
problem whereone body orbits another due to gravitational forces, such as a satellite about the
Earth.

3.21Kepl lawsb s

Keplerds | aws are as foll ows:

1. The orbit of each planet is an ellipse with 8um atone focus.

2. The line joining the planet to the Sun sweeps out equal areas in equal times.

3. The square of the period of a planet is proportional to the cube of its mean distance to
the Sun

Figure 3.4: 11 |1™avtration of Keplerds 2
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Figure 3.dillustratesKk e p | er 06 s , having thath saltebitevwill trace out equal areas
of an ellipse in equal times. In order to trace out equal areas integesa| thesatellite traved
much faster when close to the Earth, at perigee, then when it is at apogee, furthest from the
Earth. Later,it will be shown that thiancreased speedausesincreased errors in the orbit
determining Kalman filter.

3.22 Newto n basvs

N e wt eatdnd law and his law of gravitation @lsoessentibto predicting a satelliterbit.

Newtonds second | aw states t hRisequditethesmassofof al

that body, m, ti meaTherdfoee, bodyds accel eration,
O am

Newtonds | aw of gravitation applies his seco

bodies. Therefore the gravitational force of the Earth, acting on a satellite is

. @ a
@) —_—1i
i
where G is the gravitational cdast. With this equation, the acceleration of a satellite can

be determined from jushes at el | i t eés position relative to t
3.23 Assumptions of the Two Body Problem

There ardour key assumptions of the two body problem and they are

1. The mass of the satellite is negligible when compared to the mass of the attracting body,
in this case, the Earth

2. The coordinate system used to define the motion is inertial

The bodies of the satelliend Earth are spherically symmetric

4. No other forces act on the system except for the gravitational forces of the attracting
body

w

For this thesis,asumpti on 1 holds; the satelliteds mas:
of the EarthAlso, sssumptim 2 holds loosely; the ECI frame is determined to be inertial enough

for this twobody problemThe motion of the Earth through space is negledteavever in this

thesis,both Assumption3 and 4 do not hold, resulting in perturbation forces and distgrbin

torques on the satellitdssumption 3 does not hgldinceneither the Earth nor the satelliteais

perfect sphereTheEarth has more mass about the equatorial region than at the poles; therefore

the gravitational force on the satellite varies betwienequatorial plane dnpoles. Also, lie

satellite is not a sphere, but rather a cylindrical shape with extending solar panels. Fhis non
spherical shape meanstheo r c e f r o m E a rfronhpbist togoinaalongtthe satelite i e s
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body. Assumption 4loes not hold since there are additional external forces such as drag from
t he Earthods at mos p hEhese vaaations totige twmody problen wilda e | | i t
discussed further throughout this thesis.

3.3 Predicting the Satellite Orbit usirtige Two Body Problem

In this thesis, the satelliterbit is propagatedising the laws explained above and a numerical
i ntegrati on me tForouatioo, Xplairedbelewo we |l | 6 s

331 Cowel | 6s For mul ati on

From Newon, the acceleration of a satellite in the two body problem can be described by the
following equation

H Al
O
whereA ' | . However the twebody problem neglects the reabrld perturbation

effects such as at mo sbjatenesslihese mbntuebations, which wilhbee Ear t
discussed in detail in the following sections, create an additional acceleration that acts on the
satellite. This acceleration can be added to theltody acceleration and numericallytegrated

to find amore accurate satelliterbit.

Al
o)

A

Cowel | 6s Rumericallylirtegrates the second order differential equations of motion.
To use this method state vector is developed such as the one below for orbit determination.

W, 1

11 M 11

| A 1l

N |Q‘)|’| |‘ I
w |(H.).’. |U I
Iwn 10
wU w YV

Then the derivative of the state vector is
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Cowel |l 6s method uses numeri cal i ntegration

determine the state vector over time. In this thdgiatlabd s:wumerical integration function
ode45is used tawumerically integrat@ overtime using a fixed the step.

34 Perturbations of the Satellite Orbit

This section is devoted to finding the acceleration of the satellite due perturbing, forces
H . Four perturbing forces will be added to the taady problemexplained in previous
sectionsin order to increase the accuracy of the satetlitét determination algorithmThese
four perturbing oblatanese s Earrteh 6 sEaattrhdspher i c
gravitational force, and the pressure due to solar radiafibe. first two pertusing forces,

E a r tolllafesessnd atmospéric drag, affect therbit of a satellitewhile it is relatively close

to the Earth (~1000 km altitude). Thewffects diminishwith increased altitude. While the
oblatenesand atmospheric drag diminish withialt u d e , the effects of
pressure from solar radiation increase with altitude. Since this particular satellite is in a highly
elliptical orbit it experiences both the perturbing forces that are strongest at low altitudes as well

as theperturbing forces that are stronger at higher altitudes. Therefore the accelerations due to all

four of these perturbing forces are added to the generabdahp acceleration.

