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Modeling Cable Harness Effects on Spacecraft Structures 
 

Kaitlin S. Spak 
 

ABSTRACT 
 
Due to the high mass ratio of cables on lightweight spacecraft, the dynamic response of 

cabled structures must be understood and modeled for accurate spacecraft control.  

Models of cable behavior are reviewed and categorized into three major classes 

consisting of thin rod models, semi-continuous models, and beam models.  A shear beam 

model can predict natural frequencies, frequency response, and mode shapes for a cable if 

effective homogenous cable parameters are used as inputs.  Thus, a method for 

determining these parameters from straightforward cable measurements is developed.  

Upper and lower bounds for cable properties of area, density, bending stiffness, shear 

rigidity, and attachment stiffness are calculated and shown to be effective in cable models 

for natural frequency prediction.  Although the cables investigated are spaceflight cables, 

the method can be applied to any stranded cable for which the constituent material 

properties can be determined.   

 

One aspect unique to spaceflight cables is the bakeout requirement, a heat and vacuum 

treatment required for flight hardware.  The effect of bakeout on spaceflight cable 

dynamic response was investigated by experimentally identifying natural frequencies and 

damping values of spaceflight cables before and after the bakeout process.  After 

bakeout, spaceflight cables showed reduced natural frequencies and increased damping, 

so a bakeout correction factor is recommended for bending stiffness calculations.   

 
The cable model is developed using the distributed transfer function method (DTFM) by 

adding shear, tension, and damping terms to existing Euler-Bernoulli models.  The cable 

model is then extended to model a cabled structure.  Both the cable and cabled beam 

models include attachment points that can incorporate linear and rotational stiffness and 

damping.  Cable damping mechanisms are explored and time hysteretic damping predicts 

amplitude response for more cable modes than viscous or structural damping.  The 

DTFM  models  are  combined  with  the  determined  cable  parameters  and damping  



 iii  

expressions to yield frequency ranges that agree with experimental data.  The developed 

cabled beam model matches experimental data more closely than the currently used 

distributed mass model.  This work extends the understanding of cable dynamics and 

presents methods and models to aid in the analysis of stranded cables and cabled 

structures. 
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Chapter 1: Introduction 
 
Cables appear in a wide variety of applications, in an even wider variety of sizes and 

configurations.  From support cables made of steel and used to support thousands of 

pounds to small shielded copper cables used for the transfer of electrical signals, the 

analysis of cables has been related to the task at hand; for the support cable, the failure 

load is of primary importance, while the signal cable is evaluated for its electrical 

properties.  However, as engineers design more complex structures, the luxury and 

simplicity of evaluating only one aspect of a material is disappearing.  In cabled 

structures, it may soon be insufficient to know just the electrical properties of a cable; 

cables may be called on to provide structural support, reinforcement, or damping as well 

as signal or power transmission.  To that eventual end, increasing knowledge about the 

structural properties and behavior of electrical cables and cabled structures is a logical 

starting point.    

The purpose of this research is to investigate the dynamics of cable harnessed structures 

using experimental data and small-order analytical models with the goal of discovering 

some of the effects that attaching cables to a structure have on the dynamic behavior of 

the combined system.  In this work, the vibration responses and damping characteristics 

of spaceflight cables are investigated to characterize the effects of cables attached to 

space structures, although the methods developed would be applicable to any stranded 

cables made of multiple constituent materials.   

1.1  Motivation 

The term “cable” encompasses everything from small twisted-pair wires to massive 

structural cables used for stabilization of bridges.  The vibration of steel cables used for 

construction stabilization has been studied to prevent structural failure or collapse, but 

little work has been done to characterize the vibration response of smaller electrical 

cables, such as those used for signal transmission on space structures.  Since advances in 

material science have increased the strength to weight ratio of structural materials used 

for spacecraft, the cables and wire harnesses used for space applications make up a much 

larger mass percentage than in the past, and vibration and movement of the cables can 
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affect the movement and resonance of the structure as a whole to a much greater degree 

than in heritage spacecraft.  This work is motivated in part by previous attempts to 

understand the effects of cables attached to satellite structures that have not been 

particularly successful.   In investigating this problem and studying previous efforts it 

became clear that the cables themselves have been poorly modeled.  Hence, a good deal 

of the subsequent work addresses cable modeling and experimental validation.  The 

addition of the investigated cables to a beam structure is the culmination of the progress 

achieved in understanding the dynamics of the cables themselves.  Analysis of the cabled 

beam provides a stronger base for future work in the dynamics of cabled structures.  

 

Cables have remained essentially unchanged for the duration of space exploration; 

although insulation and jacketing materials have been improved to reduce their weight, 

the conducting metallic core remains comparatively heavy.  Space structures have 

increasingly complex signal and power requirements, so cabling is always present, and 

cables now make up a significant percentage of the total mass of the structure.  Ten 

percent is a typical design value for cable mass percentage for a NASA flight center, with 

4-15% of structure mass made up of cables for several small spacecraft recorded by the 

ESA Guidelines for Spacecraft Power and Signaling as reported in [1].  In some cases, 

the cable mass percentage may even be as high as 30% [1,2].  Figures 1.1, 1.2, and 1.3 

show a few examples of cable harnessed space structures to illustrate the proliferation of 

cables across the structure in each case.  Figure 1.1 shows a recently assembled 

spacecraft with significant cabling across its relatively lightweight aluminum panel.  

Figure 1.2 shows just one section of cabling on the recently deployed Mars Science 

Laboratory, "Curiosity"; the orange color of the cables is due to the Kapton tape 

overwrap.  Figure 1.3 illustrates the variety of cables that may be found inside a 

spacecraft, as well as the cable tie attachment method commonly used. 
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Figure 1.1: Cables of various sizes attached to an interior panel of the SMAP satellite due 
to launch in 2014.  Image courtesy NASA/JPL-Caltech.  
 

 

Figure 1.2: Kapton-wrapped cables on the Mars Rover "Curiosity".  Photo copyright 
Joseph Linaschke, used with permission1. 

                                                 
1 Photo accessed from www.photojoseph.com/curiosity 



 

Figure 1.3: Cables and wires inside the ICE
the typical cable tie attachment method.
Center, public domain. 
 

Traditionally, cables have been modele

cable was summed and added to dynamic models as a point mass at the center of gravity.

In recent years, slight improvements have been seen with distributed mass models.

these models, the cable mass 

wherever a cable is present, or by applying forces based on the weight of the cable.

However, since the addition of cables to structures significantly changes both the amount 

of damping and resonance 

with the structure at attachment points

mass rather than lumped or 

controlled remotely without visual confirmation, it is important that models of the space 

structure reflect its movement and response accurately.  In addition, dynamic testing of 

space structures is often performed before the structure is fully dressed with cables.  

Knowledge of the vibration response of a structure is necessary both for

(relevant for events such as launch or deployment), and for 

control system that relies on dynamic information about the structure. 
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To model cables on structures, either the insufficient and overly simplistic lumped mass 

model is used, or structure density is changed  in an attempt to distribute the cable mass 

across the structure along the cable footprint.  Neither of these approaches take the 

bending stiffness or inherent damping of the cable into account.  Cable damping is poorly 

understood; damping mechanisms include friction between the cable wires, material 

damping within the wires, shear due to the viscoelastic jacketing material, and viscous 

damping in air, among others.  Even the cable properties are difficult to determine, with 

past research showing that the bending stiffness of the cable varies as a function of wire 

interaction between layers.  There is currently no reliable and predictive cable model to 

accurately determine the natural frequencies and damping characteristics of a cable by 

simply inputting geometrical cable parameters and material properties.  This is partly due 

to the poor understanding of the damping mechanisms of stranded cables, as well as the 

as-built variation in cable sections of the same type and geometric arrangement, and the 

difficulty in determining global cable properties to begin with.  Cable manufacturing can 

be mechanized to minimize cable variations, but the complicated wiring layouts required 

for space structures often require hand-built connections, splices, and splits.  Hand-built 

cables show significant variation between test articles [1].  Cable properties are difficult 

to resolve into a single value for the entire cable; cables have many variables (e.g., lay 

angle, lay direction, wire material and composition, geometry, and shielding and 

jacketing material) that make it difficult to generalize results across different types of 

cables.   

 

Therefore, a cable model that could predict the dynamic response of the cable within a 

certain confidence interval based on the cable construction and properties, rather than 

costly and time-consuming testing, would be a valuable tool to incorporate into cabled 

structure models.  The developed cable model would be a valuable addition to the field of 

mechanical engineering and thus the motivation for this work is established. 

 

1.2  Challenges  

Cable terminology spans a vast range of cable applications, with some terms used 

interchangeably and other terms varying by author or source; since much past research on 
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cable dynamics was performed for non-conducting structural cables instead of electrical 

cables, terms such as "wire" and "cable" can be ambiguous.  Initial research included 

identifying common terms for structural and electrical cables and determining where 

differences were implied.  Identifying the similarities between spaceflight cables and wire 

rope was a significant step in exploring the background research and brought new 

insights into the current work.  The available literature on cable dynamics, structural 

cables, and spaceflight cables that motivated specific research questions for this 

dissertation is discussed in detail in the next chapter.   

 

Since cables are not homogeneous but are made up of wires that can move relative to 

each other, internal damping occurs due to friction.  This internal damping is difficult to 

model, so the first challenge is to model flexible cables, including damping, accurately 

enough to study the effect of cables on host structures.  Previous research shows that 

shear beam models, which take shear effects into account, are more suitable for cable 

models then the much simpler Euler-Bernoulli beam model [1,2,3].  This addition of 

shear increases the  complexity of the equations of motion and solution method.  One 

goal of this research is a useful model for design purposes, so a simple beam model is 

desired, although capturing all of the dynamics that are present is certainly a challenge 

due to a lack of higher order terms and minimal consideration of nonlinearity.  The next 

challenge is to determine the cable properties for use in the beam model simulations, 

which assume a homogenous beam material.  This is particularly difficult because the 

space cables in question have great variation in construction and geometry, and past 

research shows a wide range of bending stiffness values for cables that were meant to be 

identical [3].  Experience in the spaceflight industry provided suspicion that processes 

such as the heat and vacuum treatment that spaceflight cables must undergo known as 

bakeout may also change the bending stiffness.  In addition, to prevent end connectors 

from becoming disengaged, cables are attached to space structures with excess slack, 

introducing non-linear behavior.  As the final challenge, the cable property values will be 

included in the cable model which will be connected to a structure to yield information 

on the effects of the space cables on the structure.  An additional complication here 

involves determining the stiffness and damping coefficients of the common cable 
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connections used in space applications, as this is an unresolved problem from past 

research on this topic.  Throughout the research leading to this dissertation, it has been 

difficult but valuable to combine methods from several different fields into a coherent 

model that takes aspects of damping, cable modeling, and space applications into 

account.  Since these aspects come from different fields, the scope of this research has 

been both broad in terms of background and methods used, and deep in terms of cable 

investigation.   

 

1.3  Objectives 

The focus of this research is to further the knowledge of cable dynamics, including cable 

frequency response, damping, and effects of cables on host structures.  The work 

comprises both experimental studies and theoretical studies to develop the models and 

parameter calculation methods.    

 

Although this research began with the intent to model the response of cabled structures, 

questions quickly arose based on the literature review.  Previous studies used dynamic 

tests to deduce cable properties such as bending stiffness, but experimental testing can be 

expensive and time consuming; could cable properties be determined in such a way that 

extensive testing would not be required to predict dynamic behavior of the cable?  If 

cable parameters are determined, could flexible cables be modeled accurately with some 

form of damping?  What type of damping mechanisms might affect cable response?  

Finally, if cables could indeed be modeled to satisfaction with simple cable 

measurements, could these cable models be incorporated into structure models to yield 

useful information about the cabled structure's dynamic response?  These questions 

provided a path forward to expand existing cable literature and build on past research.  In 

addition, questions about determining cable attachment stiffness and reducing cable 

variation by reducing build-to-build variability were also raised by previous work [1,3].   

 

The initial goal of developing a predictive model for the vibration response of cable-

harnessed structures depends on an accurate cable model for spaceflight cables.  

Surprisingly, no sufficient cable model for this application existed to date, so developing 
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a damped cable model that could characterize the internal damping and vibration 

response of spaceflight cables was the first step for this research.  However, analytical 

models are only as good as the model inputs, so this required determining the cable 

parameters and connection stiffness values to use as model inputs, as well as what type of 

model would be effective, and what processes (such as bakeout) might affect the cable 

parameters.  Once that model was created, experiments to verify the physical parameters 

of the cable and validate the cable model were conducted, and, finally, the cable models 

were combined with the calculated parameters to model a cabled beam system and 

investigate the effects of cable attachment to a structure.   

 

The objectives of this work are a method for establishing the parameters needed for the 

model based on the cable material and geometry rather than experimental testing, the 

development of a novel cable model that incorporates both shear effects and damping, 

and determination of the effect of bakeout on spaceflight cable stiffness, as well as an 

overall increase in the knowledge of cable dynamic behavior and the effects of cables on 

host structures.   

 

1.4 Research Approach 

To accomplish the research objectives, the research methodology is composed of the 

following tasks: 

1) Model spaceflight cables 

a) Derive a simple beam-like model to model the transverse bending modes and 

dynamic response of cables, incorporating tension in the cable, attachment 

point characteristics, cable geometry, and coupling between bending and 

torsional modes due to the helical nature of the cable wires 

b) Identify a type of damping that can sufficiently describe the damping 

characteristics of the cable and incorporate it into the cable model 

c) Use the distributed transfer function method to solve the damped beam model 

for a variety of cable geometries 

2) Perform experiments to characterize spaceflight cables 
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a) Scan single cables with laser vibrometer to determine the vibration response 

of single cables and compile a cable test database for widespread use 

b) Identify physical parameters of cables, to include effectively homogenous 

cable parameters for use as beam model inputs through a combination of 

material testing and measurement  

c) Compare different cable construction, geometry, and bakeout treatment  

3) Develop a model for a cabled-beam 

a) Compare the experimental cable data and cable model output to confirm that a 

spaceflight cable model can be used in the cabled-beam model 

b) Input cable parameters based on the previous cable characterization 

experiments 

c) Determine values for tie-down stiffness and damping coefficients through 

experimental investigation 

d) Use the distributed transfer function approach to develop the cabled-beam 

model, incorporating tie down stiffness and cable damping 

e) Run cabled-beam experiments to determine the success and utility of the 

cabled structure model 

 

Thus, the contributions of this research include a methodology for developing a damped 

spaceflight cable model, information on the dynamic response and damping parameters 

of spaceflight cables, development of an a priori method for determining homogenous 

cable parameters for use in beam models, experimental data for a variety of treated and 

untreated spaceflight cables, and a model for a cabled beam, as well as a greater 

understanding of the dynamics and damping characteristics of cables in general. 

 

1.5 Dissertation Overview 

Background information regarding previous cable research, the evolution of cable models 

of various types, and the review of existing literature can be found in Chapter 2.  This 

includes research on structural cables, spaceflight cables, and damping mechanisms.  

Details about cable terminology, cable construction, and the methods designed to 

determine effective cable properties are presented in Chapter 3. The model methodology 
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is developed in Chapter 4, with an overview of the methods used and technical and 

mathematical background included.  The development of the cable model and the cabled-

beam model is found in Chapter 4 as well.  Chapter 5 presents the experimental work 

conducted to compile a database of cable vibration responses and determine the effect of 

bakeout on spaceflight cable stiffness.  The results for the cable parameter calculations 

and resulting cable models are presented and discussed in Chapter 6, as well as the results 

from the experimental trials, including pre- and post-bakeout comparison and the effect 

of adding cables to host structures.  Chapter 6 also discusses the effectiveness of the cable 

parameter calculations and contains the comparison between cable and cabled-beam 

models and their respective experimental data.  Conclusions, considerations, and 

contributions to the field are summarized in Chapter 7.  Supporting material, including 

MATLAB programs and additional data visualization, is included in the appendices. 
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Chapter 2: Background and Literature Review 
 
The influence of cables on space structures as a structural element is a growing but 

relatively new concern, and as such, there are only a few published studies that 

investigate modeling space cables specifically.  However, the use and modeling of cables 

in general has been an increasingly relevant field, and cable dynamics and damping 

mechanisms are broad topics that have many applications.  Combining research from all 

of these fields is necessary to contribute to cable influence predictions.  The focus of this 

work is on the transverse vibration of cables for resonance considerations, but aspects of 

cable models used for stress and fatigue calculations were incorporated, so the review of 

existing cable literature will encompass several types of cable models.  Reviews in cable 

modeling were published by Triantafyllou in 1984 [4], Starossek in 1994 [5], Rega in 

2004 [6, 7], Raj and Pathasarathy in 2007 [8] and Spak in 2013 [9].   

  

2.1 Evolution of the Cable Model 

The earliest cable vibration models were based on the vibrations of tensioned strings in 

the eighteenth century.  The rise of cable modeling began in earnest in the 1950s when 

engineers became concerned with both the stresses and strains that cables (or “wire 

ropes”) would experience.  It was a short time later that vibration amplitudes of cables 

became an area of study as well.  Through the years, reviews of cable modeling studies 

have been published, which the reader can refer to for historical relevance.  Triantafyllou 

reviewed the work on the dynamics of a horizontal elastic cable, covering both historical 

work of the 1600s to 1800s [4] and work from the 1940s through the 1980s [10].  Special 

note was given to Irvine and Caughey’s 1974 work [11] as the point at which elasticity 

effects on horizontal cable dynamics were fully understood, and this work was cited in 

many later publications.   

 

Cables were initially modeled as a string in tension [12, 13, 14, 15], which involves an 

assumption of negligible bending and torsional stiffness, sometimes known as a fiber 

model.  Starossek included damping in work that extended Irvine and Caughey’s but 

focused on a stiffness matrix approach [16], and later published a short review [5] that 
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presented the basic equations for the string-like cable model developed to date, 

neglecting any bending or torsional stiffness.  However, the stiffness values for bending 

and torsional stiffness are not actually negligible for cables (especially as the overall 

cable diameter increases), and efforts to test and model cables using beam formulations 

began.  In 1987 Utting published experimental results for 1X7 cables with varying lay 

angles that were used as a comparison standard for models as recently as 2010 [17, 18].  

A leap forward in modeling came when Velinsky incorporated bending and torsion by 

modeling the individual wires of a cable as thin rods [19] and generalized that theory for 

different core geometries [20], and Costello published Theory of Wire Rope [21].  For 

these models, cable geometry was a major factor, cable bending stiffness was calculated 

simply as the sum of the individual wire bending stiffnesses, and interaction between the 

wires was assumed to be frictionless.  The thin rod models start by summing the forces 

on a segment of wire to give six force or moment equations, four of which are trivial.  

Curvature and torsion are incorporated with the cable properties, and a stiffness matrix is 

used in conjunction with equations for the forces and moments to give the cable response.   

 

Starting from cable geometry, Chiang used the finite element method to investigate six 

factors that affect cable stiffness and stress: radius of the core wire, radius of helical 

(layer) wires, helical angle, boundary condition, strand length, and contact condition 

between core wire and helical wires [22].  This author’s work was unique at the time of 

publication by also looking at the interactions between the different cable parameters; for 

instance, in tests of a 1X7 strand, the interaction of the helix angle and boundary 

conditions was significant.  Results compared favorably with several thin rod models.    

 

Sathikh, Moorthy, and Krishnan introduced their thin rod model for helical wire strands 

with the goal of explaining the lack of symmetry in earlier models [23].  Like Huang’s 

model [24], extension of the cable was taken into account, and there was contact between 

only the core wire and each layer wire.  The test article was a single stiff core with one 

helical layer, and wire tension, bending and twist were all taken into account.  The 

authors state that the reason for the lack of symmetry in earlier models was because the 

wire twist and change in curvature were not adequately modeled, which was rectified in 
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their model through the use of generalized strains based on Ramsey’s expressions for 

strand loading and Wempner’s expressions for curvature and torsion.  The model agreed 

with Costello’s thin rod model and Utting’s experimental strand data [17], although 

Costello’s model matched the experimental data more closely [21].     

 

In contrast to the thin rod models, Raoof and Hobbs [25] and Jolicoeur and Cardou [26] 

created homogeneous (semi-continuous) models, in which each layer of twisted wire is 

modeled as an orthotropic complete cylinder with properties that match that of the cable 

layer as a whole, a process shown in Figure 2.1  Unlike the thin rod models, which follow 

the same basic method, semi-continuous models utilize a variety of methods, as long as 

each layer of wires is modeled as a cylinder.  With these models, strand stiffness and 

interwire frictional effects were taken into account.  Jolicoeur published a comparative 

study of these homogeneous cylinder models and found that the Raoof/Hobbs model was 

simpler to solve and would be preferred for tension or torsion loads, but failed to capture 

the range of possible bending stiffness, so the Jolicoeur/Cardou model should be used if 

bending will occur [27].  Raoof and Kraincanic compared the semi-continuous model to 

thin rod models for helical cable analysis and found that thin rod theory was more 

reliable for small diameter, fewer strand cables, while semi-continuous models were 

advantageous for large diameter wire cables [28].  Dreyer compared discrete and 

continuous models for static hanging cable cases and found that the continuous model 

was more accurate, but only slightly, and was more computationally intensive to solve 

[29].  Hover and Triantafyllou investigated the coupling between axial and transverse 

vibrations using a beam-like formulation and noted that higher EI values made a cable 

more beam-like [30].   
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The beam model posits that the cable can be described using the equations for the 

vibration of a solid beam, with damping taken into account either through traditional 

ing terms that are altered to incorporate the hysteretic nature of cable damping, or 

through the inclusion of a non-constant bending stiffness, discussed in detail later.  This 

model tends to work well for low-amplitude vibration modeling, as the cable is 

like when it has minimal curvature and the individual wires are not sliding and 
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that is wrapped into a larger helical cable actually forms a double helix shape

.  Velinsky first investigated this, followed by Ashkenazi [31]

and Pagalday [33].  Velinsky’s model calculated the tension and torque in a 

straight wire, and then calculated those values for a helical strand, taking the additional 

twist and extension into account.  Then, the effect of changes of curvature of a helically 

wound helical strand (the double-helix) were incorporated by approximating the bending 

round the core cylinder [19, 20].  Elata went back to the fiber model 

to investigate the double helix, neglecting both bending and torsional rigidity of the 

wires, but providing a more accurate kinematic analysis of the double-

ed with experimental data [32].  Huang and Knapp presented parametric 

equations for double and triple helical strands, where a helical strand in one layer 
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.  For a detailed overview of the various nonlinear models used for cables, 

the reader is referred to Rega’s 2004 two-part cable review [6, 7].  Rega’s

almost exclusively cables modeled without bending stiffness and with only viscous 

damping, and is limited to small sag cables with low vibration amplitudes.

system modeling and methods of analysis, and [7] covers the nonlinear phenomena 

present, as well as bifurcation and chaos phenomena.  Around the same time, 
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rather than adding a damping term.  Knapp and Liu considered friction between cable 

layers as a damping mechanism [41].  These are straightforward models that are good 

starting points for the work in damping which follows.   

2.2 New and Extended Models  

The semi-continuous approach was extended by Crossley, Spencer and England in 2003 

[42].  Built directly on the work of Jolicoeur and Cardou, in which each layer of helical 

wires is modeled as a cylinder [26], Crossley et al. solve similar problems using a 

different method.  They added bending loads to the axial and torsional loads studied 

previously, using a method based on stress-strain relations, and extended the work to 

composite cylinders and multi-layer cables using the same method.  Crossley et al. also 

note that the values for frictionless and bonded cases are quite different, showing the 

need to model interwire friction to get a more accurate result. 

 

Ghoreishi, Messager, Cartraud and Davies investigated the validity and limitations of 

several older analytical models by comparing them to an FE model [43].  In the 

comparison of the stiffness matrix components of nine models, there were two distinct 

result groups for the axial stiffness as a function of lay angle, both slightly stiffer than the 

FE model.  The group of models that take the change of geometry due to Poisson’s ratio 

into account were slightly closer to the FE results.  In the case of torsional stiffness 

versus lay angle, the different models were not as closely grouped, but were still stiffer 

than the FE model (with the exception of Hruska’s model, which does not take torsional 

stiffness into account and therefore had poor agreement with all of the other models).  

Overall, Costello’s thin wire model showed the closest agreement to the FE model for 

both axial and torsional stiffness.  Agreement between all models was best for lay angles 

less than 20 degrees [43].  Ghoreishi et al. also showed that stiffness does vary 

appreciably for all models for different lay angles. 

 

The method presented by Inagaki, Ekh, and Zahrai takes friction into account [44].  A 

geometrical model is made assuming infinite friction, and then finite friction is added to 
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the model to study the transition from the no-slip condition to the full-slip condition.  

This model is discussed in further detail when friction damping is discussed. 

 

Lacarbonara, Paolone, and Vestroni applied solution methods directly to the equations of 

motion to yield exact solutions for non-shallow cables, neglecting flexural rigidity [45].  

The mode shapes depend on both the geometric and elastic stiffness, and the mode shape 

trends and behaviors are investigated extensively.   Shortly after, Lacarbonara and Pacitti 

developed a model for cables undergoing both tension and bending using viscoelastic 

constitutive laws [46].  The authors discuss the inclusion of flexural rigidity as a way to 

deal with loss of tension in the cable, but noted that more study on the impact of flexural 

stiffness to cable behavior is needed.  They compared response curves of cables modeled 

with and without bending stiffness, and found that as the cable tension decreases, the 

difference in the model curves increases.  Flexural rigidity must be included to avoid 

numerical errors arising from low or zero tension cables.   

 

Usabiaga and Pagalday developed a linear model for characterizing double-helix cables, 

but did not take Poisson’s effect causing radial contraction into effect [33].  The authors 

built on the work of Ashkenazi et al. [31], using the thin rod model and assuming that 

friction between wires was so high that the wires would not move relative to each other.  

However, this work added additional kinematic conditions for curvature and torsion 

calculations.  The authors assume that outer wires of the outer strand deform 

proportionally to the central wire’s deformation, which does not agree with the Euler-

Bernoulli hypothesis that plane sections will remain plane in each individual wire.  

Although the Euler-Bernoulli hypothesis is typical of earlier cable models, these authors 

posit that relaxing the planar requirement will lead to more accurate calculation of the 

deformation of the double-helical wires.  Deformation and rotation results were compared 

to Costello’s models [21], and agreed well enough to justify omitting Poisson’s effect, 

with differences in torque/rotation calculation due to the additional modeling of the 

double-helical wires.  Stress results were compared to Ashkenazi et al.’s results, showing 

a significant difference when the additional kinematics were included to attach material 

elements to the helical outer wire strands instead of the straight core.  Model validation 
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with finite element models would be the next step, as the author notes that rigorous 

experimental work would be complicated and unlikely to yield complete and accurate 

results for the wire-wire interactions [33]. 

 

Of course, finite element models find their way into any field of study; Jiang, Warby, and 

Henshall developed a finite element model to analyze the complex contacts for wires that 

contact both the core and their neighboring layer wires under axial load [47].  This is in 

contrast to Huang’s assumption that wires always separate from neighboring layer wires 

when under tension.  Jiang et al. show that if contact deformation is taken into account 

the wires maintain contact with the adjacent wires in the same layer during tension for 

wires with specific core and layer radii.  They also show that hysteresis must be 

considered when friction is included in the model.  The finite element model requires 

fewer simplifying assumptions than current analytical models, so local contact, friction, 

exact geometry, and contact deformation can all be considered.  This model is one of the 

few that specifically investigates both wire-core contact and wire-wire contact.  

Erdonmez and Imrak also published a finite element model for axially loaded wire rope, 

taking the double helix geometry, Poisson effect, and contact with both core and 

neighboring wires into account [18].  Their numerical results showed good agreement 

with both frictional and frictionless analytical results from Costello [21] and test results 

from Utting [17].  Jiang published another finite element model using 3D solid elements 

and compared the results favorably to Costello’s model [48].  This model analyzes the 

stresses in a cable undergoing only bending, but also reverts back to the core-wire only 

contact that is common to most models.  Jiang finds that the contact force between core 

and wire is negligibly small and thus, different coefficients of friction do not cause 

noticeable changes in the model.  This is in opposition to results obtained by Papailiou 

[49] and is likely to be due to the idealized nature of the finite element model or the use 

of Coulomb friction rather than a more appropriate friction model [48].  Shibu, 

Mohankumar, and Devendiran also used the finite element method to solve equations 

based on thin-rod theory for a cable under axial tension [50].  They used the theoretical 

procedure developed by Sathikh et al. [23], but extended it from a core and single layer 

model to a core and two helical layers.  A finite element model was built off of the 
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theoretical work, and both theoretical and FEM values were compared to published 

results.  The finite element percent differences from values published by Utting [17] were 

0.7% and 5% for axial load with fixed and free ends, respectively, but theoretical 

differences were 20% and 12.5% [50].  The authors found that the end conditions (free or 

fixed) made a significant difference in the axial rigidity. 

 

Argatov developed a model to include the effects of Poisson’s ratio and contact 

deformation to more accurately predict overall cable deformation [51].  Neglecting 

interwire contact is common in many previous models, and thus, this model extends the 

current work since it considers not only wire-core contact, but also contact between 

adjacent wires in the same layer.  The author assumes that the wires remain helical and 

that tension, curvature and twist remain uniform and constant.  Argatov found that the 

effect of elastic local deformations is small for lay angles less than 15 degrees, and that 

the deformations are large enough to obscure the Poisson’s ratio deformation for lay 

angles of more than 25 degrees.  Just as in Ghoreishi et al.’s findings [43], Argatov found 

that the agreement for lay angles of greater than 20 degrees was poor [51], and 

hypothesized that the difference was due to the effect of interwire contact.  Frictional 

effects are neglected in this model, but the work on contact deformation may could be 

used to apply frictional effects in the future to further study cable damping. 

 

Although the published models can be grouped in a variety of ways, thin-rod models, 

beam models, and semi-continuous models are recurring cable model types, with some 

papers focused just on modeling variable bending stiffness, finite element models or 

purely experimental results.  Equations and theory to determine bending stiffness arose as 

aspects of other models or as equations to be applied to models in place of constant EI.  

Different models incorporate variation in bending stiffness, Poisson effects, different 

ways to incorporate contact between wires, strain-displacement relations, equations for 

wire curvature, and calculations of the normal forces between the wire, all of which lead 

to different final models with different assumptions and varying degrees of complexity.  
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2.3 Damping of Cable Vibrations 

Once cable modeling became sufficiently sophisticated to predict cable motion, 

researchers began investigating cable damping [52, 53].  Damping was incorporated into 

existing and new models in a variety of ways to reflect the numerous physical damping 

mechanisms that contribute to energy dissipation in cables.  Damping mechanisms 

followed the divisions of the existing cable models; thin-rod models used damping 

modeled as interwire friction, while damping modeled as variable bending stiffness or 

with a hysteretic damping term was more commonly used in beam models.   

 

One of the earliest investigations of internal cable damping was the work of Yu in 1949 

[54].  Yu noted the path-dependent (hysteretic) characteristic of internal cable damping 

and defined the paths as the space curves of the cable.  Yu’s analysis showed that only 

about 5% of the energy dissipation was due to internal solid friction, with the majority of 

energy dissipation caused by friction between the wires.  Experimental data for an un-

stretched cable showed damping to be much higher in a cable than in a single wire, and a 

shorter lay length correlated with an increase in damping capacity.  This analytical model 

assumed a constant bending stiffness, no sag, friction due only to linear damping 

proportional to tension and constant damping independent of tension, both of which are 

due to interaction between wires.  This initial model worked for small amplitudes and 

provided a strong starting point for further investigations into cable damping.   

 

An interest in damping of overhead power transmission lines in the 1990s and a desire to 

mitigate vibrations in support cables spurred further research on cable damping 

mechanisms [55].  According to Otrin and Boltezar, air resistance, internal material 

damping, and the friction due to interwire motions were all damping mechanisms that 

caused energy loss in cable vibrations, and viscous and structural damping models were 

widely used to quantify this loss [56].  Due to their relative simplicity, linear proportional 

damping models were and are commonly used in which the damping is proportional to 

the rate of change of the displacement with the form � ���� .  These models may be 

sufficient for modeling air resistance as the cable vibrates in air, but the internal damping 

and friction effects are not adequately captured.   
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The point of damping models is to describe and quantify the physical energy loss that 

occurs, so it is important to understand the mechanisms that are causing the losses.  It is 

reasonable to categorize the current models into three major categories by their internal 

damping mechanisms; damping due to friction between the individual wires and modeled 

through interwire friction, damping due to changes in the cable geometry and properties 

and modeled as variable bending stiffness, and damping due to internal friction within the 

wires and modeled with internal damping or hysteretic terms.  In the case of stranded 

cables, several damping mechanisms may be evident; both imperfection in the wire 

materials and internal friction between the wires make up hysteretic losses [57, 58].  

Cable damping is usually reported as either a log decrement value, a ratio of energy 

dissipated to energy stored (loss factor), or as a percent of the critical damping value 

(damping ratio).  

 

2.3.1 Cable Damping Due to Interwire Friction 

This type of damping refers to the energy lost due to frictional losses as individual wires 

in a cable move against each other during cable motion.  In an effort to show the presence 

of friction between wires, Urchegui, Tato, and Gomez studied and characterized the 

material degradation that occurred between contacting wires, using experimental testing 

and SEM micrographs to inspect the wear on individual wires in 7X19 steel cable with a 

polymeric jacket [59].  This work showed that friction wear on the core wire is significant 

and thus, friction forces indeed dissipate energy in cables.  The authors noted that a 

correlation between wire wear and dissipated friction energy could be developed if the 

friction force and sliding amplitude between wires could be measured, which would be a 

valuable contribution to the study of cable damping.   

 

The thin-rod model presented in previous sections, in which each wire is modeled as an 

individual curved rod, is commonly used for interwire friction analysis.  Most of these 

models explicitly state whether the wires have frictional contact between just the core 

wire or the core wire and neighboring wires.  Figure 2.3 shows an inter-layer contact 

model of a helical cable with simplified interwire friction and normal forces.  One of the 



 

first references to characterize internal wire friction in this way came

1990 [60], who characterized the motion of individual wires in contact with ea

and then from Raoof and Huang 

prediction of cable damping during bending

both core-wire and wire

damping of single-layer strands with axial preload subject to cyclic bending was 

presented.  Kumar and Botsis also studied the contact forces in cables by analyzing the 

contact stresses, assuming only wire

elasticity was a major factor in the stresses between wires and since these stresses are 

related to the contact forces, one can assume that the modulus of elasticity of the cable 

should be taken into account.  

Figure 2.3: Simplified interwire contact forces.

pressure from the outer layer to each successive inner layer, causing normal forces 

between the wires.  Sliding friction between the wires is proportional to the normal force 

and acts along the line of contact b

 

Models that completely neglected friction were the norm through the 1990s, and when 

friction was finally included, it was in an “all

assumed perfect slip and no friction,

Chiang ran separate cases for both sliding contact and adhesive contact

wire and layer wires using finite element analysis [22]

upper and lower bounds based on no slip and no friction cases
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t references to characterize internal wire friction in this way came

who characterized the motion of individual wires in contact with ea

and Huang in 1992, whose model gave an upper bound to the 

prediction of cable damping during bending [61, 62].  Contact forces were studied for 

wire and wire-wire contact, and a theoretical model to characterize the 

layer strands with axial preload subject to cyclic bending was 

presented.  Kumar and Botsis also studied the contact forces in cables by analyzing the 

contact stresses, assuming only wire-core contact [63].  The material modulus of 

city was a major factor in the stresses between wires and since these stresses are 

related to the contact forces, one can assume that the modulus of elasticity of the cable 

should be taken into account.   

 

Simplified interwire contact forces.  Tension on the cable as a whole results in 

pressure from the outer layer to each successive inner layer, causing normal forces 

between the wires.  Sliding friction between the wires is proportional to the normal force 

and acts along the line of contact between the wires, shown by the dotted lines.

Models that completely neglected friction were the norm through the 1990s, and when 

friction was finally included, it was in an “all-or-nothing” sense; these 

assumed perfect slip and no friction, or perfect adhesion of the wires and infinite frictio

cases for both sliding contact and adhesive contact

wire and layer wires using finite element analysis [22], and Jolicoeur and Cardou 

ds based on no slip and no friction cases [26].
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who characterized the motion of individual wires in contact with each other, 
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Contact forces were studied for 

wire contact, and a theoretical model to characterize the 

layer strands with axial preload subject to cyclic bending was 

presented.  Kumar and Botsis also studied the contact forces in cables by analyzing the 

].  The material modulus of 

city was a major factor in the stresses between wires and since these stresses are 

related to the contact forces, one can assume that the modulus of elasticity of the cable 

 

Tension on the cable as a whole results in 

pressure from the outer layer to each successive inner layer, causing normal forces 

between the wires.  Sliding friction between the wires is proportional to the normal force 

etween the wires, shown by the dotted lines.  

Models that completely neglected friction were the norm through the 1990s, and when 

these models either 

or perfect adhesion of the wires and infinite friction.  

cases for both sliding contact and adhesive contact between the core 

and Cardou showed 

.  Not surprisingly, 
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Elata, who used a single model with both frictionless and infinite friction cases, found 

that there was a significant difference in the stress results at the wire level depending on 

whether friction was included [32].  Usabiaga and Pagalday’s model assumed infinite 

friction, but recommended that friction forces be determined more accurately [33], a 

common conclusion.    

 

Instead of assuming a constant all-or-nothing friction value, Labrosse, Nawrocki, and 

Conway studied frictional dissipation in axially loaded strands by modeling the 

frictionless case first, and then applying a linearized “law of friction” to the thin rod 

model to study the frictional effects [64].  Damping was calculated as a specific loss per 

cycle, made up of loss due to both material energy and frictional energy.  For a straight 

and unbending strand, the amount of energy dissipated due to frictional effects was quite 

small compared to other damping sources.  However, although the author mentioned 

vibration loads, bending was not taken into account in this model, and it is likely that the 

interwire effects when bending occurs dissipate more energy and thus, increase damping.  

This model was limited to one layer with layer wires that contacted only the core, but did 

not assume that slip occurred or that the interwire forces were known and constant.  

Labrosse noted that interwire sliding occurred along the helical contact lines of the layer 

cables when the static frictional force was overcome, agreeing with Ramsey's earlier 

work [60].  He showed that specific loss values increased when cable ends were free, and 

as the lay angle increased.  Labrosse claimed that losses from pivoting friction between 

wires could always be neglected when compared to losses from viscous damping and 

friction due to wire slippage. 

 

Since measurement of interwire friction forces was difficult, research continued to 

analytically predict these forces and incorporate them into models to compare the overall 

cable behavior to experimental results.  Huang was one of the first to model the 

individual wires of a helical cable separately as they deformed due to extension of the 

cable, and hypothesized that separation between the helical wires could occur if the cable 

was stretched [24].  Because the decrease in core area as the cable is lengthened is greater 

than the decrease in the diameter of the cylinder formed by the helical wires, separation 
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does indeed occur in some cases.  This leads to change in the contact area between wires, 

which can alter the friction between wires as well as the bending stiffness due to the 

change in wire geometry.  While Huang theorized that this separation would occur in 

every case, and many models do assume only core-wire contact, Jiang showed the 

exceptions to that assumption [47].  This research indicated that there should be some 

way of modeling the change in frictional force or bending stiffness as the cable vibrates 

or stretches.  The variable bending stiffness discussed in the next section addresses these 

issues well. 

 

In the category of modeling individual wires, a finite element model is worth mentioning 

here.  Zhu and Meguid presented a new finite element to use for slack cables in [65].  

Unlike most cable models, Zhu and Meguid departed from the assumption that the cable 

would have non-zero tension, and used homogenized Rayleigh damping to determine the 

damping effects of the cable.  Their damping matrix takes the form ��� = ���� + ����.  
Zhu and Meguid refer to the flexural hysteresis as “flexural damping,” supporting the 

theory that the friction between the wires and subsequent bending stiffness variability 

contribute to the energy dissipation of a vibrating cable. 

 

Energy dissipation caused by sliding friction often incorporates Coulomb damping, 

which forms the basis for the following interwire friction damping models.  Cutchins, 

Cochran, Kumar, Fitz-Coy, and Tinker used a Coulomb damping model to investigate the 

hysteretic loops of cable vibration [66].  Factors influencing the stiffness and damping of 

their experiments included wire diameter, number of strands, axial tension, and length of 

the cable.  Comparison of experimental and theoretical results showed that the friction 

force was frequency dependent.  At this time in the late 1980s, the damping 

characteristics of wire rope were not well understood, and design was accomplished 

through experimentation.  The authors hoped that the results they achieved regarding the 

deformation behavior of the cables would help to model damping in cables due to the 

friction between wires. 

