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Modeling Cable Har ness Effects on Spacecr aft Structures
Kaitlin S. Spak
ABSTRACT

Due to the high mass ratio of cables on lightwegpdcecraft, the dynamic response of
cabled structures must be understood and modelecadourate spacecraft control.
Models of cable behavior are reviewed and categdrimto three major classes
consisting of thin rod models, semi-continuous n&dend beam models. A shear beam
model can predict natural frequencies, frequensgarse, and mode shapes for a cable if
effective homogenous cable parameters are usedh@gsi Thus, a method for
determining these parameters from straightforwalllec measurements is developed.
Upper and lower bounds for cable properties of ,adeasity, bending stiffness, shear
rigidity, and attachment stiffness are calculated shown to be effective in cable models
for natural frequency prediction. Although the lesbinvestigated are spaceflight cables,
the method can be applied to any stranded cablevfoch the constituent material

properties can be determined.

One aspect unique to spaceflight cables is thedukequirement, a heat and vacuum
treatment required for flight hardware. The effeftbakeout on spaceflight cable

dynamic response was investigated by experimentiytifying natural frequencies and

damping values of spaceflight cables before andratie bakeout process. After

bakeout, spaceflight cables showed reduced na@gliencies and increased damping,
so a bakeout correction factor is recommendeddading stiffness calculations.

The cable model is developed using the distribtri@aisfer function method (DTFM) by
adding shear, tension, and damping terms to egigider-Bernoulli models. The cable
model is then extended to model a cabled structBeth the cable and cabled beam
models include attachment points that can incotpdraear and rotational stiffness and
damping. Cable damping mechanisms are exploredimwedhysteretic damping predicts
amplitude response for more cable modes than wsawustructural damping. The

DTFM models are combined with the determircatble parameters and damping



expressions to yield frequency ranges that agrée exiperimental data. The developed
cabled beam model matches experimental data moselgl than the currently used
distributed mass model. This work extends the tstdeding of cable dynamics and
presents methods and models to aid in the anabfsistranded cables and cabled

structures.
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Chapter 1: Introduction

Cables appear in a wide variety of applicationsameven wider variety of sizes and
configurations. From support cables made of shéeel used to support thousands of
pounds to small shielded copper cables used foitrtiresfer of electrical signals, the
analysis of cables has been related to the tablrat; for the support cable, the failure
load is of primary importance, while the signal leais evaluated for its electrical
properties. However, as engineers design more lexmgructures, the luxury and
simplicity of evaluating only one aspect of a matelis disappearing. In cabled
structures, it may soon be insufficient to knowt jtiee electrical properties of a cable;
cables may be called on to provide structural suppeinforcement, or damping as well
as signal or power transmission. To that everguadl increasing knowledge about the
structural properties and behavior of electricdlles and cabled structures is a logical

starting point.

The purpose of this research is to investigatedghmamics of cable harnessed structures
using experimental data and small-order analyticatlels with the goal of discovering
some of the effects that attaching cables to atstre have on the dynamic behavior of
the combined system. In this work, the vibratiesponses and damping characteristics
of spaceflight cables are investigated to charetethe effects of cables attached to
space structures, although the methods developeddvie applicable to any stranded

cables made of multiple constituent materials.

1.1 Motivation

The term “cable” encompasses everything from snwi$ted-pair wires to massive
structural cables used for stabilization of bridgd$e vibration of steel cables used for
construction stabilization has been studied to gmestructural failure or collapse, but
little work has been done to characterize the vidmnaresponse of smaller electrical
cables, such as those used for signal transmissi@pace structures. Since advances in
material science have increased the strength tghiveatio of structural materials used
for spacecraft, the cables and wire harnessesfassgace applications make up a much

larger mass percentage than in the past, and mbrahd movement of the cables can



affect the movement and resonance of the struetsit@ whole to a much greater degree
than in heritage spacecraft. This work is motidate part by previous attempts to
understand the effects of cables attached to satetructures that have not been
particularly successful. In investigating thilplem and studying previous efforts it
became clear that the cables themselves have loeely pmodeled. Hence, a good deal
of the subsequent work addresses cable modelingeapdrimental validation. The
addition of the investigated cables to a beam &irads the culmination of the progress
achieved in understanding the dynamics of the sahlemselves. Analysis of the cabled

beam provides a stronger base for future workendynamics of cabled structures.

Cables have remained essentially unchanged fordtiration of space exploration;

although insulation and jacketing materials havenbienproved to reduce their weight,
the conducting metallic core remains comparativiebavy. Space structures have
increasingly complex signal and power requiremesscabling is always present, and
cables now make up a significant percentage oftaked mass of the structure. Ten
percent is a typical design value for cable massgmage for a NASA flight center, with

4-15% of structure mass made up of cables for aégenall spacecraft recorded by the
ESA Guidelines for Spacecraft Power and Signalsgeported in [1]. In some cases,
the cable mass percentage may even be as highva$13?]. Figures 1.1, 1.2, and 1.3
show a few examples of cable harnessed spacewstsdb illustrate the proliferation of

cables across the structure in each case. Figuresiows a recently assembled
spacecraft with significant cabling across its treldy lightweight aluminum panel.

Figure 1.2 shows just one section of cabling on rdmently deployed Mars Science
Laboratory, "Curiosity”"; the orange color of theblss is due to the Kapton tape
overwrap. Figure 1.3 illustrates the variety obles that may be found inside a

spacecraft, as well as the cable tie attachmertiodetommonly used.
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Figure 1.1: Cables of various sizes attached totanior panel of the SMAP satellite due
to launch in 2014. Image courtesy NASA/JPL-Caltech
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Figure 1.2: Kapton-wrapped cables on the Mars Rt@ariosity". Photo copyright
Joseph Linaschke, used with permisSion

! Photo accessed from www.photojoseph.com/curiosity



Figure 1.3: Chles and wires inside the l(Sat spacecraft (assembl®d2002), showing
the typical cable tie attachment mett Image courtesy NASA/Goddard Space Fli
Center, public domain.

Traditionally, @bles have been modd as alumped mass, where the total mass of
cable was summed and added to dynamic models a@istanpass at the center of grav

In recent years, slight improvements have been satandistributed mass mode For
these models, the cable mis included by changing the modeled density of a sire
wherever a cable is present, or by applying foteased on the weight of the ca

However, since the addition of cables to structsigsificantly changes both the amoi
of damping and resonanfrequencies of the combined structtimeough their interactio
with the structure at attachment po, it is clear that cables actually act as strudt
massrather than lumped odistributed mass Since space structures eétypically

controlled remotly without visual confirmation, it is important thenodels of the spac
structure reflect its movement and response aayratn addition, dynamic testing

space structures is often performed before thectsirel is fully dressed with cable
Knowledge of the vibration response of a structure iessary both fc failure analysis
(relevant forevents such as launch or deployment), anddeveloping an accura

control system that relies on dynamic informatibouat the structure



To model cables on structures, either the ins@fficend overly simplistic lumped mass
model is used, or structure density is changea@nimattempt to distribute the cable mass
across the structure along the cable footprint.ithide of these approaches take the
bending stiffness or inherent damping of the caiile account. Cable damping is poorly
understood; damping mechanisms include frictiorwbet the cable wires, material
damping within the wires, shear due to the viscsiglgacketing material, and viscous
damping in air, among others. Even the cable ptiggeare difficult to determine, with
past research showing that the bending stiffnesheotable varies as a function of wire
interaction between layers. There is currentlyel@ble and predictive cable model to
accurately determine the natural frequencies amdptey characteristics of a cable by
simply inputting geometrical cable parameters aatlennl properties. This is partly due
to the poor understanding of the damping mechanassranded cables, as well as the
as-built variation in cable sections of the sanpetgnd geometric arrangement, and the
difficulty in determining global cable properties begin with. Cable manufacturing can
be mechanized to minimize cable variations, butcthraplicated wiring layouts required
for space structures often require hand-built cotioes, splices, and splits. Hand-built
cables show significant variation between testhadi[1]. Cable properties are difficult
to resolve into a single value for the entire cabbbles have many variables (e.g., lay
angle, lay direction, wire material and compositiageometry, and shielding and
jacketing material) that make it difficult to geakre results across different types of

cables.

Therefore, a cable model that could predict theadyio response of the cable within a
certain confidence interval based on the cable toact®on and properties, rather than
costly and time-consuming testing, would be a Malidool to incorporate into cabled
structure models. The developed cable model wbeld valuable addition to the field of

mechanical engineering and thus the motivatiortisrwork is established.

1.2 Challenges

Cable terminology spans a vast range of cable egtpins, with some terms used

interchangeably and other terms varying by auth@oarce; since much past research on



cable dynamics was performed for non-conductingcsiral cables instead of electrical
cables, terms such as "wire" and "cable" can beiguobs. Initial research included

identifying common terms for structural and elexticables and determining where
differences were implied. Identifying the simitaes between spaceflight cables and wire
rope was a significant step in exploring the backgd research and brought new
insights into the current work. The available rhtire on cable dynamics, structural
cables, and spaceflight cables that motivated 8pecesearch questions for this

dissertation is discussed in detail in the nexptra

Since cables are not homogeneous but are made wired that can move relative to
each other, internal damping occurs due to frictidiis internal damping is difficult to
model, so the first challenge is to model flexibebles, including damping, accurately
enough to study the effect of cables on host sirast Previous research shows that
shear beam models, which take shear effects intouat, are more suitable for cable
models then the much simpler Euler-Bernoulli beaodeh [1,2,3]. This addition of
shear increases the complexity of the equationsatfon and solution method. One
goal of this research is a useful model for degigrposes, so a simple beam model is
desired, although capturing all of the dynamicd #ra present is certainly a challenge
due to a lack of higher order terms and minimalscderation of nonlinearity. The next
challenge is to determine the cable propertiesut® in the beam model simulations,
which assume a homogenous beam material. Thiariecplarly difficult because the
space cables in question have great variation mstoaction and geometry, and past
research shows a wide range of bending stiffnelsesdor cables that were meant to be
identical [3]. Experience in the spaceflight inttysprovided suspicion that processes
such as the heat and vacuum treatment that sggdedlables must undergo known as
bakeout may also change the bending stiffnessadthtion, to prevent end connectors
from becoming disengaged, cables are attached acesgtructures with excess slack,
introducing non-linear behavior. As the final daabe, the cable property values will be
included in the cable model which will be connected structure to yield information
on the effects of the space cables on the structde additional complication here

involves determining the stiffness and damping fidehts of the common cable



connections used in space applications, as thianisinresolved problem from past
research on this topic. Throughout the researatlig to this dissertation, it has been
difficult but valuable to combine methods from seddifferent fields into a coherent
model that takes aspects of damping, cable modekmg space applications into
account. Since these aspects come from diffefelusf the scope of this research has
been both broad in terms of background and methedd, and deep in terms of cable

investigation.

1.3 Objectives

The focus of this research is to further the knolgke of cable dynamics, including cable
frequency response, damping, and effects of cabteshost structures. The work
comprises both experimental studies and theoresicalies to develop the models and

parameter calculation methods.

Although this research began with the intent to ehdde response of cabled structures,
guestions quickly arose based on the literatureewev Previous studies used dynamic
tests to deduce cable properties such as bendifigess, but experimental testing can be
expensive and time consuming; could cable propeleedetermined in such a way that
extensive testing would not be required to predymtamic behavior of the cable? If
cable parameters are determined, could flexibléesalre modeled accurately with some
form of damping? What type of damping mechanismghtaffect cable response?
Finally, if cables could indeed be modeled to $ation with simple cable
measurements, could these cable models be inceegowrao structure models to yield
useful information about the cabled structure'satyic response? These questions
provided a path forward to expand existing caltezditure and build on past research. In
addition, questions about determining cable attastinstiffness and reducing cable

variation by reducing build-to-build variability weealso raised by previous work [1,3].

The initial goal of developing a predictive moder fthe vibration response of cable-
harnessed structures depends on an accurate catidel rfor spaceflight cables.

Surprisingly, no sufficient cable model for thispéipation existed to date, so developing



a damped cable model that could characterize thernal damping and vibration

response of spaceflight cables was the first sbeghis research. However, analytical
models are only as good as the model inputs, sordguired determining the cable
parameters and connection stiffness values tosisgodel inputs, as well as what type of
model would be effective, and what processes (sischakeout) might affect the cable
parameters. Once that model was created, expdasrenerify the physical parameters
of the cable and validate the cable model were wcted, and, finally, the cable models
were combined with the calculated parameters toeahadcabled beam system and

investigate the effects of cable attachment tawctire.

The objectives of this work are a method for esshblg the parameters needed for the
model based on the cable material and geometrerdalian experimental testing, the
development of a novel cable model that incorperéath shear effects and damping,
and determination of the effect of bakeout on sfigbe cable stiffness, as well as an
overall increase in the knowledge of cable dynapeicavior and the effects of cables on

host structures.

1.4 Resear ch Approach
To accomplish the research objectives, the researetmodology is composed of the
following tasks:
1) Model spaceflight cables
a) Derive a simple beam-like model to model the trense bending modes and
dynamic response of cables, incorporating tensiothé cable, attachment
point characteristics, cable geometry, and couplegween bending and
torsional modes due to the helical nature of thdecaires
b) Identify a type of damping that can sufficiently sdebe the damping
characteristics of the cable and incorporate @ the cable model
c) Use the distributed transfer function method towsdhe damped beam model
for a variety of cable geometries
2) Perform experiments to characterize spaceflighlesab



a) Scan single cables with laser vibrometer to deteentihe vibration response
of single cables and compile a cable test dataloasedespread use

b) Identify physical parameters of cables, to incliefeectively homogenous
cable parameters for use as beam model inputs ghraucombination of
material testing and measurement

c) Compare different cable construction, geometry, lzatceout treatment

3) Develop a model for a cabled-beam

a) Compare the experimental cable data and cable noodiglit to confirm that a
spaceflight cable model can be used in the cabdedrbmodel

b) Input cable parameters based on the previous cahbkracterization
experiments

c) Determine values for tie-down stiffness and dampoogfficients through
experimental investigation

d) Use the distributed transfer function approach ¢wetbp the cabled-beam
model, incorporating tie down stiffness and calamging

e) Run cabled-beam experiments to determine the ssicaed utility of the

cabled structure model

Thus, the contributions of this research includeethodology for developing a damped
spaceflight cable model, information on the dynamisponse and damping parameters
of spaceflight cables, development of an a prioethod for determining homogenous
cable parameters for use in beam models, experaindata for a variety of treated and
untreated spaceflight cables, and a model for dedabeam, as well as a greater

understanding of the dynamics and damping charattsrof cables in general.

1.5 Dissertation Overview

Background information regarding previous cableaesh, the evolution of cable models
of various types, and the review of existing litara can be found in Chapter 2. This
includes research on structural cables, spacefiigiies, and damping mechanisms.
Details about cable terminology, cable constructiand the methods designed to

determine effective cable properties are presenté€hapter 3. The model methodology



is developed in Chapter 4, with an overview of thethods used and technical and
mathematical background included. The developrattite cable model and the cabled-
beam model is found in Chapter 4 as well. Chapteresents the experimental work
conducted to compile a database of cable vibragsponses and determine the effect of
bakeout on spaceflight cable stiffness. The redolt the cable parameter calculations
and resulting cable models are presented and disdus Chapter 6, as well as the results
from the experimental trials, including pre- andsipbakeout comparison and the effect
of adding cables to host structures. Chapter@dikcusses the effectiveness of the cable
parameter calculations and contains the comparisiween cable and cabled-beam
models and their respective experimental data. cloeions, considerations, and
contributions to the field are summarized in Chafjgte Supporting material, including
MATLAB programs and additional data visualizati®nincluded in the appendices.
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Chapter 2: Background and Literature Review

The influence of cables on space structures asuatstal element is a growing but
relatively new concern, and as such, there are @enlfew published studies that
investigate modeling space cables specificallyweicer, the use and modeling of cables
in general has been an increasingly relevant fialy cable dynamics and damping
mechanisms are broad topics that have many agphsat Combining research from all
of these fields is necessary to contribute to catfleence predictions. The focus of this
work is on the transverse vibration of cables &sonance considerations, but aspects of
cable models used for stress and fatigue calcuakaticere incorporated, so the review of
existing cable literature will encompass severpegy/of cable models. Reviews in cable
modeling were published by Triantafyllou in 1984, [8tarossek in 1994 [5], Rega in
2004 [6, 7], Raj and Pathasarathy in 2007 [8] apakSn 2013 [9].

2.1 Evolution of the Cable M odd

The earliest cable vibration models were basedchervibrations of tensioned strings in
the eighteenth century. The rise of cable moddhiegan in earnest in the 1950s when
engineers became concerned with both the stresgkbsteains that cables (or “wire
ropes”) would experience. It was a short timerléibat vibration amplitudes of cables
became an area of study as well. Through the yeargews of cable modeling studies
have been published, which the reader can reffartoistorical relevance. Triantafyllou
reviewed the work on the dynamics of a horizonkastec cable, covering both historical
work of the 1600s to 1800s [4] and work from théd@®through the 1980s [10]. Special
note was given to Irvine and Caughey’'s 1974 world s the point at which elasticity
effects on horizontal cable dynamics were fully enstbod, and this work was cited in

many later publications.

Cables were initially modeled as a string in tendit?, 13, 14, 15], which involves an
assumption of negligible bending and torsionalfrsti$s, sometimes known as a fiber
model. Starossek included damping in work thaerdéd Irvine and Caughey’s but

focused on a stiffness matrix approach [16], ateér lpublished a short review [5] that
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presented the basic equations for the string-lieblec model developed to date,
neglecting any bending or torsional stiffness. Ideer, the stiffness values for bending
and torsional stiffness are not actually negligifide cables (especially as the overall
cable diameter increases), and efforts to testmaodel cables using beam formulations
began. In 1987 Utting published experimental testdr 1X7 cables with varying lay

angles that were used as a comparison standardddels as recently as 2010 [17, 18].
A leap forward in modeling came when Velinsky iqmarated bending and torsion by
modeling the individual wires of a cable as thidg¢19] and generalized that theory for

different core geometries [20], and Costello putdis Theory of Wire Ropg1]. For

these models, cable geometry was a major factbte ceending stiffness was calculated
simply as the sum of the individual wire bendindfrs¢sses, and interaction between the
wires was assumed to be frictionless. The thinmadiels start by summing the forces
on a segment of wire to give six force or momeniatigpns, four of which are trivial.

Curvature and torsion are incorporated with thdecpboperties, and a stiffness matrix is

used in conjunction with equations for the forced emoments to give the cable response.

Starting from cable geometry, Chiang used thedieiement method to investigate six
factors that affect cable stiffness and stressiusadf the core wire, radius of helical
(layer) wires, helical angle, boundary conditiotrasd length, and contact condition
between core wire and helical wires [22]. Thishaus work was unique at the time of
publication by also looking at the interactionsvizetn the different cable parameters; for
instance, in tests of a 1X7 strand, the interactwénthe helix angle and boundary

conditions was significant. Results compared falty with several thin rod models.

Sathikh, Moorthy, and Krishnan introduced theinthod model for helical wire strands
with the goal of explaining the lack of symmetrydarlier models [23]. Like Huang’s
model [24], extension of the cable was taken imimoant, and there was contact between
only the core wire and each layer wire. The tetla was a single stiff core with one
helical layer, and wire tension, bending and twigre all taken into account. The
authors state that the reason for the lack of syinynire earlier models was because the

wire twist and change in curvature were not aderjyahodeled, which was rectified in

12



their model through the use of generalized strbi@sed on Ramsey’s expressions for
strand loading and Wempner’s expressions for cureaand torsion. The model agreed
with Costello’s thin rod model and Utting’s expeemal strand data [17], although

Costello’s model matched the experimental data rolmeely [21].

In contrast to the thin rod models, Raoof and HdBB$ and Jolicoeur and Cardou [26]
created homogeneous (semi-continuous) models, iohwédach layer of twisted wire is
modeled as an orthotropic complete cylinder witbperties that match that of the cable
layer as a whole, a process shown in Figure 2.lik&Jthe thin rod models, which follow
the same basic method, semi-continuous modelzeau@ivariety of methods, as long as
each layer of wires is modeled as a cylinder. Wiithse models, strand stiffness and
interwire frictional effects were taken into accaurdolicoeur published a comparative
study of these homogeneous cylinder models anddfthet the Raoof/Hobbs model was
simpler to solve and would be preferred for tensiotorsion loads, but failed to capture
the range of possible bending stiffness, so thiealir/Cardou model should be used if
bending will occur [27]. Raoof and Kraincanic camgd the semi-continuous model to
thin rod models for helical cable analysis and fbuhat thin rod theory was more
reliable for small diameter, fewer strand cable$jlevsemi-continuous models were
advantageous for large diameter wire cables [2&)reyer compared discrete and
continuous models for static hanging cable casesfamnd that the continuous model
was more accurate, but only slightly, and was ntam@putationally intensive to solve
[29]. Hover and Triantafyllou investigated the pbng between axial and transverse
vibrations using a beam-like formulation and notealt higherEl values made a cable
more beam-like [30].
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il ©)

19 individual wires Wire properties 3 homogeneous layers
“smeared” in each layer

Figure 2.1:Procedure for ser-continuous models in which individual wire propestiare
averaged or combined o' an entire layer to make a modatwhomogeneous layeto

simplify calculations.

The beam model posits that the cable can be desctilsing the equations for t
vibration of a solid beam, with damping taken i@tocount either through traditior
dampng terms that are altered to incorporate the hgstenature of cable damping,
through the inclusion of a n-constant bending stiffness, discussed in detadt.lafhis
model tends to work well for lc-amplitude vibration modeling, as the cablemost
beamhke when it has minimal curvature and the indiatlwires are not sliding ar

experiencing friction force

Although most models dealt with only sin-helix wire arrangements, a helical stre
that is wrapped into a larger helical cable ally forms a double helix sha as shown in
Figure 2.2 Velinsky first investigated this, followed by Weenaz [31], Elata [32] and
Usabiagaand Pagalday [3. Velinsky’'s model calculated the tension and wergn a
straight wire, and then calculatecose values for a helical strand, taking the adalti
twist and extension into account. Then, the efedathanges of curvature of a helice
wound helical strand (the dou-helix) were incorporated by approximating the bag
of the helical strandraund the core cylind [19, 20] Elata went back to the fiber moc
to investigate the double helix, neglecting botmdieg and torsional rigidity of th
wires, but providing a more accurate kinematic ysialof the doubk-helix shape which
was validaed with experimental de [32]. Huang and Knapp presented parame
equations for double and triple helical strandsemgha helical strand in one lay

becomes the centerline of a strand in the suceetsyer [34]
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CORE SINGLE HELIX WIRES

STRAND

DOUBLE HELIX WIRES

Figure 2.2:Core wire with singléhelix wires in first layer and core of surroundstgands
and double helix wire in first layer of surroundistgands [2].

By the start of the 2' century, nonlinear cable mechaniegas under seriot
investigation For a detailed overview of the veus nonlinear models used for cabl
the reader is referred to Rega’s 2(two-part cable reviey6, 7]. Rega’ review covers
almost exclusively cables modeled without benditiffness and with only viscot
damping, and is limited to small sag cablesh low vibration amplitude [6] covers
system modeling and methods of analysis, and [¥Yersothe nonlinear phenome
present, as well as bifurcation and chaos pheno; Around the same timeKoh and
Rong [35] andSrinil, Rega and Chucheepsi [36] published work on large amplituc
calle vibrations, with Srinil et al. also investigaginnternal resonance effects. S
Wang, and Zhang explored the effects of frictior@itact in cables using finite elem
analysis and concluded that including fion in the model matched the experimel

results more closely than a frictionless model [

A few dissertationson cable dynamicwere published in the early 2(Cs. Sauter
modeled the dynamic characteristics of slack watglex used in Stockbridgeampers by
taking into account quastatic (velocity independentlysteresis which is related to t
bending moment of the cal [38]. Two students of Knapp wrote theses on the vari
rigidity of cables; Zhong [39] and Liu [40] invegéited the variab rigidity directly by
using a cable software program to predict the mggtemoment curvature relationst
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rather than adding a damping term. Knapp and biosiclered friction between cable
layers as a damping mechanism [41]. These arm@lsti@rward models that are good

starting points for the work in damping which falle.

2.2 New and Extended Modds

The semi-continuous approach was extended by @sgsSpencer and England in 2003
[42]. Built directly on the work of Jolicoeur ar@gardou, in which each layer of helical
wires is modeled as a cylinder [26], Crossley etsalve similar problems using a
different method. They added bending loads toakial and torsional loads studied
previously, using a method based on stress-stedations, and extended the work to
composite cylinders and multi-layer cables usirggshme method. Crossley et al. also
note that the values for frictionless and bondesksaare quite different, showing the

need to model interwire friction to get a more aatel result.

Ghoreishi, Messager, Cartraud and Davies invesiig#te validity and limitations of
several older analytical models by comparing themah FE model [43]. In the
comparison of the stiffness matrix components aennodels, there were two distinct
result groups for the axial stiffness as a funcbbray angle, both slightly stiffer than the
FE model. The group of models that take the chafigeometry due to Poisson’s ratio
into account were slightly closer to the FE resulis the case of torsional stiffness
versus lay angle, the different models were natlasely grouped, but were still stiffer
than the FE model (with the exception of Hruskatdel, which does not take torsional
stiffness into account and therefore had poor agee¢ with all of the other models).
Overall, Costello’s thin wire model showed the elstsagreement to the FE model for
both axial and torsional stiffness. Agreement leetvall models was best for lay angles
less than 20 degrees [43]. Ghoreishi et al. alsowsd that stiffness does vary

appreciably for all models for different lay angles

The method presented by Inagaki, Ekh, and Zahkaistériction into account [44]. A

geometrical model is made assuming infinite frictiand then finite friction is added to
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the model to study the transition from the no-slgndition to the full-slip condition.

This model is discussed in further detail whentilic damping is discussed.

Lacarbonara, Paolone, and Vestroni applied solutiethods directly to the equations of
motion to yield exact solutions for non-shallow legh neglecting flexural rigidity [45].
The mode shapes depend on both the geometric asiicedtiffness, and the mode shape
trends and behaviors are investigated extensiv&fortly after, Lacarbonara and Pacitti
developed a model for cables undergoing both tenaitd bending using viscoelastic
constitutive laws [46]. The authors discuss thausion of flexural rigidity as a way to
deal with loss of tension in the cable, but notet tnore study on the impact of flexural
stiffness to cable behavior is needed. They coetpegsponse curves of cables modeled
with and without bending stiffness, and found thatthe cable tension decreases, the
difference in the model curves increases. Flexdgadlity must be included to avoid

numerical errors arising from low or zero tensiables.

Usabiaga and Pagalday developed a linear modehfmacterizing double-helix cables,
but did not take Poisson’s effect causing radiatiaetion into effect [33]. The authors
built on the work of Ashkenazi et al. [31], usirfgetthin rod model and assuming that
friction between wires was so high that the wiresild not move relative to each other.
However, this work added additional kinematic cdindss for curvature and torsion
calculations. The authors assume that outer woksthe outer strand deform
proportionally to the central wire’'s deformationhieh does not agree with the Euler-
Bernoulli hypothesis that plane sections will remalane in each individual wire.
Although the Euler-Bernoulli hypothesis is typicdlearlier cable models, these authors
posit that relaxing the planar requirement willdea more accurate calculation of the
deformation of the double-helical wires. Deforrmatand rotation results were compared
to Costello’s models [21], and agreed well enoughustify omitting Poisson’s effect,
with differences in torque/rotation calculation dtee the additional modeling of the
double-helical wires. Stress results were comptryekshkenazi et al.’s results, showing
a significant difference when the additional kin¢icswere included to attach material

elements to the helical outer wire strands inst#aithe straight core. Model validation
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with finite element models would be the next stap,the author notes that rigorous
experimental work would be complicated and unlikiyyield complete and accurate

results for the wire-wire interactions [33].

Of course, finite element models find their wayoiany field of study; Jiang, Warby, and
Henshall developed a finite element model to areatie complex contacts for wires that
contact both the core and their neighboring layeeswunder axial load [47]. This is in
contrast to Huang's assumption that wires alwapsusge from neighboring layer wires
when under tension. Jiang et al. show that if @cntdeformation is taken into account
the wires maintain contact with the adjacent wireshe same layer during tension for
wires with specific core and layer radii. Theyaalshow that hysteresis must be
considered when friction is included in the moddlhe finite element model requires
fewer simplifying assumptions than current anabjtimodels, so local contact, friction,
exact geometry, and contact deformation can atldmsidered. This model is one of the
few that specifically investigates both wire-corentact and wire-wire contact.
Erdonmez and Imrak also published a finite elenmemdlel for axially loaded wire rope,
taking the double helix geometry, Poisson effeetd aontact with both core and
neighboring wires into account [18]. Their numalicesults showed good agreement
with both frictional and frictionless analyticalstdts from Costello [21] and test results
from Utting [17]. Jiang published another finiterment model using 3D solid elements
and compared the results favorably to Costello’sl@hg48]. This model analyzes the
stresses in a cable undergoing only bending, lsat @dverts back to the core-wire only
contact that is common to most models. Jiang fthds the contact force between core
and wire is negligibly small and thus, differenteffccients of friction do not cause
noticeable changes in the model. This is in opgjosito results obtained by Papailiou
[49] and is likely to be due to the idealized natof the finite element model or the use
of Coulomb friction rather than a more appropridtietion model [48]. Shibu,
Mohankumar, and Devendiran also used the finitenefé method to solve equations
based on thin-rod theory for a cable under axiaitsn [50]. They used the theoretical
procedure developed by Sathikh et al. [23], buerdéd it from a core and single layer

model to a core and two helical layers. A finiteneent model was built off of the
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theoretical work, and both theoretical and FEM wealwere compared to published
results. The finite element percent differencesifvalues published by Utting [17] were
0.7% and 5% for axial load with fixed and free endsspectively, but theoretical
differences were 20% and 12.5% [50]. The authousd that the end conditions (free or

fixed) made a significant difference in the axigidity.

Argatov developed a model to include the effects Palisson’s ratio and contact
deformation to more accurately predict overall eadeformation [51]. Neglecting
interwire contact is common in many previous modaisl thus, this model extends the
current work since it considers not only wire-ca@ntact, but also contact between
adjacent wires in the same layer. The author assuhat the wires remain helical and
that tension, curvature and twist remain unifornd aonstant. Argatov found that the
effect of elastic local deformations is small fay langles less than 15 degrees, and that
the deformations are large enough to obscure theséds ratio deformation for lay
angles of more than 25 degrees. Just as in Ghoetial.’s findings [43], Argatov found
that the agreement for lay angles of greater th@nd@grees was poor [51], and
hypothesized that the difference was due to theceff interwire contact. Frictional
effects are neglected in this model, but the warkcontact deformation may could be

used to apply frictional effects in the future tother study cable damping.

Although the published models can be grouped in a varietywayfs, thin-rod models,
beam models, and semi-continuous models are ragucable model types, with some
papers focused just on modeling variable bendiifinass, finite element models or
purely experimental results. Equations and thémdetermine bending stiffness arose as
aspects of other models or as equations to beeapfdi models in place of constdfit
Different models incorporate variation in bendingffrsess, Poisson effects, different
ways to incorporate contact between wires, stragpldcement relations, equations for
wire curvature, and calculations of the normal ésrbetween the wire, all of which lead

to different final models with different assumptsoand varying degrees of complexity.
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2.3 Damping of Cable Vibrations

Once cable modeling became sufficiently sophisttato predict cable motion,
researchers began investigating cable damping532, Damping was incorporated into
existing and new models in a variety of ways tdetfthe numerous physical damping
mechanisms that contribute to energy dissipatiorcables. Damping mechanisms
followed the divisions of the existing cable modeisin-rod models used damping
modeled as interwire friction, while damping modekes variable bending stiffness or

with a hysteretic damping term was more commongdus beam models.

One of the earliest investigations of internal eatthmping was the work of Yu in 1949
[54]. Yu noted the path-dependent (hystereticyattaristic of internal cable damping
and defined the paths as the space curves of tile.c&'u’s analysis showed that only
about 5% of the energy dissipation was due tomadesolid friction, with the majority of

energy dissipation caused by friction between tivesv Experimental data for an un-
stretched cable showed damping to be much higheicable than in a single wire, and a
shorter lay length correlated with an increaseamping capacity. This analytical model
assumed a constant bending stiffness, no sagjofriddue only to linear damping

proportional to tension and constant damping inddpet of tension, both of which are
due to interaction between wires. This initial rabdorked for small amplitudes and

provided a strong starting point for further invgations into cable damping.

An interest in damping of overhead power transraiséines in the 1990s and a desire to
mitigate vibrations in support cables spurred ferthresearch on cable damping
mechanisms [55]. According to Otrin and Boltezair, resistance, internal material
damping, and the friction due to interwire motiomsre all damping mechanisms that
caused energy loss in cable vibrations, and visemdsstructural damping models were
widely used to quantify this loss [56]. Due toitlrelative simplicity, linear proportional

damping models were and are commonly used in wifiehdamping is proportional to
the rate of change of the displacement with thenfmr‘fi—":. These models may be

sufficient for modeling air resistance as the calfiibeates in air, but the internal damping

and friction effects are not adequately captured.
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The point of damping models is to describe and tiyathe physical energy loss that
occurs, so it is important to understand the meishanthat are causing the losses. 1t is
reasonable to categorize the current models imEetmajor categories by their internal
damping mechanisms; damping due to friction betwbenndividual wires and modeled
through interwire friction, damping due to changeshe cable geometry and properties
and modeled as variable bending stiffness, and thangue to internal friction within the
wires and modeled with internal damping or hysteretrms. In the case of stranded
cables, several damping mechanisms may be evidbeth; imperfection in the wire
materials and internal friction between the wireake up hysteretic losses [57, 58].
Cable damping is usually reported as either a legement value, a ratio of energy
dissipated to energy stored (loss factor), or ger@ent of the critical damping value

(damping ratio).

2.3.1 Cable Damping Dueto Interwire Friction

This type of damping refers to the energy lost tugictional losses as individual wires

in a cable move against each other during cabléomotn an effort to show the presence
of friction between wires, Urchegui, Tato, and Ganstudied and characterized the
material degradation that occurred between comgatires, using experimental testing

and SEM micrographs to inspect the wear on indafigduires in 7X19 steel cable with a

polymeric jacket [59]. This work showed that fract wear on the core wire is significant

and thus, friction forces indeed dissipate energyables. The authors noted that a
correlation between wire wear and dissipated bictenergy could be developed if the
friction force and sliding amplitude between wigesild be measured, which would be a

valuable contribution to the study of cable damping

The thin-rod model presented in previous sectionsyhich each wire is modeled as an
individual curved rod, is commonly used for intemviriction analysis. Most of these
models explicitly state whether the wires havetisital contact between just the core
wire or the core wire and neighboring wires. Feg@:3 shows an inter-layer contact

model of a helical cable with simplified interwifigction and normal forces. One of the
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first references to characterize internal wire frictionthis way cam from Ramsey in
1990 [60],who characterized the motion of individual wiresciontact with ech other,
and then from Raoohnd Huangin 1992, whose model gawen upper bound to tt
prediction of cable damping during benc [61, 62]. Contact forces were studied 1
both corewire and wir-wire contact, and a theoretical model to charanterhe
damping of singldayer strands with axial preload subject to cydiending was
presented. Kumar and Botsis also studied the cbfdeces in cables by analyzing t
contact stresses, assuming only -core contact [6B The material modulus
elastcity was a major factor in the stresses betweersnand since these stresses
related to the contact forces, one can assumelthanodulus of elasticity of the cal

should be taken into accour

OUTER LAYER

-

Figure 2.3:Simplified interwire contact force Tension on the cable as a whole resuli
pressure from the outer layer to each successiver itayer, causing normal forc
between the wires. Sliding friction between theewiis proportional to the normal for

and acts along the line of contaetween the wires, shown by the dotted li

Models that completely neglected friction were tiegm through the 1990s, and wt
friction was finally included, it was in an “-or-nothing” sensethesemodels either
assumed perfect slip and no fricti or perfect adhesion of the wires and infinite fan.
Chiang ran separatmses for both sliding contact and adhesive cc between the core
wire and layer wires using finite element analy2R|, and Jolicoeuand Cardoishowed

upper and lower bous based on no slip and no friction ci [26]. Not surprisingly,
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Elata, who used a single model with both fricti@sleand infinite friction cases, found
that there was a significant difference in thesstneesults at the wire level depending on
whether friction was included [32]. Usabiaga arap&tday’s model assumed infinite
friction, but recommended that friction forces betedmined more accurately [33], a

common conclusion.

Instead of assuming a constant all-or-nothing ibictvalue, Labrosse, Nawrocki, and
Conway studied frictional dissipation in axiallyalded strands by modeling the
frictionless case first, and then applying a lime=d “law of friction” to the thin rod
model to study the frictional effects [64]. Dampiwas calculated as a specific loss per
cycle, made up of loss due to both material enargy frictional energy. For a straight
and unbending strand, the amount of energy dissipate to frictional effects was quite
small compared to other damping sources. Howealdnpugh the author mentioned
vibration loads, bending was not taken into accaniihis model, and it is likely that the
interwire effects when bending occurs dissipateararergy and thus, increase damping.
This model was limited to one layer with layer wgithat contacted only the core, but did
not assume that slip occurred or that the interiarees were known and constant.
Labrosse noted that interwire sliding occurred gltre helical contact lines of the layer
cables when the static frictional force was overepmgreeing with Ramsey's earlier
work [60]. He showed that specific loss valueseased when cable ends were free, and
as the lay angle increased. Labrosse claimeddblsaés from pivoting friction between
wires could always be neglected when compared gsek from viscous damping and

friction due to wire slippage.

Since measurement of interwire friction forces whSicult, research continued to
analytically predict these forces and incorporat into models to compare the overall
cable behavior to experimental results. Huang was of the first to model the
individual wires of a helical cable separately lasytdeformed due to extension of the
cable, and hypothesized that separation betweehnetiwal wires could occur if the cable
was stretched [24]. Because the decrease in ceaeaa the cable is lengthened is greater

than the decrease in the diameter of the cylindenéd by the helical wires, separation
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does indeed occur in some cases. This leads tmeha the contact area between wires,
which can alter the friction between wires as vadlthe bending stiffness due to the
change in wire geometry. While Huang theorized th&s separation would occur in
every case, and many models do assume only coee-saintact, Jiang showed the
exceptions to that assumption [47]. This reseandicated that there should be some
way of modeling the change in frictional force @nding stiffness as the cable vibrates
or stretches. The variable bending stiffness dised in the next section addresses these

issues well.

In the category of modeling individual wires, aititnelement model is worth mentioning
here. Zhu and Meguid presented a new finite elén@emise for slack cables in [65].
Unlike most cable models, Zhu and Meguid depantech fthe assumption that the cable
would have non-zero tension, and used homogeniagtelgh damping to determine the
damping effects of the cable. Their damping masikes the form{C] = a[M] + B[K].
Zhu and Meguid refer to the flexural hysteresis‘féesxural damping,” supporting the
theory that the friction between the wires and sghsnt bending stiffness variability

contribute to the energy dissipation of a vibratiadle.

Energy dissipation caused by sliding friction oftercorporates Coulomb damping,
which forms the basis for the following interwirgction damping models. Cutchins,
Cochran, Kumar, Fitz-Coy, and Tinker used a Coulaaimping model to investigate the
hysteretic loops of cable vibration [66]. Factofuencing the stiffness and damping of
their experiments included wire diameter, numbestadnds, axial tension, and length of
the cable. Comparison of experimental and themaetesults showed that the friction
force was frequency dependent. At this time in taee 1980s, the damping
characteristics of wire rope were not well undesdtoand design was accomplished
through experimentation. The authors hoped thateakults they achieved regarding the
deformation behavior of the cables would help todeladamping in cables due to the

friction between wires.
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The Coulomb model was quickly found to be limitedwever. Raoof and Huang not
that frictional damping models based on a simplal@ub rigic-plastic dashpot suffere
from significant limitations when modeling cablesttwlarge radius of curvature, :
elastic kickback (some amplitude diminished by t&dageflection of the system inste
of transmission to the damper) must be incluc6l]. This elastic kickback took tr
form of an additional spring added to the tradigb@oulomb model, as shown in Figt

2.4. This damping formulation resulted in a lotfaric decrement ¢

aK' K’
-

Fr K
&) -%
Fy K¢

wherea is the amplitude anK', K; andF; are damping values from the damping mc

shown in Figure 2.4.

Traditional Coulomb Model with
Coulomb Model Elastic Kickback

Figure 2.4:.Comparison of traditional Coulomb damping modeth hysteretic Coulom
damping model.

As mentioned previously, Sauter described the hgsi® and energy dissipation o
Stockbridge damper cable due to interwire frictiordetail [38]. Sauter noted that t
hysteretic damping mechanism in slack cs was caused by Coulomb friction betwt
the cable wires. Sauter considered the cable athde rather than modeling tl
individual wires, and used a Masing model as showfigure 2.5 to evaluate the loc
behavior of damper cables. The Masing modas made up of linear springs w
stiffnessk; and Coulomb friction elements with a maximum stckiforce ofh;. This
combination of elastic springs and dry friction frothe Coulomb friction elemen

represents the static hysteresis evident in thee damping, and is similar to the elas
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kickback damping model used by Raoof and Hui61]. Results showed that slip in t
cable was due not only to bending, but to sheaceffas well, so a beam formulat
which considers shear effects was more opriate. This was confirmed wi
Goodding’s work on spaceflight cables as we7], and it is likely due only to th

increased complexity of the beam equations thantemodels still neglect shea

Figure 2.5: Masindvased model used to incorpee frictional damping, whe k are

spring values anb, are the maximum stiction forces for the Coulombredet.

Trends in the data from elastic kickback modelswsdtb that for small radius «
curvature, an increase in helix angle reduced dagnpvhile increasing the number
wires or cable strain increased dampi6l]. However, for large radius of curvature,
increase in helix angle actually decreased damf61]. Kumar and Botsis found th

small helix angles in the rangeig resulted inarger contact stresses and led to hic

damping factors, likely due to the increased cdntame between the wires3]. A
single relationship between curvature, helix aragid damping does not seem possibl
formulate for a large curvature ran¢ The authors later presented a method for us
cable design to predict the curvature value at wiseble behavior deviates from the-
slip case, the maximum specific loss of the caduhel the axial and torsionstiffness by
using different formulasor different scenarios to calaié the effective stiffness 8],
but still, no single relationship could be foundthwiut incorporating variable bendi

stiffness.

Although most interwire friction models were basmd thir-rod theory, a few utilize

semi<ontinuous models. Raoof and Kraincanic examinelicdl models based ¢
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orthotropic theory and thin rod theory and conctiteat bending and torsion behavior of
helical cables was very dependent on the contdeteles individual wires and layers for
both thin-rod and semi-continuous models. For boales, thin rod theory predictions
were more accurate, but large diameter strands mdhy wires were better modeled
with orthotropic (semi-continuous) theory [28]. éllsemi-continuous model is well-
suited to larger cables because the average chastics for each layer do not become
more complex as the number of wires increaseskeutiiie thin rod model. In an effort to
provide information of more practical use, and basa& the effectiveness of semi-
continuous theory for large diameter cables, Raoaf Davies next focused on specific
axial and torsional losses of cables of more thamwites and of large overall diameter
[69]. An increase in lay angle corresponded togased axial damping and decreased
torsional damping. The authors also noted thatldided-in” cables were significantly
better behaved for prediction models, likely beesatl® contact zones between the wires

were worn in and stable.

In a contrast to calculating the frictional forclist, some authors attempted to find
dissipation factors or damping characteristics aiye Otrin and Boltezar looked at
vibrations of cables with no axial preload, anded®ined the dissipation factor [56].
Viscous and structural damping terms were incluaath the viscous damping modeled

as proportional Rayleigh damping and structuralgiagincluded as a dynamic modulus
of elasticity, incorporated with the formi—‘f + E(1 +ni). The structural damping

model produced results that more closely matchedetkperimental transfer function

results, but still had an error of up to +/-30%.

Rawlins obtained interesting results for dampingacity directly when he compared an
analytical model to untreated, pre-stretched, amdvjbrated cables, respectively [70].
Rawlins investigated the internal damping due tovengent between cable strands of
cables in transverse vibration, building on workganted by Hardy and Leblond. The
analytical model assumed excitation commensuratéh wvind-induced vibration,

damping due only to internal causes (no externatl fdamping considered), constant

elliptical contact, and constant curvature. Thec#r damping capacity of the cable is
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defined as the ratio of energy dissipated to th&immam energy stored, and when the
cable's vibration occurs in sine-shaped loops, damping capacity calculated using

Rawlins' model was:

5
LIJ: ZEIKZ *f(lp'C’F'N)-i- 4EIK2 *f(Aellpse'd;P;V;G,H,C,F,N)

where the first term corresponds to material dagn@ind is a function of the material
damping capacityy, material complianc€ , traction forceF, and number of interlayer
contactd\, and the second term corresponds to frictionalpglagnand is a function of the
area of the contact ellipse between wifegpse the strand diametet, the interwire
pressureP, Poisson's rati, modulus of rigidityG, coefficient of frictionu, material
complianceC , traction forceF, and number of interlayer contadts Dissipation of
cable energy is difficult to measure experimentahy it is unclear whether the difficulty
arises from testing procedures or overlooked cabl@meters or geometry [70]. As
such, the analytical model was developed to caleutaseline values and test treated
cables. Expressions for the dissipation of engrgycycle and specific damping ratio
were developed. The model calculated only intedehping, but the experimental
damping measurements included fluid-dynamic damping to the movement of the
cable in air, as well as end-point damping from dth@mped ends and elongational
damping, or loss of energy through the supports tduenperfect longitudinal rigidity
there. The author eliminated or corrected for éhadditional damping values for three
groups of cables: an untreated group, a groupwhatsubject to high tension stretch for
several days, and a group that was treated with ¥iigration for at least 24 hours. In
comparing the model and experimental data for nstdamping, the untreated cables
measured to calculated damping ratios of aroun@ut,the pre-stretched cables and
vibrated cables had ratios that were much highem time, and correlation was no better
than order of magnitude agreement. Despite the pgeeement between model and
reality, the author’s discussions and conclusiaticete several factors and mechanisms
that should be taken into account for further reseaand show the importance of taking
cable history (such as past tension or excitatiotg account since it clearly leads to

varying behavior.
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The most recent cable models are comprehensiverpoating many aspects of the
previously investigated models. In 2011, Gnanawel Parthasarathy published work on
the effect of interfacial contact forces in cablesemblies and developed complete
models that took both tangential and normal foroesaccount, modeling each wire as a
thin curved rod with interwire pressure, Poissofeaf and Coulomb friction effects

included [71]. The authors assumed that the rachalttact from the helical strands

actually squeezed the core strand when the cahleder load, called the radial contact
mode. Previous work showed that core-wire and-wire contact occurred only for lay

ratios of less than 7.8 (corresponding to 15 detprg@ngle), and core-wire contact only
occurred for larger lay ratios. A major resulttois study was relationships between lay
ratios and stiffness and contact stresses: asal&y increased, strand axial strain was

fairly constant, while contact stresses droppeddtecally but eventually leveled out.

Gnanavel and Parthasarathy [72] next differentidtetiveen different types of contact
(lateral contact, radial contact, and the combamathereof) as illustrated in Figure 2.6.
Cables were modeled assuming only one contact rab@®y given time and then all

models were combined. The end result was an dverdhiction in stiffness compared to

other models that used only one contact mode ferdhtire loading process. They
investigated a cable with combined lateral andalacbntact modes, which had core-wire
radial contact after a strain level threshold weached. By including both types of
contact and the transition point, Poisson’s ratid slip effects, the authors found a lower
axial stiffness and higher torsional stiffness tpagvious models calculated. It should be
noted that friction is necessary for both of thesxlels; using a coefficient of friction of

zero leads to numerical errors or an indetermipatdlem [51]. These recent models

provide a fairly complete study of cable damping ¢l interwire friction.

29



Lateral Contact Radial Contact Combination Contact

Figure 2.6: Definition of wire contact types used in Gnanavad &arhasarathy's work
[72].

There is no denying that friction plays a role mble damping, but there are varyi
opinions about how much effect the coefficient métfon between individual wires hi
on the damping effect, with Raoff and Hobbs coniclgdiat the maximum specific lo:
is independent of the coefficient of friction [2%]apailiou finding that the coefficient
friction between wire layers has great bearinghenanalysis of conductor bending [4
and Dastous following Papailiou's assumn that the interwire friction forces betwe
wires in the same layer are negligible, and findiile change in the results as
friction coefficient between layers was varie@]. Ghoreishi et al. showed that ovel
cable behavior (as opposed tdividual wire behavior) was not as dependent astifin
[43]. However, each study made assumptions alwtvalue of the coefficient ¢
friction, the calculation of frictional forces, amiegligibility of other factors, so tt
dependency of frictionaloss on the friction coefficient (whether betweemres or
between layers) is not yet conclusive, althoughenhids towards requiring a friction tel
but insensitivity to the friction term's specifialue. Frictional forces are quite varia
dependingon the material and geometry of the cable, and ureasent of the force
between wires is not trivial. In general, incluglithe coefficient of friction to determir
cable bending stiffness (which is related to damind thus affects the cable behay
is necessary if the variable bending stiffnes$iefdable is not taken into account in ot

terms.
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Overall, most models that seek to include theifwcin between the wires are based on
the thin rod theory, and try to characterize thetibn forces to determine the degree of

damping. These models are generally useful fesstand strain calculations.