H H H H H

341E ar llabesess

As wasexplained in 8ction 3.23 one of the assumptions of the two body problem is that the
satellite and the Earth are symmetrically spherical. The fact that the satellite is not spherically
symmetric will cause aerodynamic disturbing torques that will be sksclin Chapter 4. The

fact that the Earth is not spherically symmetric is addressed herabldtenes®f the Earth

refers to the increase in mass aroundBher t h6s equatori al region.
the equator creates its own gravitatioloate on the satellite
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The perturbing acceleration dueasphericdl he Eart |
potential function

. Yoo .o ... Ve .
Y o-p l—s O OE%o 6r AT @_ Y, OE4_

whereY; is the radius of the Eartbho  and_  are the latitude and longitude of the sub
satellite point on the Eartand0 ;, is theassociated Legendre functions

The acceleration due to the Eart ¢wadentobthd at ene
aspherical potential functian spherical coordinatesith respectta , using the chain rule.

LYY
TP T 10 T% Ti

This then gives the final acceleration in the ECI frame as
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Zonal Harmonics
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Figure 3.5: Zonal Harmoniagsed in this Thesis

For the second order zonal harmonics, as shown in Figure I33,and m=0. The zonal
gravitational coefficient become§ 0 j Tt p Y ¢ apd theo sectorial harmonic
becomesY; Yy 1t For this case, the associated Legendre functions are
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Therefore the final acceleration due to perturbatfomso m E ar t hférsecandhdrdert e ne s s
zonal harmonics is
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This process can be repeated for sectorial and tesseral harmonics until the level of accuracy of
the acceleration due t ImthE thesis, lordybe perturbagidndrone s s 1 ¢
second order zonal harmonigs considered sincat is almost 1000 times larger than
perturbations from ththird order harmonics.

T h e E ablateheéssaffects a satellibebit since the gravitational pull of the bulge
creates secular variations in the argument of perigee and right accession of the ascending node.
Since the bulge around the equator pulls the satellite toward the equatorial plane, the satellite will
reach the line of ades &€, more quicklythanit would for a spherically symmetric Eartfhis
creates a fAspinning topo |ike precession in
el ements are also caused by the harmonics of

3.42 Atmospteric Drag

The next mostinfluential perturbing force for low earth orbiting satellites is the effect of
atmospheric drag The mol ecul es t hatmosphera kreatiictipn ot thee Ear t
satellite, making drag a non conservatperturbation reducing the total energy of the system.

The acceleration of the satellite due to atmospheric drag is

Al Th ey
[& 0 7| H
G | Sh &

H

whereA is the dimensionless coefficient of drdmtquantifies the susceptibilityf the satellite

to drag. The cefficient of dragdepends on the shape of the satellite and in this thesis the satellite
coefficient of drag isA ~ ¢&80 is the crossectional area of the satellite defined to be the area
which is normal to the satelliteelocity vector. In this thesighe crosssectionalareaof the
satelliteis taken to bapi and its mass, m, B00 kg The atmospheric density, is the density

of Ear t hos thacdumeosstijudeef the satllite and is the most difficult aspect of the
acceleration to determine. Not only does the atmospheric density vary with altitude, the density
is affected by temperature, winds, tides and even the location of the ground station. There are
two types of atmospheric models used to determine the density.aféestatic or time varying
models. A static model considers

1 Latitudinal variations variations in the density of the atmosphere due to altitude.
Since the Earth is oblate, when a satellitespasover the equatorial region
relative altitude is less and therefore the atmospheric density is larger.
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1 Longitudnal variations variations in the density due to local altitude, such as
mountain ranges, cause significant variations in the atmosphedelsndue to
local wind, temperature etc.

A time-varying atmospheric model has additional complexities to consider including diurnal
variations in which the atmosphere lags in the direction of the Sun, where it is warmest. Other
affects such as the sun spgtle and even the 2Jay solar rotation cycle create changes in the
Earthdés atmosphere. 't i s extremely difficult

In this thesis, the atmospheric density is determined using the following equations
S

ror A r A
wherer 081p wp m —andE  p T TEN.