 



 

The Coulomb model was quickly found to be limited, however.  Raoof and Huang noted 

that frictional damping models based on a simple Coulomb rigid

from significant limitations when modeling cables with large radius of curvature, so 

elastic kickback (some amplitude diminished by elastic deflection of the system instead 

of transmission to the damper) must be included [

form of an additional spring added to the traditional Coulomb model, as shown in Figure 

2.4.  This damping formulation resulted in a logarithmic decrement of:
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The Coulomb model was quickly found to be limited, however.  Raoof and Huang noted 

that frictional damping models based on a simple Coulomb rigid-plastic dashpot suffered 

from significant limitations when modeling cables with large radius of curvature, so 

elastic kickback (some amplitude diminished by elastic deflection of the system instead 

of transmission to the damper) must be included [61].  This elastic kickback took the 

form of an additional spring added to the traditional Coulomb model, as shown in Figure 

2.4.  This damping formulation resulted in a logarithmic decrement of: 
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is the amplitude and K', Kf and Ff are damping values from the damping model 

 

Comparison of traditional Coulomb damping model with hysteretic Coulomb 

As mentioned previously, Sauter described the hysteresis and energy dissipation of a 

Stockbridge damper cable due to interwire friction in detail [38].  Sauter noted that the 

hysteretic damping mechanism in slack cables was caused by Coulomb friction between 

the cable wires.  Sauter considered the cable as a whole rather than modeling the 

individual wires, and used a Masing model as shown in Figure 2.5 to evaluate the local 

behavior of damper cables.  The Masing model was made up of linear springs with 

and Coulomb friction elements with a maximum sticking force of 

combination of elastic springs and dry friction from the Coulomb friction elements 

represents the static hysteresis evident in the cable damping, and is similar to the elastic 
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As mentioned previously, Sauter described the hysteresis and energy dissipation of a 

Stockbridge damper cable due to interwire friction in detail [38].  Sauter noted that the 

s was caused by Coulomb friction between 

the cable wires.  Sauter considered the cable as a whole rather than modeling the 

individual wires, and used a Masing model as shown in Figure 2.5 to evaluate the local 

as made up of linear springs with 

and Coulomb friction elements with a maximum sticking force of hi.  This 

combination of elastic springs and dry friction from the Coulomb friction elements 

damping, and is similar to the elastic 



 

kickback damping model used by Raoof and Huang [

cable was due not only to bending, but to shear effects as well, so a beam formulation 

which considers shear effects was more appr

Goodding’s work on spaceflight cables as well [6

increased complexity of the beam equations that recent models still neglect shear.   

Figure 2.5: Masing-based model used to incorporat

spring values and hi are the maximum stiction forces for the Coulomb element.  

 

Trends in the data from elastic kickback models showed that for small radius of 

curvature, an increase in helix angle reduced damping, while

wires or cable strain increased damping [

increase in helix angle actually decreased damping [

small helix angles in the range of 

damping factors, likely due to the increased contact zone between the wires [6

single relationship between curvature, helix angle and damping does not seem possible to 

formulate for a large curvature range. 

cable design to predict the curvature value at which cable behavior deviates from the no

slip case, the maximum specific loss of the cable, and the axial and torsional 

using different formulas f

but still, no single relationship could be found without incorporating variable bending 

stiffness. 

 

Although most interwire friction models were based on thin

semi-continuous models.  Raoof and Kraincanic examined helical models based on 
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kickback damping model used by Raoof and Huang [61].  Results showed that slip in the 

cable was due not only to bending, but to shear effects as well, so a beam formulation 

which considers shear effects was more appropriate.  This was confirmed with 

Goodding’s work on spaceflight cables as well [67], and it is likely due only to the 

increased complexity of the beam equations that recent models still neglect shear.   

 

based model used to incorporate frictional damping, where

are the maximum stiction forces for the Coulomb element.  

Trends in the data from elastic kickback models showed that for small radius of 

curvature, an increase in helix angle reduced damping, while increasing the number of 

wires or cable strain increased damping [61].  However, for large radius of curvature, an 

increase in helix angle actually decreased damping [61].  Kumar and Botsis found that 

small helix angles in the range of % &
' resulted in larger contact stresses and led to higher 

damping factors, likely due to the increased contact zone between the wires [6

single relationship between curvature, helix angle and damping does not seem possible to 

formulate for a large curvature range.  The authors later presented a method for use in 

cable design to predict the curvature value at which cable behavior deviates from the no

slip case, the maximum specific loss of the cable, and the axial and torsional 

using different formulas for different scenarios to calculate the effective stiffness [6
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orthotropic theory and thin rod theory and concluded that bending and torsion behavior of 

helical cables was very dependent on the contact between individual wires and layers for 

both thin-rod and semi-continuous models.  For small cables, thin rod theory predictions 

were more accurate, but large diameter strands with many wires were better modeled 

with orthotropic (semi-continuous) theory [28].  The semi-continuous model is well-

suited to larger cables because the average characteristics for each layer do not become 

more complex as the number of wires increases, unlike the thin rod model.  In an effort to 

provide information of more practical use, and based on the effectiveness of semi-

continuous theory for large diameter cables, Raoof and Davies next focused on specific 

axial and torsional losses of cables of more than 19 wires and of large overall diameter 

[69].  An increase in lay angle corresponded to increased axial damping and decreased 

torsional damping.  The authors also noted that old “bedded-in” cables were significantly 

better behaved for prediction models, likely because the contact zones between the wires 

were worn in and stable.   

 

In a contrast to calculating the frictional forces first, some authors attempted to find 

dissipation factors or damping characteristics directly.  Otrin and Boltezar looked at 

vibrations of cables with no axial preload, and determined the dissipation factor [56].  

Viscous and structural damping terms were included, with the viscous damping modeled 

as proportional Rayleigh damping and structural damping included as a dynamic modulus 

of elasticity, incorporated with the form � ���� + �(1 + *+,.  The structural damping 

model produced results that more closely matched the experimental transfer function 

results, but still had an error of up to +/-30%.     

 

Rawlins obtained interesting results for damping capacity directly when he compared an 

analytical model to untreated, pre-stretched, and pre-vibrated cables, respectively [70].  

Rawlins investigated the internal damping due to movement between cable strands of 

cables in transverse vibration, building on work presented by Hardy and Leblond.  The 

analytical model assumed excitation commensurate with wind-induced vibration, 

damping due only to internal causes (no external fluid damping considered), constant 

elliptical contact, and constant curvature.  The specific damping capacity of the cable is 
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defined as the ratio of energy dissipated to the maximum energy stored, and when the 

cable's vibration occurs in sine-shaped loops, the damping capacity calculated using 

Rawlins' model was: 

Ψ =	 3
2���$ ∗ 1(2, �,  , 3, +	

54���$	 ∗ 1(�567895 , :, ;, <, �, =, �,  , 3) 
where the first term corresponds to material damping and is a function of the material 

damping capacity 2, material compliance C , traction force F, and number of interlayer 

contacts N, and the second term corresponds to frictional damping and is a function of the 

area of the contact ellipse between wires Aellipse, the strand diameter d, the interwire 

pressure P, Poisson's ratio <, modulus of rigidity G, coefficient of friction =, material 

compliance C , traction force F, and number of interlayer contacts N.  Dissipation of 

cable energy is difficult to measure experimentally and it is unclear whether the difficulty 

arises from testing procedures or overlooked cable parameters or geometry [70].  As 

such, the analytical model was developed to calculate baseline values and test treated 

cables.  Expressions for the dissipation of energy per cycle and specific damping ratio 

were developed.  The model calculated only internal damping, but the experimental 

damping measurements included fluid-dynamic damping due to the movement of the 

cable in air, as well as end-point damping from the clamped ends and elongational 

damping, or loss of energy through the supports due to imperfect longitudinal rigidity 

there.  The author eliminated or corrected for these additional damping values for three 

groups of cables: an untreated group, a group that was subject to high tension stretch for 

several days, and a group that was treated with high vibration for at least 24 hours.  In 

comparing the model and experimental data for material damping, the untreated cables 

measured to calculated damping ratios of around 1, but the pre-stretched cables and 

vibrated cables had ratios that were much higher than one, and correlation was no better 

than order of magnitude agreement.  Despite the poor agreement between model and 

reality, the author’s discussions and conclusion indicate several factors and mechanisms 

that should be taken into account for further research, and show the importance of taking 

cable history (such as past tension or excitation) into account since it clearly leads to 

varying behavior.   
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The most recent cable models are comprehensive, incorporating many aspects of the 

previously investigated models.  In 2011, Gnanavel and Parthasarathy published work on 

the effect of interfacial contact forces in cable assemblies and developed complete 

models that took both tangential and normal forces into account, modeling each wire as a 

thin curved rod with interwire pressure, Poisson effect, and Coulomb friction effects 

included [71].  The authors assumed that the radial contact from the helical strands 

actually squeezed the core strand when the cable is under load, called the radial contact 

mode.  Previous work showed that core-wire and wire-wire contact occurred only for lay 

ratios of less than 7.8 (corresponding to 15 degree lay angle), and core-wire contact only 

occurred for larger lay ratios.  A major result of this study was relationships between lay 

ratios and stiffness and contact stresses: as lay ratio increased, strand axial strain was 

fairly constant, while contact stresses dropped dramatically but eventually leveled out. 

 

Gnanavel and Parthasarathy [72] next differentiated between different types of contact 

(lateral contact, radial contact, and the combination thereof) as illustrated in Figure 2.6.  

Cables were modeled assuming only one contact mode at any given time and then all 

models were combined.  The end result was an overall reduction in stiffness compared to 

other models that used only one contact mode for the entire loading process.  They 

investigated a cable with combined lateral and radial contact modes, which had core-wire 

radial contact after a strain level threshold was reached.  By including both types of 

contact and the transition point, Poisson’s ratio and slip effects, the authors found a lower 

axial stiffness and higher torsional stiffness than previous models calculated.  It should be 

noted that friction is necessary for both of these models; using a coefficient of friction of 

zero leads to numerical errors or an indeterminate problem [51].  These recent models 

provide a fairly complete study of cable damping due to interwire friction. 

 



 

Figure 2.6:  Definition of wire contact types used in Gnanavel and Part

[72]. 

 

There is no denying that friction plays a role in cable damping, but there are varying 

opinions about how much effect the coefficient of friction between individual wires has 

on the damping effect, with Raoff and Hobbs concluding th

is independent of the coefficient of friction [25], Papailiou finding that the coefficient of 

friction between wire layers has great bearing on the analysis of conductor bending [49], 

and Dastous following Papailiou's assumptio

wires in the same layer are negligible, and finding little change in the results as the 

friction coefficient between layers was varied [7

cable behavior (as opposed to in

[43].  However, each study made assumptions about the value of the coefficient of 

friction, the calculation of frictional forces, and negligibility of other factors, so the 

dependency of  frictional 

between layers) is not yet conclusive, although it trends towards requiring a friction term 

but insensitivity to the friction term's specific value.  Frictional forces are quite variable 

depending on the material and geometry of the cable, and measurement of the forces 

between wires is not trivial.  In general, including the coefficient of friction to determine 

cable bending stiffness (which is related to damping and thus affects the cable behavior)

is necessary if the variable bending stiffness of the cable is not taken into account in other 

terms. 
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Definition of wire contact types used in Gnanavel and Part

There is no denying that friction plays a role in cable damping, but there are varying 

opinions about how much effect the coefficient of friction between individual wires has 

on the damping effect, with Raoff and Hobbs concluding that the maximum specific loss 

is independent of the coefficient of friction [25], Papailiou finding that the coefficient of 

friction between wire layers has great bearing on the analysis of conductor bending [49], 

and Dastous following Papailiou's assumption that the interwire friction forces between 

wires in the same layer are negligible, and finding little change in the results as the 

friction coefficient between layers was varied [73].  Ghoreishi et al. showed that overall 

cable behavior (as opposed to individual wire behavior) was not as dependent on friction 

[43].  However, each study made assumptions about the value of the coefficient of 

friction, the calculation of frictional forces, and negligibility of other factors, so the 

dependency of  frictional loss on the friction coefficient (whether between wires or 

between layers) is not yet conclusive, although it trends towards requiring a friction term 

but insensitivity to the friction term's specific value.  Frictional forces are quite variable 

on the material and geometry of the cable, and measurement of the forces 

between wires is not trivial.  In general, including the coefficient of friction to determine 

cable bending stiffness (which is related to damping and thus affects the cable behavior)

is necessary if the variable bending stiffness of the cable is not taken into account in other 
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Overall, most models that seek to include the friction in between the wires are based on 

the thin rod theory, and try to characterize the friction forces to determine the degree of 

damping.  These models are generally useful for stress and strain calculations. 

 

2.3.2 Modeling with Variable Bending Stiffness  

Another type of cable damping model involves investigating the changes in bending 

stiffness that occur if the cable is bent or stretched.  A part of this effect is still due to 

friction, and another part is due to the movement of the wires (i.e., wire rotation).  Cables 

can be modeled as strings, with negligible bending stiffness, or as beams, where bending 

stiffness is considered.  Previously, bending stiffness was just calculated as an aggregate 

sum of the bending stiffness of each individual wire.  However, research has shown that 

bending cables go through distinct phases of wire slippage [74].   

 

The first phase is the adhesive or no-slip phase, where the friction forces are large enough 

to keep the wires in place and the cable behaves as a solid beam.  Then there is the 

transition phase, where the static friction is overcome and the wires begin to slip, and 

finally the full slip phase where the wires have fully slipped to a new position.  These 

transition points are based on curvature, wire size and material, and location of the wire 

in relation to the neutral axis of the cable.  Figure 2.7 shows a representative relationship 

between bending stiffness and curvature for an arbitrary cable with a constant maximum 

bending stiffness value until wires begin to slip across each other, approaching a 

minimum bending stiffness once all wires have slipped.  Lanteigne stated that slip occurs 

at the outer layer first [75], where bending stress is maximum and axial forces are 

minimum, which agrees with Raoof’s experimental observations [25].  References [44, 

62, 73, 74, and 76] agree that wire slip commences in the outer layer and that wires that 

are closest to the cable’s neutral axis slip first, and both [74] and [77] agree that wire 

slippage reduces flexural stiffness.  Studies that investigate cable damping through 

variable bending stiffness rather than calculation of frictional contact forces are 

investigated here.  



 

Figure 2.7:  Relationship between bending stiffness and curvature; bending stiffness is 

constant and maximum with minimal curvature when wires are not sliding against one 

another.  Once the wires b

are slipping and some are sticking; 

average curvature between stick and slip states.  When the cable experiences high 

curvature, all wires have slipped and the bending stiffness approaches the minimum. 
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again clear that bending stiffness is necessary for cable modeling.  In a discussion about 
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models and noted that the only model that did not 
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Relationship between bending stiffness and curvature; bending stiffness is 

constant and maximum with minimal curvature when wires are not sliding against one 

another.  Once the wires begin to slip, they enter the transition state, where some wires 

are slipping and some are sticking; Kslip is the critical curvature that represents the 

average curvature between stick and slip states.  When the cable experiences high 

ave slipped and the bending stiffness approaches the minimum. 

Past studies showed that bending stiffness is an important aspect of cable dynamics.  

Johnson and Christenson noted, cables have low inherent damping characteristics due to 

high flexibility [52].  These authors were interested in incorporating 

cable sag, inclination, and axial flexibility, but they ignored flexural rigidity.  The model 
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that could very quickly calculate axial dynamics [78].  The experimental results

smaller in amplitude than the models, and the phase deviations grew over time as well.  
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listed as explanations for the disparity in experimental and theoretical res

again clear that bending stiffness is necessary for cable modeling.  In a discussion about 

Jolicoeur and Cardou’s paper, Jayakumar, Sathikh, and Jebaraj compared several thin rod 

models and noted that the only model that did not assume interaction between wires 
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Jolicoeur and Cardou’s paper, Jayakumar, Sathikh, and Jebaraj compared several thin rod 

raction between wires 
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(loose wire spring model) had vastly different values for both EA and GJ than all of the 

other models [79].  It is clear that this interaction between wires and the bending stiffness 

variation must be taken into account. 

 

Many point to Papailiou for the comprehensive model for variable bending stiffness.  In 

both a paper [49] and thesis [74], Papailiou modeled damping of a cable by 

characterizing the variable bending stiffness due to the frictional contact between wires 

under bending and tension.  The model calculated bending stress due to the bending of 

each individual wire around its own neutral axis, but also incorporated additional stress 

due to the high friction that prevents slipping.    Papailiou noted the solid beam behavior 

at maximum bending stiffness and the behavior of all wires sliding over one another at 

the minimum bending stiffness value, which is the sum of the individual wire stiffnesses, 

but went further to quantify a bending stiffness slip value to calculate the additional 

stiffness as wires moved in relation to each other.  Table 3 gives the equations for 

bending stiffness, showing the relationship between curvature and bending stiffness for 

the transition region.  The model considered the frictional forces between wire and core 

for single and multi-layer cables, but assumed constant axial tension and neglected 

friction or contact between wires within layers.   

 

A novel experiment was performed to validate this model in which a laser distance sensor 

scanned the cable surface as it bent to measure the surface very carefully and construct 

the cross-section and center point based on that data.  The experimental data and 

theoretical model matched very well.  The calculated bending stiffness fell in between the 

maximum and minimum bending stiffness values for deflection curves and even 

exhibited the hysteresis that was hypothesized previously.  The author noted that the 

model was sensitive to the lay angles and friction coefficient, but in later discussion, 

Papailiou provided more detail on the measurement of the friction coefficient and pointed 

out that the amplitude difference was only about 30% for a near 100% change in µ, so it 

was important to include, but not sensitive to the exact value.  Overall, this model gives a 

very accurate bending stiffness value and captures much of the physical phenomena that 
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results in energy dissipation.  It is this work that provides the basis for the stranded cable 

bending stiffness calculation method developed herein.  

 

Hong, Kiureghian, and Sackman extended Papailiou’s work to multi-layer structures with 

varying lay angles, including the nonlinear cable damping due to frictional slip between 

the wires and modeling the variation in bending stiffness by calculating the tension in the 

cable as wires slip due to bending [76].  The moment equation derived was � =(∑ ��7?66	�7@59 + ��AB@5)�A + ∑ C7D7 cos �6,7 sin �I,7	?66	�7@59 , where the tension value in 

each wire was calculated while taking slipping conditions into account.  The validity of 

Papailiou’s kinematic assumptions were confirmed, but Papailiou's early hypothesis that 

large cable curvature would cause the bending stiffness to reach EImin independently of 

the friction coefficient and wire tension was not true; the bending stiffness approaches a 

constant value that is dependent on the interwire friction coefficient.  The bending 

stiffness is at a maximum initially when the frictional forces have not been overcome and 

the wires are sticking, and then decreases as the wires start to slip.  Hong et al. found that 

the difference between the maximum and minimum bending stiffness values could be as 

large as two orders of magnitude, and that the transition zone between stick and slip 

states was dependent on the coefficient of friction between the wires and the axial tension 

(which would contribute to the normal force between the wires, and thus, the frictional 

force).  Discussion of the paper by Cardou and Papailiou allowed the authors to correct a 

few omissions and discuss a hypothetical “friction moment”, which was dismissed as 

being inconsistent with reality due to the cable’s friction propagation being asymmetrical 

[79].  

 

Papailiou’s secant stiffness method was extended by Dastous, who used a tangent 

stiffness method that provided discrete changes in bending stiffness as curvature changes 

and specific wires in the cable slip (as opposed to the secant stiffness method which 

resulted in a smooth curve when bending stiffness versus curvature was plotted) [73].  

These discrete EI values made the tangent stiffness method more suitable for 

compatibility with finite element programs. Dastous also made a clear case for 

considering hysteresis in cable bending.  He used a simple viscous dashpot damping 
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model applied to the rotational coordinate for empirical damping (a sensible choice, 

representing damping that is directly related to the bending of the cable and thus, the 

frictional slipping between the wires), but noted that different slipping conditions under 

higher tension would certainly need a more accurate model based on the physical 

damping mechanisms.  Between Papailiou and Dastous, complete results were obtained 

for both low and high tension cables. 

 

Inagaki, Ekh and Zahrai mention the different states of bending, namely, when the 

curvature of the cable is small and all of the wires deform uniformly and behave as a 

solid beam, and when the curvature is large and the wires slip against one another as the 

cable deforms [44]. The goal of this research was to calculate the bending response of 

cables while incorporating the frictional forces resulting from pressure from the jacket 

and insulation material.  A frictional model extended from Papailiou’s work was added to 

a basic geometric model.  This model determined the strains at the lowest order helix and 

then worked outward, emphasizing the response of the cable to bending deformation, 

which is particularly useful for transverse beam vibration.  Contact between neighboring 

wires within a layer was neglected.  Rather than calculating EI directly, the authors 

determined the tensile forces of all wires as a function of curvature and found the bending 

moment.  Experiments showed that the viscoelastic effect from the jacket material was 

small enough to be neglected.  The number of wires that had slipped was plotted against 

applied axial tension, lay angle, and pressure from the jacket.  Clear slip steps were seen 

as fewer cables slipped at higher jacket pressures, but the decrease in slippage as lay 

angle and tension individually increased was more smooth and uniform.   

 

Raoof and Huang [62] also investigated wire slippage.  They found that plane-section 

bending stiffness of cables was not constant, and gave upper and lower bounds, with the 

upper stiffness value being as much as twice as large as the lower bound.  This model 

corrected and extended previous models by Raoof and Huang, based on the method of 

Lanteigne [75].  Raoof’s experimental and theoretical work showed that slipping between 

wires started at the neutral axis and worked outwards, unless each successive layer had 
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opposite lay directions, which agrees with theoretical analyses of the thin rod model 

slippage.   

 

Knapp and Liu opted to investigate cable damping by determining the variation in cable 

flexural rigidity rather than including a damping term in the equations of motion [41].  

One author measured the strains due to bending that arose in a two-layer cable to test a 

CableCAD software model, and radial pressure within the layers was tested 

experimentally by measuring the force required to pull one layer out from within another 

layer.  The authors found that no interlayer slip occurred until bending curvature reached 

a certain point.  After this point, the outermost layer began slipping and the moment-

curvature relationship increased linearly until the curvature reached the next transition 

point, at which the inner layer slipped and the moment-curvature relationship continued 

to increase but at a lower linear rate.  This corresponded to a roughly exponential 

decrease in the bending stiffness of the cable as the cable curvature increased.  To 

incorporate this variable bending stiffness, the authors used a finite element model in 

which the EI value was constant over a small element, but changed for each element. The 

authors compared their model with variable bending stiffness and experiments to work 

from Sauter [38] and found good agreement.  These authors demonstrated that varying 

the bending stiffness without including a dedicated damping term is equivalent to 

including damping due to internal friction in the equation of motion for a cable.   

 

In an investigation of flexural properties specifically, Filiatrault and Stearns tried to 

determine the bending stiffness of cables and found that the maximum bending stiffness 

occurred under high-tension, low-curvature conditions [80].  The authors compared their 

experimental results to secant conductor flexural stiffness values as well as the theoretical 

maximum and minimum flexural stiffnesses.  This work identified the minimum stiffness 

as the sum of the bending stiffness of each individual wire J��K7L = �∑ &�MNOPQRS?66	�7@59 T 
and the maximum stiffness as the bending stiffness of the cable as if it were a solid wire 

J��K?U = � &�VWXYPQRS T.  They calculated the maximum stiffness at about 100 times the 

minimum stiffness, which agrees with Hong, et al.’s findings [76].  They also found that 
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hysteresis effects were negligible for the static loading case, but increased when the 

cables were under high tension or large curvature.  The authors hypothesized that the 

energy lost is due to friction between the wires rather than internal damping in the cables.  

High tension also made the cable more like a solid beam, with wires sticking rather than 

slipping.  The authors compared their analytical and experimental values to the IEEE 

standard for the effective flexural stiffness of conductors where ��5!! = (1 +Z[\]^D	_1	`aD�Z:	b�c^D`) ∗ ��K7L and found that the IEEE recommendation is a 

higher bound on the real flexural stiffness. 

 

While the variability in bending stiffness arises largely from the frictional forces from 

interwire contact, modeling the variability in bending stiffness rather than the frictional 

contacts may be a straightforward way to include damping in cable modeling. 

 

2.3.3 Damping Due to Internal Friction and Viscoelastic Effects (Material Damping) 

As discovered by Yu [54], internal damping is generally very small, but it should be 

considered in an exploration of internal damping mechanisms.  Since most power and 

signal cables have insulation, investigation into insulation material damping should be 

incorporated to cable models as well.  Today’s electronics require shielded wires which 

may be covered with a viscoelastic insulation material with very different shear and 

elastic properties from the interior wire.  

 

Yamaguchi and Adhikari investigated the increase in damping effect due to the inclusion 

of a viscoelastic damping layer around the outside of a cable, similar to an insulation 

layer [81].  The authors hypothesized that even minimal shearing through the added 

viscoelastic layer would increase damping.  Using the Ross-Ungar-Kerwin theory and 

incorporating both axial and bending stiffness, they estimated loss factors for the 

damping-treated cable and compared them to the cable without the viscoelastic damping 

layer.  The structural cable used in this study had a lay angle of 3-4 degrees, was wrapped 

in filament tape, and surrounded with a polyethylene outer cover (which was assumed to 

add no damping).  The authors found that the viscoelastic layer did increase damping, 

primarily for the higher modes.   Axial and bending loss due to the additional damping 
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layer were of the same order for a soft outer cover, but the bending loss factor could be 

significantly higher if a stiff viscoelastic layer was used.  Yamaguchi and Adhikari 

continued this work by using an energy approach to evaluate the modal damping of 

cables with and without viscoelastic layers and investigated the relationship between 

jacket material and damping further [82].  They found that variation in the cable sag ratio 

caused significant differences in the damping ratio for both jacketed and unjacketed 

cables.  Stiff viscoelastic material was most effective for damping of the first mode, but 

soft material must be used to increase damping in higher modes.  Damping was not 

increased by a large amount due to the viscoelastic layer used in the study, but the 

authors presented several options to decrease the initial potential energy and thus, 

increase the modal damping, such as increasing the sag ratio or increasing the loss factors 

by changing the material or viscoelastic layer thickness.  Barbieri, de Souza, and Barbieri 

extended the work of Yamaguchi and Adhikari to develop a reduced damping matrix 

[83].  Using search gradient and complex envelope techniques, they found damping ratios 

for the first five natural frequencies, and found that the damping ratio increased with 

increasing length and decreased with increasing tension.     

 

Shear deformation losses may occur in the wires themselves as well as the cable jacket.  

Yu said that internal wire friction was very small compared to the interwire friction, but 

he also dealt only with steel cables, not jacketed cables [54].  Inagaki et al. found that the 

viscoelastic effect from the jacket was too small to change the overall results, but did 

incorporate the changed pressure on the wires due to the compression caused by the 

jacket and insulation [44].  It seems that more study is needed to completely characterize 

how and why cable insulation would change the dynamic response of a cable.   

 

Many authors compared models to experiments to validate the models, but to truly 

validate, rather than calibrate, a model must be able to predict the cable behavior, not 

merely match it.  Castello and Matt used verification and validation techniques to 

investigate the suitability of a simple homogeneous beam model to predict the frequency 

response of an overhead transmission line cable [84].  The authors cited the variability in 

bending stiffness and damping values as major obstacles for the use of the simple beam 
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model.  They used an Euler-Bernoulli beam model with additional terms for tension, 

aerodynamic proportional damping to represent external damping (usually omitted in 

other models), and Kelvin-Voigt damping to represent viscoelastic internal material 

damping: �d� ee� JeQ�eUQT + �f e�e� .  The cable used for the experimental data was about 1” 

thick, quite dense (more than 1.3 kg/m), long spanning, and low sag.  Estimates for the 

bending stiffness, and alpha (external) and zeta (internal) damping parameters were 

calculated from the experimentally determined frequency response function, and then 

investigated using the methods of verification and validation.  The authors found that, for 

a very specific narrow frequency range and given tension value, the simple model could 

be used to predict the time and frequency domain dynamic responses.  The fact that this 

simple model predicted the cable response well when more complex models do poorly 

may be a result of the type of cable used, as a thick, single strand ACSR cable with low 

sag is undergoing very little bending curvature, which is what causes much of the 

frictional variability that gives such uncertainty for other models.  Continued work on the 

verification and validation of cable damping models, as well as investigation of the 

properties and responses of different cable families, will certainly lead to more reliable 

and useful models. 

In space, there is no supporting medium, so it is primarily internal damping that affects 

the system's motion.  Thus, damping terms that arise from the internal movement and 

friction of the cable are of greatest consideration.  However, because the experiments for 

this work were conducted in air, a viscous term was included in the model to more 

closely mimic the experimental results.   

 

2.4 Dynamics of Spaceflight Cables 

The literature review up to this point deals with cables in general; the past research 

focused on structural support cables or high tension overhead power lines.  Electrical 

cables were not previously investigated due to their comparatively small size and the lack 

of precision applications requiring the mechanical properties and interactions between the 

cables and their host structures.  However, space structures are unique in that they are 

both lightweight and have high precision requirements, so the addition of cables actually 
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does change the overall dynamics of the structure.  Any structure intended for space 

flight undergoes much simulation and testing.  Modal testing determines the resonant 

frequencies of the craft, or which excitation frequencies would cause the structure to 

vibrate uncontrollably.  These frequencies are then noted and avoided or the structure is 

altered to change the resonant frequencies.  Modal testing is often performed before the 

structure is fully dressed with the cables required for flight, and cable effects are 

currently incorporated by simply adding the mass of the cables as a single lumped mass 

at the center of the craft or by changing the structure density along the cable path to add 

distributed cable mass.  The existing research on space cable dynamics was performed 

largely by the Air Force Research Laboratory (AFRL), resulting in a significant body of 

work.  The AFRL undertook a study of the dynamic interaction between cables and space 

structures, and found that power and signal cables were incorrectly overlooked/ignored in 

the design and modeling of precision spacecraft, since these cable effects can be 

significant.  Based on research from the Air Force Research Laboratory it is no longer 

sufficient to model cables as lumped mass [2], and flight tests showed that addition of 

flight cables can shift modal frequencies and cause significant increases in modal 

damping ratios [85].  As the field of material science advances, the materials used for 

space structures have become lighter weight, which is advantageous because lighter 

payloads are less expensive to send into orbit.  The overall structure may be lighter, but 

the signal and power requirements are just as complex, if not even more sophisticated, 

requiring the same or more power and signal cables as previous spacecraft.  As such, 

cable harnesses are making up a greater percentage of the total spacecraft mass, making 

up 4-15% of a structure’s mass [1] and in some cases, as much as 20% [3] or 30% [1,2].  

As the cable mass ratios increase, the effects of the cables become more significant.  In 

addition, studies have shown that cables are acting in a structural capacity, adding 

damping and actually changing the expected resonant frequency of the system [86, 87].  

The combination of a greater mass percentage and the behavior of cables as structural, 

rather than inert elements, make it evident that the effects of cable harnesses on space 

structures require greater study.   
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The control of a space structure relies on very precise knowledge of the structure’s 

current position and response to propulsion systems.  According to Space Vehicle 

Design, components for attitude determination and control of a spacecraft are demanding 

of “specific orientation, alignment tolerance, field of view, structural frequency response, 

and structural damping” [88].  Thus, since the addition of cables changes the structure's 

frequency response and damping, characterizing these effects is necessary for precise 

control of the structure.  In addition, once cable damping can be accurately quantified, 

additional damping treatments may be rendered unnecessary if the cable damping is 

sufficient to prevent unwanted vibration. 

 

The initial AFRL investigation revealed no definitive existing works on the subject of 

spaceflight cable effects, and only a single standard for cable attachments among five 

aerospace agencies [87].  Initial testing showed that the addition of cables to a structure 

certainly changed the structure's dynamic response, but modes were damped irregularly, 

if at all, and the overall conclusion was that a "simple" beam with a cable is not simple 

after all [87]. 

 

With the intent to quantify the effect of cables on space structures, Goodding et al. 

developed methods to test and model cables to determine tension and bending stiffness 

under transverse vibration [3].  In a departure from the typical large aluminum and steel 

cables usually modeled, the electric and signal cables tested were of low linear mass and 

under very small amplitude excitation and thus required specialized test set ups and 

sensitive data acquisition devices.  This extensive study developed algorithms for the 

second area moment of inertia, shear factor and shear modulus product based on a 

frequency response test of the cable.  A finite element model using the experimentally 

obtained cable parameters and calculated values was validated with experiments.  Similar 

cables showed a high degree of variability in their experimental behavior, most likely due 

to the hand-made construction.  The skill and attention of the technician making the cable 

was also noted elsewhere as being a major consideration for cable uniformity [89]. 
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An Euler-Bernoulli beam model was used for initial modeling.  To determine cable 

parameters, axial and lateral vibration tests were performed and estimated effective cable 

diameters were found to be 30-35% of the actual physical diameter [67].  This study and 

others also showed that elementary beam theory was not sufficient for a realistic cable 

model [67, 90].  Later work by Babuska et al. modeled the transverse vibration of cables 

with the equations of shear beams, with all of the beam parameters treated as independent 

quantities, not linked to the physical cable diameter or through Poisson's ratio [1].  Cable 

damping was included in the FE model as basic structural damping.  Cable parameters 

were determined through axial vibration tests, but significant variability was found within 

each cable family, despite having the same person make all of the test cables.  This work 

also addressed the issue of the connection tie-down stiffness for the typical aluminum 

TC-105 tabs and nylon cable ties used for cable attachment, referred to as "tie-downs" 

throughout this work.  The tie-down stiffness was evaluated in several ways, but direct 

measurement underestimated the value badly, and more work is required to empirically 

determine the tie-down stiffness.       

 

The next paper in the series extended the previous work to tests of 3-6% cable mass 

fractions attached to a plate panel rather than a beam [2].  Based on this and the previous 

works, there was a clear frequency regime where the cables act as lumped mass, a 

transition section, and then a frequency regime where the cables become resonant and 

add damping.  In simple cases, like a narrow beam, the transition section is small, 

predictable, and straight forward, but not so with panels.  This paper provided insight into 

the different cable models; shear stiffness was important to model cable dynamic 

behavior, but neglecting rotational inertia had little effect [2].  As far as cable parameters 

for modeling purposes, area was based on the frontal area of the copper in the cable, 

modulus of elasticity was calculated from axial test data, and the moment of inertia and 

modulus of rigidity were calculated from lateral bending tests.  Again, basic structural 

damping was included and  the tie-down characteristics were again found to take a major 

role.  When testing was performed, the addition of cables did not change the mode shapes 

of the panel to a large degree.  In addition, the resonance frequencies were not 
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significantly different, but this was explained by the fact that the cable mass ratio was 

much lower than typical.      

 

Through this study series, cable modal damping was also investigated and found to 

average about 4% of critical as a viscous damping mechanism, although this varied from 

1.8% to 4.9% depending on cable type and specimen [3].  The authors attributed 

deviation in the damping ratio to the lack of consistency in the cable construction due to 

non-mechanized cable manufacture.  Experimental data showed that lower modes had 

larger relative motion and higher damping ratios, consistent with the hypothesis that 

motion between wires causes the greatest energy loss.  Kauffman, Lesieutre, and Babuska 

also investigated damping in cables as it applies to spacecraft wiring and used a time 

domain, geometric rotation-based viscous damping model (based on [91]) to generate 

damping coefficients and compare them to existing experimental results [92].  This 

model was based on an Euler-Bernoulli beam with an additional transverse shear term 

included that shifted the resonant frequencies lower.  The damping term described two 

internal shear forces representing the rate of change of the bending angles for the shear 

angle and beam: gh = −�i�j − �klj .  This damping model was less frequency-dependent 

than previous models for the low frequency bending regime, and increased linearly with 

mode number in the high frequency shear regime.   

 

Investigators at the NASA Marshall Space Flight Center also investigated the effect of 

cable harness assemblies on space structures; specifically, their interest was on the level 

of damping of a launch vehicle panel due to cable bundle installations.  Initial testing of 

cable bundles added to the panel did increase damping [93].  The authors determined the 

damping parameter by optimizing a developed finite element model with a viscous 

damping parameter with the experimental data. This work was extended to test more 

cable bundles, with total bundle mass ranging from 2.37 to 21.21 pounds, giving cable 

mass ratios of 8.5% to 76% [93].  Of particular interest was the result that including 

cables on the panel resulted in greater panel damping than including a lumped mass 

equivalent to the cable mass.  The panel response was highly dependent on measurement 

location, especially at low frequencies.  The MSFC group also noted nonlinear behavior 
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in several frequency bands and found critical damping ratios to be as high as 0.08, but 

also noted that the modeling approach could be improved and that some of the 

unexpected results required further study.           

 

Knowledge about the effects of spaceflight cables has increased from essentially nothing 

to results from multi-year projects staffed by teams of experts from major research labs in 

less than a decade.  However, a consistent result from these sources was that there are 

still many unknown or poorly understood factors that must be investigated to complete 

the predictive capabilities of cabled structure models. 

 

2.5 Literature Review Conclusions  

The breadth of cable literature required careful sorting to determine the useful and 

applicable information.  Of course the work on spaceflight cables specifically is 

invaluable, but several conclusions from different cable fields are worth highlighting as 

well.  First of all, several sources note that modeling cables as a shear beam is possible 

for both general cables and spaceflight cables specifically.  It is also clear that a cable 

model must include bending stiffness, and some term or mechanism to model the 

damping that is inherent in cables of all types.  Lay angles should be restricted to 20 

degrees or less for best results, and the larger the overall cable size, the more effective a 

beam model is for predictive uses.  Cables with insulation behave as viscoelastic 

materials.  The work to date shows that further research is required in the areas of cable 

parameters, cable damping and cable attachment point modeling.   

 

A major contribution of this work is bringing together the many aspects of cable 

modeling to yield a coherent dynamic cable model.  The current work on spaceflight 

cables will be extended in this dissertation by expanding the available experimental data, 

developing a method to calculate cable properties from basic measurements rather than 

dynamic testing, and improving the tie-down attachment models, as well as introducing 

more complex damping mechanisms into the cable model.   
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Chapter 3: Cables 
 
The cable models surveyed in the previous chapter are used for many types of cable 

analysis, from internal force calculations to prediction of deformation.  Although there 

are many methods to model cables, for modeling the dynamic response of a cable, a beam 

model has distinct advantages in terms of simplicity and effectiveness.  For vibration 

analysis, beam models are well-studied and provide a way to incorporate the semi-

continuous approach to model a stranded cable as a homogenous structure by careful 

calculation of the parameters used in the equations of motion.  Therefore, modeling a 

cable as a homogenous beam is the method used herein to model dynamic cable behavior.  

This chapter discusses the considerations for modeling cables as beams, introduces cable 

terminology and the specific cables investigated, and presents the methods for calculation 

of cable parameters to be used in cable models.   

 

3.1 Cables as Beams 

Using a beam model is relatively straightforward and provides useful dynamic response 

data that can incorporate tension, internal damping and connection points.  Beam models 

do not require determination of internal friction forces directly, but instead rely on 

effective beam properties such as bending stiffness and viscous damping to capture the 

frictional effects.  Thus, determining these parameters to accurately portray the dynamic 

response is important.  The simplest beam model is the Euler-Bernoulli model, which 

assumes plane sections of a beam remain plane, but for a flexible cable with viscoelastic 

insulation, the cable stretches and plane sections rotate, so shear effects must be included.  

In a shear beam model, the equation of motion contains information about the cable 

characteristics; specifically, the coefficients of the equation of motion include the density, 

area, bending stiffness, and shear term.  To use a homogenous beam model to predict the 

behavior of a decidedly un-homogenous cable, effective parameters must be determined.  

As all spaceflight cable models to date have been created with cable parameters 

determined from dynamic response data, the calculation of cable parameters based purely 

on basic static measurements is a contribution that may prove useful in preliminary 
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spacecraft and cable design, as well as any other application that requires dynamic 

information about a cabled structure. 

 

3.2 Cable Terminology 

Since cable terminology differs from field to field, this section serves to define the 

common terms used in this work to describe spaceflight power and signal cables.  A core 

wire surrounded by layer wires is known as a strand.  Cables have a core wire or strand 

surrounded by helically twisted wires or strands in successive layers.  Cables are 

designated by an “m X n” numerical designation where m is the number of strands and n 

is the number of wires in each strand.  For example, a 7X7 cable has seven strands (a core 

strand and six surrounding layer strands), with each strand comprising a core wire and 6 

layer wires as shown in Figure 3.1 with the core and strand labeled in the end view.  A 

7X19 cable would have seven strands as well, with each strand made of a core wire with 

6 wires in the first layer and 12 wires in the outer layer (for a total of 19 wires per strand)  

as Figure 3.2 illustrates.  Most cable models investigate a single strand.  Cables made up 

of wires in multiple small strands (multi-stranded cable) are more flexible than cables 

made up of a single strand (single-stranded cable) with the same total number of wires.   

 

One important characteristic that is unique to stranded cables and wire ropes is the lay 

angle.  The lay angle is the angle that the layer wires make with the core; cable lay angles 

generally range from 2.5 to 35 degrees, with most mathematical analysis of cable 

behavior departing from reality beyond 20 degrees [43].  Helix angle and lay ratio (ratio 

of wind-to-twist, or length for a wire to make one full turn around the core wire) are 

different but also commonly used ways to quantify the amount of twist that the layer 

wires have around the core wire.  For this work, the lay angle is used, measured in 

degrees and converted to radians for calculation purposes.   Cables may be helical or 

contra-helical; a helically twisted cable has all layers wrapped in the same direction, 

while a contra-helical cable alternates the wrapping direction with each successive layer.  

The contra-helical cables are very slightly heavier, but remain straight while a helical 

cable will revert to a curved relaxed state.  Figure 3.3 illustrates the difference between a 

helical cable, which hangs with a curve, and a contra-helical cable, which hangs straight 



 

down.  The core wire may be the same diameter as the layer wires, or larger, to prevent 

the layer wires from touching each oth

of contact between each layer wire and the core o

touching not only the core, but also its 

the various friction models. 

found in Feyrer [94].   

 

Figure 3.1: 7X7 cable side view and end view with core labeled and individual seven

wire strand identified; side view reprinted with permission from VER Sales.

Figure 3.2: 7X19 cable side view and end view; side view reprinted with permission from 

VER Sales. 
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The core wire may be the same diameter as the layer wires, or larger, to prevent 

the layer wires from touching each other when the strand is unstressed.  The assumption 

of contact between each layer wire and the core only (as opposed to each layer

touching not only the core, but also its neighboring layer wires) is an important feature of 

the various friction models.  Further details on cable and wire rope construction can be 

7X7 cable side view and end view with core labeled and individual seven

wire strand identified; side view reprinted with permission from VER Sales.