2.3.2 Modeling with Variable Bending Stiffness

Another type of cable damping model involves inigeding the changes in bending
stiffness that occur if the cable is bent or strett A part of this effect is still due to
friction, and another part is due to the moveméihe wires (i.e., wire rotation). Cables
can be modeled as strings, with negligible bendiifiness, or as beams, where bending
stiffness is considered. Previously, bendingrsti$s was just calculated as an aggregate
sum of the bending stiffness of each individualewirHowever, research has shown that
bending cables go through distinct phases of Wippage [74].

The first phase is the adhesive or no-slip phasersvthe friction forces are large enough
to keep the wires in place and the cable behaves sdid beam. Then there is the
transition phase, where the static friction is ceene and the wires begin to slip, and
finally the full slip phase where the wires havdyfislipped to a new position. These
transition points are based on curvature, wire arzé material, and location of the wire
in relation to the neutral axis of the cable. Fed.7 shows a representative relationship
between bending stiffness and curvature for artrarlgicable with a constant maximum
bending stiffness value until wires begin to sliprass each other, approaching a
minimum bending stiffness once all wires have ®ibp Lanteigne stated that slip occurs
at the outer layer first [75], where bending stresamaximum and axial forces are
minimum, which agrees with Raoof's experimental evisations [25]. References [44,
62, 73, 74, and 76] agree that wire slip commemtélse outer layer and that wires that
are closest to the cable’s neutral axis slip fiestg both [74] and [77] agree that wire
slippage reduces flexural stiffness. Studies thaestigate cable damping through
variable bending stiffness rather than calculatioi frictional contact forces are

investigated here.
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Figure 2.7: Relationship between bending stiffness and cureatbending stiffness

constant and maximum with minimal curvature whenewiare not sliding against o
another. Once the wiresegin to slip, they enter the transition state, vwh&me wire:
are slipping and some are stickirKgj, is the critical curvature that represents

average curvature between stick and slip stateshenWthe cable experiences h
curvature, all wiresdwe slipped and the bending stiffness approaclkesithimum.

Past studies showed that bending stiffness is @orent aspect of cable dynamicAs

Johnson and Christenson rd, cables have low inherent damping characteristigsto
their long span, antdigh flexibility [52]. These authors were interested in incorpore
cable sag, inclination, and axial flexibil, butthey ignored flexural rigidity. The mod
that they developed includes stiffness due to tensas well as stiffness stemmirrom

the cable sag that gnkffects the symmetric modeJohansenErsdal, Sorens,, and
Leira modeled highensilecable without bending stiffneds make a non linear mod
that could very quickly calculate axial dynamic$8]. The experimental resu were
smaller in amplitude than the models, and the pllasetions grew over time as we
Neglected damping and neglected bending stiffnes® wvo of the reasons the auth
listed as explanations for the disparity in expemtal and theoretical rults, and it is
again clear that bending stiffness is necessargdblte modeling. In a discussion ab
Jolicoeur and Cardou’s paper, Jayakumar, Sathiidh Jabaraj compared several thin

models and noted that the only model that did assume intection between wire
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(loose wire spring model) had vastly different \edufor bothEA andGJ than all of the
other models [79]. It is clear that this interantbetween wires and the bending stiffness

variation must be taken into account.

Many point to Papailiou for the comprehensive mddelvariable bending stiffness. In
both a paper [49] and thesis [74], Papailiou matledbamping of a cable by
characterizing the variable bending stiffness duéhe frictional contact between wires
under bending and tension. The model calculatediibg stress due to the bending of
each individual wire around its own neutral axist blso incorporated additional stress
due to the high friction that prevents slippingPapailiou noted the solid beam behavior
at maximum bending stiffness and the behavior loWaks sliding over one another at
the minimum bending stiffness value, which is thensf the individual wire stiffnesses,
but went further to quantify a bending stiffnesip stalue to calculate the additional
stiffness as wires moved in relation to each othdable 3 gives the equations for
bending stiffness, showing the relationship betweervature and bending stiffness for
the transition region. The model considered tietidnal forces between wire and core
for single and multi-layer cables, but assumed tonsaxial tension and neglected

friction or contact between wires within layers.

A novel experiment was performed to validate thadel in which a laser distance sensor
scanned the cable surface as it bent to measursutfece very carefully and construct
the cross-section and center point based on thi@ ddhe experimental data and
theoretical model matched very well. The calcudiending stiffness fell in between the
maximum and minimum bending stiffness values fofleddon curves and even

exhibited the hysteresis that was hypothesizediquely. The author noted that the
model was sensitive to the lay angles and frictoefficient, but in later discussion,

Papailiou provided more detail on the measuremgttteofriction coefficient and pointed

out that the amplitude difference was only abo®30r a near 100% change in y, so it
was important to include, but not sensitive todkact value. Overall, this model gives a

very accurate bending stiffness value and captuash of the physical phenomena that
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results in energy dissipation. It is this workttpeovides the basis for the stranded cable

bending stiffness calculation method developedihere

Hong, Kiureghian, and Sackman extended Papailioik to multi-layer structures with
varying lay angles, including the nonlinear cabdenging due to frictional slip between
the wires and modeling the variation in bendinfrstss by calculating the tension in the
cable as wires slip due to bending [76]. The mdneguation derived wad! =
Qan wires Eli + Elcore) ke + Xan wires TiTi cOs ay; sinay ;, where the tension value in
each wire was calculated while taking slipping datads into account. The validity of
Papailiou’s kinematic assumptions were confirmed, Papailiou's early hypothesis that
large cable curvature would cause the bendingnesf to reackl,,, independently of
the friction coefficient and wire tension was natet; the bending stiffness approaches a
constant value that is dependent on the interwiigtidn coefficient. The bending
stiffness is at a maximum initially when the fraotial forces have not been overcome and
the wires are sticking, and then decreases asitks start to slip. Hong et al. found that
the difference between the maximum and minimum iognstiffness values could be as
large as two orders of magnitude, and that thesiian zone between stick and slip
states was dependent on the coefficient of frictietween the wires and the axial tension
(which would contribute to the normal force betwéka wires, and thus, the frictional
force). Discussion of the paper by Cardou and apallowed the authors to correct a
few omissions and discuss a hypothetical “frictmoment”, which was dismissed as
being inconsistent with reality due to the cabfeiion propagation being asymmetrical
[79].

Papailiou’s secant stiffness method was extendedDagtous, who used a tangent
stiffness method that provided discrete changd®imding stiffness as curvature changes
and specific wires in the cable slip (as opposedh# secant stiffness method which
resulted in a smooth curve when bending stiffnessus curvature was plotted) [73].
These discreteEl values made the tangent stiffness method morealdeit for
compatibility with finite element programs. Dastoadso made a clear case for
considering hysteresis in cable bending. He useimple viscous dashpot damping
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model applied to the rotational coordinate for empl damping (a sensible choice,
representing damping that is directly related te biending of the cable and thus, the
frictional slipping between the wires), but notéatt different slipping conditions under
higher tension would certainly need a more accuratelel based on the physical
damping mechanisms. Between Papailiou and Dastonsplete results were obtained

for both low and high tension cables.

Inagaki, Ekh and Zahrai mention the different staté bending, namely, when the
curvature of the cable is small and all of the wideform uniformly and behave as a
solid beam, and when the curvature is large andvites slip against one another as the
cable deforms [44]. The goal of this research wasaiculate the bending response of
cables while incorporating the frictional forcesulting from pressure from the jacket
and insulation material. A frictional model exteddrom Papailiou’s work was added to
a basic geometric model. This model determinedttans at the lowest order helix and
then worked outward, emphasizing the response efctble to bending deformation,
which is particularly useful for transverse bearration. Contact between neighboring
wires within a layer was neglected. Rather thalcutating El directly, the authors
determined the tensile forces of all wires as a&ftion of curvature and found the bending
moment. Experiments showed that the viscoela$fectefrom the jacket material was
small enough to be neglected. The number of witrashad slipped was plotted against
applied axial tension, lay angle, and pressure fitoenjacket. Clear slip steps were seen
as fewer cables slipped at higher jacket pressimésthe decrease in slippage as lay

angle and tension individually increased was maoreath and uniform.

Raoof and Huang [62] also investigated wire sligpaghey found that plane-section
bending stiffness of cables was not constant, ave gpper and lower bounds, with the
upper stiffness value being as much as twice @ las the lower bound. This model
corrected and extended previous models by Raooftarahg, based on the method of
Lanteigne [75]. Raoof’s experimental and theoetticork showed that slipping between

wires started at the neutral axis and worked ouds/annless each successive layer had
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opposite lay directions, which agrees with thecedtianalyses of the thin rod model

slippage.

Knapp and Liu opted to investigate cable dampinglérmining the variation in cable
flexural rigidity rather than including a dampingrin in the equations of motion [41].
One author measured the strains due to bendincatbaé in a two-layer cable to test a
CableCAD software model, and radial pressure withire layers was tested
experimentally by measuring the force requireduth pne layer out from within another
layer. The authors found that no interlayer skipwred until bending curvature reached
a certain point. After this point, the outermosydr began slipping and the moment-
curvature relationship increased linearly until thevature reached the next transition
point, at which the inner layer slipped and the rantrcurvature relationship continued
to increase but at a lower linear rate. This cpoaded to a roughly exponential
decrease in the bending stiffness of the cablehasctble curvature increased. To
incorporate this variable bending stiffness, théhaxs used a finite element model in
which theEl value was constant over a small element, but awfg each element. The
authors compared their model with variable benditiffjness and experiments to work
from Sauter [38] and found good agreement. Theseoes demonstrated that varying
the bending stiffness without including a dedicatdmimping term is equivalent to

including damping due to internal friction in thguation of motion for a cable.

In an investigation of flexural properties speatflg, Filiatrault and Stearns tried to

determine the bending stiffness of cables and fahatithe maximum bending stiffness
occurred under high-tension, low-curvature condgi¢80]. The authors compared their
experimental results to secant conductor flexurtihess values as well as the theoretical

maximum and minimum flexural stiffnesses. This kvimlentified the minimum stiffness
T[d\‘/}vire
64 )

and the maximum stiffness as the bending stiffeéske cable as if it were a solid wire

as the sum of the bending stiffness of each indadidvire (Elmm =E Y o1 wires

4
El,.c =E Tdcable), They calculated the maximum stiffness at abdi fimes the
64

minimum stiffness, which agrees with Hong, et dirglings [76]. They also found that
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hysteresis effects were negligible for the statiading case, but increased when the
cables were under high tension or large curvaturee authors hypothesized that the
energy lost is due to friction between the wirdbeathan internal damping in the cables.
High tension also made the cable more like a dut@m, with wires sticking rather than
slipping. The authors compared their analytical arperimental values to the IEEE

standard for the effective flexural stiffness of ndactors whereEl; = (1 +
number of strand layers) * El,,;, and found that the IEEE recommendation is a

higher bound on the real flexural stiffness.

While the variability in bending stiffness arisesdely from the frictional forces from
interwire contact, modeling the variability in bémgl stiffness rather than the frictional

contacts may be a straightforward way to includaglag in cable modeling.

2.3.3 Damping Dueto Internal Friction and Viscoe astic Effects (M aterial Damping)

As discovered by Yu [54], internal damping is getigrvery small, but it should be

considered in an exploration of internal dampingchamisms. Since most power and
signal cables have insulation, investigation inmtsulation material damping should be
incorporated to cable models as well. Today’stedeics require shielded wires which
may be covered with a viscoelastic insulation matewrith very different shear and

elastic properties from the interior wire.

Yamaguchi and Adhikari investigated the increasdamping effect due to the inclusion
of a viscoelastic damping layer around the outsifl@ cable, similar to an insulation
layer [81]. The authors hypothesized that evenimah shearing through the added
viscoelastic layer would increase damping. Usimg Ross-Ungar-Kerwin theory and
incorporating both axial and bending stiffness,ytlestimated loss factors for the
damping-treated cable and compared them to the eabihout the viscoelastic damping
layer. The structural cable used in this study &éay angle of 3-4 degrees, was wrapped
in filament tape, and surrounded with a polyethglenter cover (which was assumed to
add no damping). The authors found that the viastie layer did increase damping,

primarily for the higher modes. Axial and bendings due to the additional damping
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layer were of the same order for a soft outer covet the bending loss factor could be
significantly higher if a stiff viscoelastic layavas used. Yamaguchi and Adhikari
continued this work by using an energy approaclevaluate the modal damping of

cables with and without viscoelastic layers andestigated the relationship between
jacket material and damping further [82]. Theyrfduhat variation in the cable sag ratio
caused significant differences in the damping rdtio both jacketed and unjacketed
cables. Stiff viscoelastic material was most dffecfor damping of the first mode, but

soft material must be used to increase dampingigheln modes. Damping was not
increased by a large amount due to the viscoeldsyier used in the study, but the
authors presented several options to decreasenthal ipotential energy and thus,

increase the modal damping, such as increasinggtipeatio or increasing the loss factors
by changing the material or viscoelastic layerkhass. Barbieri, de Souza, and Barbieri
extended the work of Yamaguchi and Adhikari to depea reduced damping matrix

[83]. Using search gradient and complex envelephriques, they found damping ratios
for the first five natural frequencies, and fouritt the damping ratio increased with

increasing length and decreased with increasingjdan

Shear deformation losses may occur in the wiresiseéres as well as the cable jacket.
Yu said that internal wire friction was very smatimpared to the interwire friction, but

he also dealt only with steel cables, not jacketdudes [54]. Inagaki et al. found that the
viscoelastic effect from the jacket was too smalichange the overall results, but did
incorporate the changed pressure on the wires aubet compression caused by the
jacket and insulation [44]. It seems that morelgtis needed to completely characterize

how and why cable insulation would change the dynaesponse of a cable.

Many authors compared models to experiments tadatdi the models, but to truly
validate, rather than calibrate, a model must He &b predict the cable behavior, not
merely match it. Castello and Matt used verificatiand validation techniques to
investigate the suitability of a simple homogenebeam model to predict the frequency
response of an overhead transmission line cable [Bde authors cited the variability in

bending stiffness and damping values as major olestdéor the use of the simple beam
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model. They used an Euler-Bernoulli beam modeh vaitlditional terms for tension,
aerodynamic proportional damping to represent aatedamping (usually omitted in

other models), and Kelvin-Voigt damping to represeiscoelastic internal material

damping:ch%(aa%v) + ¢y aa—V:. The cable used for the experimental data wasitabb
thick, quite dense (more than 1.3 kg/m), long spamrand low sag. Estimates for the
bending stiffness, and alpha (external) and zetterfial) damping parameters were
calculated from the experimentally determined fextpy response function, and then
investigated using the methods of verification galidation. The authors found that, for
a very specific narrow frequency range and givesion value, the simple model could
be used to predict the time and frequency domaauyc responses. The fact that this
simple model predicted the cable response well where complex models do poorly

may be a result of the type of cable used, asck,tBingle strand ACSR cable with low

sag is undergoing very little bending curvature,iclhis what causes much of the
frictional variability that gives such uncertairfr other models. Continued work on the
verification and validation of cable damping modeds well as investigation of the

properties and responses of different cable familell certainly lead to more reliable

and useful models.

In space, there is no supporting medium, so itrisgrily internal damping that affects
the system's motion. Thus, damping terms thae drem the internal movement and
friction of the cable are of greatest consideratibtowever, because the experiments for
this work were conducted in air, a viscous term \waduded in the model to more

closely mimic the experimental results.

2.4 Dynamics of Spaceflight Cables

The literature review up to this point deals withbles in general; the past research
focused on structural support cables or high tensieerhead power lines. Electrical

cables were not previously investigated due ta tt@inparatively small size and the lack
of precision applications requiring the mechanpralperties and interactions between the
cables and their host structures. However, spaoetsres are unique in that they are

both lightweight and have high precision requiretagso the addition of cables actually
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does change the overall dynamics of the structuk@y structure intended for space
flight undergoes much simulation and testing. Ma#sating determines the resonant
frequencies of the craft, or which excitation fregoies would cause the structure to
vibrate uncontrollably. These frequencies are theted and avoided or the structure is
altered to change the resonant frequencies. Megtihg is often performed before the
structure is fully dressed with the cables requifed flight, and cable effects are
currently incorporated by simply adding the masshefcables as a single lumped mass
at the center of the craft or by changing the stmecdensity along the cable path to add
distributed cable mass. The existing researchpaces cable dynamics was performed
largely by the Air Force Research Laboratory (AFRiEsuUIlting in a significant body of
work. The AFRL undertook a study of the dynamieraction between cables and space
structures, and found that power and signal calée incorrectly overlooked/ignored in
the design and modeling of precision spacecraficesithese cable effects can be
significant. Based on research from the Air FdrResearch Laboratory it is no longer
sufficient to model cables as lumped mass [2], #igt tests showed that addition of
flight cables can shift modal frequencies and casigmificant increases in modal
damping ratios [85]. As the field of material s@e advances, the materials used for
space structures have become lighter weight, wischdvantageous because lighter
payloads are less expensive to send into orbite dverall structure may be lighter, but
the signal and power requirements are just as eéomifl not even more sophisticated,
requiring the same or more power and signal caddeprevious spacecraft. As such,
cable harnesses are making up a greater percenitdlge total spacecraft mass, making
up 4-15% of a structure’s mass [1] and in somes;ase much as 20% [3] or 30% [1,2].
As the cable mass ratios increase, the effecteeotébles become more significant. In
addition, studies have shown that cables are adting structural capacity, adding
damping and actually changing the expected resdneauiency of the system [86, 87].
The combination of a greater mass percentage anth@havior of cables as structural,
rather than inert elements, make it evident thatdffects of cable harnesses on space

structures require greater study.
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The control of a space structure relies on verycipee knowledge of the structure’s
current position and response to propulsion systemgcording to_Space Vehicle
Design components for attitude determination and cordf@ spacecraft are demanding
of “specific orientation, alignment tolerance, @iedf view, structural frequency response,
and structural damping” [88]. Thus, since the addiof cables changes the structure's
frequency response and damping, characterizinge teffects is necessary for precise
control of the structure. In addition, once catiénmping can be accurately quantified,
additional damping treatments may be rendered wssacy if the cable damping is

sufficient to prevent unwanted vibration.

The initial AFRL investigation revealed no defimgi existing works on the subject of
spaceflight cable effects, and only a single steshdar cable attachments among five
aerospace agencies [87]. Initial testing showed tiie addition of cables to a structure
certainly changed the structure's dynamic respdngemodes were damped irregularly,
if at all, and the overall conclusion was that enfde" beam with a cable is not simple
after all [87].

With the intent to quantify the effect of cables space structures, Goodding et al.
developed methods to test and model cables tordietertension and bending stiffness
under transverse vibration [3]. In a departurenfitie typical large aluminum and steel
cables usually modeled, the electric and signdlesatested were of low linear mass and
under very small amplitude excitation and thus megluspecialized test set ups and
sensitive data acquisition devices. This extenstuely developed algorithms for the

second area moment of inertia, shear factor andrsim®dulus product based on a
frequency response test of the cable. A finitenelet model using the experimentally
obtained cable parameters and calculated valuevaligsated with experiments. Similar

cables showed a high degree of variability in tlegperimental behavior, most likely due
to the hand-made construction. The skill and &tiarof the technician making the cable

was also noted elsewhere as being a major conswtefar cable uniformity [89].
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An Euler-Bernoulli beam model was used for inittabdeling. To determine cable
parameters, axial and lateral vibration tests vperdormed and estimated effective cable
diameters were found to be 30-35% of the actuasichydiameter [67]. This study and
others also showed that elementary beam theorynatisufficient for a realistic cable
model [67, 90]. Later work by Babuska et al. meddhe transverse vibration of cables
with the equations of shear beams, with all ofdbam parameters treated as independent
guantities, not linked to the physical cable disenetr through Poisson's ratio [1]. Cable
damping was included in the FE model as basic stralcdamping. Cable parameters
were determined through axial vibration tests,digmificant variability was found within
each cable family, despite having the same persakerall of the test cables. This work
also addressed the issue of the connection tie-cstiffness for the typical aluminum
TC-105 tabs and nylon cable ties used for cabkclthent, referred to as "tie-downs"
throughout this work. The tie-down stiffness waaleated in several ways, but direct
measurement underestimated the value badly, and maork is required to empirically

determine the tie-down stiffness.

The next paper in the series extended the prewark to tests of 3-6% cable mass
fractions attached to a plate panel rather thamaanb[2]. Based on this and the previous
works, there was a clear frequency regime wherectides act as lumped mass, a
transition section, and then a frequency regimerghiee cables become resonant and
add damping. In simple cases, like a narrow beid®, transition section is small,
predictable, and straight forward, but not so wiéimels. This paper provided insight into
the different cable models; shear stiffness wasomamt to model cable dynamic
behavior, but neglecting rotational inertia hatdieffect [2]. As far as cable parameters
for modeling purposes, area was based on the frar¢a of the copper in the cable,
modulus of elasticity was calculated from axiak @gta, and the moment of inertia and
modulus of rigidity were calculated from lateralndeng tests. Again, basic structural
damping was included and the tie-down charactesistere again found to take a major
role. When testing was performed, the additionatfles did not change the mode shapes

of the panel to a large degree. In addition, theonance frequencies were not
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significantly different, but this was explained the fact that the cable mass ratio was

much lower than typical.

Through this study series, cable modal damping alas investigated and found to

average about 4% of critical as a viscous dampiaghanism, although this varied from

1.8% to 4.9% depending on cable type and speci3¢n [The authors attributed

deviation in the damping ratio to the lack of cetesncy in the cable construction due to
non-mechanized cable manufacture. Experimenta dadwed that lower modes had
larger relative motion and higher damping ratiosnsistent with the hypothesis that
motion between wires causes the greatest energy Kauffman, Lesieutre, and Babuska
also investigated damping in cables as it applespacecraft wiring and used a time
domain, geometric rotation-based viscous dampingah@ased on [91]) to generate
damping coefficients and compare them to existingeemental results [92]. This

model was based on an Euler-Bernoulli beam witladdiitional transverse shear term
included that shifted the resonant frequencies towehe damping term described two
internal shear forces representing the rate of ghari the bending angles for the shear
angle and bean¥,, = —c,;[? — c,¢. This damping model was less frequency-dependent
than previous models for the low frequency bendegyme, and increased linearly with

mode number in the high frequency shear regime.

Investigators at the NASA Marshall Space Flight €eralso investigated the effect of
cable harness assemblies on space structuresficgbgitheir interest was on the level
of damping of a launch vehicle panel due to cabiedke installations. Initial testing of
cable bundles added to the panel did increase dani@8]. The authors determined the
damping parameter by optimizing a developed fimtement model with a viscous
damping parameter with the experimental data. Wosk was extended to test more
cable bundles, with total bundle mass ranging f&b8v to 21.21 pounds, giving cable
mass ratios of 8.5% to 76% [93]. Of particularemest was the result that including
cables on the panel resulted in greater panel dagniian including a lumped mass
equivalent to the cable mass. The panel respoasehighly dependent on measurement

location, especially at low frequencies. The MS#Gup also noted nonlinear behavior
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in several frequency bands and found critical dagpatios to be as high as 0.08, but
also noted that the modeling approach could be owgwt and that some of the

unexpected results required further study.

Knowledge about the effects of spaceflight cabks increased from essentially nothing
to results from multi-year projects staffed by tsawhexperts from major research labs in
less than a decade. However, a consistent resuft these sources was that there are
still many unknown or poorly understood factorstthrust be investigated to complete

the predictive capabilities of cabled structure eled

2.5 Literature Review Conclusions

The breadth of cable literature required carefutisg to determine the useful and
applicable information. Of course the work on sbght cables specifically is
invaluable, but several conclusions from differeable fields are worth highlighting as
well. First of all, several sources note that niiodecables as a shear beam is possible
for both general cables and spaceflight cablesifsgaty. It is also clear that a cable
model must include bending stiffness, and some ternmechanism to model the
damping that is inherent in cables of all typesay langles should be restricted to 20
degrees or less for best results, and the largeovkrall cable size, the more effective a
beam model is for predictive uses. Cables withulaign behave as viscoelastic
materials. The work to date shows that furtheeaesh is required in the areas of cable

parameters, cable damping and cable attachmentpouteling.

A major contribution of this work is bringing todpetr the many aspects of cable
modeling to yield a coherent dynamic cable mod€&he current work on spaceflight
cables will be extended in this dissertation byagdging the available experimental data,
developing a method to calculate cable properties fbasic measurements rather than
dynamic testing, and improving the tie-down attaehtrmodels, as well as introducing

more complex damping mechanisms into the cable mode
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Chapter 3: Cables

The cable models surveyed in the previous chapteruaed for many types of cable
analysis, from internal force calculations to potidn of deformation. Although there
are many methods to model cables, for modelinglyimamic response of a cable, a beam
model has distinct advantages in terms of simplieihd effectiveness. For vibration
analysis, beam models are well-studied and pro@ideay to incorporate the semi-
continuous approach to model a stranded cable lasmegenous structure by careful
calculation of the parameters used in the equattdn®otion. Therefore, modeling a
cable as a homogenous beam is the method used heerabdel dynamic cable behavior.
This chapter discusses the considerations for nmglehbles as beams, introduces cable
terminology and the specific cables investigated, presents the methods for calculation

of cable parameters to be used in cable models.

3.1 Cablesas Beams

Using a beam model is relatively straightforward amovides useful dynamic response
data that can incorporate tension, internal dampimyconnection points. Beam models
do not require determination of internal frictioardes directly, but instead rely on
effective beam properties such as bending stiffea@ssviscous damping to capture the
frictional effects. Thus, determining these parargeto accurately portray the dynamic
response is important. The simplest beam mod#iesEuler-Bernoulli model, which
assumes plane sections of a beam remain plan&ratflexible cable with viscoelastic
insulation, the cable stretches and plane sectmase, so shear effects must be included.
In a shear beam model, the equation of motion amntemformation about the cable
characteristics; specifically, the coefficientslod equation of motion include the density,
area, bending stiffness, and shear term. To UsBrengenous beam model to predict the
behavior of a decidedly un-homogenous cable, efkegarameters must be determined.
As all spaceflight cable models to date have beeyated with cable parameters
determined from dynamic response data, the caloonlaf cable parameters based purely

on basic static measurements is a contribution thay prove useful in preliminary
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spacecraft and cable design, as well as any otpglication that requires dynamic
information about a cabled structure.

3.2 Cable Terminology

Since cable terminology differs from field to fielthis section serves to define the
common terms used in this work to describe spayteffpower and signal cables. A core
wire surrounded by layer wires is known as a stra@dbles have a core wire or strand
surrounded by helically twisted wires or strandssimccessive layers. Cables are
designated by an “m X n” numerical designation wharis the number of strands and n
is the number of wires in each strand. For exangEX7 cable has seven strands (a core
strand and six surrounding layer strands), withhesicand comprising a core wire and 6
layer wires as shown in Figure 3.1 with the cord strand labeled in the end view. A
7X19 cable would have seven strands as well, vatthestrand made of a core wire with
6 wires in the first layer and 12 wires in the odsger (for a total of 19 wires per strand)
as Figure 3.2 illustrates. Most cable models itigate a single strand. Cables made up
of wires in multiple small strands (multi-strandeable) are more flexible than cables

made up of a single strand (single-stranded catith)the same total number of wires.

One important characteristic that is unique torsteal cables and wire ropes is the lay
angle. The lay angle is the angle that the layersamake with the core; cable lay angles
generally range from 2.5 to 35 degrees, with mosthematical analysis of cable
behavior departing from reality beyond 20 degr&é.[ Helix angle and lay ratio (ratio
of wind-to-twist, or length for a wire to make ohdl turn around the core wire) are
different but also commonly used ways to quantifg amount of twist that the layer
wires have around the core wire. For this worle ty angle is used, measured in
degrees and converted to radians for calculatiopgses. Cables may be helical or
contra-helical; a helically twisted cable has aldrs wrapped in the same direction,
while a contra-helical cable alternates the wragpuimection with each successive layer.
The contra-helical cables are very slightly hegvimrt remain straight while a helical
cable will revert to a curved relaxed state. Fég813 illustrates the difference between a

helical cable, which hangs with a curve, and areshgtlical cable, which hangs straight
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down. The core wire may be the same diameter as the Vayes, or larger, to preve
the layer wires from touching each er when the strand is unstressed. The assurr
of contact between each layer wire and the cinly (as opposed to each la wire
touching not only the core, but alsoneighboring layewires) is an important feature
the various friction models Further details on cable and wire rope constructiam be

found in Feyrer [94].

CORE

STRAND

Figure 3.1:7X7 cable side view and end view with core labedad individual seve-

wire strand identified; side view reprinted withrpession from VER Sale

oy o 2ol
e gy N ¥ CORE
“\»—o‘u‘o " )
~———— - \... ...‘. [

STRAND

Figure 3.2:7X19 cable side view and end view; side view repdnwith permission fror
VER Sales.
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Figure 3.3: Evidence of inherent curvature in hadlicable; in contrast, contra-helical
cable hangs nearly straight.

A cable is meant for transmission of forces or gign Cables can be categorized as
either mechanical wire cables (wire ropes) for guyes and structural use, electrical
cables for signal transmission, or optical fibeblea. Mechanical wires transmit forces
between locations, while signal cables transmittatsal signals [22]. Mechanical wires
may be subject to much higher stresses than sagidés, while signal cables may have
greater requirements for minimal vibration. Cabteay be subject to axial forces
causing tension, torsion, and lateral forces cgusending. Vibrations from the cable’s
surroundings, such as wind, water, or equipmentatidtn, can also cause bending and
cable vibration. The outer layers, rather thandtee, take most of the axial force [21].
An applied axial tension causes tension in thechkitrands which causes them to apply
inward radial force to the layers within [70]. Gboable models take into account the
critical design factors for the specific use of tbable and make assumptions that

reasonably describe the cable’s properties andvimeha

3.3 Cable Component Wiresand Configurations
Much of the research on cable properties deals ahitminum conductor steel reinforced
(ACSR) cables as shown in Figure 3.4. But unlikeSR cables, which are made

completely of solid metal wires drawn from one miale the cables used for space
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structures are generally made of an aluminum opeopore surrounded by flexible EI
shielding and some type of electrical insulat

Figure 3.4: Aluminum coructor steel reinforced 1X37 cable, courtesy of Gan€able.

Preliminary invegations were performed with an insulal1X18 helically twisted cabl
made of MIL275026TG2T14 wires. All of the subsequent cables usethis study
were also made with M2750C-26TG2T14 wire. This wire, commonly used for sp
applications, consists of two 26AWG twisted wirarpandividually insulated, an EN
shield made of tinned copper, and outer Tefzel @THsulation layer. Figur3.5
shows the components thaiake up the individual wires that abeindled together t
make the cable.

Figure 3.5:Deconstructe cable wire, from top to bottomKapton wrapped cabl
individual wire, and wire components: EMI shieldiot 26AWG twisted wire pairs, ar
wire filler label.
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The wire has a left hand lay and is shrink-wrappét the Tefzel insulation, so there is
an evident twist to the wire, making the wire owvashape rather than circular. Wire size
measurements were taken from published values \wheagible [95] and verified with
actual measurement. Upon discovery that the hetiiaat added permanent curvature to
the cable which made the frequency response depeadehe orientation of the cable in
the test fixture, the contra-helical twist methodwhich each layer has an alternating lay
direction, was used for all subsequent test cabldse cable configurations used for test
data were five sections each of 1X7, 1X19, 1X4& @K7 configurations, as shown in
Figure 3.6, all made of the same MIL27500-26TG2Wi insulated with Tefzel.

Figure 3.6: 1X7, 1X19, 1X48 and 7X7 spaceflightleadections and the associated wire

configuration diagrams.

All of the test cables were made on a planetaryhinacto ensure uniform construction,
since previous studies noted that variability imlam construction technique was evident
[89] and it was desirable to eliminate this souofevariation. After the wires were
twisted together in the appropriate configuratitrey were tied every 4-6 inches and
machine wrapped with Kapton tape with a 50% overlaphe Kapton overwrap is
designed to keep the wires together snugly, bobisapplied with significant force. The
Kapton overwrap was assumed to add no additioifledts other than keeping the cable
wires in radial contact.
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The smallest cable, a 1X7 single-strand, was aBoutn in diameter and quite flexible.
The medium size 1X19 cable was similar in sizéheo1X18 preliminary test cable, was
about 13 mm in diameter, and had three layers, oril, six, and twelve wires in each
successive layer. The two large cables were bdtbuta22 mm in diameter
(approximately one inch), but the 1X48 cable wasmstiffer and more like a solid
beam than the 7X7 cable. The 1X48 cable did neeha full outer layer; one, six,
twelve, and eighteen wires in the full inner layarsl eleven wires in the outer layer
makes a total of 48 wires, a configuration chosecotrespond to the size and wire count
of the multi-stranded 7X7 cable. The 7X7 cablestsis of a core 1X7 strand surrounded
by six more 1X7 strands twisted around the coreaftotal of 49 wires. Multi-stranded
cables are used to provide greater flexibility, dnd increased flexibility was indeed
observed in the multi-stranded cable over the sisganded cable of similar size.

3.4 Property and Parameter Calculations

Modeling a spaceflight cable as a homogenous begmires input parameters of avka
densityp, bending stiffnes&l, (comprising both the modulus of elasticity and neotrof
inertia), and shear rigidity AG. To predict the cable response, these values beist
correlated to cable and wire properties such asulnedof elasticity and rigidity, cable
geometry, and construction, which forms the basis this section of investigation.
Bending stiffness is particularly important, sincean vary with cable curvature, tension,
and wire slip. The work on stranded ACSR cables/ided a sound starting point for
cable parameter calculation, but because most pawersignal wires include several
different materials within each wire, composite emn@ methods had to be introduced for
these purposes. Up to this point, cable propeftie®eam models were determined by
running dynamic tests and then working backwardgiétd the appropriate mass and
stiffness terms. Ideally these parameters woulddéermined simply by using the
geometry and constituent materials of the cablthout using complicated equipment or
having to measure individual cable sections. Towshhat this is possible, direct
calculations for each parameter were developednaedmum and minimum parameter
values were determined. Models using these paesnranges were compared to

extensive dynamic testing with the objective bemdpound the range of cable responses
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with the model responses. Table 3.1 gives thea@ecbasic measurements for each cable

type. Note that these observations required oasydomeasuring tools (scale and ruler or

calipers) with no sophisticated testing requir€tgure 3.7 shows the overall relationship

between the measured inputs, material propertied, calculated values that will be

presented here.

Table 3.1 Cable parameters measured or observeddb cable.

1x7 1x19 1x48 7x7 (multi-strand)
Number of Wires N 7 19 48 49
Number of n 1+core 24 core 3.5+core 1 layer of six 1-layer
Layers strands + core strand
Number of
Strands Ns 1 1 1 !
Mass m  0.0708 kg 0.1905 kg 0.4481 kg 0.4944 kg
Length L 0.7692m  0.7782m 0.7744 m 0.7744 m
Lay Angle B 03417  0.2873 0.3217 0.3037
(radians)
Outer Diameter D 0.0074 m 0.01272m 0.0204 m 0.0216 m

Cable Measurements:
Wire size and configuration

i Alternate Method
Cable Measurements:
Mass, Length

Material Properties:
nu Copper and nu Tefzel

Cable Measurements:
Wire size and configuration, lay angle,
tension, curvature, friction coefficient

Material Properties:
G Copper and G Tefzel

Material Properties:
E Copper and E Tefzel,
nu Copper and nu Tefzel

Figure 3.7: Relationships between and inputs fbtecproperty calculations to determine

cable parameteys A, kAG, andE] used to model a cable as a beam.

In the figure, green arrows represent inputs fromatemal properties and cable

measurements, and grey arrows represent the reswlilculations. Area is calculated

first, using information about the wire size andfoguration, which yields values for
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density and volume fraction. Copper and Tefzelemalk properties of Poisson's ratio and
shear and elastic moduli are input to calculatevilte Poisson's ratio and then the wire
shear and elastic modulus. Area, Poisson's rétibeowire to get the shear coefficient,
and the wire modulus of rigidity are combined telglithe cable's shear rigidity. Finally,
the wire size and configuration, lay angle, tensmmvature, and friction coefficient are

combined to calculate the bending stiffness fortié@m equation from the wire moduli.

3.4.1 Wire Component Material Properties

The wires are made up of essentially two componesapper, which makes up the
conductor cores and EMI shielding, and Tefzel, itteulation for interior and exterior

wires. Table 3.2 shows the material properties Usedhe copper and Tefzel of the
investigated cables. These values are used iregubst calculations to determine the

overall wire properties.

Table 3.2 Material properties for cable components.

Property Copper Tefzel
Poisson's Ratio 0.343 0.46
Modulus of Elasticity 110 GPa 1.2 GPa
Modulus of Rigidity 45 GPa 0.41 GPa
Density 8930 kg/rh 1700 kg/ni
34.2Area

A section of cable used for the preliminary testimgs disassembled into the two 26
AWG twisted pairs, shielding material, and Tefzeating, as shown in Figure 3.5, and
each component was measured and compared to pdlisire specifications [95].
There are three defendable ways to calculate #ee @airameter of the cable: the overall
area as calculated based on the outer cable digraatever-estimation; the overall area
of the wire as calculated based on the outer vize snultiplied by the number of wires;
and the sum of the area of the individual coppet &afzel components, which is an
under-estimation. These calculations provide marimmiddle, and minimum values
for the area parameter. Examination of the wiredushows that the twisting lay of the
two 26 AWG wires inside makes for an elliptical &shape overall. Calculating the area
of the wire using this elliptical shape for the EBtielding and outer Tefzel jacketing
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(rather than a circular shape) resulted in a smalkrameter range and increased
agreement between experimental and model dattéhelfollowing equationg] indicates
wire diameter,r, andr, indicate the x and y axes radii of the elliptioate shape
(essentially either 1/2 or one times the diameté¢h® 26 AWG wire plus the thickness of
the shielding plus the thickness of the jacketd &nindicates cables outer diameter,

measured from crown to crown (widest point).

Apmin = N x (2 x (area of copper cores + area of 26AWG jackets) + area of EMI shield

+ area of outer jacket)

d 2
Amid,circutar = N * <7T (5) )

Amid,elliptical =N x (T[ * Tk ry)
D 2
A =1 (—)
max 2

Figure 3.8 shows an idealized circular layout @& thire with measurements used for
initial calculations, and Figure 3.9 shows thepgitial layout with the same 26 AWG
wire size and shielding and jacketing thicknessteNhat Figure 3.8 and Figure 3.9 are

not to scale. Table 3.3 provides the resulting @adculations for the four different cable

types.

Outer Tefzel Jacketing -

(0.92 —1.25 mm radius)

Tinned Copper EMI Shielding _
(0.8-0.92 mm radius)

Inner Tefzel Jacketing _
on AWG 26 Wire
(0.205 - 0.41 mm radius)
y) ———— 26 AWG Wire

Copper Core of AWG 26 Wire —
(0.41 mm diameter)

Figure 3.8: ldealized circular internal anatomyMiiL27500-26TG2T14 wire used for

circular wire area calculations.
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Quter Tefzel Jacketing

Tinned Copper EMI Shielding -

Inner Tefzel Jacketing
on AWG 26 Wire

————— 26 AWG Wire
Copper Core of AWG 26 Wire _—

Figure 3.9: Elliptical internal anatomy of MIL275@&TG2T14 wire for elliptical area

calculations.

Table 3.3 Area calculations for four cable typasyt.

1X7 1X19 1X48 7X7

Amar 4.35E-05 1.27E-04  3.27E-04  3.66E-04
Apigcircwar ~ 3.44E-05  9.33E-05  2.36E-04  2.40E-04
Amideniptica  2.95E-05  8.03E-05  2.03E-04  2.07E-04
Amin 2.77E-05  7.51E-05  1.90E-04  1.93E-04

The area calculation is also used to determines¢ih@me fraction used for many of the
subsequent calculations. These expressions depetite volume fraction of the copper
in the wire, which was calculated by dividing thepper area (based on the area of the
wire conductors and tinned copper shielding) by dénea of the wire as a whole as
determined by either its outer diameter or the sdirthe component areas. Since the
materials have the same length, volume fractiorefmh material can be determined by
dividing the area of each material by the totahar@dgain, there are multiple approaches
to this calculation that make sense: one way igs® the total area of the wire in the
denominator, which takes voids in the wire intocaotd, and another way is to sum the
component areas for the denominator, which asswanege without voids. Initially,
these were calculated assuming that the wire wasilar, but using an elliptical wire

shape matched the physical wire and resulted s1Jagation between the two methods,
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which in turn reduced the overly large range thegutted from a first round of
calculations [96, 97]. Table 3.4 lists the volufreetion results for each approach. Note
that volume fraction is calculated for a singleeayiand is therefore the same for each

cable since they are all made of the same typaref w

Table 3.4 Volume fractions used for cable propedigulations.
With Void Space With Void Space

Circular Wire Elliptical Wire With No Void
(Material Area (Material Area., (Material Area / Sum ¢
Circular Wire Area) Elliptical Wire Area) Material Areas)
Copper 0.185 0.216 0.231
Tefzel 0.620 0.720 0.769
Void Fraction 0.194 0.064 0

3.4.3 Density

Density calculations for the cables could be calmd for each cable using the measured
mass and calculated areas, or through a rule afunex (RoM) approach, which would
yield the same density for all cables. Density determined by weighing the cables and
dividing the total mass by the volume, where theaaras chosen to correspond to either
the overall area, yielding a minimum density, theaacalculated by summing the area of
the wires, or the area calculated by summing thasered components comprising the

wires, yielding a maximum density.

mass of cable

P = area of cablenin mid or max * cable length

Thus, the smallesbA value is given by using the maximum area to gebi@imum
density. Previous work assumed all cable paramdtebe completely independent of
each other [1,2], but since area calculations wéeldised to determine the density, this

author felt that consistency throughout the calioawas necessary.
Density could also be calculated using a rule oftanes approach. The rule of mixtures
is a weighted mean used for multi-component or ausite materials to determine overall

properties based on the component properties.thiocalculation, all cables would have
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the same density since all of the cables were médee same wires and have the same
volume fraction. The cables were transverselyddado the lower bound for the rule of
mixtures is used, given by

(fou + vaefzel
Pcu pTefzel

-1
) < Pcable (ROM)

wherev ¢, and vfr.r, could be the volume fraction calculated with othaut voids as
described in the previous section, and the densityes are the published values for pure
copper or pure Tefzel as indicated. Those valua® within the limits of the mass and
volume density approach for all other cables, i exception of the minimum value
for the 1X7 cable. Table 3.5 presents the densilyes for both methods.

Table 3.5 Density values calculated for each cablig/n?.

Density Term 1X7 1X19 1X48 X7

Pmin 2117.1 19265 17705 1742.3

Pmidgenipticar 3110.6  3049.7 28537 3084.1
Drax 3323.4 32584 3048.9 3295.0

Prmin (ROM) 2090.6

P (ROM) 2233.6

The density calculation was verified experimentdllyusing Archimedes’s principle; a
short section of 1X18 cable was weighed in air Hreh weighed in water as shown in
Figure 3.10, both immediately after submersion sexkral days after submersion. The
immediate result was 2163 kgimand after waiting for 72 hours to allow the watter
permeate every void of the cable, the result w&¥ 28/nf. These were both within the
range of the similarly-sized 1X19 cable densitycakdtions using cable mass and areas
and RoM, which lent confidence to these densitgudation methods. Since the rule of
mixtures approach resulted in density values thatewwithin the range of all other
cables, the mass and volume density calculationntguae was used for maximum and
minimum pA values, except for the minimum of the 1X7, whiged the RoM minimum

value.
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Figure 3.10: Cable in water for measurement of ilehsised on Archimedes's principle

of buoyant force.

3.4.4 Concentric Composite Wire Properties

The real contribution here comes from the calcatatf the modulus values. Obviously,
a stranded cable is quite different than a homogeiheam. The existing ACSR research
only considered wires made of a single materialfoscan insulated and shielded wire
made up of several components, additional cal@rlatiare required to determine the
single modulus of elasticity term for a single ramogenous wire. The field of
composite materials yielded useful approximatiamswire properties; specifically, the
individual wires that make up the cable could bedeted as a concentric cylinder
composite, in which the copper conductor takesaleeof the strengthening fiber and the
Tefzel insulation takes the role of the matrix. nc®@ the Tefzel insulation is tightly
bonded to the conductor, the wire can reasonablgdmsidered a composite material.
Modulus values were based on a modified rule oftunés for parallel fibers in a
concentric matrix [98]. These expressions depenthe volume fraction of the copper
and Tefzel in the wire, calculated for maximum améimum values as described

previously.

To determine the wire modulus of elasticity, thea@antric composite model uses the
core material as the fiber and the surrounding nates the matrix, so for cables, copper
is the fiber and Tefzel is the matrix. For a baarbending, the longitudinal modulus of

elasticity is required, given by
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EL = vaf + vam

+ Z(Vf - Vm)zEmEf’Uf(]. - Vf)
Em(1 =) (1 = vp = 2v7) + Ep((1 = vy — 2030 + (1 + v3))

Note that the Greek letter, representing Poisson's ratios, and the symbok volume
fraction look very similar in the elastic moduluguation and must be distinguished
carefully. Using the two volume fraction caseauttssin the upper and lower bounds for
the base longitudinal modulus for a single wireowsdver, this expression applies for
straight parallel fibers; in the case of a twistedductor pair, the modulus of elasticity is
reduced by as much as 10% [98]. Thus, a 0.9 fastancluded in the wire elastic
modulus to take into account this fiber curvatuffeet. The minimum and maximum
values for the wire modulus of elasticity are detieed by using the volume fractions
with and without voids, respectively.

The shear modulus of a composite consisting ofllearféoers in a concentric matrix is
given by

B ((1+ )G + (1= v)Gpn) G

wherevy is the volume fraction of the fiber an@- andé,, are the shear moduli for fiber
and matrix, respectively, where the copper actbes and the Tefzel acts as matrix.
This shear value is used for the cable as a wholke cable model is relatively
insensitive to the shear modulus value; it is ingoarthat the term be included, but large

changes irG yield only small changes in the frequency response

Poisson's ratio for the cable is required for thkewation of the shear coefficient and

is also calculated from the concentric compositelehasing

2(vim — vp) (1 — VA Esvp
En(1—v7)(1—vf - 21/]3) + ((1 —Vm — 2v3)vp + (1 + vm)) Ef
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where vy, vy and Ef are the volume fraction, Poisson's ratio, andetlastic modulus of
the fiber (copper), and»,, v,, and E,, refer to the same properties for the Tefzel matrix.
Note that the symbols for volume fraction and Rmi&s ratio must be carefully
distinguished. Table 3.6 gives the calculated wireperties from the concentric
composite model, with the values based on the vel@maction with or without void
space making the minimum or maximum value. Thedees form the basis for the shear

and bending terms to follow.

Table 3.6 Wire material properties calculated usiogcentric composite model.

With Elliptical Void No Void
E, with straight fiber 24.6 GPa 26.3 GPa
E, with curved fiber 22.1 GPa 23.6 GPa
G 0.63 GPa 0.65 GPa
Poisson's Ratjo 0.433 0.431

3.4.5 Shear Rigidity

At this point, calculated parameters include maximand minimum values based on two
methods of volume fraction calculation for the wimmeodulus of elasticity, the wire
modulus of rigidity, and the wire Poisson's ratithese properties can now be combined
to build the remaining cable parameters requiredife beam model. The importance of
shear effects for cables was noted by several esu®; 3, 84, 90], and it is the inclusion
of the shear terms rather than the exact shear taloe that is significant. The
developed cable model is relatively insensitivethte specific shear value, but is very
sensitive to whether it is included. The sheaidiig term kAG requires the calculation
of k, the shear coefficient, as well as area and maedefluigidity. The shear coefficient
represents the distribution of the shear stresflgm@cross the cross-section of a beam.
Reference [99] focuses on shear coefficient calinafor circular shear beams, and
gives the equation for shear coefficient of a dacbbeam as

_ 6(1+v)?
T 12y + 42
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wherev is Poisson's ratio. For the wire Poisson's ratds, the result fonc is 0.9517
and 0.9514, so the rounded value of 0.95 is usedlf@alculations. This is higher than
the typical Timoshenko value of 0.9 for a circubeam, indicating that more shear is
occurring in the stranded cable than a typicaldsb&am, which seems reasonable. The
concentric cylinder model values for the modulusrigfdity are combined with area

calculations and the shear coefficient to deterrthieeshear rigidity term.