The velocity vector used in the calcudet of the acceleration due tragis taken relative to
the Earthoés rotating atmosphere. The rotation
of the Earth. This is an assumption since the rotation of the atmosphere depends on the altitude
when cl| osesurfatebhd&aat moastpeh eire 66l os e , Howevet dsa t of
altitude increases the rate of the atmosphere decreases. The velocity vector is found using the
transport theoremThe relative velocity vectas

AO <
e 5éo||
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Therefore the acceleration due to atmospheric drag becomes:

s

I © O
P2 A 6 0 O O 5.0

O o

As explained earlier, atmospheric drag is a non conservative perturbing force which causes
the satellite to lose energy. This in turn causes a decrease in the orbits semimajor axis and
eccentricity. Therefore, over time, the orbit becomes more circulaharaititude of the satellite
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decreasesTherefore, station keeping maneuvers are required to maintain any satellite orbit
including thehighly elliptical orbit of the satellite in this thesis.

3.43 Perturbation due to Moon

The E ar t habesessantb atmospheric drag play a crucial role in perturbing orbits at low
altitudes (~ 1000 km), however #w altitude of a satelliteincreasesthéloondés gr avi t at
pull becomes a more influential perturbation force. Sineatallite in aMolniya orbit reaches

altitudes upwards of 3®00 km, thirdbody perturbation effects due to thwon are essential to
accurateorbit estimation As seen in Figure 8, the Moon creates a gravitational force on the

satellite in the direction of the Mopmvhich pulls thesatellites orbit toward the lunar plane,
changing the inclination of the orbit.

The accel eration of the satellite due to the

: i P, P
H 1 =—"H I
A O

where"Hand”l are shown in Figure Band defined as

Lunar Orbit

Satellite Orbit

Equatorial Plane

Figure 36: Orientationof Third Body
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Moon

2

Satellite

Figure 37: Diagram of Third Body

The acceleration due to the Moon can be written in the ECI frame as

H - ‘ p _ " " ‘ p "
sl (I sl s
~ i i
l_ :I p l l
' . T
L i I I i I l [
u
[
‘L‘l 1
$|$| Y]
¥
The Sunds gravitational force oceinthibteesisimad el | i t
its affect on the satellite r b i t i's about hal f t hat odffect he Mo (

Theoverallaf f ect of t he Moonds gr iasinilar#the ablataness 6for c e
the Earth, causing perturbati in the line of nodes and argument pdrigee; however the
variationsareabout the lunar plane rather than the equatorial plane.

3.44 Perturbatiordue toSolarRadiationPressure

The final perturbing force considered in this thesis is the pressure created on the satellite due to

t he @daidons Similarly to the Earthoés atmospher.i
friction on the satelliteand thereforesolar radiation gessure isa norconservative perturbing

force. This force decreases the overall energy of the satellite, reducing the semi major axis of the
orbit. There are also annual variations in the argument of perigee and eccentricity due to the
relative location bthe Earth with respect to the Sun over one year.
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Theacceleration of theatellitedue to solar radiation pressure is

a [
Wheref) i s the solar pressure per unOtd&damteea and

form & @ - and the solaradiation constantY™O p ¢ u-s.

9 l_O ﬂg&— ® m ﬁ 8 T i

O B g o T[_o[(_ PP a PP =

Reflectivity of the satellite®, is typically between 0 and 2, and @s6 for the satellite in this
thesis.The exposedurfaceareaof the satelliteto the sunpy , is taken to be 14 frsince both

the solar arrays will be facing the sun at all time and the surface area of the central body will
vary from 3to 8. i ¢ is the vectofrom the satellite to the sun, therefore

Substitutingin this vector gives the acceleration of the satellite due to solar radiation pressure in
the ECI frame as

Notice, knowledge of the location of the Sun is required to determine the acceleration of the
satellite at any given point. Imti s t hesi s, the Sunés position i
period in which the orbit is determined. Each
be inputted and thegerturbingacceleration recalculated.

3.45 Summary of Perturbation Foas

To summarize, the acceleration due to each of the perturbing forces explained above can be
addedtothetwbody accel eration and numer positohdng i nt e
velocty. The numeri cal i nt egr atodedswhich istegrdtesntletimal s i n g
derivative of the state vectoh plot of the perturbed and unperturbed orbit is seen in Figure 3.8.
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The inputs needed to calculate the perturbation acceleration are the position of the satellite, the
latitude and longitude of the swgatellite point and the position of the Sun and the Moon relative
to the center ofite Earth.The position of the Sun and Moon relative to the Earth is taken as
constant for the period of the satellite and therefore can be inputted once at the beginning of the
algorithm. The sufsatellite point changes over time and therefore will nedaetoecalculated
with each time step. At each time step,