7X19 cable side view and end view; side view reprinted with permission from 

The core wire may be the same diameter as the layer wires, or larger, to prevent 

er when the strand is unstressed.  The assumption 

nly (as opposed to each layer wire 

wires) is an important feature of 

Further details on cable and wire rope construction can be 

 

7X7 cable side view and end view with core labeled and individual seven-

wire strand identified; side view reprinted with permission from VER Sales. 

 

7X19 cable side view and end view; side view reprinted with permission from 
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Figure 3.3: Evidence of inherent curvature in helical cable; in contrast, contra-helical 

cable hangs nearly straight. 

 

A cable is meant for transmission of forces or signals.  Cables can be categorized as 

either mechanical wire cables (wire ropes) for guy wires and structural use, electrical 

cables for signal transmission, or optical fiber cables.  Mechanical wires transmit forces 

between locations, while signal cables transmit electrical signals [22].  Mechanical wires 

may be subject to much higher stresses than signal cables, while signal cables may have 

greater requirements for minimal vibration.  Cables may be subject to axial forces 

causing tension, torsion, and lateral forces causing bending.  Vibrations from the cable’s 

surroundings, such as wind, water, or equipment vibration, can also cause bending and 

cable vibration.  The outer layers, rather than the core, take most of the axial force [21].  

An applied axial tension causes tension in the helical strands which causes them to apply 

inward radial force to the layers within [70].  Good cable models take into account the 

critical design factors for the specific use of the cable and make assumptions that 

reasonably describe the cable’s properties and behavior.   

3.3 Cable Component Wires and Configurations 

Much of the research on cable properties deals with aluminum conductor steel reinforced 

(ACSR) cables as shown in Figure 3.4.  But unlike ACSR cables, which are made 

completely of solid metal wires drawn from one material, the cables used for space 



 

structures are generally made of an aluminum or copper core surrounded by flexible EMI 

shielding and some type of electrical insulation.

Figure 3.4: Aluminum cond

 

Preliminary investigations were performed with an insulated 

made of MIL27500-26TG2T14 wires.  All of the subsequent cables used in this study 

were also made with MIL27500

applications, consists of two 26AWG twisted wire pairs individually insulated, an EMI 

shield made of tinned copper, and outer Tefzel (ETFE) insulation layer.  Figure 

shows the components that m

make the cable.   

 

Figure 3.5: Deconstructed

individual wire, and wire components: EMI shield, two 26AWG twisted wire pairs, and 

wire filler label. 
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structures are generally made of an aluminum or copper core surrounded by flexible EMI 

shielding and some type of electrical insulation.   

 

Figure 3.4: Aluminum conductor steel reinforced 1X37 cable, courtesy of General Cable. 

tigations were performed with an insulated 1X18 helically twisted cable 

26TG2T14 wires.  All of the subsequent cables used in this study 

IL27500-26TG2T14 wire.  This wire, commonly used for space 

applications, consists of two 26AWG twisted wire pairs individually insulated, an EMI 

shield made of tinned copper, and outer Tefzel (ETFE) insulation layer.  Figure 

shows the components that make up the individual wires that are bundled together to 

Deconstructed cable wire, from top to bottom; Kapton wrapped cable, 

individual wire, and wire components: EMI shield, two 26AWG twisted wire pairs, and 

structures are generally made of an aluminum or copper core surrounded by flexible EMI 

uctor steel reinforced 1X37 cable, courtesy of General Cable.  

1X18 helically twisted cable 

26TG2T14 wires.  All of the subsequent cables used in this study 

26TG2T14 wire.  This wire, commonly used for space 

applications, consists of two 26AWG twisted wire pairs individually insulated, an EMI 

shield made of tinned copper, and outer Tefzel (ETFE) insulation layer.  Figure 3.5 

bundled together to 

 

Kapton wrapped cable, 

individual wire, and wire components: EMI shield, two 26AWG twisted wire pairs, and 
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The wire has a left hand lay and is shrink-wrapped with the Tefzel insulation, so there is 

an evident twist to the wire, making the wire oval in shape rather than circular.  Wire size 

measurements were taken from published values when possible [95] and verified with 

actual measurement. Upon discovery that the helical twist added permanent curvature to 

the cable which made the frequency response dependent on the orientation of the cable in 

the test fixture, the contra-helical twist method, in which each layer has an alternating lay 

direction, was used for all subsequent test cables.  The cable configurations used for test 

data were five sections each of 1X7, 1X19, 1X48, and 7X7 configurations, as shown in 

Figure 3.6, all made  of the same MIL27500-26TG2T14 wire insulated with Tefzel.   

 

 

Figure 3.6: 1X7, 1X19, 1X48 and 7X7 spaceflight cable sections and the associated wire 

configuration diagrams. 

 

All of the test cables were made on a planetary machine to ensure uniform construction, 

since previous studies noted that variability in human construction technique was evident 

[89] and it was desirable to eliminate this source of variation.  After the wires were 

twisted together in the appropriate configuration, they were tied every 4-6 inches and 

machine wrapped with Kapton tape with a 50% overlap.  The Kapton overwrap is 

designed to keep the wires together snugly, but is not applied with significant force.  The 

Kapton overwrap was assumed to add no additional stiffness other than keeping the cable 

wires in radial contact.     



 51

The smallest cable, a 1X7 single-strand, was about 7 mm in diameter and quite flexible.  

The medium size 1X19  cable was similar in size to the 1X18 preliminary test cable, was 

about 13 mm in diameter, and had three layers, with one, six, and twelve wires in each 

successive layer.  The two large cables were both about 22 mm in diameter 

(approximately one inch), but the 1X48 cable was much stiffer and more like a solid 

beam than the 7X7 cable.  The 1X48 cable did not have a full outer layer; one, six, 

twelve, and eighteen wires in the full inner layers and eleven wires in the outer layer 

makes a total of 48 wires, a configuration chosen to correspond to the size and wire count 

of the multi-stranded 7X7 cable.  The 7X7 cable consists of a core 1X7 strand surrounded 

by six more 1X7 strands twisted around the core for a total of 49 wires.  Multi-stranded 

cables are used to provide greater flexibility, and this increased flexibility was indeed 

observed in the multi-stranded cable over the single stranded cable of similar size.  

 

3.4 Property and Parameter Calculations 

Modeling a spaceflight cable as a homogenous beam requires input parameters of area �, 

density �, bending stiffness ��, (comprising both the modulus of elasticity and moment of 

inertia),  and shear rigidity ���.  To predict the cable response, these values must be 

correlated to cable and wire properties such as modulus of elasticity and rigidity, cable 

geometry, and construction, which forms the basis for this section of investigation.  

Bending stiffness is particularly important, since it can vary with cable curvature, tension, 

and wire slip.  The work on stranded ACSR cables provided a sound starting point for 

cable parameter calculation, but because most power and signal wires include several 

different materials within each wire, composite material methods had to be introduced for 

these purposes.  Up to this point, cable properties for beam models were determined by 

running dynamic tests and then working backwards to yield the appropriate mass and 

stiffness terms.  Ideally these parameters would be determined simply by using the 

geometry and constituent materials of the cable, without using complicated equipment or 

having to measure individual cable sections.  To show that this is possible, direct 

calculations for each parameter were developed, and maximum and minimum parameter 

values were determined.  Models using these parameter ranges were compared to 

extensive dynamic testing with the objective being to bound the range of cable responses 
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with the model responses.  Table 3.1 gives the average basic measurements for each cable 

type.  Note that these observations required only basic measuring tools (scale and ruler or 

calipers) with no sophisticated testing required.  Figure 3.7 shows the overall relationship 

between the measured inputs, material properties, and calculated values that will be 

presented here.   

 
Table 3.1  Cable parameters measured or observed for each cable.  

 1x7 1x19 1x48 7x7 (multi-strand) 
Number of Wires 3 7 19 48 49 
Number of 
Layers 

n 1+core 2+core 3.5+core 
1 layer of six 1-layer 
strands + core strand 

Number of 
Strands 3m 1 1 1 7 

Mass m 0.0708 kg 0.1905 kg 0.4481 kg 0.4944 kg 
Length L 0.7692 m 0.7782 m 0.7744 m 0.7744 m 
Lay Angle 
(radians) � 0.3417 0.2873 0.3217 0.3037 

Outer Diameter D 0.0074 m 0.01272 m 0.0204 m 0.0216 m 
 

 

Figure 3.7: Relationships between and inputs for cable property calculations to determine 

cable parameters �, �, ���,	and �� used to model a cable as a beam. 

 

In the figure, green arrows represent inputs from material properties and cable 

measurements, and grey arrows represent the resulting calculations.  Area is calculated 

first, using information about the wire size and configuration, which yields values for 
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density and volume fraction.  Copper and Tefzel material properties of Poisson's ratio and 

shear and elastic moduli are input to calculate the wire Poisson's ratio and then the wire 

shear and elastic modulus.  Area, Poisson's ratio of the wire to get the shear coefficient, 

and the wire modulus of rigidity are combined to yield the cable's shear rigidity.  Finally, 

the wire size and configuration, lay angle, tension, curvature, and friction coefficient are 

combined to calculate the bending stiffness for the beam equation from the wire moduli. 

 

3.4.1 Wire Component Material Properties   

The wires are made up of essentially two components: copper, which makes up the 

conductor cores and EMI shielding, and Tefzel, the insulation for interior and exterior 

wires. Table 3.2 shows the material properties used for the copper and Tefzel of the 

investigated cables.  These values are used in subsequent calculations to determine the 

overall wire properties.     

 

Table 3.2 Material properties for cable components. 

Property Copper Tefzel 
Poisson's Ratio  0.343 0.46 
Modulus of Elasticity 110 GPa 1.2 GPa 
Modulus of Rigidity 45 GPa 0.41 GPa 
Density 8930 kg/m3 1700 kg/m3 

 

3.4.2 Area 

A section of cable used for the preliminary testing was disassembled into the two 26 

AWG twisted pairs, shielding material, and Tefzel coating, as shown in Figure 3.5, and 

each component was measured and compared to published wire specifications [95].  

There are three defendable ways to calculate the area parameter of the cable: the overall 

area as calculated based on the outer cable diameter, an over-estimation; the overall area 

of the wire as calculated based on the outer wire size, multiplied by the number of wires; 

and the sum of the area of the individual copper and Tefzel components, which is an 

under-estimation.  These calculations provide maximum, middle, and minimum values 

for the area parameter.  Examination of the wire used shows that the twisting lay of the 

two 26 AWG wires inside makes for an elliptical wire shape overall.  Calculating the area 

of the wire using this elliptical shape for the EMI shielding and outer Tefzel jacketing 
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(rather than a circular shape) resulted in a smaller parameter range and increased 

agreement between experimental and model data.  In the following equations, d indicates 

wire diameter, DU and Dn indicate the x and y axes radii of the elliptical wire shape 

(essentially either 1/2 or one times the diameter of the 26 AWG wire plus the thickness of 

the shielding plus the thickness of the jacket), and o	indicates cables outer diameter, 

measured from crown to crown (widest point).     

 �K7L = 3 ∗ (2 ∗ (�D^�	_1	�_pp^D	�_D^` + �D^�	_1	26�r�	s��t^a`) + �D^�	_1	���	`ℎ+^b:+ �D^�	_1	_[a^D	s��t^a) 
�K7�,A7@Av6?@ = 3 ∗ wx �:2#$y 

 �K7�,56678�7A?6 = 3 ∗ zx ∗ DU ∗ Dn{ 
 

�K?U = x �o2#$ 

 

Figure 3.8 shows an idealized circular layout of the wire with measurements used for 

initial calculations, and Figure 3.9 shows the elliptical layout with the same 26 AWG 

wire size and shielding and jacketing thickness.  Note that Figure 3.8 and Figure 3.9 are 

not to scale.  Table 3.3 provides the resulting area calculations for the four different cable 

types.   

 

Figure 3.8: Idealized circular internal anatomy of MIL27500-26TG2T14 wire used for 

circular wire area calculations.  
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Figure 3.9: Elliptical internal anatomy of MIL27500-26TG2T14 wire for elliptical area 

calculations. 

 

Table 3.3 Area calculations for four cable types, in m2. 

 
1X7 1X19 1X48 7X7 �K?U 4.35E-05 1.27E-04 3.27E-04 3.66E-04 �K7�,A7@Av6?@ 3.44E-05 9.33E-05 2.36E-04 2.40E-04 �K7�,56678�7A?6 2.95E-05 8.03E-05 2.03E-04 2.07E-04 �K7L 2.77E-05 7.51E-05 1.90E-04 1.93E-04 

  

The area calculation is also used to determine the volume fraction used for many of the 

subsequent calculations.  These expressions depend on the volume fraction of the copper 

in the wire, which was calculated by dividing the copper area (based on the area of the 

wire conductors and tinned copper shielding) by the area of the wire as a whole as 

determined by either its outer diameter or the sum of the component areas.  Since the 

materials have the same length, volume fraction for each material can be determined by 

dividing the area of each material by the total area.  Again, there are multiple approaches 

to this calculation that make sense: one way is to use the total area of the wire in the 

denominator, which takes voids in the wire into account, and another way is to sum the 

component areas for the denominator, which assumes a wire without voids.  Initially, 

these were calculated assuming that the wire was circular, but using an elliptical wire 

shape matched the physical wire and resulted in less variation between the two methods, 
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which in turn reduced the overly large range that resulted from a first round of 

calculations [96, 97].  Table 3.4 lists the volume fraction results for each approach.  Note 

that volume fraction is calculated for a single wire, and is therefore the same for each 

cable since they are all made of the same type of wire. 

 

Table 3.4 Volume fractions used for cable property calculations. 

 

With Void Space, 
Circular Wire 

With Void Space, 
Elliptical Wire With No Void 

 

(Material Area / 
Circular Wire Area) 

(Material Area / 
Elliptical Wire Area) 

(Material Area / Sum of 
Material Areas) 

Copper 0.185 0.216 0.231 
Tefzel 0.620 0.720 0.769 
Void Fraction 0.194 0.064 0 
 

3.4.3 Density 

Density calculations for the cables could be calculated for each cable using the measured 

mass and calculated areas, or through a rule of mixtures (RoM) approach, which would 

yield the same density for all cables.  Density was determined by weighing the cables and 

dividing the total mass by the volume, where the area was chosen to correspond to either 

the overall area, yielding a minimum density, the area calculated by summing the area of 

the wires, or the area calculated by summing the measured components comprising the 

wires, yielding a maximum density.  

 

� = \�``	_1��]b^�D^�	_1	��]b^K7L,			K7�		B@		K?U ∗ ��]b^	b^Z|aℎ 

  

Thus, the smallest �� value is given by using the maximum area to get a minimum 

density.  Previous work assumed all cable parameters to be completely independent of 

each other [1,2], but since area calculations would be used to determine the density, this 

author felt that consistency throughout the calculation was necessary. 

 

Density could also be calculated using a rule of mixtures approach.  The rule of mixtures 

is a weighted mean used for multi-component or composite materials to determine overall 

properties based on the component properties.  For this calculation, all cables would have 
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the same density since all of the cables were made of the same wires and have the same 

volume fraction.  The cables were transversely loaded, so the lower bound for the rule of 

mixtures is used, given by 

w
1}v�}v + 
1~5!�56�~5!�56 y
�� ≤ �A?�65(�_�) 

 

where 
1}v	and	
1~5!�56 could be the volume fraction calculated with or without voids as 

described in the previous section, and the density values are the published values for pure 

copper or pure Tefzel as indicated.  Those values were within the limits of the mass and 

volume density approach for all other cables, with the exception of the minimum value 

for the 1X7 cable.  Table 3.5 presents the density values for both methods. 

 

Table 3.5 Density values calculated for each cable, in kg/m3. 

Density Term 1X7 1X19 1X48 7X7 �K7L 2117.1 1926.5 1770.5 1742.3 �K7�,56678�7A?6 3110.6 3049.7 2853.7 3084.1 �K?U 3323.4 3258.4 3048.9 3295.0 �K7L (RoM) 2090.6 �K?U (RoM) 2233.6 
 

The density calculation was verified experimentally by using Archimedes’s principle; a 

short section of 1X18 cable was weighed in air and then weighed in water as shown in 

Figure 3.10, both immediately after submersion and several days after submersion.  The 

immediate result was 2163 kg/m3, and after waiting for 72 hours to allow the water to 

permeate every void of the cable, the result was 2557 kg/m3.  These were both within the 

range of the similarly-sized 1X19 cable density calculations using cable mass and areas 

and RoM, which lent confidence to these density calculation methods.  Since the rule of 

mixtures approach resulted in density values that were within the range of all other 

cables, the mass and volume density calculation technique was used for maximum and 

minimum �� values, except for the minimum of the 1X7, which used the RoM minimum 

value.    
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Figure 3.10: Cable in water for measurement of density based on Archimedes's principle 

of buoyant force. 

 

3.4.4 Concentric Composite Wire Properties 

The real contribution here comes from the calculation of the modulus values.  Obviously, 

a stranded cable is quite different than a homogenous beam.  The existing ACSR research 

only considered wires made of a single material, so for an insulated and shielded wire 

made up of several components, additional calculations are required to determine the 

single modulus of elasticity term for a single non-homogenous wire.  The field of 

composite materials yielded useful approximations for wire properties; specifically, the 

individual wires that make up the cable could be modeled as a concentric cylinder 

composite, in which the copper conductor takes the role of the strengthening fiber and the 

Tefzel insulation takes the role of the matrix.  Since the Tefzel insulation is tightly 

bonded to the conductor, the wire can reasonably be considered a composite material.  

Modulus values were based on a modified rule of mixtures for parallel fibers in a 

concentric matrix [98].  These expressions depend on the volume fraction of the copper 

and Tefzel in the wire, calculated for maximum and minimum values as described 

previously.   

 

To determine the wire modulus of elasticity, the concentric composite model uses the 

core material as the fiber and the surrounding material as the matrix, so for cables, copper 

is the fiber and Tefzel is the matrix.  For a beam in bending, the longitudinal modulus of 

elasticity is required, given by 
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�� = 
!�! + 
K�K
+ 2z<! − <K{$�K�!
!(1 − <!)�K(1 − 
K)z1 − <! − 2<!${ + �!z(1 − <K − 2<K$ )
K + (1 + <K){ 

 

Note that the Greek letter <, representing Poisson's ratios, and the symbol 
 for volume 

fraction look very similar in the elastic modulus equation and must be distinguished 

carefully.  Using the two volume fraction cases results in the upper and lower bounds for 

the base longitudinal modulus for a single wire.  However, this expression applies for 

straight parallel fibers; in the case of a twisted conductor pair, the modulus of elasticity is 

reduced by as much as 10% [98].  Thus, a 0.9 factor is included in the wire elastic 

modulus to take into account this fiber curvature effect.  The minimum and maximum 

values for the wire modulus of elasticity are determined by using the volume fractions 

with and without voids, respectively.   

 

The shear modulus of a composite consisting of parallel fibers in a concentric matrix is 

given by 

� = Jz1 + 
!{�! + z1 − 
!{�KT�K�! + �K − 
!(�! − �K)  

 

where 
! is the volume fraction of the fiber and  �! and	�K are the shear moduli for fiber 

and matrix, respectively, where the copper acts as fiber and the Tefzel acts as matrix.  

This shear value is used for the cable as a whole.  The cable model is relatively 

insensitive to the shear modulus value; it is important that the term be included, but large 

changes in G yield only small changes in the frequency response. 

 

Poisson's ratio for the cable is required for the calculation of the shear coefficient �, and 

is also calculated from the concentric composite model using 

 

< = <K − 2z<K − <!{(1 − <K$ )�!
!�Kz1 − 
!{z1 − <! − 2<!${ + J(1 − <K − 2<K$ )
! + (1 + <K)T �!	 
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where 
! , <! 	and	�! are the volume fraction, Poisson's ratio, and the elastic modulus of 

the fiber (copper), and  
K, <K 	and	�K	refer to the same properties for the Tefzel matrix.  

Note that the symbols for volume fraction and Poisson's ratio must be carefully 

distinguished.  Table 3.6 gives the calculated wire properties from the concentric 

composite model, with the values based on the volume fraction with or without void 

space making the minimum or maximum value.  These values form the basis for the shear 

and bending terms to follow. 

 

Table 3.6 Wire material properties calculated using concentric composite model.  

 
With Elliptical Void No Void 

EL with straight fiber 24.6 GPa 26.3 GPa 
EL with curved fiber 22.1 GPa 23.6 GPa 
G 0.63 GPa 0.65 GPa 
Poisson's Ratio, < 0.433 0.431 

 

3.4.5 Shear Rigidity 

At this point, calculated parameters include maximum and minimum values based on two 

methods of volume fraction calculation for the wire modulus of elasticity, the wire 

modulus of rigidity, and the wire Poisson's ratio.  These properties can now be combined 

to build the remaining cable parameters required for the beam model.  The importance of 

shear effects for cables was noted by several sources [2, 3, 84, 90], and it is the inclusion 

of the shear terms rather than the exact shear term value that is significant.  The 

developed cable model is relatively insensitive to the specific shear value, but is very 

sensitive to whether it is included.  The shear rigidity term ��� requires the calculation 

of �, the shear coefficient, as well as area and modulus of rigidity.  The shear coefficient 

represents the distribution of the shear stress profile across the cross-section of a beam.  

Reference [99] focuses on shear coefficient calculation for circular shear beams, and 

gives the equation for shear coefficient of a circular beam as 

� = 6(1 + <)$7 + 12< + 4<$ 
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where < is Poisson's ratio.  For the wire Poisson's ratio limits, the result for � is 0.9517 

and 0.9514, so the rounded value of 0.95 is used for all calculations.  This is higher than 

the typical Timoshenko value of 0.9 for a circular beam, indicating that more shear is 

occurring in the stranded cable than a typical solid beam, which seems reasonable.  The 

concentric cylinder model values for the modulus of rigidity are combined with area 

calculations and the shear coefficient to determine the shear rigidity term.  

   

Although further investigation could refine this value based on the interaction of 

individual wire shear profiles, both the previous research [3] and this study's findings 

show that the model is not very sensitive to the shear term value, so an order of 

magnitude change in the shear modulus value made little difference and the calculated 

value works as is.    Since the cable model is insensitive to the shear term, and � has been 

shown to round to the same value for each limit case, the difference between choosing the 

maximum or minimum area makes is very slight.  Figure 3.11 shows the modeled 

difference in frequency response function for G values differing by orders of magnitude.  

Differences are minor all the way through the fifth frequency, and even the higher 

frequencies are simply shifted. 

 

Figure 3.11: Slight variations in frequency response for massive changes in shear rigidity 

value. 
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3.4.6 Bending Stiffness  

The AFRL work limited cable modeling to commercially available finite beam elements 

and determined elastic modulus and moment of inertia values through axial dynamic tests 

and lateral bending tests, both requiring dedicated test equipment.  The approach outlined 

here allows for calculation of bending stiffness based purely on the cable geometry and 

published material values.  Bending stiffness of cables is considerably more complex 

than for a homogenous beam; research shows that the bending stiffness of a beam is 

variable when the beam is a multi-stranded cable [41, 49].  For a solid homogenous 

beam, bending stiffness is made up of the product of the modulus of elasticity E for the 

solid material and the moment of inertia I, which is easily calculated for simple solid 

shapes.  For a stranded cable, neither of these properties is simple.  Instead of 

determining E and I directly, the overall bending stiffness is considered based on the 

work of Papailiou concerning the bending stiffness of ACSR overhead transmission line 

cables.  According to Papailiou, cable bending stiffness must take into account not only 

the stiffness of each individual wire, but also the secondary stiffness due to the friction 

between the wires.  The secondary stiffness varies depending on whether the surrounding 

wires have slipped against the core wires or not, which is generally dependent on the 

amount of cable curvature.  When a cable is straight and all of its wires are in an initial 

position, it has a maximum bending stiffness.  As the cable is bent or displaced, wires 

begin to slip against each other, and when all wires have slipped, a minimum bending 

stiffness is achieved [49].  The difference between the minimum and maximum bending 

stiffness value may be orders of magnitude apart [76, 80], and the bending stiffness value 

can be any value in between depending on the curvature of the cable.   The bending 

stiffness for a stranded cable is given by Papailiou as the sum of the minimum bending 

stiffness plus additional stick or slip terms summed from each wire [49].  The minimum 

bending stiffness is 

��K7L�7@5 = ��x :S64 cos � 

 

where �� is the wire longitudinal modulus of elasticity (which itself must be determined 

by modeling the wire as a composite as described previously),  d is the diameter of the 
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individual wire, and �is the lay angle.  This is similar to the usual bending stiffness 

calculation where the moment of inertia is xDS , but includes a cosine term to take the 

angle of the wires into account.  The additional term to include the sticking between 

wires is ��9�7A��7@5 = ���(D sin	)$ cos' � 

 

where A is the wire area, r is the layer diameter, 	 is the angle that the individual wire's 

position makes with the horizontal (neutral) axis, and � is the lay angle.  The equations 

for ��K7L�7@5 and ��9�7A��7@5 give the lower and upper bounds for the bending stiffness value for 

a single wire, which for the cables investigated here, can be an order of magnitude apart 

and thus give too large of a range for useful prediction.  By including the curvature of the 

cable (for this case, based on the static displacement of the cable due to excitation 

tension), a more precise value can be obtained by adding a bending stiffness slip term: 

 ��9678�7@5 = �~�z^� ���(i)∗� − 1{(D sin	) cos � /�A  
 

Here, �~ is the stress in the wire due to tension, = is the friction coefficient between 

wires, �A is the curvature of the cable, and other variables are the same as in the previous 

equations.  The friction coefficient is taken as 0.35 for the insulated wires based on the 

friction coefficient for Tefzel, given by MatWeb as 0.3 to 0.4, DuPont as 0.23 (between 

metal and Tefzel), and Omega Wiring as 0.4. This value could be improved through 

experiments to find the coefficient of friction for the specific wires used, but according to 

discussion about [49], small changes in the friction value will not cause large changes in 

the overall bending stiffness [79].   

 

For the case where the cable wires have not begun to slip and the cable stiffness is at a 

maximum, the bending stiffness is given by 

��K?U =���K7L�7@5 +���9�7A��7@5 
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Otherwise, if the cable wires have begun to slip, the cable bending stiffness is a function 

of curvature and tension and is given by 

 

��9678 =���K7L�7@5 +���9678�7@5 
 

The bending stiffness is summed over all of the wires; for the wire minimum bending 

stiffness, this simply requires multiplying the EI wire minimum term by the number of 

wires in the cable, but for the wire slip and wire stick terms, the 	 angle will change for 

each wire, and the layer radius changes for each layer, so these calculations must be done 

carefully.   

 

Figure 3.12 shows the end layout of a 1X7 cable in which the layer diameters are noted in 

terms of the wire diameters, and the wire angle 	 is shown starting at 0 radians at the 

horizontal axis and moving counterclockwise. Figure 3.13 shows a similar layout for a 

1X19 cable.  The bending stiffness is calculated as the sum of the minimum stiffness, 

plus the stiffness of each additional layer.  Table 3.7 gives the number of wires or strands 

required to make up a full layer, as well as the associated 	 angle spacing for each layer, 

regardless of cable size. 

 

             

Figure 3.12: 1X7 cable layout showing 		angle.   Figure 3.13: 1X19 cable end layout  
        showing layer diameters. 
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Table 3.7 Number of wires and associated 	 angles for first five cable layers. 

Layer Number Number of Wires or 
Strands for a Full 

Layer 

	 Angle Division 
(degrees) 

Layer Radius in 
Terms of Wire 

Diameter, d 
0 (Core) 1 N/A 0 

1 (Innermost Layer) 6 60 d 
2 12 30 2d 
3 18 20 3d 

4 (Outermost Layer) 24 15 4d 
 

In the case of the 1X48 cable which does not have a complete outer layer, the individual 

wires wrap around the cable, adding inertia around the cable unevenly.  Thus, the average 

value between minimum stiffness (in which the additional layer wires are at the neutral 

axis) and maximum stiffness (in which additional layer wires are at the top and bottom of 

the cable) is used.  Figure 3.14 shows the layout for the minimum and maximum 

stiffnesses with the associated outer layer 	 angles of 0, 15, 30, 45, 150, 165, 180, 195, 

210 330, and 345 degrees for the minimum and 60, 75, 90, 105, 120, 135, 240, 255, 270, 

285 and 300 degrees for the maximum.   

 

 

Figure 3.14: 1X48 cable with minimum configuration (wires aligned near neutral axis) 

and maximum configuration (wires away from neutral axis). 

 

The above bending stiffness equations are only applicable to single stranded concentric 

cables; for the multi-stranded 7X7 cable, the equations were modified to take into 
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account the strand behavior of the outer layer.  For the multi-stranded cable, the core EI is 

calculated as a single 1X7 strand and the outer strands are treated as large individual 

wires; in the EI wire stick formula, the base E value is used, the area is the area of the 

1X7 strand, r is the distance to the center wire in each strand, 	 is the wire angle for the 

six outer strand center wires and � is the lay angle for the six layer strands, not the 

individual wires.  Figure 3.15 shows the end layout for a 7X7 cable with the layer radius 

of 2.5d and 	 angle divisions of 60 degrees shown.  This approach, though novel, worked 

well; considering the outer strands to be large wires resulted in a lower overall bending 

stiffness for the multi-stranded cable than the similarly sized single stranded cable, which 

agreed with experimental data and theory.  

   

Figure 3.15: 7X7 cable layer distance of 2.5d shown by red line and orange circles; strand 	 angles shown to be 60 degrees apart. 

  

Table 3.8 lists the maximum, slip, and minimum bending stiffness values for the four 

cables used, as well as the "traditional" bending stiffness calculation determined by 

multiplying the elastic modulus by the moment of inertia calculated for the wires based 

on the parallel axis theorem.  The maximum and minimum values in the table are based 

on calculated maximum and minimum wire EL values of 23.7 GPa and 22.1 GPa as 

determined previously using the concentric composite model.  The curvature for the slip 

state was based on the static displacement of the cable due to the excitation force; the 

values listed in Table 3.3 are based on the curvature values for the two-point fixture.  

Radius of curvature for the two-point fixture were 25, 80, 450, and 200 m for the 1X7, 
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1X19, 1X48, and 7X7 cables respectively, and were 50, 200, 900, and 700 m for the four 

cable types for the four-point fixture, each determined based on the measured maximum 

displacement of the cable due to the static force applied by the excitation attachment.  

The curvature values for the four-point fixture were lower due to larger radii from smaller 

displacements due to the shorter span, so the corresponding bending stiffness was higher 

as anticipated.  Although the displacement of the cables in both fixtures was small (0.1 to 

1.6 mm), it was enough to cause wire slipping based on calculations for critical curvature 

from [49].  Based on the cable maximum and minimum bending stiffnesses, it is clear 

that the traditional approach for bending stiffness calculation does not agree with the 

range calculated for most cables.  In addition, the multi-stranded 7X7 cable is 

significantly more flexible than the 1X48 cable, which is reflected correctly in the cable 

bending stiffness calculations, but not by the traditional approach.  The minimum to 

maximum (stick) range does span an order of magnitude as reported by previous authors.  

Overall, the approach suggested by Papailiou for bending stiffness calculation [49, 74] 

incorporated the physical parameters of the cable and took the friction between the wires 

into account, giving a more complete bending stiffness calculation than determining the 

modulus and inertia values independently.   

 

Table 3.8 Bending stiffness values calculated for four cables types using minimum and 
maximum E wire values.  

1X7 1X19 1X48 7X7 
Minimum Maximum Min. Max. Min. Max. Min. Max. 

EI Stick 1.65 1.87 13.82 15.72 93.60 106.71 74.05 84.38 
EI Slip (4 Pt) 0.40 0.44 1.55 1.71 7.52 8.13 2.60 2.82 
EI Slip (2 Pt) 0.34 0.37 1.08 1.18 4.73 5.10 2.14 2.30 

EI Min 0.28 0.30 0.77 0.83 1.94 2.07 1.96 2.10 
Traditionally 
Calculated EI 

2.84 3.04 6.25 6.67 148.91 159.09 154.39 164.95 

 

3.4.7 Damping Mechanisms and Coefficients  

A few damping mechanisms are at work in all cables, which also have coefficients that 

must be determined as model inputs.  As listed in the literature review, cable damping 

mechanisms sampled to date include viscous damping, Kelvin-Voigt damping, structural 
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damping, and geometric damping.  Comparison of simple damping mechanisms showed 

that viscous damping alone was not effective for modeling damping in cables [97, 100].   

 

Viscous damping occurs due to the friction between the beam and the surrounding 

medium (for our purposes, air) as the beam moves transversely.  This term is likely to be 

very small for a small cable, and non-existent in space, but it is included in the model as 

the simplest form of damping.  


+`�_[`	:�\p+Z| = �
 ���a  

 

where cv is the viscous damping coefficient.  Another common form of damping is 

structural damping, which includes both damping due to friction and material damping 

effects.  It is generally more effective at modeling experimental damping than viscous 

damping, and can be included by using the form  

`aD[�a[D�b	:�\p+Z| = � ���a + ��� �S���S ���a  

where �	and	� are the structural damping coefficients. 

 

Hysteretic damping occurs in viscoelastic materials, which the literature review has 

shown to be the case for the insulation around spaceflight cables.  Hysteretic damping 

was investigated for cables in [57] and experimental observations concluded that the 

1X19 cable investigated had hysteretic damping that was frequency and amplitude 

dependent.  Hysteretic damping can be incorporated through many forms, including 

spatial hysteresis and time hysteresis.  Time hysteresis specifically includes damping 

from stress that is proportional to strain plus the past history of the strain.  Time 

hysteresis damping can be incorporated through the equations of motion [101] where the 

hysteretic damping term is included as 

a+\^	ℎc`a^D^a+�	:�\p+Z| = � |(a − �)���(�, �):a�
�  

and |(a) is a kernel that represents the hysteresis model.  A particularly effective 

hysteretic kernel for frequency-dependent viscoelastic materials is the Golla-Hughes-

McTavish (GHM) method, where additional spatial coordinates are incorporated through 
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the representation of the material modulus as a series of damped mini oscillators [102, 

103].  The viscoelastic material properties are approximated by a curve fit of the form 

[104] 

�(`) = �`$ + �``$ + �` + � 

where the Laplace transform has already been applied and �, �, �, and	� are the damping 

coefficients that can be experimentally determined through dynamic mechanical analysis 

[105].  Experimental analysis is required for damping coefficients, so the damping 

coefficients are determined through curve fitting of experimental data.  The cable 

damping expression for each cable was determined by adjusting the four hysteretic 

damping coefficients in the cable model until the first four frequency amplitudes for the 

experimental data were matched by the cable model.  Those coefficients were then used 

in the four-point model for the same cable to confirm that the damping coefficients still 

approximated the first few amplitudes reasonably well.  Those damping coefficients were 

then applied to the damped cable portion of the cabled beam model. 

 

Cables may experience heavy damping, so approximations for light damping should not 

be used to determine cable damping ratios.  The modal damping from a hysteretic 

damping model can be calculated for a particular mode using the mobility frequency 

response function and the viscous half-power bandwidth method.  This gives an 

equivalent viscous modal damping ratio added by the GHM damping method.  To 

determine the modal damping ratio for a particular frequency, the derivation from Ewins 

[106] is used, which results in the expression 

� = ��$ −�$$2�@(�� + �$) 
where ��	�Z:	�$	are the frequencies at the point 3 dB down from the maximum 

amplitude at mode r, and �@ is the natural frequency at mode D.  This expression can be 

used for any level of damping. 

 

It should be noted that using variable bending stiffness can also incorporate damping; for 

a cable that is experiencing slipping states, variation of bending stiffness as a function of 
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curvature produces damping of vibration without requiring an explicit damping term in 

the equation of motion for the cable [41].  Thus, the use of a bending stiffness term that 

includes the dependence on curvature as well as additional viscous and hysteretic 

damping terms should give a reasonable approximation for the damping exhibited by 

stranded cables. 

 

3.5 Cable Bakeout Correction Factor 

So far, the geometry, wire configuration, and wire material have been the major factors 

that influence cable parameters.  However, for spaceflight cables, another factor that can 

influence cable dynamic behavior is bakeout treatment.  The investigation of spaceflight 

cables so far has been limited to cables constructed for the purpose of testing.  Cables that 

are constructed for actual flight must go through additional preparation and test, 

including "bakeout," a combination of heat and vacuum treatment designed to expedite 

the initial outgassing of flight hardware for contamination control [107].  Bakeout 

requires both high temperature thermal treatment and near-vacuum pressure, and may 

take anywhere from a few hours to several weeks, depending on the item's intended 

destination and mission.  All components of a space structure must go through bakeout to 

become flight ready, but components may be baked out separately and assembled in a 

clean room prior to launch.  It is common for cables to be baked out separately from the 

main structure, which also means that vibration testing usually occurs before cables are 

added to the structure and thus provides further motivation for accurate modeling of 

cabled structures since additional testing may be difficult once the structure has entered 

the clean assembly room.   Anecdotal reports from cable technicians suggest that cables 

seem stiffer after going through the bakeout process, but no study existed to affirm or 

quantify this difference.  Since there is no existing literature on the effects of bakeout on 

flight cables, and quantification of cable dynamics is important for space structure 

modeling, additional experiments were conducted to determine whether bakeout affects 

cable dynamics and spacecraft structural models that include cables.  An additional 

bakeout correction factor can be included in cable models to take the effects of bakeout 

into account [108].  Based on experiments run, the bakeout factor to include for the 

bending stiffness of baked out cables would be between 0.8 and 0.95. 
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3.6 Cable Parameter Conclusions 

Combining the theory for bending stiffness of stranded cables with the material properties 

for concentric composites yielded reasonable bending stiffness terms for stranded cables.  

Extending these ideas allowed for calculation of multi-stranded cable parameters by 

considering the outer layer strands as large wires.  The bending stiffness of each cable 

was dependent on curvature; even small displacement in the static position of the cable 

was enough to cause wire slippage and subsequent lowering of the bending stiffness 

value.  Calculation methodology for ranges for area, density, and shear terms were 

presented, as well as the form of the cable damping term.  Table 3.9 presents the 

equations for the maximum and minimum values of the cable parameters required for 

cable modeling that are calculated directly.  Table 3.10 lists the equations to determine 

the maximum and minimum parameters required for the calculation of bending stiffness 

and shear rigidity.   

  

Table 3.9 Equations for minimum and maximum values for cable parameters �, 
, and	�. 

Parameter Parameter Minimum Parameter Maximum 

Area, � 3(2z�}v	}B@5 + �~5!�56	$R���	�?A�5�{ + ���  + ��?�A5�) 3x :�7@5	K7L	2 ∗ :�7@5	K?U2  

Copper 

Volume 

Fraction, 
}v 

2�}v}B@5 + ��� z2�}v}B@5 + ���  + 2�~5!�56	$R���	�?A�5� + ��?A�5�{ $�¡¢¡£OP¤�¥¦§J&¨MNOP	©Nª	« ∗¨MNOP	©W¬« T     

Tefzel 

Volume 

Fraction, 
~5!�56 
2�~5!�56	$R���	�?A�5� + ��?A�5�z2�}v}B@5 + ���  + 2�~5!�56	$R���	�?A�5� + ��?A�5�{ 

$�­P®¯PY	«°±²³	´WVµP¶¤�´WVµP¶J&¨MNOP	©Nª	« ∗¨MNOP	©W¬« T     

Density, � 

\· ∗ x�A?�65$ 		or	 w
1}v�}v + 
1~5!�56�~5!�56 y
��

 
\��+Z+\[\ 
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Table 3.10 Equations for minimum and maximum values for cable parameters for 

bending stiffness and shear rigidity terms. 

Parameter Equation 
To Use For 
Minimum 

Value 

To Use For 
Maximum 

Value 

Poisson's 
Ratio, < 

<K − 2z<K − <!{(1 − <K$ )�!
!�Kz1 − 
!{z1 − <! − 2<!${ + J(1 − <K − 2<K$ )
! + (1 + <K)T�!	 

K = 
~5!�56	K7L 

and 
! = 
}v	K7L 


K = 
~5!�56	K?U 
and 
! = 
}v	K?U 

Modulus of 
Rigidity, � 

Jz1 + 
!{�! + z1 − 
!{�KT�K�! + �K − 
!(�! − �K)  


K = 
~5!�56	K7L 
and 
! = 
}v	K7L 


K = 
~5!�56	K?U 
and 
! = 
}v	K?U 

Shear 
Coefficient, � 

6(1 + <)$7 + 12< + 4<$ < = <K7L < = <K?U 

Modulus of 
Elasticity, � 


!�! + 
K�K + 2z<! − <K{$�K�!
!(1 − <!)�K(1 − 
K)z1 − <! − 2<!${ + �!z(1 − <K − 2<K$ )
K + (1 + <K){ 

K = 
~5!�56	K7L 

and 
! = 
}v	K7L 
and < = <K7L 


K = 
~5!�56	K?U 
and 
! = 
}v	K?U 

and < = <K?U 

Bending 
Stiffness, �� (Single 
Stranded) 

��¹ x :�7@5S64 cos � +��~�z^� ���(i)∗� − 1{(D sin	) cos � /�A¹  
� = �K7L 

and � = �K7L 

� = �K?U 
and � = �K?U 

Bending 
Stiffness, �� (Multi- 
Stranded) 

3m ∗ ���7Lm�@?L� +��~�K7Lz^� ���(i)∗� − 1{(D sin	) cos � /�A¹  

���7Lm�@?L�= ���7L 	 
for single strand 

using �K7L 
value  

���7Lm�@?L�= ���7L	 
for single strand 

using �K?U	 
value 

 

For the parameters listed in Table 3.10, the equation is the same for maximum and 

minimum cases, but the input values used in the equations will be the maximum or 

minimum values for volume fraction, modulus of elasticity (or strand bending stiffness in 

the case of the multi-stranded cable), area, or Poisson's ratio, as required by the equation.  