Although further investigation could refine thislwa based on the interaction of
individual wire shear profiles, both the previoesearch [3] and this study's findings
show that the model is not very sensitive to theashterm value, so an order of
magnitude change in the shear modulus value mé#tke difference and the calculated
value works as is.  Since the cable model isnsitiee to the shear term, archas been

shown to round to the same value for each limiectse difference between choosing the
maximum or minimum area makes is very slight. Feg8.11 shows the modeled
difference in frequency response function for Gueal differing by orders of magnitude.
Differences are minor all the way through the fiftequency, and even the higher

frequencies are simply shifted.

kAG=7.6E3

_80 |- i
\ kAG=7.6E4
. N kAG=7.6E5
-100F J\

-120-

-1401- ‘

-160 -

-180

Absolute Transmissibility (dB)

-200-

-220

240= L L L L Lo P
10
Frequency (Hz)

Figure 3.11: Slight variations in frequency resgfa massive changes in shear rigidity
value.
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3.4.6 Bending Stiffness

The AFRL work limited cable modeling to commergyadivailable finite beam elements
and determined elastic modulus and moment of me&gliues through axial dynamic tests
and lateral bending tests, both requiring dedictgstlequipment. The approach outlined
here allows for calculation of bending stiffnessdxh purely on the cable geometry and
published material values. Bending stiffness diles is considerably more complex
than for a homogenous beam; research shows thdteth@ing stiffness of a beam is
variable when the beam is a multi-stranded cable #9]. For a solid homogenous
beam, bending stiffness is made up of the produittedmodulus of elasticit§ for the
solid materialand the moment of inertig which is easily calculated for simple solid
shapes For a stranded cable, neither of these propeiesimple. Instead of
determiningE and| directly, the overall bending stiffness is consaiebased on the
work of Papailiou concerning the bending stiffnes®A\CSR overhead transmission line
cables. According to Papailiou, cable bendindgretgs must take into account not only
the stiffness of each individual wire, but also #ezondary stiffness due to the friction
between the wires. The secondary stiffness vaepending on whether the surrounding
wires have slipped against the core wires or ndiickvis generally dependent on the
amount of cable curvature. When a cable is sttagl all of its wires are in an initial
position, it has a maximum bending stiffness. As table is bent or displaced, wires
begin to slip against each other, and when all sirave slipped, a minimum bending
stiffness is achieved [49]. The difference betw#enminimum and maximum bending
stiffness value may be orders of magnitude ap#&;t$0], and the bending stiffness value
can be any value in between depending on the auevaif the cable. The bending
stiffness for a stranded cable is given by Papaiée the sum of the minimum bending
stiffness plus additional stick or slip terms sumdnfirom each wire [49]. The minimum

bending stiffness is

4

Epvire — ELT[aCOSﬁ

whereE; is the wire longitudinal modulus of elasticity (wh itself must be determined

by modeling the wire as a composite as describediqusly), d is the diameter of the
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individual wire, andgis the lay angle. This is similar to the usual diag stiffness
calculation where the moment of inertianig* , but includes a cosine term to take the
angle of the wires into account. The additionaintéo include the sticking between
wires is

EI¥ire = E, A(r sin ¢)? cos® 8

whereA is the wire area; is the layer diametetp is the angle that the individual wire's
position makes with the horizontal (neutral) asd g is the lay angle. The equations
for EIYre andEIX¢ give the lower and upper bounds for the bendiiffpess value for

a single wire, which for the cables investigatedehean be an order of magnitude apart
and thus give too large of a range for useful mtézh. By including the curvature of the
cable (for this case, based on the static displanerof the cable due to excitation

tension), a more precise value can be obtainedldyg a bending stiffness slip term:
ELyme = opA(etsB¢ —1)(r sin¢) cos B /k.

Here, o, is the stress in the wire due to tensignis the friction coefficient between

wires, k. is the curvature of the cable, and other variabteshe same as in the previous
equations. The friction coefficient is taken a830for the insulated wires based on the
friction coefficient for Tefzel, given by MatWeb &s3 to 0.4, DuPont as 0.23 (between
metal and Tefzel), and Omega Wiring as 0.4. Thisievaould be improved through

experiments to find the coefficient of friction ftbre specific wires used, but according to
discussion about [49], small changes in the frictialue will not cause large changes in

the overall bending stiffness [79].

For the case where the cable wires have not begshpt and the cable stiffness is at a

maximum, the bending stiffness is given by

ElLpgyx = Z Elmgle + Z E :ﬁgi
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Otherwise, if the cable wires have begun to shp,dable bending stiffness is a function

of curvature and tension and is given by

Elay = ) ELie + ) EIie

The bending stiffness is summed over all of theegyifor the wire minimum bending
stiffness, this simply requires multiplying t# wire minimum term by the number of
wires in the cable, but for the wire slip and wstek terms, thed angle will change for
each wire, and the layer radius changes for ea@rn,lao these calculations must be done

carefully.

Figure 3.12 shows the end layout of a 1X7 cablehith the layer diameters are noted in
terms of the wire diameters, and the wire anfjles shown starting at O radians at the
horizontal axis and moving counterclockwise. Fig8r&3 shows a similar layout for a
1X19 cable. The bending stiffness is calculatedhassum of the minimum stiffness,
plus the stiffness of each additional layer. Tahlegives the number of wires or strands
required to make up a full layer, as well as theeamtedp angle spacing for each layer,

regardless of cable size.

Figure 3.12: 1X7 cable layout showigigangle. Figure 3.13: 1X19 cable end layout
showing layer diameters.
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Table 3.7 Number of wires and associapedngles for first five cable layers.

Layer Number Number of Wires or ¢ Angle Division Layer Radius in
Strands for a Full (degrees) Terms of Wire
Layer Diameterd
0 (Core) 1 N/A 0
1 (Innermost Layer) 6 60 d
2 12 30 2
3 18 20 8l
4 (Outermost Layer) 24 15 d4

In the case of the 1X48 cable which does not hasenaplete outer layer, the individual
wires wrap around the cable, adding inertia aratweccable unevenly. Thus, the average
value between minimum stiffness (in which the add#l layer wires are at the neutral

axis) and maximum stiffness (in which additionaldawires are at the top and bottom of

the cable) is used. Figure 3.14 shows the layouttlie minimum and maximum
stiffnesses with the associated outer lajyeangles of 0, 15, 30, 45, 150, 165, 180, 195,
210 330, and 345 degrees for the minimum and 60905105, 120, 135, 240, 255, 270,

285 and 300 degrees for the maximum.
90

30

Figure 3.14: 1X48 cable with minimum configuratipmires aligned near neutral axis)

and maximum configuration (wires away from neutvak).

The above bending stiffness equations are onlyicgige to single stranded concentric

cables; for the multi-stranded 7X7 cable, the aquat were modified to take into
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account the strand behavior of the outer layer. tfh® multi-stranded cable, the cdkis
calculated as a single 1X7 strand and the outendsr are treated as large individual
wires; in theEl wire stick formula, the badg value is used, the area is the area of the
1X7 strandy is the distance to the center wire in each strénid,the wire angle for the
six outer strand center wires agdis the lay angle for the six layer strands, na& th
individual wires. Figure 3.15 shows the end laylouta 7X7 cable with the layer radius
of 2.5d and¢ angle divisions of 60 degrees shown. This approdough novel, worked
well; considering the outer strands to be largeesviresulted in a lower overall bending
stiffness for the multi-stranded cable than thelanty sized single stranded cable, which

agreed with experimental data and theory.

Figure 3.15: 7X7 cable layer distance of 2.5d shbwned line and orange circles; strand

¢ angles shown to be 60 degrees apart.

Table 3.8 lists the maximum, slip, and minimum begdstiffness values for the four
cables used, as well as the "traditional" benditifjness calculation determined by
multiplying the elastic modulus by the moment adrira calculated for the wires based
on the parallel axis theorem. The maximum and mmim values in the table are based
on calculated maximum and minimum wik values of 23.7 GPa and 22.1 GPa as
determined previously using the concentric compasiodel. The curvature for the slip
state was based on the static displacement ofahke cue to the excitation force; the
values listed in Table 3.3 are based on the curmatalues for the two-point fixture.
Radius of curvature for the two-point fixture weé®, 80, 450, and 200 m for the 1X7,
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1X19, 1X48, and 7X7 cables respectively, and w&e2b0, 900, and 700 m for the four
cable types for the four-point fixture, each deteed based on the measured maximum
displacement of the cable due to the static fomaied by the excitation attachment.
The curvature values for the four-point fixture wéswer due to larger radii from smaller
displacements due to the shorter span, so thespameing bending stiffness was higher
as anticipated. Although the displacement of ti@es in both fixtures was small (0.1 to
1.6 mm), it was enough to cause wire slipping basedalculations for critical curvature
from [49]. Based on the cable maximum and minimhending stiffnesses, it is clear
that the traditional approach for bending stiffnessculation does not agree with the
range calculated for most cables. In addition, thalti-stranded 7X7 cable is
significantly more flexible than the 1X48 cable,ialhis reflected correctly in the cable
bending stiffness calculations, but not by the itralal approach. The minimum to
maximum (stick) range does span an order of magmitis reported by previous authors.
Overall, the approach suggested by Papailiou foding stiffness calculation [49, 74]
incorporated the physical parameters of the catdetaok the friction between the wires
into account, giving a more complete bending st calculation than determining the

modulus and inertia values independently.

Table 3.8 Bending stiffness values calculated dor tables types using minimum and
maximum E wire values.

1X7 1X19 1X48 X7
Minimum Maximum  Min. Max. Min. Max. Min. Max.

El Stick 1.65 1.87 13.82 15.72 93.60 106.71 74.05 84.38
El Slip (4 Pt) 0.40 0.44 1.55 1.71 7.52 8.13 2.60 2.82
El Slip (2 Pt) 0.34 0.37 1.08 1.18 4.73 5.10 2.14 2.30

El Min 0.28 0.30 0.77 0.83 1.94 2.07 1.96 2.10
Traditionally —, g, 304 625 667 14891 159.09 154.39 164.95
CalculatecEl

3.4.7 Damping M echanisms and Coefficients

A few damping mechanisms are at work in all cablgsich also have coefficients that

must be determined as model inputs. As listechenliterature review, cable damping

mechanisms sampled to date include viscous damlgin-Voigt damping, structural
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damping, and geometric damping. Comparison of leirdpmping mechanisms showed

that viscous damping alone was not effective fodeling damping in cables [97, 100].

Viscous damping occurs due to the friction betwéle®m beam and the surrounding
medium (for our purposes, air) as the beam mowasversely. This term is likely to be
very small for a small cable, and non-existentpace, but it is included in the model as
the simplest form of damping.

) ] ow
viscous damping = CUE

where cv is the viscous damping coefficient. Another comnform of damping is
structural damping, which includes both damping tludriction and material damping
effects. It is generally more effective at modglexperimental damping than viscous
damping, and can be included by using the form

2*w ow

ow
structural damping = a— + PEI 9x* ot

ot
wherea and g are the structural damping coefficients.

Hysteretic damping occurs in viscoelastic materiabich the literature review has
shown to be the case for the insulation aroundedjigiot cables. Hysteretic damping
was investigated for cables in [57] and experimeatsservations concluded that the
1X19 cable investigated had hysteretic damping thas frequency and amplitude
dependent. Hysteretic damping can be incorpor#tesugh many forms, including
spatial hysteresis and time hysteresis. Time hgsi® specifically includes damping
from stress that is proportional to strain plus feest history of the strain. Time
hysteresis damping can be incorporated througledi@tions of motion [101] where the

hysteretic damping term is included as

t
time hysteretic damping = j gt —ow' (x,t)dt
0

and g(t) is a kernel that represents the hysteresis modklparticularly effective
hysteretic kernel for frequency-dependent viscdelasaterials is the Golla-Hughes-

McTavish (GHM) method, where additional spatial choates are incorporated through
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the representation of the material modulus as i@ssef damped mini oscillators [102,
103]. The viscoelastic material properties areraxmated by a curve fit of the form
[104]

as? +ys
G(s) = SZHTZ&
where the Laplace transform has already been apalida, 8, v, and § are the damping
coefficients that can be experimentally determittedugh dynamic mechanical analysis
[105]. Experimental analysis is required for damgpicoefficients, so the damping
coefficients are determined through curve fittinf experimental data. The cable
damping expression for each cable was determinecdpysting the four hysteretic
damping coefficients in the cable model until thietffour frequency amplitudes for the
experimental data were matched by the cable mo@lebse coefficients were then used
in the four-point model for the same cable to aonfthat the damping coefficients still
approximated the first few amplitudes reasonablif.wehose damping coefficients were

then applied to the damped cable portion of théechlbeam model.

Cables may experience heavy damping, so approxangfor light damping should not
be used to determine cable damping ratios. Theamddmping from a hysteretic
damping model can be calculated for a particuladenasing the mobility frequency
response function and the viscous half-power baditiwimethod. This gives an
equivalent viscous modal damping ratio added by @¢M damping method. To
determine the modal damping ratio for a particédleguency, the derivation from Ewins
[106] is used, which results in the expression
[ = w? — w3
20 (w1 + w3)

where w, and w, are the frequencies at the point 3 dB down from mh&ximum
amplitude at mode, andw, is the natural frequency at mogde This expression can be

used for any level of damping.

It should be noted that using variable bendindrats can also incorporate damping; for

a cable that is experiencing slipping states, tianaof bending stiffness as a function of
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curvature produces damping of vibration withoutuigqg an explicit damping term in
the equation of motion for the cable [41]. Thuee tise of a bending stiffness term that
includes the dependence on curvature as well agiadd viscous and hysteretic
damping terms should give a reasonable approximdbo the damping exhibited by
stranded cables.

3.5 Cable Bakeout Correction Factor

So far, the geometry, wire configuration, and wiraterial have been the major factors
that influence cable parameters. However, for eflight cables, another factor that can
influence cable dynamic behavior is bakeout treatm& he investigation of spaceflight
cables so far has been limited to cables constidotethe purpose of testing. Cables that
are constructed for actual flight must go througiditional preparation and test,
including "bakeout,"” a combination of heat and wanutreatment designed to expedite
the initial outgassing of flight hardware for comiaation control [107]. Bakeout
requires both high temperature thermal treatmedt ragar-vacuum pressure, and may
take anywhere from a few hours to several weekpemiging on the item's intended
destination and mission. All components of a spsicecture must go through bakeout to
become flight ready, but components may be bakeédseparately and assembled in a
clean room prior to launch. It is common for cable be baked out separately from the
main structure, which also means that vibratiotirigsusually occurs before cables are
added to the structure and thus provides furthetiviatton for accurate modeling of
cabled structures since additional testing may itfiewlt once the structure has entered
the clean assembly room. Anecdotal reports frabiiectechnicians suggest that cables
seem stiffer after going through the bakeout precest no study existed to affirm or
quantify this difference. Since there is no ergtiiterature on the effects of bakeout on
flight cables, and quantification of cable dynamissimportant for space structure
modeling, additional experiments were conducteddtermine whether bakeout affects
cable dynamics and spacecraft structural models ititdude cables. An additional
bakeout correction factor can be included in cabbelels to take the effects of bakeout
into account [108]. Based on experiments run, dakeout factor to include for the
bending stiffness of baked out cables would be betn).8 and 0.95.
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3.6 Cable Parameter Conclusions

Combining the theory for bending stiffness of stiash cables with the material properties
for concentric composites yielded reasonable bensiififness terms for stranded cables.
Extending these ideas allowed for calculation ofltratranded cable parameters by
considering the outer layer strands as large wifBse bending stiffness of each cable
was dependent on curvature; even small displacemehe static position of the cable

was enough to cause wire slippage and subsequestitg of the bending stiffness

value. Calculation methodology for ranges for ardansity, and shear terms were
presented, as well as the form of the cable dampangn. Table 3.9 presents the
equations for the maximum and minimum values of ¢able parameters required for
cable modeling that are calculated directly. TahE) lists the equations to determine
the maximum and minimum parameters required forcdieulation of bending stiffness

and shear rigidity.

Table 3.9 Equations for minimum and maximum valoesable parameters, v, and p.

Parameter Parameter Minimum Parameter Maximum
dwire min dwire max
Area,A N(Z(ACu core T ATefzel 26AWG ]acket) + AEMI + A]akcet) Nm > * >
Copper
Volume 2Acucore + Apmi 2AcycoretAEMI
dyire min Qi
Fraction' (ZACuCore + AEMI + 2ATefzel 26AWG Jacket + A]acket) (TC Ww; L er; max)
Vcu
Tefzel
Volume 2Atefze1 26awG Jacket + Ajacket 2ATefzel 26 AWG JacketTAjacket
Aviremin Awi
FraCtion, (ZACuCore + Apgyr + 2ATefzel 26AWG Jacket T A]acket) (T[ er; T er; max)
vTefzel
I -1
DenSIty’ m or <fou + vaefzel) m
2 .
p L= chable Pcu pTefzel AMlanum
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Table 3.10 Equations for minimum and maximum valé@s cable parameters for

bending stiffness and shear rigidity terms.

To Use For | To Use For
Parameter Equation Minimum Maximum
Value Value
. ' _ 2 Um = Vrefzel min Um = Vrefzel max
Rty | i (1-w)a 2(;"2) f()<(11 S ra ))E e e
m(1—v —v;—2v¢) + — V= 2VR)vr + (1 + v,
atio,v r = 2Vf ’ 4 Vs = Voumin | V¥ = Veoumax
Um = UTefzelmin Um = vTefzel max
I\R/Ipt_jéj_lusgf ((1 +v)Gr + (1 - Vf)Gm) Gim and and
Igidity, Gf + Gy — vf(Gf — Gp) Vr = Veumin | Vf = Vcumax
Shear 2
Coefficient, M V = Vmin V = Viax
” 7+ 12v + 4v2
Um = UTefzelmin Um = vTefzel max
Modulus of sor =B (= and and
Elasticity, | vE; + vk, + Y _va et Sl Vs = Veumin | Vf = Vcumax
E y 7 Em(l—vm)(l—vf—ZVf) +Ef((1—vm—2v,2n)vm+(1 +vm)) s and s and
V = Vmin V = Vinax
Bendin
=nding oo E=Enn, E = Epay
StlffneSS, wire sin(B)*¢ s
) En—2-cosf+ ) orA(e* —1)(rsing) cos B /k, and and
El (Single | & 64 - A=A A=A
Stranded) ~ min - max
Bending EIMinStrand EIMinStrand
i : " . = EIMin = EIMin
Stlffnes_s, Ns * Elyinstrana + Z 7 Amin (¢ — 1) (rsinp) cos B /k. | for single strand for single strand
EI (Multi- N usingE; usingE,
min max
Stranded) value value

For the parameters listed in Table 3.10, the eqgnat the same for maximum and

minimum cases, but the input values used in theateaps will be the maximum or

minimum values for volume fraction, modulus of &y (or strand bending stiffness in

the case of the multi-stranded cable), area, @gd8ais ratio, as required by the equation.

Determining effective cable values for the areajsdg, bending stiffness, shear terms,

and damping terms enables the development of a bweadel for cables, which is

constructed in the next chapter.
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Chapter 4: Modeling M ethodology

Of the cable models introduced in Chapter 2, trearbenodel has many advantages for
the purpose of vibration analysis. The beam madel be used directly to solve for
dynamic response information, and can incorporateding stiffness and shear, which
must be considered for cable modeling. Howeveerethare aspects of the semi-
continuous model that are valuable as well; thembeaodel assumes a homogenous
cross-section, and a stranded cable made up ofketgdtkwires is certainly non-
homogenous. An important contribution of this waskhe determination of equivalent
homogenous beam parameters that describe the cafponse accurately without
resorting to dynamic experimental testing of thbleaThus, once cable parameters are
determined as described in Chapter 3, they cannberporated into an equation of
motion for the now effectively homogenous cabletesys There are many methods to
solve a beam model equation of motion, but the otethsed here is the distributed
transfer function method (DTFM). The DTFM is anaek method that determines
dynamic response through the use of exponentialribmaglculations rather than
eigenvalue solvers. The DTFM has been used fanlbeadeling and shown to be more
accurate at determining natural frequencies thanRayleigh Ritz method [109]. The
DTFM divides a system into a series of subsectams nodes, similar in some respects
to a finite element method, but with nodes onlycpthat joints, force locations, boundary
constraints, or other points of interest. Unlike finite element method, the DTFM only
requires nodes at points where different componanés connected, constrained, or
excited, so the elements remain as large as pessiliiis leads to similar accuracy, but
much less computation time than the finite elemmathod [110]. For this reason, the
DTFM is well-suited to the repeating nature of esbattached to structures, and works
well with the damped equations that describe calm@on and the tie-down constraints.
This chapter begins with an overview of the DTFMI @inen describes the work done to

develop the cable model and the cabled beam model.

4.1 Distributed Transfer Function Method

The distributed transfer function method may beawmifiar to some readers, so the

method will be described in general terms beformggohrough the cable and cabled-
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beam cases. The method related here is based thi# evork of Yang [111, 112, 113],
who used the DTFM for multi-section Euler-Bernoddlkam systems [111] and Sciulli
[114], who used the approach for the case of twieEBernoulli beams connected by
spring-damper systems. The respom$e, t) for a distributed beam system is governed

by a fourth order linear partial differential eqoatand boundary conditions such as

02 d
{AW-FB&-FC}W(XJE)—f(x,t)’xe(o,l), t>0

Miw(x, t)|x=0 + Now(x, t)|x=1 =¥;(t), t=0,j =1,2,3,4
where A, B and C are differential operators derived from the edquatof motion
comprising constant coefficients related to the sutel properties of the system and
spatial derivatives, anifl andN are operators based on the boundary conditionkeof
system. The equation of motion and boundary carditare Laplace transformed with
respect td, and cast into state space form
n'(x,s) = F(s)n(x,s) + v(x,s) xe(0,1)

M(s)n(0,s) + N(s)n(1,s) = y(s)

where
n(x,s) = {W(x,s) W(x,s) W'(x,s) W"(x,s)}T

q(x,s) }T

a,S% + bys + ¢,

v(x,s) = {0 00

Y(s) = {r1(s) v2(s) v3(s) va(s)}"
for a fourth order beam equation. The size ofsthletion vectom(x, s) is dependent on

the order of the equation of motion. The solutiothe state space equation is

1
n(x,s) =j G(x, & 2)v(é,s)déE + H(x,s)y(s) x€(0,1)
0

where
eFOx(M(s) + N(s)e""(s))_1 M(s)e F&%,  &<x

G , €, =
FED T o (e + NP O) T NP O £ 52

and

H(x,s) = eF®*(M(s) + N(S)BF(S))_I
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with ef®*peing the fundamental matrix using the state spaatix F(s) created from
the equation of motion and sized according to tleeoof the equation of motion, and

G(x,¢,z) andH (x, s) known as the transfer functions of the subsystem.

However, this is only the solution for a single sygtem, and the value of the DTFM for
cabled structure research is the ability to conmeahy subsystems to model a cable
attached at many points. Thus, for any number rgérconnected subsystems,
displacement and strain vectors are described by

alx,s) = {W(x,s) W'(x,s)}"

e(x,s) ={W"(x,s) W"(x,s)}T
and the solution vecton(x,s) = {a”(x,s) €' (x,s)}*. An internal force vector is
assumed to be

a(x,s) = E(s)e(x,s)
whereE(s) is a constitutive matrix, which is the elastic mhduin the case of a beam
model. Set
y(s) = {a(0,s) a(1,s)}"

I, 0 [0 0
. 0].N(s)—,2 0

where @ are nodal displacement vectors at each end ofbaystem and, is a 2x2

M(s) =

identity matrix that either links subsystems ororporates boundary conditions and
constraints as described later. Constraints ssckpangs between subsystems can be
incorporated through either the boundary conditiatrices or the global stiffness matrix
created through subsystem assembly. The subsystenassumed to have a unit length,
so the fundamental matrix must be multiplied by teagth of the subsystem for

subsystem lengths other than one.

Combining all of these equations and partitioning G andH matrices appropriately

yields solutions of
1

alx,s) = f Go(t,&,5)f (&, 5)dE + Hy, (x,)ato(s) + Hy, (x, )ty (5)
0
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1
o(x,s) = E(s)f Ge(x,&,8)f(§,s)dE + He (x,5)ao(s) + He, (x,5)a;(s)
0

These solution equations depend on specific patmhthe transfer function matrices
which are partitioned as shown.

G H H
G(x, él S) = [G‘:]J H(xls) = H‘:(()) Hj;[

Once the nodal displacements are known, the respofighe system is completely
determined. To determine the nodal displacemémssubsystems must be assembled to

make a stiffness-like matrix as follows.

Assuming the total system hblsnodes, located at,, k = 1,2 ... N where the subsystems
are connected, the displacement vector of the myste locationx; is calledu(s).
Multiple subsystems can be connected at each rasdeell as pointwise constraints of

the form—C, (s)u, and external forces. Force balance at the mpdequires

Qals) + Qp(s) + -+ Qp(s) = Cie(uy(s) + pi(s) =0

whereQ vectors are the vectors of the forces appliedobdek by the subsystems apd
is the vector of nodal external forces. The fapgés) for subsystend is
Qa(s) = =Ry, (x, 5)

whereR, is a coordinate transformation matrix for thatsygbem. The subsystem nodal
displacement vectors,(x;,s) anda,(x;,s) are related to global nodal displacements
u;(s) and u;(s) by coordinate transformation matrices so that

as(x;,8) = Sau(s) , ay(x;, ) = Tyu;(s)
The subsystem nodal displacement vectors are puthe appropriate terms for the left
and right side of the subsystem, (or @) in the solution vector, and the solution vector
is put into the force term. Combining the solutiand coordinate transformation
equations in this way yields
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1
Qa(s) = =Ry (Ef G (xy, §,)f (§,8)d§ + Hé (g, S)ato(s) + Héql(xk's)al(s)>
0

1
Qa(s) = =R, (Ef GeA(xk'E» S)f (&, s)dé + H?O(xk;S)TAui(s) + Hé41(xk»S)SAul(S)>
0

Qa(s) = —Ra(H& (x, $)Tqu(s) + HA (i, $)Sauy(s) — fi)
and when this equation is compared with the forratiffiness matrix times displacement,
with k as the node of interelst
Qa(s) = =K (Du(s) — Kif ()uy(s) — f
it is shown that the elements of the stiffness ixaire

Kl'?(s) = RAHer(be)TA , Kl?(s) = RAHéAI(xl'S)SA

for the subsystem A. However, these equationsnasdhatx; < x; (essentially x; =
Oand x; =1 ), and must be rederived otherwise, switching tioelal displacement
substitutions.  Deriving the equations for reversdsystems results in different

combinations of the elements of tHeransfer matrix with the transformation matrices.

After the force balance is determined for each npeseequilibrium equation similar to
the typical finite element method can be formulasd

K(s)u(s) = q(s)
where the stiffness matrix, displacements, andeforre in global terms. This equation
can be solved for the displacements of each sudrsyswhich can then be substituted

back into the solution equations to determine &sponse of each subsystem.

To get eigenvalues and the resulting natural fregies, the external forces are set to
zero so that

K(su(s) =0
and the nontrivial solution far(4;) is found by solvinglet[K] = 0 to give the natural
frequencies. The displacements are calculatecedmh natural frequency, and these

displacements can be substituted into the soluéiqQuation, again assuming applied
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external forces are 0, to give the mode shape &wh esubsystem for each natural
frequency.

Frequency response functions can also be creabed this method. Assuming that a
harmonic forcing function is applied at frequenay the nodal displacements are
determined as

u(jw) = K (jw)q(jw)
where the forcing function is assumed to be a harmimput. Again, the displacements
are substituted into the solution equation to getftequency response as a function of
jw. Appendix A contains the detailed equations foe ttonstruction of the global
stiffness matrixK (s)for a simple beam divided into three subsystemanasxample of
the DTFM approach.

4.2 Equations of Motion

The distributed transfer function method begindwiite equation of motion for a system.
For the simplest case of an Euler-Bernoulli bearwiich plane sections remain plane,
the equation of motion is

4 0%w(x, t) Bl 'w(x,t) .
a2 P

wherew(x,1) is the transverse displacement of the beangént) is an externally applied
forcing function. The coefficients, A, andEl represent the density, area, and bending
stiffness parameters that describe the beam mlatarch shape. The Euler-Bernoulli
beam equation is sufficient for the aluminum beaeaduas a host structure. However,
since the cables under consideration are constrwafta metal core and outer insulation
layer, they do not experience constant shear athessross-section, and are more like a
sandwich or composite beam in their behavior thaolal beam. Therefore, a simple
Euler-Bernoulli model does not adequately captbesdable behavior, and a shear beam
model must be used. Derivation of the equatioomotion for a shear beam can be
determined from Timoshenko's work [115]. In them®shenko beam equations,
variables include both the transverse displacemktite beam and the rotation of a plane

section of the beam due to both bending and skeddng shear effects into account as
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well as rotational inertia. A Timoshenko cable mlod/as developed as part of this

research, but rotational inertia effects were smalhpared to shear effects, and the
additional complexity of the Timoshenko beam wawamanted, corroborated by both

this author's findings [100] and others. Sincetipld sources note that shear effects
must be included [2, 90] and the cables could eutension, a shear term and tension
term are included in the governing equations aedcetiuation of motion for an undamped
cable is more accurately described by

Aazw(x,t) EIpAd*w(x,t) E164W(x,t)+T62W(x,t)_ EI 0%q(x,t)
ot? KAG 0t?0x? dox* axz 17 kac ox?

whereT is the tension in the cable and again, the prgpmréfficients can be terms that
describe the cable as a beam. Going further atbegpath towards reality, cables
experience damping through a variety of mechanisntdding viscous damping and
hysteretic damping. For this case, the equatiomofion is derived from governing
equations with damping included. Hysteretic damgpsincorporated through the stress

strain relation for a viscoelastic material [101]
t

o(x,t) = Ee(x,t) — f gt —elx, t)dr
0

whereE is the elastic modulug(x,t) is the strain, and(t) is the hysteretic damping

kernel. From the work of Timoshenko [115], the &ipns for a beam are

pAw(x,t) = — avéi' ) +q(x,t)
MED _yey
0x

which are used in conjunction with the definitiohtbe moment and shear terms for a

beam that experiences bending and shear, which are

oY

M—Ela
V= AG(aW )
-k 0x v
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where the moment, shear, transverse displacemdrbtal rotation are all functions &f
andt for those and all subsequent equations until th@dce transform is taken for the
DTFM form. As discussed previously, cables experéehysteretic damping. Since the
stress of the beam therefore has a hysteretic coempothe moment becomes:

M= EI——f (t—r)—dTORM EI——f gt —1) wdr

Using the form in which hysteresis is appliedvosubstitution of the shear definition and

new moment equation into the governing beam equsields:

92w o 92w
pPA— 3¢z = _KAGa_-l_KAGF-l_q

3

ow
EI—+f g(t—r)—dt—rcAGz,b+kAGa—=O

The tension term is then added, as is a viscouspidgmterm since inclusion of
aerodynamic damping was recommended to more closatgh energy dissipation of
stranded transmission line conductors [84]. Thatkwalso notes that friction among
conductor wires depends on time rate of change io¢ wurvature during bending
vibrations (time hysteresis), so the combinatiovistous and hysteretic damping could
be an effective damping model. With tension ansceils damping included, the

governing equations for shear and moment are:

P SR L L
PAGez = THAU Gy THAN G TG T4

EIl 2l’b+T +ft (t )det AG +AGaW—0
axz Pt ) 9t~ D5zt = kAGY +KkAG 50 =

These equations are combined as shown in Appendix @&tain a single equation in
terms of the transverse displaceme(i,t). Thus, a viscously and hysteretically damped
viscoelastic cable in tension can be described thghequation of motion:
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0’w pEl 0*w o*w cEl 93w ’w  ow 4

t
A5z~ El T—— —Co t— 1) ——dt
PASE TG axzacz T M 9xt TG axzar T axr ot +f0 gt =) dx*

4.3 Damped Shear Beam DTFM M odel

Once the equations of motion of the cable as a lsranderived and the equivalent cable
parameters calculated, the next step is to usedbations of motion to find information
about the cable response, including natural frejesn damping ratios, mode shapes,
and frequency response functions. The distribttaasfer function method (DTFM) is
an exact solution method based on the fact thatrémsfer function of a system has all
the information needed to determine the dynamigaese of that system. By
determining the transfer function of a system anttimy it into a specific form, the
desired information is obtained. For the case affleeharnessed structures, DTFM is
advantageous because it is easily segmented aodsafior the building of cable-
harnessed structures very easily since connechetwseen systems are easily handled.
Different forms of damping can be modeled by incogbing the damping mechanisms
into the equation of motion, as evidenced by [1fb8]Euler-Bernoulli beams. Since an
end goal of this work was to create a cable-hastebgam model, setting up the cable
model with the DTFM method makes for complete anaightforward integration of the
developed cable model into a cable-harness steiatodel.

The cable system of interest consists of a singhgth of cable held in place through
connections to ground, under slight tension anl Witth ends free. Figure 4.1 shows the
cable system for the two-point fixture and the fpomnt fixture, with the attachment
points modeled through both linear and rotatioti#finess and damping. These models
corresponded exactly to the experimental cablepefor the two-point fixture and four-
point fixture that will be discussed in Chapter 5.
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Figure 4.1: Cable model diagram showing linearrgpand damper and rotational spring
at attachment points for two-point and four-poinbdels with nodes located at ends,
attachment points, and excitation (driving) point.

For the two-point fixture model, the cable is deddinto four unequal subsystems with
five nodes; one node at each end, one node atoeaciection point, and one node at the
excitation point. The four-point fixture model hsig subsystems with nodes at the two
ends, four connection points, and excitation pfiing total of seven nodes. The stiffness
matrix multiplies the nodal displacement vector,tlse full matrix size is based on the
number of nodes of the model. Thus, the stiffmaasrix for the two-point model is a
10X10 matrix and the four-point model requires aX14 matrix. The MATLAB
programs included in Appendix C contain the infotiova for each subsystem and node
as part of the input file for each model.

The equation of motion for the cable as a dampedrsbeam from the previous method
provides the starting point for the distributednsfer function method. The solution
w(x,1) is assumed to be separable, so the partial deegaare applied and are henceforth
indicated by dot notation for temporal derivativaed prime notation for spatial

derivatives.
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i — 222 o g = B ft (t —Dw""dt + cw + Tw" = Elg.
pPAwW KGW w KAGW Og T)w cwW w =q AC
Taking the Laplace transform,
As?W pEI W+ TW” Ele W"+csW + EIW" 1G w""
pas kG s KAGS © S Q
p— EI "
=g ¢
and rearranging the equation yields
pEIl Elc
_ASZ_CS —S _T+_S
WIII=( p - )W+ kG - KAG w'" + ?
<EI — EG(S)) (EI — EG(S)) (EI — EG(S))
El .
k4G ¢

<EI —%G(s))

which is now an appropriate form to create the &medntal matrix used as the heart of
the DTFM. Setting the equation of motion into them

W' =FW +Q
gives the fundamental damped shear beam matri ¢able subsystem,

0 1 0 0
0 0 1 0
0 0 0 1
— El Elc
FShearDamped - (—pASZ — CS) 0 €C—GSZ —-T+ ms 0
1 1
_<E1 —Ec(s)> (EI —EG(S)>

which is multiplied by the length of the subsysteffhis fundamental matrix contains
coefficients that represent physical informatiomatha specific cable; the solution for a

different cable simply requires changes in the &medntal matrix rather than the entire
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method [117], so computing results for a varietycalbles is straightforward. Boundary

conditions of the system are incorporated throighuise of matrices from the equation

M(s)n(0,s) + N(s)n(1,s) = y(s)

which are determined from the boundary conditionagigns for each subsystem. Since
the cable ends in each fixture are free, the besasuspended to approximate a free-free
condition, and the cable attached to the beane&sdt the ends, the boundary conditions
used for both the cable and cabled-beam model abdystems require the bending
moment and shear force to vanish at the ends, soetjuations and corresponding

boundary condition matrices are

Elazw_o ) aZW_O

ox2 Ox ox2 |
0 0 EI 0 00 0 0
0 0 0 —EI 00 0 0
Mrree =10 0 0 o0 |'Mrree=|o 0 EI 0
00 0 0 0 0 0 <—EI

The interior subsystems simply use boundary camtithatrices created from the identity
matrix, which ensures compatibility between displaent and slope on each side of each
node. For this internal compatibility, the equasaequire the deflection and slope to be
the same for each subsystem attached at the sad® 80 corresponding boundary
conditions are

oW, oW aw,

W_=W+=W =0’ = = =0
& k 4§ ox ox ox

1 0 0 O 0O 0 0 O
01 0 O 0O 0 0 O
Minterior = 00 0 0 » Ninterior = 1 0 0 0
0O 0 0 O 01 0 O

The attachment points between cable and groundable cand beam are modeled as

spring and damper constraints incorporated in tlabad stiffness matrix and are
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discussed in the next section. Displacements, nsbdges, natural frequencies, and
frequency response functions are found as relatesction 4.1. Appendix C contains
the MATLAB program files for the cable models; infdiles for each model are listed
first and contain the node and subsystem informéto each model, followed by several
function files that determine the boundary conditamd constraint matrices, assemble the
global stiffness matrix, determine the eigenvalioeshe system, and finally find and plot

the mode shapes and frequency response functiotisefgystem.

4.4 Cable Tie-Down Attachment Point M odeling

A common method of attaching cables to structuneslves the use of cable ties and
mounting hardware. Aluminum TC105 tabs and caikle are used for attaching cables
to space structures as shown in detail in Chapteknoted in [3] and confirmed in this
body of work, pinned and fixed boundary conditiovese not adequate for representation
of these attachment points between cable and gtaicPrevious cabled structure models
created by the Air Force Research Laboratory usewramercially available spring
stiffness element for the attachment stiffness,fmiéd concern about the quality of the

input value and recommended a better method tmatitie-down properties [1].

The flexible cable tie, although tightened unifoymallows some give within the cable.
In addition, the cable tie is not fixed at one pomthe hardware, so rotation is possible
and requires surprisingly little force for even ary tight cable tie. Therefore, an
attachment model that included both linear andtimtal stiffness, as well as linear and
rotational damping was developed. To do so, caimgtequations are written in terms of

the nodal displacements and included as part afltiteal stiffness matrix.

The cable model uses a constraint to ground andabled-beam model uses a constraint
between subsystems. For the cable model, the raomsto ground representing the
TC105 attachment with stiffness is modeled as agpronnected to a massive mass
representing ground. For the spring-mass constr@aaiulli gives the equation of motion
for the rigid mass and develops the constraint im§irl4]. For a beam in transverse

vibration, the displacement of the node that thessn@r ground) is connected to is
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_(w(xy,8) . _ Mm(xl-,s)} . .
u;(s) = {W, (xi,s)} and the force isf(s) —{ Fx, s) which makes the constraint
matrix term

0 0
C;(s) = | ms*(cs + k) O]

ms?2+cs+k

The same procedure is followed to add rotationtihess and rotational damping, but the
equation of motion for the rigid mass is basedl@dum of torques rather than forces,
which adds an additional term to the constraintrixab multiply the slope in the

displacement vector. Thus, the complete constraaitix for the cable attachments is

[ 0 Is?(cos + ko)
2
Ci(s) = ; Is? + cg + kg
ms*(cs + k) 0

ms?+cs+k

where linear and rotational stiffness and damparms are included, angcy, k, and kg

are the linear damping, rotational damping, linstiffness, and rotational stiffness
coefficients of the attachment point mechanism, ciwhimust be determined
experimentally. For the cable attachments to gilpbothm representing the rigid mass
and | representing the mass inertia must be very lapgapproximate the constraint
condition correctly. Since the constraint matrigltiplies the displacement vector, it can
be added into the global stiffness matrix whenftinee balance at each node representing
each attachment point is determined.

For the cabled beam, the cable is connected tdiadal model subsystems representing
the beam, rather than the ground. For this canstnaatrix, the nodes of the cable and

the nodes of the beam must be included. Thus;dhstraint matrix must fulfill the form

{ch} _ [ij(s) le(s)l {uj(S)}

Q) [C(s) Cu(s) |l (s)
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where the forces are represented@yandj andl| are the nodes for the two subsystem
nodes connected through the spring attachment.CThatrices are the transfer functions
that describe the attachment point with a lineak raational spring, determined to be

C=[ 0 k9+cgs]

k + cs 0
The attachment force affects both the beam anddbk, so the force balance for each

node connected to an attachment point, whethsrahithe beam or the cable, will have
components from the attachment constraint matrix.

Figure 4.2 shows the frequency response functiorthie developed model with linear
and rotational stiffness as compared to a pinnetireodel, both shown in comparison to
the experimental data for a solid steel rod usheggame rod parameters. Experimental
data is matched quite well by the undamped modsl iticludes rotational and linear
stiffness for the attachment points, but the undainpinned model shows a larger
discrepancy than should be expected for this siropée of a solid material with known
properties. It is clear that the TC105 tab andecdile attachment cannot be described
adequately with a pinned connection. The pinnedeha clearly inferior in terms of
natural frequency agreement, underestimating theradafrequency for all three major

modes shown.
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Figure 4.2: Comparison of pinned constraint witteéir and rotational stiffness constraint
model against experimental data for steel rodshfigture, showing superiority of linear

and rotational stiffness method in terms of natirejuency agreement.

Previous studies used a higher linear stiffnesgevdlan the values required for the tests
herein, but this could have been needed to compefamathe lack of rotational stiffness,
which adds stiffness, but in a different degredreédom. Higher rotational stiffness
shifts all frequencies up uniformly, while highendar connection stiffness increases
frequencies proportionally. Figure 4.3 shows tfiect of including rotational stiffness
on the model frequency response function for a @éXle; even low values for rotational
stiffness have the capacity to change the modpbrese appreciably and may be able to
capture the non-standard stiffness character otc#iide attachment points. Chapter 5
contains details about the experiments that wereluded to determine the inputs for

linear and rotational attachment stiffness usedifermodel constraints.
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Figure 4.3: Effect of adding rotational stiffnéssconstraint matrices; adding rotational
stiffness changes the model frequency responsetiduneven for small rotational

stiffness values.

4.5 Sengitivity Analysis

In attempting to model cables on structures, tlaeeea surprising number of factors that
affect the results; of course the cable paraméizve an effect on the cable response, but
the input for the attachment point method also hathajor effect. The frequency
response was already shown to be insensitive togasain shear modulus value in
Chapter 3. Bending stiffness and mass terms ha@veaer effect. Figure 4.4 shows the
difference for the full range of bending stiffnessd mass values for an arbitrary cable.
An increase in bending stiffness and decrease msiyeand area increases the natural

frequency values with a steady shift.
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Figure 4.4: Frequency shift due to full range cleaimgcable properties.

Even an order of magnitude change in bending s8ndid not change the first
frequency appreciably, as shown in Figure 4.5. thor graph, the mass value was held

constant and only the bending stiffness was varied.
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Figure 4.5: Order of magnitude changes in bendiifiness do not change the first

frequencies appreciably, all other frequenciessamply shifted.

It was apparent from the preliminary investigatibat the cable attachment points did
not behave as an ideal pinned connection, so eawhection was modeled as a spring
and damper as described in the previous sectiamst fesearch hypothesized that the
human construction factor was the cause of caljgorese variability, so for this study all

of the cables were made on a planetary machinedore uniformity. However, there
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was still variation from section to section for kamable type whenever the cable was
reattached to the test fixture. This led to arestigation of the tie-down attachment
stiffness described previously which found that ¢théle attachment stiffness varied by
an order of magnitude over the frequencies of @ster Figure 4.6 illustrates the drastic
difference due to attachment stiffness; rather tush shifting values, frequencies are

split or combined as well.
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Figure 4.6: Order of magnitude changes in attachipeint stiffness DO cause frequency

shifts, splits, and combinations, even in the ldwesdes.

4.6 Cabled-Beam Mode
A great advantage of the distributed transfer fimncinethod is that it lends itself well to

a system with many connection points. Therefoneeahe cable model is made, it can

be easily extended to model a cable attached truietigre as discussed in this section.

Figure 4.7 shows the model for the cabled beanctstrel with the driving point shown
by a green arrow. This model was designed to m#tehexperimental cabled beam
structure discussed in the next chapter and shomnnede locations labeled in Figure
4.8. The cabled-beam model consists of 8 nodes/aubsystems on the beam, and 8
nodes and 7 subsystems on the beam for a toté nbdes and 14 subsections. The ends

of both the beam and the cable are modeled asfrég and the attachment points were
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modeled with linear and rotational stiffness ascdbed in the previous section. Cable

parameters were determined as introduced in Chapter

Figure 4.7: Top view of model for cabled beam vescitation point shown by arrow.

Figure 4.8: Cabled beam with node locations lahetede 4 indicates excitation point.

The cabled beam model is run in exactly the samge agathe cable model, one of the
advantages of the DTFM; the major differences heg instead of the constraints that
represent the attachment points being connectgdotind, the constraints are connected
to additional subsystems on the beam using thetreamsmatrices developed for spring

connections between subsystems. Appendix C canthenMATLAB program files for

the cabled beam model.

4.7 Model Verification for Known Cases

Before delving into modeling unknown cable respsnse must be shown that the
developed method works for known cases, such agenous Euler-Bernoulli beams
with various end conditions and multi-span beams.that end, the cable model was run
with arbitrary parameters and compared to publisiredytical solutions [118, 119, 120].

Table 4.1 shows the agreement between the firsintgwral frequencies of the modeled
cases and published values. The Euler-Bernouiesahad nearly identical natural
frequency results, regardless of which type of emddition was modeled, and the five-
section multi-span beam matched published resufi8][very well considering the pin

supports at the connection points were actually etfestwith very stiff springs (spring
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stiffness on the order of 1@vas found to be a good approximation for a pineed).
The shear beam had to be compared to TimoshenKdsipeth beam values, and when
considering that the Timoshenko beam also includisy effects, the agreement is good
enough to instill confidence in the model to pratéerward. Changes in length and
tension were also checked, and the model predietpiéncy increases as expected for

decreases in length and increases in tension.

Table 4.1 Verification of DTFM model for known case
Published Value DTFM Modd Value % Difference

Euler-Bernoulli Beam, Simply Supported [118]

pA=12.56 [EIl = 179200, length=1
1st Mode 187.48 187.51 0.01%
2nd Mode 750.03 750.03 0%

Euler-Bernoulli Beam, Free Ends [118]
pA =12.56 , El = 179200, length=1

1st Mode 425.10 425.06 0.01%
2nd Mode 1171.70 1171.70 0%
Published Timoshenko Beam, DTFM Shear Beam [119]

pA =12.56 El =179200xAG = 1.1016E8, length=1
1st Mode 184.70 186.00 0.70%
2nd Mode 707.83 726.99 2.71%
Euler-Bernoulli Multi Span Beam, 5 Equal Pinnedt®ets [120]

pA =1.1746 EIl = 138, length=0.7742

1st Mode 26.81 26.79 0.08%
2nd Mode 27.44 27.42 0.07%
3rd Mode 126.53 126.38 0.11%
4th Mode 157.62 157.40 0.14%

Published values for double beam models are diffidco find in multi-span
configurations, so verification of the cabled bearodel was checked by comparing the
cabled beam model with the attachment points uctadthagainst the experimental beam
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results. As a visual indication of agreement far tabled beam model, Figure 4.9 shows
the agreement between the model with no cablehagthand the bare beam experimental
data. Agreement for bending natural frequenciexcellent. Comparison of the model
with solid rods attached to the beam provided frrtherification of the cabled beam

model as discussed in Chapter 6.
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Figure 4.9: Comparison of bare beam model and expat to show agreement before

cable attachment.

4.8 Model Summary

The DTFM is well-suited to the investigation of &b structures for its efficacy and
accuracy for structures with repeated patterns ramustandard boundary conditions.
This chapter presented an overview of the DTFM aggh, the DTFM method for shear
beams, the new equations derived to describe cablebear beams with damping terms
and tension included, and the addition of rotatios@#fness and damping to the
connection point model. In addition, the cabledtbhenodel was introduced, which built
off of the cable model by incorporating the caldeaashear beam attached to an Euler-

Bernoulli structure with connection points betweka cable and beam that can include
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linear and rotational stiffness and damping. Thlele model was checked by comparing
known shear and Euler Bernoulli values with the samputs, and the cabled beam model
was checked by comparing the model FRF of the baeem (made by separating the
cable portion of the model by removing the conmectonstraints) to the experimental

FRF of the bare beam. Agreement was excellenthirtested cable and cabled beam
models when run with known inputs and compared ubliphed results for the same

inputs. Combining the models developed herein tithcable parameters determined in

Chapter 3 allows for complete modeling of cable ealoled beam frequency responses.
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Chapter 5. Experimental M ethodology

To gauge the utility of the cable parameter caltmiamethods and cable models, the
model results must be compared to experimental detés chapter discusses the various
experiments conducted in support of this reseaEperiments were performed not only
for model comparison, but also for determinationatthchment values and damping

coefficients.