A 1 L
— — 35YO %o i"Qéi— _ bd)éi— —

where—is the Greenwich sidereal timéherefore the final initial inputs neededdompute
the perturbation accel easitoh,ivaonity and earacteristegbe s at e | |
Earth to Sun vector, the Earth to Moon vector and the initial Greenwich sidereal time.

x 10

Satellite Orbit with Perturbations

Unperturbed Orbit
Perturbed Orbit
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Figure 38: Unperturbed and perturbed orbit using allif perturbation accelerations
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3.5 Development of State Matrix with Perturbing Forces

The state matrix F, is made up of thequations of motion that defirtee problem therefore it

must be calculated for each thie perturbing forces in order to apply the Kalman filter to orbit
determinationMuch of the Kalman filter development is in determining this state matrix since
each perturbing force and torque affettts final state matrix. fle state transition matrialso

needs to be linearized in order to apply the Kalman filter. To do this, the partial derivatives of the
equations of motion and perturbations are taken with respect to each element of the state vector.
For an orbit in which no disturbing forces are consdethe F matrix is only dependent on the
2-body equations:
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Once again, théour types of disturbing forces considerat nonspherical, drag, -Body and
solar radiation. These disturigiforces needo be added to the F matrix so that they become
incorporated intothe state transitio matrix 3. Luckily the F matricesfor each disturbing
forces can be combined in the following way:

Thereforethe state matrices for each of the perturbing forces need to be developed. This is done
by takingthe partial derivativesf the perturbing acceleration with respect to the state véwator.
the following sections, the state matrices for each of the perturbing accelerations are determined.

351lEart hdos Obl ateness

In Section 3.1, the accelerain on thesatellitedue to a non spherical Eastlas determinetb
be
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Appendix A shows how each of these partial derivatives are found. Below is just tlod first

partial derivative of the acceleration with respectgosition
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Although the derivation is lengthy, once programirieth e st at e

depends on the current position of the satellite.

35.2E a r tAtmaspheric Drag

In Section3.4.2,the acceleration due tonabspheric drag was defined as
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The state matrix is then
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The state matrix for atmosphertrag perturbations changes with time and depends on the
current position and velocity of the satellite.

353 Moonds Gravitational Force

The acceleration of the satellite due to t
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The state matriis then
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Once again, the position of the Moon is assumed to be constant over the period of the satellite
orbit, so the state matrix for the lunar perturbations only depends on the current position of the
satellite.

3.5.4 Solar Radiation Pressure

Finally, theacceleration of the satellite due to solar radiation pressure is

. Ly 1
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) g s

i, i L, L i L
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Therefore the state matrix becomes,
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After theinitial values pertaining to the satellites reflectiygyrface areaetc.are inputted along
with the position of the Sun, the state matiox solar pressurenly depends on the current

location d the satellite.

Now that each of the state matrices for the perturbing fdnesbeen defined, they can be

summed to get the final state matrix to be used in the Kalman filter.

€
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3.6 Kalman Filterimplementatiorfor Site Track Orbit Determination

The first of the two cases studied inisthhesis determines the satelliterbit using input
measurements from a ground stations site tradkeMithe satellite passes in viewtloé ground
station antennathe antenmas o r i ana sigadl colbeatiordetermines the satellite range,
elevation andazimuthand relays this information to the satellite evénye step For theorbit
and ground station used in this tiseshe measurements are received onaxyetwo orbits, or
once a day.

Estimated Orbit

Orbit Prediction
Refined with
Ground Station
Observations

Figure 3.8: Visualization of Orbit and Occurrence of Measurements from Ground Station

The range of the satellite, is determined using the following equation
Yo
G
where c is the speed of light ai¥d is the total time required twansmitthe signal to the
satellite and then receive a signal from the sateRitange accuracy using this type of calculation

has errors of about 3 meters. The range fateés determined from the frequency shift of the
signal, or Doppler shift.

”

where_ is the wavelength of the signal aifelis the change in frequency of the signal from
the initial frequency sent by the antenna and the frequency that the satellite receives. The
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azimuth and elevation of ¢hsatellite are determined using the gimbal angles from the antenna
when collecting the satellite signal.