Determining effective cable values for the area, density, bending stiffness, shear terms, 

and damping terms enables the development of a beam model for cables, which is 

constructed in the next chapter. 
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Chapter 4: Modeling Methodology 

Of the cable models introduced in Chapter 2, the beam model has many advantages for 

the purpose of vibration analysis.  The beam model can be used directly to solve for 

dynamic response information, and can incorporate bending stiffness and shear, which 

must be considered for cable modeling.  However, there are aspects of the semi-

continuous model that are valuable as well; the beam model assumes a homogenous 

cross-section, and a stranded cable made up of jacketed wires is certainly non-

homogenous.  An important contribution of this work is the determination of equivalent 

homogenous beam parameters that describe the cable response accurately without 

resorting to dynamic experimental testing of the cable. Thus, once cable parameters are 

determined as described in Chapter 3, they can be incorporated into an equation of 

motion for the now effectively homogenous cable system.  There are many methods to 

solve a beam model equation of motion, but the method used here is the distributed 

transfer function method (DTFM).  The DTFM is an exact method that determines 

dynamic response through the use of exponential matrix calculations rather than 

eigenvalue solvers.  The DTFM has been used for beam modeling and shown to be more 

accurate at determining natural frequencies than the Rayleigh Ritz method [109].  The 

DTFM divides a system into a series of subsections and nodes, similar in some respects 

to a finite element method, but with nodes only placed at joints, force locations, boundary 

constraints, or other points of interest.  Unlike the finite element method, the DTFM only 

requires nodes at points where different components are connected, constrained, or 

excited, so the elements remain as large as possible.  This leads to similar accuracy, but 

much less computation time than the finite element method [110].  For this reason, the 

DTFM is well-suited to the repeating nature of cables attached to structures, and works 

well with the damped equations that describe cable motion and the tie-down constraints.  

This chapter begins with an overview of the DTFM and then describes the work done to 

develop the cable model and the cabled beam model. 

 

4.1 Distributed Transfer Function Method 

The distributed transfer function method may be unfamiliar to some readers, so the 

method will be described in general terms before going through the cable and cabled-
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beam cases.  The method related here is based off of the work of Yang [111, 112, 113], 

who used the DTFM for multi-section Euler-Bernoulli beam systems [111] and Sciulli 

[114], who used the approach for the case of two Euler-Bernoulli beams connected by 

spring-damper systems.  The response �(�, a) for a distributed beam system is governed 

by a fourth order linear partial differential equation and boundary conditions such as 

º� �$�a$ + » ��a + �¼�(�, a) = 1(�, a), �	½	(0, 1), a > 0 

�À�(�, a)Á|UÃ� +3À�(�, a)Á|UÃ� 	= �À(a),			a ≥ 0, s = 1,2,3,4	 
where A, B and C are differential operators derived from the equation of motion 

comprising constant coefficients related to the physical properties of the system and 

spatial derivatives, and M and N are operators based on the boundary conditions of the 

system.  The equation of motion and boundary conditions are Laplace transformed with 

respect to t, and cast into state space form *�(�, `) =  (`)*(�, `) + 
(�, `)		�	½	(0, 1) �(`)*(0, `) + 3(`)*(1, `) = �(`) 
where *(�, `) = År(�, `)	r�(�, `)	r��(�, `)	r���(�, `)Æ~ 


(�, `) = º0	0	0	 Ç(�, `)�L`$ + ]L` + �L¼
~
 

�(`) = Å��(`)			�$(`)			�'(`)				�S(`)Æ~ 

for a fourth order beam equation.  The size of the solution vector *(�, `) is dependent on 

the order of the equation of motion.  The solution to the state space equation is  

*(�, `) = � �(�, È, É)
(È, `):È	�
� + 	Ê(�, `)�(`)															�	½	(0, 1) 

where 

�(�, È, É) = Å	^Ë(9)Uz�(`) + 3(`)^Ë(9){��	�(`)^�Ë(9)d 	, È < �−^Ë(9)Uz�(`) + 3(`)^Ë(9){��	3(`)^Ë(9)(��d)	, È > �  

and Ê(�, `) = ^Ë(9)Uz�(`) + 3(`)^Ë(9){��	 
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with ^Ë(9)Ubeing the fundamental matrix using the state space matrix F(s) created from 

the equation of motion and sized according to the order of the equation of motion, and �(�, È, É) and Ê(�, `) known as the transfer functions of the subsystem.   

 

However, this is only the solution for a single subsystem, and the value of the DTFM for 

cabled structure research is the ability to connect many subsystems to model a cable 

attached at many points.  Thus, for any number of interconnected subsystems, 

displacement and strain vectors are described by �(�, `) = År(�, `)			r�(�, `)Æ~ ½(�, `) = År��(�, `)		r���(�, `)Æ~ 

and the solution vector *(�, `) = Å�~(�, `)		½~(�, `)Æ~.  An internal force vector is 

assumed to be �(�, `) = �(`)½(�, `) 
where E(s) is a constitutive matrix, which is the elastic modulus in the case of a beam 

model.  Set �(`) = Å�(0, `)		�(1, `)Æ~ 

�(`) = Í�$ 00 0Î ,			3(`) = Ï0 0�$ 0Ð 
where � are nodal displacement vectors at each end of a subsystem and �$ is a 2x2 

identity matrix that either links subsystems or incorporates boundary conditions and 

constraints as described later.  Constraints such as springs between subsystems can be 

incorporated through either the boundary condition matrices or the global stiffness matrix 

created through subsystem assembly.  The subsystems are assumed to have a unit length, 

so the fundamental matrix must be multiplied by the length of the subsystem for 

subsystem lengths other than one. 

   

Combining all of these equations  and partitioning the G and H matrices appropriately 

yields solutions of 

�(�, `) = � �f(�, È, `)1(È, `):È +	�
� ÊfÑ(�, `)��(`) + ÊfÒ(�, `)��(`) 
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�(�, `) = �(`)� �Ó(�, È, `)1(È, `):È +	�
� ÊÓÑ(�, `)��(`) + ÊÓÒ(�, `)��(`) 

 

These solution equations depend on specific portions of the transfer function matrices 

which are partitioned as shown. 

�(�, È, `) = Ï�f�ÓÐ , Ê(�, `) = ÏÊf� Êf�ÊÓ� ÊÓ�Ð 
 

Once the nodal displacements are known, the response of the system is completely 

determined.  To determine the nodal displacements, the subsystems must be assembled to 

make a stiffness-like matrix as follows. 

 

Assuming the total system has N nodes, located at �� , t = 1,2…3 where the subsystems 

are connected, the displacement vector of the system at location �� is called [�(`).  
Multiple subsystems can be connected at each node, as well as pointwise constraints of 

the form −��(`)[� and external forces.  Force balance at the node �� requires 

 Õ�(`) + ÕÖ(`) + ⋯+ ÕØ(`) − ��(`)[�(`) + p�(`) = 0 

 

where Q vectors are the vectors of the forces applied at node k by the subsystems and pk 

is the vector of nodal external forces.  The force Õ�(`) for subsystem A is Õ�(`) = −����(�� , `) 
where �� is a coordinate transformation matrix for that subsystem.   The subsystem nodal 

displacement vectors ��(�6 , `) and ��(�7 , `) are related to global nodal displacements [6(`) and 	[7(`) by coordinate transformation matrices so that ��(�6 , `) = Ù�[6(`)		, ��(�7, `) = C�[7(`) 
The subsystem nodal displacement vectors are put into the appropriate terms for the left 

and right side of the subsystem (��	or	��) in the solution vector, and the solution vector 

is put into the force term.  Combining the solution and coordinate transformation 

equations in this way yields 
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Õ�(`) = −�� Ú�� �Ó�(�� , È, `)1(È, `):È +	�
� ÊÓ�� (��, `)��(`) + ÊÓ�� (�� , `)��(`)Û 

Õ�(`) = −�� Ú�� �Ó�(�� , È, `)1(È, `):È +	�
� ÊÓ�� (�� , `)C�[7(`) + ÊÓ�� (�� , `)Ù�[6(`)Û 

Õ�(`) = −��(ÊÓ�� (�� , `)C�[7(`) + ÊÓ�� (�� , `)Ù�[6(`) − 16�) 
and when this equation is compared with the form of stiffness matrix times displacement, 

with k as the node of interest l, Õ�(`) = −�67�(`)[7(`) − �66�(`)[6(`) − 16� 

it is shown that the elements of the stiffness matrix are 

 �67�(`) = ��ÊÓ�� (�6 , `)C�			,			�66�(`) = ��ÊÓ�� (�6 , `)Ù� 

 

for the subsystem A.  However, these equations assume that �7 < �6 (essentially  �7 =0	and	�6 = 1 ), and must be rederived otherwise, switching the nodal displacement 

substitutions.  Deriving the equations for reversed subsystems results in different 

combinations of the elements of the H transfer matrix with the transformation matrices. 

 

After the force balance is determined for each node, an equilibrium equation similar to 

the typical finite element method can be formulated as �(`)[(`) = Ç(`) 
where the stiffness matrix, displacements, and forces are in global terms.  This equation 

can be solved for the displacements of each subsystem, which can then be substituted 

back into the solution equations to determine the response of each subsystem.   

 

To get eigenvalues and the resulting natural frequencies, the external forces are set to 

zero so that �(`)[(`) = 0 

and the nontrivial solution for [(Ü�) is found by solving det��� = 0 to give the natural 

frequencies.  The displacements are calculated for each natural frequency, and these 

displacements can be substituted into the solution equation, again assuming applied 
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external forces are 0, to give the mode shape for each subsystem for each natural 

frequency.   

 

Frequency response functions can also be created from this method.  Assuming that a 

harmonic forcing function is applied at frequency �, the nodal displacements are 

determined as [(s�) = ���(s�)Ç(s�) 
where the forcing function is assumed to be a harmonic input.  Again, the displacements 

are substituted into the solution equation to get the frequency response as a function of s�.  Appendix A contains the detailed equations for the construction of the global 

stiffness matrix �(`)for a simple beam divided into three subsystems as an example of 

the DTFM approach. 

 

4.2 Equations of Motion  

The distributed transfer function method begins with the equation of motion for a system.  

For the simplest case of an Euler-Bernoulli beam in which plane sections remain plane, 

the equation of motion is  

�� �$�(�, a)�a$ + ��	 �S�(�, a)��S = Ç(�, a) 
where w(x,t) is the transverse displacement of the beam and q(x,t) is an externally applied 

forcing function.  The coefficients �, A, and EI represent the density, area, and bending 

stiffness parameters that describe the beam material and shape.  The Euler-Bernoulli 

beam equation is sufficient for the aluminum beam used as a host structure.  However, 

since the cables under consideration are constructed of a metal core and outer insulation 

layer, they do not experience constant shear across the cross-section, and are more like a 

sandwich or composite beam in their behavior than a solid beam.  Therefore, a simple 

Euler-Bernoulli model does not adequately capture the cable behavior, and a shear beam 

model must be used.  Derivation of the equation of motion for a shear beam can be 

determined from Timoshenko's work [115].  In the Timoshenko beam equations, 

variables include both the transverse displacement of the beam and the rotation of a plane 

section of the beam due to both bending and shear, taking shear effects into account as 
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well as rotational inertia.  A Timoshenko cable model was developed as part of this 

research, but rotational inertia effects were small compared to shear effects, and the 

additional complexity of the Timoshenko beam was unwarranted, corroborated by both 

this author's findings [100] and others.  Since multiple sources note that shear effects 

must be included [2, 90] and the cables could be under tension, a shear term and tension 

term are included in the governing equations and the equation of motion for an undamped 

cable is more accurately described by 

 

���$�(�, a)�a$ − ������� �S�(�, a)�a$��$ + �� �S�(�, a)��S + C �$�(�, a)��$ = Ç − ����� �$Ç(�, a)��$  

 

where T is the tension in the cable and again, the property coefficients can be terms that 

describe the cable as a beam.  Going further along the path towards reality, cables 

experience damping through a variety of mechanisms, including viscous damping and 

hysteretic damping.  For this case, the equation of motion is derived from governing 

equations with damping included.  Hysteretic damping is incorporated through the stress 

strain relation for a viscoelastic material [101]   

�(�, a) = �½(�, a) − � |(a − �)½(�, a):��
�  

 

where E is the elastic modulus, ½(�, a) is the strain, and g(t) is the hysteretic damping 

kernel.  From the work of Timoshenko [115], the equations for a beam are 

���ß (�, a) = −�g(�, a)�� + Ç(�, a) ��(�, a)�� = g(�, a) 
which are used in conjunction with the definition of the moment and shear terms for a 

beam that experiences bending and shear, which are  

� = �� �2��  

g = −��� ����� − 2# 
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where the moment, shear, transverse displacement and total rotation are all functions of x 

and t for those and all subsequent equations until the Laplace transform is taken for the 

DTFM form.  As discussed previously, cables experience hysteretic damping.  Since the 

stress of the beam therefore has a hysteretic component, the moment becomes:  

 

� = �� eàeU − á |(a − �) e«�eU« :���  OR � = �� eàeU − á |(a − �) eàeU :���  

 

Using the form in which hysteresis is applied to w, substitution of the shear definition and 

new moment equation into the governing beam equations yields: 

 

���$��a$ = −��� �2�� + ��� �$���$ + Ç 

�� �$2��$ +� |(a − �) �'���' :a�
� − ���2 + ��� ���� = 0 

 

The tension term is then added, as is a viscous damping term since inclusion of 

aerodynamic damping was recommended to more closely match energy dissipation of 

stranded transmission line conductors [84].  That work also notes that friction among 

conductor wires depends on time rate of change of wire curvature during bending 

vibrations (time hysteresis), so the combination of viscous and hysteretic damping could 

be an effective damping model.  With tension and viscous damping included, the 

governing equations for shear and moment are: 

 

�� �$��a$ = −��� �2�� + ��� �$���$ + � ���a + Ç 

�� �$2��$ + C ���� +� |(a − �) �'���' :a�
� − ���2 + ��� ���� = 0 

 

These equations are combined as shown in Appendix B to obtain a single equation in 

terms of the transverse displacement w(x,t).  Thus, a viscously and hysteretically damped 

viscoelastic cable in tension can be described with the equation of motion:   
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���$��a$ − ����� �S���$�a$ + �� �S���S + ������ �'���$�a + C �$���$ − � ���a + � |(a − �) �S���S :a�
�= Ç − ����� �$Ç��$ 

 

4.3 Damped Shear Beam DTFM Model 

Once the equations of motion of the cable as a beam are derived and the equivalent cable 

parameters calculated, the next step is to use the equations of motion to find information 

about the cable response, including natural frequencies, damping ratios, mode shapes, 

and frequency response functions.  The distributed transfer function method (DTFM) is 

an exact solution method based on the fact that the transfer function of a system has all 

the information needed to determine the dynamic response of that system.  By 

determining the transfer function of a system and putting it into a specific form, the 

desired information is obtained.  For the case of cable-harnessed structures, DTFM is 

advantageous because it is easily segmented and allows for the building of cable-

harnessed structures very easily since connections between systems are easily handled.  

Different forms of damping can be modeled by incorporating the damping mechanisms 

into the equation of motion, as evidenced by [116] for Euler-Bernoulli beams.  Since an 

end goal of this work was to create a cable-harnessed beam model, setting up the cable 

model with the DTFM method makes for complete and straightforward integration of the 

developed cable model into a cable-harness structure model.   

 

The cable system of interest consists of a single length of cable held in place through 

connections to ground, under slight tension and with both ends free.  Figure 4.1 shows the 

cable system for the two-point fixture and the four-point fixture, with the attachment 

points modeled through both linear and rotational stiffness and damping.  These models 

corresponded exactly to the experimental cable set ups for the two-point fixture and four-

point fixture that will be discussed in Chapter 5. 
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Figure 4.1: Cable model diagram showing linear spring and damper and rotational spring 

at attachment points for two-point and four-point models with nodes located at ends, 

attachment points, and excitation (driving) point. 

 

For the two-point fixture model, the cable is divided into four unequal subsystems with 

five nodes; one node at each end, one node at each connection point, and one node at the 

excitation point.  The four-point fixture model has six subsystems with nodes at the two 

ends, four connection points, and excitation point for a total of seven nodes.  The stiffness 

matrix multiplies the nodal displacement vector, so the full matrix size is based on the 

number of nodes of the model.  Thus, the stiffness matrix for the two-point model is a 

10X10 matrix and the four-point model requires a 14X14 matrix.  The MATLAB 

programs included in Appendix C contain the information for each subsystem and node 

as part of the input file for each model. 

 

The equation of motion for the cable as a damped shear beam from the previous method 

provides the starting point for the distributed transfer function method.  The solution 

w(x,t) is assumed to be separable, so the partial derivatives are applied and are henceforth 

indicated by dot notation for temporal derivatives and prime notation for spatial 

derivatives.     
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���ß − ����� � ′′ß + ��� ′′′′ − ������ �j ′′ −� |(a − �)�′′′′:a�
� + ��j + C� ′′ = Ç − ��Ç′′���  

 

Taking the Laplace transform, 

 

��`$r − ����� `$r�� + Cr ′′ − ������ `r′′+ �`r + ��r ′′′′ − 1̀�(`)r′′′′
= Õ − ����� Õ′′ 

and rearranging the equation yields 

r��� = (−��`$ − �`)
w�� − 1̀ �(`)yr + ����� `$ − C + ������ `w�� − 1̀ �(`)y r�� + Õ

w�� − 1̀ �(`)y
− ����� Õ′′w�� − 1̀ �(`)y 

 

which is now an appropriate form to create the fundamental matrix used as the heart of 

the DTFM.  Setting the equation of motion into the form r� =  r + Õ 

gives the fundamental damped shear beam matrix for a cable subsystem, 

 

 mI5?@ãW©äP¨ =
åæ
æææ
æç 0 1 0 00 0 1 00 0 0 1(−��`$ − �`)
w�� − 1̀ �(`)y 0 ����� `$ − C + ������ `w�� − 1̀ �(`)y 0

èé
ééé
éê
 

 

which is multiplied by the length of the subsystem.  This fundamental matrix contains 

coefficients that represent physical information about a specific cable; the solution for a 

different cable simply requires changes in the fundamental matrix rather than the entire 
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method [117], so computing results for a variety of cables is straightforward.  Boundary 

conditions of the system are incorporated through the use of matrices from the equation   �(`,*(0, `, + 3(`,*(1, `, = �(`, 

 

which are determined from the boundary condition equations for each subsystem.  Since 

the cable ends in each fixture are free, the beam is suspended to approximate a free-free 

condition, and the cable attached to the beam is free at the ends, the boundary conditions 

used for both the cable and cabled-beam model end subsystems require the bending 

moment and shear force to vanish at the ends, so the equations and corresponding 

boundary condition matrices are 

�� �$r��$ = 0, ��� ë�� �$r��$ ì = 0 

 
�Ë@55 = í0 0 �� 00 0 0 −��0 0 0 00 0 0 0 î , 3Ë@55 = í0 0 0 00 0 0 00 0 �� 00 0 0 −��î 

 

The interior subsystems simply use boundary condition matrices created from the identity 

matrix, which ensures compatibility between displacement and slope on each side of each 

node.  For this internal compatibility, the equations require the deflection and slope to be 

the same for each subsystem attached at the same node, so corresponding boundary 

conditions are 

r�� = r�¤ = r� = 0, �r���� = �r�¤�� = �r��� = 0 

 
� L�5@7B@ = í1 0 0 00 1 0 00 0 0 00 0 0 0î , 3 L�5@7B@ = í0 0 0 00 0 0 01 0 0 00 1 0 0î 

 

The attachment points between cable and ground or cable and beam are modeled as 

spring and damper constraints incorporated in the global stiffness matrix and are 
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discussed in the next section.  Displacements, mode shapes, natural frequencies, and 

frequency response functions are found as related in section 4.1.  Appendix C contains 

the MATLAB program files for the cable models; input files for each model are listed 

first and contain the node and subsystem information for each model, followed by several 

function files that determine the boundary condition and constraint matrices, assemble the 

global stiffness matrix, determine the eigenvalues for the system, and finally find and plot 

the mode shapes and frequency response functions for the system.  

 

4.4 Cable Tie-Down Attachment Point Modeling 

A common method of attaching cables to structures involves the use of cable ties and 

mounting hardware.  Aluminum TC105 tabs and cable ties are used for attaching cables 

to space structures as shown in detail in Chapter 5.  As noted in [3] and confirmed in this 

body of work, pinned and fixed boundary conditions were not adequate for representation 

of these attachment points between cable and structure.  Previous cabled structure models 

created by the Air Force Research Laboratory used a commercially available spring 

stiffness element for the attachment stiffness, but noted concern about the quality of the 

input value and recommended a better method to estimate tie-down properties [1]. 

 

The flexible cable tie, although tightened uniformly, allows some give within the cable.  

In addition, the cable tie is not fixed at one point in the hardware, so rotation is possible 

and requires surprisingly little force for even a very tight cable tie.  Therefore, an 

attachment model that included both linear and rotational stiffness, as well as linear and 

rotational damping was developed.  To do so, constraint equations are written in terms of 

the nodal displacements and included as part of the global stiffness matrix. 

 

The cable model uses a constraint to ground and the cabled-beam model uses a constraint 

between subsystems.  For the cable model, the constraint to ground representing the 

TC105 attachment with stiffness is modeled as a spring connected to a massive mass 

representing ground.  For the spring-mass constraint, Sciulli gives the equation of motion 

for the rigid mass and develops the constraint matrix [114].  For a beam in transverse 

vibration, the displacement of the node that the mass (or ground) is connected to is 
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[7(`, = ï �(�7, `,��(�7 , `,ð and the force is 1(`, = ï�K(�7 , `, (�7 , `, ð which makes the constraint 

matrix term 

�7(`, = ñ 0 0\`$(�` + t,\`$ + �` + t 0ò 
 

The same procedure is followed to add rotational stiffness and rotational damping, but the 

equation of motion for the rigid mass is based on the sum of torques rather than forces, 

which adds an additional term to the constraint matrix to multiply the slope in the 

displacement vector.  Thus, the complete constraint matrix for the cable attachments is 

 

�7(`, = åææ
æç 0 �`$(�ó` + tó,�`$ + �ó + tó\`$(�` + t,\`$ + �` + t 0 èéé

éê 
 

where linear and rotational stiffness and damping terms are included, and �, �ó, t, and	tó 

are the linear damping, rotational damping, linear stiffness, and rotational stiffness 

coefficients of the attachment point mechanism, which must be determined 

experimentally.  For the cable attachments to ground, both m representing the rigid mass 

and I representing the mass inertia must be very large to approximate the constraint 

condition correctly.  Since the constraint matrix multiplies the displacement vector, it can 

be added into the global stiffness matrix when the force balance at each node representing 

each attachment point is determined. 

 

For the cabled beam, the cable is connected to additional model subsystems representing 

the beam, rather than the ground.  For this constraint matrix, the nodes of the cable and 

the nodes of the beam must be included.  Thus, the constraint matrix must fulfill the form 

 

ïÕAÀÕA6ð = − ë�ÀÀ(`) �À6(`)�6À(`) �66(`)ì ï[À(`)[6(`)ð 
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where the forces are represented by Q, and j and l are the nodes for the two subsystem 

nodes connected through the spring attachment.  The C matrices are the transfer functions 

that describe the attachment point with a linear and rotational spring, determined to be 

� = Í 0 tó + �ó`t + �` 0 Î 
The attachment force affects both the beam and the cable, so the force balance for each 

node connected to an attachment point, whether it is on the beam or the cable, will have 

components from the attachment constraint matrix. 

 

Figure 4.2 shows the frequency response function for the developed model with linear 

and rotational stiffness as compared to a pinned-end model, both shown in comparison to 

the experimental data for a solid steel rod using the same rod parameters.  Experimental 

data is matched quite well by the undamped model that includes rotational and linear 

stiffness for the attachment points, but the undamped pinned model shows a larger 

discrepancy than should be expected for this simple case of a solid material with known 

properties.  It is clear that the TC105 tab and cable tie attachment cannot be described 

adequately with a pinned connection.  The pinned model is clearly inferior in terms of 

natural frequency agreement, underestimating the natural frequency for all three major 

modes shown. 
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Figure 4.2: Comparison of pinned constraint with linear and rotational stiffness constraint 

model against experimental data for steel rod in test fixture, showing superiority of linear 

and rotational stiffness method in terms of natural frequency agreement. 

 

Previous studies used a higher linear stiffness value than the values required for the tests 

herein, but this could have been needed to compensate for the lack of rotational stiffness, 

which adds stiffness, but in a different degree of freedom.  Higher rotational stiffness 

shifts all frequencies up uniformly, while higher linear connection stiffness increases 

frequencies proportionally.  Figure 4.3 shows the effect of including rotational stiffness 

on the model frequency response function for a 1X7 cable; even low values for rotational 

stiffness have the capacity to change the model response appreciably and may be able to 

capture the non-standard stiffness character of the cable attachment points.  Chapter 5 

contains details about the experiments that were conducted to determine the inputs for 

linear and rotational attachment stiffness used for the model constraints. 
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Figure 4.3:  Effect of adding rotational stiffness to constraint matrices; adding rotational 

stiffness changes the model frequency response function even for small rotational 

stiffness values. 

 

4.5 Sensitivity Analysis 

In attempting to model cables on structures, there are a surprising number of factors that 

affect the results; of course the cable parameters have an effect on the cable response, but 

the input for the attachment point method also had a major effect.  The frequency 

response was already shown to be insensitive to changes in shear modulus value in 

Chapter 3.  Bending stiffness and mass terms have a greater effect.  Figure 4.4 shows the 

difference for the full range of bending stiffness and mass values for an arbitrary cable.  

An increase in bending stiffness and decrease in density and area increases the natural 

frequency values with a steady shift. 
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Figure 4.4: Frequency shift due to full range change in cable properties. 

 

Even an order of magnitude change in bending stiffness did not change the first 

frequency appreciably, as shown in Figure 4.5.  For this graph, the mass value was held 

constant and only the bending stiffness was varied. 

 

Figure 4.5: Order of magnitude changes in bending stiffness do not change the first 

frequencies appreciably, all other frequencies are simply shifted. 

 

It was apparent from the preliminary investigation that the cable attachment points did 

not behave as an ideal pinned connection, so each connection was modeled as a spring 

and damper as described in the previous section.  Past research hypothesized that the 

human construction factor was the cause of cable response variability, so for this study all 

of the cables were made on a planetary machine to ensure uniformity.  However, there 
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was still variation from section to section for each cable type whenever the cable was 

reattached to the test fixture.  This led to an investigation of the tie-down attachment 

stiffness described previously which found that the cable attachment stiffness varied by 

an order of magnitude over the frequencies of interest.  Figure 4.6 illustrates the drastic 

difference due to attachment stiffness; rather than just shifting values, frequencies are 

split or combined as well. 

 

Figure 4.6: Order of magnitude changes in attachment point stiffness DO cause frequency 

shifts, splits, and combinations, even in the lowest modes. 

 

4.6 Cabled-Beam Model 

A great advantage of the distributed transfer function method is that it lends itself well to 

a system with many connection points.  Therefore, once the cable model is made, it can 

be easily extended to model a cable attached to a structure as discussed in this section. 

 

Figure 4.7 shows the model for the cabled beam structure with the driving point shown 

by a green arrow.  This model was designed to match the experimental cabled beam 

structure discussed in the next chapter and shown with node locations labeled in Figure 

4.8.  The cabled-beam model consists of 8 nodes and 7 subsystems on the beam, and 8 

nodes and 7 subsystems on the beam for a total of 16 nodes and 14 subsections.  The ends 

of both the beam and the cable are modeled as free ends, and the attachment points were 
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modeled with linear and rotational stiffness as described in the previous section.  Cable 

parameters were determined as introduced in Chapter 3. 

 

Figure 4.7: Top view of model for cabled beam with excitation point shown by arrow. 

 

 

Figure 4.8: Cabled beam with node locations labeled; node 4 indicates excitation point. 

 

The cabled beam model is run in exactly the same way as the cable model, one of the 

advantages of the DTFM; the major differences are that instead of the constraints that 

represent the attachment points being connected to ground, the constraints are connected 

to additional subsystems on the beam using the constraint matrices developed for spring 

connections between subsystems.  Appendix C contains the MATLAB program files for 

the cabled beam model. 

 

4.7 Model Verification for Known Cases 

Before delving into modeling unknown cable responses, it must be shown that the 

developed method works for known cases, such as homogenous Euler-Bernoulli beams 

with various end conditions and multi-span beams.  To that end, the cable model was run 

with arbitrary parameters and compared to published analytical solutions [118, 119, 120].  

Table 4.1 shows the agreement between the first few natural frequencies of the modeled 

cases and published values.  The Euler-Bernoulli cases had nearly identical natural 

frequency results, regardless of which type of end condition was modeled, and the five-

section multi-span beam matched published results [120] very well considering the pin 

supports at the connection points were actually modeled with very stiff springs (spring 
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stiffness on the order of 109 was found to be a good approximation for a pinned end).  

The shear beam had to be compared to Timoshenko published beam values, and when 

considering that the Timoshenko beam also includes rotary effects, the agreement is good 

enough to instill confidence in the model to proceed forward.  Changes in length and 

tension were also checked, and the model predicts frequency increases as expected for 

decreases in length and increases in tension.   

 

Table 4.1 Verification of DTFM model for known cases. 

Published Value  DTFM Model Value % Difference 

Euler-Bernoulli Beam, Simply Supported [118] ��=12.56 , EI = 179200, length=1 

1st Mode 187.48 187.51 0.01% 

2nd Mode 750.03 750.03 0% 

Euler-Bernoulli Beam, Free Ends [118] �� =12.56 , EI = 179200, length=1 

1st Mode 425.10 425.06 0.01% 

2nd Mode 1171.70 1171.70 0% 

Published Timoshenko Beam, DTFM Shear Beam [119] �� =12.56 , EI = 179200, ��� = 1.1016�8, length=1 

1st Mode 184.70 186.00 0.70% 

2nd Mode 707.83 726.99 2.71% 

Euler-Bernoulli Multi Span Beam, 5 Equal Pinned Sections [120] �� =1.1746 , EI = 138, length=0.7742 

1st Mode 26.81 26.79 0.08% 

2nd Mode 27.44 27.42 0.07% 

3rd Mode 126.53 126.38 0.11% 

4th Mode 157.62 157.40 0.14% 

 

Published values for double beam models are difficult to find in multi-span 

configurations, so verification of the cabled beam model was checked by comparing the 

cabled beam model with the attachment points unattached against the experimental beam 
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results.  As a visual indication of agreement for the cabled beam model, Figure 4.9 shows 

the agreement between the model with no cable attached and the bare beam experimental 

data.  Agreement for bending natural frequencies is excellent.  Comparison of the model 

with solid rods attached to the beam provided further verification of the cabled beam 

model as discussed in Chapter 6. 

 

Figure 4.9: Comparison of bare beam model and experiment to show agreement before 

cable attachment. 

 

4.8 Model Summary 

The DTFM is well-suited to the investigation of cabled structures for its efficacy and 

accuracy for structures with repeated patterns and non-standard boundary conditions.  

This chapter presented an overview of the DTFM approach, the DTFM method for shear 

beams, the new equations derived to describe cables as shear beams with damping terms 

and tension included, and the addition of rotational stiffness and damping to the 

connection point model.  In addition, the cabled-beam model was introduced, which built 

off of the cable model by incorporating the cable as a shear beam attached to an Euler-

Bernoulli structure with connection points between the cable and beam that can include 
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linear and rotational stiffness and damping.  The cable model was checked by comparing 

known shear and Euler Bernoulli values with the same inputs, and the cabled beam model 

was checked by comparing the model FRF of the bare beam (made by separating the 

cable portion of the model by removing the connection constraints) to the experimental 

FRF of the bare beam.  Agreement was excellent for the tested cable and cabled beam 

models when run with known inputs and compared to published results for the same 

inputs.  Combining the models developed herein with the cable parameters determined in 

Chapter 3 allows for complete modeling of cable and cabled beam frequency responses. 
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Chapter 5. Experimental Methodology  
 
To gauge the utility of the cable parameter calculation methods and cable models, the 

model results must be compared to experimental data.  This chapter discusses the various 

experiments conducted in support of this research.  Experiments were performed not only 

for model comparison, but also for determination of attachment values and damping 

coefficients. 

 
5.1 Preliminary Verification of Cable Effects 

Although many sources cited the increasing influence of cables on lightweight structures 

[1, 2, 85], first-hand observation of cable effects were necessary before embarking on this 

multi-year study.  A few common laboratory wires and cables were mounted to a simple 

aluminum beam with the TC105 tabs and TyRap 525M cable ties typically used for 

spacecraft cable management.  A microfiber composite piezoelectric patch was bonded to 

the beam and used to excite the structure, and the response was measured at multiple 

locations with a non-contact laser vibrometer.  Figure 5.1 shows the result for a cable that 

was approximately 7% of the total system mass, well within the limits for common 

spacecraft cable design.  The frequencies are not merely shifted or damped for the cabled 

beam case; in some cases frequencies are split, heavily damped, or virtually undamped, 

with no immediately discernible pattern.  This preliminary test showed that addition of 

cables to beams required further study. 

  

Figure 5.1: Comparisons of bare and cabled beam experimental frequency response 

functions showing variety of cable effects.  
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Additional experiments run at this time included variation of the number of tie-downs 

used for the cable mounting, different size cables, and comparison between cables and 

solid rods.  The results made it clear that a beam's natural frequencies and damping ratios 

would certainly be affected by the addition of cables on the structure. 

 

5.2 Experimental Setup and Development of the Standard Run 

There are many factors that can affect a cabled system response; of course the cable 

properties themselves are an obvious factor, but the test fixture, cable attachment point 

technique, excitation input, and even the orientation of the cable in the test fixture all 

were found to have an effect [121].  Previous studies showed that cables had high 

variability between sections [3, 89], so it would be necessary to run many trials for each 

cable section to observe the range of responses.  As such, initial experiments were 

designed to develop the "standard run" set up and procedure that would eliminate 

variations from test to test.   

 

The spaceflight cable experiments described here were performed at the NASA Jet 

Propulsion Laboratory in a controlled environment to eliminate the low-frequency noise 

that plagued the experiments run previously at Virginia Tech.  Working at the Jet 

Propulsion Laboratory also allowed access to test bed spaceflight cables for the 

preliminary studies, as shown in Figure 5.2, which made this work much more useful for 

space structures.  Different cables were tested to find typical and well-behaved cables that 

showed repeatable frequency response functions.  A scanning laser vibrometer was used 

to gather data over the entire cable, and a tensioned string was used as the attachment 

point from the shaker to the cable.  The shaker was suspended by long chains so that 

vibration from the shaker would not travel through the inertial table to the cable test 

fixture.  A load cell attached to the cable measured the input force from the shaker.  

Figure 5.3 shows the test set up for flight-suitable cables, and Figure 5.4 gives a closer 

view of the shaker connection through the load cell and the cable attachment point with a 

cable tie and TC105 tab.  This mounting method was used both because it was 

theoretically similar to a pinned condition for modeling purposes, and because securing 
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cables to TC105 tabs with cable ties is common practice on space structures, and 

therefore has real application value as well.  

   

Figure 5.2: Flight cables and test cables available for preliminary testing at JPL. 

 

  

Figure 5.3: Preliminary cable testing of 1X18 test cable with suspended shaker. 
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Figure 5.4: View of input force attachment method. 

 

The natural frequencies of the suspended shaker and supporting structures were measured 

to ensure that they were not close to the cable frequencies of interest.  Additional 

attachment points were set at 0.205 m above and below the 0.255 m test section to 

provide buffer zones that served to both mitigate end effects and mimic the reality of a 

cable harnessed structure.  An additional laser vibrometer was set up perpendicular to the 

primary vibrometer to measure transverse frequency responses.  The helical preliminary 

test cables were always fastened into the test fixture in the same way, with the inner side 

of the natural cable curve (coil plane) facing the shaker.  Response was measured at the 

driving point for both the excitation plane and the perpendicular plane.  Preliminary tests 

were run on a variety of cables to determine frequencies of interest and what parameters 

might need to be varied.  For development of the standard run, a 1X18 (medium sized) 

heater cable made of M27500-26TG2T14 wire was cut into five sections of about 0.8 m 

each. From these tests, a "standard" test run was developed, which included the following 

controlled characteristics: 

• 0.254 m test section length secured by cable ties tightened to setting 5 on cable tie 

gun (tight) 
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• 8.89 N of tension in the cable (hose clamp secured to top end of cable to distribute 

applied weight evenly) 

• White noise excitation applied at 0.3 Volts 

• Excitation applied at 8.3 cm from bottom of test section via 0.24 m tensioned 

string at medium DC offset 

• Static cable displacement due to excitation string tension less than 1.6 mm   

• Low pass 5kHz filter and Hanning window applied, 30 averages per test run 

On each day of testing, the cable response was also scanned once at intervals of 0.9 

centimeters, encompassing the entire test section, to visualize the mode shapes and ensure 

that the cable transverse modes were identified correctly.  Figure 5.5 shows the test set-up 

for the four-point cable fixture, with the modal exciter (shaker) and tensioned string 

labeled, as well as the test section and buffer sections. 

 

   

Figure 5.5: Four-point labeled cable fixture test set-up. 
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The various standard run tests deviated from the standard run only by the variable of 

interest for each test.  The varied parameters were the type of excitation, the tension and 

length of the string used for the excitation connection, the tension in the cable, the type 

and tightness of the cable ties used at the test section ends, and the orientation of the 

cable in the test fixture.       

 

5.3 Results from Preliminary Experiments 

Initial investigation began with the test fixture and excitation connection.  A slender 

narrow solid metal stinger was rejected in favor of a tensioned string after determining 

that the response was basically equivalent, but the string did not support a moment or 

lateral force, so only transverse force was received from the shaker.         

 

Preliminary experiments on cables of varying sizes showed that some method was needed 

to quantify cable curvature caused by displacement from the excitation connection since 

initial research showed that cable bending stiffness is related to cable curvature.  A laser 

displacement system was set up to measure the static displacement of the cable once the 

shaker string was attached and tensioned.  Although it was initially hypothesized that the 

nearly straight cables would not experience wire slippage, the experiments showed that 

even the small amounts of curvature in the cables cause by the tensioned wire would 

cause some slippage.  Curvature was largest for the smallest diameter cables.   

 

All cables were wrapped with Kapton tape, but one in the preliminary tests was tied with 

lacing ties every 16 cm. This cable had less variability in its measured responses than 

non-tied cables, so this cable was chosen for testing variation.  Lacing ties were included 

in all subsequent test cables as well. 

 

A full set of tests was performed each day on cable section A over the course of two 

weeks; this full set included comparisons of excitation methods, excitation string length 

and tension, cable tension, and cable tie attachment.  The responses of sections B, C, D, 

and E were also measured each day, and were run five times each at the conclusion of the 
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test to provide additional data.  Testing of the cable orientation for each section occurred 

afterwards as it became apparent that the orientation may shift the frequency response.   

 

5.3.1 Excitation Method Comparison  

In an effort to verify that the excitation methods were not influencing the cable response 

in unexpected ways, a variety of excitation connections, methods, and signals were 

investigated.  A random signal had to be used because the damped cable is a non-linear 

system and non-linear systems generate periodic noise.  Signals for white noise and burst 

random from the shaker via the tensioned string were compared with hammer impacts, 

with the idea being that a similar response from the hammer impact would verify that the 

shaker connection was not affecting the response significantly.  A Hanning window was 

applied for white noise signal and a rectangular window was applied for the burst random 

signal and hammer impacts.  Hammer responses were tested with and without the load 

cell on the cable.  As shown in Figure 5.6, the white noise and triggered burst random 

signals yielded nearly identical responses.  The hammer impact responses bounded the 

string excitation responses, with the cable and load cell response showing a slightly lower 

natural frequency and the cable without the load cell attached showing a slightly higher 

frequency, as expected. 

 

Figure 5.6: Frequency response functions of cable undergoing various excitation signals. 
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5.3.2 Excitation String Length and Tension Comparison 

To determine whether the excitation string was adding frequencies to the cable's 

frequency response, the excitation string length was tested at 4, 10, 17, 24, and 45 

centimeters, with the DC offset kept constant and distance between cable fixture and 

shaker varied as the string length varied (thus ensuring constant tension in the excitation 

string).  At 24 cm and 45 cm, the DC offset was changed to measure the response for 

high, medium and low tension values, within the constraint of cable static bending less 

than 1 millimeter.  Figure 5.7 shows the results from changes in string length for one 

representative day of testing; it is clear that string length is not affecting the cable 

response.  Different string tensions had negligible effects as long as the cable was not 

displaced drastically due to the change in the string tension.   

 

Figure 5.7: Comparison of excitation string length, showing no frequency dependence on 

string length. 