5.1 Preliminary Verification of Cable Effects

Although many sources cited the increasing inflegeotcables on lightweight structures
[1, 2, 85], first-hand observation of cable effestsre necessary before embarking on this
multi-year study. A few common laboratory wireslarables were mounted to a simple
aluminum beam with the TC105 tabs and TyRap 525klecéies typically used for
spacecraft cable management. A microfiber compgsézoelectric patch was bonded to
the beam and used to excite the structure, andedonse was measured at multiple
locations with a non-contact laser vibrometer. urég5.1 shows the result for a cable that
was approximately 7% of the total system mass, wtin the limits for common
spacecraft cable design. The frequencies are acglynshifted or damped for the cabled
beam case; in some cases frequencies are sphtijyhdamped, or virtually undamped,
with no immediately discernible pattern. This prs#hary test showed that addition of

cables to beams required further study.
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Figure 5.1: Comparisons of bare and cabled beanergmpntal frequency response

functions showing variety of cable effects.
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Additional experiments run at this time includediaton of the number of tie-downs
used for the cable mounting, different size cabéesl comparison between cables and
solid rods. The results made it clear that a beaatural frequencies and damping ratios

would certainly be affected by the addition of esbbn the structure.

5.2 Experimental Setup and Development of the Standard Run

There are many factors that can affect a cabletersysesponse; of course the cable
properties themselves are an obvious factor, bitekt fixture, cable attachment point
technique, excitation input, and even the orieatabf the cable in the test fixture all
were found to have an effect [121]. Previous sssdshowed that cables had high
variability between sections [3, 89], so it would ecessary to run many trials for each
cable section to observe the range of responses.sugh, initial experiments were
designed to develop the "standard run" set up awdepure that would eliminate
variations from test to test.

The spaceflight cable experiments described hene werformed at the NASA Jet
Propulsion Laboratory in a controlled environmenetiminate the low-frequency noise
that plagued the experiments run previously at iMieg Tech. Working at the Jet
Propulsion Laboratory also allowed access to te=mi Bpaceflight cables for the
preliminary studies, as shown in Figure 5.2, whwdde this work much more useful for
space structures. Different cables were testéddaypical and well-behaved cables that
showed repeatable frequency response functionscafning laser vibrometer was used
to gather data over the entire cable, and a teedistring was used as the attachment
point from the shaker to the cable. The shaker sumpended by long chains so that
vibration from the shaker would not travel throudpie inertial table to the cable test
fixture. A load cell attached to the cable meaduitee input force from the shaker.
Figure 5.3 shows the test set up for flight-sugatbles, and Figure 5.4 gives a closer
view of the shaker connection through the load @etl the cable attachment point with a
cable tie and TC105 tab. This mounting method wased both because it was

theoretically similar to a pinned condition for netidg purposes, and because securing
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cables to TC105 tabs with cable ties is common tm@on space structures, and

therefore has real application value as well.

PR
Figure 5.3: Preliminary cable testing of 1X18 tesible with suspended shaker.
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Figure 5.4: View of input force attachment method.

The natural frequencies of the suspended shakesugppbrting structures were measured
to ensure that they were not close to the cablquémrcies of interest. Additional
attachment points were set at 0.205 m above amvbt#ie 0.255 m test section to
provide buffer zones that served to both mitigatd effects and mimic the reality of a
cable harnessed structure. An additional laseomleter was set up perpendicular to the
primary vibrometer to measure transverse frequeesgonses. The helical preliminary
test cables were always fastened into the testréxin the same way, with the inner side
of the natural cable curve (coil plane) facing sihaker. Response was measured at the
driving point for both the excitation plane and gferpendicular plane. Preliminary tests
were run on a variety of cables to determine freqigs of interest and what parameters
might need to be varied. For development of thaddrd run, a 1X18 (medium sized)
heater cable made of M27500-26TG2T14 wire was rdut five sections of about 0.8 m
each. From these tests, a "standard" test run exasaped, which included the following
controlled characteristics:

* 0.254 m test section length secured by cableigasened to setting 5 on cable tie

gun (tight)
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8.89 N of tension in the cable (hose clamp sectoédp end of cable to distribute
applied weight evenly)

White noise excitation applied at 0.3 Volts

Excitation applied at 8.3 cm from bottom of testtsm via 0.24 m tensioned
string at medium DC offset

Static cable displacement due to excitation st@mgion less than 1.6 mm

Low pass 5kHz filter and Hanning window applied,&8@rages per test run

On each day of testing, the cable response wassaloned once at intervals of 0.9

centimeters, encompassing the entire test se¢tionsualize the mode shapes and ensure

that the cable transverse modes were identifiecectly. Figure 5.5 shows the test set-up

for the four-point cable fixture, with the modaloger (shaker) and tensioned string

labeled, as well as the test section and buffarcec

—= BUFFER SECTION

TEST SECTION
SHAKER AND DRIVING POINT
TENSIONED
STRINGTO
DRIVING
POINT e BUFFER SECTION

Figure 5.5: Four-point labeled cable fixture testtsp.

10C



The various standard run tests deviated from thedsird run only by the variable of
interest for each test. The varied parameters theréype of excitation, the tension and
length of the string used for the excitation corniogg the tension in the cable, the type
and tightness of the cable ties used at the tesioseends, and the orientation of the

cable in the test fixture.

5.3 Resultsfrom Preliminary Experiments

Initial investigation began with the test fixturacaexcitation connection. A slender
narrow solid metal stinger was rejected in favoradensioned string after determining
that the response was basically equivalent, butsthieg did not support a moment or

lateral force, so only transverse force was reckfvam the shaker.

Preliminary experiments on cables of varying sed@swed that some method was needed
to quantify cable curvature caused by displacerfrent the excitation connection since
initial research showed that cable bending stinsselated to cable curvature. A laser
displacement system was set up to measure the disgilacement of the cable once the
shaker string was attached and tensioned. Althdughs initially hypothesized that the
nearly straight cables would not experience wingpsige, the experiments showed that
even the small amounts of curvature in the cablese by the tensioned wire would

cause some slippage. Curvature was largest famiadest diameter cables.

All cables were wrapped with Kapton tape, but anéhe preliminary tests was tied with
lacing ties every 16 cm. This cable had less vdityalin its measured responses than
non-tied cables, so this cable was chosen fomgestariation. Lacing ties were included

in all subsequent test cables as well.

A full set of tests was performed each day on cabletion A over the course of two
weeks; this full set included comparisons of exmtamethods, excitation string length
and tension, cable tension, and cable tie attachmBme responses of sections B, C, D,

and E were also measured each day, and were mitirfies each at the conclusion of the
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test to provide additional data. Testing of thblearientation for each section occurred

afterwards as it became apparent that the orientatiay shift the frequency response.

5.3.1 Excitation M ethod Comparison

In an effort to verify that the excitation methaslsre not influencing the cable response
in unexpected ways, a variety of excitation conimast methods, and signals were
investigated. A random signal had to be used lsecthe damped cable is a non-linear
system and non-linear systems generate periodsendsignals for white noise and burst
random from the shaker via the tensioned stringeveempared with hammer impacts,
with the idea being that a similar response froemttammer impact would verify that the
shaker connection was not affecting the resporggefisantly. A Hanning window was
applied for white noise signal and a rectangulardeiv was applied for the burst random
signal and hammer impacts. Hammer responses wstedtwith and without the load
cell on the cable. As shown in Figure 5.6, thetevimoise and triggered burst random
signals yielded nearly identical responses. Tharhar impact responses bounded the
string excitation responses, with the cable and tml response showing a slightly lower
natural frequency and the cable without the lodbateached showing a slightly higher
frequency, as expected.
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Figure 5.6: Frequency response functions of cabtkergoing various excitation signals.
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5.3.2 Excitation String Length and Tension Comparison

To determine whether the excitation string was mgldirequencies to the cable's

frequency response, the excitation string lengtls vested at 4, 10, 17, 24, and 45
centimeters, with the DC offset kept constant aisfadce between cable fixture and
shaker varied as the string length varied (thusimg constant tension in the excitation
string). At 24 cm and 45 cm, the DC offset wasngfeal to measure the response for
high, medium and low tension values, within thestaaint of cable static bending less
than 1 millimeter. Figure 5.7 shows the resultsrfrchanges in string length for one
representative day of testing; it is clear thatngtrlength is not affecting the cable

response. Different string tensions had negligéffects as long as the cable was not

displaced drastically due to the change in thagtension.
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Figure 5.7: Comparison of excitation string lengthowing no frequency dependence on

string length.

5.3.3 Cable Tension Comparison

It is well-known that strings and beams exhibitit@gfrequencies at higher tensions, so it
was expected that this same trend would be evideoables. This test measured the
cable response with tension in the cable of 1 Ib, 3 Ib, and 4 Ib, and also tested a slack
cable (0 Ib) and a "hand tight" cable, designeditoulate the tension a cable would
experience if it was pulled snugly during spaceicttire assembly. It turns out that
"hand tight" fit within the test weights used, whitends credibility to the use of these
results for real world application. Figure 5.8 wisoone of the test sets where the
dissimilarities between the slack and tensionedesaéire evident, especially around the
second mode between 150 and 200 Hz. Figure 58 gad the response near the first
mode for one of the test sets to show that inangatnsion does shift the frequency
higher, though not as uniformly as a single wiras@gd on previous tests). Again, the
cable pulled hand tight appears to give a simiemponse and the slack cable's first

natural frequency is lower than the others.
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Figure 5.8: Representative cable tension test sigttie difference between slack cable
(blue line) and tensioned cables.
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Figure 5.9: Cable response at first natural frequesmowing the effect of cable tension.

5.3.4 CableTie Attachment Comparison

Cable ties (also known as zip ties) are commongdusr cable management on space
structures. However, there is no universal stahdar how to fasten these cable
management ties, so the effect of different typed #ghtness of cable ties were
investigated. Results for this test show thattyipe or size of cable tie is not nearly as
important as how tightly the cable tie is fasten€@ble tie guns can be adjusted to fasten
cable ties to a specific tightness; for this tésght" implies setting 5 on a Thomas &
Betts Adjustable Tension Installing Tool WT-199 atidose" implies setting 2. A
"hand-loose" case was also tested, in which a dableas barely tightened enough to
keep the cable from moving. This may simulate nafra pinned case as it allows the

cable to pivot more. The hand loose case wasfiigntly different near the second
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frequency, as shown by the red line in Figure 5.H)gure 5.10 shows the frequency
responses for three trials for cables fastened litbe cable ties and cables fastened with
tight cable ties; in contrast, Figure 5.11 showes tsponses from cables attached only
with tightly fastened cable ties, where "TR", "G&1d "Small" refer to different brands
and sizes of cable ties. The tighter cable tidulesayield more uniform and repeatable
results, despite the fact that the ties variegpe tand size.
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Figure 5.10: Comparison of loose and tight calde showing the variation due to cable
tie tightness and the significant difference fondidoose attachment (shown by red line).
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Figure 5.11: Comparison of tightly fastened calks tof different size and type
exhibiting the increased agreement between tes asncompared to loosely tightened
cable ties.

5.3.5 Effect of Cable Orientation in Test Fixture
Although every effort was made during testing tewtr the cables in the same way, with

their natural coil toward the shaker, testing cstasitly showed two first frequency
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response patterns which dictated further investgadf the effect of cable orientation.
The tests show that the cable orientation in thet fexture was responsible for a
significant frequency range near the first natdratjuency. This variation in the first
natural frequency was similar to the variation kedw cable sections as discussed in the
next section. Figure 5.12 shows the frequencyoresp function for two trials of a single
cable with 90 degrees of rotation difference betwteials. Figure 5.13 shows the shift in
first natural frequency as compared to the angleabfe orientation in the test fixture; O
degrees was intended to be the coil-plane paralléhe excitation with the coil facing
toward the shaker, but shifting the O degree plointhe cables showed greater similarity
in the frequency-angle relationship shape. Thig good indication that the differences
between cable sections shown in the next test raajul to different internal stresses in
the cable; although all were aligned in the samg d#dferent sections of cable may have
varying internal stress tensors arising from thagation in the overall cable and coiled
storage. To eliminate this issue for the standand contra-helical cables were obtained
that had no induced natural curvature from the \Wgedirection. The cables procured

for later testing were stored straight and nevent Ise that no inherent curvature would
be developed.
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Figure 5.12: Frequency response function for alsingble at coil plane and 90 degree
rotation from coil plane.
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Figure 5.13:Approximately sinusoidal relationship between finsttural frequency ar
cable fixture angle; chart angle shifted to shogredd sinusoidal trend pattt.

5.3.6 Comparison of Cable Sections

As the preliminary tests were run, it s evident that the run-tan variation even for
standard run of the same cable section was signific Therefore, standard runs for
same cable section and different sections of theesaable were compar: Figure 5.14
shows the five cable secns, all from the same length of cable, cut inve equal (and
assumed identicplsections The next figures show the results, with a very rc
separation between natural frequencies for theaheE cables as a group and the B

D cables.

Figure 5.14The five sections of 1x18 cable used for sectiangarison testir.
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Figure 5.15 shows the variation for a single sectibcable (Section A, the section used
for all variability tests). While the first ands®nd natural frequencies appear in roughly
the same place, there is slight variation in tlegdiency values and significant variation
in the amount of damping (as represented by peafht)e The modes between 70 and
100 Hz showed great variation in amplitude and remalb frequency peaks.
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Figure 5.15: Frequency response functions for Bhdsird runs of cable section A,
showing the variation of response even for a simglble section, particularly in the

intermediate modes between 70 and 100 Hz.

Figure 5.16 shows the comparison between diffesexctions of the same cable. As
evidenced in Figure 5.14, the only noticeable ddfee in these cable sections was the
location of the black cable lacing ties relativettie driving point location. The sections
were cut sequentially from a single 3.8 m piecspHceflight-like cable, and the Kapton
overwrap and lacing ties kept the helical cablacstre intact. Lay angles were similar
for all cable sections, and no visible differeneese apparent. All cables were kept in a
clamped test fixture overnight before first testimgd were stored hanging to prevent
excessive curl from being stored coiled. The sam®unt of testing runs were
performed on cables B, C, D and E, with A testedemaften due to its use in the
variability testing. Overall, cables A and D shawbe most similarity from run to run,
and cable C showed the least. Figure 5.16 pletsuhs of all cables together, where all
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runs of the same cable section are plotted in #&meescolor, clearly showing the two
frequency peaks near the first mode and three émgupeaks near the second mode. All
of these tests were run on the same day with thke camoved from the test set up and

reattached between each run.
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Figure 5.16: Frequency response functions for 18 nf each 1X18 cable section

showing the dependence of frequency on cable sectio

The cable scans were valuable in verifying the farsd second major mode shapes and
thus, natural frequencies. The trends for eadhwere fairly clear when analyzed at the

conclusion of each day's testing, but when resmoasel frequencies were compared
from day to day, there was great variation, evewéen "standard” runs. It was evident

that tests which required the cable to be remoweldtlaen replaced in the test fixture had

the greatest variation, showing that the attachmemtt characteristics have a significant

impact. Variation due to changes in the test getvere not significantly larger than

variations between cable sections.

An interesting result from the simultaneous meawerd of the perpendicular vibrations
was the observation that the symmetrical-appedréligal cable does not have the same
natural frequencies in both directions. The cablectually stiffer in one plane, which is

not intuitive. It is hypothesized that the twigtiof the cable, coiled storage and/or
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Kapton overwrap method may be responsible forlt#uk of symmetrical response. The
cables obtained for testing were contra-helicadlid,] kept straight throughout their
manufacture and testing, and were wrapped with &tapy machine, thus eliminating the

frequency dependence on fixture orientation.

5.3.7 Preliminary Test Summary

Conclusive results were obtained for the testslinng string length and tension, cable
tension, and cable tie attachment. It was clear fbr small cable deflections, the length
of the excitation string and tension in the strimgre not affecting the cable's dynamic
response. Cable tension did change the frequasponse slightly, with a general trend
of higher tension corresponding to higher natureddiencies. This test also showed that
"hand-tight" cables were on par with 1-4 Ibs ofsien in the cable, and that slack cables
behave differently and may have more non-linearbaties. Cable tie brand, type and
size were not important factors, but the tightnesthe cable tie attachment was.
Therefore, cable tension and cable tie tightnessildhbe controlled for future testing to
reduce variation between standard runs. In addlitiable angle in the test fixture should
be noted, as comparison between cables may redifiezent orientations to test the
same cable plane. Later testing used contra-helatdes which did not show the same

dependence on orientation in test fixture.

The excitation method of the cable went throughresaviterations, starting with a long
solid stinger, hinged stingers, and eventuallylisgtton the tensioned string used for
these tests because of its lack of support for nmésner lateral forces, keeping these
unwanted inputs from being applied to the cablehe hammer tests bounded the
tensioned string random excitation results, whictlidated that the shaker attachment
was not unduly affecting the test set up. The stesbnducted vyielded good
representations of the cable dynamics, with littkeraction from the support structures.
Table 5.1 lists the findings from the preliminagbte tests.
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Table 5.1 Conclusions from preliminary cable testd development of standard run.

Test Parameter

Conclusion

Option Used for StanRard

Excitation method

Excitation string length

Excitation string
tension

Cable tension

Cable tie size

Cable tie tightness

Cable orientation

White noise and burst
random excitation produced
similar results, bounded by
hammer impact tests with
and without load cell.

No dependence on strimgib.

Dependence on excitation
string tension only occurs if
cable is displaced; range of
DC offset to change tension
was not large enough to
displace cable.

Slack cables behave
differently than tensioned
cables; increasing cable
tension slightly increases
frequency.

No dependence on cable tie
sSize.

Loose cable ties produce
different dynamic response
than tight cable ties and
show less repeatability
from trial to trial.

Helical cables show a
correlation between natural
frequency and orientation
of the coll plane.

White noise excitation

0.24 m tensioned string

Medium setting on DC offset,
causing string to be snug
without causing displacement
of cable

8.89 N of tension applied while
cable is loaded in fixture

TY-Rap 525M 7" cable ties
used.

Cable ties tightened to uniform
tight setting with cable tie gun.

Cable orientation must be
controlled if helical cables are
used; contra-helical cables
were used for all subsequent
testing to eliminate this
variation.
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5.4 Unbaked Cable Tests

Once all preliminary tests were completed and tfamdard run was developed, the
standard run could be applied with confidence &b tBultiple samples of each of four
different cable types to compile a database ofecibljuency responses and provide pre-
bakeout data for comparison.

As discussed in detail in Chapter 3, four cableng=toies were investigated: single strand
cables of small (1X7), medium (1X19) and large (&8X4izes, and a large multi-strand
(7X7) cable. Five samples of each cable type vwemwided at cost from Southern
California Braiding Co., made with MIL27500-26TG2A.1 The cables were made on a
planetary machine, were tied every 4-6" with wheeing ties, and were machine-
wrapped with Kapton with a 50% overlap. Figure75shows the flight-quality space

cable samples used for the cable tests.

Figure 5.17: Samples of each of 1X7, 1X19, 1X48 @Kd spaceflight cables, in sets of

five samples for each cable; single samples laidashow uniformity of Kapton wrap.

One change from the preliminary test cable type thasuse of machine-manufactured
contra-helical cables instead of helically twistables. As Figure 3.3 illustrated, the
helically twisted cable, in which all of the layehgave the same left-hand lay, has an
inherent curvature when it is in a relaxed staléne contra-helical cable alternates lay
direction for each layer, and thus hangs straigla relaxed state. This straightness was
desirable for two reasons: first, it was shown fesly that the curved plane of the

helical cable resonated at a different frequeney tthe perpendicular plane, and second,
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since the test fixture is straight, attaching avedr cable with cable-ties introduces
elements of torque to keep the cable straight, kvhie not accounted for in the model
(although they could be introduced as applied masmanthe connection nodes) and are

therefore undesirable.

The test cables were mounted to a Bosch test éxtvith cable-ties and TC105 tabs,
following the standard run procedure developed ipiesty. Excitation was provided via
a suspended modal shaker and tensioned wire, apditowas measured with a non-
contact laser viborometer. The 20 cable samples vested over several weeks, with care
taken to keep the cables straight and never exedgsbent (since that could cause
individual wires to slip into a new equilibrium ptien). Between 14 and 18 trials were
run for each cable section with the output measatetthe driving point, and at least 4
scans were taken for each cable to show the opgrateflection shapes at each
resonance. These tests resulted in over 50 freguesponse function test runs per cable

type, presented in the results section of this work

5.5 Cable Bakeout Procedure

Since the bakeout process required for flight haréwwas reported to change cable
stiffness, a comparison of cable dynamic respons®ré and after bakeout was

conducted. Common bakeout procedures include f@anprotection bakeout, necessary
for biological decontamination, and low-Earth otéikeout, used for objects that will not

be venturing further than 2,000 km from the Earsidace. A low-Earth orbit bakeout

was used for this study, as cabling on satellgesf iparticular interest, and satellites are

maintained at low-Earth orbit.

To do so, the three cables from each section vg¢hnhost consistent results from the
unbaked cable trials were selected and baked diisatlegrees Celsius for 72 hours, the
requirements for bakeout for low-earth orbit. Magshe cable was measured before and
after the bakeout process with no evident changerded. Figures 5.18, 5.19, and 5.20

show the cables on the bakeout rack, the bakeamloér used for the test, and one day's
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worth of thermograph record that showed the tentperaand pressure readings for the

chamber.

o L
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Figure 5.18: Cables on bakeout rack. Figure 5.19: Vacuum bakeout chamber.

Figure 5.20: Bakeout thermograph record.

5.6 Two-Point and Four-Point Fixture Baked Cable Tests

Once the cable samples were baked out, they ergedeadditional rounds of testing in
two different test fixtures. First, the four-poifitture tests were repeated for a direct
comparison; the same standard run procedure wksved for the baked cables in the
four-point fixture, with 10-15 trials per cable §ea, measured at the driving point, and 6
scans run per cable to compare the operating defleshapes and make sure that the
frequencies were being directly compared. FiguBd Shows the scan comparisons for

the major first and second modes of the 1X19 caditbpugh the natural frequency for
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this mode shape is 15% lower for both modes afi&ebut, the mode shape is identical
before and after bakeout, which makes it clear tthafrequency values can be compared
since they are identifying the same mode. A sligiduction in amplitude is apparent for
the second mode, identifying an increase in dampiige complete results from the
baked out cable tests are presented in Chaptea@lasct comparison with the unbaked
cable tests.

First Mode Second Mode
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B | —
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73.44 Hz 62.19 Hz 255.0 Hz 216.6 Hz

Figure 5.21: Scan comparison showing the mode stagbe unbaked and baked cable
for the major first mode (left) and second modgH(t); despite a frequency reduction of

15%, mode shape is the same between pre- and gket-loables.
When comparing the four-point fixture tests to nedthe uncertainty in the attachment

stiffness was problematic. Therefore, a two-pdixture was designed that would use

only two attachment points closer to the ends efdhble. This would reduce some of
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the uncertainty due to the attachment points andldvallow for comparisons between
calculations of the cable frequencies with pinnedseto ensure that the calculated cable
parameters were effective for cable modeling, aé agereduce any effects from the free
ends of the cable. Figure 5.22 shows the 1X48edalthe two-point test fixture. For the
two-point fixture tests, the standard run was fold with the only change being the
location and number of the attachment points. Be@ns were run for each two-point
fixture test, giving not only frequency responseéagddut mode shape data for all trials.
When the two-point and four-point test data wasluseconjunction with the attachment
point stiffness experiments described in Sectiah) & complete characterization of the
entire cable and test fixture was achieved witHidence.

Figure 5.22: 1X48 cable in the two-point test fpetu

5.7 Attachment Point Experiments
When comparing the results from the models develap&hapter four to the four-point

fixture cable experiments described herein, it kjyibecame apparent that knowing the
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cable parameters was not enough for accurate mmgdeStandard "pinned"” or "clamped"
boundary conditions did not adequately describectide connection points, so another
contribution of this work was the determination attachment point characteristics.
Although several experiments were conducted byAtind-orce Research Laboratory to
establish tie-down stiffness of the attachment {soian overall conclusion from [1] was

that a better methodology was needed to estaldistotvn stiffness.

The attachment points for the cable and cabled bsamisted of an aluminum TC105
tab and a cable tie, tightened to a specific tensketting with a cable tie gun. Figure
5.23 shows the cable attachment to "ground” (dgtaalarge Bosch test fixture with an

easily identifiable fixture frequency).

- [ F
Figure 5.23: Cable secured to support via cablartce TC105 tab.

Several sets of experiments were required to daterthe linear and rotational stiffness
of the attachment points to use as the model @insinputs. First, static deflection tests
measured the displacement of a small piece of ¢althee attachment fixture when a load
was applied to the center of the cable, and ratatistiffness was determined by
applying a moment to the cable attachment and miegstine angular deflection. Next,
dynamic stiffness tests measured the deflectiothefsmall piece of cable due to sine
wave excitation. Plotting the force-displacemeliipges gave information about the
damping and linear stiffness of the attachmentweieer, both of these tests had values
that varied by several orders of magnitude dependimfrequency, so a more applicable
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test was conducted in which solid rods of knownemal properties were tested in the

two-point and four-point cable fixtures using tlaene attachment methods.

5.7.1 Direct Static and Dynamic M easur ement

Experiments to measure the attachment stiffnesscttiir included both static and
dynamic measurements of displacement for an appbeze. The static test involved
hanging weight from a small section of cable modntgth the typical attachment
method as shown in Figure 5.24. Different weigh¢se applied to non-stretching string
snugged around the cable alongside the cable tigasdhe force would be applied to the
edge of the cable against the TC105 tab; Figure $hdws the cable harness method that
was determined to most effectively transmit thecéolas closely as possible to the
intended location at the cable-attachment poimriate. Sections of small, medium and
large cable were used, as well as a small pieselaf Acetron rod. These experiments
resulted in values of 0.1 * 10N/m for the stiffness of the attachment for theltinu
stranded cable, 1-2 *4N/m for the small and medium cable sections, a8d20*10°
N/m for the Acetron piece. As this was one of ithigal experiments run to determine
attachment stiffness, the range and discrepaneyeeet trials and cables was concerning,
so further experiments for linear stiffness werendiected using dynamic excitation.
Results for rotational stiffness had much lessatem; regardless of cable type used,
when a force was applied at one end of the caloktooseto cause a moment and the angle
of deflection was measured, the result for all eablas between 1 and 3 N-m/rad, so the
average value of 2 N-m/rad was used for the ratatistiffness model constraint input
for all cables. Rotational stiffness was measugdanging the various weights from
one side of the cable and measuring the resultmgard deflection at a specified
distance on the other end of the cable so thatrdbkelting angle of rotation could be
determined and used in the equatMn= ky0, whereM is the applied momen§, is the

resulting angular displacement, arglis the rotational stiffness.
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Figure 5.24:. Static deflection test using laserpldisement sensor to measure the

deflection of the cable tie from an applied force do hanging weight.

Figure 5.25: String harness for application of éfor linear stiffness static and dynamic

testing.

To get more information about the linear stiffnegsthe attachment, dynamic direct
measurement tests were performed. For theseathe sable attachment was used, but
instead of a weight, the loading string harness atteched to a dynamic load cell and

shaker. The shaker could be driven at varying angas and frequencies, with the laser
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displacement sensor measuring the resulting defteéh real time. The force and
displacement curves were plotted to form hystereltipses where the angle of the axis
of the resulting ellipse is related to the slopd #re area of the ellipses is related to the
damping loss. Figure 5.26 shows just a few oftéisé set up iterations that were used for
these tests, and Figure 5.27 shows the resultiateresis loops for shaker excitation of a
sine wave at 1 Hz with varying amplitudes, whergda amplitudes result in larger loops.
Thus, damping in the attachment point is relatelddit frequency and amplitude of the
input force.

Figure 5.26: Test fixture iterations for dynamistteg of the attachment point linear
stiffness.

Force [N]
=)
T

Displacement [m] x10"

Figure 5.27: Force versus displacement hysteresiss| for various amplitude 1 Hz sine

excitation input to TC105 tab and cable tie assgmbl
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Force-displacement plots were created for inputagel amplitudes of 0.1, 0.3, 0.4, and
0.6 volts for input frequencies of 1, 10, 40, 50, 85, and 100 Hz. Figure 5.27 is an
especially good example of the results, since th¢z linput is close to static. Higher
frequency results showed much greater variatiorslape values for different input
amplitudes. A plot of the measured average attadhnstiffness for the different
frequency values finally offered some insight; F&6.28 shows the attachment stiffness
trend rise and then fall over the range of frequeneested, with a distinct downward
trend evident for higher frequencies. Theoretygalls frequency input increases, the
input amplitude decreases and cable motion woulonbime level of the individual wires
rather than the cable as a whole. Based on tha itlés reasonable to infer that the
higher frequency inputs could have lower attachnséiffhess since the individual wires
are moving within the cable tie and are less caistd, as opposed to the lower
frequencies that would be exciting the cable ashalevwhich is constrained more

completely by the cable tie that encircles theeasl a whole.
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Figure 5.28: Measured stiffness of the tie-dowaditment from dynamic measurement

showing order of magnitude range over a relatinagrow frequency range.

Of particular interest for this study was the congmn for the value used for linear
attachment stiffness by the AFRL; past studiesrdeteed tie down stiffness through

experimental comparison of a known system, but dfif¢ value calculated for finite
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element analysis in [1] and shown as a horizomtalih Figure 5.28 did not represent the
experimental connection points well for these ekxpents (although it did represent the

average stiffness over the frequency range quitey)i

Overall, the direct measurement techniques provideeful values for the rotational
stiffness, concrete evidence that the attachmeintpadd damping to the system based
on the large hysteresis loops, and confirmation tha linear attachment stiffness is a

function of excitation frequency and cable size.

5.7.2Rod in Fixture Tests

The direct measurement experiments certainly adttedknowledge about the
characteristics of the attachment points, but &rrtlesting was needed in order to have a
single constraint input value for the developed et®d Solid rods of tool steel and
Acetron GP of similar size to the test cables weue in the same attachment point
configurations as the cables had been tested th, two attachment points (attached at
ends only) or four attachment points; Figure 5128wss the tool steel and Acetron rods in
the different fixtures. Stainless steel and brasis were also tested. The properties of
the solid rods were known, so the attachment psiiffnesses were the only variables.
Attachment point stiffnesses were tuned until tredet frequency response function and
mode shapes for the modeled rods matched the engr@al data for both fixtures. The
required stiffness for the very flexible AcetronsMawer than the stiffness required for
the tool steel; this gave a clear indication tHa# attachment stiffness would vary
depending on the cable size and flexibility. Begdstiffness of the tool steel rod was
significantly higher than any of the cables, arsdattachment stiffness value was %10
N/m. Bending stiffness of the Acetron rod simitarthe bending stiffness of the 1X19
and 7X7 cables, and its attachment stiffness valme ~18 N/m. These provided
confirmation of the values used determined fromdimieamic tests. Since the cable is
modeled as a free-free beam with attachments tangrovhen the attachment stiffness is
very low (essentially zero), there is a rigid badgde; as the stiffness increases, the rigid
body mode disappears. If the attachment stiffrisséurther increased, the initial
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frequency increases and then splits into multipégdencies, which matched with the

larger cables' responses well.

(1

Figure 5.29: Tool steel in four-point fixture ana&ron in two-point fixture for rod-in-

fixture tests designed to determine attachmentt stiffiness.

5.8 Cabled Beam Tests

Since the motivation behind this research involwexleling cables on space structures,
dynamic responses were also tested for cableshattato a simple structure, an
aluminum beam measuring 0.0064 m by 0.102 m byr0.8The beam was sized so that
the four types of test cable attached would repitebee 4-30% typical cable mass ratio
for space structures [1, 2]. Table 5.2 gives @i@demass percentage for the cabled beam
system for each case, showing that all cables imettee typical range for space structure
cabling. Five tie-down attachment points were used.04, 0.22, 0.4, 0.58, and 0.76 m
locations, holding the cable off the beam at a lite@f 0.015 m. Care was taken to
ensure that the cable did not contact the beamyrother location, as that would lead to
significant variation and possible non-linearities the response. The beam was

suspended to approximate free boundary condititnsaeh end with the supporting
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strings attached at two nodal points to minimizengimg motion of the beam. The
length of the supporting strings were very longgtee a rigid-body mode swinging
frequency of 0.56 Hz, well below the first bendifigquency of the beam which was
around 50 Hz. The beam was excited via modal shaké a long solid stinger or
tensioned string terminating in a load cell screwed a very small tapped hole in the
beam. The mass of the load cell was very smallpewed to the cables. A 0.1 volt white
noise excitation input was used to excite the beatitation of the cable was achieved
only through the five connection points betweenlibam and cable. The beam was first
tested without the cable to verify that the respowss as expected for a free beam and
could be modeled correctly with the cabled-beam ehedthout a cable, as successfully
shown in Chapter 4. The bare beam bending fregesmccurred at 50, 137, 277, and
450 Hz, which are referred to as the major strgctnodes to distinguish them from the

smaller amplitude additional frequencies causedweheable is added to the structure.

Next, a solid rod was attached to the beam andesgonse measured. This was largely
to confirm the attachment point stiffness valuesenstill valid from the rod in fixture
tests conducted to determine the attachment ssgtne~inally, each type of cable was
attached to the beam using tight cable ties andrdggency response for the cabled-
beam systems were recorded. A dense scan waserrthrefbare beam and the beam with
each cable attached; the dense scan had 125 pointe rows of 25 points each, in two
rows above the cable, a row on the cable, and oms below the cable. Ten additional
sparse scans were run with 57 points in three @9 points each, with a row above
the cable on the beam, a row on the cable, andvabedow the cable on the beam.
Figure 5.30 shows the cabled-beam test set upurd-i§.31 shows the transfer function
for each of the four cabled-beam systems as mehsurdghe cable coincident with the
driving point on the beam. Figure 5.32 shows therating deflection shapes for the 7X7
cabled beam as experimentally measured from a decse. The dominant major
structure beam modes are easily visible (i.e. mddasd 3), but additional mode shapes
are also present due to the cable's interactidmtivé beam; in these modes the motion of

the cable can be seem relative to the beam defteite. modes 2, 4 and 5). Comparison

124



between the cabled-beam model and the experimeatalfrequency response functions

and mode shapes are presented in Chapter 6.

Table 5.2 Cable mass percentage for cabled-besiarsy

Cable Type 1X7 1X19 1X48 X7
Cable Mass % of
System Total Mass

5.0% 12.2% 24.5% 26.5%

Figure 5.30: Experimental set up for the cabledibsat up; excitation is via suspended

modal shaker terminating in a load cell mounted tapped hole in the beam.
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5.9 Use of ME Scope and Data Processing

Once data were taken with the laser vibrometerytBolPSV Software, MATLAB and
ME'Scope software were used for analysis. Figu88 Shows the frequency response
functions taken at every point overlaid together dme of the 1X19 cable sections.
Whenever possible, data was used in original amd fiam; noisy test data was
eliminated only if it was so noisy that no usefatal could be extracted. Due to careful
test set up and wise software analysis choicey, 4hble test trials and 2 cabled beam

trials were eliminated or re-run due to noise.

W S @ & E |

Figure 5.33: Frequency response functions for 1%dl8le for each scan point along the

cable as displayed in ME'Scope.

ME'Scope was used to determine the modes and dgmgiios for the various cables.
The unknown parameters of modal frequency, modaipitag and mode shapes were
matched to the experimental data using partiakibaexpansion. The FRF matrix can

be written in the following partial fraction expams form

modes

R(k) [R(K)]
()] = Z Lw p(k) jw — p(k)*

where w is the frequency variablegy,(k) is the pole location for mode p(k)* is the

complex conjugate gi(k), and R(K) is the residue matrix for mode This expression
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shows that the FRF matrix is a summation of map@xs, each pair containing the
contribution of a mod& [122].

ME'Scope can also calculate mode indicator funstioising multiple measurement
points. The mode indicator function provides agrsmooth curve from multiple single
point measurements along the length of the cablerder to identify those frequencies
that are most likely to be natural resonances agt$ociated modes. Figure 5.34 shows
the mode indicator function for a 7X7 cable scahhe modal peaks function sums
together all of the real parts of the velocity/®itcansfer functions. All of the scan data
for a single test cable was included in the moddicator, and the ortho-polynomial
method was used to estimate modal frequencies antpidg. This multi-degree of
freedom method simultaneously estimates the moai@npeters of two or more modes
from the FRFs. The polynomial method curve fite #RFs directly by performing a
least squared error curve fit from multiple FRFd astimates the coefficients of the FRF
denominator polynomial. Modal frequency and dargpstimates are then extracted as
roots of that polynomial. Modes were selectednralé groups for greater accuracy in
modal parameter estimation. Damping percentagecémh mode was calculated by
ME'Scope software and confirmed with hand calcofegiby applying the half-power

point method for damping to the vibrometer data.
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Figure 5.34: Mode indicator function for 7X7 cabWgh relevant modes highlighted in

green.

The experimental data from cables and cabled beaass used to find frequency

response functions, natural frequencies, and dagrgencentages for each mode, and the
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results were compared with model results. Mod@eabhavere compared using the modal
assurance criterion (MAC) from Ewins [106], given b

IRCHYCHNE

(X1 (@x);(@x);") - (Bey (@) (Dy);7)

MAC(4,X) =

where®y and®d, are the experimental and analytical (model) mddgss. Appendix D
contains the MATLAB program files used for procegsof the experimental and model
data and subsequent modal assurance criterionladcu Natural frequencies were
compared directly and the frequency response fonstivere compared both visually and
using a cumulative RMS value method, since usingF&¥ assurance criterion is
sensitive to slight shifts in the frequency peakd does not necessarily indicate good or

poor agreement clearly. Chapter 6 presents thétses all comparisons.

5.10 Summary of Experiments

For this research, dynamic testing was performeaaiies and cabled beams. Cables
were tested before and after a bakeout treatmedgteymine the effect of bakeout on the
cable response. Solid rods were also tested imaheus fixtures for model comparison.
Experiments to determine the characteristics obttechment points were developed and
provided useful values for the models, but alsongtbthe frequency dependence of the
connection stiffness. This experimental data efulshot only for comparison with the
developed models, but also to provide insight ®dffects of cables on structures. The
large number of cable trials provide a useful dasabfor further cable study. The
frequency response functions for a bare strucamed on the structure, and a cable on
the structure show differences that validate thednéor better understanding and
modeling of cable effects.
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6. Results

This research resulted in both experimental andrétieal contributions as the synthesis
of cable parameters, cable and structure modeding,test data occurred. Results are
presented here for the calculated cable paramedsrsyell as the resulting cable and
cabled-beam models. Undamped and damped modeatsmugared to experimental data
for both two-point and four-point cable fixturesdatine cabled beams. The experimental
comparison between unbaked and baked out cabdésoipresented. Although the focus
is on the utility of the cable and cabled beam nxdée experimental results on their
own offer insight into the physical phenomena obleadynamics as well, so the

experimental data from the bakeout comparison Aedcébled beams are examined in

detail.

6.1 Cable Parameter Results

Based on the methods of Chapter 3, parametergdar density, bending stiffness, and
shear rigidity were calculated as maximums and mmimns for each type of cable. Table
6.1 gives the property calculation results, as wsllthe stiffness values used for the
cables in the two- and four-point fixture connexticand for the cables in the cabled
beam model. The cable stiffness varies from fextiar fixture since the curvature of the
cable is different depending on the span and daflecexperienced by the cable.

Bending stiffness is higher for the cable in tharfpoint fixture due to the shorter span
sections that prevent static displacement and tunweaof the cable. The cable was
attached to the beam at five points, giving an estaarter span length and thus slightly
higher bending stiffness, as expected. Notice titatminimum frequency bound is the

result of using the minimum bending stiffness analximum area and density values,
while the maximum frequency is the result of using maximum bending stiffness and

the minimum values for area and density.
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Table 6.1 Inputs for cable properties for minimand maximum frequencies calculated
for each cable based on the methods introducednhered the material properties and

cable measurements introduced in Chapter 3.

1x7 1x19 1x48 7X7 (multi-strand)
Min Max Min Max Min Max Min Max
Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.
Area, nf A 4.35*10° 3.44*10° 1.27*10* 9.33*10° 3.27*10* 2.36*10"° 3.66*10* 2.41*10°
Density, kg/m p 3323 2677 3528 2624 3049 2456 3295 2654
Wire Modulus of g 23.7 19.1 23.7 19.1 23.7 19.1 23.7

Elasticity, GPa

Bending Stiffness
(2 Pt), kg-ni/< El 0.34 0.37 1.09 1.18 4.73 5.10 2.14 2.30

Bending Stiffness

(4 Pt), kg-n/< El 0.40 0.44 1.55 1.71 7.52 8.13 2.60 2.82
Bending Stiffness
(Cabled Beam), El 0.46 0.51 1.94 2.16 16.82 18.25 3.48 3.83

kg-m*/s?

Shear Rigidity, Pa x4¢ 2.69*1¢ 2.13*1¢ 7.87*1d 5.78*1d 2.02*10 1.46*1G 2.27*10 1.49 *10
Cxn Stiffness
Value, Rotational
Cxn Stiffness
Value, Linear

Krot 2 N/m-rad 2 N/m-rad 2 N/m-rad 2 N/m-rad

k 1*10* N/m-rad 6*1d N/m-rad 1*16 N/m-rad 6*1G N/m-rad

From these parameters, the bound for each frequemasycalculated using the cable
model for the two-point and four-point fixtures.s Aan example, Figure 6.1 shows the
maximum and minimum frequency response functioas risult from the model for the

1X19 cable parameters in the two-point and founpbktures. The range of frequency
prediction is smallest for the first frequency, bucreases with each successive
frequency in the two-point model. The four-poinbael has a more uniform frequency

range for the frequencies shown.
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Figure 6.1: Model frequency response functions gisminimum frequency cable
parameters (blue) and maximum frequency paramétedy for the two-point model
(left) and the four-point model (right).

6.2 Comparison of Undamped M odel with Cable Response

The value of calculating cable parameters with@wirtng to conduct extensive vibration
testing depends on using those cable parametemettict the cable frequencies in
various fixtures or mounting configurations. Thtig cable model was run in two-point
and four-point configurations as described in Caagtand shown above, and the range
of frequency values was compared to the respettiggooint or four-point experimental
configuration. Addition of cables to structuresaobes both the resonance frequencies
and damping ratios, so the most useful comparisetwden model results and
experimental data is a direct frequency value coimpa and comparison of frequency
response functions (FRFs) [2]. However, for a maerous study and confirmation that
frequencies are being compared appropriately, th@enshapes should also be compared.
A direct comparison of frequencies is only usefuthie frequencies being compared
actually correspond to the same mode; thus, a mas$airance criterion (MAC) was run
for each case that compared the experimental ardklmmoode shapes at each natural
frequency to ensure that frequencies were beingpaoed directly correctly. Torsional
modes were not evident in the frequency responsetiins for the cables, which was as
expected since the lowest calculated torsional mdaolethe cables were higher than the
frequency range of interest.
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To show the comparison of the predicted frequencidse experimental data, the model
frequency ranges are overlaid as black bars oneMperimental frequency response
functions of the two-point cables; the black baepresent the range between the
minimum and maximum frequency values for each pleakwere shown in Figure 6.1 as
an example. Model amplitudes were not comparetll damping was added, since the
experimental cable damping was significant; theeefthe position of the black bars on
the following graphs serves only to put the bam@r tlee frequency peak of interest, not to
indicate amplitude of the model. Five experimentils are shown for the two-point

cables, giving an idea of the variability inher&oim trial to trial and the value of having

frequencies calculated as a range rather thanglesualue. The experimental data is
shown as frequency response transfer functions evltesonance frequencies are
indicated by peaks in the data and amplitude iatdd by the relative magnitude of the

peak.

The modal assurance criterion is displayed as aviep of a grid of experimental and
model modes; for perfect agreement, the diagonalabthe MAC should be 1 and all
other squares should be 0. In practice, due teraxental uncertainty and the use of raw
data, bright diagonal and dark off-diagonal squardate good mode agreement for the
entire model, where bright squares indicate highdenoorrelation with MAC values
above 0.7 and dark squares indicate minimal modeletion with MAC values below
0.3.

6.2.1 Cablesin Two-Point Fixture
The two-point fixture had only two attachment pejreducing the variation due to
attachment uncertainty and allowing the cable spoed with typical and easily

recognizable bending modes.
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Figure 6.2: Frequency response function (FRF) coisma and MAC for 1X7 cable in

two-point fixture.

Based on the experimental trials shown in FiguPe i6is clear that the cable response is
not perfectly repeatable from trial to trial, bliete are certainly frequency peaks that
appear clearly and could be predicted by a frequenoge. Figure 6.2 shows the
comparison between the frequency response funcfanBve experimental trials with
the predicted model frequencies shown as black tbarsdicate the predicted frequency
range, as well as the MAC that compares the expgatiahand model mode shapes of the
1X7 cable. The frequency values for the experiadetita and minimum model values
are listed along the axes of the MAC chart to iatcthe frequency at which the mode
shape was determined for comparison purposes.fifBhérequency range is reasonable
but narrow, and the second frequency range is eellext representation. The third and
fourth experimental frequencies (at about 40 Hz @ddHz) are lower than predicted by
the model ranges, but addition of damping or a geege knockdown of the bending
stiffness due to bakeout [108] could bring thege ialignment, and the MAC shows
good agreement for these modes, so they are codhpareectly. Notice that the small
peak at about 25 Hz is not included in the prealictihe peak at 25 Hz in this and all
subsequent frequency response plots is the fregueinthe cable fixture, and should

show up only in the experimental data and not tbdeh For the 1X7 cable in the two-
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point fixture, MAC agreement was excellent betweeodel and experimental mode
shapes for the six modes compared. Frequencys/aleee also reasonable for such a

small cable.
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Figure 6.3: FRF experimental and model range coisparand MAC for 1X19 cable in

two-point fixture.

The agreement between the model and experimental afathe medium sized 1X19
cable is shown in Figure 6.3. This cable, beingda and more beam-like, showed
improved results with the same cable parameteulzion method used for the 1X7
cable. Again, the frequencies of greatest amplitade predicted with the narrowest
range, which is useful since many applications @mgy concerned with the highest
amplitude mode. MAC values for the 1X19 cableha two-point fixture showed good
agreement of mode shapes for similar frequenciéisplagh the first mode tended to
dominate the nearby modes, showing that the ficlenwas excited to some degree for

almost all frequencies.
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Figure 6.4: Frequency response function and MACL¥48 cable in two-point fixture.

The 1X48 cable was the stiffest of the cables teatel showed fewer modes in the same
frequency range. Predicted frequency ranges showiigure 6.4 for the 1X48 cable
attached at two points agree with the experimeddtd. As noted before, the spike at 25
Hz is a structural mode from the cable test fixtumed is not included in the model.
Mode agreement for this case is good for modes, Iand 4, with modes 5 and 6
dominated by the much larger fourth mode. Degpi¢eless than perfect MAC, visual
comparison of the mode shapes showed enough agreé&mee confident in the natural

frequency comparison.
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Figure 6.5: Experimental FRF and model range coisparand MAC for 7X7 cable in
two-point fixture.

As a multi-stranded cable, the 7X7 was not as bideeras the single-stranded cables in
that it showed greater variation between trials and-standard experimental modes.
The first few natural frequencies are adequatedylisted, as shown in Figure 6.5, but the
fifth model mode is too high, and the model fadscapture the 2-3 additional internal
modes between 60 Hz and 100 Hz. Since the ameplivfidhe frequency response is so
much greater for the first mode, this model isl stdéemed useful for multi-stranded
cables, with the caveat that above the first fend@eso additional modes may not be
captured. The MAC for the 7X7 two-point cable d¢ong that agreement for the
modeled modes is good, but additional experimentales between 60 and 100 Hz were
not captured. However, mode correlation betweenntiodeled modes is still high and
thus the multi-stranded model can be used withuthgerstanding that additional low

amplitude modes may be present.

The above results are useful for predicting thst faeveral frequencies, but for many
applications, only the first frequency with the gt amplitude is of interest. The use of
circular or elliptical wire calculations as firstsdussed in Chapter 3 results in similar

frequency predictions, but different frequency g The range for the first frequency
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predicted with the elliptical wire calculations sarrow; using the circular wire
calculations sets wider bounds on the predictequgacy range. Figure 6.6 shows the
experimental FRF and model range comparison for rioglel with circular wire
calculations used for each of the cable typeseanwo-point fixture. The first frequency
range is wider, but the model ranges for the higheguencies are too wide to be of
practical use. Thus, the elliptical wire calcuwdas are recommended unless a wider
predicted range for the first frequency is desired.
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Figure 6.6: FRF and frequency range comparisonalfaables showing the larger range
resulting from the use of circular wire calculasonClockwise from top left: 1X7 cable,
1X19 cable, 7X7 cable, and 1X48 cable.