Orbit Prediction Refined
with Observations

EstimatedOrbit

Ground Station measuring and
transmitting range, azimuth,
elevation to satellite

Figure 3.8: Visualization ajroundstationcollecting and sending range data to satellite

The state matrixound in the previous section applies to all orbit determining cases in this
thesis. The difference between the two cases, site track and GPS sensor, lies in the form and
occurrence of the measuremeiriputted into the Kalman filter. For the site traclase, the
measurements are in the foafrange,” , azimuth} , and elevatiorQ) cwhere

I 0"Y0 0 —

Qa 0 "Y'Ou

In the case of orbit determination using site track observattbesH matrixis complex
since the measurements are in the SEZ reference frame and need to be transformed in to the ECI
frame. This is done using the chain rule

,,OTé&)i'Qiocbb'@chi T E€Qi 1O To
1o T & T T T
T € Qit” T 1 € it T
T R EEE T KR

From the definitions of rangé,, azimuth} , and elevationQ @he partialderivatives of each
with respect to the position portion of the state vector in the SEZ faaene
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In Section 3.1.2he rotation matrix needed to transform the SEZ to an earth centeredifeame
defined as
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wheren  and_ arethe latitude and longitude of the ground station.

Finally, sincei 1 " ,andvu ”
) .I, ) ]
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The observation matrix is then

T E O Q1 LoD E
0 - . . Tt
T® 1 !

Now that both the state matrix and observation matrix have been determined, the orbit can
be estimated by running thEalman filter algorithm over multiple orbits and imputing
measurements when the satellite is over the ground st&@idy.one ground station was used
throughout this thesis, therefore the measurements are sent to the satellite once a day when the
satellte is over that statiolA sample set of site track measurement data is seen in Tablen8.1.
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measurement errors of the site trackassumed to b@.1 degrees for anuth and eévationand
3 meters for range.

Measurement Range,”, (km) Azimuth,f , (degrees)| Elevation,Q degrees)
1 1338 240.8 17.9
2 1816 160.3 45.2
3 2824 128.4 50.7
4 3531 116.2 51.0
5 4329 107.1 52.4

Table 3.1: Sample set of site track data

Figure 3.10 shows¢he actual and predicted orbit obtained using the orbit determining Kalman
filter with site track measurements.

Orbit Determination with Site Track Measurments

Actual
- Predicted
+  Measurments

Figure 3.10: Predicted and actuabib determinedising site tiack
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Orbit Determination with Site Track Measurments

-520 Actual
Predicted o
-525 - * Measurments
-530
-535
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-545 -
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-555 - ”
ssof
1 | 1 1 1 1 1 1 |
1.8165 1.817 1.8175 1.818 1.8185 1.819 1.8195 1.82 1.8205
4
¥ 10
Orbit Determination with Site Track Measurments
-540.7511 | Actual
Predicted
-540.7511 S Measurments |
-540.7512 -
-540.7513 - i
-540.7513 -
-540.7514 -
-540.7514 -
1 1 1 | | 1 1
1.8185 1.8185 1.8185 1.8185 1.8185 1.8185 1.8185
4
¥ 10

Figure 3.1: Close up oPredicted and Actual Orbit Determinasing Site Track

Figure 3.11 shows sample sections of the orbit with the predicted, actual and measurement
data plotted. It shows how the Kalman filter takes in to account the measurement as well as the
past position in order to best predict the curtecation of the satellite.

Figure 3.12 plots the difference in actual and predicted orbits. The plot isnaveeriods
The errorincreasess time from last measurement update incredsesalgorithmwasiterated
over multiple orbits andlays;however theerrorsdid not seem to decrease muah shown in
Figure 3.13.

Although, the site track method has quite a bit of errors, if they are within the
requirements for the satellite, this method is computalipteds expensivand requireso on-
board sensoraunlike the next case, in which an moard GPS receiver is used to input
measurements of position and velocity in to the Kalman filter at each time step throughout the
orbit. This case has much smaller errors but forces the algorithm to upskte with
measurements multiple times a second, which is computationally expensive.
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Error in Orbit Determined by Site Track Measurements
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Figure 3.2: Error of Orbit Determined using Site Tracker one Orbit

Errar in Orbit Determined by Site Track Measurements
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Figure 3.8: Error of Orbit Determined using Site Tracker multiple orbits

43



3.7 Orbit Determining Kalman Filter Implementation with GPS

The same method used in Sect®fican easily be applied to the caseng measurements from
anonboard GPSensor The only differences are the observation matiixand the frequency in
which the algorithm corrects the predict phase with measurements

For the case of GPS sensor date in the form of ECI position and velocity, the observation
matrix is simply

GO FO FO O O FO,
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FO O O T O ﬁ:ﬁ:
O TO TO TO T To, o0 B0 DD
o 1EOI QI VBRSO TO O TO TN npp o nonom o,
T W OO O O O ! amnnm opomow
o O FO T TO TO, !mmom omop m
- - - . - ooy v
W O OO OF OFOn T T Tmp
O FO TO TO T ﬁ:ﬁ:
| o O O O W,
yF0 O FO RO O FOU