5.3.3 Cable Tension Comparison 

It is well-known that strings and beams exhibit higher frequencies at higher tensions, so it 

was expected that this same trend would be evident in cables.  This test measured the 

cable response with tension in the cable of 1 lb, 2 lb, 3 lb, and 4 lb, and also tested a slack 

cable (0 lb) and a "hand tight" cable, designed to simulate the tension a cable would 

experience if it was pulled snugly during space structure assembly.  It turns out that 

"hand tight" fit within the test weights used, which lends credibility to the use of these 

results for real world application.  Figure 5.8 shows one of the test sets where the 

dissimilarities between the slack and tensioned cables are evident, especially around the 

second mode between 150 and 200 Hz.  Figure 5.9 enlarges the response near the first 

mode for one of the test sets to show that increasing tension does shift the frequency 

higher, though not as uniformly as a single wire (based on previous tests).  Again, the 

cable pulled hand tight appears to give a similar response and the slack cable's first 

natural frequency is lower than the others. 
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Figure 5.8: Representative cable tension test showing the difference between slack cable 

(blue line) and tensioned cables. 

 

Figure 5.9: Cable response at first natural frequency showing the effect of cable tension. 
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Betts Adjustable Tension Installing Tool WT-199 and "loose" implies setting 2.  A 
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frequency, as shown by the red line in Figure 5.10.  Figure 5.10 shows the frequency 

responses for three trials for cables fastened with loose cable ties and cables fastened with 

tight cable ties; in contrast, Figure 5.11 shows the responses from cables attached only 

with tightly fastened cable ties, where "TR", "GB" and "Small" refer to different brands 

and sizes of cable ties.  The tighter cable tied cables yield more uniform and repeatable 

results, despite the fact that the ties varied in type and size. 

 

Figure 5.10: Comparison of loose and tight cable ties showing the variation due to cable 

tie tightness and the significant difference for hand-loose attachment (shown by red line). 

 

Figure 5.11: Comparison of tightly fastened cable ties of different size and type 

exhibiting the increased agreement between test runs as compared to loosely tightened 

cable ties. 
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response patterns which dictated further investigation of the effect of cable orientation.  

The tests show that the cable orientation in the test fixture was responsible for a 

significant frequency range near the first natural frequency.  This variation in the first 

natural frequency was similar to the variation between cable sections as discussed in the 

next section.  Figure 5.12 shows the frequency response function for two trials of a single 

cable with 90 degrees of rotation difference between trials.  Figure 5.13 shows the shift in 

first natural frequency as compared to the angle of cable orientation in the test fixture; 0 

degrees was intended to be the coil-plane parallel to the excitation with the coil facing 

toward the shaker, but shifting the 0 degree point for the cables showed greater similarity 

in the frequency-angle relationship shape.  This is a good indication that the differences 

between cable sections shown in the next test may be due to different internal stresses in 

the cable; although all were aligned in the same way, different sections of cable may have 

varying internal stress tensors arising from their location in the overall cable and coiled 

storage.  To eliminate this issue for the standard run, contra-helical cables were obtained 

that had no induced natural curvature from the wire lay direction.  The cables procured 

for later testing were stored straight and never bent so that no inherent curvature would 

be developed.   

 

 

Figure 5.12: Frequency response function for a single cable at coil plane and 90 degree 

rotation from coil plane. 
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Figure 5.13: Approximately sinusoidal relationship between first natural frequency and 

cable fixture angle; chart angle shifted to show aligned sinusoidal trend pattern
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Figure 5.14: The five sections of 1x18 cable used for section comparison testing
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Approximately sinusoidal relationship between first natural frequency and 

cable fixture angle; chart angle shifted to show aligned sinusoidal trend pattern

5.3.6 Comparison of Cable Sections 

As the preliminary tests were run, it was evident that the run-to-run variation even for a 

standard run of the same cable section was significant.  Therefore, standard runs for the 

same cable section and different sections of the same cable were compared.

shows the five cable sections, all from the same length of cable, cut into fi
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Figure 5.15 shows the variation for a single section of cable (Section A, the section used 

for all variability tests).  While the first and second natural frequencies appear in roughly 

the same place, there is slight variation in the frequency values and significant variation 

in the amount of damping (as represented by peak height).  The modes between 70 and 

100 Hz showed great variation in amplitude and number of frequency peaks.   

 

 

Figure 5.15: Frequency response functions for 14 standard runs of cable section A, 

showing the variation of response even for a single cable section, particularly in the 

intermediate modes between 70 and 100 Hz. 

 
Figure 5.16 shows the comparison between different sections of the same cable.  As 

evidenced in Figure 5.14, the only noticeable difference in these cable sections was the 

location of the black cable lacing ties relative to the driving point location.  The sections 

were cut sequentially from a single 3.8 m piece of spaceflight-like cable, and the Kapton 

overwrap and lacing ties kept the helical cable structure intact.  Lay angles were similar 

for all cable sections, and no visible differences were apparent.  All cables were kept in a 

clamped test fixture overnight before first testing, and were stored hanging to prevent 

excessive curl from being stored coiled.  The same amount of testing runs were 

performed on cables B, C, D and E, with A tested more often due to its use in the 

variability testing.  Overall, cables A and D showed the most similarity from run to run, 

and cable C showed the least.  Figure 5.16 plots the runs of all cables together, where all 
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runs of the same cable section are plotted in the same color, clearly showing the two 

frequency peaks near the first mode and three frequency peaks near the second mode.  All 

of these tests were run on the same day with the cable removed from the test set up and 

reattached between each run. 

 

Figure 5.16: Frequency response functions for 10 runs of each 1X18 cable section 

showing the dependence of frequency on cable section. 

 
The cable scans were valuable in verifying the first and second major mode shapes and 

thus, natural frequencies.  The trends for each test were fairly clear when analyzed at the 

conclusion of each day's testing, but when responses and frequencies were compared 

from day to day, there was great variation, even between "standard" runs.  It was evident 

that tests which required the cable to be removed and then replaced in the test fixture had 

the greatest variation, showing that the attachment point characteristics have a significant 

impact.  Variation due to changes in the test set up were not significantly larger than 

variations between cable sections.   

 

An interesting result from the simultaneous measurement of the perpendicular vibrations 

was the observation that the symmetrical-appearing helical cable does not have the same 

natural frequencies in both directions.  The cable is actually stiffer in one plane, which is 

not intuitive.  It is hypothesized that the twisting of the cable, coiled storage and/or 
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Kapton overwrap method may be responsible for this lack of symmetrical response.  The 

cables obtained for testing were contra-helically laid, kept straight throughout their 

manufacture and testing, and were wrapped with Kapton by machine, thus eliminating the 

frequency dependence on fixture orientation.   

 

5.3.7 Preliminary Test Summary 

Conclusive results were obtained for the tests involving string length and tension, cable 

tension, and cable tie attachment.  It was clear that for small cable deflections, the length 

of the excitation string and tension in the string were not affecting the cable's dynamic 

response.  Cable tension did change the frequency response slightly, with a general trend 

of higher tension corresponding to higher natural frequencies.  This test also showed that 

"hand-tight" cables were on par with 1-4 lbs of tension in the cable, and that slack cables 

behave differently and may have more non-linear attributes.  Cable tie brand, type and 

size were not important factors, but the tightness of the cable tie attachment was.  

Therefore, cable tension and cable tie tightness should be controlled for future testing to 

reduce variation between standard runs.  In addition, cable angle in the test fixture should 

be noted, as comparison between cables may require different orientations to test the 

same cable plane.  Later testing used contra-helical cables which did not show the same 

dependence on orientation in test fixture. 

 

The excitation method of the cable went through several iterations, starting with a long 

solid stinger, hinged stingers, and eventually settling on the tensioned string used for 

these tests because of its lack of support for moments or lateral forces, keeping these 

unwanted inputs from being applied to the cable.  The hammer tests bounded the 

tensioned string random excitation results, which indicated that the shaker attachment 

was not unduly affecting the test set up.  The tests conducted yielded good 

representations of the cable dynamics, with little interaction from the support structures.  

Table 5.1 lists the findings from the preliminary cable tests. 
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Table 5.1 Conclusions from preliminary cable tests and development of standard run. 

Test Parameter Conclusion Option Used for Standard Run 
Excitation method White noise and burst 

random excitation produced 
similar results, bounded by 
hammer impact tests with 
and without load cell. 
 

White noise excitation  

Excitation string length No dependence on string length. 
 

0.24 m tensioned string 
 

Excitation string 
tension 

Dependence on excitation 
string tension only occurs if 
cable is displaced; range of 
DC offset to change tension 
was not large enough to 
displace cable. 
 

Medium setting on DC offset, 
causing string to be snug 
without causing displacement 
of cable 

Cable tension Slack cables behave 
differently than tensioned 
cables; increasing cable 
tension slightly increases 
frequency. 
 

8.89 N of tension applied while 
cable is loaded in fixture 

Cable tie size No dependence on cable tie 
size. 
 

TY-Rap 525M 7" cable ties 
used. 

Cable tie tightness Loose cable ties produce 
different dynamic response 
than tight cable ties and 
show less repeatability 
from trial to trial. 
 

Cable ties tightened to uniform 
tight setting with cable tie gun. 

Cable orientation Helical cables show a 
correlation between natural 
frequency and orientation 
of the coil plane. 

Cable orientation must be 
controlled if helical cables are 
used; contra-helical cables 
were used for all subsequent 
testing to eliminate this 
variation. 
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5.4 Unbaked Cable Tests 

Once all preliminary tests were completed and the standard run was developed, the 

standard run could be applied with confidence to test multiple samples of each of four 

different cable types to compile a database of cable frequency responses and provide pre-

bakeout data for comparison.  

 

As discussed in detail in Chapter 3, four cable geometries were investigated: single strand 

cables of small (1X7), medium (1X19) and large (1X48) sizes, and a large multi-strand 

(7X7) cable.  Five samples of each cable type were provided at cost from Southern 

California Braiding Co., made with MIL27500-26TG2T14.  The cables were made on a 

planetary machine, were tied every 4-6" with white lacing ties, and were machine-

wrapped with Kapton with a 50% overlap.  Figure 5.17 shows the flight-quality space 

cable samples used for the cable tests.   

 

  

Figure 5.17: Samples of each of 1X7, 1X19, 1X48 and 7X7 spaceflight cables, in sets of 

five samples for each cable; single samples laid out to show uniformity of Kapton wrap. 

 

One change from the preliminary test cable type was the use of machine-manufactured 

contra-helical cables instead of helically twisted cables.  As Figure 3.3 illustrated, the 

helically twisted cable, in which all of the layers have the same left-hand lay, has an 

inherent curvature when it is in a relaxed state.  The contra-helical cable alternates lay 

direction for each layer, and thus hangs straight in a relaxed state.  This straightness was 

desirable for two reasons: first, it was shown previously that the curved plane of the 

helical cable resonated at a different frequency than the perpendicular plane, and second, 
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since the test fixture is straight, attaching a curved cable with cable-ties introduces 

elements of torque to keep the cable straight, which are not accounted for in the model 

(although they could be introduced as applied moments at the connection nodes) and are 

therefore undesirable. 

 

The test cables were mounted to a Bosch test fixture with cable-ties and TC105 tabs, 

following the standard run procedure developed previously.  Excitation was provided via 

a suspended modal shaker and tensioned wire, and output was measured with a non-

contact laser vibrometer.  The 20 cable samples were tested over several weeks, with care 

taken to keep the cables straight and never excessively bent (since that could cause 

individual wires to slip into a new equilibrium position).  Between 14 and 18 trials were 

run for each cable section with the output measured at the driving point, and at least 4 

scans were taken for each cable to show the operating deflection shapes at each 

resonance.  These tests resulted in over 50 frequency response function test runs per cable 

type, presented in the results section of this work. 

 

5.5 Cable Bakeout Procedure 

Since the bakeout process required for flight hardware was reported to change cable 

stiffness, a comparison of cable dynamic response before and after bakeout was 

conducted.  Common bakeout procedures include planetary protection bakeout, necessary 

for biological decontamination, and low-Earth orbit bakeout, used for objects that will not 

be venturing further than 2,000 km from the Earth's surface.  A low-Earth orbit bakeout 

was used for this study, as cabling on satellites is of particular interest, and satellites are 

maintained at low-Earth orbit.   

 

To do so, the three cables from each section with the most consistent results from the 

unbaked cable trials were selected and baked out at 105 degrees Celsius for 72 hours, the 

requirements for bakeout for low-earth orbit.  Mass of the cable was measured before and 

after the bakeout process with no evident change recorded.    Figures 5.18, 5.19, and 5.20 

show the cables on the bakeout rack, the bakeout chamber used for the test, and one day's 
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worth of thermograph record that showed the temperature and pressure readings for the 

chamber.   

           

          Figure 5.18: Cables on bakeout rack.          Figure 5.19: Vacuum bakeout chamber. 

 

 

Figure 5.20: Bakeout thermograph record. 

 

5.6 Two-Point and Four-Point Fixture Baked Cable Tests 

Once the cable samples were baked out, they experienced additional rounds of testing in 

two different test fixtures.  First, the four-point fixture tests were repeated for a direct 

comparison; the same standard run procedure was followed for the baked cables in the 

four-point fixture, with 10-15 trials per cable section, measured at the driving point, and 6 

scans run per cable to compare the operating deflection shapes and make sure that the 

frequencies were being directly compared.  Figure 5.21 shows the scan comparisons for 

the major first and second modes of the 1X19 cable; although the natural frequency for 
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this mode shape is 15% lower for both modes after bakeout, the mode shape is identical 

before and after bakeout, which makes it clear that the frequency values can be compared 

since they are identifying the same mode.  A slight reduction in amplitude is apparent for 

the second mode, identifying an increase in damping.  The complete results from the 

baked out cable tests are presented in Chapter 6 as a direct comparison with the unbaked 

cable tests. 

        First Mode           Second Mode 

         

Figure 5.21: Scan comparison showing the mode shape for the unbaked and baked cable 

for the major first mode (left) and second mode (right); despite a frequency reduction of 

15%, mode shape is the same between pre- and post-baked cables. 

 

When comparing the four-point fixture tests to models, the uncertainty in the attachment 

stiffness was problematic.  Therefore, a two-point fixture was designed that would use 

only two attachment points closer to the ends of the cable.  This would reduce some of 
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the uncertainty due to the attachment points and would allow for comparisons between 

calculations of the cable frequencies with pinned ends to ensure that the calculated cable 

parameters were effective for cable modeling, as well as reduce any effects from the free 

ends of the cable.  Figure 5.22 shows the 1X48 cable in the two-point test fixture.  For the 

two-point fixture tests, the standard run was followed with the only change being the 

location and number of the attachment points.  Five scans were run for each two-point 

fixture test, giving not only frequency response data, but mode shape data for all trials.  

When the two-point and four-point test data was used in conjunction with the attachment 

point stiffness experiments described in Section 5.7, a complete characterization of the 

entire cable and test fixture was achieved with confidence.   

 

Figure 5.22: 1X48 cable in the two-point test fixture. 

 

5.7 Attachment Point Experiments  

When comparing the results from the models developed in Chapter four to the four-point 

fixture cable experiments described herein, it quickly became apparent that knowing the 
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cable parameters was not enough for accurate modeling.  Standard "pinned" or "clamped" 

boundary conditions did not adequately describe the cable connection points, so another 

contribution of this work was the determination of attachment point characteristics.  

Although several experiments were conducted by the Air Force Research Laboratory to 

establish tie-down stiffness of the attachment points, an overall conclusion from [1] was 

that a better methodology was needed to establish tie-down stiffness. 

 

The attachment points for the cable and cabled beam consisted of an aluminum TC105 

tab and a cable tie, tightened to a specific tension setting with a cable tie gun.  Figure 

5.23 shows the cable attachment to "ground" (actually a large Bosch test fixture with an 

easily identifiable fixture frequency).   

 

Figure 5.23: Cable secured to support via cable tie and TC105 tab. 

 

Several sets of experiments were required to determine the linear and rotational stiffness 

of the attachment points to use as the model constraint inputs.  First, static deflection tests 

measured the displacement of a small piece of cable in the attachment fixture when a load 

was applied to the center of the cable, and rotational stiffness was determined by 

applying a moment to the cable attachment and measuring the angular deflection.  Next, 

dynamic stiffness tests measured the deflection of the small piece of cable due to sine 

wave excitation.  Plotting the force-displacement ellipses gave information about the 

damping and linear stiffness of the attachment.  However, both of these tests had values 

that varied by several orders of magnitude depending on frequency, so a more applicable 
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test was conducted in which solid rods of known material properties were tested in the 

two-point and four-point cable fixtures using the same attachment methods.   

 

5.7.1 Direct Static and Dynamic Measurement   

Experiments to measure the attachment stiffness directly included both static and 

dynamic measurements of displacement for an applied force.  The static test involved 

hanging weight from a small section of cable mounted with the typical attachment 

method as shown in Figure 5.24.  Different weights were applied to non-stretching string 

snugged around the cable alongside the cable tie so that the force would be applied to the 

edge of the cable against the TC105 tab; Figure 5.25 shows the cable harness method that 

was determined to most effectively transmit the force as closely as possible to the 

intended location at the cable-attachment point interface.  Sections of small, medium and 

large cable were used, as well as a small piece of solid Acetron rod.  These experiments 

resulted in values of 0.1 * 104 N/m for the stiffness of the attachment for the multi-

stranded cable, 1-2 *104 N/m for the small and medium cable sections, and 0.5-2 *105 

N/m for the Acetron piece.  As this was one of the initial experiments run to determine 

attachment stiffness, the range and discrepancy between trials and cables was concerning, 

so further experiments for linear stiffness were conducted using dynamic excitation.  

Results for rotational stiffness had much less variation; regardless of cable type used, 

when a force was applied at one end of the cable section to cause a moment and the angle 

of deflection was measured, the result for all cables was between 1 and 3 N-m/rad, so the 

average value of 2 N-m/rad was used for the rotational stiffness model constraint input 

for all cables.  Rotational stiffness was measured by hanging the various weights from 

one side of the cable and measuring the resulting upward deflection at a specified 

distance on the other end of the cable so that the resulting angle of rotation could be 

determined and used in the equation � = tóõ, where M is the applied moment, õ is the 

resulting angular displacement, and tó is the rotational stiffness.      
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Figure 5.24: Static deflection test using laser displacement sensor to measure the 

deflection of the cable tie from an applied force due to hanging weight. 

 

 

Figure 5.25: String harness for application of force for linear stiffness static and dynamic 

testing. 

 

To get more information about the linear stiffness of the attachment, dynamic direct 

measurement tests were performed.  For these, the same cable attachment was used, but 

instead of a weight, the loading string harness was attached to a dynamic load cell and 

shaker.  The shaker could be driven at varying amplitudes and frequencies, with the laser 
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displacement sensor measuring the resulting deflection in real time.  The force and 

displacement curves were plotted to form hysteretic ellipses where the angle of the axis 

of the resulting ellipse is related to the slope and the area of the ellipses is related to the 

damping loss.  Figure 5.26 shows just a few of the test set up iterations that were used for 

these tests, and Figure 5.27 shows the resulting hysteresis loops for shaker excitation of a 

sine wave at 1 Hz with varying amplitudes, where larger amplitudes result in larger loops.  

Thus, damping in the attachment point is related to both frequency and amplitude of the 

input force. 

      

Figure 5.26: Test fixture iterations for dynamic testing of the attachment point linear 

stiffness. 

 

Figure 5.27: Force versus displacement hysteresis loops for various amplitude 1 Hz sine 

excitation input to TC105 tab and cable tie assembly.  
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Force-displacement plots were created for input voltage amplitudes of  0.1, 0.3, 0.4, and 

0.6 volts for input frequencies of 1, 10, 40, 50, 70, 85, and 100 Hz.  Figure 5.27 is an 

especially good example of the results, since the 1 Hz input is close to static.  Higher 

frequency results showed much greater variation in slope values for different input 

amplitudes.  A plot of the measured average attachment stiffness for the different 

frequency values finally offered some insight; Figure 5.28 shows the attachment stiffness 

trend rise and then fall over the range of frequencies tested, with a distinct downward 

trend evident for higher frequencies.  Theoretically, as frequency input increases, the 

input amplitude decreases and cable motion would be on the level of the individual wires 

rather than the cable as a whole.  Based on this data it is reasonable to infer that the 

higher frequency inputs could have lower attachment stiffness since the individual wires 

are moving within the cable tie and are less constrained, as opposed to the lower 

frequencies that would be exciting the cable as a whole which is constrained more 

completely by the cable tie that encircles the cable as a whole. 

 

 

Figure 5.28: Measured stiffness of the tie-down attachment from dynamic measurement 

showing order of magnitude range over a relatively narrow frequency range. 

 

Of particular interest for this study was the comparison for the value used for linear 

attachment stiffness by the AFRL; past studies determined tie down stiffness through 

experimental comparison of a known system, but the stiff value calculated for finite 
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element analysis in [1] and shown as a horizontal line in Figure 5.28 did not represent the 

experimental connection points well for these experiments (although it did represent the 

average stiffness over the frequency range quite nicely).   

 

Overall, the direct measurement techniques provided useful values for the rotational 

stiffness, concrete evidence that the attachment points add damping to the system based 

on the large hysteresis loops, and confirmation that the linear attachment stiffness is a 

function of excitation frequency and cable size. 

 

5.7.2 Rod in Fixture Tests 

The direct measurement experiments certainly added to knowledge about the 

characteristics of the attachment points, but further testing was needed in order to have a 

single constraint input value for the developed models.  Solid rods of tool steel and 

Acetron GP of similar size to the test cables were put in the same attachment point 

configurations as the cables had been tested in, with two attachment points (attached at 

ends only) or four attachment points; Figure 5.29 shows the tool steel and Acetron rods in 

the different fixtures.  Stainless steel and brass rods were also tested.  The properties of 

the solid rods were known, so the attachment point stiffnesses were the only variables.  

Attachment point stiffnesses were tuned until the model frequency response function and 

mode shapes for the modeled rods matched the experimental data for both fixtures.  The 

required stiffness for the very flexible Acetron was lower than the stiffness required for 

the tool steel; this gave a clear indication that the attachment stiffness would vary 

depending on the cable size and flexibility.  Bending stiffness of the tool steel rod was 

significantly higher than any of the cables, and its attachment stiffness value was ~106 

N/m.  Bending stiffness of the Acetron rod similar to the bending stiffness of the 1X19 

and 7X7 cables, and its attachment stiffness value was ~105 N/m.  These provided 

confirmation of the values used determined from the dynamic tests.   Since the cable is 

modeled as a free-free beam with attachments to ground, when the attachment stiffness is 

very low (essentially zero), there is a rigid body mode; as the stiffness increases, the rigid 

body mode disappears.  If the attachment stiffness is further increased, the initial 
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frequency increases and then splits into multiple frequencies, which matched with the 

larger cables' responses well.   

 

  

Figure 5.29: Tool steel in four-point fixture and Acetron in two-point fixture for rod-in-

fixture tests designed to determine attachment point stiffness. 

 

5.8 Cabled Beam Tests 

Since the motivation behind this research involves modeling cables on space structures, 

dynamic responses were also tested for cables attached to a simple structure, an 

aluminum beam measuring 0.0064 m by 0.102 m by 0.8 m.  The beam was sized so that 

the four types of test cable attached would represent the 4-30% typical cable mass ratio 

for space structures [1, 2].  Table 5.2 gives the cable mass percentage for the cabled beam 

system for each case, showing that all cables were in the typical range for space structure 

cabling.  Five tie-down attachment points were used at 0.04, 0.22, 0.4, 0.58, and 0.76 m 

locations, holding the cable off the beam at a height of 0.015 m.  Care was taken to 

ensure that the cable did not contact the beam in any other location, as that would lead to 

significant variation and possible non-linearities in the response.  The beam was 

suspended to approximate free boundary conditions at each end with the supporting 
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strings attached at two nodal points to minimize swinging motion of the beam.  The 

length of the supporting strings were very long to give a rigid-body mode swinging 

frequency of 0.56 Hz, well below the first bending frequency of the beam which was 

around 50 Hz.  The beam was excited via modal shaker with a long solid stinger or 

tensioned string terminating in a load cell screwed into a very small tapped hole in the 

beam.  The mass of the load cell was very small compared to the cables.  A 0.1 volt white 

noise excitation input was used to excite the beam; excitation of the cable was achieved 

only through the five connection points between the beam and cable.  The beam was first 

tested without the cable to verify that the response was as expected for a free beam and 

could be modeled correctly with the cabled-beam model without a cable, as successfully 

shown in Chapter 4.  The bare beam bending frequencies occurred at 50, 137, 277, and 

450 Hz, which are referred to as the major structure modes to distinguish them from the 

smaller amplitude additional frequencies caused when a cable is added to the structure.   

 

Next, a solid rod was attached to the beam and the response measured.  This was largely 

to confirm the attachment point stiffness values were still valid from the rod in fixture 

tests conducted to determine the attachment stiffness.  Finally, each type of cable was 

attached to the beam using tight cable ties and the frequency response for the cabled-

beam systems were recorded.  A dense scan was run for the bare beam and the beam with 

each cable attached; the dense scan had 125 points in five rows of 25 points each, in two 

rows above the cable, a row on the cable, and two rows below the cable.  Ten additional 

sparse scans were run with 57 points in three rows of 19 points each, with a row above 

the cable on the beam, a row on the cable, and a row below the cable on the beam.  

Figure 5.30 shows the cabled-beam test set up.  Figure 5.31 shows the transfer function 

for each of the four cabled-beam systems as measured on the cable coincident with the 

driving point on the beam.  Figure 5.32 shows the operating deflection shapes for the 7X7 

cabled beam as experimentally measured from a dense scan.  The dominant major 

structure beam modes are easily visible (i.e. modes 1 and 3), but additional mode shapes 

are also present due to the cable's interaction with the beam; in these modes the motion of 

the cable can be seem relative to the beam deflection (i.e. modes 2, 4 and 5).  Comparison 
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between the cabled-beam model and the experimental data frequency response functions 

and mode shapes are presented in Chapter 6. 

 

Table 5.2  Cable mass percentage for cabled-beam system. 

Cable Type 1X7 1X19 1X48 7X7 

Cable Mass % of 
System Total Mass 

5.0% 12.2% 24.5% 26.5% 

 

 

 

Figure 5.30: Experimental set up for the cabled-beam set up; excitation is via suspended 

modal shaker terminating in a load cell mounted to a tapped hole in the beam. 
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Figure 5.31:  Comparison between bare beam and cabled beam transfer function for four 

cable types, measured at the driving point; clockwise from top left: 1X7 cabled beam, 

1X19 cabled beam, 7X7 cabled beam, and 1X48 cabled beam.   

 

 

Figure 5.32:  Experimental operating deflection shapes for the 7X7 cabled beam. 
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5.9 Use of ME Scope and Data Processing 

Once data were taken with the laser vibrometer, Polytec PSV Software, MATLAB and 

ME'Scope software were used for analysis.  Figure 5.33 shows the frequency response 

functions taken at every point overlaid together for one of the 1X19 cable sections.  

Whenever possible, data was used in original and raw form; noisy test data was 

eliminated only if it was so noisy that no useful data could be extracted.  Due to careful 

test set up and wise software analysis choices, only 4 cable test trials and 2 cabled beam 

trials were eliminated or re-run due to noise. 

 

 

Figure 5.33: Frequency response functions for 1X19 cable for each scan point along the 

cable as displayed in ME'Scope. 

 

ME'Scope was used to determine the modes and damping ratios for the various cables.  

The unknown parameters of modal frequency, modal damping and mode shapes were 

matched to the experimental data using partial fraction expansion.  The FRF matrix can 

be written in the following partial fraction expansion form 

�Ê(�,� = � ë �(t,s� − p(t, + ��(t,�s� − p(t,∗ìKB�59
�Ã�  

where � is the frequency variable, p(t, is the pole location for mode k, 	p(t)∗ is the 

complex conjugate of p(t), and [R(k)] is the residue matrix for mode k.  This expression 
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shows that the FRF matrix is a summation of matrix pairs, each pair containing the 

contribution of a mode k  [122]. 

 

ME'Scope can also calculate mode indicator functions using multiple measurement 

points.  The mode indicator function provides a single smooth curve from multiple single 

point measurements along the length of the cable in order to identify those frequencies 

that are most likely to be natural resonances with associated modes.  Figure 5.34 shows 

the mode indicator function for a 7X7 cable scan.  The modal peaks function sums 

together all of the real parts of the velocity/force transfer functions.  All of the scan data 

for a single test cable was included in the modal indicator, and the ortho-polynomial 

method was used to estimate modal frequencies and damping.  This multi-degree of 

freedom method simultaneously estimates the modal parameters of two or more modes 

from the FRFs.  The polynomial method curve fits the FRFs directly by performing a 

least squared error curve fit from multiple FRFs and estimates the coefficients of the FRF 

denominator polynomial.  Modal frequency and damping estimates are then extracted as 

roots of that polynomial.  Modes were selected in small groups for greater accuracy in 

modal parameter estimation.  Damping percentage for each mode was calculated by 

ME'Scope software and confirmed with hand calculations by applying the half-power 

point method for damping to the vibrometer data.   

 

Figure 5.34: Mode indicator function for 7X7 cable with relevant modes highlighted in 

green. 

 

The experimental data from cables and cabled beams was used to find frequency 

response functions, natural frequencies, and damping percentages for each mode, and the 
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results were compared with model results.  Mode shapes were compared using the modal 

assurance criterion (MAC) from Ewins [106], given by 

 

���(�, ö, = ÷∑ (Φù,À(Φ�,À∗LÀÃ� ÷$
z∑ (Φù,À(Φù,À∗LÀÃ� { 	 ∙ z∑ (Φ�)À(Φ�)À∗LÀÃ� { 

 

where Φù and Φ� are the experimental and analytical (model) mode shapes.  Appendix D 

contains the MATLAB program files used for processing of the experimental and model 

data and subsequent modal assurance criterion calculation.  Natural frequencies were 

compared directly and the frequency response functions were compared both visually and 

using a cumulative RMS value method, since using an FRF assurance criterion is 

sensitive to slight shifts in the frequency peaks and does not necessarily indicate good or 

poor agreement clearly.  Chapter 6 presents the results of all comparisons.  

 
5.10 Summary of Experiments 

For this research, dynamic testing was performed on cables and cabled beams.  Cables 

were tested before and after a bakeout treatment to determine the effect of bakeout on the 

cable response.  Solid rods were also tested in the various fixtures for model comparison.  

Experiments to determine the characteristics of the attachment points were developed and 

provided useful values for the models, but also showed the frequency dependence of the 

connection stiffness.  This experimental data is useful not only for comparison with the 

developed models, but also to provide insight to the effects of cables on structures.  The 

large number of cable trials provide a useful database for further cable study.  The 

frequency response functions for a bare structure, a rod on the structure, and a cable on 

the structure show differences that validate the need for better understanding and 

modeling of cable effects.   

 

  



 130

6. Results 
 
This research resulted in both experimental and theoretical contributions as the synthesis 

of cable parameters, cable and structure modeling, and test data occurred.  Results are 

presented here for the calculated cable parameters, as well as the resulting cable and 

cabled-beam models.  Undamped and damped models are compared to experimental data 

for both two-point and four-point cable fixtures and the cabled beams.  The experimental 

comparison between unbaked and baked out cables is also presented.  Although the focus 

is on the utility of the cable and cabled beam models, the experimental results on their 

own offer insight into the physical phenomena of cable dynamics as well, so the 

experimental data from the bakeout comparison and the cabled beams are examined in 

detail. 

 

6.1 Cable Parameter Results 

Based on the methods of Chapter 3, parameters for area, density, bending stiffness, and 

shear rigidity were calculated as maximums and minimums for each type of cable.  Table 

6.1 gives the property calculation results, as well as the stiffness values used for the 

cables in the two- and four-point fixture connections and for the cables in the cabled 

beam model.  The cable stiffness varies from fixture to fixture since the curvature of the 

cable is different depending on the span and deflection experienced by the cable.  

Bending stiffness is higher for the cable in the four-point fixture due to the shorter span 

sections that prevent static displacement and curvature of the cable.  The cable was 

attached to the beam at five points, giving an even shorter span length and thus slightly 

higher bending stiffness, as expected.  Notice that the minimum frequency bound is the 

result of using the minimum bending stiffness and maximum area and density values, 

while the maximum frequency is the result of using the maximum bending stiffness and 

the minimum values for area and density.   
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Table 6.1  Inputs for cable properties for minimum and maximum frequencies calculated 

for each cable based on the methods introduced herein, and the material properties and 

cable measurements introduced in Chapter 3. 

 1x7 1x19 1x48 7x7 (multi-strand) 

 
 

Min  
Freq. 

Max 
Freq. 

Min 
Freq. 

Max 
Freq. 

Min 
Freq. 

Max 
Freq. 

Min 
Freq. 

Max 
Freq. 

Area, m2 A 4.35*10-5 3.44*10-5 1.27*10-4  9.33*10-5 3.27*10-4 2.36*10-4 3.66*10-4 2.41*10-4 

Density, kg/m3  � 3323 2677 3528 2624 3049 2456 3295 2654 

Wire Modulus of 
Elasticity, GPa 

EL 19.1  23.7 19.1  23.7 19.1  23.7 19.1  23.7 

Bending Stiffness 
(2 Pt), kg-m3/s2  

EI 0.34 0.37 1.09 1.18 4.73 5.10 2.14 2.30 

Bending Stiffness 
(4 Pt), kg-m3/s2  

EI 0.40 0.44 1.55 1.71 7.52 8.13 2.60 2.82 

Bending Stiffness 
(Cabled Beam), 
kg-m3/s2 

EI 0.46 0.51 1.94 2.16 16.82 18.25 3.48 3.83 

Shear Rigidity, Pa ��� 2.69*104 2.13*104 7.87*104 5.78 *104 2.02 *105 1.46*105 2.27 *105 1.49 *105 

Cxn Stiffness 
Value, Rotational 

krot 2 N/m-rad 2 N/m-rad 2 N/m-rad 2 N/m-rad 

Cxn Stiffness 
Value, Linear  

k 1*104 N/m-rad 6*104 N/m-rad 1*106 N/m-rad 6*105 N/m-rad 

 

From these parameters, the bound for each frequency was calculated using the cable 

model for the two-point and four-point fixtures.  As an example, Figure 6.1 shows the 

maximum and minimum frequency response functions that result from the model for the 

1X19 cable parameters in the two-point and four-point fixtures.  The range of frequency 

prediction is smallest for the first frequency, but increases with each successive 

frequency in the two-point model.  The four-point model has a more uniform frequency 

range for the frequencies shown.   
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Two-Point Model    Four-Point Model 

Figure 6.1: Model frequency response functions using minimum frequency cable 

parameters (blue) and maximum frequency parameters (red) for the two-point model 

(left) and the four-point model (right). 

 

6.2 Comparison of Undamped Model with Cable Response 

The value of calculating cable parameters without having to conduct extensive vibration 

testing depends on using those cable parameters to predict the cable frequencies in 

various fixtures or mounting configurations.  Thus, the cable model was run in two-point 

and four-point configurations as described in Chapter 4 and shown above, and the range 

of frequency values was compared to the respective two-point or four-point experimental 

configuration.  Addition of cables to structures changes both the resonance frequencies 

and damping ratios, so the most useful comparison between model results and 

experimental data is a direct frequency value comparison and comparison of frequency 

response functions (FRFs) [2].  However, for a more rigorous study and confirmation that 

frequencies are being compared appropriately, the mode shapes should also be compared.  

A direct comparison of frequencies is only useful if the frequencies being compared 

actually correspond to the same mode; thus, a modal assurance criterion (MAC) was run 

for each case that compared the experimental and model mode shapes at each natural 

frequency to ensure that frequencies were being compared directly correctly.  Torsional 

modes were not evident in the frequency response functions for the cables, which was as 

expected since the lowest calculated torsional modes for the cables were higher than the 

frequency range of interest.          
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To show the comparison of the predicted frequencies to the experimental data, the model 

frequency ranges are overlaid as black bars on the experimental frequency response 

functions of the two-point cables; the black bars represent the range between the 

minimum and maximum frequency values for each peak that were shown in Figure 6.1 as 

an example.  Model amplitudes were not compared  until damping was added, since the 

experimental cable damping was significant; therefore, the position of the black bars on 

the following graphs serves only to put the bars near the frequency peak of interest, not to 

indicate amplitude of the model.  Five experimental trials are shown for the two-point 

cables, giving an idea of the variability inherent from trial to trial and the value of having 

frequencies calculated as a range rather than a single value.  The experimental data is 

shown as frequency response transfer functions where resonance frequencies are 

indicated by peaks in the data and amplitude is indicated by the relative magnitude of the 

peak. 

 

The modal assurance criterion is displayed as a top view of a grid of experimental and 

model modes; for perfect agreement, the diagonal row of the MAC should be 1 and all 

other squares should be 0.  In practice, due to experimental uncertainty and the use of raw 

data, bright diagonal and dark off-diagonal squares indicate good mode agreement for the 

entire model, where bright squares indicate high mode correlation with MAC values 

above 0.7 and dark squares indicate minimal mode correlation with MAC values below 

0.3. 

 

6.2.1 Cables in Two-Point Fixture 

The two-point fixture had only two attachment points, reducing the variation due to 

attachment uncertainty and allowing the cable to respond with typical and easily 

recognizable bending modes. 
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Figure 6.2: Frequency response function (FRF) comparison and MAC for 1X7 cable in 

two-point fixture. 

 

Based on the experimental trials shown in Figure 6.2, it is clear that the cable response is 

not perfectly repeatable from trial to trial, but there are certainly frequency peaks that 

appear clearly and could be predicted by a frequency range.  Figure 6.2 shows the 

comparison between the frequency response functions for five experimental trials with 

the predicted model frequencies shown as black bars to indicate the predicted frequency 

range, as well as the MAC that compares the experimental and model mode shapes of the 

1X7 cable.  The frequency values for the experimental data and minimum model values 

are listed along the axes of the MAC chart to indicate the frequency at which the mode 

shape was determined for comparison purposes.  The first frequency range is reasonable 

but narrow, and the second frequency range is an excellent representation.  The third and 

fourth experimental frequencies (at about 40 Hz and 60 Hz) are lower than predicted by 

the model ranges, but addition of damping or a percentage knockdown of the bending 

stiffness due to bakeout [108] could bring these into alignment, and the MAC shows 

good agreement for these modes, so they are compared correctly.  Notice that the small 

peak at about 25 Hz is not included in the prediction; the peak at 25 Hz in this and all 

subsequent frequency response plots is the frequency of the cable fixture, and should 

show up only in the experimental data and not the model.  For the 1X7 cable in the two-
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point fixture, MAC agreement was excellent between model and experimental mode 

shapes for the six modes compared.  Frequency values were also reasonable for such a 

small cable.   

 

Figure 6.3: FRF experimental and model range comparison and MAC for 1X19 cable in 

two-point fixture. 

 

The agreement between the model and experimental data of the medium sized 1X19 

cable is shown in Figure 6.3.  This cable, being larger and more beam-like, showed 

improved results with the same cable parameter calculation method used for the 1X7 

cable. Again, the frequencies of greatest amplitude are predicted with the narrowest 

range, which is useful since many applications are only concerned with the highest 

amplitude mode.  MAC values for the 1X19 cable in the two-point fixture showed good 

agreement of mode shapes for similar frequencies, although the first mode tended to 

dominate the nearby modes, showing that the first mode was excited to some degree for 

almost all frequencies. 
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Figure 6.4: Frequency response function and MAC for 1X48 cable in two-point fixture. 

 

The 1X48 cable was the stiffest of the cables tested and showed fewer modes in the same 

frequency range.  Predicted frequency ranges shown in Figure 6.4 for the 1X48 cable 

attached at two points agree with the experimental data.  As noted before, the spike at 25 

Hz is a structural mode from the cable test fixture, and is not included in the model.  

Mode agreement for this case is good for modes 1, 2, and 4, with modes 5 and 6 

dominated by the  much larger fourth mode.  Despite the less than perfect MAC, visual 

comparison of the mode shapes showed enough agreement to be confident in the natural 

frequency comparison.   
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Figure 6.5: Experimental FRF and model range comparison and MAC for 7X7 cable in 

two-point fixture. 

 

As a multi-stranded cable, the 7X7 was not as beam-like as the single-stranded cables in 

that it showed greater variation between trials and non-standard experimental modes.  

The first few natural frequencies are adequately predicted, as shown in Figure 6.5, but the 

fifth model mode is too high, and the model fails to capture the 2-3 additional internal 

modes between 60 Hz and 100 Hz.  Since the amplitude of the frequency response is so 

much greater for the first mode, this model is still deemed useful for multi-stranded 
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captured.  The MAC for the 7X7 two-point cable confirms that agreement for the 

modeled modes is good, but additional experimental modes between 60 and 100 Hz were 

not captured.  However, mode correlation between the modeled modes is still high and 

thus the multi-stranded model can be used with the understanding that additional low 

amplitude modes may be present. 
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predicted with the elliptical wire calculations is narrow; using the circular wire 

calculations sets wider bounds on the predicted frequency range.  Figure 6.6 shows the 

experimental FRF and model range comparison for the model with circular wire 

calculations used for each of the cable types in the two-point fixture.  The first frequency 

range is wider, but the model ranges for the higher frequencies are too wide to be of 

practical use.  Thus, the elliptical wire calculations are recommended unless a wider 

predicted range for the first frequency is desired. 

 

 

 

Figure 6.6: FRF and frequency range comparisons for all cables showing the larger range 

resulting from the use of circular wire calculations.  Clockwise from top left: 1X7 cable, 

1X19 cable, 7X7 cable, and 1X48 cable.  
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with previously published work that found that the calculation of bending stiffness 

became more accurate as the number of wires in a given layer increases [123]. 