Overall, predictions from the model for natural guency using elliptical wire

calculations were good for single-stranded caldesl adequate for the multi-stranded

cable. Natural frequency results are better faydg more beam like cables; this agrees
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with previously published work that found that tbalculation of bending stiffness

became more accurate as the number of wires inea dpyer increases [123].

6.2.2 Cablesin Four-Point Fixture

For the four-point cables, difficulty arises in goamison of the model results to the
experimental data because of the inherent variatiarable behavior, augmented by the
lack of precision of the attachment method. Altfjowll of the cables show clear large
frequency response function peaks at the first ingnthode of the center section, the
interaction modes (smaller amplitude modes occgrdue to the stranded nature of the
cable) for the four-point cables tests betweenfils¢ and second center section beam
modes are erratic; for instance, one section ofecatight show two interaction modes
between the first and second center section beagesnavhile another sample of the
same type of cable shows three. Figure 6.7 shbe/gypical appearance of the four-
point cable frequency response function where #rgel first and second modes are
separated by interaction modes. The interactiomla®oare characterized by small
amplitude standard beam modes within each spamosgaethere the major first and
second beam modes are characterized by a standatd aver the center test section
with much larger amplitude. Figure 6.8 shows tkgeeimental mode shapes for the first
few modes of a 1X7 cable, showing the major beardas@s large amplitude standard
string mode shapes in the center sections, whige ititeraction modes have larger
displacements in the buffer sections. For thedaogbles, the shape and number of the
interaction modes is different, but the first aret@and beam-like mode shapes always
appear at the high amplitude frequency peaks. Ewignn the results from the same
cable section the number of interaction modes sariéherefore, the most reliable way to
compare frequencies between model and experimeatalfor the four-point cables was
to find the easily identifiable first and secondabvemode mode shapes that occurred in
the center test section, and compare those fregggeencThe larger cables showed
multiple peaks near the first beam mode, and seebetmodeled more appropriately

with the stiff connection values that cause adddéldrequencies at the first mode.
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Figure 6.7: Anatomy of a frequency response funcfa a smaller cable in the multi-
span four-point fixture.
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four-point fixture.
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Comparison of predicted model ranges and experahdata and MAC chart for the 1X7
cable attached at four points are shown in Figuge @he first model frequency range
was too high; inclusion of damping or a bakeoutedton factor, which would affect the
first mode the most, may adjust this predictioncadimgly. The second, third and fourth
frequencies correspond to the multiple (usuallgehiinteraction modes between 50 and
100 Hz. The MAC for the 1X7 cable attached at fquoints showed that the
experimental modes are dominated by the two lar@eglitude frequencies, the first and
fifth frequency. In an effort to determine whetimeode interaction was occurring in the
experimental data, the first model mode was addele three interaction modes and the
modal assurance criterion was run for these blenmdedes against the experimental
modes. The results were very clear; the blendedlaation modes 2, 3, and 4 had MAC
values of 0.7166, 0.8356, and 0.7565 respectivhigh enough to show strong
correlation.  Comparison of natural frequencies ttee four-point fixture is most
effective when the two frequencies with the higHestl peak amplitude are identified

and compared to the corresponding model modes.
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Figure 6.9: Frequency response function and MACLKT cable in four-point fixture.
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Figure 6.10: Frequency response function and MACL¥19 cable in four-point fixture.

Figure 6.10 shows the comparison of experimented dad model for the 1X19 cable
attached at four points. In this case, the modadlipts three interaction modes between
the major large amplitude modes. Just as with IK& cable, the large amplitude
experimental modes dominate the other modes, sM#Af@ for the 1X19 cable showed
more concentrated agreement around those firstfithdnodel modes. Again, mode
interaction seemed likely, so the first model modes added to the second and third
interaction modes to test this hypothesis. Thailted in MAC comparison values of
0.9424 for the second interaction mode and 0.548%hE third interaction mode, giving
strong support to the theory that mode interadsqgorevalent in stranded cables. This is
further supported by the fact that mode interacisotcommon in non-linear systems, such
as stranded cables. The fifth natural frequenogeaand mode correlates to both the
fifth natural frequency in the FRF and fifth expeental mode, showing that the

frequencies are being compared correctly.

142



-15 T T
— — Exp Trials
— Model Frequency Range ||

20+ —

amman |
meEaE |
EEEEE |
EEERCE |
manan |

108 Hz 140 Hz 193 Hz 128 Hz 197 Hz 225 Hz
Experimental Modes

Mode 1, 78 Hz|

2,100 Hz

3,135 Hz

Model Modes

4,183 Hz|

Magnitude [dB]

5,298 Hz

6,398 Hz

-65 i L L L L
0 100 200 300 400 500
Frequency [Hz]

Figure 6.11: Frequency response function and MACL¥48 cable in four-point fixture.

The larger 1X48 and 7X7 cables showed several laages of similar amplitude instead
of the single large amplitude frequency peak shdyrthe smaller cables. This was
modeled in part by the higher bending stiffnesg, dso shows the importance of the
attachment stiffness, since only higher valuesattachment stiffness correctly modeled
the multiple high amplitude peaks. For the larg@bles the variability from sample to

sample and even trial to trial of the same sangplguite large, with varying numbers of
modes at certain frequencies. The modeled fregeer@are approximations at best and
may not capture all of the small interaction freggies that are evident. Figure 6.11
shows the comparison between the model and expetamfrequencies for the 1X48

cable attached at four points. The three largelilndp peaks are modeled and the fourth
and fifth frequencies are captured. The MAC fa 1X48 cable in the four-point fixture

showed excellent correlation for the large ampéttficst, second, and fifth modes.
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Figure 6.12: Frequency response function and MAG ¥/ cable in four-point fixture.

The comparison between the model results and therexental results for the 7X7 cable
attached at four points is shown in Figure 6.18e Tirst four mode shapes correspond to
the large amplitude frequencies overall, of whickl &are always present in the
experimental trials. The fifth and sixth frequen@nge correlates with the higher
frequency large amplitude peaks at about 200 ar@l B8, respectively. From the
correlation of the MAC values between the firstrf@xperimental modes and the first
model mode, it is clear that the first four largepditude modes all have some element of
the first model mode. Adding the first model madethe subsequent model modes
results in higher MAC correlations for these bleshd®des; adding model modes 1 and 2
and comparing to experimental mode 2 results infA€CMalue of 0.8541. The results for
the 7X7 cable comparison in the four-point fixtare significantly better than the results
in the two-point fixture. For the multi-strandealde, it appears that smaller span lengths

can help to make the cable behave more like a beam.

Phase information for both two-point and four-pogable tests was also recorded.
Figure 6.13 shows a representative mobility fregyemesponse function and the
associated phase plot for a 1X48 two-point calie. tiThe modes were very clear when
identified by the mode shapes at the peak freqesncand the phase diagram

corresponded with these frequencies. Figure thiws the phase diagram for a trial of a
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1X48 cable in the four-point fixture. Phase diagsavere less useful than mode shape

analysis for these cases due to the heavy damipatgrtade phase shifts less obvious.

o

A b N B
S & © o

Magnitude (dB)

al
o
o

1 L
50 100 150 200

al
o

al
o

Phase Angle (deg)
o

1
50 100 150 200
Frequency (Hz)

o

Figure 6.13: Frequency response and associate@ jgingde plot for 1X48 cable trial in

two-point fixture.
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Figure 6.14: Frequency response and associate@ jgingde plot for 1X48 cable trial in

four-point fixture.

The four-point cables are more difficult to comp&exjuencies directly with confidence

due to the variability of the interaction modest the largest amplitude responses are
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certainly captured by the derived cable model, iatetaction modes are identified. The
four-point models serve less to predict the exarjfency of any given interaction mode,
and more to validate the cable parameters that slsoe/n to be effective for the two-
point cable tests. Since the eventual goal farwork is to model cables attached to host
structures at multiple points, it is important thhe cable parameters calculated still
represent the cable well when it is attached asl-span beam. Just as exhibited by the

two-point cables, results are still best for thgda, more beam-like cables.

The results for the two-point single-span cablesashorrect cable parameters calculated
from cable measurements and reasonably predicteegi€ncy ranges, and the results for
the four-point multi-span cables verify that thiargmeter calculation approach and
model method is still valid for cables attachednaitiple points as they would be when

attached to a host structure.

6.3 Effect of Bakeout on Cable Dynamics

As discussed in Chapter 3, the bakeout proceshyashesized to have an effect on
spaceflight cable stiffness. Based on the experisneonducted as part of this research,
bakeout reduces the bending stiffness and chahgdseguency response function of
spaceflight cables as illustrated herein. Redaitthe experimental comparison of the
pre- and post-bakeout cables are presented isehtgon, with all trials of each cable
type shown in a single figure. Appendix E congdaime comparisons for individual cable

sections.

6.3.1 Single Stranded 1X7 Cable

Figure 6.15 shows the comparison for all of the XéBle sections in which red dashed
lines are the unbaked cable responses and bluklsas show the cable responses after
bakeout. For every section of the 1X7 cable, ih& &ind second natural frequencies
shifted to the left beyond the variation betwees thble sections. The first and second
beam modes are much more consistent in frequentyaamplitude than the interaction
modes. This is likely due to interaction modesgerery dependent on the constriction

of the cable at the attachment points; althougHectié tension was kept constant, the
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random way that the individual wires were comprdsse the tie was tightened for each
installation of the cable in the test fixture magvé contributed to the interaction mode
variation. After bakeout, the Kapton tape is daidet, which may hold the wires more

snugly and reduce some of this variation.
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Figure 6.15: Comparison of cable frequency resptunsetions before and after bakeout,

showing a decrease in natural frequencies for 1affec
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Figure 6.16: Comparison between first and secon@mieeam modes for 1X7 unbaked

(left) and baked (right) modes.
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To show where the first and second major beam modesr, the cable was scanned and
mode shapes were identified. The cable showed blesmm modes which were used to
identify the modes of the test section. The unbatable first frequency occurs around
45 Hz and the second frequency occurs around 180THz modes that occur between
50 and 100 Hz are interaction modes, in which thdfeb zones show larger
displacements than the center section. This isakd¢ information since cables are
usually attached in multiple places and would shioege interaction modes in practice as
well. The first mode can be differentiated frone timteraction modes by the lack of
activity shown in the buffer zones at this poiftigure 6.16 shows the mode shapes for
the 1X7 cable as measured using Polytec laser miéter software; the left side of each
image is an unbaked cable and the image on thesigh is the same cable section after
bakeout, showing the same beam mode at a redueqdefncy and slightly reduced
amplitude. The reduced amplitude that is readiyagent in the second mode indicates

greater damping in the baked out cable.

Figure 6.17 shows a graph of the first natural sy value taken from single point
data for all of the unbaked and baked trials fa 1X7 cables, again showing a clear
decrease in frequency for the baked cables. Theskxtion C cable was the only cable
that showed a downward trend in frequency for ttst few unbaked trials. This is likely

due to the "bedding in" effect, in which continueithration of the cable changes the
frictional force between the wires and thus de@sdbe natural frequency. The term
"bedding in" is used throughout Raoof's researclsmral strands and differentiates an
old cable that has experienced vibration from alypemanufactured cable [69]. After the

first five trials, it appears that the cable is @bately bedded in. All cables were excited
by the same amount and same duration to elimimgtelifferences due to bedding in. It
should also be noted that section C of the 1X7vsestthe most poorly behaved of all of
the cable samples, which is observed in its uniishédh frequency values at trials 10
and 12 of the baked cable testing. Overall thoiigstill follows the general trend shown

clearly by 1X7 sections D and E, which show an agerdecrease in first natural

frequency of 12.7% and 17.2% respectively.
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Figure 6.17: First natural frequencies for 1X7 eat#ctions, showing lower frequency
trend of baked cables for all trials.

6.3.2 Single Stranded 1X19 Cable

Frequency response functions, mode shapes, anthhaiequencies were inspected for
the 1X19 cables before and after bakeout as wiehle frequency response functions for
all baked and unbaked 1X19 trials are shown in f&igul8, again showing a decrease in

effective stiffness for both first and second beaade frequencies.
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Figure 6.18: Comparison of cable frequency respéunsetions before and after bakeout,
showing a decrease in natural frequencies for 1cétfe.
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Figure 6.19: Comparison between first and secondmb@am modes for 1X19 unbaked
(left) and baked (right) modes.

Figure 6.19 shows the matching mode shapes fdirdteand second beam modes with a
15% reduction in the frequency of the baked cabtaws on the right side of each figure
for each mode. Figure 6.20 shows the trend irt fietural frequency as compared
between the unbaked and baked cable trials fromsitigée point data of the 1X19 trials.

The frequency difference here ranged from 13.2%6t@% and in no trial was the baked
cable frequency ever higher than the unbaked dabtpiency. This cable, being the
medium sized cable that the standard run was dedidior, showed excellent

repeatability and a clear trend through all tridko bedding in effect was observed.
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of baked cables for all trials.

6.3.3 Single Stranded 1X48 Cable

The much stiffer cable showed frequency responsetifuns with modes that could not
be as easily identified by inspection alone. Tisiswhere the identification of the
matching mode shapes became necessary since tasrambiguity in the peaks of the
frequency response functions. Figure 6.21 showsHRFs of all of the 1X48 trials,
where the first beam mode of the cable test settio longer as clearly defined due to
the close proximity of the interaction modes (whatcurs because this cable is much
stiffer and larger, and experiences less consinci the pinned connections between the
buffer zones and test section). Figure 6.22 shtbevd X48 cable's first and second mode
shapes, respectively. The unbaked cable resomatetl7.2 Hz for the first beam mode
and 389.1 Hz for the second beam mode, while tivee smble after bakeout resonated at
107.8 Hz and 348.1 Hz, differences of 8% and 10t&f4he first and second modes.
Figure 6.23 shows a graph of the first peak frequermlues from single point data. As
with the other single-strand cables, every bakiadl showed lower frequency values than

every unbaked trial.
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Figure 6.21: Comparison of cable frequency resptunrsetions before and after bakeout,
showing a decrease in natural frequencies for 1céife.

Te-3mds /N

o, T
40 20 00 20 40

I S—T - sacep, 107w, UNBAKED, 385.1 Hz BAKED, 348.1 Hz
First Mode Second Mode

Figure 6.22: Comparison between first and secondmb@am modes for 1X48 unbaked
(left) and baked (right) modes.
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Figure 6.23: First natural frequencies for 1X48leaections, showing lower frequencies

of baked cables for all trials.

6.3.4 Multi Stranded 7X7 Cable

The 1X48 cable was made to compare to the 7X7 ralilough both cables have about
the same number of wires, the multi-stranded cab$ggnificantly more flexible since it
is made up of strands instead of individual wirébe data collected were consistent with
the theory; the multi-strand cable was less stifthwower first and second natural

frequencies than the single-strand cable of theesare.

Proximity of the interaction modes becomes an eyreater issue for the 7X7 cable, and
inspection of the mode shapes is necessary tondiemhich frequencies correspond to
the first and second beam modes of the cable éetiba. Figure 6.24 shows the FRFs
for all 7X7 cable trials, still showing a left shibr the baked cables. The more flexible
multi-stranded configuration does show a lower ratérequency than the 1X48 cable
with similar wire count as expected. Although thieraction modes appear larger and in
different locations than for the single strandebles, the overall pattern of frequency

decrease still occurs.
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Figure 6.24: Comparison of unbaked and baked cablesning a decrease in natural

frequencies for 7X7 cable.

It is not necessarily the highest peak in the FRE torresponds to the first frequency,
which indicates that the interaction modes mayusé gs important in these larger cables
to consider when determining maximum amplitudeguFe 6.25 shows the scan result for
the first and second modes of the 7X7 cable. Treeffequency is reduced from 81.9 Hz
to 63.7 Hz, and the second frequency is reduced 284 Hz to 194 Hz, differences of
almost 23% and 18% respectively. Figure 6.26 shaweggher clear separation between
baked and unbaked cable frequencies, with all bdkeguencies for the 7X7 cable

significantly lower than the unbaked frequencies.
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6.3.5 Bakeout Effect Conclusions

Results from the comparison of the pre- and pokétat cable trials were conclusive.
Data were taken in the form of multiple single-gaians and scans of the entire cable.
The results from the single point data agreed wah averages taken from the laser
scans and those evaluated using ME'Scope. Thedneg response functions showed a
clear shift left and natural frequency values daseel, both of which indicate a decrease
in bending stiffness. The change in frequencies wansistent; all unbaked first
frequencies for single stranded cables decreadetée 14% and 15% after bakeout on
average. However, the multi-stranded cable showedore significant reduction in
frequency at both the first and second beam motkde 6.2 presents the average first
and second frequency values for each cable befatafter bakeout. These averages are
based on 39-54 runs per cable type, removed anourged in the test section each time.
Based on the percentage decrease in the natugalefreies, a bakeout correction factor
of 0.8 could be included with the calculation ohblimg stiffness to take this effect into

account.

Coefficient of variation was calculated for the bdMKrials, the unbaked trials, and then
for all of the trials together for each cable. Toefficient of variation ranges from 0.015
to 0.06 for the unbaked trials, from 0.02 to 0.066the baked trials, and from 0.05 to 0.2
for combined unbaked and baked trials. The cdefitcof variation for the combined

trials for each frequency for each cable was latigen for the baked or unbaked trials in
every case, and was almost always larger by arfaftd to 4. The frequency change
exhibited by the baked out cables was greater Wizat could be expected due to only
experimental variation. The list of coefficientsvariation for each section and for each
type of cable overall can be found in Appendix &ple sections were compared directly
before and after bakeout to ensure that changes awex only to bakeout and not cable
section variation. More data are available froranscof the entire cable, but as the
frequencies were within the distribution of thegdén point data and agreed with the

overall results, the additional scans were constlsuperfluous.
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Table 6.2 First and second frequencies, in Hzb&ked and unbaked cases for four cable
types with percent reduction for each.

Average First Frequency, Hz Average Second Frequéic
Cable Unbaked Baked % Reduction  Unbaked Baked e@tu&ion
1X7 46.1 39.3 14.8% 195.6 166.8 14.7%
1X19 70.5 59.9 14.9% 257.9 220.5 14.5%
1X48 122.9 105.7 14.0% 394.5 360.4 8.6%
X7 86.3 65.1 24.6% 247.9 206.0 16.9%

Damping values were also investigated by using M&® to determine damping
percentage at the first mode. While the magnitofdéhe frequency response functions
did not indicate a clear trend for damping behawfter bakeout, the percent damping
calculated using ME'Scope showed an increase irpui@npercentage for all cables after
bakeout. Table 6.3 presents the average dampmgmage for the first frequency for
each cable. This information is based on cable data.

Table 6.3 Percent difference in first frequencyrage damping for each cable type.

First Frequency

Average % Average %
Cable Damping, Unbaked Damping, Baked
1X7 3.40 3.72
1X19 4.96 5.74
1X48 3.65 7.05
X7 4.83 9.07

This damping ratio data agree very well with presily published data of roughly 4% for
unbaked cables of similar sizes [3], but bakeadtment pushes the larger cables outside
of this range, providing further evidence that lmakeeffects should be taken into account
for modeling and design purposes. Based on thia, dskeout can nearly double
damping percentage for large cables, while smdllesasee only a slight increase in
damping due to bakeout.

There are a few likely mechanisms to explain thélecastiffness softening effect

exhibited. First, it was observed that the Tefinslulation coating had shrunk down
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around the wire after bakeout, indicating thatTeé&el coating may have shrunk overall,
binding the individual conductors more snugly bubyiding more interstitial space in
between the individual wires. The increase in spaay lead to a decrease in the radial
pressure holding the wires together, thus makimggitidividual wires act more like a
flexible set of wires and less like a stiff solidam. Another hypothesis relates to the
outgassing of plasticizers in cable insulation, §inte plasticizers are not present in the
Tefzel insulation used for these wires, that iskehy to be a mechanism that contributes
to the changes observed. The Kapton overwrap risayexperience changes due to the
bakeout treatment; the Kapton becomes more baittér heat treatment, which may lead
to the perception that the cable is stiffer evesugh its dynamic stiffness has decreased.
It was observed that when holding baked and unbakbtes out as cantilevered beams,
the baked cable showed a larger amount of end adispient, providing further

verification that the baked out cables becomed&ffsafter bakeout.

To match the frequency reduction exhibited by thkeal out cables, the theoretical cable
model requires a reduction in the bending stiffnealie, with the baked out cables
having a bending stiffness of about 80% of the kabacable when connection stiffness
is on the order of 5*10N/m. This change in bending stiffness value sthobé

incorporated into cabled structure models if theeotmodel inputs (such as connection
stiffness, density, and area) remain the sameur&i§.27 shows the effect of adding a
0.8 bakeout correction factor to the cable modejdiency response function for the four-

point 1X19 cable model, a representative graphefcables investigated.
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Figure 6.27: Effect of including the bakeout coti@t factor on the four-point 1X19
cable model; including the bakeout factor in thadieg stiffness input decreases natural
frequencies similar to the decrease in experimdnggluency response function results

for baked out cables.

6.4 Cable Damping

While the undamped cable models provide adequatgeg for natural frequency

prediction, the amplitudes of the model responsesia reflect the experimental data
well unless damping is included. As discussedhager 3, the viscous damping model
that approximates damping due to the motion ofctlide in its surrounding medium is

not adequate to capture the internal damping artdrrabdamping in cables, since cables
have both friction between the wires and viscoalasaterial as insulation. In addition,

this viscous air damping would be entirely absentthe vacuum of space where
spaceflight cables are used. Cables dissipate emanggy than a similarly sized solid rod,
experiencing greater hysteresis. To determineddm@ping term coefficients for the

hysteretic form of cable damping, the damped medss fit to the experimental cable

response average for the two-point cable. Thosgutay coefficients were then applied
to the damped four-point cable model and the calidledm model. Fitting the

coefficients to the specific experimental data éach configuration (two-point, four-
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point, or cabled beam) could result in better daimp®dels for the four-point cable
model and cabled beam, but since one of the gddlisowork was to reduce the need
for experimental cable testing, only the two-padata was used for damping parameter
determination to evaluate whether damping coulexteapolated from the two-point data

for at least the first mode of the other configimas.

Since bakeout appears to have an effect on the ahping, the bakeout correction
factor must be included for all damped cable mqdetsch actually improves the model
agreement and supports the idea that damping capalbi®y incorporated through

appropriate variable bending stiffness calculation.

6.4.1 Deter mination of Cable Hysteretic Damping Coefficients

Figures 6.28 - 6.31 show the fitted damped cabldah&RFs with the average of the
experimental scan FRFs for each cable in the twotdocture. The damped model
included the bakeout correction factor and the hB&# shown in the following figures
is based on the cable inputs for the minimum freqgueresponse; the darker blue bars
above each frequency show the damped frequencye.raiigble 6.4 lists the damping
coefficients for the GHM hysteretic damping formeddor the damped two-point cable
models in Figures 6.28 - 6.31.

In each of the damped cable model comparisons,athplitudes for the first three
frequencies are matched very well, with the exoeptf the 1X19 cable, which had a
second frequency that was higher than predictedtalube interaction of the structure
mode that occurs at the same location as the seooaé of the 1X19 cable and thus
increases the amplitude. Not only are the ampmguchatched, the damped frequency
ranges were generally able to span the experiméeigliency. The lower frequencies
were better matched by the minimum model, whilehbrgrequencies tended toward the
maximum value model. Thus, the minimum to maximonodel span seems to be a
decent method to evaluate the first 3-5 modes®tHble. If prediction of fewer modes
was required, the minimum model could be used wathfidence for the first two modes

in each case.
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Figure 6.28: Comparison of experimental data arsddmgtically damped cable model for
the 1X7 cable in two-point fixture configuration.
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Figure 6.29: Comparison of experimental data arsddmgtically damped cable model for
the 1X19 cable in two-point fixture configuration.

161



. === Experimental FRF Data
: Hysteretically Damped Cable Model
-10+ lIh === \lodel Frequency Range .
1
1l
I
— '20 "' “ I |
Q NN =
=) { LY 1PN
% ] “ RN
E -30[ [\ ‘,I \‘ — '¢-~\ B
> ‘l5 N ~ " N
© & \ /] h ) 7 ey,
= "\ I \\ ¢ Seo
-40 ! \ 3 S,
/ \, ™
¥ ~
50+ i
'60 L L L
0 50 100 150 200
Frequency (Hz)

Figure 6.30: Comparison of experimental data arsdengtically damped cable model for

the 1X48 cable in two-point fixture configuration.
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Figure 6.31: Comparison of experimental data arsldmgtically damped cable model for

the 7X7 cable in two-point fixture configuration.
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Recall the form of time hysteretic damping from e 3, where the hysteretic cable

damping was modeled in the form

as? +ys
G(s) = SZHTZ&
Table 6.4 contains the coefficients for each hgsterdamping term for each cable, as
determined from fitting the model data to the ekpental data for the two-point fixture
configuration. The gamma term had the greatesttefie matching the second and third
mode amplitudes once the first mode amplitude waisihed sufficiently. The delta term
could shift the model frequencies to some degreouwt significantly changing the
amplitude of the model. A more sophisticated cuifitteng program could probably
improve the damping parameters determined forwepoint cables, especially if more
terms were added to the hysteretic damping formmprove the curve fit over a larger
frequency. The GHM method was initially develogedfinite element analysis, so it is
typical to include a sum of terms of the formdgs), instead of the single term as used
here since the finite element method was not udddre terms in the GHM damping
model could improve the damping fit for the cabledals.

Table 6.4 Hysteretic damping coefficients basediting of model to experimental data.

Numerator Terms Denominator Terms
Cable Type a * s? Yy xS s2  PB=x*s 1)
1X7 25 9000 4 1 -8000
1X19 70 6000 5 2 2000
1X48 180 40000 2 2 -9000
X7 140 60000 2 2 -15000

Appendix F shows the results from applying the peint fixture damping expressions
(listed in Table 6.4 for each cable) to the foumponodel; agreement is good for the first
mode when damping coefficients determined fromtéh@ point comparison are applied
in the four-point model, but other than the firstode, it appears that damping

characteristics cannot be extended from the singdperiments. Further study would be
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needed to determined whether differences in thepdagrof the cable in different fixtures

can be determined without requiring dynamic testing

As an illustration of the complexity of cable damgia comparison of the time hysteretic
damping used and typical viscous damping is shawrtHe 1X7 cable in Figure 6.32.
Hysteretic damping yields correct FRF amplitudesdbleast the first three modes in
general, whereas viscous damping can only reaspgiproximate the FRF amplitude
for one mode at a time. The cyan hystereticalljpged model shows good amplitude
agreement for the first three modes, and even dabhahf mode is not overly high. In
contrast, two values for viscous damping were cushiow that viscous damping can only
be matched to one amplitude at a time; for instatiheered viscously damped model with
cv = 0.4 matches the first frequency amplitude wittlamping ratio of about 4.0%, but
all other amplitudes are too high. The green wistp damped model matches the
amplitude of the third mode, but the first and setaodes are then modeled as being
lower than reality. Viscous damping can only maiole mode, while hysteretic damping
can model more modes more accurately. Structwalpihg was also compared, with
better results than the viscous damping modeltHerl X7 cable, using an alpha value of
2.5 and a beta value of 8*1@esulted in decent agreement for one or two mdulgsthe
hysteretic damping method still matches more modegure 6.33 compares structural

damping to hysteretic damping for the 1X7 cable.
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Figure 6.32: Comparison of hysteretic and viscausming for the 1X7 cable model; the
cyan hysteretically damped cable model matchesiardpk for first three modes, while

the viscous damping model can only match one mbddime.
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Figure 6.33: Comparison of hysteretic and struttdaanping for the 1X7 cable model,
structural damping is an acceptable choice forecaimdeling, but still does not match as

many modes as closely as a hysteretic damping model
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6.4.2 Experimentally Deter mined Cabled Structure Damping

Since one of the overarching objectives of thigaesh is to quantify the effect of cables
on cabled structures, before attempting to modelddmping of a cabled structure, it is
useful to know how heavily the structure is dampedable 6.5 gives the average
damping percentages for 10 scans of the bare bedntha cabled beam for each cable

type. In general, larger cables have more dampiugno clear trend is established.

Table 6.5 Average damping percentages for eachitggnabde for bare beam and cabled
beams.

Bending Mode Bare Beam 1X7 1X19 1X48 X7

1 0.01 0.35 1.27 3.20 2.10
2 0.43 1.13 2.80 2.00 4.10
3 0.02 0.29 0.40 0.72 0.08
4 0.01 0.26 1.49 0.62 0.70

6.5 Cabled Beam Experimental Results

The effects of adding cables to structures are combpletely understood; therefore,
before presenting the comparison between the cdidein model and experimental
cabled beam results, it is beneficial to invesggtte purely experimental results of
cables attached to beams. Figure 6.34 shows therimental comparison between the
bare beam and the four types of cables, based dense scan. Appendix G contains
plots of the mobility transfer functions (TFs) fibke ten sparse scans of each cabled beam
as measured on the beam near the driving pointaanteasured on the cable, shown
with the average frequency response function fbtrialls. It is clear that the bending
modes of the bare beam still appear, but may Heedhilue to the addition of the cable.
The cable also causes additional modes where thde caxperiences resonance.
Torsional modes are evident (based on observatidheomode shapes as well as the
FRFs) for the bare beam and all cables at aboutH2z58nd 490 Hz, which agrees with
the theoretically calculated torsional modes of Hi6and 492 Hz for the bare beam.
Table 6.6 lists the experimental torsional frequesidor the bare beam and cabled
beams. None of the cabled beams showed shifteitotsional frequency of more than

1.2% from the bare beam values; this was expedtee she cable was attached at the
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centerline of the beam specifically to minimize ahanges in the torsional response

since torsional response was not modeled.
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Figure 6.34: Comparison of experimental data frarelbeam and each cable attached to

the beam, measured close to the driving point erbdam.

Table 6.6 Experimental average torsional frequenofethe bare and cabled beams, in
Hz.

First Torsional Mode Second Torsional Mode
Frequency % Difference Frequency % Difference from
(H2) from Bare Beam (Hz2) Bare Beam
Bare Beam 249.1 - 489.1 -

1X7 Cabled Beam 250.0 0.36% 490.0 0.18%
1X19 Cabled Beam 248.8 0.12% 491.3 0.45%
1X48 Cabled Beam 251.8 1.08% 488.5 0.12%
7X7 Cabled Beam 252.0 1.16% 490.3 0.25%

Different size cables do not affect the system despy response in the same way.
Additional cable modes from the 1X7 cable occuobethe first bending frequency of
the system, while the additional modes from theeotbables add small magnitude

resonance frequencies above the first system bgmdode. The damping added by the
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cable is significant, and larger cables add morepilag to the structure at most system
bending modes. Although the cable was attachatiddbeam the same way for each
trial, results between cabled beam trials showettian similar to the variation shown
by the grounded cables. Figure 6.35 shows thafeafunction plot for the 7X7 cabled
beam with the dense scan trial and ten sparsetgaéoverlaid on the average of the
trials. The major beam frequencies are repeatdiiethe small magnitude additional
frequencies due to the cable (between 150 and 20Q0fdf instance) have significant
variation from trial to trial. For model companspurposes, the average of the 11 total

trials is used to represent the experimental data.
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Figure 6.35: Transfer frequency response functionthe 7X7 multi-stranded cable

showing the variation between trials for small aitople modes.

Figure 6.36 shows the frequency response functmhassociated phase angle plots for
the bare beam and the 1X48 beam from dense scamuzstsured at the driving point.
Additional modes are indicated around 350 Hz byapproach of the phase value to 0
degrees, as expected for phase angle measured fab#gity transfer function using
measured velocity. Note that this is differentntha transfer function based on
measurement of displacement, where a natural frexyues indicated by a 90 degree

phase shift.
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Figure 6.36: Frequency response function and astsacphase angle plots for the bare

beam and 1X48 beam measured at the driving point.

As a valuable illustration to show the complexifystranded cables as compared to solid
materials and the importance of bending stiffnesigutation for cable models, solid
material rods of similar size, weight, and/or bewgdstiffness were attached to the beam
and scanned to obtain the frequency response dumscti Figure 6.37 shows the
comparison between the 1X19 cable on the beamhenddetron rod. The Acetron rod
had similar mass and bending stiffness to the 1¢élfe, and the results have similarities
in terms of frequency shifts and amount of dam@idded, but the cabled beam has more
additional system frequencies than the rod doesicpkarly around the second and third
bending modes. Figure 6.38 shows the comparistmeka the 1X48 cable and a 316
stainless steel rod, which had very similar mass$,nfuch higher bending stiffness than
the cable. The results show differences betweeabke and a rod attached to the beam;
in each case, the solid rod exhibits fewer adddianodes than the cable does when
compared to the bare beam. The solid rods aldterstthe structure at all low

frequencies, shifting the natural frequencies higtespite the additional mass. The
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cables do not uniformly stiffen nor soften the stune, but affect each mode somewhat

differently.
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Figure 6.37: Frequency response comparison betthechX19 cable on the beam and an

Acetron rod of similar mass and bending stiffnesshe beam.
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Figure 6.38: Frequency response comparison betiinehX48 cable on the beam and a

stainless steel 316 rod of similar mass, but mughdn bending stiffness, on the beam.
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The importance of the cable bending stiffness ighér illustrated by comparisons

between the similarly sized single strand and ratiand cables. Figure 6.39 shows five
trials of each of the two types of large cables parad to the bare beam. The 1X48
cable and 7X7 cable have a mass difference of #4@lgrams (about 3% of the mass of
the beam) and yet they shift the first natural @macy of the cabled-beam system in
opposite directions, as shown in detail in Figue06 In addition, the multi-strand cable

has additional modes around 200 Hz that are nemlyal in magnitude to the second
cabled-beam bending frequency around 140 Hz thatsthgle-strand cable does not
exhibit. Although the mass is very similar for skecables, the 7X7 cable is significantly
more flexible with much lower bending stiffnessherldifference between the 1X48 and
7X7 cable FRFs underscore the importance of tagaime configuration and thus, cable
bending stiffness, into account for cable modelisig)ply modeling the cable as a rod
with a single bending stiffness value would nottuap the differences between these
cable configurations.
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Figure 6.39: Comparison between five 7X7 and fivel8 cabled beam trials to show
differences between similar mass cables with diffewire configurations, particularly in
the first mode where the stiff 1X48 cable has aéigrequency despite the additional

mass.
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Figure 6.40: Enlarged view of FRF near first nat@iraquency, showing the consistent
and clear frequency shifts for the cabled beam wdirgle or multi-stranded cable is
attached.

Just as with the cable experiments, mode shape$ beugxamined to ensure that
frequencies between bare beam and cabled beanerg dompared correctly. Mode
shapes were observed for both the dense scansllaspghese scan trials. Figure 6.41
shows the mode shapes for the bare beam, whileréi§ut2 shows mode shapes
representative for a cabled beam, specificallylid@m with the 1X48 D cable attached.
Additional modes where the cable is experiencirgpmance are identified with a red
arrow. Appendix H contains the mode shapes forother cabled beams. The bending

modes are clearly exhibited for all cabled beanm)gawith additional cable modes.

For all cables, the first and second mode shapes d@minated by the beam, and the
cable flexed in phase with the beam. Additionamnbmed modes were observed in
which the beam showed some bending while the cditdeved relatively large deflections
out of phase with the beam. The addition of a edblthe beam also increased the
interaction between the torsional mode and thel thending mode. The fourth bending
mode was relatively unchanged from the bare beaatensbape. Having identified the
experimental effects of cables on the beam stractie developed cable model can be

evaluated and compared.
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Figure 6.41: Mode shapes of the bare beam fromederen.
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Figure 6.42: Mode shapes of the 1X48 cabled beam the dense scan, with areas of

noticeable cable deflection identified by red arsow
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6.6 Cabled Beam Model Results

This section presents comparisons between the ccdildam model and experiments.
First, the rod-on-cable experimental data and moegllts are shown and discussed
briefly. Then the cabled beam experimental dathrandel are compared and discussed,
and finally the currently used distributed mass etdd shown in comparison to the
DTFM cabled beam model and experimental data. [lifhiations of the distributed
mass model and DTFM models are discussed, inclugiogmmendations about which

model is more appropriate depending on cable sidedasired output information.

6.6.1 Rod-on-Beam Comparison

Before evaluating the DTFM model's effectivenessliie cabled beam, the cabled beam
model was evaluated with a solid Acetron rod incplaf the cable to ensure that the
basic rod-on-beam system was adequately modeledebafiding the complexity of the
cable parameters. The rod and beam were both swasl Euler-Bernoulli beams with
linear and rotational connection stiffness includesthg the values determined from the
rod tests. As shown in Figure 6.43, the rod onmb@aodel was able to capture the
experimentally determined natural bending frequemaf the structure within 10% ,
acceptable considering the simplicity of the modek of connection values determined

from prior results, and only light viscous dampingluded.

Experimental Response of
Beam with Acetron Rod

Acetron on Beam Model

Magnitude [m/s]

0 100 200 300 400 500
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Figure 6.43: Comparison of experimental and modeisfer functions for Acetron rod

attached to beam, with Acetron rod modeled as darBernoulli beam.
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6.6.2 Distributed Transfer Function Cabled Beam Model Comparison

The distributed transfer function method cablednbeaodel consists of a DTFM cable
attached with linear and rotational stiffness toEader-Bernoulli beam. The use of the
distributed transfer function model for the cabllevas for inclusion of cable properties
such as bending stiffness and shear rigidity, patara that are absent in lumped or
distributed mass models. The cabled beam moddd doa run to output minimum,
middle, or maximum values by choosing the minimumddle, or maximum values
calculated by the cable parameters. The middigevased the middle calculations for
area and density, and the average value for bemstiffgess. Bending stiffness was
calculated based on the equations presented int€hdpand the span of the cable
between connection points to determine the maxindisplacement, with the bakeout
factor included and damping included as calculdtedthe two-point fixture cables.

Viscous damping was added to the stiffer cablegfiproved curve fit.

Due to the complexity of the cabled beam transfieicfions, only the damped average
(middle) value transfer function is shown for dgriwith the minimum and maximum

frequency range shown with horizontal bars. kmgortant to note that the frequencies
must be compared using both the transfer functiand the mode shapes, since
frequencies that appear to be similar in value awyally represent different modes. To
that end, modal assurance criteria were run foh ezabled beam structure. The
averaging of the experimental data sometimes sresatteas where multiple frequencies
are present, so Appendix | contains the undampdddamped minimum and maximum

models compared to the 11 cabled beam trials fdn eabled beam.

Figure 6.44 presents the damped average trangietidn response for the 1X7 cabled
beam. The average experimental data is shown avitlhlack dashed line; the model
average is shown as a purple line, and the rangatafal frequency values based on the
minimum and maximum cable input parameters are shasvred range bars above the
respective frequencies. Note the very narrow rafogethe first bending frequency
(around 50 Hz) and the eighth frequency (around H2Q In fact, all of the major

structure bending frequencies that occur similgdh&bare beam are modeled with a very
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narrow result; the additional modes that are inio®dl due to the addition of the cable on

the structure have a much wider range, which cpomds to the uncertainty in the cable
parameters.
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Figure 6.44: Damped average cabled beam model gechpa experimental data for 1X7
cabled beam, with ranges for the natural frequemadyes shown as bars.
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Figure 6.45: Damped average cabled beam model cechga experimental data for
1X19 cabled beam, with ranges for the natural feegy values shown as bars.
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Figure 6.46: Damped average cabled beam model cechga experimental data for
1X48 cabled beam, with ranges for the natural feeqy values shown as bars.
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Figure 6.47: Damped average cabled beam model gechpaexperimental data for 7X7

cabled beam, with ranges for the natural frequemadyes shown as bars.
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Just as with the cable models, it is importantdmpare mode shapes as well as natural
frequencies to ensure legitimate comparison betweatel and experimental data. This
is especially important for the cabled beam asntlmaber of frequencies predicted with
the minimum and maximum cable parameter values@mss will not necessarily be the
same; the minimum cable parameter values tendute additional lower modes. Only
mode shapes that were clearly matched for bothmmim and maximum inputs are
shown as additional frequency ranges in Figured @4ough 6.47. To compare the
mode shapes, modal assurance criteria were rueafdn cabled beam structure, where
the raw experimental shapes of both the cable lamtbéam were compared to the model
shapes. Figure 6.48 shows the MAC for the barenbewdel as compared to the
experimental data. Note that the torsional mod#b8tHz is not captured by the bending
model. The bare beam MAC shows high correlatiamween the experiment and model
mode shapes for the major structural modes at d&ifbtiz, 140 Hz, 275 Hz, and 450 Hz.
Modes at 99 Hz and 375 Hz are present in the Eamblexperimental data, but not in the
model, a trend that continues with the cabled beases. These modes are likely due to

the modes of the test fixture or noise in the ¢égstipment.
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Mode 1, 50.8 Hz
~0.7

10.6
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Model Modes

3,274.6 Hz

4, 453.9 Hz

1 1 1 1 1 1
50 Hz 99 Hz 137.5Hz250 Hz T277.5 Hz357.5 Hz447.5 Hz
Experimental Modes

Figure 6.48: Modal assurance criterion for barenbeaodel modes against bare beam
experimental modes with all modes shown; note that model only finds bending

modes.
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Modal assurance criteria for the four cabled beamesshown in Figure 6.49 through
6.52. Best agreement occurs for the major strattoodes at around 50 Hz, 140 Hz, 270
Hz, and 450 Hz, but agreement is evident for mdrii@modes that are added due to the
addition of the cable. Figure 6.49 shows the MACthe 1X7 cabled beam using middle
values for the cable parameter inputs and showiadlifference between the undamped
and damped model mode shapes. The undamped maslehddde agreement for the
major structural modes, but also shows weak cdroeldor the additional cable modes.
When the mode shapes of the damped model are cedyghe additional modes due to
the cable are not as prominently correlated, wiiée major structural modes still stand
out. In both cases, the torsional experimentatienat 250 Hz is included in the
experimental data, and shows no correlation tontbeel modes since torsional modes
are not modeled. Thus, the torsional experimentatle column is removed for all

subsequent MAC calculations.
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Figure 6.49: Undamped and damped model MAC for TdBled beam; comparison
between undamped middle model and experimental snsden the dense scan on the

left side, and comparison using damped middle modehe right.

The cable models can be run with different cablampaters to give minimum, middle, or

maximum frequency values. As seen from the cabésin transfer functions, the use of
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different parameters can add, shift, and split ,soafethe model. As such, the MACs
calculated from the different model inputs showfed#nces in modal correlations.
Figure 6.50 shows the MACs for the 1X19 cable fbe tminimum, middle, and

maximum cable parameters inputs. In each casecdirelation for the first mode is

excellent, and the major structure modes correl@ié between experimental and model
data, but the additional cable modes show varyemyekes of correlation. This is in part
due to the greater noise exhibited by the experiahenode shapes for low amplitude
modes. In addition, trying to represent all of thedes with a single model is ambitious;

cable modes that are represented well by the mmiroable parameters are not usually

49.2 Hz
134 Hz
133 Hz
162 Hz
167 Hz
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174 Hz

200 Hz
248 Hz

309 Hz
317 Hz
328 Hz

214 Hz

263, 281, and 458 Hz, where column 1, 4, 6, arep8esent the major structure modes.
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represented as well by the maximum cable parametadsvice versa. In Figure 6.50,
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Figure 6.50: MAC for 1X19 cabled beam; comparisetween minimum, middle, and

maximum values of undamped model and experimeradiesfrom the dense scan.
Figure 6.51 shows the complete array of MACs tlaat loe created for each experimental

scan; the top row has the undamped model minimundle) and maximum values, and

the bottom row has the damped model comparisons.
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Figure 6.51: MAC for 1X48 cabled beam; comparisetween minimum, middle, and
maximum values of undamped model (top row) or dampmdel (bottom row) and

experimental modes from the dense scan.

Figure 6.52 shows the MAC resulting from comparisdnthe maximum undamped
model and the experimental mode shapes. Tablec@nfains a few representative
graphic depictions of the model and experimentatenshapes used to calculate the
MAC, where the cable shape is shown in red on e&mth The model mode shapes are
normalized by the beam maximum displacement foh bmam and cable, while the
experimental mode shapes are normalized by the laeahcable displacement for each

respective section.
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Figure 6.52: MAC for 7X7 cabled beam comparing maxin undamped model modes
with experimental modes.

Table 6.7 Examples of model and experimental madeparison for cabled beam major
structural modes and additional modes due to cable.

Experimental Mode Shape Model Mode Shape

= Beam Shape
= Cable Shape

First
Major
Structure
Mode,
X7
(~ 50 Hz)

o o1 02 03 0.4 05 06 07 ot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Distance Along Beam (m) Distance Along Beam (m)

m— Beam Shape
Cable Shape

Second
Major
Structure
Mode,
1X48
(~130 Hz)
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Additional |/
Mode Due
to Cable,
1X19
(~140 Hz)

[ | e Beam Shape
=== Cable Shape

0 01 02 03 0.4 05 06 07 08 0 01 02 03 04 05 06 07 0.8

= Beam Shape
== Cable Shape

4th Major
Structure
Mode,
X7
(~ 450
Hz)

6.6.3 Distributed M ass Model Comparison

To show the value of the DTFM cabled beam modehust show improvement when
compared to existing models. The best current conlynused model is the distributed
mass model; in this model, the mass of the cabéied to the beam by changing the
density of the beam wherever cables are preseote flat this is a better technique than
the previously used lumped mass model, where thke gaass was simply added at the
center of gravity of the structure. As Figure 688ws, the distributed mass model
simply shifts the natural frequencies of the bdracture; the greater the mode number,
the larger the frequency decrease due to the addltmass. Figure 6.53 also shows the
lack of distinction between the two large cabld#haugh these cables have different
stiffness values and affect the structure diffdyerthe distributed mass model does not

capture that difference.
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Figure 6.53: Distributed mass model transfer fuorctor the four cable types, showing a
downward shift in all frequencies for all cables.

The distributed mass model treats the cable asgthau has no stiffness and is
continuously attached, neither of which reflect teality of cable attachment. This
method is acceptable for the first one or two maufess small mass addition, but does not
capture the additional modes that arise due tarteeaction between the cable and the
host structure, fails to predict frequencies adelyaat higher modes, and does not
capture the difference between the stiff singlarsted large cable and the much more
flexible multi-stranded large cable that we obsdrirethe experimental trials shown in
Figure 6.40. To illustrate these points, the theted mass model is compared to the
average DTFM cabled beam model and experimenta gatthe following figures.
Figure 6.54 compares the experimental data andrhottels for the 1X7 cable. For this
small cable, the differences in the model frequenor the first two bending modes are
near negligible, although the DTFM model does aaptadditional modes and shows
closer agreement for the third and fourth bendiglenfrequencies.
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Figure 6.54: Comparison of distributed mass moddl @RTFM cabled beam model with

experimental data for 1X7 cable.

Figure 6.55 and Figure 6.56 compare the distributeds model and DTFM cabled beam
model for the 1X48 and 7X7 cables, respectiveligufe 6.55 clearly shows the addition
of modes around 350 Hz, which is not capturedldiyathe distributed mass model. The
mode at 350 Hz appears to be a single mode, ngaiity the many cabled beam trials
showed one to three modes in this area, showind ggeeement with the DTFM average
model. In addition, all of the bending modes aledcted more accurately by the DTFM
cabled beam model for the 1X48 cable. The reahgth of the DTFM model is shown

in Figure 6.56, the comparison of the models angeamental data for the 7X7 model.
Here, the heavy but very flexible cable has sevaddlitional modes in the 100-200 Hz
range, and all bending frequencies are predicteskbl by the the DTFM model. While

the 1X48 and 7X7 distributed mass models are nedewntical, the DTFM model

manages to capture the differences between thedd#ams more clearly and more

closely to the experimental data.
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Figure 6.55: Comparison of distributed mass moddl RTFM cabled beam model with
experimental data for 1X48 cable.
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Figure 6.56: Comparison of distributed mass moddl RTFM cabled beam model with
experimental data for 7X7 cable.

186



There are several ways to perform quantitative @mpns between FRF results,
including FRF assurance criterion, difference comngpa, and cumulative value

comparison. FRF assurance criterion does not adelgucompare FRFs if frequencies
are shifted slightly, so difference and cumulatogamparisons were used. Figure 6.57
shows a representative result for the differencleutation comparison between the
DTFM and distributed mass models for the 1X48 cabléhe difference between the
model and experimental FRF value for each frequengjotted, and the zero value (for
which the experimental and model data would betidaf) is shown by a black line.

Overall, the DTFM model has smaller difference ealacross the frequency range.
60

401 .

20

-40

Magnitude of Difference (dB)
o

Dist. Model Difference ||
DTFM Model Difference
_60 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 6.57: Difference between experimental anddehd-RF values for the 1X48

middle DTFM cabled beam model results and the 1¥48ibuted mass model results.