The state matrixF, is the same as it was in the site track case, since it is independent of
what type of measurement is usBldw the Kalman filter is ruinputting measurements owve
entire orbit rather than just a brief tirdaring ground site overpasgich results in a much more
accurate pradtion of the satellite orbitThe simulated GPS measuremewtse created using
therand functionin MatLabwhich producesiormallydistributed pseudorandom numhbarsing
a chosererrar and rateThe error for the sensor used in this thesis is 0.5 meters

Figure 3.14 shows the actual orbit and the predicatbit and Figure 3.15 shows the
element break down of the position vector. Figure 3.16 and 3.17 then show a close up of the
actual and predicted position.

Figure3.18 shows the errors seen between the actual and predicted orbit over onélorbit
measurements inputted every secoRigure 3.19 shows the errors over one orbit with
measurements inputted every two minuiése got beginsand endst the orbits perigee, where
the satellite is traveling much faster than at apogee. Therefore, the distance traveled between
each time step and measurement update is greater than when it is at Apegestingly, the
errors increaswhen the satellite is a perigee due to this greater distance between measurement
updates. This increased error at perigee is not seen when the time step is one second. Therefore,
the accuracy of the orbit determining Kalman filter depends on both theaagcaf the
measurements as well as the time between updates.
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Figure 3.4: Error of Orbit Determined usin@GPS sensor

Orbit Determined Using Kalman Filter with GPS Measurements Every Second
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Figure 3.7: Zoomedin orbit determined usingsPSsensor
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« 10" Orbit Errors Over One Period with GPS Input Every Second
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Figure 3.8B: Errors inorbit determined usin@PS sensor with measuremeptiates every second
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w107 Orbit Errors For Varying Time Intervals
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Figure 320: Mean errors in orbit verse tinbetween measurement updates

Figure 3.20 shows how the decrease in time between measurement updates decreases the
errors of the orbit determining Kalman filter. This shows the importance of both an accurate
measurement as well as a small time betweensunement update. The decrease in time
between measurement updates increases the number of iterations per second the filter must
compute, increase the computational effort. Therefore when designing an orbit determining
algorithm, a trade study can be penfied to find the largest time interval that meets the desired
accuracy requirements.

In summary, lie orbit determiningKalman filter designed in this thesis is clearly more
accurae¢ when run with GPS measurements upd#teaughoutthe orbitthan using sétrack
measurement$iowever if the GPS receiver somehow failed, the orbit can be determined using
a ground station site track. This allows for odeterminatiorredundancyor the satellite. Now
that theorbit has been determinethe satellite attitde will be determined using a similar
method. Theotationalequations of motion will be defined and the attitude will be estimated,
taking in to consideration environmental forces on the satellite. Then the Kalman filter will be
defined and implementadsing a multiple of attitude determining sensors.
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Chapterd

Attitude Determination

Similarly to orbit determination,agellite attitude determination is an essential pafria satellite
mission.Determining and controllinghe attitudeof a satelliteallows forsuccesful pointing of
the satelliteantennas, sensors and solar arraysrder br a satellitedo successfully perform the
mission it was designed for, it must be able to accurately estamdteontrolits attitude.Also
similar to the orbit of a satellite, the attitude of a satelliggffiscted by theenvironment in which

it is in such a®y atmospheric dragr solar radiation pressur&hese environmental forces create
disturbing torques on the satellite that need to benagtd in order to accurately determine the
attitude of the satellite.

4.1 Representing Attitude

The attitude of a satellite is defined as the
a constant reference frame. The next section defireeseference frames used in determining the
attitudeof the spacecrafh this thesis.

4.1.1 Referencdrames

In order to define a satellites orientation, an orhiederenceframe, consisting of a triad of
orthonormal vectors, must be defined. The orbital frame is constant entai variationswith,

o ,poiningi n the direction of t he s &éciohd.liltTkeds pos
attitude of a satelliteis he ori entati on of t hespectta thie drbitalt e 6 s
frame, shown in Figure 4.1.
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Figure 4.1: Orbital and Body Frame Representations

The angles between the body frame and the orbital frame are called Euler angles artialefine
orientationof the body frame with respect to the orbital frame

4.1.2 Euler Angles

A satellite’s orientation can be described by three anglgléed Euler angles. Each Euler angle
represents a rotation of the body frame about an axis of the orbital frame. These Euler angles are
commonlyreferredto as roll, pitch and yawror a satellite, roll is the rotation of the satellite

aboute the satelliteds position vect aboutr Yaw i s
Last, pitch is defined as the rotation abeut the satell i fTreddl EWee |l oci t
angle—, is theangle withwhich the body frame rotates about In other words, the roll angle

is the angle between the boftgmeand orbital frame along the and = axes. Similarly, the

yaw Euler angle—, is the angle with which the bodyame rotates about . Last,the pitch

Euler angle;—, is defined as the rotation about. These angles are summarized in Figure 4.2.
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Pitch Roll

Figure 42: Euler Angles

Similar to the rotation matrix created to transfottme SEZframe to theECI frame, rotation
matrices are developed to represent a rotation about each of the three possible orbital axes.