 

6.2.2 Cables in Four-Point Fixture 

For the four-point cables, difficulty arises in comparison of the model results to the 

experimental data because of the inherent variation in cable behavior, augmented by the 

lack of precision of the attachment method.  Although all of the cables show clear large 

frequency response function peaks at the first bending mode of the center section, the 

interaction modes (smaller amplitude modes occurring due to the stranded nature of the 

cable) for the four-point cables tests between the first and second center section beam 

modes are erratic; for instance, one section of cable might show two interaction modes 

between the first and second center section beam modes, while another sample of the 

same type of cable shows three.  Figure 6.7 shows the typical appearance of the four-

point cable frequency response function where the large first and second modes are 

separated by interaction modes.  The interaction modes are characterized by small 

amplitude standard beam modes within each span section, where the major first and 

second beam modes are characterized by a standard mode over the center test section 

with much larger amplitude.  Figure 6.8 shows the experimental mode shapes for the first 

few modes of a 1X7 cable, showing the major beam modes as large amplitude standard 

string mode shapes in the center sections, while the interaction modes have larger 

displacements in the buffer sections.  For the larger cables, the shape and number of the 

interaction modes is different, but the first and second beam-like mode shapes always 

appear at the high amplitude frequency peaks.  Even within the results from the same 

cable section the number of interaction modes varies.  Therefore, the most reliable way to 

compare frequencies between model and experimental data for the four-point cables was 

to find the easily identifiable first and second beam-mode mode shapes that occurred in 

the center test section, and compare those frequencies.  The larger cables showed 

multiple peaks near the first beam mode, and seem to be modeled more appropriately 

with the stiff connection values that cause additional frequencies at the first mode.     
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Figure 6.7: Anatomy of a frequency response function for a smaller cable in the multi-

span four-point fixture. 

 

 

Figure 6.8: Representative 1X7 experimental mode shapes showing the difference 

between beam-like major amplitude modes and interaction modes for the multi-span 

four-point fixture. 
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Comparison of predicted model ranges and experimental data and MAC chart for the 1X7 

cable attached at four points are shown in Figure 6.9.  The first model frequency range 

was too high; inclusion of damping or a bakeout correction factor, which would affect the 

first mode the most, may adjust this prediction accordingly.  The second, third and fourth 

frequencies correspond to the multiple (usually three) interaction modes between 50 and 

100 Hz.  The MAC for the 1X7 cable attached at four points showed that the 

experimental modes are dominated by the two largest-amplitude frequencies, the first and 

fifth frequency.  In an effort to determine whether mode interaction was occurring in the 

experimental data, the first model mode was added to the three interaction modes and the 

modal assurance criterion was run for these blended modes against the experimental 

modes.  The results were very clear; the blended interaction modes 2, 3, and 4 had MAC 

values of 0.7166, 0.8356, and 0.7565 respectively, high enough to show strong 

correlation.   Comparison of natural frequencies for the four-point fixture is most 

effective when the two frequencies with the highest local peak amplitude are identified 

and compared to the corresponding model modes.   

 

Figure 6.9: Frequency response function and MAC for 1X7 cable in four-point fixture. 
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Figure 6.10: Frequency response function and MAC for 1X19 cable in four-point fixture. 

 

Figure 6.10 shows the comparison of experimental data and model for the 1X19 cable 

attached at four points.  In this case, the model predicts three interaction modes between 

the major large amplitude modes.  Just as with the 1X7 cable, the large amplitude 

experimental modes dominate the other modes, so the MAC for the 1X19 cable showed 

more concentrated agreement around those first and fifth model modes.  Again, mode 

interaction seemed likely, so the first model mode was added to the second and third 

interaction modes to test this hypothesis.  This resulted in MAC comparison values of 

0.9424 for the second interaction mode and 0.5485 for the third interaction mode, giving 

strong support to the theory that mode interaction is prevalent in stranded cables.  This is 

further supported by the fact that mode interaction is common in non-linear systems, such 

as stranded cables.  The fifth natural frequency range and mode correlates to both the 

fifth natural frequency in the FRF and fifth experimental mode, showing that the 

frequencies are being compared correctly.  

0 100 200 300 400 500
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

Frequency [Hz]

M
a

gn
itu

de
 [d

B
]

 

 

Exp Trials
Model Frequency Range

62.5 Hz 73 Hz 103 Hz128 Hz 197 Hz 225 Hz

Mode 1, 52 Hz

2, 63 Hz

3, 82 Hz

4, 99 Hz

5, 161 Hz

6, 203 Hz

 

Experimental Modes

 

M
od

el
 M

od
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



 143

 

Figure 6.11: Frequency response function and MAC for 1X48 cable in four-point fixture. 

 

The larger 1X48 and 7X7 cables showed several large modes of similar amplitude instead 

of the single large amplitude frequency peak shown by the smaller cables.  This was 

modeled in part by the higher bending stiffness, but also shows the importance of the 

attachment stiffness, since only higher values for attachment stiffness correctly modeled 

the multiple high amplitude peaks.  For the larger cables the variability from sample to 

sample and even trial to trial of the same sample is quite large, with varying numbers of 

modes at certain frequencies.  The modeled frequencies are approximations at best and 

may not capture all of the small interaction frequencies that are evident.  Figure 6.11 

shows the comparison between the model and experimental frequencies for the 1X48 

cable attached at four points.  The three large amplitude peaks are modeled and the fourth 

and fifth frequencies are captured.  The MAC for the 1X48 cable in the four-point fixture 

showed excellent correlation for the large amplitude first, second, and fifth modes. 
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Figure 6.12: Frequency response function and MAC for 7X7 cable in four-point fixture. 

 

The comparison between the model results and the experimental results for the 7X7 cable 

attached at four points is shown in Figure 6.12.  The first four mode shapes correspond to 

the large amplitude frequencies overall, of which 3-4 are always present in the 

experimental trials.  The fifth and sixth frequency range correlates with the higher 

frequency large amplitude peaks at about 200 and 300 Hz, respectively.  From the 

correlation of the MAC values between the first four experimental modes and the first 

model mode, it is clear that the first four large amplitude modes all have some element of 

the first model mode.  Adding the first model mode to the subsequent model modes 

results in higher MAC correlations for these blended modes; adding model modes 1 and 2 

and comparing to experimental mode 2 results in a MAC value of 0.8541.  The results for 

the 7X7 cable comparison in the four-point fixture are significantly better than the results 

in the two-point fixture.  For the multi-stranded cable, it appears that smaller span lengths 

can help to make the cable behave more like a beam.   
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1X48 cable in the four-point fixture.  Phase diagrams were less useful than mode shape 

analysis for these cases due to the heavy damping that made phase shifts less obvious.   

 

Figure 6.13: Frequency response and associated phase angle plot for 1X48 cable trial in 

two-point fixture. 

 

Figure 6.14: Frequency response and associated phase angle plot for 1X48 cable trial in 

four-point fixture. 
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certainly captured by the derived cable model, and interaction modes are identified.  The 

four-point models serve less to predict the exact frequency of any given interaction mode, 

and more to validate the cable parameters that were shown to be effective for the two-

point cable tests.  Since the eventual goal for this work is to model cables attached to host 

structures at multiple points, it is important that the cable parameters calculated still 

represent the cable well when it is attached as a multi-span beam.  Just as exhibited by the 

two-point cables, results are still best for the larger, more beam-like cables. 

 

The results for the two-point single-span cables show correct cable parameters calculated 

from cable measurements and reasonably predictive frequency ranges, and the results for 

the four-point multi-span cables verify that this parameter calculation approach and 

model method is still valid for cables attached at multiple points as they would be when 

attached to a host structure. 

 

6.3 Effect of Bakeout on Cable Dynamics 

As discussed in Chapter 3, the bakeout process was hypothesized to have an effect on 

spaceflight cable stiffness.  Based on the experiments conducted as part of this research, 

bakeout reduces the bending stiffness and changes the frequency response function of 

spaceflight cables as illustrated herein.  Results for the experimental comparison of the 

pre- and post-bakeout cables are presented in this section, with all trials of each cable 

type shown in a single figure.  Appendix E  contains the comparisons for individual cable 

sections. 

 

6.3.1 Single Stranded 1X7 Cable 

Figure 6.15 shows the comparison for all of the 1X7 cable sections in which red dashed 

lines are the unbaked cable responses and blue solid lines show the cable responses after 

bakeout.  For every section of the 1X7 cable, the first and second natural frequencies 

shifted to the left beyond the variation between the cable sections.  The first and second 

beam modes are much more consistent in frequency and amplitude than the interaction 

modes.  This is likely due to interaction modes being very dependent on the constriction 

of the cable at the attachment points; although cable tie tension was kept constant, the 
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random way that the individual wires were compressed as the tie was tightened for each 

installation of the cable in the test fixture may have contributed to the interaction mode 

variation.  After bakeout, the Kapton tape is said to set, which may hold the wires more 

snugly and reduce some of this variation. 

 

Figure 6.15: Comparison of cable frequency response functions before and after bakeout, 

showing a decrease in natural frequencies for 1X7 cable. 
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Figure 6.16: Comparison between first and second major beam modes for 1X7 unbaked 

(left) and baked (right) modes. 
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To show where the first and second major beam modes occur, the cable was scanned and 

mode shapes were identified.  The cable showed clear beam modes which were used to 

identify the modes of the test section.  The unbaked cable first frequency occurs around 

45 Hz and the second frequency occurs around 180 Hz.  The modes that occur between 

50 and 100 Hz are interaction modes, in which the buffer zones show larger 

displacements than the center section.  This is valuable information since cables are 

usually attached in multiple places and would show these interaction modes in practice as 

well.  The first mode can be differentiated from the interaction modes by the lack of 

activity shown in the buffer zones at this point.  Figure 6.16 shows the mode shapes for 

the 1X7 cable as measured using Polytec laser vibrometer software; the left side of each 

image is an unbaked cable and the image on the right side is the same cable section after 

bakeout, showing the same beam mode at a reduced frequency and slightly reduced 

amplitude.  The reduced amplitude that is readily apparent in the second mode indicates 

greater damping in the baked out cable. 

 

Figure 6.17 shows a graph of the first natural frequency value taken from single point 

data for all of the unbaked and baked trials for the 1X7 cables, again showing a clear 

decrease in frequency for the baked cables.  The 1X7 section C cable was the only cable 

that showed a downward trend in frequency for the first few unbaked trials.  This is likely 

due to the "bedding in" effect, in which continued vibration of the cable changes the 

frictional force between the wires and thus decreases the natural frequency.  The term 

"bedding in" is used throughout Raoof's research on spiral strands and differentiates an 

old cable that has experienced vibration from a newly manufactured cable [69].  After the 

first five trials, it appears that the cable is completely bedded in.  All cables were excited 

by the same amount and same duration to eliminate any differences due to bedding in.  It 

should also be noted that section C of the 1X7 set was the most poorly behaved of all of 

the cable samples, which is observed in its unusually high frequency values at trials 10 

and 12 of the baked cable testing.  Overall though, it still follows the general trend shown 

clearly by 1X7 sections D and E, which show an average decrease in first natural 

frequency of 12.7% and 17.2% respectively. 
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Figure 6.17: First natural frequencies for 1X7 cable sections, showing lower frequency 

trend of baked cables for all trials. 

 
6.3.2 Single Stranded 1X19 Cable 

Frequency response functions, mode shapes, and natural frequencies were inspected for 

the 1X19 cables before and after bakeout as well.  The frequency response functions for 

all baked and unbaked 1X19 trials are shown in Figure 6.18, again showing a decrease in 

effective stiffness for both first and second beam mode frequencies.   

 

 

Figure 6.18: Comparison of cable frequency response functions before and after bakeout, 

showing a decrease in natural frequencies for 1X19 cable. 
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        First Mode                 Second Mode 

Figure 6.19: Comparison between first and second major beam modes for 1X19 unbaked 

(left) and baked (right) modes. 

 

Figure 6.19 shows the matching mode shapes for the first and second beam modes with a 

15% reduction in the frequency of the baked cable shown on the right side of each figure 

for each mode.  Figure 6.20 shows the trend in first natural frequency as compared 

between the unbaked and baked cable trials from the single point data of the 1X19 trials.  

The frequency difference here ranged from 13.2% to 16.2% and in no trial was the baked 

cable frequency ever higher than the unbaked cable frequency.  This cable, being the 

medium sized cable that the standard run was designed for, showed excellent 

repeatability and a clear trend through all trials.  No bedding in effect was observed. 
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Figure 6.20: First natural frequencies for 1X19 cable sections, showing lower frequencies 

of baked cables for all trials. 

  

6.3.3 Single Stranded 1X48 Cable 

The much stiffer cable showed frequency response functions with modes that could not 

be as easily identified by inspection alone.  This is where the identification of the 

matching mode shapes became necessary since there was ambiguity in the peaks of the 

frequency response functions.  Figure 6.21 shows the FRFs of all of the 1X48 trials, 

where the first beam mode of the cable test section is no longer as clearly defined due to 

the close proximity of the interaction modes (which occurs because this cable is much 

stiffer and larger, and experiences less constriction at the pinned connections between the 

buffer zones and test section).  Figure 6.22 shows the 1X48 cable's first and second mode 

shapes, respectively.  The unbaked cable resonated at 117.2 Hz for the first beam mode 

and 389.1 Hz for the second beam mode, while the same cable after bakeout resonated at 

107.8 Hz and 348.1 Hz, differences of 8% and 10.5% for the first and second modes.  

Figure 6.23 shows a graph of the first peak frequency values from single point data.  As 

with the other single-strand cables, every baked trial showed lower frequency values than 

every unbaked trial. 
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Figure 6.21: Comparison of cable frequency response functions before and after bakeout, 

showing a decrease in natural frequencies for 1X48 cable. 

  

  First Mode                 Second Mode 

Figure 6.22: Comparison between first and second major beam modes for 1X48 unbaked 

(left) and baked (right) modes. 
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Figure 6.23: First natural frequencies for 1X48 cable sections, showing lower frequencies 

of baked cables for all trials. 

 

6.3.4 Multi Stranded 7X7 Cable 

The 1X48 cable was made to compare to the 7X7 cable; although both cables have about 

the same number of wires, the multi-stranded cable is significantly more flexible since it 

is made up of strands instead of individual wires.  The data collected were consistent with 

the theory; the multi-strand cable was less stiff with lower first and second natural 

frequencies than the single-strand cable of the same size.   

 

Proximity of the interaction modes becomes an even greater issue for the 7X7 cable, and 

inspection of the mode shapes is necessary to determine which frequencies correspond to 

the first and second beam modes of the cable test section.  Figure 6.24 shows the FRFs 

for all 7X7 cable trials, still showing a left shift for the baked cables.  The more flexible 

multi-stranded configuration does show a lower natural frequency than the 1X48 cable 

with similar wire count as expected.  Although the interaction modes appear larger and in 

different locations than for the single stranded cables, the overall pattern of frequency 

decrease still occurs. 
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Figure 6.24: Comparison of unbaked and baked cables, showing a decrease in natural 

frequencies for 7X7 cable. 
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       First Mode           Second Mode 

Figure 6.25: Comparison between first and second major beam modes for 7X7 unbaked 

(left) and baked (right) modes. 

 

 

Figure 6.26: First natural frequencies for 7X7 cable sections, showing lower frequencies 

of baked cables for all trials. 
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6.3.5 Bakeout Effect Conclusions 

Results from the comparison of the pre- and post-bakeout cable trials were conclusive.  

Data were taken in the form of multiple single-point runs and scans of the entire cable.  

The results from the single point data agreed well with averages taken from the laser 

scans and those evaluated using ME'Scope.  The frequency response functions showed a 

clear shift left and natural frequency values decreased, both of which indicate a decrease 

in bending stiffness.  The change in frequencies was consistent; all unbaked first 

frequencies for single stranded cables decreased between 14% and 15% after bakeout on 

average.  However, the multi-stranded cable showed a more significant reduction in 

frequency at both the first and second beam modes. Table 6.2 presents the average first 

and second frequency values for each cable before and after bakeout.  These averages are 

based on 39-54 runs per cable type, removed and remounted in the test section each time.  

Based on the percentage decrease in the natural frequencies, a bakeout correction factor 

of 0.8 could be included with the calculation of bending stiffness to take this effect into 

account. 

 

Coefficient of variation was calculated for the baked trials, the unbaked trials, and then 

for all of the trials together for each cable.  The coefficient of variation ranges from 0.015 

to 0.06 for the unbaked trials, from 0.02 to 0.05 for the baked trials, and from 0.05 to 0.2 

for combined unbaked and baked trials.  The coefficient of variation for the combined 

trials for each frequency for each cable was larger than for the baked or unbaked trials in 

every case, and was almost always larger by a factor of 2 to 4.  The frequency change 

exhibited by the baked out cables was greater than what could be expected due to only 

experimental variation.  The list of coefficients of variation for each section and for each 

type of cable overall can be found in Appendix E; cable sections were compared directly 

before and after bakeout to ensure that changes were due only to bakeout and not cable 

section variation.  More data are available from scans of the entire cable, but as the 

frequencies were within the distribution of the single point data and agreed with the 

overall results, the additional scans were considered superfluous.   
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Table 6.2 First and second frequencies, in Hz, for baked and unbaked cases for four cable 

types with percent reduction for each.     

Average First Frequency, Hz Average Second Frequency, Hz 
Cable Unbaked  Baked % Reduction Unbaked Baked  % Reduction 
1X7 46.1 39.3 14.8% 195.6 166.8 14.7% 
1X19 70.5 59.9 14.9% 257.9 220.5 14.5% 
1X48 122.9 105.7 14.0% 394.5 360.4 8.6% 
7X7 86.3 65.1 24.6% 247.9 206.0 16.9% 

 

Damping values were also investigated by using ME'Scope to determine damping 

percentage at the first mode.  While the magnitude of the frequency response functions 

did not indicate a clear trend for damping behavior after bakeout, the percent damping 

calculated using ME'Scope showed an increase in damping percentage for all cables after 

bakeout.  Table 6.3 presents the average damping percentage for the first frequency for 

each cable.  This information is based on cable scan data. 

 

Table 6.3 Percent difference in first frequency average damping for each cable type. 

First Frequency 

Cable 
Average % 

Damping, Unbaked 
Average % 

Damping, Baked  
1X7 3.40 3.72 
1X19 4.96 5.74 
1X48 3.65 7.05 
7X7 4.83 9.07 

 

This damping ratio data agree very well with previously published data of roughly 4% for 

unbaked cables of similar sizes [3], but bakeout treatment pushes the larger cables outside 

of this range, providing further evidence that bakeout effects should be taken into account 

for modeling and design purposes.  Based on this data, bakeout can nearly double 

damping percentage for large cables, while small cables see only a slight increase in 

damping due to bakeout. 

 

There are a few likely mechanisms to explain the cable stiffness softening effect 

exhibited.  First, it was observed that the Tefzel insulation coating had shrunk down 
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around the wire after bakeout, indicating that the Tefzel coating may have shrunk overall, 

binding the individual conductors more snugly but providing more interstitial space in 

between the individual wires.  The increase in space may lead to a decrease in the radial 

pressure holding the wires together, thus making the individual wires act more like a 

flexible set of wires and less like a stiff solid beam.  Another hypothesis relates to the 

outgassing of plasticizers in cable insulation, but since plasticizers are not present in the 

Tefzel insulation used for these wires, that is unlikely to be a mechanism that contributes 

to the changes observed.  The Kapton overwrap may also experience changes due to the 

bakeout treatment; the Kapton becomes more brittle after heat treatment, which may lead 

to the perception that the cable is stiffer even though its dynamic stiffness has decreased.  

It was observed that when holding baked and unbaked cables out as cantilevered beams, 

the baked cable showed a larger amount of end displacement, providing further 

verification that the baked out cables become less stiff after bakeout.   

 

To match the frequency reduction exhibited by the baked out cables, the theoretical cable 

model requires a reduction in the bending stiffness value, with the baked out cables 

having a bending stiffness of about 80% of the unbaked cable when connection stiffness 

is on the order of 5*104 N/m.  This change in bending stiffness value should be 

incorporated into cabled structure models if the other model inputs (such as connection 

stiffness, density, and area) remain the same.  Figure 6.27 shows the effect of adding a 

0.8 bakeout correction factor to the cable model frequency response function for the four-

point 1X19 cable model, a representative graph of the cables investigated. 
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Figure 6.27: Effect of including the bakeout correction factor on the four-point 1X19 

cable model; including the bakeout factor in the bending stiffness input decreases natural 

frequencies similar to the decrease in experimental frequency response function results 

for baked out cables. 

 

6.4 Cable Damping   

While the undamped cable models provide adequate ranges for natural frequency 

prediction, the amplitudes of the model responses do not reflect the experimental data 

well unless damping is included.  As discussed in Chapter 3, the viscous damping model 

that approximates damping due to the motion of the cable in its surrounding medium is 

not adequate to capture the internal damping and material damping in cables, since cables 

have both friction between the wires and viscoelastic material as insulation.  In addition, 

this viscous air damping would be entirely absent in the vacuum of space where 

spaceflight cables are used.  Cables dissipate more energy than a similarly sized solid rod, 

experiencing greater hysteresis.  To determine the damping term coefficients for the 

hysteretic form of cable damping, the damped model was fit to the experimental cable 

response average for the two-point cable.  Those damping coefficients were then applied 
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point, or cabled beam) could result in better damped models for the four-point cable 

model and cabled beam, but since one of the goals of this work was to reduce the need 

for experimental cable testing, only the two-point data was used for damping parameter 

determination to evaluate whether damping could be extrapolated from the two-point data 

for at least the first mode of the other configurations. 

 

Since bakeout appears to have an effect on the cable damping, the bakeout correction 

factor must be included for all damped cable models, which actually improves the model 

agreement and supports the idea that damping can be partly incorporated through 

appropriate variable bending stiffness calculation. 

 

6.4.1 Determination of Cable Hysteretic Damping Coefficients 

Figures 6.28 - 6.31 show the fitted damped cable model FRFs with the average of the 

experimental scan FRFs for each cable in the two-point fixture.  The damped model 

included the bakeout correction factor and the model FRF shown in the following figures 

is based on the cable inputs for the minimum frequency response; the darker blue bars 

above each frequency show the damped frequency range.  Table 6.4 lists the damping 

coefficients for the GHM hysteretic damping form used for the damped two-point cable 

models in Figures 6.28 - 6.31.   

 

In each of the damped cable model comparisons, the amplitudes for the first three 

frequencies are matched very well, with the exception of the 1X19 cable, which had a 

second frequency that was higher than predicted due to the interaction of the structure 

mode that occurs at the same location as the second mode of the 1X19 cable and thus 

increases the amplitude.  Not only are the amplitudes matched, the damped frequency 

ranges were generally able to span the experimental frequency.  The lower frequencies 

were better matched by the minimum model, while higher frequencies tended toward the 

maximum value model.  Thus, the minimum to maximum model span seems to be a 

decent method to evaluate the first 3-5 modes of the cable.  If prediction of fewer modes 

was required, the minimum model could be used with confidence for the first two modes 

in each case. 
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Figure 6.28: Comparison of experimental data and hysteretically damped cable model for 

the 1X7 cable in two-point fixture configuration. 

 

Figure 6.29: Comparison of experimental data and hysteretically damped cable model for 

the 1X19 cable in two-point fixture configuration. 
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Figure 6.30: Comparison of experimental data and hysteretically damped cable model for 

the 1X48 cable in two-point fixture configuration. 

 

Figure 6.31: Comparison of experimental data and hysteretically damped cable model for 

the 7X7 cable in two-point fixture configuration. 
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Recall the form of time hysteretic damping from Chapter 3, where the hysteretic cable 

damping was modeled in the form 

  
�(`, = �`$ + �``$ + �` + � 

 

Table 6.4 contains the coefficients for each hysteretic damping term for each cable, as 

determined from fitting the model data to the experimental data for the two-point fixture 

configuration. The gamma term had the greatest effect on matching the second and third 

mode amplitudes once the first mode amplitude was matched sufficiently.  The delta term 

could shift the model frequencies to some degree without significantly changing the 

amplitude of the model.  A more sophisticated curve fitting program could probably 

improve the damping parameters determined for the two-point cables, especially if more 

terms were added to the hysteretic damping form to improve the curve fit over a larger 

frequency.  The GHM method was initially developed for finite element analysis, so it is 

typical to include a sum of terms of the form in �(`,, instead of the single term as used 

here since the finite element method was not used.  More terms in the GHM damping 

model could improve the damping fit for the cable models. 

 

Table 6.4 Hysteretic damping coefficients based on fitting of model to experimental data. 

 Numerator Terms Denominator Terms 
Cable Type � ∗ `$ � ∗ ` `$ � ∗ ` � 

1X7 25 9000 4 1 -8000 
1X19 70 6000 5 2 2000 
1X48 180 40000 2 2 -9000 
7X7 140 60000 2 2 -15000 

 

Appendix F shows the results from applying the two-point fixture damping expressions 

(listed in Table 6.4 for each cable) to the four-point model; agreement is good for the first 

mode when damping coefficients determined from the two-point comparison are applied 

in the four-point model, but other than the first mode, it appears that damping 

characteristics cannot be extended from the simpler experiments.  Further study would be 
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needed to determined whether differences in the damping of the cable in different fixtures 

can be determined without requiring dynamic testing. 

 

As an illustration of the complexity of cable damping, a comparison of the time hysteretic 

damping used and typical viscous damping is shown for the 1X7 cable in Figure 6.32.  

Hysteretic damping yields correct FRF amplitudes for at least the first three modes in 

general, whereas viscous damping can only reasonably approximate the FRF amplitude 

for one mode at a time.  The cyan hysteretically damped model shows good amplitude 

agreement for the first three modes, and even the fourth mode is not overly high.  In 

contrast, two values for viscous damping were run to show that viscous damping can only 

be matched to one amplitude at a time; for instance, the red viscously damped model with 

cv = 0.4 matches the first frequency amplitude with a damping ratio of about 4.0%, but 

all other amplitudes are too high.  The green viscously damped model matches the 

amplitude of the third mode, but the first and second modes are then modeled as being 

lower than reality.  Viscous damping can only match one mode, while hysteretic damping 

can model more modes more accurately.  Structural damping was also compared, with 

better results than the viscous damping model; for the 1X7 cable, using an alpha value of 

2.5 and a beta value of 8*10-4 resulted in decent agreement for one or two modes, but the 

hysteretic damping method still matches more modes.  Figure 6.33 compares structural 

damping to hysteretic damping for the 1X7 cable.     
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Figure 6.32: Comparison of hysteretic and viscous damping for the 1X7 cable model; the 

cyan hysteretically damped cable model matches amplitudes for first three modes, while 

the viscous damping model can only match one mode at a time. 

 

Figure 6.33: Comparison of hysteretic and structural damping for the 1X7 cable model; 

structural damping is an acceptable choice for cable modeling, but still does not match as 

many modes as closely as a hysteretic damping model. 
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6.4.2 Experimentally Determined Cabled Structure Damping  

Since one of the overarching objectives of this research is to quantify the effect of cables 

on cabled structures, before attempting to model the damping of a cabled structure, it is 

useful to know how heavily the structure is damped.  Table 6.5 gives the average 

damping percentages for 10 scans of the bare beam and the cabled beam for each cable 

type.  In general, larger cables have more damping, but no clear trend is established. 

 

Table 6.5 Average damping percentages for each bending mode for bare beam and cabled 

beams. 

Bending Mode Bare Beam 1X7 1X19 1X48 7X7 
1 0.01 0.35 1.27 3.20 2.10 
2 0.43 1.13 2.80 2.00 4.10 
3 0.02 0.29 0.40 0.72 0.08 
4 0.01 0.26 1.49 0.62 0.70 

  

6.5 Cabled Beam Experimental Results  

The effects of adding cables to structures are not completely understood; therefore, 

before presenting the comparison between the cabled beam model and experimental 

cabled beam results, it is beneficial to investigate the purely experimental results of 

cables attached to beams.  Figure 6.34 shows the experimental comparison between the 

bare beam and the four types of cables, based on a dense scan.  Appendix G contains 

plots of the mobility transfer functions (TFs) for the ten sparse scans of each cabled beam 

as measured on the beam near the driving point, and as measured on the cable, shown 

with the average frequency response function for all trials.  It is clear that the bending 

modes of the bare beam still appear, but may be shifted due to the addition of the cable.  

The cable also causes additional modes where the cable experiences resonance.  

Torsional modes are evident (based on observation of the mode shapes as well as the 

FRFs) for the bare beam and all cables at about 250 Hz and 490 Hz, which agrees with 

the theoretically calculated torsional modes of 246 Hz and 492 Hz for the bare beam.  

Table 6.6 lists the experimental torsional frequencies for the bare beam and cabled 

beams.  None of the cabled beams showed shifts in the torsional frequency of more than 

1.2% from the bare beam values; this was expected since the cable was attached at the 
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centerline of the beam specifically to minimize any changes in the torsional response 

since torsional response was not modeled.             

 

Figure 6.34: Comparison of experimental data from bare beam and each cable attached to 

the beam, measured close to the driving point on the beam. 

 
Table 6.6 Experimental average torsional frequencies of the bare and cabled beams, in 
Hz. 

 
First Torsional Mode Second Torsional Mode 

 
Frequency 

(Hz) 
% Difference 

from Bare Beam 
Frequency 

(Hz) 
% Difference from 

Bare Beam 
Bare Beam 249.1 - 489.1 - 

1X7 Cabled Beam 250.0 0.36% 490.0 0.18% 
1X19 Cabled Beam 248.8 0.12% 491.3 0.45% 
1X48 Cabled Beam 251.8 1.08% 488.5 0.12% 
7X7 Cabled Beam 252.0 1.16% 490.3 0.25% 

 

Different size cables do not affect the system frequency response in the same way.  

Additional cable modes from the 1X7 cable occur below the first bending frequency of 

the system, while the additional modes from the other cables add small magnitude 

resonance frequencies above the first system bending mode.  The damping added by the 
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cable is significant, and larger cables add more damping to the structure at most system 

bending modes.  Although the cable was attached to the beam the same way for each 

trial, results between cabled beam trials showed variation similar to the variation shown 

by the grounded cables.  Figure 6.35 shows the transfer function plot for the 7X7 cabled 

beam with the dense scan trial and ten sparse scan trials overlaid on the average of the 

trials.  The major beam frequencies are repeatable, but the small magnitude additional 

frequencies due to the cable (between 150 and 200 Hz, for instance) have significant 

variation from trial to trial.  For model comparison purposes, the average of the 11 total 

trials is used to represent the experimental data.   

 

Figure 6.35: Transfer frequency response function for the 7X7 multi-stranded cable 

showing the variation between trials for small amplitude modes. 

 

Figure 6.36 shows the frequency response function and associated phase angle plots for 

the bare beam and the 1X48 beam from dense scan data measured at the driving point.  

Additional modes are indicated around 350 Hz by the approach of the phase value to 0 

degrees, as expected for phase angle measured for a mobility transfer function using 

measured velocity.  Note that this is different than a transfer function based on 

measurement of displacement, where a natural frequency is indicated by a 90 degree 

phase shift. 
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Figure 6.36: Frequency response function and associated phase angle plots for the bare 

beam and 1X48 beam measured at the driving point. 

 

 As a valuable illustration to show the complexity of stranded cables as compared to solid 

materials and the importance of bending stiffness calculation for cable models, solid 

material rods of similar size, weight, and/or bending stiffness were attached to the beam 

and scanned to obtain the frequency response functions.  Figure 6.37 shows the 

comparison between the 1X19 cable on the beam and the Acetron rod.  The Acetron rod 

had similar mass and bending stiffness to the 1X19 cable, and the results have similarities 

in terms of frequency shifts and amount of damping added, but the cabled beam has more 

additional system frequencies than the rod does, particularly around the second and third 

bending modes.  Figure 6.38 shows the comparison between the 1X48 cable and a 316 

stainless steel rod, which had very similar mass, but much higher bending stiffness than 

the cable.  The results show differences between a cable and a rod attached to the beam; 

in each case, the solid rod exhibits fewer additional modes than the cable does when 

compared to the bare beam.  The solid rods also stiffen the structure at all low 

frequencies, shifting the natural frequencies higher despite the additional mass.  The 
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cables do not uniformly stiffen nor soften the structure, but affect each mode somewhat 

differently.       

 

Figure 6.37: Frequency response comparison between the 1X19 cable on the beam and an 

Acetron rod of similar mass and bending stiffness on the beam.  

 

Figure 6.38: Frequency response comparison between the 1X48 cable on the beam and a 

stainless steel 316 rod of similar mass, but much higher bending stiffness, on the beam.   
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The importance of the cable bending stiffness is further illustrated by comparisons 

between the similarly sized single strand and multi-strand cables.  Figure 6.39 shows five 

trials of each of the two types of large cables compared to the bare beam.  The 1X48 

cable and 7X7 cable have a mass difference of only 46 grams (about 3% of the mass of 

the beam) and yet they shift the first natural frequency of the cabled-beam system in 

opposite directions, as shown in detail in Figure 6.40.  In addition, the multi-strand cable 

has additional modes around 200 Hz that are nearly equal in magnitude to the second 

cabled-beam bending frequency around 140 Hz that the single-strand cable does not 

exhibit.  Although the mass is very similar for these cables, the 7X7 cable is significantly 

more flexible with much lower bending stiffness.  The difference between the 1X48 and 

7X7 cable FRFs underscore the importance of taking cable configuration and thus, cable 

bending stiffness, into account for cable modeling; simply modeling the cable as a rod 

with a single bending stiffness value would not capture the differences between these 

cable configurations.   

 

Figure 6.39: Comparison between five 7X7 and five 1X48 cabled beam trials to show 

differences between similar mass cables with different wire configurations, particularly in 

the first mode where the stiff 1X48 cable has a higher frequency despite the additional 

mass. 
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Figure 6.40: Enlarged view of FRF near first natural frequency, showing the consistent 

and clear frequency shifts for the cabled beam when single or multi-stranded cable is 

attached. 

 

Just as with the cable experiments, mode shapes must be examined to ensure that 

frequencies between bare beam and cabled beam are being compared correctly.  Mode 

shapes were observed for both the dense scans and all sparse scan trials.  Figure 6.41 

shows the mode shapes for the bare beam, while Figure 6.42 shows mode shapes 

representative for a cabled beam, specifically the beam with the 1X48 D cable attached.  

Additional modes where the cable is experiencing resonance are identified with a red 

arrow.  Appendix H contains the mode shapes for the other cabled beams.  The bending 

modes are clearly exhibited for all cabled beams, along with additional cable modes. 

 

For all cables, the first and second mode shapes were dominated by the beam, and the 

cable flexed in phase with the beam.  Additional combined modes were observed in 

which the beam showed some bending while the cable showed relatively large deflections 

out of phase with the beam.  The addition of a cable to the beam also increased the 

interaction between the torsional mode and the third bending mode.  The fourth bending 

mode was relatively unchanged from the bare beam mode shape.  Having identified the 

experimental effects of cables on the beam structure, the developed cable model can be 

evaluated and compared. 
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Figure 6.41: Mode shapes of the bare beam from dense scan. 

 

Figure 6.42: Mode shapes of the 1X48 cabled beam from the dense scan, with areas of 

noticeable cable deflection identified by red arrows. 
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6.6 Cabled Beam Model Results  

This section presents comparisons between the cabled beam model and experiments.  

First, the rod-on-cable experimental data and model results are shown and discussed 

briefly.  Then the cabled beam experimental data and model are compared and discussed, 

and finally the currently used distributed mass model is shown in comparison to the 

DTFM cabled beam model and experimental data.  The limitations of the distributed 

mass model and DTFM models are discussed, including recommendations about which 

model is more appropriate depending on cable size and desired output information. 

  
6.6.1 Rod-on-Beam Comparison 

Before evaluating the DTFM model's effectiveness for the cabled beam, the cabled beam 

model was evaluated with a solid Acetron rod in place of the cable to ensure that the 

basic rod-on-beam system was adequately modeled before adding the complexity of the 

cable parameters.  The rod and beam were both modeled as Euler-Bernoulli beams with 

linear and rotational connection stiffness included using the values determined from the 

rod tests.  As shown in Figure 6.43, the rod on beam model was able to capture the 

experimentally determined natural bending frequencies of the structure within 10% , 

acceptable considering the simplicity of the model, use of connection values determined 

from prior results, and only light viscous damping included. 

 

Figure 6.43: Comparison of experimental and model transfer functions for Acetron rod 

attached to beam, with Acetron rod modeled as an Euler-Bernoulli beam. 
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6.6.2 Distributed Transfer Function Cabled Beam Model Comparison 

The distributed transfer function method cabled beam model consists of a DTFM cable 

attached with linear and rotational stiffness to an Euler-Bernoulli beam.  The use of the 

distributed transfer function model for the cable allows for inclusion of cable properties 

such as bending stiffness and shear rigidity, parameters that are absent in lumped or 

distributed mass models.  The cabled beam model could be run to output minimum, 

middle, or maximum values by choosing the minimum, middle, or maximum values 

calculated by the cable parameters.   The middle value used the middle calculations for 

area and density, and the average value for bending stiffness.  Bending stiffness was 

calculated based on the equations presented in Chapter 3 and the span of the cable 

between connection points to determine the maximum displacement, with the bakeout 

factor included and damping included as calculated for the two-point fixture cables.  

Viscous damping was added to the stiffer cables for improved curve fit.  

 

Due to the complexity of the cabled beam transfer functions, only the damped average 

(middle) value transfer function is shown for clarity, with the minimum and maximum 

frequency range shown with horizontal bars.  It is important to note that the frequencies 

must be compared using both the transfer functions and the mode shapes, since 

frequencies that appear to be similar in value may actually represent different modes.  To 

that end, modal assurance criteria were run for each cabled beam structure.  The 

averaging of the experimental data sometimes smoothes areas where multiple frequencies 

are present, so Appendix I contains the undamped and damped minimum and maximum 

models compared to the 11 cabled beam trials for each cabled beam. 

 

Figure 6.44 presents the damped average transfer function response for the 1X7 cabled 

beam.  The average experimental data is shown with a black dashed line; the model 

average is shown as a purple line, and the range of natural frequency values based on the 

minimum and maximum cable input parameters are shown as red range bars above the 

respective frequencies.  Note the very narrow range for the first bending frequency 

(around 50 Hz) and the eighth frequency (around 450 Hz).  In fact, all of the major 

structure bending frequencies that occur similar to the bare beam are modeled with a very 
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narrow result; the additional modes that are introduced due to the addition of the cable on 

the structure have a much wider range, which corresponds to the uncertainty in the cable 

parameters.   

 

Figure 6.44: Damped average cabled beam model compared to experimental data for 1X7 

cabled beam, with ranges for the natural frequency values shown as bars. 

 

Figure 6.45: Damped average cabled beam model compared to experimental data for 

1X19 cabled beam, with ranges for the natural frequency values shown as bars. 
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Figure 6.46: Damped average cabled beam model compared to experimental data for 

1X48 cabled beam, with ranges for the natural frequency values shown as bars. 

 

Figure 6.47: Damped average cabled beam model compared to experimental data for 7X7 

cabled beam, with ranges for the natural frequency values shown as bars. 
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Just as with the cable models, it is important to compare mode shapes as well as natural 

frequencies to ensure legitimate comparison between model and experimental data.  This 

is especially important for the cabled beam as the number of frequencies predicted with 

the minimum and maximum cable parameter values as inputs will not necessarily be the 

same; the minimum cable parameter values tend to have additional lower modes.  Only 

mode shapes that were clearly matched for both minimum and maximum inputs are 

shown as additional frequency ranges in Figures 6.44 through 6.47.  To compare the 

mode shapes, modal assurance criteria were run for each cabled beam structure, where 

the raw experimental shapes of both the cable and the beam were compared to the model 

shapes.  Figure 6.48 shows the MAC for the bare beam model as compared to the 

experimental data.  Note that the torsional mode at 250 Hz is not captured by the bending 

model.  The bare beam MAC shows high correlation between the experiment and model 

mode shapes for the major structural modes at about 50 Hz, 140 Hz, 275 Hz, and 450 Hz.  

Modes at 99 Hz and 375 Hz are present in the bare beam experimental data, but not in the 

model, a trend that continues with the cabled beam cases.  These modes are likely due to 

the modes of the test fixture or noise in the test equipment. 

 

Figure 6.48: Modal assurance criterion for bare beam model modes against bare beam 

experimental modes with all modes shown; note that the model only finds bending 

modes. 
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Modal assurance criteria for the four cabled beams are shown in Figure 6.49 through 

6.52.  Best agreement occurs for the major structural modes at around 50 Hz, 140 Hz, 270 

Hz, and 450 Hz, but agreement is evident for many of the modes that are added due to the 

addition of the cable.  Figure 6.49 shows the MAC for the 1X7 cabled beam using middle 

values for the cable parameter inputs and showing the difference between the undamped 

and damped model mode shapes.  The undamped model has mode agreement for the 

major structural modes, but also shows weak correlation for the additional cable modes.  

When the mode shapes of the damped model are compared, the additional modes due to 

the cable are not as prominently correlated, while the major structural modes still stand 

out.   In both cases, the torsional experimental mode at 250 Hz is included in the 

experimental data, and shows no correlation to the model modes since torsional modes 

are not modeled.  Thus, the torsional experimental mode column is removed for all 

subsequent MAC calculations. 

 

Figure 6.49: Undamped and damped model MAC for 1X7 cabled beam; comparison 

between undamped middle model and experimental modes from the dense scan on the 

left side, and comparison using damped middle model on the right. 
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different parameters can add, shift, and split modes of the model.  As such, the MACs 

calculated from the different model inputs show differences in modal correlations.  