For each of the cabled beam configurations, theutatime values of the FRF results
were also plotted for the experimental data andrbdels. Figure 6.58 and Figure 6.59
show the cumulative comparison between the expeatah@nd model data for the 1X7
and 7X7 cabled beams, respectively. For both dab&ams, the DTFM model values
were closer to the experimental data for the eifiteguency range, and the shape of the
experimental cumulative value curve is followed enatosely by the DTFM models.
Results were similar for the 1X19 and 1X48 cabledrbs. Figures 6.58 and 6.59 also

show the effect of comparing the different cableapseter ranges, showing the middle
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values to be best for 1X7 cabled beam and maximalomes to be best for the 7X7 cabled

beam.
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Figure 6.58: Cumulative values for the 1X7 cabledrb.
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Figure 6.59: Cumulative values for the 7X7 cabledrb.
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For the smaller cables with less mass, the didgtbmass model predicts the frequency
shift adequately for the lowest modes, but for Brgimodes and all modes of larger
cables, the frequency shift is not captured asectlyr as by the DTFM model. This is
clearly shown by the drastic rise in amplitude eadt1 450 Hz in Figure 6.58. The DTFM
model also provides a range of values, which cagtuca the inherent variability of
cables more completely; for clarity, only the agg®TFM value was shown in the prior
FRF comparison plots. The distributed mass modekdot capture additional modes
caused by the addition of the cables and is nola@surate at predicting natural
frequencies for cables of varying stiffnesses. réfwee, there is value in the

development of the DTFM cabled beam model to cothexse inadequacies.

6.7 Discussion

Overall, results from the DTFM cabled beam modevsdd good agreement with the
experimental data. The DTFM cabled beam model showprovement over the
distributed mass model both in terms of naturafdency prediction and ability to
identify locations of additional modes due to cabteachment. When the difference
between the experimental data TF and the distibaotass model TF was compared to
the difference between experimental data and thENDTodel, the DTFM model had
less total error. Although the distributed massletanay be useful for small cables, the
DTFM cabled beam model can incorporate cable bgstiffness and shear rigidity, and
thus provides more information and a more accyreddiction for larger cables or higher
modes. Table 6.8 gives the bending frequencian tie experimental data, distributed

mass model, and the minimum and maximum DTFM cabé&sin model.

For the case of the bare beam with no cable attiadhe distributed mass model and
DTFM model give the same results (as expected); witly 0.8% to 2.3% difference

from the experimental frequencies. The distributedss model results are quite
acceptable for the small 1X7 cabled beam, but tREND model captures the 1X7 cabled
structure resonances just as well within its range.the cable gets larger, the distributed

mass model deviates from experimental data widgbyto 16% difference (mode 3 of
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7XT7), whereas the maximum difference between agdmyndary and the experimental

data is less than 6% (mode 4 minimum of 7X7) fer@TFM cabled beam model.

Table 6.8 Comparison of natural frequencies frorpeeixnental data, distributed mass
model, and minimum and maximum DTFM model.

Experimental  Distributed DTFM DTFM
Type of Cable Bending Natural Mass Model Minimum  Maximum
on Beam Mode Frequency Frequency Frequency Frequency
(Hz) (Hz) (Hz) (Hz)
1 50.0 50.8 50.8
None 2 136.9 140.1 140.1
3 276.9 274.6 274.6
4 450.0 453.9 453.9
1 50.28 49.8 48.9 50.2
1X7 2 138.1 137.3 137.2 142.0
3 269.0 269.2 272.0 282.8
4 455.0 445.0 454.3 454 .4
1 50.5 48.2 45.9 49.8
1X19 2 130.0 132.9 133.8 142.9
3 263.1 260.6 246.1 267.5
4 456.5 430.7 455.6 455.7
1 52.5 44.7 43.3 49.3
1X48 2 131.6 123.1 116.8 135.6
3 262.9 241.4 258.4 263.9
4 450.0 399.0 444.6 453.1
1 48.3 43.9 40.8 47.7
%7 2 123.4 120.9 103.0 127.74
3 280.2 237.0 214.3 262.3
4 445.1 391.8 425.7 450.3

In evaluating the results from the DTFM cable aaflled beam models, the minimum
range value usually matched the cable experimetdatd, while the maximum range
value was closer to experimental data for the chlbleam structure. Therefore, the
frequencies predicted by using the range of cabtampeters seem to agree well for the
variety of fixtures that the cable was mounted In.addition, the damping parameters

determined from the two-point fixture testing wesed successfully for the cabled beam
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model. These findings support the goal of beinkg ab model a variety of structures

with cable parameters calculated from direct messents instead of testing.
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Chapter 7: Conclusions, Contributions, and Consider ations

Although this research was focused on spacefligiitles, the methods and models
developed are applicable to many types of strarmdddle and thus have application
outside the realm of space structure design. Dmelasions drawn from this research,
advantages and limitations of application, contitms of this Dissertation, and

considerations for future work are presented here.

Upon revisiting the questions raised in the firegter, this research has provided
conclusive answers and expanded our knowledge ldé aynamics. It is possible to
calculate cable parameters based on cable measusgraed cables can be modeled with
damping well enough to predict natural frequencyges. Hysteretic damping certainly
improves on viscous damping and structural damfoangables, but additional hysteretic
damping mechanisms could be even more effectivachivhe-manufactured cables are as
identically constructed as possible, but still sheariation between cable sample
responses. Finally, an effective cable model aamborporated into a structural model
for prediction of system frequencies with result®wing slight improvement over

previous methods.

7.1 Dissertation Summary

This Dissertation has experimentally and theor#yicavestigated the dynamic behavior
and modeling of stranded cables and of a simpleedairucture. The variety of existing
cable modeling approaches were described and expldollowed by an in-depth
discussion of how to calculate cable parametemadel a non-homogenous stranded
cable with a homogenous shear beam model. Setygred of spaceflight cables were
dynamically tested, and different factors affectihg dynamic response were identified.
Curved helical cable construction affected freqyeresults and previous studies used
hand-built cables that showed high variability esults, so machine manufactured
contra-helical cables secured with lacing ties wnapped with Kapton were procured to
provide the most consistent dynamic results. Dyoaesting was performed on five

samples of each of four cable configurations, drenh tthe cables were baked out. The
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baked out cables were tested in several differighirés, including two- and four-point
fixtures where the cable was attached to ground,aafree-free cabled beam fixture, in
which the cable was mounted to a free-swinging alum beam. Differences in the
cable response due to bakeout were identified,thadeffects of the different types of
cables on the simple beam structure were quantiiiiddding shifts in major frequencies,
differences between single and multi-stranded sabénd the amount of damping
observed.

From a theoretical standpoint, the method to detexnbeam parameters for a cable
proved useful for the cable and cabled structurdetsothat were developed. The cable
itself was modeled as a shear beam, and the dittdbtransfer function method was
used to incorporate the TC105 attachment points solde for the cable response,
including natural frequencies, transfer functiorsp@nse and mode shapes. The
distributed transfer function models were capalflelescribing the cable and cabled
beam responses, and addition of hysteretic damgndgotational and linear stiffness for
the attachment points further improved the modekbdities. Hysteretic damping was
shown to be capable of matching multiple modesefdable response, and was superior

to both viscous and structural damping for modetiagle damping.

7.2 Application Discussion

In the interest of practical application, the sg#s and limitations of the cable model
should be highlighted. The DTFM determines exathlyical solutions, so error
between the model and reality depends on the ipgatmeters for the model and not on
number of elements as a finite element model wouidcomparison to the distributed
mass model, for the first one or two modes of siehles (6% of total structure mass or
less), the DTFM model does not show marked impra@rémn frequency prediction
since the small cable has less effect on the strei@nd is less beam-like. However, for
higher modes of small cables and all modes of targere beam-like cables, the DTFM
model is superior.
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The author realizes that the DTFM is not commondgdy but there is value in the
research for commercially available finite elem¢RE) modeling of cables as well.
Whether the DTFM model or a commercially availabEe code is used, the results are
only as good as the input parameters used. T&eareh has shown that the parameter of
bending stiffness must not only be included as tinput has introduced a method of
combining the calculation of bending stiffness $beel ACSR cables with the material
properties of composite materials and the displacegrof the cable to yield a realistic
value. In addition, the elements used for theecaflist include shear, and the connection

point elements should include rotational degredseaidom.

7.3 Contributions
The major contributions of this research are dswi:

* Developed a method to calculate cable properties &hne suitable to use for
modeling purposes from direct physical measuremeitscables. Cable
parameters of mass properties, bending stiffness] shear rigidity were
determined for typical spaceflight cables.

» Created a standard run procedure for testing desakith verification of factors
that would influence cable dynamic response andvetothat machine made
cables did not fully eliminate variability in thgmamic response.

* Produced a database of cable responses for tygpaakflight cables from over 70
trials of dynamic testing which are available forther investigation.

» Determined the effect of bakeout on spaceflighteadsponse, identified bakeout
as a source of frequency response changes, andifgaarthe amount of
frequency shift and damping ratio changes due kednat.

» Extended the distributed transfer function sheadehdo include shear effects,
tension, and a variety of damping mechanisms toemoables or other damped
shear beams.

» Developed a distributed transfer function cablednbenodel that combines the
shear beam cable model with attachment point mdtatshave the capability to

include both linear and rotational stiffness anchgig.
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» Compared the developed distributed transfer functimbled beam models to the
currently used distributed mass models to show dhght improvement in
frequency prediction and identification of additmodes by the new distributed
transfer function cabled beam model.

* Investigated the influence of the attachment poiwgsified that the attachment
points did not act as pinned constraints, and tedegesults for the attachment
stiffness as a function of frequency.

7.4 FutureWork and Consderations

As the field of precision space structures contnte® grow and more engineering
applications involve increasingly complex signatlgrower cabling, the need to model
cables is likely to continue requiring refinememdaimprovement for the aerospace
industry and beyond.

A logical next step for these models is the usetafistical analysis to replace the range
of cable responses with a predicted distributiothefcable response. This work used the
minimum and maximum input values to bound the feemy response, but myriad
combinations of the cable parameters are possiltlenathose bounds. With the large
number of experimental trials conducted for thisearch, it would be valuable to
determine a statistical distribution for the experntal results. The DTFM model could
be run in conjunction with a statistical progranctlsias Sandia National Laboratory's
Dakota project that could take the range of inpalugs and produce a statistical
likelihood for frequency predictions and mode slsape

Further recommended refinement involves the measent of the cable attachment
points. This research determined values for TQ&0S, but there was great variation in
the results and there are other types of mountingklets for cables being developed. In
the future, concrete and effective measurementntgols for determining cable
mounting techniques for any type of cable mount ldi@reatly improve the predictive
ability of cable models, as the connection poirstd & great effect on the model response.
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Attempts to improve damping modeling are ongoingéith structures, and damping of
cables is no exception. Although this Dissertastowed that hysteretic damping was
more effective for stranded cables than viscousysteretic damping, there are other
hysteretic damping mechanisms that could be ewsuat Additional damping
mechanisms that should be incorporated in the DTdaldle model and evaluated are
spatial hysteresis and geometric rotation-basedptagnwhich has been suggested for
cable damping specifically. To improve the utiliof the damped cabled structure
models, a method to determine cable damping paexset priori would be valuable.
This could involve performing material testing ¢ve tcables or constituent cable wires to
gain information about the viscoelastic dampingperties of the wires and internal
frictional losses and develop equations for damgagameters based on these damping
characteristics. If this method proved successhé, damping parameters determined
from simple material testing could be used for there complicated cabled structure

damping terms without requiring additional dynanesting.

From modeling to testing, the field of cable dynesnis becoming increasingly critical
for spacecraft applications. This Dissertation hasled to the knowledge of cable
dynamics and provides a step forward on the patiséul predictions of cabled structure

response.
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Appendices

Appendix A. Construction of Global StiffnessMatrix for Pinned Euler -
Bernoulli Beam in 3 Subsystems

A solid beam is divided into three subsystems Aaf] C as an example to illustrate the

DTFM approach. Length of each sectidp = 1, and the total length; = 3.

1] A 2|] B 3| C 4|
N N
Equation of Motion for an Euler-Bernoulli beanpAw + EIw'"" = f(x, t)

The equation of motion is used to make the fundaahematrix as described in Chapter

4, which is the same for each subsystem sinceatresidentical.

0 1 0 O
0 0 1 0
FA(S) = FB(S) = Fc(s) = LS 0 0 0 1
_ﬁsz 0 0 O
El

Sum of Forces at Each Node:

Node 1: Q# + Q2 + Q¢ - C, xuy  +p, =0
Node 2:04 + Q5 + Q5 — C, *uy, +p, =0
Node 3: Q4 + Q€ + Q§ — C3 xu3; + p; =0
Node 4: Q4 + Q8 + Q5 — C, xuy, +p, =0

There are no additional constraints beyond pinrmchtary conditions and no external
forces, sC; and p; are 0 for all nodes. Q must be evaluated for eachseeti EACH
node for those subsystems that are connectedtatdtia:

Node 1:x; =0

Qf = —K{i *uy — Kfp xup, — f

Q% = NA (Since subsystem B is not connected at node 1)

Qf = NA (Since subsystem C is not connected at node 1)

Node 2:x; =1
Qéq = _KZAE *uz_Kﬁq1*u1—sz
Qg = —Ksz *Uy — KzBs * Uz —sz
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Q5 = NA (Since subsystem C is not connected at node 2)

Node 3:x; = 2

Q4 = NA (Since subsystem A is not connected at node 3)
Q3 = —K33 *uz — K35 *up — f5

Q5 = —Kgz *us — Ky uy — fy

Node 4:x; = 3

Q4 = NA (Since subsystem A is not connected at node 4)
QF = NA (Since subsystem B is not connected at node 4)

c _ c c c
Qi = —Kga*uy —Kyz*us — fy

The global stiffness matriX is made of portions of the transfer function makttj given
by

H(x,s) = ef©™ « (M(s) + N(s) * eF(S))_1
whereH can be partitioned as

_[Hao Hen
H(x' S) B [HEO Hel

Boundary condition matriced(s)and N (s) describe either internal or pinned

constraints, depending on the subsystem:

1 0 0 O] 0O 0 0 O
01 0 O 0O 0 0 O
Minternat = o 0 o ol Ninternar = 1 0 0 0
0O 0 0 Ol 01 0 O
0 0 EI O] 0O 0 0 O
|11 0 0 O O 0 0 O
Men =10 0 o off Mn=lo o B o0
0O 0 0 Ol 1 0 0 O

Subsystem AMpin, Ninternal
Subsystem BMinternal, Ninterna

Subsystem CMinterna, Npin

At this point,H can be calculated for each subsystem, using th@ppate fundamental

F(s) matrix, the appropriat® andN matrices, and thevalue for each node. Recall
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Q) = —Ry * oy(x;, s) whereR is a coordinate transformation matrix. Since

1
o(x,s) = E(s) j Go(x,&,5)f (€, 5)dE + H, (x,5)ao(s) + He. (x,5)as (5)
0

and

ay(x;,8) = Syw(s) , ay(x;, ) = Tyw;(s)
the nodal force at each node can be written ingeyhthe displacementson each end
of the subsystem and the transfer matrix as follows
Node 1:x; =0
Qf = —Kfi uy — Ky *up — f{'
K{ = R4 *x H1(0,5) * S, with H based 0Mpi,, Ninternar andF,(s)
K{, = Ry * He(0,5) * S, with H based oMpin, Ninterna, andF, (s)
Node 2:x; =1
Q3 = —Kzp xup — K3t xuy — f
Q7 = K xup; — K5 xuz — ff
K3, = Ry x He1(1,5) * S, with H based oMpin, Ninternar @andF (s)
K3, = Rg * He1(1,5) * Sp with H based oMinerma, Ninterna, andFp (s)
K§i = Ry * Hoo(1,s) = T, with H based oMpin, Ninternar andF,(s)
K35 = Rp * Heo(1,5) * S with H based oMinemal, Nintema, andFi(s)
Node 3:x; = 2
Q3 = —K33 *uz — K35 *up — f5
Q5 = —K$3*uz — Ky xuy — ff
K2, = Rp * H.,(2,5) * Sg with H based 0Minterna Nintena, andFg (s)
K$3 = Re * Hey(2,5) * Sc with H based 0Minterna, Nein, andFe(s)
K3, = R * Heo(2,5) * Tz with H based oMinema, Ninterna, andFp (s)
K$, = Re * Heo(2,s) * S¢ with H based 0Minterna, Nein, andFe(s)
Node 4:x; = 3
Qf = —Kiy*uy — Kiz »us — ff
Kf, = Rc x H(3,) * Sc with H based 0Minteran, Nein, andF¢(s)
Ki3 = Re * Heo(3,5) * T with H based oMintema, Nein, andF¢(s)
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Once the subsystem stiffness components are dekxiiithey are assembled in the
global stiffness matrix based on the equati@n) * u(s) = f(s), where u is the

displacement vector containing both displacemedtshope terms.

KA KA 0 0 ] U
K3y K3+ K3, K 0 U
0 Kb KL+kK§ kG| Jus( I
0 0 K&, kg \Ha

The complete global stiffness matrix with individleatries is therefore:

[K11Aa K11Ab K12Aa K12Ab 0 0 0 0
K11Ac K11Ad K12Ac K12Ad 0 0 0 0
K12Aa K12Ab K22A+ K22B K22b K23Ba K23Bb 0 0
K12Ac K12Ad K22c K22d K23Bc K23Bd 0 0
0 0 K32Ba K32Bb K33B + K33C K33b K34Ca K34Cbh
0 0 K32Bc K32Bd K33c K33d K34Cc K34Cd
0 0 0 0 K43Ca K43Cb K44Ca K44Cbh
0 0 y 0 0 K43Cc K43Cd K44Cc K44Cd
1
U;
0
N[ =16
63
Uy
\0,/
The global stiffness matrix can be reduced aftetabundary condition rows are
eliminated.
K11Ad K12Ac K12Ad 0 0 0 61
[KlZAb K22A + K22B  K22b K23Ba K23Bb 0 ] U
K12Ad K22c K22d K23Bc K23Bd o |[,)0
0 K32Ba K32Bb K33B + K33C K33b K34Ch Us
0 K32Bc K32Bd K33c K33d K34Cd 03
0 0 0 K43Cc K43Cd K44Cd 0,
=q(s)

To obtain the various solutions, the stiffness masrmanipulated in the following ways;
more details on these methods are available in "¢amgl Sciulli's works:

Natural Frequencies: Soldet[K (s)] = 0 with s = iw
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Mode shapes: Find nontrivial solutions f6¢s) * u(s) = 0

Frequency Response(jw) = K~ 1(jw) * q(jw) whereq is assumed to be a harmonic
forcing function.

Time Domain Response: Take the inverse Laplacsfoen ofn

Total solution:
T](x, S) — [W, W,, W”,W,”]
1

n(x,s) = f G(x,z,8)*f(z,s)*dz+ H(x,s) *y(s)
0
) n(x,s) = [a; €]

a(x,s) = f Go(x,2,8) % f(z,5) *xdz + Hyo(x,s) * ay(s) + Hyy (x,5) * a;(s)

0
1

e(x,s) = Ef G.(x,2,5) * f(z,5) *dz + Heo(x,5) * ag(s) + Hey (x,5) * a,(s)
0
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Appendix B. Combination of Shear Beam Equations

From Chapter 4, the governing equations for a cable beam, with tension and damping

included, are
0w oY ’w  ow
_ _r - — A.l
pA 5.2 KAG o + KAG 92 +c T +q (A.1)
E162¢+Taw+ft (t )63wdt AGY + AGaW—O (A.2)
dx2 ox  J, g Y %3 KAGY + K ox '

These equations are combined as follows to obtaingle equation in terms of the

transverse displacementx,t) to be used in the distributed transfer functicetimd.
Solve forZ—f from first equation (A.1):

0 2%w d2%w c ow
op_ow_pow ¢ ow q (A3)
dx 0x2%2 kG 0t? kAG ot kAG

Next, take additional spatial derivatives of (At@se in later substitutions:
0%y d*w p 3w c 0*w 1 dq

I S N =t (A.4)
0%2x 0x3 kG 0x0t? + KAG 0x0t + KAG 0x
03 o* o* 03 1 9?2
Y _ wop w 4 c w 4 q (AS)
0x3 0x* kG O0x20t?  kAGO0x%0t kAG 0x?
Take spatial derivative of equation (A.2):
E163¢+T62W+.[t (t )a4wdt AGa¢+ AGaZW—O (A.6)
0x3 ax?  J, g e A T oz T )

Substitute all terms containingfrom the derivatives of the first equation (A.t)d
(A.6):
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o‘w p d*w c 0w 1 0%q 0w
EI - + +
0x* kG O0x20t? kAG 0x%20t KAG 0x?

dx?
t o*w
+f (t—1)=—dt
0! dx* (A.7)
" ’w  p 62W+ c aw g N AGazw_O
K 0x? kG 0t?> kAG 0t kAG A oz T

E164W pEl 9*w +CE1 3w N EI 0%q 02w
0x* kG 0x%20t? kAG 0x2%0t KAG 0x? J0x?

+ ftg(t — r)m—wdt + <—rcAGaz—W+pAaz—W— ca—w— ) (A.8)
o ox* 0x? ot? ot
+ KAG 62_w =0
0x?
Rearrange terms to move all forcing function tetethe right side, cancel and combine
as needed.

£l o*w pEl 9*w N cEl 93w +T62W §§w+ Aazw ow
ax* kG 952062 T xAGoxtar T Loz g tPAGE T
t 0*w 2w EI 0%q (A.8)
+.[0 g(t _T)Wdt +K—A—G—E— q —mm
E164W pEl 90*w N cEl 93w +T62W+ Aazw ow
9x* kG 0x20t? " kAG dx?ot | oxz PPz T ot
t 0w El 0%q (A.9)
t—T)=—dt =q— ———— '
* fo 9t=1) ox* 17 %AG ox2
0*w pEl d0*w 0*w  cEI 03w o0’w  ow
p = + + T — c—
0t? kG 0x20t? dx*  KkAG 0x?20t 0x2 ot
(A.10)
+ft « )64wd 3 El 0%q
0 g Y oxt T 97 kaG ax2

Thus, a viscously and hysteretically damped visasigl cable in tension can be
described with the equation of motion:
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A62W pEl 0*w o*w cEl 93w N 02w
PEGtZ T kG axzaez T U 9x* T KAG 0x2at T Ox?
3 EI 0%q
B KAG 0x?
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Appendix C. MATLAB Program Filesfor Cable and Cabled Beam
Models Using the Distributed Transfer Function Method

In this section, the cable models are listed fifsivo input files are listed, one for the
two-point cable, and one for the four-point modikext, the cable model files are listed.
The cabled beam input file is listed next, followmdthe cabled beam model files.
Finally, the program files common to both cable aadled beam models (the output
files and simple functions) are listed followingetmodel files. Many of these files were
built off of functions created by D. Sciulli, whodetailed parameter lists and comments
have been retained within the files with thanks.

Two-Point Cable Model Input File

% This file initializes cable parameters for one of four types of cable
for

% the two-point fixture

% Last modified 4/25/2014

cabletype=19;
% Cable type options are:
% 7 for 1X7, 19 for 1X19, 48 for 1X48, 749 for 7X7

rangeval=1;

% Range value options are

% 1 for min (min El and max rho A)
% 2 for avg

% 3 for max (max El and min rho A)
% 5 for max El with mid rhoA

% Set whether to include bakeout factor; 1 includes bakeout factor.
bf=1;

if cabletype==7,
% For 1X7 Cable:

len_m=0.7692;
MinDensity=2090; % Note that this is from the rule of mixtures, sinc e
it was less than the minimum rho calculations of 21 17.12

DensityMid=3110.6;
MaxDensity=3323.37;

MinArea=2.76803*10"-5; % Calculated based on only wire components
MaxArea=4.34512*10"-5; % Calculated based on OUTER cable diameter
AreaMid=2.95737*10"-5; % Calcuated based on individual wire diameter
Elslipmin=0.34;

Elslipmax=0.37;
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spr_p=1*10"4;

elseif  cabletype==19;
len_m=0.7782;
MinDensity=1926.46;
DensityExp=2162;
DensityExp2=2557;
DensityMid=3049;
MaxDensity=3528.353;

MinArea=7.51321*10"-5; % Calculated based on only wire components
MaxArea=1.27076*10"-4; % Calculated based on OUTER cable diameter
AreaMid=8.02715*10"-5; % Calcuated based on individual wire diameter

Elslipmin=1.0846;
Elslipmax=1.1815;
Spr_p=6*10"4;

elseif  cabletype==48;
len_m=0.7744;

MinDensity=1770.5;
DensityMid=2853.7;
MaxDensity=3048.904;

MinArea=1.898-7*10"-4; % Calculated based on only wire components
MaxArea=3.26851*10"-4; % Calculated based on OUTER cable diameter
AreaMid=2.02791*10"-4; % Calcuated based on individual wire diameter

Elslipmin=4.72633;
Elslipmax=5.1009;
spr_p=1*10"6;

elseif  cabletype==749;
len_m=0.7744;

MinDensity=1742.326;
DensityMid=3084.063;
MaxDensity=3295.02;

MinArea=1.93762*10"-4; % Calculated based on only wire components
MaxArea=3.66435*10"-4; % Calculated based on OUTER cable diameter
AreaMid=2.07016*10"-4; % Calcuated based on individual wire diameter

Elslipmin=2.143083;
Elslipmax=2.30292;
Spr_p=6*10"5;
else
disp( ‘Invalid cable type selected, choose 7, 19, 48 or 7
end

if rangeval==1,
rhobase=MaxDensity;
area=MaxArea;
El=Elslipmin;

elseif  rangeval==2;
rhobase=DensityMid;
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area=AreaMid;
El=EImid;

elseif  rangeval==3;
rhobase=MinDensity;
area=MinArea;
El=Elslipmax;

elseif  rangeval==4;

% User choice options/ mix n match

rhobase=DensityExp;
area=MinArea;
El=Elmax;

elseif  rangeval==5;
rhobase=DensityMid;
area=AreaMid;
El=Elslipmax;

else
disp( ‘Invalid selection for min, avg, or max cable frequ ency
value' )
end
[1=0.025; % Length of bottom end piece
12=0.280; % Length from bottom connection to driving point
[4=0.025; % Length of top end piece
[3=len_m-(11+I2+14); % Length from driving point to top connectio
mass=MinDensity*MinArea*len_m; % Mass calculation
Tens=4.45; % Tension applied for two-pint cables
kappag=0.95; % Shear coefficient calculated for all cables
%Gsh=594474058.9; % Calculated G Value min
Gsh=651743193.3; % Calculated G value max
shearrigid=kappag*area*Gsh;
c=0;
% Use cv for viscous damping
cv=0;
rho=rhobase*area;
A=area;
% Inclusion of bakeout factor in El if bf is set to 1
if bf==1;
Ei=0.8*El,
elseif  bf==0;
Ei=El
else
disp( '‘Bakeout factor not specified )
end
num_ev=8; %Number of modes and mode shapes found.
AXIAL=[]; % used for ID matrix if no axial forces
% This is essentially equivalent to no mass, for te sting free-free
cable.
% mass=1e-12;
% spr_p=1;
% THESE on the other hand are like pinned connectio ns!

% mass=1el2,
% spr_p=1e9;
% Mass value must be very large for correct end con dition
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mass=1*10"12;

% Connection damping can be incorporated here if de sired.
zeta_p=0;

damp_p=2*zeta_p*sqrt(spr_p/mass)*mass;

spr_a=0;

CONSTRAIN(2,:)=[1 1 mass spr_ pdamp_p011000 (0]
CONSTRAIN(4,:)=[1 1 mass spr pdamp_p011000 (0]
BC_type=[2 0 0 2]; % type of boundary condtion for each

subsystem, 1 is clamped, 2 is free, 3 is pinned
BC_node_ty=[2000 2];

m=4; % number of subsystems
node=5; % number of nodes
can=4; % number of known boundary displacements
dof=2; % number of dof: wy, w'
% Cable node/attachment point locations
XY =[0 11 11+2 11+I12+I3 len_m %X % X,Y position of each node, 2 X
node

00000j; %Y % This is actual x,y not non-
dimensional
% Use this XY value to make equal span lengths for comparison with
Blevins
% XY = [0 len_m/5 2*len_m/5 3*len_m/5 4*len_m/5 len ~m % X,Y position of
each node, 2 X node
% 000000]; %Y % This is actua [ X,y not
nondimensional
CON=[11234,02340]; % which subsystems are connected at
each node
Sub_Con=[12 3 4; % Shows how each subsytem is connected to each node
(2 xm)

2345]; % Top row is x=0 position of subsystem

XX=[02220] % the number of subsystems connected at each node

% O signifies that there is not a connection
% between 2 different subsystems. 1 signifies
% some sort of interface condition (1 x node)

BND_DOF=[1 1, % Shows which DOF are constrained (node x dof)
00;
00;
00;
11];
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Four-Point Cable Model Input File

% This file initializes cable parameters for one of four types of cable
for

% the four-point fixture

% Last modified 4/2/2014, Added bakeout correction factor 4/18/2014

cabletype=749;

% Cable type options are:

% 7 for 1X7, 19 for 1X19, 48 for 1X48, 749 for 7X7
rangeval=1;

% Range value options are

% 1 for min

% 2 for avg

% 3 for max

% 5 for max El with mid rhoA

bf=1; % Bakeout factor- if bf=1, bakeout factor is INCLUD ED. If bf=0,
not included!

if cabletype==7,
% For 1X7 Cable:

len_m=0.7692;
MinDensity=2090; % Note that this is from the rule of mixtures, sinc
it was less than the minimum rho calculations of 21 17.12

DensityMid=3110.6;
MaxDensity=3323.37;

MinArea=2.76803*10"-5; % Calculated based on only wire components
MaxArea=4.34512*10"-5; % Calculated based on OUTER cable diameter
AreaMid=2.95737*10"-5; % Calcuated based on individual wire diameter

Elslipmin4pt=0.402;
Elslipmax4pt=0.4385;

Elstickmin=1.65;
Elstickmax=1.87;

spr_p=1*10"4;

elseif  cabletype==19;
len_m=0.7782;

MinDensity=1926.46;
DensityExp=2162;
DensityExp2=2557;
DensityMid=3049.738;
MaxDensity=3528.353;

MinArea=7.51321*10"-5; % Calculated based on only wire components
MaxArea=1.27076*10"-4; % Calculated based on OUTER cable diameter
AreaMid=8.02715*10"-5; % Calcuated based on individual wire diameter

Elslipmin4pt=1.55;
Elslipmax4pt=1.71,;
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Elstickmax=15.72;
Elstickmin=13.82;

Spr_p=6*10"4;

elseif  cabletype==48;
len_m=0.7744;

MinDensity=1770.5;
DensityMid=2853.7;
MaxDensity=3048.904;

MinArea=1.898-7*10"-4;

MaxArea=3.26851*10"-4;

AreaMid=2.02791*10"-4;

Elslipmin4pt=7.51748;
Elslipmax4pt=8.13435;

Elstickmin=93.60;
Elstickmax=106.71;

spr_p=1*10"6;

elseif  cabletype==749;
len_m=0.7744;

MinDensity=1742.326;
DensityMid=3084.06;
MaxDensity=3295.025;

MinArea=1.93762*10"-4;

MaxArea=3.66435*10"-4;

AreaMid=2.07016*10"-4;

Elslipmin4pt=2.59;
Elslipmax4pt=2.82;

Elstickmin=74.05;
Elstickmax=84.38;

Spr_p=6*10"5;

else

% Calculated based on only wire components
% Calculated based on OUTER cable diameter
% Calcuated based on individual wire diameter

% Calculated based on only wire components
% Calculated based on OUTER cable diameter
% Calcuated based on individual wire diameter

disp( ‘Invalid cable type selected, choose 7, 19, 48 or 7

end

if rangeval==1,
rhobase=MaxDensity;
area=MaxArea;
El=Elslipmin4pt;
%EI=Elstickmin;
elseif  rangeval==2;
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rhobase=DensityMid;
area=AreaMid;
EI=Elmid;
elseif  rangeval==3;
rhobase=MinDensity;
area=MidArea,;
El=Elslipmax4pt;
elseif  rangeval==4;
% User choice options/ mix n match
rhobase=DensityExp;
area=MinArea;
El=Elmax;
elseif  rangeval==5;
rhobase=DensityMid;
area=AreaMid;
El=Elslipmax4pt;
%EI=Elstickmax;
else
disp( ‘Invalid selection for min, avg, or max cable frequ
value' )
end

% For Four Point rods
[1=0.025;

[2=0.205;

13=0.07;

14=0.184;

[5=0.205;
[6=len_m-(11+I2+I3+14+I5);

% % EQUAL SPANS FOR TEST COMPARISON WITH BLEVINS

% spaningth=len_m/5;

% l1=spanlingth;

% I2=spaningth;

% I3=spaningth/2;

% l4=spaningth/2;

% I5=spanlingth;

% 16=len_m-(I11+12+|3+14+I5);

mass=MinDensity*MinArea*len_m;
Tens=8.89; % For 4 pt cable

%Tens=0; % For equal span length
kappag=0.95;

Gsh=651743193.3; % Calculated G value

c=0;
% Use cv for viscous damping
cv=0;

rho=rhobase*area
A=area;

% Bakeout factor
if bf==1;
Ei=0.8*El

elseif  bf==0;
Ei=EIl
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else
disp( '‘Bakeout factor not specified' )
end

num_ev=8; % Number of eigenvalues to find
AXIAL=[]; % Used for ID matrix if no axial forces

% This is essentially equivalent to no mass

% mass=1e-12;

% spr_p=1;

% THESE on the other hand are like pinned connectio ns!
%mass=1000;

%spr_p=1e9;

% Mass value must be very large for correct end con dition.
mass=1*10"12;

% Connection damping can be incorporated here if de sired.
zeta_p=0;
damp_p=2*zeta_p*sqrt(spr_p/mass)*mass;
spr_a=0;

% Linear AND rotational spring connection at four p oints.

CONSTRAIN(2,:)=[1 1 mass spr_ pdamp_p0110000
CONSTRAIN(3,:)=[1 1 mass spr pdamp_p0110000
CONSTRAIN(5,:)=[1 1 mass spr pdamp_p0110000
CONSTRAIN(6,:)=[1 1 mass spr pdamp_p0110000

[ Yy —

BC_type=[20000 2]; % type of boundary condtion for each
subsystem, 1 is clamped, 2 is free, 3 is pinned
BC_node ty=[20000 0 2];

m=6; % the number of subsystems

node=7; % the number of nodes

can=4; % the number of known boundary displacements
dof=2; % the number of dof: ux, wy, w'

% Cable node/attachment point locations

XY = [0 11 11+I2 11+I12+I3 [1+12+13+14 11+I2+I3+|4+ 5len_m
% X,Y position of each node, 2 X node
0000000 %Y % This is actual x,y not

nondimensional
CON=[1123456;0234560]; % Which subsystems are
connected at each node
Sub_Con=[123456; % Shows how each subsytem is connected
to each

234567]; % node (2 x m).top row is x=0

position of subsystem

XX=[0222220]; % the number of subsystems connected at each node
% O signifies that there is not a connection
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% between 2 different subsystems. 1 signifies
% some sort of interface condition (1 x node)

BND_DOF=[ 11, % Shows which DOF are constrained (node x dof)
00;
00;
00;
00;
00;
11];
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Cable Stiffness Matrix Assembly Program
% This .m file will find the stiffness matrix given
% frequency which must be in Hz

%

% INPUT

% ij  frequency in Hz

%

% OUTPUT

% Kgl Reduced Global Stiffness Matrix

% qgl Reduced Global Force Vector

%

% VARIABLES

% BC_node_ty The type of boundary conditions for

% can the number of known boundary displa

% CON Shows which subsystems are connecte

% nodes. '0' means no subsystem

% CONSTRAIN Shows how each node is constrained.

% dof the number of degrees of freedom of sub
% E compatibility matrix for subsystem

% Ea  E*A (Axial Stiffness) for a subsytem

% Ei  E*I (Flexural Rigidity) for a subsystem

% evals Vector of eigenvalues

% F matrix built by governing pdes (n x n)

% F_cstr  Force on equipment

% filename the name of file that holds initial

% fptu point force at subsystem in axial d

% fptu_pos location of point force at subsyste
% fptw point force at subsystem in transve
% fptw_pos location of point force at subs
direction

% Gu  Greens' function for axial displacement
% Ge_u partioned G matrix

% Ge_w partioned G matrix

% Gw  Green's function for transverse displac
% H transfer function of Eta/Gamma

% HeO partitioned H matrix

% Hel partitioned H matrix

% i dummy variable

% ID  matrix used to assemble Kgl so that nod
% will be wiped out of K (full Stiffness

% jj  dummy variable

% K global stiffness matrix (n x n)

% Kappa vector used for BC calculation

% kk  dummy variable

% Len length of each subsystems in vector
% Li length of each subsystem

% M Temporal-spatial operator for left end
% Mgl Global M for each subsystem

% m the total number of subsystems

% N Temporal-spatial operator for right end
% Ngl Global N for each subsystem

% n nth order linear pde (4:bendng, 2:axial
% node total number of nodes of system

% num current subsystem

% num_str current subsystem but of type string
% nl nth order linear pde for axial vibratio
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% n2 nth order linear pde for bending vibrat ions
% P nodal forces

% P_nodal nodal forces

% pts the number of displacements of entire s ystem
% q global Force vector (n x 1)

% qgl Reduced Global Force Vector

% Rot Rotation vector of 'rot' values

% rho mass per unit length for a subsystem

% rot rotation of subsystem wrt horizontal

% Sub_Con Shows which subsystems are connecte d to which nodes (2
X m)

% A zero value implies some sort of b oundary condition
% t_alpha Alpha (i.e mass) term for proportio nal Damping

% t beta Beta (i.e. stiffness) term for prop ortional damping

% tmp,tmpi dummy variables (i=1,2)

% var used to convert degrees to radians

% s frequency =ij * sgrt(-1)

% t1  beginning node location for subsystem

% t2  end node location for subsystem

% X location of node points in local coordi nates

% XX  Shows at each node how many subsystems are connected to it.
%

function  [Kgl,qgl]=assemble_K(ij)

%ij=10; % This can be used to test a single frequen cy value.
global node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type pts;
global Len Ea Eirho filename BC_node_ty CONSTRAIN CONSTR _SUB_PT X;

global A kappag Gsh cv ¢ Tens;
global Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPos;
global COUNT evalst_alphat_beta;

for ii=1:m,
tmp=num2str(ii);

eval[ '[R" ,tmp, '1,R" tmp, '2,S' ,tmp, '1,S" ,tmp, '2]=Rotation_Calc(Rot(" tm
p, )" ]

end

% Node point locations for each subsystem; start of each subsystem is

0,

% end of each subsystem is 1. These values are ini tialized in

freq_resp.m

X = zeros(node,m);
tmp1=[0;1];
for ii=1:m,
tmp2=Sub_Con(:,ii);
X(tmp2],ii)=X([tmp2],ii)+tmp1;
end

% Assembly of Stiffness Matrix

s = 1i*ij*2*pi; % s = jw, s in radians, ij in Hertz
K=zeros(pts); % Pre-allocate Global Stiffness Matrix
g=zeros(pts,1); % Pre-allocate Force Vector
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% Stiffness matrix assembled based on equilibrium a

for kk=1:node,
P=P_Nodal(1:dof,kk); % Force input from forces_ file.
loc1=ID(KK,:);

% Add nodal forces to g vector
g(locl) = g(locl) + P;

% Constraint forces incorporated into stiffness mat

% Lumped system connected to a subsystem at two dif
if (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)==4)
loc2=ID(CONSTRAIN(kk,11),:);
K(locl,loc2)=K(locl,loc2) + constr_pt(CONST
loc2=ID(CONSTRAIN(kk,12),:);
K(locl,loc2)=K(locl,loc2) + constr_pt(CONST
m_cstr=CONSTRAIN(kk,3);
c_cstr=CONSTRAIN(kk,5);
k_cstr=CONSTRAIN(kk,4);
tmpl=c_cstr*s+k_cstr;
g(loc1l)=q(locl)-(tmpl)/(m_cstr*s"2+tmpl).*F

% Lumped system connected to a subsystem at one poi

used for cable models
elseif (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)~=5)
Cl=constr_pt(CONSTRAIN(KK,:),s);
K(locl,locl) = K(locl,locl) + CI;
m_cstr=CONSTRAIN(kk,3);
c_cstr=CONSTRAIN(KK,5);
k_cstr=CONSTRAIN(kk,4);
tmp2=c_cstr*s+k_cstr;
g(locl)=g(locl)+tmp2/(m_cstr*s"2+tmp2).*F_c

% Two subsystems connected together at single point

used for cabled beam model
elseif (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)==5)
loc2=ID(CONSTRAIN(kk,11),:);

t each node

rix
ferent points

RAIN(Kk,:),s,1);

RAIN(Kk,:),s,2);

_cstr;

nt - this is what is

str;
- this is what is

K(locl,loc2)=K(locl,loc2) +constr_pt(CONSTR AIN(Kk,:),s,1);
loc2=ID(CONSTRAIN(kk,12),);
K(locl,loc2)=K(locl,loc2) +constr_pt(CONSTR AIN(Kk,:),s,2);
end

% Assemble K matrix for each subsytem connected to that node
for jj=1:XX(kk),
numM=CON(jj,kK); % Looking at subsystem num
num_str=numa2str(num); % string version for subsytem num
t1=Sub_Con(1,num); % beginning node location for subsystem num
t2=Sub_Con(2,num); % end node location for subsystem num

M=Mgl(1:n,(hum-1)*n+1:n*num);
N=Ngl(1:n,(num-1)*n+1:n*num);

x=X(kk,num);

E=[Ei 0;0 -Eil;
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R=eval([ ‘R' ,num_str,num2str(x+1)]);
S=eval([ 'S",num_str,num2str(x+1)]);

Kap=Kappa(1:dof,jj);
L=Len(num);

fptw=FPTw(1,num);
fpt_wpos=FPTwPos(1,num);

% These are damping values that can be used to inco
structura damping.
%t_alpha=2.5;
%t _beta=8e-4;

% This is the fundamental matrix for a structurally
Bernoulli beam.

FEB=L*[ 0 10 0
0 010
0 00 1

-rho*s*(s+t_alpha)/(Ei*(1+t_beta*s)) 0 O
% This is the fundamental matrix for a structurally

FShearl=L* 0 1 0 0
0 01 0
0 0 0 1;

-rho*s*(s+t_alpha)/(Ei*(1+t_beta*s)) 0
((rho*s”2)/(kappag*A*Gsh)+(c*s)/(kappag*A*Gsh))-Ten
% These are hysteretically damped coefficient entri
zetag=0.2;
wn=5*2*3.14;
alphag=5;
gammag=2*alphag*zetag*wn;
betathg=2*zetag*wn;
deltathg=wn"2;

% Selection of hysteretic damping model; must match
Gofs=0;
%Gofs=(alphag*s"2+gammag*s)/(s"2+betathg*s+deltathg
%Gofs=(25*s"2+9000*s)/(4*s"2+1*s-8000); % For 1X7
%Gofs=(70*s"2+6000*s)/(5*s"2+2*s+2000); % For 1X19
%Gofs=(180*s"2+40000*s)/(2*s"2+2*s-9000); % For 1X
%Gofs=(140*s"2+60000*s)/(2*s"2+2*s-15000); % For 7

%Remember that "rho" means rho*Al

% This is the fundamental matrix for a viscously da
FShearVvD=L*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rho*s"2+cv*s)/Ei,0,((rho*s*2)/(kappag*A*Gsh)+(cv*s
Tens/Ei,0];

% This is the fundamental matrix for a hysteretical
beam.
FShearHyst=L*[0,1,0,0;0,0,1,0;0,0,0,1;-(rho*s"2+cv*
(1/s)*Gofs),0,((rho*Ei*s"2)/(kappag*A*Gsh)+(cv*Ei*s
Tens)/(Ei-(1/s)*Gofs),0];

% Set F equal to the fundamental matrix you would |
F=FShearHyst;

229

rporate

damped Euler-

0f;
damped shear beam.

s/Ei 0];
es.

freq_resp.m file.

48
X7

mped shear beam.
)/(kappag*A*Gsh))-
ly damped shear
s)/(Ei-

)/(kappag*A*Gsh)-

ike to use.



eFs=expm(F);
H=expm(F*x)*inv(M+N*eFs);

HeO=H(n1+n2/2+1:n,1:n/2);
Hel=H(n1+n2/2+1:n,n/2+1:n);

% Evaluate subsystem K matrices at each node

% NOTE: used if statements to check if this subsyst em
% has some sort of BC imposed on it. If there

% is then need to find how it adds to the glo bal
% force vector as well to the global stiffnes S

% matrix

if (BC_node_ty(Sub_Con(1,num))>0),
loc2=ID(t2,:);
K(locl,loc2)=K(locl,loc2)+R*E*Hel*S;
g(locl) = g(locl) - R*E*He0*S*Kap;
elseif (BC_node_ty(Sub_Con(2,num))>0),
loc2=ID(t1,);
K(locl,loc2)=K(locl,loc2)+R*E*Hel*S;
g(locl) = q(locl) - R*E*He0*S*Kap;
else
loc2_1=ID(t1,);
loc2_2=ID(t2,);
K(locl,loc2_1)=K(locl,loc2_1)+R*E*He0*S ;
K(locl,loc2_2)=K(locl,loc2_2)+R*E*Hel*S ;
end

% Evaluate q vector for each node from point forc es

if fpt_ wpos>x
Gw=-H*N*expm(F*(1-fpt_wpos));
else
Gw=H*M*expm(-F*fpt_wpos);
end
Ge_w=Gw(n2/2+1:n,n);
g(locl) = g(locl) - R*E*Ge_w*fptw;

end
end
Kgl=K(1:pts-can,1:pts-can); % Global stiffness matrix
gqgl=q(1:pts-can,l);
detans=det(Kgl); % To check determinant if using a single s input.

230



Cable Constraint Point Program

% Function to determine constraint matrix; modified
rotational

% damping and stiffness.

% function Cl=constraints(CONSTR,s,tmp)

%

% CONSTR(1) 0=no constraint, 1=constraint,2
% CONSTR(2) type of constraint (See below)
% CONSTR(3) mass of rigid body

% CONSTR(4) stiffness of spring

% CONSTR(5) damping of dashpot

% CONSTR(6) linear spring in axial directio

% CONSTR(7) linear spring in transverse dir
% CONSTR(8) linear rotational spring

% CONSTR(9) Moment of Inertia for Rigid Bod
% CONSTR(10) Distance of isolator from cg on
% CONSTR(11) node number of connection

% CONSTR(12) node number of connection

%

% NOTE: CONSTR(11,12) are used only for connectio
% (as for cabled beam)

%

% type=1  simple spring, mass, damper connect
% type=2  point mass, no inertia

% type=3  point mass with inertia

% type=4  two actuators (spring-damper) conne
system

% type=5  spring and/or damper between two co
%

% tmpis 1 or 2. If itis 1 then constraint is at n

% if it is 2 the constraint force is due to attachm

% at other node.

function  CL=constr_pt(CONSTR,s,tmp)
global dof;

CL=zeros(dof);
type=CONSTR(2);
M=CONSTR(3);
k=CONSTR(4);
d=CONSTR(5);
Xx_=CONSTR(6);
y_=CONSTR(7);
rot_=CONSTR(8);
Ir=CONSTR(9);
ax=CONSTR(10);

krots=2; % Rotational connection stiffness
crots=0; % Rotational connection damping
Ibar=1*10"12;

if type==1

if CONSTR(1)==1,
Cy=m*s"2*(d*s+k)/(m*s"2+d*s+k);
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elseif CONSTR(1)==2,
Cy=(m*s”"2+d*s)*k/(m*s"2+d*s+k);
end
elseif  type==2
Cx=m*s”2;
Cy=Cx;
elseif  type==3
Cx=m*s"2;
Cy=Cx;
Crot=Ir*s”"2;
elseif  type==
numl=k+d*s;
denl=Ir*s"2 + 2*ax"2*d*s + 2*ax"2*k;
den2=m*s"2+2*d*s+2*k;
if tmp==1
Cy = numl - numl”2*ax~2/denl - numi1~2/den2;
elseif  tmp==2
Cy = num1”72*ax”"2/denl - num1”2/den2;
else
disp( ‘Unknown value for tmp-(1)' )
end
elseif  type==5
if tmp==1
Cy=k+d*s;
elseif  tmp==2
Cy=-k-d*s;
else
disp( ‘Unknown value for tmp-(2)' )
end
end

if y ==
CL(2,1)=Cy;
end
if rot ==
%CL(1,2)=Crot;
% This would be added in for a rotational spring an
CL(1,2)=(Ibar*s"2*(crots*s+krots))/(Ibar*s"2+cr
end
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Cable Force Input
% This is the force input file for the two-point ca

if COUNT==0
for iii=1:m,
if ((BC_type(iii)==1) | (BC_type(iii)==0)),
eval([ '‘Kap' ,num2str(iii), ‘=zeros(dof,1);'
end
end

% Must have as many Kappa entries as subsystems (i.
% model needs Kapl through Kap14.
Kap1=[0;0];
Kap2=[0;0];
Kap3=[0;0];
Kap4=[0;0];
Kap5=[0;0];
Kap6=[0;0];
Kap7=[0;0];
% This puts all values of Kap for each subsystem in
% matrix called Kappa
Kappa=[];
for iii=1:m,
eval([
end

'‘Kappa= [Kappa Kap' ,num2str(iii), 1

% These are the pointwise forces and are functions
% In this case they are function of the parameter s

% Note that the only non-zero input force occurs at
% for the two-point fixture, input force is on subs
% For the four-point fixture, input force is on sub

fptw_1=0/Ei*Len(1);
fptl_wpos=.9;

fptw_2=100/Ei*Len(2);
%fptw_2=0/Ei*Len(2);
fpt2_wpos=0.999;

% USE THIS FOR FOUR POINT C

fptw_3=0/Ei*Len(3);
fpt3_wpos=0.999;

fptw_4=0/Ei*Len(4);
fptd_wpos=.9;

% Uncomment forces for subsystems 5 and 6 if four-p
evaluated

%  fptw_5=0/Ei*Len(5);
% fpt5_wpos=.0001;

%

% fptw_6=0/Ei*Len(6); % magnitude of pointwis
% fpt6_wpos=.9; % position of pointwise on

% magnitude of pointwis
% position of pointwise

FPTw=[];
FPTwPos=[];

233

ble.