Below ae the corresponding rotation matricesralt pitch and yaw.

p NT[’ 'T[,A
Y — Y — mnm AT-6 OE+F
n OB+ AT-©

AT© nm OEL
Y — Y — mTop T
OB+ m Al-©
AT-© OE+ m
Y — Y — OEF A6 m
T T p
Combining these three rotatiogwes the rotation matrix.
Y Y —Y —Y —
AT-OAT O AT-OOEIOET AT-O0EF OEIOEL AT-OAT-O0ETL
Y AT-O0E+L AT-OAT-O OEIOEIOEF AT-O0OEIOET AT-O0EL
OEt AT-O0E+ AT-OAT-5
This will be therotation matrix used to transform any vectors in thrbital frame to the body
frame.The same process can be used to determine the rotation matrix needed to transform any

vector in the body frame to the orbital franiNext, the rotationaéquations of motion must be
formed in order to propagate the satellites attitude over the orbit.
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4.2 RotationalEquations of Motion

The equations of motion for the saitellrotating about the orbital frame is derived using the
satellites angulamomentumand moment of inertjadefined as

I o

'| P
whereo | — and is the time derivative of the Euler angles.
1

From Eul éeihesderivative f thie satelli@gular momentuns then
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and Ws the torque acting on the satellite.
By rearranging the equation
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where) for the principal moments of inertfaund in Section 1.%
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Therefore the final rotational equationsnodtion are
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As done in Chapter 3,

t he

Cowel |l 6s Formul at

mation to propagate the satelliggtitude over time using numerical integration. The state vector

is defined as
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Also seen in the previous chapter, perturbing forces, or in this case disturbing torques, are
added to the angulaacceleration in order to best estimate the attitude of ahellite. The

disturbingacceleration islefined as
.l_

=l
] [ ]
7 | j’-_ﬁ
1 1'0n

( T_l’l

uow

Similarly to Chapter 2, the disturbing torques can be summeddthintotal disturbancen
the satelliteattitude. In this thesis, four disturbing environmental torques are considered as well
as a control torque, which will counteract the disturbing torques and orient the satellite to the
desired pasion. Thetorques are summed together below

T T T T T
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4.3 Disturbing Torques

The four disturbing torquestudiedin this thesis aregravity gradient torque, solar radiation
pressure torque, magnetic torque and aerodynamic drag torque. These are theodbur
prominent environmental torques experienced by a satellite in a Molniya orbit. Bigusteows
generally how the magnitude of the four disturbing torques vary with altitud&ince the
Mol ni ya or isimiarsto alEDO orbitudhike at perigee and a GEO orbit while at
apogee, all four torques must be considefidte magnitudes shown in Figure 4.3 also vary
depending onhte satellite shape and weight.

Aerodynamic

Gravity

Torque Influence

Solar Pressure
e —
¥ Magnetic

1.000

Altitude (km)

Figure 43: Disturbance Torque Effects vs. Altitude

In the following sections, the angular acceleratiore toeach of the disturbing torques will be
derived. Then, in order to implement the Kalman filter, the state matrix, F, made up of the
accelerations partial derivativeaust be determined.

4.3.1 Solar RadiatiorPressurdorque

Particles and energy fronmé sun bombard the satellite throughthg orbit creating pressure
and torque on the satellite. The torque is
mass is not the location of the satefiitecenter of solar pressure, as it is in thissitheThe
variations in the satellitattitude due to solar radiation pressure torque are periodic and depend
on the reflectivity of the satellite as well as the direction of the sun.
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The solar radiation torque can be calculated using the folloagogtion
0, o y v
T zoP 1 AlO ¢ wa

where Ois the solar constant (1358 WAmc is the speed of light, and A is therface area
of the satellite that is towards the Siie reflectancéactor,q, the center of solar pressuce, ,
andthe center of masm are all characteristics of the satellite and must be taken in to account
during its design. See Tahlel for these quantities. Last the incidence angle of the sun is
which determines the direction of the disturbiogyue