Figure 6.50 shows the MACs for the 1X19 cable for the minimum, middle, and 

maximum cable parameters inputs.  In each case, the correlation for the first mode is 

excellent, and the major structure modes correlate well between experimental and model 

data, but the additional cable modes show varying degrees of correlation. This is in part 

due to the greater noise exhibited by the experimental mode shapes for low amplitude 

modes.  In addition, trying to represent all of the modes with a single model is ambitious; 

cable modes that are represented well by the minimum cable parameters are not usually 

represented as well by the maximum cable parameters, and vice versa.  In Figure 6.50, 

experimental mode shapes for the 1X19 cable were observed at 50, 90, 128, 143, 182, 

263, 281, and 458 Hz, where column 1, 4, 6, and 8 represent the major structure modes. 

    

Figure 6.50: MAC for 1X19 cabled beam; comparison between minimum, middle, and 

maximum values of undamped model and experimental modes from the dense scan. 

 

Figure 6.51 shows the complete array of MACs that can be created for each experimental 

scan; the top row has the undamped model minimum, middle, and maximum values, and 

the bottom row has the damped model comparisons. 
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UNDAMPED MACs 

     

DAMPED MACs 

Figure 6.51: MAC for 1X48 cabled beam; comparison between minimum, middle, and 

maximum values of undamped model (top row) or damped model (bottom row) and 

experimental modes from the dense scan. 

 
Figure 6.52 shows the MAC resulting from comparison of the maximum undamped 

model and the experimental mode shapes.  Table 6.7 contains a few representative 

graphic depictions of the model and experimental mode shapes used to calculate the 

MAC, where the cable shape is shown in red on each plot.  The model mode shapes are 

normalized by the beam maximum displacement for both beam and cable, while the 

experimental mode shapes are normalized by the beam and cable displacement for each 

respective section. 
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Figure 6.52: MAC for 7X7 cabled beam comparing maximum undamped model modes 

with experimental modes. 

 

Table 6.7 Examples of model and experimental mode comparison for cabled beam major 
structural modes and additional modes due to cable. 
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Additional 
Mode Due 
to Cable, 

1X19 
(~140 Hz) 

  

4th Major 
Structure 
Mode, 
7X7 

(~ 450 
Hz) 

 

  
 

6.6.3 Distributed Mass Model Comparison  

To show the value of the DTFM cabled beam model, it must show improvement when 

compared to existing models.  The best current commonly used model is the distributed 

mass model; in this model, the mass of the cable is added to the beam by changing the 

density of the beam wherever cables are present.  Note that this is a better technique than 

the previously used lumped mass model, where the cable mass was simply added at the 

center of gravity of the structure.  As Figure 6.53 shows, the distributed mass model 

simply shifts the natural frequencies of the bare structure; the greater the mode number, 

the larger the frequency decrease due to the additional mass.  Figure 6.53 also shows the 

lack of distinction between the two large cables; although these cables have different 

stiffness values and affect the structure differently, the distributed mass model does not 

capture that difference. 
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Figure 6.53: Distributed mass model transfer function for the four cable types, showing a 

downward shift in all frequencies for all cables. 

 

The distributed mass model treats the cable as though it has no stiffness and is 

continuously attached, neither of which reflect the reality of cable attachment.  This 

method is acceptable for the first one or two modes of a small mass addition, but does not 

capture the additional modes that arise due to the interaction between the cable and the 

host structure, fails to predict frequencies accurately at higher modes, and does not 

capture the difference between the stiff single stranded large cable and the much more 

flexible multi-stranded large cable that we observed in the experimental trials shown in 

Figure 6.40.  To illustrate these points, the distributed mass model is compared to the 

average DTFM cabled beam model and experimental data in the following figures.  

Figure 6.54 compares the experimental data and both models for the 1X7 cable.  For this 

small cable, the differences in the model frequencies for the first two bending modes are 

near negligible, although the DTFM model does capture additional modes and shows 

closer agreement for the third and fourth bending mode frequencies.       
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Figure 6.54: Comparison of distributed mass model and DTFM cabled beam model with 

experimental data for 1X7 cable. 

 

Figure 6.55 and Figure 6.56 compare the distributed mass model and DTFM cabled beam 

model for the 1X48 and 7X7 cables, respectively.  Figure 6.55 clearly shows the addition 

of modes around 350 Hz, which is not captured at all by the distributed mass model.  The 

mode at 350 Hz appears to be a single mode, but in reality the many cabled beam trials 

showed one to three modes in this area, showing good agreement with the DTFM average 

model.  In addition, all of the bending modes are predicted more accurately by the DTFM 

cabled beam model for the 1X48 cable.  The real strength of the DTFM model is shown 

in Figure 6.56, the comparison of the models and experimental data for the 7X7 model.  

Here, the heavy but very flexible cable has several additional modes in the 100-200 Hz 

range, and all bending frequencies are predicted closely by the the DTFM model.  While 

the 1X48 and 7X7 distributed mass models are nearly identical, the DTFM model 

manages to capture the differences between the cabled beams more clearly and more 

closely to the experimental data.   
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Figure 6.55: Comparison of distributed mass model and DTFM cabled beam model with 

experimental data for 1X48 cable. 

 

Figure 6.56: Comparison of distributed mass model and DTFM cabled beam model with 

experimental data for 7X7 cable. 

0 100 200 300 400 500

-100

-80

-60

-40

-20

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

 

 

1X48 Experimental Average
Distributed Mass Model
DTFM Average Model

0 100 200 300 400 500
-100

-80

-60

-40

-20

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

 

 

7X7 Experimental Average
Distributed Mass Model
DTFM Average Model



 187

There are several ways to perform quantitative comparisons between FRF results, 

including FRF assurance criterion, difference comparison, and cumulative value 

comparison.  FRF assurance criterion does not adequately compare FRFs if frequencies 

are shifted slightly, so difference and cumulative comparisons were used.  Figure 6.57 

shows a representative result for the difference calculation comparison between the 

DTFM and distributed mass models for the 1X48 cable.  The difference between the 

model and experimental FRF value for each frequency is plotted, and the zero value (for 

which the experimental and model data would be identical) is shown by a black line.  

Overall, the DTFM model has smaller difference values across the frequency range.   

 

Figure 6.57: Difference between experimental and model FRF values for the 1X48 

middle DTFM cabled beam model results and the 1X48 distributed mass model results. 
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were closer to the experimental data for the entire frequency range, and the shape of the 
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values to be best for 1X7 cabled beam and maximum values to be best for the 7X7 cabled 

beam.   

 

Figure 6.58: Cumulative values for the 1X7 cabled beam. 

 

Figure 6.59: Cumulative values for the 7X7 cabled beam. 
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For the smaller cables with less mass, the distributed mass model predicts the frequency 

shift adequately for the lowest modes, but for higher modes and all modes of larger 

cables, the frequency shift is not captured as correctly as by the DTFM model.  This is 

clearly shown by the drastic rise in amplitude value at 450 Hz in Figure 6.58.  The DTFM 

model also provides a range of values, which can capture the inherent variability of 

cables more completely; for clarity, only the average DTFM value was shown in the prior 

FRF comparison plots.  The distributed mass model does not capture additional modes 

caused by the addition of the cables and is not as accurate at predicting natural 

frequencies for cables of varying stiffnesses.  Therefore, there is value in the 

development of the DTFM cabled beam model to correct these inadequacies.   

 

6.7 Discussion 

Overall, results from the DTFM cabled beam model showed good agreement with the 

experimental data.  The DTFM cabled beam model shows improvement over the 

distributed mass model both in terms of natural frequency prediction and ability to 

identify locations of additional modes due to cable attachment.  When the difference 

between the experimental data TF and the distributed mass model TF was compared to 

the difference between experimental data and the DTFM model, the DTFM model had 

less total error.  Although the distributed mass model may be useful for small cables, the 

DTFM cabled beam model can incorporate cable bending stiffness and shear rigidity, and 

thus provides more information and a more accurate prediction for larger cables or higher 

modes.  Table 6.8 gives the bending frequencies from the experimental data, distributed 

mass model, and the minimum and maximum DTFM cabled beam model. 

 

For the case of the bare beam with no cable attached, the distributed mass model and 

DTFM model give the same results (as expected), with only 0.8% to 2.3% difference 

from the experimental frequencies.  The distributed mass model results are quite 

acceptable for the small 1X7 cabled beam, but the DTFM model captures the 1X7 cabled 

structure resonances just as well within its range.  As the cable gets larger, the distributed 

mass model deviates from experimental data widely, up to 16% difference (mode 3 of 
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7X7), whereas the maximum difference between a range boundary and the experimental 

data is less than 6% (mode 4 minimum of 7X7) for the DTFM cabled beam model.   

 

Table 6.8 Comparison of natural frequencies from experimental data, distributed mass 
model, and minimum and maximum DTFM model. 

Type of Cable 
on Beam 

Bending 
Mode 

Experimental 
Natural 

Frequency 
(Hz) 

Distributed 
Mass Model 
Frequency 

(Hz) 

DTFM 
Minimum 
Frequency 

(Hz) 

DTFM 
Maximum 
Frequency 

(Hz) 

None 

1 50.0 50.8 50.8 
2 136.9 140.1 140.1 
3 276.9 274.6 274.6 
4 450.0 453.9 453.9 

1X7 

1 50.28 49.8 48.9 50.2 
2 138.1 137.3 137.2 142.0 
3 269.0 269.2 272.0 282.8 
4 455.0 445.0 454.3 454.4 

1X19 

1 50.5 48.2 45.9 49.8 
2 130.0 132.9 133.8 142.9 
3 263.1 260.6 246.1 267.5 
4 456.5 430.7 455.6 455.7 

1X48 

1 52.5 44.7 43.3 49.3 
2 131.6 123.1 116.8 135.6 
3 262.9 241.4 258.4 263.9 
4 450.0 399.0 444.6 453.1 

7X7 

1 48.3 43.9 40.8 47.7 

2 123.4 120.9 103.0 127.74 

3 280.2 237.0 214.3 262.3 

4 445.1 391.8 425.7 450.3 

 

In evaluating the results from the DTFM cable and cabled beam models, the minimum 

range value usually matched the cable experimental data, while the maximum range 

value was closer to experimental data for the cabled beam structure.  Therefore, the 

frequencies predicted by using the range of cable parameters seem to agree well for the 

variety of fixtures that the cable was mounted in.  In addition, the damping parameters 

determined from the two-point fixture testing were used successfully for the cabled beam 
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model.  These findings support the goal of being able to model a variety of structures 

with cable parameters calculated from direct measurements instead of testing. 
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Chapter 7: Conclusions, Contributions, and Considerations 
 
Although this research was focused on spaceflight cables, the methods and models 

developed are applicable to many types of stranded cable and thus have application 

outside the realm of space structure design.  The conclusions drawn from this research, 

advantages and limitations of application, contributions of this Dissertation, and 

considerations for future work are presented here.    

 

Upon revisiting the questions raised in the first chapter, this research has provided 

conclusive answers and expanded our knowledge of cable dynamics.  It is possible to 

calculate cable parameters based on cable measurements, and cables can be modeled with 

damping well enough to predict natural frequency ranges.  Hysteretic damping certainly 

improves on viscous damping and structural damping for cables, but additional hysteretic 

damping mechanisms could be even more effective.  Machine-manufactured cables are as 

identically constructed as possible, but still show variation between cable sample 

responses.  Finally, an effective cable model can be incorporated into a structural model 

for prediction of system frequencies with results showing slight improvement over 

previous methods. 

 

7.1 Dissertation Summary 

This Dissertation has experimentally and theoretically investigated the dynamic behavior 

and modeling of stranded cables and of a simple cabled structure.  The variety of existing 

cable modeling approaches were described and explored, followed by an in-depth 

discussion of how to calculate cable parameters to model a non-homogenous stranded 

cable with a homogenous shear beam model.  Several types of spaceflight cables were 

dynamically tested, and different factors affecting the dynamic response were identified.  

Curved helical cable construction affected frequency results and previous studies used 

hand-built cables that showed high variability in results, so machine manufactured 

contra-helical cables secured with lacing ties and wrapped with Kapton were procured to 

provide the most consistent dynamic results.  Dynamic testing was performed on five 

samples of each of four cable configurations, and then the cables were baked out.  The 
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baked out cables were tested in several different fixtures, including two- and four-point 

fixtures where the cable was attached to ground, and a free-free cabled beam fixture, in 

which the cable was mounted to a free-swinging aluminum beam.  Differences in the 

cable response due to bakeout were identified, and the effects of the different types of 

cables on the simple beam structure were quantified including shifts in major frequencies, 

differences between single and multi-stranded cables, and the amount of damping 

observed.   

 

From a theoretical standpoint, the method to determine beam parameters for a cable 

proved useful for the cable and cabled structure models that were developed.  The cable 

itself was modeled as a shear beam, and the distributed transfer function method was 

used to incorporate the TC105 attachment points and solve for the cable response, 

including natural frequencies, transfer function response and mode shapes.  The 

distributed transfer function models were capable of describing the cable and cabled 

beam responses, and addition of hysteretic damping and rotational and linear stiffness for 

the attachment points further improved the model capabilities.  Hysteretic damping was 

shown to be capable of matching multiple modes of the cable response, and was superior 

to both viscous and structural damping for modeling cable damping.   

 

7.2 Application Discussion 

In the interest of practical application, the strengths and limitations of the cable model 

should be highlighted.  The DTFM determines exact analytical solutions, so error 

between the model and reality depends on the input parameters for the model and not on 

number of elements as a finite element model would.  In comparison to the distributed 

mass model, for the first one or two modes of small cables (6% of total structure mass or 

less), the DTFM model does not show marked improvement in frequency prediction 

since the small cable has less effect on the structure and is less beam-like.  However, for 

higher modes of small cables and all modes of larger, more beam-like cables, the DTFM 

model is superior.    
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The author realizes that the DTFM is not commonly used, but there is value in the 

research for commercially available finite element (FE) modeling of cables as well.  

Whether the DTFM model or a commercially available FE code is used, the results are 

only as good as the input parameters used.  This research has shown that the parameter of 

bending stiffness must not only be included as input, but has introduced a method of 

combining the calculation of bending stiffness for steel ACSR cables with the material 

properties of composite materials and the displacement of the cable to yield a realistic 

value.  In addition, the elements used for the cable must include shear, and the connection 

point elements should include rotational degrees of freedom. 

 

7.3 Contributions 

The major contributions of this research are as follows:  

• Developed a method to calculate cable properties that are suitable to use for 

modeling purposes from direct physical measurements of cables.  Cable 

parameters of mass properties, bending stiffness, and shear rigidity were 

determined for typical spaceflight cables. 

• Created a standard run procedure for testing of cables with verification of factors 

that would influence cable dynamic response and showed that machine made 

cables did not fully eliminate variability in the dynamic response.  

• Produced a database of cable responses for typical spaceflight cables from over 70 

trials of dynamic testing which are available for further investigation. 

• Determined the effect of bakeout on spaceflight cable response, identified bakeout 

as a source of frequency response changes, and quantified the amount of 

frequency shift and damping ratio changes due to bakeout. 

• Extended the distributed transfer function shear model to include shear effects, 

tension, and a variety of damping mechanisms to model cables or other damped 

shear beams. 

• Developed a distributed transfer function cabled beam model that combines the 

shear beam cable model with attachment point models that have the capability to 

include both linear and rotational stiffness and damping.  



 195

• Compared the developed distributed transfer function cabled beam models to the 

currently used distributed mass models to show the slight improvement in 

frequency prediction and identification of additional modes by the new distributed 

transfer function cabled beam model. 

• Investigated the influence of the attachment points, verified that the attachment 

points did not act as pinned constraints, and revealed results for the attachment 

stiffness as a function of frequency. 

   

7.4 Future Work and Considerations   

As the field of precision space structures continues to grow and more engineering 

applications involve increasingly complex signal and power cabling, the need to model 

cables is likely to continue requiring refinement and improvement for the aerospace 

industry and beyond.   

 

A logical next step for these models is the use of statistical analysis to replace the range 

of cable responses with a predicted distribution of the cable response.  This work used the 

minimum and maximum input values to bound the frequency response, but myriad 

combinations of the cable parameters are possible within those bounds.  With the large 

number of experimental trials conducted for this research, it would be valuable to 

determine a statistical distribution for the experimental results.  The DTFM model could 

be run in conjunction with a statistical program such as Sandia National Laboratory's 

Dakota project that could take the range of input values and produce a statistical 

likelihood for frequency predictions and mode shapes. 

 

Further recommended refinement involves the measurement of the cable attachment 

points.  This research determined values for TC105 tabs, but there was great variation in 

the results and there are other types of mounting brackets for cables being developed.  In 

the future, concrete and effective measurement techniques for determining cable 

mounting techniques for any type of cable mount would greatly improve the predictive 

ability of cable models, as the connection points had a great effect on the model response. 
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Attempts to improve damping modeling are ongoing for all structures, and damping of 

cables is no exception.  Although this Dissertation showed that hysteretic damping was 

more effective for stranded cables than viscous or hysteretic damping, there are other 

hysteretic damping mechanisms that could be evaluated.  Additional damping 

mechanisms that should be incorporated in the DTFM cable model and evaluated are 

spatial hysteresis and geometric rotation-based damping, which has been suggested for 

cable damping specifically.  To improve the utility of the damped cabled structure 

models, a method to determine cable damping parameters a priori would be valuable.  

This could involve performing material testing on the cables or constituent cable wires to 

gain information about the viscoelastic damping properties of the wires and internal 

frictional losses and develop equations for damping parameters based on these damping 

characteristics.  If this method proved successful, the damping parameters determined 

from simple material testing could be used for the more complicated cabled structure 

damping terms without requiring additional dynamic testing.     

 

From modeling to testing, the field of cable dynamics is becoming increasingly critical 

for spacecraft applications.  This Dissertation has added to the knowledge of cable 

dynamics and provides a step forward on the path to useful predictions of cabled structure 

response. 
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Appendices 
 
Appendix A. Construction of Global Stiffness Matrix for Pinned Euler-

Bernoulli Beam in 3 Subsystems 

A solid beam is divided into three subsystems A, B, and C as an example to illustrate the 

DTFM approach.  Length of each section  ·9 = 1,	and the total length ·~ = 3. 

   _____________________     ________________________    __________________ 
1|_________A___________|2|__________B_____________|3|_________C________|4 
^                  ^ 
 
Equation of Motion for an Euler-Bernoulli beam:   ���ß + ������� = 1(�, a) 
The equation of motion is used to make the fundamental matrix as described in Chapter 

4, which is the same for each subsystem since they are identical.   

 �(`) =  Ö(`) =  }(`) = ·m åææ
æç 0 1 0 00 0 1 00 0 0 1−���� `$ 0 0 0èéé

éê
 

Sum of Forces at Each Node: 

Node 1:  Õ�� + Õ�Ö + Õ�} − �� ∗ [� + p� = 0 

Node 2: Õ$� + Õ$Ö + Õ$} − �$ ∗ [$ + p$ = 0 

Node 3:  Õ'� + Õ'Ö + Õ'} − �' ∗ [' + p' = 0 

Node 4:  ÕS� + ÕSÖ + ÕS} − �S ∗ [S + pS = 0 

 

There are no additional constraints beyond pinned boundary conditions and no external 

forces, so �6 	and	p6 	are	0 for all nodes.  Q must be evaluated for each section at EACH 

node for those subsystems that are connected at that node: 

Node 1: �6 = 0 Õ�� =	−���� ∗ [� − ��$� ∗ [$ − 1��	 Õ�Ö = NA (Since subsystem B is not connected at node 1) Õ�} = NA (Since subsystem C is not connected at node 1) 

Node 2: �6 = 1 Õ$� =	−�$$� ∗ [$ − �$�� ∗ [� − 1$�	 Õ$Ö = −�$$Ö ∗ [$ − �$'Ö ∗ [' − 1$Ö  
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Õ$} = NA (Since subsystem C is not connected at node 2) 

Node 3: �6 = 2 Õ'� =	NA (Since subsystem A is not connected at node 3) Õ'Ö = −�''Ö ∗ [' − �'$Ö ∗ [$ − 1'Ö 	  Õ'} = −�''} ∗ [' − �'S} ∗ [S − 1'}   

Node 4: �6 = 3 ÕS� =	NA (Since subsystem A is not connected at node 4) ÕSÖ = NA (Since subsystem B is not connected at node 4) ÕS} = −�SS} ∗ [S − �S'} ∗ [' − 1S}   

 

The global stiffness matrix K is made of portions of the transfer function matrix H, given 

by Ê(�, `) = ^Ë(9)∗U ∗ z�(`) + 3(`) ∗ ^Ë(9){�� 
where H can be partitioned as 

Ê(�, `) = ÏÊf� Êf�ÊÓ� ÊÓ�Ð 
 
Boundary condition matrices �(`)and	3(`) describe either internal or pinned 

constraints, depending on the subsystem: 

� L�5@L?6 = í1 0 0 00 1 0 00 0 0 00 0 0 0î , 3 L�5@L?6 = í0 0 0 00 0 0 01 0 0 00 1 0 0î 
 

�û7L = í0 0 �� 01 0 0 00 0 0 00 0 0 0î,									3û7L = í0 0 0 00 0 0 00 0 �� 01 0 0 0î 
 
Subsystem A: MPin, NInternal 

Subsystem B: MInternal, NInternal 

Subsystem C: MInternal, NPin 

 

At this point, H can be calculated for each subsystem, using the appropriate fundamental  (`) matrix, the appropriate � and 3	matrices, and the x value for each node.  Recall 
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Õ6¹ = 	 −�¹ ∗ �¹(�6 , `) where R is a coordinate transformation matrix.  Since 	
�(�, `) = �(`)� �Ó(�, È, `)1(È, `):È +	�

� ÊÓÑ(�, `)��(`) + ÊÓÒ(�, `)��(`) 
and 	 �¹(�6 , `) = Ù¹[6(`)		, �¹(�7 , `) = C¹[7(`) 
the nodal force at each node can be written in terms of the displacements � on each end 

of the subsystem and the transfer matrix as follows. 

Node 1: �6 = 0 Õ�� =	−���� ∗ [� − ��$� ∗ [$ − 1��	 ���� = �� ∗ ÊÓ�(0, `) ∗ Ù� with H  based on MPin, NInternal, and  �(`) ��$� = �� ∗ ÊÓ�(0, `) ∗ Ù� with H  based on MPin, NInternal, and  �(`) 
Node 2: �6 = 1 Õ$� =	−�$$� ∗ [$ − �$�� ∗ [� − 1$�	 Õ$Ö = −�$$Ö ∗ [$ − �$'Ö ∗ [' − 1$Ö  �$$� = �� ∗ ÊÓ�(1, `) ∗ Ù� with H  based on MPin, NInternal, and  �(`) �$$Ö = �Ö ∗ ÊÓ�(1, `) ∗ ÙÖ with H  based on MInternal, NInternal, and  Ö(`) �$�� = �� ∗ ÊÓ�(1, `) ∗ C� with H  based on MPin, NInternal, and  �(`) �$'Ö = �Ö ∗ ÊÓ�(1, `) ∗ ÙÖ with H  based on MInternal, NInternal, and  Ö(`) 
Node 3: �6 = 2 Õ'Ö = −�''Ö ∗ [' − �'$Ö ∗ [$ − 1'Ö 	  Õ'} = −�''} ∗ [' − �'S} ∗ [S − 1'}   �''Ö = �Ö ∗ ÊÓ�(2, `) ∗ ÙÖ with H  based on MInternal, NInternal, and  Ö(`) �''} = �} ∗ ÊÓ�(2, `) ∗ Ù} with H  based on MInternal, NPin, and  }(`) �'$Ö = �Ö ∗ ÊÓ�(2, `) ∗ CÖ with H  based on MInternal, NInternal, and  Ö(`) �'S} = �} ∗ ÊÓ�(2, `) ∗ Ù} with H  based on MInternal, NPin, and  }(`) 
Node 4: �6 = 3 ÕS} = −�SS} ∗ [S − �S'} ∗ [' − 1S}   �SS} = �} ∗ ÊÓ�(3, `) ∗ Ù} with H  based on MInternal, NPin, and  }(`) �S'} = �} ∗ ÊÓ�(3, `) ∗ C} with H  based on MInternal, NPin, and  }(`) 
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Once the subsystem stiffness components are determined, they are assembled in the 

global stiffness matrix based on the equation �(`, ∗ [(`, = 1(`,, where u is the 

displacement vector containing both displacement and slope terms. 

 

åææ
æç���� ��$� 0 0�$�� �$$� + �$$Ö �$'Ö 00 �'$Ö �''Ö + �''} �'S}0 0 �S'} �SS} èéé

éê ∗ ü[�[$['[S
ý = Ç(`, 

 
The complete global stiffness matrix with individual entries is therefore: 
 

åææ
æææ
æç�11�� �11�] �12�� �12�] 0 0 0 0�11�� �11�: �12�� �12�: 0 0 0 0�12�� �12�] �22� + �22» �22] �23»� �23»] 0 0�12�� �12�: �22� �22: �23»� �23»: 0 00 0 �32»� �32»] �33» + �33� �33] �34�� �34�]0 0 �32»� �32»: �33� �33: �34�� �34�:0 0 0 0 �43�� �43�] �44�� �44�]0 0 0 0 �43�� �43�: �44�� �44�:èéé

ééé
éê

∗
þ��
�
��
�[�õ�[$õ$['õ'[SõS��

��
��
�

= Ç(`, 

The global stiffness matrix can be reduced after the boundary condition rows are 
eliminated. 
 

åææ
ææç
�11�: �12�� �12�: 0 0 0�12�] �22� + �22» �22] �23»� �23»] 0�12�: �22� �22: �23»� �23»: 00 �32»� �32»] �33» + �33� �33] �34�]0 �32»� �32»: �33� �33: �34�:0 0 0 �43�� �43�: �44�:èéé

ééê ∗
þ��
��

õ�[$õ$['õ'õS��
�
��

= Ç(`, 
 
To obtain the various solutions, the stiffness matrix is manipulated in the following ways; 

more details on these methods are available in Yang's and Sciulli's works: 

Natural Frequencies: Solve det��(`,� = 0 with ̀ = +�  
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Mode shapes: Find nontrivial solutions for �(`, ∗ [(`, = 0 

Frequency Response: [(s�, = ���(s�, ∗ Ç(s�, where q  is assumed to be a harmonic 

forcing function. 

Time Domain Response: Take the inverse Laplace transform of * 

 

Total solution: *(�, `, = �r, r�, r��, r���� *(�, `, = � �(�, É, `, ∗ 1(É, `, ∗ :É + Ê(�, `, ∗ �(`,�
�  *(�, `, = ��; ½� �(�, `, = � �f(�, É, `, ∗ 1(É, `, ∗ :É + Êf�(�, `, ∗ ��(`, + Êf�(�, `, ∗ ��(`,�

�  

½(�, `, = � � �Ó(�, É, `, ∗ 1(É, `, ∗ :É + ÊÓ�(�, `, ∗ ��(`, + ÊÓ�(�, `, ∗ ��(`,�
�  
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Appendix B. Combination of Shear Beam Equations  

From Chapter 4, the governing equations for a cable as a beam, with tension and damping 

included, are 

�� �$��a$ = −��� �2�� + ��� �$���$ + � ���a + Ç (A.1) 

  

�� �$2��$ + C ���� + � |(a − �, �'���' :a�
� − ���2 + ��� ���� = 0 (A.2) 

 

These equations are combined as follows to obtain a single equation in terms of the 

transverse displacement w(x,t) to be used in the distributed transfer function method.   

Solve for 
eàeU  from first equation (A.1): �2�� = �$���$ − ��� �$��a$ + ���� ���a + Ç��� (A.3) 

 

Next, take additional spatial derivatives of (A.3) to use in later substitutions: �$2�$� = �'���' − ��� �'����a$ + ���� �$����a + 1��� �Ç�� (A.4) 

�'2��' = �S���S − ��� �S���$�a$ + ���� �'���$�a + 1��� �$Ç��$ (A.5) 

 

Take spatial derivative of equation (A.2): 

�� �'2��' + C �$���$ + � |(a − �, �S���S :a�
� − ��� �2�� + ��� �$���$ = 0 (A.6) 

 

Substitute all terms containing 2 from the derivatives of the first equation (A.1) into 

(A.6): 
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�� w�S���S − ��� �S���$�a$ + ���� �'���$�a + 1��� �$Ç��$y + C �$���$
+ � |(a − �, �S���S :a�

�
− ��� w�$���$ − ��� �$��a$ + ���� ���a + Ç���y + ��� �$���$ = 0 

 

(A.7) 

w�� �S���S − ����� �S���$�a$ + ������ �'���$�a + ����� �$Ç��$y + C �$���$
+ � |(a − �, �S���S :a +�

� w−��� �$���$ + �� �$��a$ − � ���a − Çy
+ ��� �$���$ = 0 

(A.8) 

Rearrange terms to move all forcing function terms to the right side, cancel and combine 

as needed. 

�� �S���S − ����� �S���$�a$ + ������ �'���$�a + C �$���$ − ��� �$���$ + �� �$��a$ − � ���a
+ � |(a − �, �S���S :a +�

� ��� �$���$ = Ç − ����� �$Ç��$ 

 

(A.8) 

�� �S���S − ����� �S���$�a$ + ������ �'���$�a + C �$���$ + �� �$��a$ − � ���a
+ � |(a − �, �S���S :a�

� = Ç − ����� �$Ç��$ 

 

(A.9) 

�� �$��a$ − ����� �S���$�a$ + �� �S���S + ������ �'���$�a + C �$���$ − � ���a
+ � |(a − �, �S���S :a�

� = Ç − ����� �$Ç��$ 

(A.10) 

 

Thus, a viscously and hysteretically damped viscoelastic cable in tension can be 

described with the equation of motion:   
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�� �$��a$ − ����� �S���$�a$ + �� �S���S + ������ �'���$�a + C �$���$ − � ���a + � |(a − �, �S���S :a�
�

= Ç − ����� �$Ç��$ 
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Appendix C. MATLAB Program Files for Cable and Cabled Beam 

Models Using the Distributed Transfer Function Method 

 
In this section, the cable models are listed first.  Two input files are listed, one for the 

two-point cable, and one for the four-point model.  Next, the cable model files are listed. 

The cabled beam input file is listed next, followed by the cabled beam model files.  

Finally, the program files common to both cable and cabled beam models (the output 

files and simple functions) are listed following the model files.  Many of these files were 

built off of functions created by D. Sciulli, whose detailed parameter lists and comments 

have been retained within the files with thanks. 

 
Two-Point Cable Model Input File 
% This file initializes cable parameters for one of  four types of cable 
for  
% the two-point fixture  
% Last modified 4/25/2014  
  
cabletype=19; 
% Cable type options are:  
% 7 for 1X7, 19 for 1X19, 48 for 1X48, 749 for 7X7  
  
rangeval=1; 
% Range value options are  
% 1 for min (min EI and max rho A)  
% 2 for avg  
% 3 for max (max EI and min rho A)  
% 5 for max EI with mid rhoA  
  
% Set whether to include bakeout factor; 1 includes  bakeout factor.  
bf=1;  
  
if  cabletype==7;  
% For 1X7 Cable:  
len_m=0.7692;  
  
MinDensity=2090; % Note that this is from the rule of mixtures, sinc e 
it was less than the minimum rho calculations of 21 17.12  
DensityMid=3110.6;  
MaxDensity=3323.37;  
  
MinArea=2.76803*10^-5; % Calculated based on only wire components  
MaxArea=4.34512*10^-5; % Calculated based on OUTER cable diameter  
AreaMid=2.95737*10^-5; % Calcuated based on individual wire diameter  
  
EIslipmin=0.34;  
EIslipmax=0.37;  
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spr_p=1*10^4;  
  
elseif  cabletype==19;  
len_m=0.7782;  
MinDensity=1926.46;  
DensityExp=2162;  
DensityExp2=2557;  
DensityMid=3049;  
MaxDensity=3528.353;  
  
MinArea=7.51321*10^-5; % Calculated based on only wire components  
MaxArea=1.27076*10^-4; % Calculated based on OUTER cable diameter  
AreaMid=8.02715*10^-5; % Calcuated based on individual wire diameter  
  
EIslipmin=1.0846;  
EIslipmax=1.1815;  
spr_p=6*10^4;  
elseif  cabletype==48;  
len_m=0.7744;  
  
MinDensity=1770.5;  
DensityMid=2853.7;  
MaxDensity=3048.904;  
  
MinArea=1.898-7*10^-4; % Calculated based on only wire components  
MaxArea=3.26851*10^-4; % Calculated based on OUTER cable diameter  
AreaMid=2.02791*10^-4; % Calcuated based on individual wire diameter  
  
EIslipmin=4.72633;  
EIslipmax=5.1009;  
spr_p=1*10^6;  
elseif  cabletype==749;  
len_m=0.7744;  
  
MinDensity=1742.326;  
DensityMid=3084.063;  
MaxDensity=3295.02;  
  
MinArea=1.93762*10^-4; % Calculated based on only wire components  
MaxArea=3.66435*10^-4; % Calculated based on OUTER cable diameter  
AreaMid=2.07016*10^-4; % Calcuated based on individual wire diameter  
  
EIslipmin=2.143083;  
EIslipmax=2.30292;  
spr_p=6*10^5;  
else  
    disp( 'Invalid cable type selected, choose 7, 19, 48 or 7 49' )  
end  
  
if  rangeval==1;  
    rhobase=MaxDensity;  
    area=MaxArea;  
    EI=EIslipmin;  
elseif  rangeval==2;  
    rhobase=DensityMid;  
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    area=AreaMid;  
    EI=EImid;  
elseif  rangeval==3;  
    rhobase=MinDensity;  
    area=MinArea;  
    EI=EIslipmax;  
elseif  rangeval==4;  
    % User choice options/ mix n match  
    rhobase=DensityExp;  
    area=MinArea;  
    EI=EImax;  
elseif  rangeval==5;  
    rhobase=DensityMid;  
    area=AreaMid;  
    EI=EIslipmax;  
else  
    disp( 'Invalid selection for min, avg, or max cable frequ ency 
value' )  
end  
  
l1=0.025; % Length of bottom end piece  
l2=0.280; % Length from bottom connection to driving point  
l4=0.025; % Length of top end piece  
l3=len_m-(l1+l2+l4); % Length from driving point to top connectio  
  
mass=MinDensity*MinArea*len_m; % Mass calculation  
Tens=4.45; % Tension applied for two-pint cables  
kappag=0.95; % Shear coefficient calculated for all cables  
%Gsh=594474058.9; % Calculated G Value min  
Gsh=651743193.3; % Calculated G value max  
shearrigid=kappag*area*Gsh;  
c=0;  
% Use cv for viscous damping  
cv=0;  
rho=rhobase*area;  
A=area;  
% Inclusion of bakeout factor in EI if bf is set to  1  
if  bf==1;  
Ei=0.8*EI;  
elseif  bf==0;  
Ei=EI  
else  
    disp( 'Bakeout factor not specified' )  
end  
  
num_ev=8; %Number of modes and mode shapes found.  
AXIAL=[];               % used for ID matrix if no axial forces  
  
% This is essentially equivalent to no mass, for te sting free-free 
cable.  
%  mass=1e-12;  
%  spr_p=1;  
% THESE on the other hand are like pinned connectio ns!  
% mass=1e12;  
% spr_p=1e9;  
% Mass value must be very large for correct end con dition  
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 mass=1*10^12;  
% Connection damping can be incorporated here if de sired.  
zeta_p=0;  
damp_p=2*zeta_p*sqrt(spr_p/mass)*mass;  
spr_a=0;  
  
 CONSTRAIN(2,:)=[1 1 mass spr_p damp_p 0 1 1 0 0 0 0];  
 CONSTRAIN(4,:)=[1 1 mass spr_p damp_p 0 1 1 0 0 0 0];  
  
BC_type=[2 0 0 2];          % type of boundary condtion for each 
subsystem, 1 is clamped, 2 is free, 3 is pinned  
BC_node_ty=[2 0 0 0 2];  
  
m=4;                % number of subsystems  
node=5;             % number of nodes  
can=4;              % number of known boundary displacements  
dof=2;              % number of dof: wy, w'  
  
% Cable node/attachment point locations  
XY = [0 l1 l1+l2 l1+l2+l3 len_m     %X % X,Y position of each node, 2 X 
node  
    0 0 0 0 0];         %Y      % This is actual x,y not non-
dimensional  
  
% Use this XY value to make equal span lengths for comparison with 
Blevins  
% XY = [0 len_m/5 2*len_m/5 3*len_m/5 4*len_m/5 len _m % X,Y position of 
each node, 2 X node  
%   0 0 0 0 0 0];           %Y      % This is actua l x,y not 
nondimensional  
  
CON=[1 1 2 3 4;0 2 3 4 0];      % which subsystems are connected at 
each node  
  
Sub_Con=[1 2 3 4; % Shows how each subsytem is connected to each node  
(2 x m)  
       2 3 4 5];            %  Top row is x=0 position of subsystem    
  
  
XX=[0 2 2 2 0];     % the number of subsystems connected at each node  
                    %   0 signifies that there is not a connection  
                    %   between 2 different subsystems. 1 signifies  
                    %   some sort of interface condition (1 x node)  
     
BND_DOF=[1 1;       % Shows which DOF are constrained (node x dof)  
        0 0;  
        0 0;  
        0 0;            
        1 1];  
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Four-Point Cable Model Input File 
% This file initializes cable parameters for one of  four types of cable 
for  
% the four-point fixture  
% Last modified 4/2/2014, Added bakeout correction factor 4/18/2014  
  
cabletype=749;  
% Cable type options are:  
% 7 for 1X7, 19 for 1X19, 48 for 1X48, 749 for 7X7  
rangeval=1;  
% Range value options are  
% 1 for min  
% 2 for avg  
% 3 for max  
% 5 for max EI with mid rhoA  
  
bf=1; % Bakeout factor- if bf=1, bakeout factor is INCLUD ED.  If bf=0, 
not included!  
  
if  cabletype==7;  
% For 1X7 Cable:  
len_m=0.7692;  
MinDensity=2090; % Note that this is from the rule of mixtures, sinc e 
it was less than the minimum rho calculations of 21 17.12  
DensityMid=3110.6;  
MaxDensity=3323.37;  
  
MinArea=2.76803*10^-5; % Calculated based on only wire components  
MaxArea=4.34512*10^-5; % Calculated based on OUTER cable diameter  
AreaMid=2.95737*10^-5; % Calcuated based on individual wire diameter  
  
EIslipmin4pt=0.402;  
EIslipmax4pt=0.4385;  
  
EIstickmin=1.65;  
EIstickmax=1.87;  
  
spr_p=1*10^4;  
  
elseif  cabletype==19;  
len_m=0.7782;  
  
MinDensity=1926.46;  
DensityExp=2162;  
DensityExp2=2557;  
DensityMid=3049.738;  
MaxDensity=3528.353;  
  
MinArea=7.51321*10^-5; % Calculated based on only wire components  
MaxArea=1.27076*10^-4; % Calculated based on OUTER cable diameter  
AreaMid=8.02715*10^-5; % Calcuated based on individual wire diameter  
  
EIslipmin4pt=1.55;  
EIslipmax4pt=1.71;  
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EIstickmax=15.72;  
EIstickmin=13.82;  
  
spr_p=6*10^4;  
  
elseif  cabletype==48;  
len_m=0.7744;  
  
MinDensity=1770.5;  
DensityMid=2853.7;  
MaxDensity=3048.904;  
  
MinArea=1.898-7*10^-4; % Calculated based on only wire components  
MaxArea=3.26851*10^-4; % Calculated based on OUTER cable diameter  
AreaMid=2.02791*10^-4; % Calcuated based on individual wire diameter  
  
EIslipmin4pt=7.51748;  
EIslipmax4pt=8.13435;  
  
EIstickmin=93.60;  
EIstickmax=106.71;  
  
spr_p=1*10^6;  
  
elseif  cabletype==749;  
len_m=0.7744;  
  
MinDensity=1742.326;  
DensityMid=3084.06;  
MaxDensity=3295.025;  
  
MinArea=1.93762*10^-4; % Calculated based on only wire components  
MaxArea=3.66435*10^-4; % Calculated based on OUTER cable diameter  
AreaMid=2.07016*10^-4; % Calcuated based on individual wire diameter  
  
EIslipmin4pt=2.59;  
EIslipmax4pt=2.82;  
  
EIstickmin=74.05;  
EIstickmax=84.38;  
  
spr_p=6*10^5;  
  
else  
    disp( 'Invalid cable type selected, choose 7, 19, 48 or 7 49' )  
end  
  
if  rangeval==1;  
    rhobase=MaxDensity;  
    area=MaxArea;  
    EI=EIslipmin4pt;  
    %EI=EIstickmin;  
elseif  rangeval==2;  
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    rhobase=DensityMid;  
    area=AreaMid;  
    EI=EImid;  
elseif  rangeval==3;  
    rhobase=MinDensity;  
    area=MidArea;  
    EI=EIslipmax4pt;  
elseif  rangeval==4;  
    % User choice options/ mix n match  
    rhobase=DensityExp;  
    area=MinArea;  
    EI=EImax;  
 elseif  rangeval==5;  
    rhobase=DensityMid;  
    area=AreaMid;  
    EI=EIslipmax4pt;  
    %EI=EIstickmax;  
else  
    disp( 'Invalid selection for min, avg, or max cable frequ ency 
value' )  
end  
  
% For Four Point rods  
l1=0.025;  
l2=0.205;  
l3=0.07;  
l4=0.184;  
l5=0.205;  
l6=len_m-(l1+l2+l3+l4+l5);  
  