)

e., 14 subsystem

to global

D

of frequency in Hz
=frequency

the driving point;
ystem two.
system three.

% magnitude of pointwise force on subsystem
% position of pointwise on subsystem

% USE THIS FOR TWO POINT CABLE

ABLE

% position of pointwise on subsystem

% USE THIS FOR TWO POINT CABLE
%fptw_3=700/Ei*Len(3); % USE THIS FOR FOUR POINT CA
% position of pointwise on subsystem

BLE

% magnitude of pointwise force on subsystem
% position of pointwise on subsystem

oint cable is being

e force on subsystem
on subsystem

e force on subsystem
subsystem



for iii=1:m,
eval([ 'FPTw=[FPTw fptw_" ,numz2str(iii), 1D
eval([ 'FPTwPos=[FPTwPos fpt' ,num2str(iii), " wpos];" 1)
end
%These are the nodal forces and are functions of fr equency in Hz
% Must have as many P vectors as subsystems.
P1=[0;0];
P2=[0;0];
P3=[0;0];
P4=[0;0];
P5=[0;0];
P6=[0;0];
P7=[0;0];
% This puts all nodal forces into a global matrix c alled P_Nodal
P_Nodal=[];
for iii=1:node
eval([ 'P_Nodal= [P_Nodal P’ ,num2str(iii), 1D
end
F_cstr=[0;0];
COUNT=COUNT+1;
end
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Cable Frequency Response Program

% This file determines frequency response functions
and

% cabled beam models.

%

% INPUT:

% BND_DOF Shows which DOF are constrained (node x

%

% OUTPUT:

% alphal values for local displacement at positi
range

%

% alpha local displacement vector at positi

% CON Shows which subsystems are connecte
% nodes. '0' means no subsystem

% cnt dummy counting variable

% dof the number of degrees of freedom of sub
% endvalue the number of subsystems at locatio
% F matrix built by governing pdes (n x n)

% filename the name of file that holds initial

% fptu point force at subsystem in axial d
% fptu_pos location of point force at subsyste
% fptw point force at subsystem in transve

% fptw_pos location of point force at subsyste
% fregend the end frequency for frequency respons
% fregst the start frequency for frequency respo
% G Greens' function

% Ga_u partioned G matrix

% Ga_ w partioned G matrix

% H transfer function of Eta/Gamma

% Ha0 partitioned H matrix

% Hal partitioned H matrix

% incr the incremental frequency for frequ
% jj  dummy counting variable

% K reduced global stiffness matrix at freq
% Kap vector used for BC calculation

% kk  dummy counting variable

% also current subsystem for response
% Len length of each subsystems in vector

% Li length of each subsystem

% M Temporal-spatial operator for left end
% N Temporal-spatial operator for right end
% node total number of nodes of system

% num_str string of current subsystem for respons
% pts the number of displacements of entire s
% q reduced global force vector at frequenc
% RO  Rotation Matrix at the left end of the

% R1 Rotation Matrix at the right end of the
Forces

% rho mass per unit length for a subsystem
% SO  Rotation Matrix for left end of subsyst
% S1  Rotation Matrix for right end of subsys
displacements

% s frequency =i * sqrt(-1) * 2 * pi

% Sub_Con Shows which subsystems are connected to

% A zero value implies somer sort of
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% sub subsystem for which response is taken
% tt  dummy counting variable

% Ugl global displacement vector at frequency S

% Ugl 0 global displacement vector at right end for current
subsystem

% Ugl 1 global displacement vector at left end for current
subsystem

% u reduced global displacement vector at f requency s

% X location of node points in local coordi nates

% XX  Shows at each node how many subsystems are connected to it.
% X position of response

% which_node if response is required at a node i t gives node number

%
function  [omega,alphal]=freq_resp(BND_DOF,type)

global node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type;
global Len XY Ea Ei rho filename num_ev BC_node_ty AXIAL pts X;
global A kappag Gsh cv c Tens;

global CONSTRAIN Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPo S;

global COUNT evalst_alphat_beta;

% Choose subsystem of output response.
sub=2; % USE THIS FOR TWO POINT CABLE.
%sub=3; % USE THIS FOR FOUR POINT CABLE.

x=1; % Local coordinate on subsystem sub

x1=x;

%NOTE: This assumes that the pointwise forces or no dal forces are
harmonic

% The following are the locations of node points co nnected

% to each subsystem. The start point of each subsys tem is 0 and the

% endpoint is 1.
X = zeros(node,m);

tmp1=[0;1];

for ii=1:m,
tmp2=Sub_Con(.,ii);
X(tmp2],ii)=X([tmp2],ii)+tmp1;

end
% This checks whether the measured response is at a node and therefore
% needs to have the neighboring subsystems evaluate d.
if (x==0) || (x==1)

which_node=Sub_Con(x+1,sub); % node number of measured response
end

% Find M and N for each subsystem
M=Mgl(1:n,(sub-1)*n+1:n*sub);
N=Ngl(1:n,(sub-1)*n+1:n*sub);

[RO,R1,S0,S1]=Rotation_Calc(Rot(sub));
Li=Len(sub);

omega=logspace(0,3,750); % Choose span and density of FRF points.
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% Choose input forces for appropriate model.
% For two-point model:

filenameforce=[ 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca ble
2Pinned Model\forces_bmcable.m' IK

% For four-point model:

%filenameforce=['C:\Users\Kaitlin\Desktop\Cable Dat a In Process\Test 2

%Data\Cable 4Pt Model\forces_bmcable.mT;
run(filenameforce);

alphal=zeros(dof,size(omega,2));

for iji=1:size(omega,2),
ii=omegal(iji);

S=ii*i*2*pi;

[K,g]=assemble_K(ii);
u=inv(K)*q;
% Place reduced global position and forces at speci fic frequeny
% into actual global position and force vecto r
Ugl=zeros(1,pts);

cnt=1;
for jj=1:node,
for kk=1:dof,
if (BND_DOF(jj,kk) < 1)
eval([ 'Ugl(1,dof*(jj-1)+kk)=u(’ ,num2str(cnt), %D
cnt=cnt+1,;
end
end
end

alpha=zeros(dof,1);

% FRF calculations begin
num_str=num2str(sub);
tmpl=dof*(Sub_Con(1,sub)-1)+1;
tmp2=dof*(Sub_Con(2,sub)-1)+1;

% Find the global displacements at each node at x=0 ,1 for subsystem
Ugl_0=Ugl(tmpl:tmpl+dof-1);
Ugl_1=Ugl(tmp2:tmp2+dof-1);
fptw=FPTw(1,sub);
fpt_wpos=FPTwPos(1,sub);
Kap=Kappa(l:dof,sub);
if (x==0) || (x==1)
x1=X(which_node,sub);

end

t_alpha=0; % Structural damping values can be included here.
t beta=0;
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FEB=Li*[ O

0 01
0 00
-rho*s*(s+t_alpha)/(Ei*(1+t_beta*s)) 0 O

10 O;
0;
1

FShearl=Li*[ O 1 0 0O
0 01 0;
0 0 0 1;

-rho*s*(s+t_alpha)/(Ei*(1+t_beta*s)) 0
((rho*s”2)/(kappag*A*Gsh)+(c*s)/(kappag*A*Gsh))-Ten

zetag=0.2;

wn=5*2*3.14;

alphag=5;

gammag=2*alphag*zetag*wn;

betathg=2*zetag*wn;

deltathg=wn"2;

Gofs=0;
%Gofs=(alphag*s"2+gammag*s)/(s"2+betathg*s+deltathg

%Gofs=(25*s"2+9000*s)/(4*s"2+1*s-8000); % For 1X7

%Gofs=(70*s"2+6000*s)/(5*s"2+2*s+2000); % For 1X19
%Gofs=(180*s"2+40000*s)/(2*s"2+2*s-9000); % For 1X
%Gofs=(140*s"2+60000*s)/(2*s"2+2*s-15000); % Adjus

%Remember that "rho" actually represents rho*A for
FShearVvD=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rho*s"2+cv*s)/Ei,0,((rho*s*2)/(kappag*A*Gsh)+(cv*s
Tens/Ei,0];
FShearHyst=Li*0,1,0,0;0,0,1,0;0,0,0,1;-(rho*s"2+cv
(1/s)*Gofs),0,((rho*Ei*s"2)/(kappag*A*Gsh)+(cv*Ei*s
Tens)/(Ei-(1/s)*Gofs),0];

% CHOOSE MODEL FORMULATION
F=FShearHyst;
eFs=expm(F);
% Find alpha due to displacements
H=expm(F*x1)*inv(M+N*eFs);

Ha0=H(1:n2/2,1:n/2);
Hal=H(1:n2/2,n/2+1:n);

if (BC_node_ty(Sub_Con(1,sub))>0),
alpha=alpha+Ha0*Kap+Hal*S1*Ugl_1"

elseif (BC_node_ty(Sub_Con(2,sub))>0),
alpha=alpha+Ha0*Kap+Hal*S0*Ugl_0';

else
alpha=alpha+Ha0*S0*Ugl_0'+Hal*S1*Ugl 1
end

% Find alpha due to pointwise forces
if abs(fptw) >=0
if fpt_ wpos>=x1
Gw=-H*N*expm(F*(1-fpt_wpos));
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else
Gw=H*M*expm(-F*fpt_wpos);
end
Ga_w=Gw(1:n2/2,n);
alpha = alpha + Ga_w*fptw;
end

typel=CONSTRAIN(which_node,?2);
p_or_a=CONSTRAIN(which_node,1);

if typel==0
alphal(1:dof,iji)=alpha;
else

m_cstr=CONSTRAIN(which_node,3);
kp=CONSTRAIN(which_node,4);
dp=CONSTRAIN(which_node,5);

if p_or_a==1

if typel<4
num=dp*s+kp;
den=m_cstr*s"2+num;

alphal(1:dof,iji)=(F_cstr+num*alpha

elseif  typel==4
end
elseif p_or_a==2

ka=CONSTRAIN(which_node,6);
da=CONSTRAIN(which_node,7);
gn=CONSTRAIN(which_node,8);
nmode=CONSTRAIN(which_node,12);

if typel==1,

den=m_cstr*s"2+(da+dp)*s+ka+kp+gn/s

alphal(1:dof,iji)=(F_cstr+(kp+dp*s)
elseif  typel==2,

den=m_cstr*s"2+dp*s+kp;

alphal(1:dof,iji)=(F_cstr+(kp+dp*s+
elseif  typel==3

ev=evals(nmode)*2*pi;

den=m_cstr*s"2+dp*s+kp;

denppf=s"2+2*da*ka*s+ka’2;

den2=den+gn*ka*2*ev/~2/denppf;

alphal(1:dof,iji)=(F_cstr + (kp+dp*
end

end

end
end

)/den;

”*alpha)/den;

ka+da*s)*alpha)/den;

s)*alpha)/den2;
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Cable Mode Shape Program

% This file evaluates the mode shapes for the calcu
and

% creates mode shape vectors for use in the modal a
% comparison.

lated eigenvalues,

ssurance criterion

C_type Len XY

function  mode_shapeWMAC(BND_DOF)

global node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B
Ea Ei rho;

global A kappag Gsh cv c Tens;

global filename BC_node_ty num_ev len_m t_alpha t_beta;
global AddedModes

% Calculated eigenvalues must be loaded to use for
calculation.

%filename

%eval(['load evalues_' filename])

% Use this for TWO-POINT cable

load( 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca
Model\evalues_bmcabletest.mat' );

% Use this for FOUR-POINT cable

% load('C:\Users\Kaitlin\Desktop\Cable Data In Proc
Data\Cable 4Pt Model\evalues_bmcabletest.mat’);

pts=node*dof;

AddedModes=[];

% Redefine K_eval Matrices to Ki matrices for eac

ranges

% from 1to num_ev

for ii=1:num_ev,
b=pts-can;
c=b*(ii-1)+1;
eval([ 'K'

end

,num2str(ii), '=K_eval(1:b,c:ctb-1);'

% This finds the nontrivial solutionn of K(jlam)u
for ii=1:num_ev,
eval([ ‘' ,num2str(ii), ‘=null(K'
if isempty(eval([ ‘' ,num2str(ii)]))
eval([ 'lal,bl]=eig(K' ,num2str(ii), ;!
c=min(abs(diag(bl)));
d=find(c==abs(diag(b1l)));
if size(d,1) > 1;
d=d(1);
al=al(:,d);
eval([ u'
else
eval([ u'
end

,numa2str(ii),

,num2str(ii), '=al(1l:b,1);

,num2str(ii), '=al(1:b,d);

end
end

% Calculate displacements (i.e. mode shapes for eac
incr=.001;
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for ii=1:num_ev,
X_pos=[];
y_pos=[[;
Ugl=zeros(1,pts);
cnt=1;

% Place reduced global position at specific eigenva
global
% position vector

for jj=1:node,

for kk=1:dof,
if (BND_DOF(jj,kk) < 1)
eval([ 'Ugl(1,dof*(jj-
1)+kk)=u" ,num2str(ii), ‘(" ,num2str(cnt), D
cnt=cnt+1;
end
end

end

% Find mode shape for each subsystem and plot it
for kk=1:m,
alpha=[];

tmpl=dof*(Sub_Con(1,kk)-1)+1;
tmp2=dof*(Sub_Con(2,kk)-1)+1;

% Find the global displacements at each node at x=0
Ugl_0=Ugl(tmpl:tmpl+dof-1);
Ugl_1=Ugl(tmp2:tmp2+dof-1);

% Find M and N for each subsystem
[M,N]J=MN_Calc(BC_type(kk),kk,Ei,Ea);

% This section must match the section from the asse
[RO,R1,S0,S1]=Rotation_Calc(Rot(kk));

Li=Len(kK);

s=evals(ii)*i*2*pi;

FEB=Li*[ 0 10 0
0 01 O;
0 00 1

*

-rho*s*(s+t_alpha)/(Ei*(1+t_beta*s)) 0 O

FShearl=Li*[ O 1 0 0O
0 01 0
0 0 0 1;

-rho*s*(s+t_alpha)/(Ei*(1+t_beta*s)) 0
((rho*s”2)/(kappag*A*Gsh)+(c*s)/(kappag*A*Gsh))-Ten

zetag=0.1;

wn=56*2*3.14;

alphag=5;
gammag=2*alphag*zetag*wn;
betathg=2*zetag*wn;
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deltathg=wn"2;

Gofs=0;
%Gofs=(alphag*s"2+gammag*s)/(s"2+betathg*s+deltathg
%Gofs=(1000*s"2+161.4*s)/(s"2+10600*s+280900);
%Gofs=(9*s"2+100*s)/(s"2+10*s+1000);

%Remember that "rho" actually represents rho*Ain t
equations!

FShearVvD=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rho*s"2+cv*s)/Ei,0,((rho*s"2)/(kappag*A*Gsh)+(cv*s
Tens/Ei,0];
FShearHyst=Li*0,1,0,0;0,0,1,0;0,0,0,1;-(rho*s"2+cv
(1/s)*Gofs),0,((rho*Ei*s"2)/(kappag*A*Gsh)+(cv*Ei*s
Tens)/(Ei-(1/s)*Gofs),0];

he following

)/(kappag*A*Gsh))-

*s)/(Ei-
)/(kappag*A*Gsh)-

% SELECT WHICH F FORMULATION TO USE - IMPORTANT, CH OOSE WISELY.

F=FShearHyst;

eFs=expm(F);
invers=inv(M+N*eFs);

XI=0:incr:1;

% Find mode shape along span of subsystem
for xi=XI,
H=expm(F*xi)*invers;

Ha0=H(1:n2/2,1:n/2);
Hal=H(1:n2/2,n/2+1:n);

if (BC_node_ty(Sub_Con(1,kk))>0),
alpha=[alpha Ha1*S1*Ugl_17;

elseif  (BC_node_ty(Sub_Con(2,kk))>0),
alpha=[alpha Hal1*S0*Ugl_0';

else
alpha=[alpha Ha0*S0*Ugl_0'+Hal*S1*U

end
end

% Find mode shape in global coordinates for plottin
X_beg=XY(1,Sub_Con(1,kk));
y_beg=XY(2,Sub_Con(1,kk));

trans=inv(S1)*alpha;
cc=size(trans,2);

% Find the exact X,y locations and displacements
Lc=Li*cos(Rot(kk));
Y_pos=trans(1,:);
X_pos=(x_beg:(Lc)/(cc-1):Lc+x_beg);

if kk==1,
X_pOs=[x_pos X_pos];
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y_pos=[y_pos Y_pos];
elseif  kk>=2,
tmp=size(X_pos,2);
X_pos=[x_pos X_pos(2:tmp)];
y_pos=[y_pos Y_pos(2:tmp)];
end
end

% Normalize the modes for better viewing and for ap
comparison
y_pos=y_pos/max(abs(y_pos));

if real(y_pos(2))<0
y_p0oS=-y_pos;
end

YYpos=[];

YYpos=[YYpos;y_pos];
%For two-point cable

plot(x_pos,y_pos,XY(1,2),0, '+ XY(1,5),0,
%For four-point cable, shows connection points as +
%plot(x_pos,y_pos,XY(1,2:3),[0,0],'+',XY(1,5:6),[0,

title([ ‘Mode" ,num2str(ii)])

xlabel( '‘Distance Along Cable' )
ylabel( ‘Eigenfunction’ )

figure

AddedModes=[AddedModes;y_pos];
xmodeplot=x_pos;
end
% Build "AddedModes" matrix for use in MAC calculat
AddedModes=[xmodeplot;AddedModes];
%To evaluate mode interaction for MAC comparison (m
example):
% plot(x_pos,AddedModes(2,:)+AddedModes(4,:))
% title('Mode 1 & 3")
% This line saves the mode shape vectors.
%eval(['save modes_'filename,' evals x_pos YYpos']
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Cabled Beam Model Input File

% This file provides cable and beam inputs for the 16 node cabled-beam
model.

% Modified with input parameters on 3/28/2014.

% Altered for stiffer cabled beam EI values 4/11/20 14.

% Parameters for aluminum beam as host structure:
w=0.101; % width, in meters, of beam
t=0.0064; % thickness, in meters, of beam

Ibeam=1/12*w*t"3;
Ebeam=65E9;
Elbeam=Ebeam*lbeam;
Abeam=w*t;
rhobeam=2700;

len_beam=0.797;
len_m=0.797;

% Parameters for cable, rod, or no attached structu re:
%

% SELECT CABLE TYPE HERE:

cablechoice=0;

% Choose 7,19,48,749 for cables,

% Choose 1,2,3 for Acetron, spring steel, tool stee

% Choose 0 for bare beam.

calcopt=10;
% Choose 1 for min, 5 for max, 3 for mid/avg, 8 for stickmin
% Choose 2 for min with new vals, chose 6 for max w ith new vals

% Choose 10 for bare beam or rods on beam
%
if cablechoice==7;
disp( '1X7 Chosen' )
len_cable=0.7692;
MinDensity=2117.12;
DensityMid=3110.59;
MaxDensity=3233.14;

MinArea=2.76803*10"-5; % Calculated based on only wire components
MaxArea=4.34512*10"-5; % Calculated based on OUTER cable diameter
AreaMid=2.95737*10"-5; % Calcuated based on individual wire

diameter

Elcablestickmin=1.65;
Elcablestickmax=1.868;
Elcable4ptslipmin=0.40;
Elcable4ptslipmax=0.438;

Elcablebslipmin=0.46;
Elcablebslipmax=0.51;

spr_p=1e4;

elseif  cablechoice==19;
disp( '1X19 Chosen' )
len_cable=0.7782;
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MinDensity=1926.46;
DensityExp=2162;
DensityExp2=2557;
DensityMid=3049;
MaxDensity=3258;

MinArea=7.51321*10"-5; % Calculated based on only wire components
MaxArea=1.27076*10"-4; % Calculated based on OUTER cable diameter
AreaMid=8.02715*10"-5; % Calcuated based on individual wire

diameter

Elcablestickmin=13.818;
Elcablestickmax=15.71687;
Elcable4ptslipmin=1.55;
Elcabledptslipmax=1.7128;

Elcablebslipmin=1.94;
Elcablebslipmax=2.16;

Spr_p=6e4;

elseif  cablechoice==48;
disp( '1X48 Chosen' )
len_cable=0.7744;
MinDensity=1770.5;
DensityMid=2853.7;
MaxDensity=3048.9;

MinArea=1.89807*10"-4; % Calculated based on only wire components
MaxArea=3.26851*10"-4; % Calculated based on OUTER cable diameter
AreaMid=2.02791*10"-4; % Calcuated based on individual wire

diameter

Elcablestickmin=93.6;
Elcablestickmax=106.7;
Elcabledptslipmin=7.517;
Elcable4ptslipmax=8.1343;

Elcablebslipmin=16.82;
Elcablebslipmax=18.25;

sSpr_p=1e6;

elseif  cablechoice==749;
disp( '"7TX7 Chosen' )
len_cable=0.7744;
MinDensity=1742.326;
DensityMid=3084.06;
MaxDensity=3295.025;

MinArea=1.93762*10"-4; % Calculated based on only wire components
MaxArea=3.66435*10"-4; % Calculated based on OUTER cable diameter
AreaMid=2.07016*10"-4; % Calcuated based on individual wire

diameter

Elcablestickmin=74.047;
Elcablestickmax=84.38;
Elcable4ptslipmin=2.596;
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Elcable4ptslipmax=2.82;

Elcablebslipmin=3.48;
Elcablebslipmax=3.83;

spr_p=6e5;

elseif  cablechoice==0; % This is for bare beam tests...
rhocable=0.000001;
Acable=0.00001;
Elcable=0.0001;
len_cable=0.780;

spr_p=1e5;
elseif  cablechoice==1, % This is for Acetron rod
disp( 'Acetron rod chosen' )

rhocable=1410;
Acable=1.2728e-4;
Elcable=3.8028;
len_cable=0.780;

spr_p=1.3e6;
%ospr_p=1e5;
elseif  cablechoice==2; % This is for spring steel rod
disp( 'Spring steel rod chosen' )

rhocable=7990;
Acable=4.9017e-5;
Elcable=36.9008;
len_cable=0.780;

spr_p=1.3e6;
elseif  cablechoice==3; % This is for spring steel rod
disp( 'Spring steel rod chosen' )

rhocable=7750;
Acable=1.2668e-4;
Elcable=242.6266;
len_cable=0.782;

spr_p=1.3e6;
else

disp( 'Invalid cable or attachment choice' )
end

% SELECTABLE OPTIONS
if calcopt==1
Acable=MaxArea
rhocable=MaxDensity
Elcable=Elcable4ptslipmin
elseif  calcopt==5;
Acable=MinArea
rhocable=MinDensity
Elcable=Elcable4ptslipmax
elseif  calcopt==3;
Acable=AreaMid
rhocable=DensityMid
Elcable=(Elcable4ptslipmin+Elcable4ptslipmax)/
elseif  calcopt==8;
Acable=AreaMid
rhocable=DensityMid
Elcable=Elcablestickmin
elseif  calcopt==2;
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Acable=MaxArea

rhocable=MaxDensity

Elcable=Elcablebslipmin
elseif  calcopt==6;

Acable=MinArea

rhocable=MinDensity

Elcable=Elcablebslipmax
end

rhoacable=rhocable*Acable; % In case...
kappag=0.95;
Gsh=651743193.3;
cv=0;
Tens=0;

num_ev=8;

% This is connection stiffness info for any damping in connection
stiffness

% Note that spr_p is located within the cable value S.

% spr_p=1e5; WATTACHMENT STIFFNESS OVERRIDE

damp_p=0;

zeta p=0.0;

if cablechoice~=0;
CONSTRAIN(2,:)=[1 50 spr_pdamp_p 01100210}
CONSTRAIN(10,:)=[1 50 spr_pdamp_p 0110010 2] ;

CONSTRAIN(3,:)=[1 50 spr_pdamp_p 01100 311];
CONSTRAIN(11,:)=[150spr_pdamp_p 0110011 3] ;

CONSTRAIN(5,:)=[150spr_pdamp_ p01100513];
CONSTRAIN(13,:)=[1 50 spr_pdamp_p 01100 135] ;

CONSTRAIN(6,:)=[1 50 spr_pdamp_p 011006 14];
CONSTRAIN(14,:)=[1 50 spr_pdamp_p 01100 14 6] ;

CONSTRAIN(7,:)=[1 50 spr_pdamp_p 011007 15];
CONSTRAIN(15,:)=[1 50 spr_pdamp_p01100157] ;
end

% Three is pinned, two is free

BC type=[20000022000002]; % type of boundary
condtion for each subsystem

BC_node_ty=[200000022000000 2];

m=14; % the number of subsystems

node=16; % the number of nodes

%can=7; % the number of known boundary displacements
can=8;

dof=2; % the number of dof: ux, wy, w'

xb=len_beam/2;
xe=len_cable/2;
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rhogl=zeros(1,m);

Elgl=zeros(1,m);
rhogl(1,1:(m/2))=rhobeam*Abeam*ones(1,m/2);
rhogl(1,(m/2)+1:m)=rhocable*Acable*ones(1,m/2);
Elgl(1,1:(m/2))=Ebeam*Ibeam*ones(1,m/2);
Elgl(1,(m/2)+1:m)=Elcable*ones(1,m/2);

XY =[0 0.04 0.22 0.299 0.4 0.58 0.76 len_beam (I

0.04 0.22 0.299 0.4 0.58 0.76 len_cable+(len_beam-I

% X,Y position of each node, 2 X node
00000000.015.015.015.015 .015 .015 .

%Y % This is actual x,y not nondimensional

CON=[1123456788910111213 14;
023456700910111213140];
connected at each node

Sub_Con=[12345679101112 1314 15;

subsytem is connected to each
234567810111213141516];

X m). top row is x=0 position of subsystem

XX=[0222222002222220];
subsystems connected at each node

en_beam-len_cable)/2
en_cable)/2 %X

015 .015];

% which subsystems are

% Shows how each

% node (2

% the number of

% O signifies that there is not a connection
% between 2 different subsystems. 1 signifies
% some sort of interface condition (1 x node)

BND_DOF=[ 11, % Shows which DOF are constrained (node x dof)

00; % dof = [wx wy theta]
00;
00;
00;
00;
00;
11;
11;
00;
00;
00;
00;
00;
00;
11];
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Cabled Beam Stiffness Matrix Assembly Program

% This file builds the global stiffness matrix for
beam.

% Sections 1-7 are beam, sections 8-14 are cable.
% Created on 1/9/2014 Modified 3/15/2014
% INPUT

% ij frequency in Hz

%

% OUTPUT

% Kgl Reduced Global Stiffness Matrix

% qgl Reduced Global Force Vector

%

% P-LIST

% BC_node_ty The type of boundary conditions for
% can the number of known boundary displaceme
% CON Shows which subsystems are connecte
% nodes. '0' means no subsystem

% CONSTRAIN Shows how each node is constrained.

% dof the number of degrees of freedom of sub
% E compatibility matrix for subsystem

% Ea  E*A (Axial Stiffness) for a subsytem

% Ei  E*I (Flexural Rigidity) for a subsystem

% evals Vector of eigenvalues

% F matrix built by governing pdes (n x n)

% F_cstr  Force on system.

% filename the name of file that holds initial

% fptu point force at subsystem in axial d

% fptu_pos location of point force at subsyste
% fptw point force at subsystem in transve
% fptw_pos location of point force at subs
direction

% Gu  Greens' function for axial displacement
% Ge_u partioned G matrix

% Ge_w partioned G matrix

% Gw  Green's function for transverse displac
% H transfer function of Eta/Gamma

% HeO partitioned H matrix

% Hel partitioned H matrix

% ii  dummy variable

% ID  matrix used to assemble Kgl so that nod
% will be removed from K (full blown

% jj dummy variable

% K global stiffness matrix (n x n)

% Kappa vector used for BC calculation

% kk  dummy variable

% Len length of each subsystems in vector
% Li length of each subsystem

% M Temporal-spatial operator for left end
% Mgl Global M for each subsystem

% m the total number of subsystems

% N Temporal-spatial operator for right end
% Ngl Global N for each subsystem

% n nth order linear pde (4:bendng, 2:axial
% node total number of nodes of system
% num current subsystem
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% num_str current subsystem but of type string

% nl nth order linear pde for axial vibratio ns
% n2  nth order linear pde for bending vibrat ions
% P nodal forces

% P_nodal nodal forces

% pts the number of displacements of entire s ystem
% q global Force vector (n x 1)

% qgl Reduced Global Force Vector

% Rot Rotation vector of 'rot' values

% rho mass per unit length for a subsystem

% rot rotation of subsystem wrt horizontal

% Sub_Con Shows which subsystems are connecte d to which nodes (2
X m)

% A zero value implies some sort of b oundary condition
% t alpha Alpha (i.e mass) term for proportio nal Damping

% t beta Beta (i.e. stiffness) term for prop ortional damping

% tmp,tmpi  dummy variables (i=1,2)

% var used to convert degrees to radians

% s frequency =ij * sgrt(-1)

% t1  beginning node location for subsystem

% t2  end node location for subsystem

% X location of node points in local coordi nates

% XX  Shows at each node how many subsystems are connected to it.
%

function  [Kgl,qgl]=assemble_K_fbfe_diffbeams14(ij)

% ij=10; %Used for checking a single frequency valu e.
global node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type pts;
global Len Ea Eirho filename BC_node_ty CONSTRAIN CONSTR _SUB_PT X;

global Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPos;
global COUNT evalst_alphat_beta Elgl rhogl;
global cv Acable Gsh kappag Tens;

for ii=1:m,
tmp=num2str(ii);

eval[ '[R" ,tmp, '1,R" ,tmp, '2,S" ,tmp, '1,S" ,tmp, '2]=Rotation_Calc(Rot( m
p. N D

end

% The following are the locations of node points co nnected

% to each subsystem. The start point of each subsys tem is 0 and the

% endpoint is 1.
% This is initialized in freq_resp.m

X = zeros(node,m);
tmp1=[0;1];
for ii=1:m,
tmp2=Sub_Con(:,ii);
X(tmp2],ii)=X([tmp2],ii)+tmp1;
end

% Assembly of global stiffness matrix
s = 1i*ij*2*pi; % s = jw
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K=zeros(pts); % Zero out Global Stiffness Matrix
g=zeros(pts,1); % Zero out Global Force Vector

for kk=1:node,
P=P_Nodal(1:dof,kk);

loc1=ID(Kk,:);

% Add nodal forces to g vector
g(locl) = q(locl) + P;

% Add constraint forces
if (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)==5)
loc2=ID(CONSTRAIN(kk,11),);

K(locl,loc2)=K(locl,loc2) + constr_pt_act(C ONSTRAIN(KK,:),s,1);
loc2=ID(CONSTRAIN(kk,12),:);
K(locl,loc2)=K(locl,loc2) + constr_pt_act(C ONSTRAIN(KK,:),s,2);

elseif (CONSTRAIN(kk,1)==2 && CONSTRAIN(kk,2)<=2)
[1=ID(CONSTRAIN(kk,11),:);
[2=ID(CONSTRAIN(kk,12),);
if CONSTRAIN(kk,2)==1,
if CONSTRAIN(kk,11)>CONSTRAIN(kk,12)
K(loc1,l1)=K(loc1,I1) +
constr_pt_act(CONSTRAIN(Kk,:),s,1);
K(loc1,12)=K(loc1,12) -
constr_pt_act(CONSTRAIN(Kk,:),s,0);
else
K(locl,11)=K(loc1,I1) +
constr_pt_act(CONSTRAIN(Kk,:),s,0);
K(loc1,l12)=K(loc1,12) -
constr_pt_act(CONSTRAIN(Kk,:),s,1);
end
elseif CONSTRAIN(kk,2)==2,
if CONSTRAIN(kk,11)>CONSTRAIN(kk,12)
K(loc1,l1)=K(loc1,I1) +
constr_pt_act(CONSTRAIN(kk,:),s,0);
K(loc1,l12)=K(loc1,12) -
constr_pt_act(CONSTRAIN(kk,:),s,1);
else
K(loc1,l1)=K(loc1,I1) +
constr_pt_act(CONSTRAIN(Kk,:),s,1);
K(loc1,l12)=K(loc1,12) -
constr_pt_act(CONSTRAIN(Kk,:),s,0);
end
end
elseif (CONSTRAIN(kk,1)==2 && CONSTRAIN(kk,2)==3)
1=ID(CONSTRAIN(kk,11),:);
[2=ID(CONSTRAIN(kk,12),:);
if CONSTRAIN(kk,11)>CONSTRAIN(kk,12)
K(locl,11)=K(loc1,I1) +
constr_pt_act(CONSTRAIN(kk,:),s,1);
K(loc1,12)=K(loc1,12) -
constr_pt_act(CONSTRAIN(kk,:),s,0);
else
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K(loc1,l1)=K(loc1,I1) +
constr_pt_act(CONSTRAIN(kk,:),s,0);

K(loc1,l12)=K(loc1,12) -
constr_pt_act(CONSTRAIN(kk,:),s,1);

end

end
% Asemble K matrix for each subsytem connected to e ach node
for jj=1:XX(kk),
num=CON(jj,kk); % Looking at subsystem num

% So for this case, num = 1-7 are the beam and num= 8-14 are

% the cable
num_str=numa2str(num); % string version for subsytem num
t1=Sub_Con(1,num); % beginning node location for subsystem num
t2=Sub_Con(2,num); % end node location for subsystem num
% Determine boundayr condition matrices for each su bsystem

M=Mgl(1:n,(hum-1)*n+1:n*num);
N=Ngl(1:n,(num-1)*n+1:n*num);

x=X(kk,num);

R=eval([ ‘R" ,num_str,num2str(x+1)]);
S=eval([ 'S ,num_str,num2str(x+1)]);
Kap=Kappa(1:dof,jj);

L=Len(num);

E=[Elgl(num) 0;0 -Elgl(num)];

fptw=FPTw(1,num);
fpt_wpos=FPTwPos(1,num);
% This program uses the Euler-Bernoulli formulation
beam,
% and the shear hysteresis model for the cable.
if num >0 && num < 7.5;

F=L*[ O 10 0
0 01 0
0 0 0 1;

-rhogl(num)*s*(s+t_alpha)/(Elgl(num)*(1+t_beta*
elseif num>7.5&& num < 15;
Gofs=0;
%Gofs=(25*s"2+9000*s)/(4*s"2+1*s-8000); % For 1X7
%Gofs=(70*s"2+6000*s)/(5*s"2+2*s+2000); % For 1X19
%Gofs=(180*s"2+40000*s)/(2*s"2+2*s-9000); % For 1X
%Gofs=(140*s"2+60000*s)/(2*s"2+2*s-15000); % For 7
FShearHyst=L*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rhogl(num)*s”~2+cv*s)/(Elgl(num)-
(1/s)*Gofs),0,((rhogl(num)*EIlgl(num)*s~2)/(kappag*A
num)*s)/(kappag*Acable*Gsh)-Tens)/(Elgl(num)-(1/s)*
F=FShearHyst;
else
disp( 'F matrix not defined for subsection greater than 1
end

eFs=expm(F);
H=expm(F*x)*inv(M+N*eFs);
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HeO=H(n1+n2/2+1:n,1:n/2);
Hel=H(n1+n2/2+1:n,n/2+1:n);

% Evaluate subsystem K matrices at each node

of

the

end

% NOTE: used if statements to check if this subsyst
% BC imposed on it. If there is then need to find h

% global force vector as well to the global stiffne

if (BC_node_ty(Sub_Con(1,num))>0),
loc2=ID(t2,);
K(locl,loc2)=K(locl,loc2)+R*E*Hel*S;
g(locl) = q(locl) - R*E*He0*S*Kap;

elseif (BC_node_ty(Sub_Con(2,num))>0),
loc2=ID(t1,);
K(locl,loc2)=K(locl,loc2)+R*E*Hel*S;
g(locl) = q(locl) - R*E*He0*S*Kap;

else
loc2_1=ID(t1,);
loc2_2=ID(t2,);
K(locl,loc2_1)=K(locl,loc2_1)+R*E*He0*S
K(locl,loc2_2)=K(locl,loc2_2)+R*E*Hel*S

end

% Evaluate g vector for each node from point forc
if abs(fptw) >0
if fpt_wpos>x
Gw=-H*N*expm(F*(1-fpt_wpos));
else
Gw=H*M*expm(-F*fpt_wpos);
end
Ge_w=Gw(n2/2+1:n,n);
g(locl) = q(locl) - R*E*Ge_w*fptw;
end

end

Kgl=K(1:pts-can,l:pts-can);
qgl=q(1:pts-can,l);
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Cabled Beam Constraint Point Program

% This file develops the constraint matrix for the

% function Cl=constraints(CONSTR,s,tmp)

%

% CONSTR(1) 0=no constraint, 1=constraint,2
% CONSTR(2) type of constraint (See below)
% CONSTR(3) mass of rigid body

% CONSTR(4) stiffness of spring

% CONSTR(5) damping of dashpot

% CONSTR(6) linear spring in axial directio

% CONSTR(7) linear spring in transverse dir
% CONSTR(8) linear rotational spring

% CONSTR(9) Moment of Inertia for Rigid Bod
% CONSTR(10) Distance of isolator from cg on
% CONSTR(11) node number of connection

% CONSTR(12) node number of connection

%

% NOTE: CONSTR(11,12) are used only for connectio
%

% type=1  simple spring, mass, damper connect
% type=2  point mass, no inertia

% type=3  point mass with inertia

%

% tmp is 1 or 2. Ifitis 1 then constraint is at n

% if it is 2 the constraint force crops up due to a

% at other node.

function  CL=constr_pt_act(CONSTR,s,tmp)
global dof;

CL=zeros(dof);
type=CONSTR(2);
M=CONSTR(3);
k=CONSTR(4);
d=CONSTR(5);
Xx_=CONSTR(6);
y_=CONSTR(7);
rot_=CONSTR(8);
Ir=CONSTR(9);
ax=CONSTR(10);

%krots=20; %This makes frequencies too high
krots=2; % For cabled beam model
crots=0; % Rotational damping
Ibar=1*10"12;

if type==1
if CONSTR(1)==1,
Cy=m*s"2*(d*s+k)/(m*s"2+d*s+k);
elseif CONSTR(1)==2,
Cy=(m*s"2+d*s)*k/(m*s"2+d*s+Kk);
end

elseif  type==

Cx=m*s”2;
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Cy=Cx;
elseif  type==3

Cx=m*s”2;

Cy=Cx;

Crot=Ir*s"2;
else

disp( " WARNING: Unknown Constraint type'
end

if y ==
CL(2,1)=Cy;

end

if rot ==1 && type==

if tmp==1
% This is added in for a rotational spring and damp
CL(1,2)=(crots*s+krots);
elseif  tmp==2
CL(1,2)=-(crots*s+krots);
else
disp( **% WARNING: Unknown value for tmp-(rot)'
end
end
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Cabled Beam Force Input
% This is the force input file for the cabled beam

global node
if COUNT==0
for iii=1:m,

model.

it ((BC_type(ii)==1) || (BC_type(iii)==0)),

eval([
end
end

% Since there are 14 subsections, 14 vectors are ne

Kap1=[0;0];
Kap2=[0;0];
Kap3=[0;0];
Kap4=[0;0];
Kap5=[0;0];
Kap6=[0;0];
Kap7=[0;0];
Kap8=[0;0];
Kap9=[0;0];
Kap10=[0,0];
Kap11=[0;0];
Kap12=[0;0];
Kap13=[0;0];
Kap14=[0;0];

% This puts all values of Kap for each subsystem in

Kappa
Kappa=[];
for iii=1:m,
eval([
end

% These are the pointwise forces and are functions
% In this case they are function of the parameter s

fptw_1=0/Elbeam*Len(1);
fptl_wpos=.5;
fptw_2=0/Elbeam*Len(2);
fpt2_wpos=.55;

fptw_3=1e5/Elbeam*Len(3);

fpt3_wpos=.9999;

fptw_4=0/Elbeam*Len(4);
subsystem

fptd_wpos=.6;

fptw_5=.15e5/Elbeam*Len(5);

subsystem
fpt5_wpos=.65;
fptw_6=0/Elbeam*Len(6);
fpt6_wpos=.67;
fptw_7=0/Elbeam*Len(7);
subsystem
fpt7_wpos=.7;
fptw_8=0/Elcable*Len(8);
subsystem
fpt8_wpos=.75;
fptw_9=0/Elbeam*Len(9);
fpt9_wpos=.77;

'Kap' ,numa2str(iii),

'‘Kappa= [Kappa Kap'

'=zeros(dof,1)' D;

eded.

to global matrix

,num2str(iii), T D

=frequency

% magnitude of pointwise force on subsystem
% position of pointwise on subsystem

% magnitude of pointwise force on subsystem
% position of pointwise on subsystem

% position of pointwise on subsystem
% magnitude of pointwise force on

% position of pointwise on subsystem
% magnitude of pointwise force on

% position of pointwise on subsystem
% magnitude of pointwise force on subsystem
% position of pointwise on subsystem
% magnitude of pointwise force on

% position of pointwise on subsystem
% magnitude of pointwise force on

% position of pointwise on subsystem

% magnitude of pointwise force on subsystem
% position of pointwise on subsystem
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fptw_10=0/Elbeam*Len(10); % magnitude of pointwise force on

subsystem
fptl0_wpos=.8; % position of pointwise on subsystem
fptw_11=0/Elcable*Len(11); % magnitude of pointwise force on
subsystem
fptll_wpos=.85; % position of pointwise on subsystem
fptw_12=0/Elcable*Len(12); % magnitude of pointwise force on
subsystem
fptl2_wpos=.87; % position of pointwise on subsystem
if node==15||node==16;
fptw_13=0/Elcable*Len(13); % magnitude of pointwise force on
subsystem
fptl3_wpos=.87; % position of pointwise on subsystem
end
if node==16;
fptw_14=0/Elcable*Len(14); % magnitude of pointwise force on
subsystem
fptl4_wpos=.87; % position of pointwise on subsystem
end
FPTw=[];
FPTwPos=[];
for iii=1:m,
eval([ 'FPTw=[FPTw fptw_" ,numz2str(iii), D
eval([ 'FPTwPos=[FPTwPos fpt' ,num2str(iii), wpos];" 1)
end

%These are the nodal forces and are functions of fr
% In this case they are function of the parameter s
P1=(0;0];
P2=[0;0];
P3=[0;0];
P4=[0;0];
P5=[0;0];
P6=[0;0];
P7=[0;0];
P8=[0;0];
P9=([0;0];
P10=[0;0];
P11=[0;0];
P12=[0;0];
P13=[0;0];
P14=[0;0];
P15=[0;0];
P16=[0;0];
% This puts all nodal forces into a global matrix c
P_Nodal=[];
for iii=1:node

eval([ 'P_Nodal= [P_Nodal P' ,numa2str(iii),

end
F_cstr=[0;0];
COUNT=COUNT+1;
end

257

equency in Hz
(frequency)

alled P_Nodal

D



Cabled Beam Frequency Response Program
% This file calculates frequency response functions
beam.

%

% INPUT:

% BND_DOF Shows which DOF are constrained (node x
% dof = [wx wy theta]

%

% OUTPUT:

% alphal values for local displacement at positi

% range

% Parameter List

% alpha local displacement vector at positi

% CON Shows which subsystems are connecte
% nodes. '0' means no subsystem

% cnt dummy counting variable

% dof the number of degrees of freedom of sub
% endvalue the number of subsystems at locatio
% F matrix built by governing pdes (n x n)

% filename the name of file that holds initial

% fptu point force at subsystem in axial d
% fptu_pos location of point force at subsyste
% fptw point force at subsystem in transve

% fptw_pos location of point force at subsyste
% fregend the end frequency for frequency respons
% fregst the start frequency for frequency respo
% G Greens' function

% Ga_u partioned G matrix

% Ga_ w partioned G matrix

% H transfer function of Eta/Gamma

% Ha0 partitioned H matrix

% Hal partitioned H matrix

% incr the incremental frequency for frequ
% jj  dummy counting variable

% K reduced global stiffness matrix at freq
% Kap vector used for BC calculation

% kk  dummy counting variable

% also current subsystem for response
% Len length of each subsystems in vector

% Li length of each subsystem

% M Temporal-spatial operator for left end
% N Temporal-spatial operator for right end
% node total number of nodes of system

% num_str string of current subsystem for respons
% pts the number of displacements of entire s
% q reduced global force vector at frequenc
% RO  Rotation Matrix at the left end of the

% R1 Rotation Matrix at the right end of the
Forces

% rho mass per unit length for a subsystem
% SO  Rotation Matrix for left end of subsyst
% S1  Rotation Matrix for right end of subsys
displacements

% s frequency =i * sqrt(-1) * 2 * pi

% Sub_Con Shows which subsystems are connected to

% A zero value implies somer sort of
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% sub subsystem for which response is taken
% tt  dummy counting variable

% Ugl global displacement vector at frequency
% Ugl 0 global displacement vector at right
subsystem

% Ugl 1 global displacement vector at left
subsystem

% u reduced global displacement vector at f
% X location of node points in local coordi

% XX  Shows at each node how many subsystems
% X position of response

% which_node if response is required at a node i
%

function  [omega,alphal,alphatf]=freq_resp(BND_DOF)

S
end for current

end for current
requency s
nates

are connected to it.

t gives node number

global node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type;
global Len XY Ea Elgl rho filename num_ev BC_node_ty AXIA L pts X;
global CONSTRAIN Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPo S;
global COUNT evalst_alphat_betalen_m;

global cv Acable Gsh kappag Tens rhogl;

%Choose subsystem to evaluate response on.

sub=3;

x=1,

x1=x;

% The following are the locations of node points co nnected

% to each subsystem. The start point of each subsys
% endpoint is 1.