S 3\

\%@

Figure 44: Sunlight on Satellite

Similarly to the solar radiation pressure perturbing force calculated in Chapter 3, the vector from
the sun to the satellite must be inputted in to the Kalman filter in order to detethan
disturbing torque created by the pressure. The vector from the sun to the satellite is
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Figure 45: Incident angles of Sunlight with respectBody Frame

Then the incident angle of the sun with respect tdotdy/ frame can be defined by the angles
and’ shown in Figuret.5as

N vy S 1w Y
| 0owe — 1 Qe ¢

S

Then the disturbance torque due to solar radiation, representedyfeame is

TG 6A"I"p 6 <I>a o bAT OY
+ T =p n 60ENT 6 ®a —=p 1 6 0ENY
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The center of pressure and center of mass components are equal except for atonagxiae
Assuming the satellite is always oriented such that the normal vector of the solarsaahagys
pointing toward theSun;the solar radiation pressure torque creates a motibnabout thed
axis, or pitch angle.

4.2.2 Gravity Gradient drque

One of the assumptions of the two body problem was that the Earth and satellite were spherically
symmetric.Chapter 3 discussdtie effects due to Earth not being spherically symmetric, now

the fact that thesatellite is not spherically symmetmdgll be addressedAs previously explained,
Newt onds | aw of gravitational force states
proportional to the distance the satellite is to the central [®idge the satellite in this thesis is

not sphericallysymmetric, the portion of the satellite closest to Earth will experience a larger
gravitational force than the portion furthest from Earth. The difference between the gravity
experienced by the closest and furthest part of the satellite is called thg gragient.
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Figure 47: Gravity Gradient Torque

The gravity gradient creates a torque given as
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4.2.3 Magnetic Field Torque

Magnetic field torque s caused by the interactions bet we g
residual magnetic dole of the satellite The torque depends onthear t h6s magdnet i c
therefore i variesdepending on the sdkei t e Gos in jtsoosbit The distubing torque due to
Earthdés magnetic field is

T O o

where D is thes a t e Irekidual difioke an® is thestrengthand directionof theEar t h 0 s
magnetic fieldat the radius of theatellite. Therefore, to calculate the torque acting on the
satellite a model o f or a magnetdreteris heqused onabgardethei ¢ f |
satellite. Usinganeb oar d model of the Earthoés magnetic
does no require a magnetometer sensor on board. A magnetometer will be explained in the
following section.

4.2.4 Aerodynamic Torque

Aerodynamic torqueis aused by particles in the Earthos &
t he s ademtdr bfimass @rsd center of dragg not cdocated the particles hitting the
satellite create atorqu€.i nce the torque is caused by the E

altitude increases, the aerodynamic torque decrefisedorque on the sdtite is

P,v nn v
T -"06 0L O wa
C
where0 is the coefficient of drag for the satellit®,is the crosssectional area andis the
velocity. 0 is the center of aerodynamic presstrés the atmospheric density and cm is the
satellites center of masslhe atmospheric density model explained in Chapter 3 can be used
again here to determine the atmospheric density at the current location of the satellite. Similarly

to the other disturbing torques, knowledge of the location of the satedlinecessary to
determine the torque acting on the satellite.

To summarize, the four disturbing torques consideiredhis thesis are gravity gradient,
solar radiation pressure, graeticand drag. These torquasgdtogether to form thelisturbance
torgueseenin the equation for total torque

T T T T T T T T

The next step is to define the control torque needechdneuver the satellite in the desired
motion.Once the ontrol torque is determined the final equations of motisitisoe numerically
integrated and used as the Apredictionod phase
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44 Attitude Control

In order toperform adesiredmission, a satellitenust not onlyaccurately determinigs attitude
but control itsattitude Thesatellitein this thesis usesothcontrol moment gyroand thrusters to
control the attitudeControl momentum gyro€CMG) are a commdwy used in satellite attitude
controlsystemssince theyhave low power requirementS8MGs are made up of a spinning rotor
and motorized gimbals thaisethe conservation of angular momentum chamge the satellite
attitude. The spinning rotor is tilted by the gimb@isreate a gyroscopic torqtigatchangs the
satelliteattitude. Another form of attitude control is thrustéFhrusters are attached along all
three axis of the satellite and pasited at the satellite senter of mass. Fuel consumption and
hardware degradation are the limiting factors of gtets. In this thesis, it is assumed that the
s at e ICMGsand thraisters are able to change the attitude of the satellitedegined control
motion seen ifrigure 4.11.

Figure 411: Desired motion of satellite

As derived in the previous section, the rotational equations of motion applied in this thesis are
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