X = zeros(node,m);

tmp1=[0;1];
for ii=1:m,
tmp2=Sub_Con(:,ii);
X([tmp2],i))=X([tmp2],ii)+tmp1;
end

if (x==0) || (x==1)

tem is 0 and the

which_node=Sub_Con(x+1,sub); % node number of measured response

end
% Find M and N for subsystem sub

M=Mgl(1:n,(sub-1)*n+1:n*sub);
N=Ngl(1:n,(sub-1)*n+1:n*sub);

[RO,R1,S0,S1]=Rotation_Calc(Rot(sub));
Li=Len(sub);

%omega=Ilogspace(0,3,500); % Original

omega=logspace(0,2.7,500); %Last number indicates number of points,

higher number = greater resolution
% Initialize parameters from input file.
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filenameforce=[ 'C:\Users\Kaitlin\Dropbox\CABLED BEAM
MODEL\forces_cablebeam14.m' ;
run(filenameforce);

alphal=zeros(dof,size(omega,?2));

for iji=1:size(omega,2),
ii=omegal(iji);

S=ii*i*2*pi;
snonimag=ii*2*pi;

[K,g]=assemble_K_fbfe_diffoeamsl14(ii);

u=inv(K)*q;
% Place reduced global position and forces at speci fic frequeny
% into actual global position and force vecto r

Ugl=zeros(1,pts);

cnt=1;
for jj=1:node,
for kk=1:dof,
if (BND_DOF(jj,kk) < 1)
eval([ 'Ugl(1,dof*(jj-1)+kk)=u(" ,numz2str(cnt), 0D
cnt=cnt+1;
end
end
end

alpha=zeros(dof,1);

% Begin to calculate frequency response.
num_str=num2str(sub);
tmpl=dof*(Sub_Con(1,sub)-1)+1;
tmp2=dof*(Sub_Con(2,sub)-1)+1;

% Find the global displacements at each node at x=0 ,1 for subsystem
Ugl_0=Ugl(tmpl:tmpl+dof-1);
Ugl_1=Ugl(tmp2:tmp2+dof-1);

fptw=FPTw(1,sub);
fpt_wpos=FPTwPos(1,sub);

Kap=Kappa(1:dof,sub);

it (x==0) || (x==1)
x1=X(which_node,sub);
end

%Use Euler Bernoulli formulation for the aluminum b eam, shear
hysteresis
%model for the cable.
if sub>0 && sub <7.5;
F=Li*[ 0 1 0 0
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0 01 0
0 0 0 1
-rhogl(sub)*s*(s+t_alpha)/(Elgl(sub)*(1+t_beta*
elseif sub>7.5&& sub < 15;
Gofs=0;
%Gofs=(25*s"2+9000*s)/(4*s"2+1*s-8000); % For 1X7
%Gofs=(70*s"2+6000*s)/(5*s"2+2*s+2000); % For 1X19
%Gofs=(180*s"2+40000*s)/(2*s"2+2*s-9000); % For 1X
%Gofs=(140*s"2+60000*s)/(2*s"2+2*s-15000); % For 7
FShearHyst=Li*0,1,0,0;0,0,1,0;0,0,0,1;-
(rhogl(sub)*s”"2+cv*s)/(Elgl(sub)-
(1/s)*Gofs),0,((rhogl(sub)*Elgl(sub)*s"2)/(kappag*A
sub)*s)/(kappag*Acable*Gsh)-Tens)/(Elgl(sub)-(1/s)*
F=FShearHyst;

else

disp( 'F matrix not defined for subsection greater than 1
freq_resp’ )
end

eFs=expm(F);
% Find alpha due to displacements
H=expm(F*x1)*inv(M+N*eFs);

Ha0=H(1:n2/2,1:n/2);
Hal=H(1:n2/2,n/2+1:n);

if (BC_node_ty(Sub_Con(1,sub))>0),
alpha=alpha+Ha0*Kap+Hal*S1*Ugl_1"

elseif (BC_node_ty(Sub_Con(2,sub))>0),
alpha=alpha+Ha0*Kap+Hal*S0*Ugl_0';

else
alpha=alpha+Ha0*S0*Ugl_0'+Hal*S1*Ugl 1"
end

% Find alpha due to pointwise forces
if abs(fptw) >0
if fpt_ wpos>=x1
Gw=-H*N*expm(F*(1-fpt_wpos));
else
Gw=H*M*expm(-F*fpt_wpos);
end
Ga_w=Gw(1:n2/2,n);
alpha = alpha + Ga_w*fptw;
end

% Displacement of Beam
alphal(1:dof,iji)=alpha;
alphatf(1:dof,iji)=alphal(1:dof,iji)/ FPTw(1

end
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Cabled Beam Mode Shape Program
% This program finds the mode shapes of the cabled

beam systems.

function  mode_shape_fbfe(BND_DOF)

global node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type Len XY
Ea Ei rho rhogl Eigl

global filename BC_node_ty num_ev len_mt_alphat _beta CO NSTRAIN;
global Elgl;

% Load eigenvalues from eigen_find program.

load(] 'C:\Users\Kaitlin\Dropbox\CABLED BEAM

MODEL\evalues_cabledbeam.mat' D

nosub=[];

YYpos=[];

pts=node*dof;

% Redefine K_eval Matrices to Ki matrices for eac h mode

% where i ranges from 1 to num_ev

for ii=1:num_ev,
b=pts-can;
c=b*(ii-1)+1,
eval([ 'K'
end

,num2str(ii), '=K_eval(1:b,c:c+b-1);'

% This part is finding the nontrivial sol'n of K(
for ii=l:num_ev,
eval([ ‘' ,num2str(ii),
if isempty(eval([ u'
eval([ 'lal,bl]=eig(K'
c=min(abs(diag(bl)));
d=find(c==abs(diag(b1)));
if size(d,1)>1
d=d(1);
al=al(:,d);
eval([
else
eval([
end

‘=null(K'
,numa2str(ii)]))
,numa2str(ii), ;!

,numa2str(ii),

u' ,numa2str(ii), '=al(l:b,1);

u' ,numa2str(ii), '=al(l:b,d);
end

end

% This routine determines if subsystems are not p
discont=1;
for ii=2:m,
if (Sub_Con(1,ii) == Sub_Con(2,ii-1))
discont = [discont 0];
else
discont = [discont 1];
end
end
no = size(find(discont==1),2);

% Find the number of subsytems in each free subsy
num=1,

262

D

jlam)u(jlam)=0

% DD

iecewise continuous.

stem



for ii=2:size(discont,2),
if discont(ii)==1
nosub=[nosub num];
num=1;
else
num=num+1;
end

end

nosub=[nosub num];

% Calculate displacements (i.e. mode shapes for eac

incr=.01;

for ii=l:num_ev,
X_pos=[l;
y_pos=[];
x_loc=[];
y2_pos=[J;

Ugl=zeros(1,pts);
cnt=1,

% Place reduced global position at specific eigenva
% actual global position vector
for jj=1:node,

for kk=1:dof,
if (BND_DOF(jj,kk) < 1)
eval([ 'Ugl(1,dof*(jj-
1)+kk)=u" ,num2str(ii), ‘(" ,num2str(cnt),
cnt=cnt+1;
end
end

end

% Find mode shape for each subsystem and plot it
for kk=1:m,
alpha=[];
tmpl=dof*(Sub_Con(1,kk)-1)+1;
tmp2=dof*(Sub_Con(2,kk)-1)+1;

% Find the global displacements at each node at x=0

Ugl_0=Ugl(tmpl:tmpl+dof-1);
Ugl_1=Ugl(tmp2:tmp2+dof-1);

% FInd M and N for each subsystem
[M,N]J=MN_Calc(BC_type(kk),kk,Elgl(kk),Ea);

[RO,R1,S0,S1]=Rotation_Calc(Rot(kk));
Li=Len(kK);
s=evals(ii)*i*2*pi;
% This program uses Euler-Bernoulli formulation for
and
% shear hysteresis model for the cable.
if num >0 && num < 7.5;
F=Li* 0 1 0 O
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0 01 0
0 0 0 1
-rhogl(num)*s*(s+t_alpha)/(Elgl(num)*(1+t_beta*
elseif num>7.5&& num < 15;
Gofs=0;
%Gofs=(25*s"2+9000*s)/(4*s"2+1*s-8000); % For 1X7
%Gofs=(70*s"2+6000*s)/(5*s"2+2*s+2000); % For 1X19
%Gofs=(180*s"2+40000*s)/(2*s"2+2*s-9000); % For 1X
%Gofs=(140*s"2+60000*s)/(2*s"2+2*s-15000); % For 7

FShearHyst=Li*0,1,0,0;0,0,1,0;0,0,0,1;-
(rhogl(num)*s~2+cv*s)/(Elgl(num)-
(1/s)*Gofs),0,((rhogl(num)*EIlgl(num)*s~2)/(kappag*A
num)*s)/(kappag*Acable*Gsh)-Tens)/(Elgl(num)-(1/s)*

F=FShearHyst;
else

disp( 'F matrix not defined for subsection greater than 1
end

eFs=expm(F);
invers=inv(M+N*eFs);

Xl=0:incr:1;

% Find mode shape along span of subsystem
for xi=XI,
H=expm(F*xi)*invers;

Ha0=H(1:n2/2,1:n/2);
Hal=H(1:n2/2,n/2+1:n);

if (BC_node_ty(Sub_Con(1,kk))>0),
alpha=[alpha Hal*S1*Ugl_1";

elseif  (BC_node_ty(Sub_Con(2,kk))>0),
alpha=[alpha Ha1*S0*Ugl_07;

else
alpha=[alpha Ha0*S0*Ugl_0'+Hal*S1*U

end
end

% Need to find mode shape in global coordinates for
X_beg=XY(1,Sub_Con(1,kk));
y_beg=XY(2,Sub_Con(1,kk));

trans=inv(S1)*alpha;
cc=size(trans,2);

% These find the exact x,y locations and displaceme
Lc=Li*cos(Rot(kk));
Ls=Li*sin(Rot(kk));
if Ls==
Y_pos=ones(1,cc)*y_beg+trans(l,:);
else
Y_pos=(y_beg:(Ls)/(cc-1):Ls+y_beg)+tran

264

s) 0 0 0Of;

48
X7

cable*Gsh)+(cv*Elgl(
Gofs),0];

4")

gl_17;

plotting

nts

s(1,);



end

if Lc==0,
X_pos=ones(1,cc)*x_beg+trans(l,:);

else
X_pos=(x_beg:(Lc)/(cc-1):Lc+x_beg);

end

% This routine ensures that subsystems are added to
not
% connected.
if discont(kk) ==
X_pOs=[x_pos X_pos];
y_pos=[y_pos Y_pos];
else
tmp=size(X_pos,2);
X_pOos=[x_pos X_pos(2:tmp)];
y_pos=[y_pos Y_pos(2:tmp)];
end
end

% Plot mode shape for eigenvalue number i
sz_of x=size(Xl,2);
sz(1)=0;
izz=1;
smnosub=0;

for ijk=1:no,

sz(ijk+1) = sz_of_x*nosub(ijk)-nosub(ijk)+1
smsz=sum(sz(1:ijk));

yl=y pos(l+smsz:sz(ijk+1)+smsz);
x1=x_pos(1l+smsz:sz(ijk+1)+smsz);

% Make all modes start out to be positive
if real(yl(2))<0

yl=-y1;
end
plot(x1,y1)
y2_pos=[y2_pos y1];
hold on

% Find spring attachment between subsystems
begno=Sub_Con(1,1+smnosub);
endno=Sub_Con(2,smnosub+nosub(ijk));
for iii=1:nosub(ijk)+1,
if CONSTRAIN(iii,1)~=0
tmp=find(x1==XY(1,iii));

if tmp==[]
disp( 'Increment too large'
end
if ijk~=1
tmp=tmp+smsz;
end
x_loc=[x_loc tmp];
end
end
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smnosub=smnosub+nosub(ijk);
% Boundary conditions marked to differentiate BC ty
for iii=1:2
if ii==1
xbc=x1(1);
ybc=y1(1);
else
xbc=x1(size(x1,2));
ybc=yl1(size(y1,2));
end
if BC_type(izz)==2
plot(xbc,ybc, 'go" )

pes

elseif BC_type(izz)==1 || BC_type(izz)==3
C)

plot(xbc,ybc,
end
izz=izz+1;
end

ro

end

tmp=size(x_loc,2)/2;

% Plot connection point locations
zvec=0;

for iii=1:tmp,

plot(XY(1,2),zvec, 'mo’ ,XY(1,3),zvec, 'mo’ ,XY(1,5),zvec, ‘'mo’ ,XY(1,6),zvec

, 'mo' ,XY(1,7),zvec, 'mo’ )
end

title([ ‘Mode' ,num2str(ii)])
xlabel( ‘Distance along Beam' )
ylabel( ‘Eigenfunction’ )

legend([ 'Mode Shape at' ,num2str(evals(ii)),

YYpos=[YYpos;y2_pos];
figure
end
% This is used for MAC Calculation.
%AddedModes=[AddedModes;y_pos];
%xmodeplot=x_pos;

eval(| 'save modes_ evals x_pos YYpos discont'
Stiffness Matrix Reduction Function

% This file determines which displacements need to
% creating an ID matrix. If a node has a boundary

% displacements at that node can be neglected and r

global
% stiffness matrix.

function  ID=identify(BND_DOF,pts)
global node dof can AXIAL

cntl1=0;
cnt2=1;
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for ii=1:node,
for jj=1:dof,
if BND_DOF(ii,jj) == 1
ID(ii,jj)=pts-cntl;
cntl=cntl+1;
else
ID(ii,jj)=cnt2;
cnt2=cnt2+1;
end
end
end
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Boundary Condition Function

% Calculation of boundary condition matrices for ea
%

% INPUT

% B_user User supplied BC (optional)

% Ei  Flexural Rigidity for beam in bendi
% sub  Subsystem in question

% type Numerical value for type of BC

%

% OUTPUT

% M Temporal-spatial operator for left
% N Temporal-spatial operator for right
%

% type =0  No Boundary Condition

% type =1 Clamped Boundary Condition
% type =2  Free Boundary Condition

% type =3  Pinned Boundary Condition

%

% PARAMETER LIST

%

% B_cl the boundary conditon matrix fo

% B_fr the boundary conditon matrix fo

% B_pin the boundary conditon matrix fo

% B_sl the boundary conditon matrix fo

% M_noBC M matrix when subsystem has no boun
% N_noBC N matrix when subsystem has no boun
% n the order of the subsystem

% Sub_Con Shows which subsystems are connecte
X m)

% A zero value implies somer sort

condition

% XX Shows at each node how many subsyst

it.

function  [M,N]=MN_Calc(type,sub,Ei)

global nln2n Sub_Con XX BC_type BC_node_ty;

B_cl=[1000;0100};
B_fr=[0 0 Ei 0;0 0 O -EiJ;
B_pin=[1 00 0;0 0 Ei 0];

% The following are M,N for internal nodes (no BCs)
M_noBC=zeros(n);
M_noBC(n1/2+1:n/2,n1+1:n1+n2/2)=eye(n2/2);

N_noBC=zeros(n);
N_noBC(n/2+n1/2+1:n,n1+1:n1+n2/2)=eye(n2/2);

% Select B for the subsystem
if (type==0)

M=M_noBC,

N=N_noBC;

elseif  (type==1)

B=B_cl;
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elseif  (type==2)

B=B_fr;

elseif  (type==3)

B=B_pin;

else

disp( "+ \Warning **** Unknown Type for Boundary Condit ion' )
return

end

% Calculate M, N given the type of Boundary Condit ion
if (type>0)
if (BC_node_ty(Sub_Con(1,sub)) > 0) &&
(BC_node_ty(Sub_Con(2,sub))==0)
M=[B;zeros(n/2,n)];
N=N_noBC,;
elseif (BC_node_ty(Sub_Con(2,sub)) > 0) &&
(BC_node_ty(Sub_Con(1,sub)) ==0)
M=N_noBC;
N=[B;zeros(n/2,n)];
end
end
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Rotation Function

% This .m file will calculate the rotation matrices
% at end 1 and 2. End 1 is the left end of the subs
% is the right end of the subsystem.

%

% INPUT

% rot Rotation angle in radians

%

% OUTPUT

% R1 Rotation Matrix at the left end of the
% R2  Rotation Matrix at the right end of the
Forces

% S1  Rotation Matrix for left end of subsyst
% S2  Rotation Matrix for right end of subsys
displacements

function [R1,R2,S1,S2]=Rotation_Calc(rot)
ct=cos(rot);
st=sin(rot);

% These are rotation matrices for forces in x,momen
% force iny

R1=[-1 0;0 -ct];

R2=[1 0;0 ct];

% These are the rotation matrices for displacements
% y (w) and theta (w') directions

S1=[ct 0;0 1];

S2=[ct 0;0 1];

Determinant Function

% This file finds the determinant of the global sti
% given frequency input.

function  determ=tmp(ij)
K=assemble_K(ij);

determ=det(K);
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Eigenvalue Solver
% Function to identify and save eigenvalues of the

% INPUT

% freqgst the first guess for the frequency range

% fregend the last guess for the frequency range
% num_ev the number of desired eigenvalues

% OUTPUT

% Evals vector of eigenvalues

%

function  evals=eigen_find(fregst,freqend,num_ev)

global node m dof n1 n2 n can XX CON ID Sub_Con qgl;

global filename;
disp( 'Calculating Eigenvalues' )

% Search through the initial frequency range to g

% estimate of the evalues. The search routine loo

% minimum value whcih may be a possible candidate
% eigenvalue

incr=1,

p=[l;

for ii=fregst:incr:freqend+2,
K=assemble_K(ii);
p=[p abs(det(K))];

end

omega=[freqgst:incr:freqend+2];

col_p=size(p,2);
a=p(l:col_p-2);
b=p(2:col_p-1);
c=[p(3:col_p)];

g=omega(find(b<a & b<c))

% if the desired number of eigenvalue is not within
% range above, this loop will find guesses for the
% There may be cass where an initial guess is nowhe
% eval. This may lead to two guess going to the sam
% hopefully bypass these occurences, the number of
% for the evals are incremented by 3
P1=[];
wi1=[];
while (size(g,2)<(num_ev+3))
freqst=freqend+incr;
fregend=freqend+100;
for ii=fregst:incr:(freqend+2)
K=assemble_K(ii);
P1=[P1 abs(det(K))];
wl=[wl ii];
end
col_Pl=size(P1,2);
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a=P1(1:col_P1-2);
b=P1(2:col_P1-1);
c=P1(3:col_P1);
gl=wl(find(b<a & b<c));
g=[g 91];
91=[;
P1=[];
wi=[J;

end

% The Matlab routine fsolve is used to find the val ues of

% the eigenvalues which make the determinant of the stiffness
% matrix zero. THe following will cycle through unt il num_ev
% unique evals are found.

disp( 'Solving for Evalues' )
ii=0;

tmp=1,;

K_eval=[];

while (tmp<=num_ev)

ev=fsolve( ‘tmp' ,g(ii+1))
if abs(ev) <1le-3
disp( ‘Encountered eigenvalue < 1e-3, skipping ...." )
elseif ev<0
disp( '‘Encountered negative eigenvalue, discarding ...' )
else
% This if statement ensures that the eigenvalue f ound is an actual
% solution (since there can be a case where you get a minimum due to
% numerical deficiencies but det(lam) is still larg e; fixed this by
% checking that the determinant passes through zero at the eigenvalue.
if det(assemble_K(ev-0.01))<0 && det(assemble_K(ev+O. 01))>0

evals(tmp)=ev;
K_eval=[K_eval assemble_K(ev)];
tmp=tmp+1,
elseif  det(assemble_K(ev-0.01))>0 &&
det(assemble_K(ev+0.01))<0
evals(tmp)=ev;
K_eval=[K_eval assemble_K(ev)];
tmp=tmp+1;
end

end
ii=ii+1;
end
% This saves the eigenvalues for use in mode shape calculation.
eval([ 'save evalues_bmcabletest evals K_eval' )
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Output File to Run for Eigenvalues, Frequency Raspd-unctions, and Mode Shapes

% This is the top level file that runs all cable or cabled beam
functions

% required to find the eigenvalues, mode shapes, or frequency response
% function of a system, all of which can be determi ned by running this

% program.

% Based on a program originally created by Dino Sci ulli, 1996, altered
I’Zrcable and cabled beam shear beam models by Kaitli n Spak, 2014.

clear all

global node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type pts;
global Len XY Ea Ei rho filename num_ev BC_node_ty AXIAL CONSTRAIN A

kappag Gsh cv ¢ Tens;

global Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPos;
global COUNT evals len_mt_alphat_beta;

global AddedModes;

% Initialization of Parameters
CONSTRAIN=]];
COUNT=0;

% This is where the selection is made for either th e two-point cable,
% four-point cable, or cabled beam model.

% For two-point cable

filename=[ 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca ble
2Pinned Model\bmcable.m' 1;

% For four-point cable

%filename=['C:\Users\Kaitlin\Desktop\Cable Data In Process\Test 2
%Data\Cable 4Pt Model\bmcable.m';

run(filename);

n1=0; % nth order linear pde for axial vibrations

n2=4; % nth order linear pde for bending vibrations

n=nl+n2; % nth order linear pde (4:bendng, 2:axial)

pts=node*dof; % the number of displacements of entire system

% Find the length and rotation angle of each subsyt em wrt horizontal
% Find M and N matrices for each subsystem

Mgl=[];

Ngl=[;

for kk=1:m,

tmpl=Sub_Con(1,kk);
tmp2=Sub_Con(2,kk);
dx=XY(1,tmp2)-XY(1,tmpl);
dy=XY(2,tmp2)-XY(2,tmp1l);
Len=[Len sqrt(dx"2+dy"2)];
Rot=[Rot atan2(dy,dx)];

[Mtmp,Ntmp]=MN_Calc(BC_type(kk),kk,Ei,Ea);

Mgl=[Mgl Mtmp];
Ngl=[Ngl Ntmp];
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end
% Create ID Matrix for reducing global stiffness matrix
ID=identify(BND_DOF,pts);

% Build constraint matrix for inclusion of attachme nt points

a=size(CONSTRAIN,1);
if a<node

CONSTRAIN=[CONSTRAIN; zeros(node-a,12)];
elseif a==0

CONSTRAIN=zeros(node,12);

else

disp( = Warning CONSTRAIN matrix is too big: dimension should be
(node x 12)' );
end

% Load input forces for appropriate model.
% For two-poitn cable

filenameforce=[ 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca ble
2Pinned Model\forces_bmcable.m’ 1;

% For four-point cable

%filenameforce=['C:\Users\Kaitlin\Desktop\Cable Dat a In Process\Test 2

Data\Cable 4Pt Model\forces_bmcable.m’;
run(filenameforce);

% Choose frequency range of interest.
freqst=1,;

freqend=500;

incr=1;

% Calculation of eigenvalues, mode shapes, and FRFs

evals=eigen_find(freqst,fregend,num_ev)
mode_shapeWMAC(BND_DOF);

% hold on

figure(num_ev+10) %Ensures that the mode_shapes are not overwritten b

new plots.

[a,alphal]=freq_resp(BND_DOF,1);

% [a,alphal,alphatf]=freq_resp(BND_DOF,1); % For ca bled beam transfer
% function

0=(20*log10((a/(2*pi)).*abs(alphal(1,:)))); % For cable
h=(20*log10((a/(2*pi)).*abs(alphatf(1,:)))); % For cabled beam

%semilogx(a,g,'b") % Alternative plotting form

plot(a,g, 'c’ , 'LineWidth' ,2)  %Use with "hold on" just prior to plot over
cable exp data

%plot(a,h,'c','LineWidth',2) %Use with "hold on" ju st prior to plot
over cabled beam exp data

%axis([0 160 -60 10])

xlabel(  'Frequency (Hz)' )

ylabel( 'Magnitude (dB)' )

legend( 'Cable Model" )
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Appendix D. MATLAB Program Filesfor Modal Assurance Criterion

These are the representative files for data prougss experimental data and modal
assurance criterion calculation from the model n&ltBpes found using the mode_shape
files of Appendix C.

Mode Shape From PSV Scan for Four-Point Cable

% Kaitlin Spak

% Mar 17, 2014

% M File to Get Mode Shapes from Experimental Data for MAC
% This file is for cables attached at FOUR points

cabletype=749;

%Choose 7, 19, 48, 749 or 45 for tool steel or 11 f or acetron
scanum=2;

%Choose 1 through 3 for full scan mode shapes

len1X7=0.7692;

len1X19=0.7782;

len1X48=0.7744;

len7X7=0.7744;

if cabletype==7;
if scanum==1,
% Baked, Scan w Rigid Stinger, Scan 1
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl7_1X7D_4Pt_Scanl_mtlbScn.mat' 1;
elseif scanum==2;
% Baked, Scan w Tensioned String, Scan 2
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl8_ 1X7D_4Pt_Scan2_mtlbScn.mat' 1;
elseif scanum==3;
% Baked, Scan w Tensioned String, Scan 3

filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Mar19 1X7D_4Pt Scan3_mtlbScn.mat' 1;
end

LENGTH=len1X7;
disp( '1X7 Cable chosen' )
elseif  cabletype==19;
if scanum==1,
% Baked, Scan w Rigid Stinger, Scan 1
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl7_1X19B_ 4Pt _Scanl_mtlbScn.mat' 1;
elseif scanum==2;
% Baked, Scan w Tensioned String, Scan 2
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl18_1X19B_4Pt_Scan2_mtlbScn.mat' I
elseif scanum==3;
% Baked, Scan w Tensioned String, Scan 3

filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Mar19_1X19B_4Pt_Scan3_mtlbScn.mat' I
end

LENGTH=len1X19;
disp( '1X19 Cable chosen' )
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elseif  cabletype==48;
if scanum==1,
% Baked, Scan w Rigid Stinger, Scan 1
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl7_1X48D_4Pt_Scanl_mtlbScn.mat' I
elseif scanum==2;
% Baked, Scan w Tensioned String, Scan 2
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl8_1X48D_4Pt_Scan2_mtlbScn.mat' 1;
elseif scanum==3;
% Baked, Scan w Tensioned String, Scan 3

filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Mar1l9 1X48D 4Pt Scan3_mtlbScn.mat' 1;
end

LENGTH=len1X48;
disp( '1X48 Cable chosen’ )
elseif  cabletype==749;
if scanum==1,
% Baked, Scan w Rigid Stinger, Scan 1
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl7_7X7A_4Pt_Scanl_mtlbScn.mat' Ik
elseif scanum==2;
% Baked, Scan w Tensioned String, Scan 2
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl8_7X7A_4Pt_Scan2_mtlbScn.mat' Ik
elseif scanum==3;
% Baked, Scan w Tensioned String, Scan 3

filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl9 7X7A 4Pt _Scan3_mtlbScn.mat' 1;
end

LENGTH=len7X7;
disp( "7X7 Cable chosen' )
elseif  cabletype==11;
if scanum==1,
% Acetron, Scan w Rigid Stinger, Scan 1
filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl7_Acetron_4Pt_Scanl mtlbScn.mat' 1;
end
LENGTH=len1X48;
disp( '‘Acetron Rod chosen' )
elseif  cabletype==45;
if scanum==1;
% Tool Steel, Scan w Rigid Stinger, Scan 1

filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode
Scans/Marl7_TS_ 4Pt _Scanl_mtlbScn.mat' 1;
end

LENGTH=len7X7;
disp( '"7X7 Cable chosen' )
end

load(filename)

% % % This figure shows all of the scan point FRFs
frequencies to look at.

% figure(20)

% plot(xx.H2veldB,yy.H2veldB)
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% % % This figure takes the average of all points f
% figure(21)

% plot(xx.H2veldB,mean(yy.H2veldB))

% % And this figure is the driving point

figure(22)

plot(xx.H2veldB,yy.H2veldB(30,:))

if cabletype==7;

[pks,locs]=findpeaks((yy.H2veldB(30,:)),
ze,lseif cabletype==19;
[pks,locs]=findpeaks((yy.H2veldB(30,:)),
gl)éeif cabletype==48;
[pks,locs]=findpeaks((yy.H2veldB(30,:)),
gl)éeif cabletype==749;
[pks,locs]=findpeaks((yy.H2veldB(30,:)),
ond

% These are the frequencies to look at
FregVals=xx.H2(1,locs)

% These are the point locations
Numpoints=size(yy.H2);
dist=LENGTH/(Numpoints(1)-1);
xvals=0:dist:LENGTH,;

YValues=[];

pvi=[l;

lyf=[l;

for ii=1:length(locs)
figure(ii)

normval=max(abs((yy.H2(:,locs(ii)).*sind(yy.Phs
yvalspn=(yy.H2(:,locs(ii)).*sind(yy.Phs(:,locs(

or an overall FRF.

'NPEAKS' ,6, 'MINPEAKDISTANCE',15

'NPEAKS' ,10, 'MINPEAKDISTANCE',1

'NPEAKS' ,18, 'MINPEAKDISTANCE',1

'‘NPEAKS' ,10, 'MINPEAKDISTANCE',1

(t,ocs(ii))))));

ii))))./normval;

yvalsp=(yy.H2(:,locs(ii)).*sind(yy.Phs(:,locs(i ))E
plot(xvals,yvalspn)
title([ '‘Mode Shape at f=' ,num2str(xx.H2(1,locs(ii))), "Hz' )

YValues=[YValues,yvalspn];

xsm=0:0.01:LENGTH;

% Smoothing and Interpolating Section - for observa

used
% as raw for MAC comparison
ly = interpl(xvals(:),yvalspn(:),0:.01L:LENGTH)
lyf=[lyf;ly];

277

tion only, data



hold on
plot(0:.01:LENGTH,ly, o' )
plot(0:.01:LENGTH,smooth(ly,10), ‘9 )

p = polyfit(xvals(:),yvalspn(:),10);
pv = polyval(p,0:.01:LENGTH);

pvf=[pvf;pv];

hold on

plot(0:.01:LENGTH,pv, m' )

legend( 'Raw Exp Data’ , 'Interpolated’ , 'Smoothed'
end

% This command will save the mode shape vector info
the

% MAC program.

%eval(['save expmodes_4PT ' filename(43:length(file
YValues ly pv FreqVals")
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Modal Assurance Criterion for Cable Model

% MAC Calculations; this program takes in experimen
mode

% shapes and model mode shapes, processes them ,and
% assurance criterion.

% First, run "ModeShapeFromPSVScanfor..." (Rod, Cab
% saves xvals, YValues, lyf pvf

% SECOND, run TF with mode_shapeWMAC to get "AddedM
row is the x values, subsequent rows are each mode.
% Must manually load expmodes_filename .mat files f

% shapes- make sure that they have YValues

cabletype=749;

%Must choose 7, 19, 48 or 749;
numberofmodelmodes=6;
numberofexperimentalmodes=12;

clear phiExp phiModel phiMod k MAC

indexy=size(YValues);
for i=l:indexy(1,2);

phiExp(i,:)=YValues(:,i);

% This gives the experimental mode shapes where eac
end

for j=1:numberofmodelmodes;
phiModel(j,:)=AddedModes((1+)),:); %

% AddedModes is a number of modes+1 by 4001 array-
into a

% j by 4001 vector

end

% This part finds the locations of the model data t
of

% points from polytec scan.

if cabletype==7,

for k=1:47

%  locsMod(1,length(xvals))=zeros(1,length(xval
%  locsMod(1)=0;
locsfinder=find(AddedModes(1,:) <= xvals(k));
nav=size(locsfinder);
locsMod(k)=locsfinder(nav(2));

end

end

if cabletype==19;

for k=1:47
locsfinder=find(AddedModes(1,:) <= xvals(k));
nav=size(locsfinder);
locsMod(k)=locsfinder(nav(2));

end

end

if cabletype==48;
for k=1:47
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locsfinder=find(AddedModes(1,:) <= xvals(k));
nav=size(locsfinder);
locsMod(k)=locsfinder(nav(2));

end

end

if cabletype==749;

for k=1:47
locsfinder=find(AddedModes(1,:) <= xvals(k));
nav=size(locsfinder);
locsMod(k)=locsfinder(nav(2));

end

end

% This figures out the analytical y values to match the experimental
% points.

for jk=1:numberofmodelmodes;

for kj=2:length(xvals)

phiMod(jk,kj)=AddedModes(jk+1,locsMod(kj))

end

end

phiMod=fliplr(phiMod); % The laser vibrometer numbered the points in

the

% opposite direction than the model does, model is flipped to match

% experimental data.

mdpts=size(phiMod)

mdptsexp=size(phiExp)

for k=1:mdpts(1);

for j=1:6;

in=[1,2,3,4,5,7,8] % Choose which experimental vectors are bending
modes.

i=iin(j);

% This is the actual MAC calculation.
numer=(abs(sum(phiExp(i,:).*conj(phiMod(k,:)))))"2 ;
denomexp=sum(phiExp(i,:).*conj(phiExp(i,:)));
denommod=sum(phiMod(k,:).*conj(phiMod(k,:)));

denom=dot(denomexp,denommod);

MAC(k,j)=numer/denom;
end
end
ExpFreqgs=FreqVals
ModFregs=evals
% This plots the MAC as a bar graph.

figure(21)

bar3cK(MAC)

xlabel( 'Experimental Modes' )
ylabel( 'Model Modes' )
colorbar
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Modal Assurance Criterion for Cabled Beam Model

% MAC Calculations; this program takes in experimen tally determined
mode
% shapes and model mode shapes, processes them ,and prepares a modal

% assurance criterion for a cabled beam.

% First, run "ModeShapeFromPSVScanfor..." (Rod, Cab le, whatever), saves
% xbeam, xcab, yvalspn YValues FreqVals
% SECOND, run TF with mode_shape_fbfe to get modes_ .mat file

% Loading this gives you x_pos and YYpos

% where x_pos(1,1:701) is the beam x position

% and x_pos(1,702:1402) is the cable x position

% and YYpos(mode,1:701) or YYpos(mode,702:1402) is the beam or cable
mode

% shape for the chosen mode.

% Must manually load expmodes_filename .mat files f or experimental mode
% shapes- make sure that they have YValues

% MAC CALC

cabletype=11;

%Must choose 7, 19, 48 or 749;
numberofmodelmodes=size(evals,?2);
numberofexpmodes=size(YValues);

clear phiExp phiModelBeam phiModelCab phiModBeam phiModCable k MAC
locsMod
clear bmrwl bmrw2 cabrw bmrw3 bmrw4

YValuest=transpose(YValues);

for ii=1:numberofexpmodes(2);
if length(yvalspn)==125;
% xbeam has 25 points
pt=25;

bmrw1(ii,1:pt)=YValuest(ii,1:25)
bmrw2(ii,1:pt)=YValuest(ii,26:50);
cabrw(ii,1:pt)=YValuest(ii,51:75);
bmrw3(ii,1:pt)=YValuest(ii,76:100);
bmrw4(ii,1:pt)=YValuest(ii,101:125)
bmtot=vertcat(omrwl,bmrw2,bmrw3,bmrw4)
bmrw(ii,1:pt)=mean(bmtot)

elseif  length(yvalspn)==57;
% xbeam has 19 points
pt=19;
bmrw1(ii,1:pt)=YValuest(ii,1:19);
cabrw(ii,1:pt)=YValuest(ii,20:38);
bmrw3(ii,1:pt)=YValuest(ii,39:57);
bmtot=vertcat(bmrwl,bmrw3)
bmrw(ii,1:pt)=mean(bmtot)

end
end
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% So here bmrw and cabrw are the experimental mode
row

% is a mode.

phiExp=horzcat(bmrw1,cabrw)

xmbeam=x_pos(1,1:701);
xmcable=x_pos(1,702:1402);

for j=1l:numberofmodelmodes;
phiModelBeam(j,:)=YYpos(j,1:701);
maxBeam=max(phiModelBeam(j,1:701));
phiModBeam(j,:)=phiModelBeam(j,1:701)./maxBeam;

phiModelCab(j,:)=YYpos(j,702:1402);
maxCable=max(phiModelCab(j,1:701));
phiModCab(j,:)=phiModelCab(j,1:701)./maxCable;
% figure(j)

% plot(xmbeam,phiModBeam(j,:),'k")

% figure(j+10)

% plot(xmcable,phiModCab(j,:),"y")

% So at this point, phiModBeam and phiModCab are th
the
% beam and the cable, with jX701 size where j is th

% % This part finds the locations of the model data
of
% % points from polytec scan.

for k=1:pt
locsfinder=find(xmbeam<=xbeam(k));
nav=size(locsfinder);
locsMod(k)=(nav(2));
phiModBm(j,k)=phiModBeam(j,locsMod(K));

locsfinderc=find(xmcable<=(xcab(k)+(xmcable(1,1
navc=size(locsfinderc);
locsModc(k)=navc(2);
phiModC(j,k)=phiModCab(j,locsModc(k));
end
%figure())
%plot(xbeam,phiModBm(j,:),'k’,(xcab+xmcable(1,1)),p

%plot(xbeam,phiModBm(j,:),xbeam,bmrwl(j,:))

end

% At this point, | have the model modes for beam an
% phiModBm(j,:) and phiModCab(j,:) against xbeam an
% and experimental modes as bmrw1 etc
phiMod=horzcat(phiModBm,phiModC)

mdpts=size(phiMod, 1)

for kk=1:mdpts;
for jj=1:numberofexpmodes(2);
% This is the actual MAC calculation. Note that th
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% comapred as a complete system.
numer=(abs(sum(phiExp(jj,:).*conj(phiMod(kk,:))))

denomexp=sum(phiExp(jj,:)-*conj(phiExp(jj,:)));
denommod=sum(phiMod(kk,:).*conj(phiMod(kk,:)));

denom=dot(denomexp,denommaod);
MAC(kK,jj)=numer/denom;

end
end
% Print the experimental and model frequencies to ¢
ExpFreqs=FreqVals
ModFregs=evals
% Plot the MAC bar graph.

figure(22)

bar3cK(MAC)

titte(  'MAC for Cabled Beam' )
xlabel( 'Experimental Modes' )
ylabel( 'Model Modes' )
colorbar
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Appendix E. Cable Bakeout Results: Individual Section Tablesand
Graphs of Cable Comparisons by Section

Table E.1 1X7 Cable Section Averages

Unbaked First Baked First Unbaked Baked Second
1X7 Mode Avg Mode Avg % Second Mode  Mode Avg %
Section Frequency  Frequency Change Avg Frequency Frequency Change
(Hz) (Hz) (Hz) (Hz)
C 47.64 40.78 14.4% 204.40 177.48 13.2%
D 45.14 39.41 12.7% 187.96 157.71 16.1%
E 45,53 37.68 17.2% 194.40 165.21 15.0%
Overall 46.11 39.29 14.8% 195.58 166.80 14.7%
Table E.2 1X7 Cable Coefficients of Variation
First First Second Second Second
First Mode Mode Mode All Mode Mode Mode All
Unbaked Baked Trials Unbaked Baked Trials
C 0.072 0.039 0.110 0.039 0.036 0.100
D 0.061 0.023 0.096 0.036 0.017 0.124
E 0.043 0.035 0.133 0.041 0.043 0.115
Overall 0.059 0.047 0.113 0.038 0.035 0.112

Comparison of Unbaked and Baked Cables, Section C of 1 by 7
T T

UNBAKED
BAKED

|

0 50 100 150 200 250
Frequency [Hz]

Comparison of Unbaked and Baked Cables, Section D of 1 by 7

v. I I
o 75 N UNBAKED

BAKED

0 50 100 150 200 250
Frequency [Hz]
Comparison of Unbaked and Baked Cables, Section E of 1 by 7

Frequency [Hz]

Figure E.1: Baked and unbaked cable comparisoedon section of 1X7 cable.
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Table E.3 1X19 Cable Section Averages

Unbaked First - Baked First Unbaked Second Baked Second

1X1_9 Mode Avg Mode Avg % Mode Avg Mode Avg %
Section  Frequency Frequency Change Frequency (Hz) Frequency (Hz) Change
(HZ) (HZ) q y q y
A 73.96 61.95 16.2% 265.06 230.53 13.0%
B 69.57 60.35 13.2% 255.46 223.24 12.6%
C 67.84 57.54 15.2% 253.27 207.81 17.9%
Overall 70.45 59.95 14.9% 257.93 220.53 14.5%
Table E.4 1X19 Cable Coefficients of Variation
First First Second Second Second
First Mode Mode Mode All Mode Mode Mode All
Unbaked Baked Trials Unbaked Baked Trials
A 0.019 0.027 0.125 0.027 0.030 0.099
B 0.011 0.020 0.100 0.022 0.036 0.095
C 0.011 0.026 0.116 0.018 0.031 0.139
Overall 0.015 0.025 0.115 0.023 0.033 0.111

Comparison of Unbaked and Baked Cables, Section A of 1 by 19

T T T
10l 4% UNBAKED
= N BAKED
S, 20— > —
g o - R .
® o ' : S =
50 ! ! ! | 1 \
0 50 100 150 200 250 300 350
Frequency [Hz]
Comparison of Unbaked and Baked Cables, Section B of 1 by 19
0
I I I
10 UNBAKED
= O\ - BAKED
2 20 N =
9 301 A = . . . -
= T — A
40— SO = 7 —
4 ) =
50 | | | | | |
0 50 100 150 200 250 300 350
Frequency [Hz]
Comparison of Unbaked and Baked Cables, Section C of 1 by 19
0
T T T
10 UNBAKED
— BAKED
g 20— o . =
2 30 = = == G s S A = B
s NP7
40— SR =
50 | | | | | |
0 50 100 150 200 250 300 350

Frequency [Hz]

Figure E.2: Baked and unbaked cable comparisoedon section of 1X19 cable.
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Mag. [dB]

Mag. [dB]

Mag. [dB]

Table E.5 1X48 Cable Section Averages

Unbaked First Baked First Unbaked Baked Second
1X48 Mode Avg Mode Avg % Second Mode  Mode Avg %
Section  Frequency Frequency Change Avg Frequency Frequency Change
(Hz) (Hz) (Hz) (Hz)
B 124.45 106.80 14.2% 384.06 346.91 9.7%
D 120.82 104.77 13.3% 402.96 379.48 5.8%
E 123.46 105.47 14.6% 396.47 354.90 10.5%
Overall 122.91 105.68 14.0% 394.50 360.43 8.6%

Table E.6 1X48 Cable Coefficients of Variation

First First Second Second Second
First Mode Mode Mode All Mode Mode Mode All
Unbaked Baked Trials Unbaked Baked Trials
B 0.022 0.021 0.108 0.014 0.021 0.072
D 0.029 0.020 0.101 0.026 0.019 0.051
E 0.048 0.026 0.111 0.021 0.049 0.078
Overall 0.034 0.023 0.107 0.032 0.033 0.065

Comparison of Unbaked and Baked Cables, Section B of 1 by 48

UNBAKED
BAKED

0 50 100 150 200 250 300 350 400 450 500
Frequency [Hz]
Comparison of Unbaked and Baked Cables, Section D of 1 by 48

UNBAKED
BAKED

0 50 100 150 200 250 300 350 400 450 500
Frequency [Hz]
Comparison of Unbaked and Baked Cables, Section E of 1 by 48

UNBAKED
BAKED

0 50 100 150 200 250 300 350 400 450 500
Frequency [Hz]

Figure E.3: Baked and unbaked cable comparisoaedon section of 1X48 cable.
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Table E.7 7X7 Cable Section Averages

) . Unbaked Baked Second
%7 Unbaked First ~ Baked First % Second Mode  Mode Avg %
. Mode Avg Mode Avg
Section Change Avg Frequency Frequency Change
Frequency (Hz) Frequency (Hz) (Hz) (H2)
A 82.79 62.42 24.6% 244.83 212.89 13.0%
B 90.99 68.79 24.4% 250.63 207.23 17.3%
D 84.98 64.00 24.7% 248.39 197.89 20.3%
Overall 86.25 65.07 24.6% 247.95 206.00 16.9%
Table E.8 7X7 Cable Coefficients of Variation
First First Second Second Second
First Mode Mode Mode All Mode Mode Mode All
Unbaked Baked Trials Unbaked Baked Trials
A 0.029 0.013 0.198 0.075 0.051 0.099
B 0.020 0.039 0.196 0.014 0.040 0.134
D 0.031 0.035 0.199 0.074 0.046 0.160
Overall 0.026 0.032 0.198 0.059 0.047 0.131
Comparison of Unbaked and Baked Cables, Section A of 7 by 7
0 | | | | UNBAKED
% 40|~ P = = = S - ,\,:'“:\ = —— = .
: 50|/ f”/ e 2 W‘iﬂ/
60 \ \ \ \ \ \ | | |
Frequency [Hz]
Comparison of Unbaked and Baked Cables, Section B of 7 by 7
0 b | | | | | UNBAKED
g _50: = :;\ > ~ )\;/ 07 s \/wm\;; i
60 | | | | | | | | |

Frequency [Hz]

Comparison of Unbaked and Baked Cables, Section D of 7 by 7

Mag. [dB]

50 100

250 300
Frequency [Hz]

500

Figure E.4: Baked and unbaked cable comparisoaedon section of 7X7 cable.
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Appendix F. Comparisons Between Four-Point Fixture Experimental
Data and Hyster etically Damped Cable M odel

Use of the hysteretic damping coefficients deteedifor the cables in the two-point
fixture (shown in Chapter 6) are effective for ot first mode of the four-point fixture,
as shown in the following figures.

20 \ \

—— Experimental FRF Data
10 Hysteretically Damped Cable Model |

Magnitude (dB)

L L L
0 50 100 150 200

Frequency (Hz)
Figure F.1: Comparison of experimental and hystaky damped model FRFs for 1X7
cable.
20 i :
— Experimental FRF Data
10t Hysteretically Damped Cable Model |
0 L |

Magnitude (dB)

-60 ‘
0
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Frequency (Hz)
Figure F.2: Comparison of experimental and hystaky damped model FRFs for 1X19
cable.
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Figure F.3: Comparison of experimental and hystaky damped model FRFs for 1X48
cable.
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Figure F.4: Comparison of experimental and hystaky damped model FRFs for 7X7
cable.
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Appendix G. Experimental Scansand Average FRFsfor Cabled Beams

Figures G.1 through G.4 show the mobility transfictions for the cabled beam
structure as measured on the beam structure. daigaus through G.8 show the trials and
average mobility functions as measured on the cablé Figure G.9 compares the

different cable responses on the beam as measuriéx cable.

20 w

= 1X7 Trial Average
ol — Dense Scan Value
—— Bare Beam |
— 1X7D Cabled Beam Trials J\

Magnitude [m/s]
A
o

_1000 100 200 300 400 500

Frequency [HZz]

Figure G.1: Frequency response functions measurédeobeam for sparse scan

experimental trials of beam with 1X7 cable attactv#ti average of 10 trials shown as
bold line.
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0 — Dense Scan Value 1
— Bare Beam 1
— 1X19B Cabled Beam Trials l .
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_1000 100 200 300 400 500

Frequency [HZz]
Figure G.2: Frequency response functions measurd¢deobeam for sparse scan

experimental trials of beam with 1X19 cable attatciwgh average of 10 trials shown as
bold line.
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Figure G.3: Frequency response functions measurddeobeam for sparse scan
experimental trials of beam with 1X48 cable attatiwih average of 10 trials shown as
bold line.
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0L —— Dense Scan Value .
A — Bare Beam ’L
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Frequency [Hz]

Figure G.4: Frequency response functions measurdddeobeam for sparse scan
experimental trials of beam with 7X7 cable attactv#ti average of 10 trials shown as

bold line.
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Figure G.5: Frequency response functions measuréleocable for sparse scan
experimental trials of beam with 1X7 cable attactv#ti average of 10 trials shown as

bold line.
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Figure G.6: Frequency response functions measurékeocable for sparse scan

experimental trials of beam with 1X19 cable attaciwgh average of 10 trials shown as

bold line.
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Figure G.7: Frequency response functions measurédeocable for sparse scan
experimental trials of beam with 1X48 cable attaciwgh average of 10 trials shown as
bold line.
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Figure G.8: Frequency response functions measurédeocable for sparse scan

experimental trials of beam with 7X7 cable attactv#ti average of 10 trials shown as

bold line.
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Figure G.9: Bare beam FRF and FRF averages ofdl® tor each cable on beam as
measured on the cable.
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Appendix H. M ode Shapes of Bare and Cabled Beamsfrom Dense
Scans
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Figure H.1: Mode shapes of bare beam as obtaineddense scan by laser vibrometer.
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Figure H.2: Mode shapes of 1X7 cabled beam asmdatdrom dense scan by laser

vibrometer.

295



ol vfoo | M =20 SR @ABE] Sy wm [ Agix v 2

; la =17k || R @R W|E o koW oW | 1330 Baidd G031 He
]’ % ~ Age o0 =
o, 5 y L . Wi Diestion[+7 x

o £ 7] i i =

5-oe75H: =) R BQ K[| 2| r WM Tt

wo s vemeih x| R @G R o wom | 1] 1] 1

[ e @ ®[F] 2y wn Iy

=228H 2| R @R K| = r ww el
Pl Ty j 5 0

- DI S | 1184 -
71“"% 2 Rl b O 12-4575H: =] R @A B2 v WM |11 4] d-ame: o] k@ ARSI wn 1ia]
» Z

:J‘_ : x;:-*-“’ - Wﬁ-&n’ £?” - 1]‘Ilr - XM{*‘ ’%ﬁ' £ é‘#""au %\' S

Figure H.3: Mode shapes of 1X19 cabled beam asr&atdrom dense scan by laser
vibrometer.
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Figure H.4: Mode shapes of 1X48 cabled beam asr&atdrom dense scan by laser
vibrometer.
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Figure H.5: Mode shapes of 7X7 cabled beam asmdaidrom dense scan by laser

vibrometer.
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Appendix I. Comparison of Minimum and Maximum Cabled Beam
Modelswith All Experimental Trials
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=== 1X7 Experimental Average
0- —— 1X7D Cabled Beam Trials :
—— Undamped Model Min
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o
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Figure 1.1: Undamped DTFM cabled beam model maxinamch minimum transfer
function results compared to experimental trialslf§7 cabled beam.
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Figure 1.2: Damped DTFM cabled beam model maximachr@ainimum transfer function
results compared to experimental trials for 1X7ledlbeam.
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Figure 1.3: Undamped DTFM cabled beam model maxinamch minimum transfer
function results compared to experimental trials1619 cabled beam.
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Figure 1.4: Damped DTFM cabled beam model maximachr@ainimum transfer function
results compared to experimental trials for 1X18led beam.
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Figure 1.5: Undamped DTFM cabled beam model maxinamch minimum transfer

function results compared to experimental trials1f§48 cabled beam.
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Figure 1.6: Damped DTFM cabled beam model maximaohrainimum transfer function
results compared to experimental trials for 1X4B8led beam.
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Figure 1.7: Undamped DTFM cabled beam model maxinamch minimum transfer
function results compared to experimental trials/§7 cabled beam.
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Figure 1.8: Damped DTFM cabled beam model maximach@ainimum transfer function
results compared to experimental trials for 7X7ledbeam.
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