% % EQUAL SPANS FOR TEST COMPARISON WITH BLEVINS 
% spanlngth=len_m/5;  
% l1=spanlngth;  
% l2=spanlngth;  
% l3=spanlngth/2;  
% l4=spanlngth/2;  
% l5=spanlngth;  
% l6=len_m-(l1+l2+l3+l4+l5);  
  
mass=MinDensity*MinArea*len_m;  
Tens=8.89; % For 4 pt cable  
%Tens=0; % For equal span length  
kappag=0.95;  
Gsh=651743193.3; % Calculated G value  
  
c=0;  
% Use cv for viscous damping  
cv=0;  
   
rho=rhobase*area  
A=area;  
% Bakeout factor  
if  bf==1;  
Ei=0.8*EI  
elseif  bf==0;  
Ei=EI  
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else  
    disp( 'Bakeout factor not specified' )  
end  
  
num_ev=8; % Number of eigenvalues to find  
  
AXIAL=[]; % Used for ID matrix if no axial forces  
  
% This is essentially equivalent to no mass  
%  mass=1e-12;  
%  spr_p=1;  
% THESE on the other hand are like pinned connectio ns!  
%mass=1000;  
%spr_p=1e9;  
  
% Mass value must be very large for correct end con dition.  
 mass=1*10^12;  
 % Connection damping can be incorporated here if de sired.  
zeta_p=0;  
damp_p=2*zeta_p*sqrt(spr_p/mass)*mass;  
spr_a=0;  
  
 % Linear AND rotational spring connection at four p oints.  
CONSTRAIN(2,:)=[1 1 mass spr_p damp_p 0 1 1 0 0 0 0 ];  
CONSTRAIN(3,:)=[1 1 mass spr_p damp_p 0 1 1 0 0 0 0 ];  
CONSTRAIN(5,:)=[1 1 mass spr_p damp_p 0 1 1 0 0 0 0 ];  
CONSTRAIN(6,:)=[1 1 mass spr_p damp_p 0 1 1 0 0 0 0 ];  
  
BC_type=[2 0 0 0 0 2];          % type of boundary condtion for each 
subsystem, 1 is clamped, 2 is free, 3 is pinned  
BC_node_ty=[2 0 0 0 0 0 2];  
  
m=6;                % the number of subsystems  
node=7;             % the number of nodes  
can=4;              % the number of known boundary displacements  
dof=2;              % the number of dof: ux, wy, w'  
  
% Cable node/attachment point locations  
XY = [0 l1 l1+l2 l1+l2+l3 l1+l2+l3+l4 l1+l2+l3+l4+l 5 len_m      %X      
% X,Y position of each node, 2 X node  
    0 0 0 0 0 0 0];         %Y      % This is actual x,y not 
nondimensional  
  
CON=[1 1 2 3 4 5 6;0 2 3 4 5 6 0];      % Which subsystems are 
connected at each node  
  
Sub_Con=[1 2 3 4 5 6;           % Shows how each subsytem is connected 
to each  
       2 3 4 5 6 7];            %   node    (2 x m). top row is x=0 
position of subsystem    
  
  
XX=[0 2 2 2 2 2 0]; % the number of subsystems connected at each node  
                    %   0 signifies that there is not a connection  
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                    %   between 2 different subsystems. 1 signifies  
                    %   some sort of interface condition (1 x node)  
     
BND_DOF=[   1 1;        % Shows which DOF are constrained (node x dof)  
        0 0;  
        0 0;  
        0 0;  
        0 0;  
        0 0;           
        1 1];  
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Cable Stiffness Matrix Assembly Program 
% This .m file will find the stiffness matrix given  a value for the  
% frequency which must be in Hz  
% 
% INPUT 
%   ij      frequency in Hz  
% 
% OUTPUT 
%   Kgl     Reduced Global Stiffness Matrix  
%   qgl     Reduced Global Force Vector  
%  
% VARIABLES 
%   BC_node_ty  The type of boundary conditions for  each node  
%   can         the number of known boundary displa cements  
%   CON         Shows which subsystems are connecte d to which  
%               nodes. '0' means no subsystem  
%   CONSTRAIN   Shows how each node is constrained.  
%   dof     the number of degrees of freedom of sub system  
%   E       compatibility matrix for subsystem  
%   Ea      E*A (Axial Stiffness) for a subsytem  
%   Ei      E*I (Flexural Rigidity) for a subsystem  
%   evals       Vector of eigenvalues  
%   F       matrix built by governing pdes (n x n)  
%   F_cstr      Force on equipment  
%   filename    the name of file that holds initial ization data  
%   fptu        point force at subsystem in axial d irection  
%   fptu_pos    location of point force at subsyste m in axial direction  
%   fptw        point force at subsystem in transve rse direction  
%   fptw_pos        location of point force at subs ystem in axial 
direction  
%   Gu      Greens' function for axial displacement  
%   Ge_u        partioned G matrix  
%   Ge_w        partioned G matrix  
%   Gw      Green's function for transverse displac ement  
%   H       transfer function of Eta/Gamma  
%   He0     partitioned H matrix  
%   He1     partitioned H matrix  
%   ii      dummy variable  
%   ID      matrix used to assemble Kgl so that nod es with constraints  
%           will be wiped out of K (full Stiffness Matrix)  
%   jj      dummy variable  
%   K       global stiffness matrix (n x n)  
%   Kappa   vector used for BC calculation  
%   kk      dummy variable  
%   Len     length of each subsystems in vector  
%   Li      length of each subsystem  
%   M       Temporal-spatial operator for left end of subsystem  
%   Mgl     Global M for each subsystem  
%   m       the total number of subsystems  
%   N       Temporal-spatial operator for right end  of subsystem  
%   Ngl     Global N for each subsystem  
%   n       nth order linear pde (4:bendng, 2:axial )  
%   node    total number of nodes of system  
%   num     current subsystem  
%   num_str current subsystem but of type string  
%   n1      nth order linear pde for axial vibratio ns  
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%   n2      nth order linear pde for bending vibrat ions  
%   P       nodal forces  
%   P_nodal nodal forces  
%   pts     the number of displacements of entire s ystem  
%   q       global Force vector (n x 1)  
%   qgl     Reduced Global Force Vector  
%   Rot     Rotation vector of 'rot' values  
%   rho     mass per unit length for a subsystem  
%   rot     rotation of subsystem wrt horizontal  
%   Sub_Con     Shows which subsystems are connecte d to which nodes (2 
x m)  
%               A zero value implies some sort of b oundary condition  
%   t_alpha     Alpha (i.e mass) term for proportio nal Damping  
%   t_beta      Beta (i.e. stiffness) term for prop ortional damping  
%   tmp,tmpi    dummy variables (i=1,2)  
%   var     used to convert degrees to radians  
%   s       frequency = ij * sqrt(-1)  
%   t1      beginning node location for subsystem  
%   t2      end node location for subsystem  
%   X       location of node points in local coordi nates  
%   XX      Shows at each node how many subsystems are connected to it.  
% 
  
function  [Kgl,qgl]=assemble_K(ij)  
%ij=10; % This can be used to test a single frequen cy value.  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type pts;  
global  Len Ea Ei rho filename BC_node_ty CONSTRAIN CONSTR _SUB_PT X;  
global  A kappag Gsh cv c Tens;   
global  Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPos;  
global  COUNT evals t_alpha t_beta;  
  
for  ii=1:m,  
    tmp=num2str(ii);  
    
eval([ '[R' ,tmp, '1,R' ,tmp, '2,S' ,tmp, '1,S' ,tmp, '2]=Rotation_Calc(Rot(' ,tm
p, '));' ])  
end  
  
% Node point locations for each subsystem; start of  each subsystem is 
0,  
% end of each subsystem is 1.  These values are ini tialized in 
freq_resp.m  
  
X = zeros(node,m);  
tmp1=[0;1];  
for  ii=1:m,  
    tmp2=Sub_Con(:,ii);  
    X([tmp2],ii)=X([tmp2],ii)+tmp1;  
end  
  
% Assembly of Stiffness Matrix  
s = 1i*ij*2*pi;         % s = jw, s in radians, ij in Hertz  
     
K=zeros(pts);           % Pre-allocate Global Stiffness Matrix  
q=zeros(pts,1);         % Pre-allocate Force Vector  



 228

  
% Stiffness matrix assembled based on equilibrium a t each node  
  
for  kk=1:node,  
    P=P_Nodal(1:dof,kk); % Force input from forces_ file.  
    loc1=ID(kk,:);  
  
    % Add nodal forces to q vector  
    q(loc1) = q(loc1) + P;  
  
% Constraint forces incorporated into stiffness mat rix  
% Lumped system connected to a subsystem at two dif ferent points  
    if  (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)==4)  
        loc2=ID(CONSTRAIN(kk,11),:);  
        K(loc1,loc2)=K(loc1,loc2) + constr_pt(CONST RAIN(kk,:),s,1);  
        loc2=ID(CONSTRAIN(kk,12),:);  
        K(loc1,loc2)=K(loc1,loc2) + constr_pt(CONST RAIN(kk,:),s,2);  
        m_cstr=CONSTRAIN(kk,3);  
        c_cstr=CONSTRAIN(kk,5);  
        k_cstr=CONSTRAIN(kk,4);  
        tmp1=c_cstr*s+k_cstr;  
        q(loc1)=q(loc1)-(tmp1)/(m_cstr*s^2+tmp1).*F _cstr;  
% Lumped system connected to a subsystem at one poi nt - this is what is 
used for cable models  
    elseif  (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)~=5)  
        Cl=constr_pt(CONSTRAIN(kk,:),s);  
        K(loc1,loc1) = K(loc1,loc1) + Cl;  
        m_cstr=CONSTRAIN(kk,3);  
        c_cstr=CONSTRAIN(kk,5);  
        k_cstr=CONSTRAIN(kk,4);  
        tmp2=c_cstr*s+k_cstr;  
        q(loc1)=q(loc1)+tmp2/(m_cstr*s^2+tmp2).*F_c str;  
% Two subsystems connected together at single point  - this is what is 
used for cabled beam model  
    elseif  (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)==5)  
        loc2=ID(CONSTRAIN(kk,11),:);  
        K(loc1,loc2)=K(loc1,loc2) +constr_pt(CONSTR AIN(kk,:),s,1);  
        loc2=ID(CONSTRAIN(kk,12),:);  
        K(loc1,loc2)=K(loc1,loc2) +constr_pt(CONSTR AIN(kk,:),s,2);  
    end  
     
% Assemble K matrix for each subsytem connected to that node     
    for  jj=1:XX(kk),  
        num=CON(jj,kk); % Looking at subsystem num  
        num_str=num2str(num);   % string version for subsytem num  
  
        t1=Sub_Con(1,num);  % beginning node location for subsystem num  
        t2=Sub_Con(2,num);  % end node location for subsystem num  
  
        M=Mgl(1:n,(num-1)*n+1:n*num);  
        N=Ngl(1:n,(num-1)*n+1:n*num);        
  
        x=X(kk,num);  
  
        E=[Ei 0;0 -Ei];  
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        R=eval([ 'R' ,num_str,num2str(x+1)]);  
        S=eval([ 'S' ,num_str,num2str(x+1)]);  
  
        Kap=Kappa(1:dof,jj);  
        L=Len(num);  
  
        fptw=FPTw(1,num);  
         
        fpt_wpos=FPTwPos(1,num);  
             
    % These are damping values that can be used to inco rporate 
structura damping.        
        %t_alpha=2.5;  
        %t_beta=8e-4;  
         
% This is the fundamental matrix for a structurally  damped Euler-
Bernoulli beam.  
        FEB=L*[  0              1   0   0;  
                0               0   1   0;  
                0               0   0   1;  
    -rho*s*(s+t_alpha)/(Ei*(1+t_beta*s))    0   0   0];  
% This is the fundamental matrix for a structurally  damped shear beam.  
        FShear1=L*[  0              1   0   0;  
                0               0   1   0;  
                0               0   0   1;  
    -rho*s*(s+t_alpha)/(Ei*(1+t_beta*s))    0   
((rho*s^2)/(kappag*A*Gsh)+(c*s)/(kappag*A*Gsh))-Ten s/Ei 0];  
% These are hysteretically damped coefficient entri es.  
 zetag=0.2;  
 wn=5*2*3.14;  
 alphag=5;  
 gammag=2*alphag*zetag*wn;  
 betathg=2*zetag*wn;  
 deltathg=wn^2;  
 % Selection of hysteretic damping model; must match  freq_resp.m file.  
Gofs=0;  
%Gofs=(alphag*s^2+gammag*s)/(s^2+betathg*s+deltathg );  
%Gofs=(25*s^2+9000*s)/(4*s^2+1*s-8000); % For 1X7  
%Gofs=(70*s^2+6000*s)/(5*s^2+2*s+2000);  % For 1X19  
%Gofs=(180*s^2+40000*s)/(2*s^2+2*s-9000);  % For 1X 48 
%Gofs=(140*s^2+60000*s)/(2*s^2+2*s-15000);  % For 7 X7 
  
%Remember that "rho" means rho*A!  
% This is the fundamental matrix for a viscously da mped shear beam.  
FShearVD=L*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rho*s^2+cv*s)/Ei,0,((rho*s^2)/(kappag*A*Gsh)+(cv*s )/(kappag*A*Gsh))-
Tens/Ei,0];  
% This is the fundamental matrix for a hysteretical ly damped shear 
beam.  
FShearHyst=L*[0,1,0,0;0,0,1,0;0,0,0,1;-(rho*s^2+cv* s)/(Ei-
(1/s)*Gofs),0,((rho*Ei*s^2)/(kappag*A*Gsh)+(cv*Ei*s )/(kappag*A*Gsh)-
Tens)/(Ei-(1/s)*Gofs),0];  
  
% Set F equal to the fundamental matrix you would l ike to use.  
        F=FShearHyst;  
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        eFs=expm(F);  
        H=expm(F*x)*inv(M+N*eFs);    
  
        He0=H(n1+n2/2+1:n,1:n/2);  
        He1=H(n1+n2/2+1:n,n/2+1:n);  
             
% Evaluate subsystem K matrices at each node  
        % NOTE: used if statements to check if this subsyst em 
        %       has some sort of BC imposed on it. If there  
        %       is then need to find how it adds to the glo bal  
        %       force vector as well to the global stiffnes s  
        %       matrix  
  
        if  (BC_node_ty(Sub_Con(1,num))>0),       
            loc2=ID(t2,:);  
            K(loc1,loc2)=K(loc1,loc2)+R*E*He1*S;  
            q(loc1) = q(loc1) - R*E*He0*S*Kap;  
        elseif  (BC_node_ty(Sub_Con(2,num))>0),  
            loc2=ID(t1,:);  
            K(loc1,loc2)=K(loc1,loc2)+R*E*He1*S;  
            q(loc1) = q(loc1) - R*E*He0*S*Kap;  
        else  
            loc2_1=ID(t1,:);  
            loc2_2=ID(t2,:);  
            K(loc1,loc2_1)=K(loc1,loc2_1)+R*E*He0*S ;  
            K(loc1,loc2_2)=K(loc1,loc2_2)+R*E*He1*S ;  
        end  
  
        %   Evaluate q vector for each node from point forc es  
  
        if  fpt_wpos>x  
            Gw=-H*N*expm(F*(1-fpt_wpos));  
        else  
            Gw=H*M*expm(-F*fpt_wpos);  
        end  
        Ge_w=Gw(n2/2+1:n,n);  
        q(loc1) = q(loc1) - R*E*Ge_w*fptw;  
  
    end  
end  
Kgl=K(1:pts-can,1:pts-can); % Global stiffness matrix  
qgl=q(1:pts-can,1);  
detans=det(Kgl); % To check determinant if using a single s input.  
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Cable Constraint Point Program 
% Function to determine constraint matrix; modified  to include 
rotational  
% damping and stiffness.  
% function Cl=constraints(CONSTR,s,tmp)  
% 
%   CONSTR(1)       0=no constraint, 1=constraint,2 =active constraint  
%   CONSTR(2)       type of constraint (See below)  
%   CONSTR(3)       mass of rigid body  
%   CONSTR(4)       stiffness of spring  
%   CONSTR(5)       damping of dashpot  
%   CONSTR(6)       linear spring in axial directio n 
%   CONSTR(7)       linear spring in transverse dir ection  
%   CONSTR(8)       linear rotational spring  
%   CONSTR(9)       Moment of Inertia for Rigid Bod y  
%   CONSTR(10)      Distance of isolator from cg on  Rigid Body  
%   CONSTR(11)      node number of connection  
%   CONSTR(12)      node number of connection  
% 
%   NOTE: CONSTR(11,12) are used only for connectio n between subsystems  
%       (as for cabled beam)  
% 
%   type=1      simple spring, mass, damper connect ed at 1 point  
%   type=2      point mass, no inertia  
%   type=3      point mass with inertia  
%   type=4      two actuators (spring-damper) conne cted to lumped 
system  
%   type=5      spring and/or damper between two co ntinous systems  
% 
% tmp is 1 or 2. If it is 1 then constraint is at n ode  
% if it is 2 the constraint force is due to attachm ent  
% at other node.  
  
function  CL=constr_pt(CONSTR,s,tmp)  
  
global  dof;  
  
CL=zeros(dof);  
type=CONSTR(2);  
m=CONSTR(3); 
k=CONSTR(4);  
d=CONSTR(5);  
x_=CONSTR(6);  
y_=CONSTR(7);  
rot_=CONSTR(8);  
Ir=CONSTR(9);  
ax=CONSTR(10);  
  
krots=2; % Rotational connection stiffness  
crots=0; % Rotational connection damping  
Ibar=1*10^12;  
  
if  type==1  
    if  CONSTR(1)==1,  
        Cy=m*s^2*(d*s+k)/(m*s^2+d*s+k);  
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    elseif  CONSTR(1)==2,  
        Cy=(m*s^2+d*s)*k/(m*s^2+d*s+k);  
    end  
elseif  type==2  
    Cx=m*s^2;  
    Cy=Cx;  
elseif  type==3  
    Cx=m*s^2;  
    Cy=Cx;  
    Crot=Ir*s^2;  
elseif  type==4  
    num1=k+d*s;  
    den1=Ir*s^2 + 2*ax^2*d*s  + 2*ax^2*k;  
    den2=m*s^2+2*d*s+2*k;  
    if  tmp==1  
        Cy = num1 - num1^2*ax^2/den1 - num1^2/den2;  
    elseif  tmp==2  
        Cy = num1^2*ax^2/den1 - num1^2/den2;  
    else  
        disp( 'Unknown value for tmp-(1)' )  
    end  
elseif  type==5  
    if  tmp==1  
        Cy=k+d*s;  
    elseif  tmp==2  
        Cy=-k-d*s;  
    else  
        disp( 'Unknown value for tmp-(2)' )  
    end  
end  
  
if  y_==1  
    CL(2,1)=Cy;  
end  
if  rot_==1  
    %CL(1,2)=Crot;  
    % This would be added in for a rotational spring an d damper.  
    CL(1,2)=(Ibar*s^2*(crots*s+krots))/(Ibar*s^2+cr ots*s+krots);  
end  
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Cable Force Input 
% This is the force input file for the two-point ca ble.  
if  COUNT==0 
    for  iii=1:m,  
        if  ((BC_type(iii)==1) | (BC_type(iii)==0)),  
            eval([ 'Kap' ,num2str(iii), '=zeros(dof,1);' ])  
        end  
    end  
    % Must have as many Kappa entries as subsystems (i. e., 14 subsystem  
    % model needs Kap1 through Kap14.  
    Kap1=[0;0];  
    Kap2=[0;0];  
    Kap3=[0;0];  
    Kap4=[0;0];  
    Kap5=[0;0];  
    Kap6=[0;0];  
    Kap7=[0;0];  
    % This puts all values of Kap for each subsystem in to global  
    % matrix called Kappa  
    Kappa=[];  
    for  iii=1:m,  
        eval([ 'Kappa= [Kappa Kap' ,num2str(iii), '];' ])  
    end  
  
% These are the pointwise forces and are functions of frequency in Hz  
% In this case they are function of the parameter s =frequency  
  
% Note that the only non-zero input force occurs at  the driving point;  
% for the two-point fixture, input force is on subs ystem two.  
% For the four-point fixture, input force is on sub system three.  
  
    fptw_1=0/Ei*Len(1); % magnitude of pointwise force on subsystem  
    fpt1_wpos=.9;       % position of pointwise on subsystem  
     
    fptw_2=100/Ei*Len(2);  % USE THIS FOR TWO POINT CABLE  
    %fptw_2=0/Ei*Len(2);    % USE THIS FOR FOUR POINT C ABLE 
    fpt2_wpos=0.999;        % position of pointwise on subsystem  
     
    fptw_3=0/Ei*Len(3);     % USE THIS FOR TWO POINT CABLE  
    %fptw_3=700/Ei*Len(3); % USE THIS FOR FOUR POINT CA BLE 
    fpt3_wpos=0.999;        % position of pointwise on subsystem  
     
    fptw_4=0/Ei*Len(4); % magnitude of pointwise force on subsystem  
    fpt4_wpos=.9;       % position of pointwise on subsystem  
     
% Uncomment forces for subsystems 5 and 6 if four-p oint cable is being 
evaluated     
%     fptw_5=0/Ei*Len(5);   % magnitude of pointwis e force on subsystem  
%   fpt5_wpos=.0001;        % position of pointwise  on subsystem  
%      
%     fptw_6=0/Ei*Len(6);   % magnitude of pointwis e force on subsystem  
%   fpt6_wpos=.9;       % position of pointwise on subsystem  
  
    FPTw=[];  
    FPTwPos=[];  
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    for  iii=1:m,  
        eval([ 'FPTw=[FPTw fptw_' ,num2str(iii), '];' ])  
        eval([ 'FPTwPos=[FPTwPos fpt' ,num2str(iii), '_wpos];' ])  
    end  
    %These are the nodal forces and are functions of fr equency in Hz  
% Must have as many P vectors as subsystems.  
    P1=[0;0];  
    P2=[0;0];  
    P3=[0;0];  
    P4=[0;0];  
    P5=[0;0];  
    P6=[0;0];  
    P7=[0;0];  
    % This puts all nodal forces into a global matrix c alled P_Nodal  
    P_Nodal=[];  
    for  iii=1:node  
        eval([ 'P_Nodal= [P_Nodal P' ,num2str(iii), '];' ])  
    end  
    F_cstr=[0;0];  
    COUNT=COUNT+1;  
end  
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Cable Frequency Response Program 
% This file determines frequency response functions  (FRFs) for cable 
and  
% cabled beam models.  
% 
% INPUT:  
%   BND_DOF Shows which DOF are constrained (node x  dof)         
% 
% OUTPUT: 
%   alpha1  values for local displacement at positi on x over frequency 
range  
% 
%   alpha       local displacement vector at positi on x and frequency s  
%   CON         Shows which subsystems are connecte d to which  
%               nodes. '0' means no subsystem  
%   cnt     dummy counting variable  
%   dof     the number of degrees of freedom of sub system  
%   endvalue    the number of subsystems at locatio n of response  
%   F       matrix built by governing pdes (n x n)  
%   filename    the name of file that holds initial ization data  
%   fptu        point force at subsystem in axial d irection  
%   fptu_pos    location of point force at subsyste m in axial direction  
%   fptw        point force at subsystem in transve rse direction  
%   fptw_pos    location of point force at subsyste m in axial direction  
%   freqend the end frequency for frequency respons e 
%   freqst  the start frequency for frequency respo nse  
%   G       Greens' function  
%   Ga_u        partioned G matrix  
%   Ga_w        partioned G matrix  
%   H       transfer function of Eta/Gamma  
%   Ha0     partitioned H matrix  
%   Ha1     partitioned H matrix  
%   incr        the incremental frequency for frequ ency response  
%   jj      dummy counting variable  
%   K       reduced global stiffness matrix at freq uency s  
%   Kap     vector used for BC calculation  
%   kk      dummy counting variable  
%               also current subsystem for response  
%   Len     length of each subsystems in vector  
%   Li      length of each subsystem  
%   M       Temporal-spatial operator for left end of subsystem          
%   N       Temporal-spatial operator for right end  of subsystem  
%   node        total number of nodes of system  
%   num_str string of current subsystem for respons e 
%   pts     the number of displacements of entire s ystem  
%   q       reduced global force vector at frequenc y s  
%   R0      Rotation Matrix at the left end of the subsystem for Forces  
%   R1      Rotation Matrix at the right end of the  subsystem for 
Forces  
%   rho     mass per unit length for a subsystem  
%   S0      Rotation Matrix for left end of subsyst em for displacements  
%   S1      Rotation Matrix for right end of subsys tem for 
displacements  
%   s       frequency = ii * sqrt(-1) * 2 * pi  
%   Sub_Con Shows which subsystems are connected to  which nodes (2 x m)  
%               A zero value implies somer sort of boundary condition  
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%   sub     subsystem for which response is taken  
%   tt      dummy counting variable  
%   Ugl     global displacement vector at frequency  s  
%   Ugl_0       global displacement vector at right  end for current 
subsystem  
%   Ugl_1       global displacement vector at left end for current 
subsystem  
%   u       reduced global displacement vector at f requency s  
%   X       location of node points in local coordi nates  
%   XX      Shows at each node how many subsystems are connected to it.  
%   x       position of response  
%   which_node  if response is required at a node i t gives node number  
% 
function  [omega,alpha1]=freq_resp(BND_DOF,type)  
  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type;  
global  Len XY Ea Ei rho filename num_ev BC_node_ty AXIAL pts X;  
global  A kappag Gsh cv c Tens;  
global  CONSTRAIN Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPo s;  
global  COUNT evals t_alpha t_beta;  
  
% Choose subsystem of output response.  
sub=2;  % USE THIS FOR TWO POINT CABLE.  
%sub=3;  % USE THIS FOR FOUR POINT CABLE.  
x=1;        % Local coordinate on subsystem sub  
x1=x;  
  
%NOTE: This assumes that the pointwise forces or no dal forces are 
harmonic  
  
% The following are the locations of node points co nnected  
% to each subsystem. The start point of each subsys tem is 0 and the  
% endpoint is 1.  
X = zeros(node,m);  
         
tmp1=[0;1];  
for  ii=1:m,  
    tmp2=Sub_Con(:,ii);  
    X([tmp2],ii)=X([tmp2],ii)+tmp1;  
end  
  
% This checks whether the measured response is at a  node and therefore  
% needs to have the neighboring subsystems evaluate d.  
if  (x==0) || (x==1)  
    which_node=Sub_Con(x+1,sub);    % node number of measured response  
end  
  
% Find M and N for each subsystem  
    M=Mgl(1:n,(sub-1)*n+1:n*sub);  
    N=Ngl(1:n,(sub-1)*n+1:n*sub);  
  
    [R0,R1,S0,S1]=Rotation_Calc(Rot(sub));  
    Li=Len(sub);  
  
omega=logspace(0,3,750); % Choose span and density of FRF points.  
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% Choose input forces for appropriate model.  
% For two-point model:  
filenameforce=[ 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca ble 
2Pinned Model\forces_bmcable.m' ];  
% For four-point model:  
%filenameforce=['C:\Users\Kaitlin\Desktop\Cable Dat a In Process\Test 2  
%Data\Cable 4Pt Model\forces_bmcable.m'];  
run(filenameforce);  
  
alpha1=zeros(dof,size(omega,2));  
  
for  iji=1:size(omega,2),  
    ii=omega(iji);  
  
    s=ii*i*2*pi;  
  
    [K,q]=assemble_K(ii);  
    u=inv(K)*q;  
    % Place reduced global position and forces at speci fic frequeny   
    %       into actual global position and force vecto r  
    Ugl=zeros(1,pts);  
  
    cnt=1;  
    for  jj=1:node,  
        for  kk=1:dof,  
            if  (BND_DOF(jj,kk) < 1)  
            eval([ 'Ugl(1,dof*(jj-1)+kk)=u(' ,num2str(cnt), ');' ])  
                cnt=cnt+1;  
            end  
        end  
    end  
  
    alpha=zeros(dof,1);  
% FRF calculations begin     
    num_str=num2str(sub);  
    tmp1=dof*(Sub_Con(1,sub)-1)+1;  
    tmp2=dof*(Sub_Con(2,sub)-1)+1;       
         
    % Find the global displacements at each node at x=0 ,1 for subsystem  
    Ugl_0=Ugl(tmp1:tmp1+dof-1);  
    Ugl_1=Ugl(tmp2:tmp2+dof-1);  
  
    fptw=FPTw(1,sub);  
     
    fpt_wpos=FPTwPos(1,sub);  
  
    Kap=Kappa(1:dof,sub);  
     
    if  (x==0) || (x==1)  
        x1=X(which_node,sub);  
    end  
     
        t_alpha=0;  % Structural damping values can be included here.  
        t_beta=0;  
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        FEB=Li*[     0              1   0   0;  
                0               0   1   0;  
                0               0   0   1;  
    -rho*s*(s+t_alpha)/(Ei*(1+t_beta*s))    0   0   0];  
  
        FShear1=Li*[     0              1   0   0;  
                0               0   1   0;  
                0               0   0   1;  
    -rho*s*(s+t_alpha)/(Ei*(1+t_beta*s))    0   
((rho*s^2)/(kappag*A*Gsh)+(c*s)/(kappag*A*Gsh))-Ten s/Ei 0];  
  
zetag=0.2;  
 wn=5*2*3.14;  
 alphag=5;  
 gammag=2*alphag*zetag*wn;  
 betathg=2*zetag*wn;  
 deltathg=wn^2;  
Gofs=0;  
%Gofs=(alphag*s^2+gammag*s)/(s^2+betathg*s+deltathg );  
  
%Gofs=(25*s^2+9000*s)/(4*s^2+1*s-8000); % For 1X7  
%Gofs=(70*s^2+6000*s)/(5*s^2+2*s+2000);  % For 1X19  
%Gofs=(180*s^2+40000*s)/(2*s^2+2*s-9000);  % For 1X 48 
%Gofs=(140*s^2+60000*s)/(2*s^2+2*s-15000);  % Adjus t For 7X7  
  
%Remember that "rho" actually represents rho*A for these equations!  
FShearVD=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rho*s^2+cv*s)/Ei,0,((rho*s^2)/(kappag*A*Gsh)+(cv*s )/(kappag*A*Gsh))-
Tens/Ei,0];  
FShearHyst=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-(rho*s^2+cv *s)/(Ei-
(1/s)*Gofs),0,((rho*Ei*s^2)/(kappag*A*Gsh)+(cv*Ei*s )/(kappag*A*Gsh)-
Tens)/(Ei-(1/s)*Gofs),0];  
  
% CHOOSE MODEL FORMULATION 
    F=FShearHyst;  
    eFs=expm(F);  
    %       Find alpha due to displacements  
    H=expm(F*x1)*inv(M+N*eFs);  
     
    Ha0=H(1:n2/2,1:n/2);  
    Ha1=H(1:n2/2,n/2+1:n);  
  
    if  (BC_node_ty(Sub_Con(1,sub))>0),       
        alpha=alpha+Ha0*Kap+Ha1*S1*Ugl_1';  
    elseif  (BC_node_ty(Sub_Con(2,sub))>0),       
        alpha=alpha+Ha0*Kap+Ha1*S0*Ugl_0';  
    else  
        alpha=alpha+Ha0*S0*Ugl_0'+Ha1*S1*Ugl_1';  
    end  
  
    %       Find alpha due to pointwise forces  
    if  abs(fptw) >= 0  
        if  fpt_wpos>=x1  
            Gw=-H*N*expm(F*(1-fpt_wpos));  
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        else  
            Gw=H*M*expm(-F*fpt_wpos);  
        end  
        Ga_w=Gw(1:n2/2,n);  
        alpha = alpha + Ga_w*fptw;  
    end  
  
    type1=CONSTRAIN(which_node,2);  
    p_or_a=CONSTRAIN(which_node,1);  
  
    if  type1==0  
        alpha1(1:dof,iji)=alpha;  
    else  
        m_cstr=CONSTRAIN(which_node,3);  
        kp=CONSTRAIN(which_node,4);  
        dp=CONSTRAIN(which_node,5);  
  
        if  p_or_a==1  
            if  type1<4  
                num=dp*s+kp;  
                den=m_cstr*s^2+num;  
  
                alpha1(1:dof,iji)=(F_cstr+num*alpha )/den;  
            elseif  type1==4  
            end  
        elseif  p_or_a==2  
            ka=CONSTRAIN(which_node,6);  
            da=CONSTRAIN(which_node,7);  
            gn=CONSTRAIN(which_node,8);  
            nmode=CONSTRAIN(which_node,12);  
             
            if  type1==1,         
                den=m_cstr*s^2+(da+dp)*s+ka+kp+gn/s ;  
                alpha1(1:dof,iji)=(F_cstr+(kp+dp*s) *alpha)/den;  
            elseif  type1==2,  
                den=m_cstr*s^2+dp*s+kp;  
                alpha1(1:dof,iji)=(F_cstr+(kp+dp*s+ ka+da*s)*alpha)/den;          
            elseif  type1==3  
                ev=evals(nmode)*2*pi;  
                den=m_cstr*s^2+dp*s+kp;  
                denppf=s^2+2*da*ka*s+ka^2;  
                den2=den+gn*ka^2*ev^2/denppf;  
                alpha1(1:dof,iji)=(F_cstr + (kp+dp* s)*alpha)/den2;  
            end  
        end  
    end   
end  
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Cable Mode Shape Program 
% This file evaluates the mode shapes for the calcu lated eigenvalues, 
and  
% creates mode shape vectors for use in the modal a ssurance criterion  
% comparison.  
  
function  mode_shapeWMAC(BND_DOF) 
  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type Len XY 
Ea Ei rho;  
global  A kappag Gsh cv c Tens;  
global  filename BC_node_ty num_ev len_m t_alpha t_beta;  
global  AddedModes  
  
% Calculated eigenvalues must be loaded to use for mode shape 
calculation.  
%filename  
%eval(['load evalues_',filename])  
% Use this for TWO-POINT cable  
load( 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca ble 2Pinned 
Model\evalues_bmcabletest.mat' );  
% Use this for FOUR-POINT cable  
% load('C:\Users\Kaitlin\Desktop\Cable Data In Proc ess\Test 2 
Data\Cable 4Pt Model\evalues_bmcabletest.mat');  
  
pts=node*dof;  
AddedModes=[];  
%   Redefine K_eval Matrices to Ki matrices for eac h mode where i 
ranges  
%   from 1 to num_ev  
for  ii=1:num_ev,  
    b=pts-can;  
    c=b*(ii-1)+1;  
    eval([ 'K' ,num2str(ii), '=K_eval(1:b,c:c+b-1);' ])  
end  
  
%   This finds the nontrivial solutionn of K(jlam)u (jlam)=0  
for  ii=1:num_ev,  
    eval([ 'u' ,num2str(ii), '=null(K' ,num2str(ii), ');' ])  
   if  isempty(eval([ 'u' ,num2str(ii)]))  
        eval([ '[a1,b1]=eig(K' ,num2str(ii), ');' ])  
        c=min(abs(diag(b1)));  
        d=find(c==abs(diag(b1)));  
        if  size(d,1) > 1;  
            d=d(1);  
            a1=a1(:,d);  
            eval([ 'u' ,num2str(ii), '=a1(1:b,1);' ])  
        else   
            eval([ 'u' ,num2str(ii), '=a1(1:b,d);' ])  
        end  
   end  
end  
  
% Calculate displacements (i.e. mode shapes for eac h eigenvalue)  
incr=.001;  
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for  ii=1:num_ev,  
    x_pos=[];  
    y_pos=[];  
    Ugl=zeros(1,pts);  
    cnt=1;  
  
% Place reduced global position at specific eigenva lue into actual 
global  
% position vector  
    for  jj=1:node,  
        for  kk=1:dof,  
            if  (BND_DOF(jj,kk) < 1)  
                eval([ 'Ugl(1,dof*(jj-
1)+kk)=u' ,num2str(ii), '(' ,num2str(cnt), ');' ])  
                cnt=cnt+1;  
            end  
        end  
    end  
         
% Find mode shape for each subsystem and plot it  
    for  kk=1:m,  
        alpha=[];  
  
        tmp1=dof*(Sub_Con(1,kk)-1)+1;  
        tmp2=dof*(Sub_Con(2,kk)-1)+1;  
         
    % Find the global displacements at each node at x=0 ,1 for subsystem  
        Ugl_0=Ugl(tmp1:tmp1+dof-1);  
        Ugl_1=Ugl(tmp2:tmp2+dof-1);  
  
    % Find M and N for each subsystem  
        [M,N]=MN_Calc(BC_type(kk),kk,Ei,Ea);  
  
    % This section must match the section from the asse mble_K file.  
        [R0,R1,S0,S1]=Rotation_Calc(Rot(kk));  
        Li=Len(kk);  
        s=evals(ii)*i*2*pi;  
  
        FEB=Li*[     0              1   0   0;  
                0               0   1   0;  
                0               0   0   1;  
    -rho*s*(s+t_alpha)/(Ei*(1+t_beta*s))    0   0   0];  
  
        FShear1=Li*[     0              1   0   0;  
                0               0   1   0;  
                0               0   0   1;  
    -rho*s*(s+t_alpha)/(Ei*(1+t_beta*s))    0   
((rho*s^2)/(kappag*A*Gsh)+(c*s)/(kappag*A*Gsh))-Ten s/Ei 0];  
  
zetag=0.1;  
 wn=56*2*3.14;  
 alphag=5;  
 gammag=2*alphag*zetag*wn;  
 betathg=2*zetag*wn;  
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 deltathg=wn^2;  
Gofs=0;  
%Gofs=(alphag*s^2+gammag*s)/(s^2+betathg*s+deltathg );  
%Gofs=(1000*s^2+161.4*s)/(s^2+10600*s+280900);  
%Gofs=(9*s^2+100*s)/(s^2+10*s+1000);  
  
%Remember that "rho" actually represents rho*A in t he following 
equations!  
  
FShearVD=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rho*s^2+cv*s)/Ei,0,((rho*s^2)/(kappag*A*Gsh)+(cv*s )/(kappag*A*Gsh))-
Tens/Ei,0];  
FShearHyst=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-(rho*s^2+cv *s)/(Ei-
(1/s)*Gofs),0,((rho*Ei*s^2)/(kappag*A*Gsh)+(cv*Ei*s )/(kappag*A*Gsh)-
Tens)/(Ei-(1/s)*Gofs),0];  
  
% SELECT WHICH F FORMULATION TO USE - IMPORTANT, CH OOSE WISELY. 
        F=FShearHyst;  
         
        eFs=expm(F);  
        invers=inv(M+N*eFs);  
  
        XI=0:incr:1;  
  
    % Find mode shape along span of subsystem  
        for  xi=XI,  
            H=expm(F*xi)*invers;  
         
            Ha0=H(1:n2/2,1:n/2);  
            Ha1=H(1:n2/2,n/2+1:n);  
     
            if  (BC_node_ty(Sub_Con(1,kk))>0),        
                alpha=[alpha Ha1*S1*Ugl_1'];  
            elseif  (BC_node_ty(Sub_Con(2,kk))>0),        
                alpha=[alpha Ha1*S0*Ugl_0'];  
            else  
                alpha=[alpha Ha0*S0*Ugl_0'+Ha1*S1*U gl_1'];  
            end  
        end  
         
    % Find mode shape in global coordinates for plottin g 
        x_beg=XY(1,Sub_Con(1,kk));  
        y_beg=XY(2,Sub_Con(1,kk));  
  
        trans=inv(S1)*alpha;  
        cc=size(trans,2);  
  
% Find the exact x,y locations and displacements  
        Lc=Li*cos(Rot(kk));  
            Y_pos=trans(1,:);  
            X_pos=(x_beg:(Lc)/(cc-1):Lc+x_beg);  
  
        if  kk==1,  
            x_pos=[x_pos X_pos];  
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            y_pos=[y_pos Y_pos];  
        elseif  kk>=2,  
            tmp=size(X_pos,2);  
            x_pos=[x_pos X_pos(2:tmp)];  
            y_pos=[y_pos Y_pos(2:tmp)];  
        end  
    end  
     
% Normalize the modes for better viewing and for ap propriate MAC 
comparison  
    y_pos=y_pos/max(abs(y_pos));  
         
    if  real(y_pos(2))<0  
        y_pos=-y_pos;  
    end  
    YYpos=[];  
    YYpos=[YYpos;y_pos];  
    %For two-point cable  
    plot(x_pos,y_pos,XY(1,2),0, '+' ,XY(1,5),0, '+' )        
    %For four-point cable, shows connection points as + s 
    %plot(x_pos,y_pos,XY(1,2:3),[0,0],'+',XY(1,5:6),[0, 0],'+')  
    title([ 'Mode' ,num2str(ii)])  
    xlabel( 'Distance Along Cable' )  
    ylabel( 'Eigenfunction' )  
  
    figure  
    AddedModes=[AddedModes;y_pos];  
    xmodeplot=x_pos;  
end  
% Build "AddedModes" matrix for use in MAC calculat ion.  
AddedModes=[xmodeplot;AddedModes];  
%To evaluate mode interaction for MAC comparison (m ode 1 and 3 for 
example):  
% plot(x_pos,AddedModes(2,:)+AddedModes(4,:))  
% title('Mode 1 & 3')  
% This line saves the mode shape vectors.  
%eval(['save modes_',filename,' evals x_pos YYpos'] )  
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Cabled Beam Model Input File 
% This file provides cable and beam inputs for the 16 node cabled-beam  
model.  
% Modified with input parameters on 3/28/2014.  
% Altered for stiffer cabled beam EI values 4/11/20 14.  
  
% Parameters for aluminum beam as host structure:  
w=0.101; % width, in meters, of beam  
t=0.0064; % thickness, in meters, of beam  
  
Ibeam=1/12*w*t^3;  
Ebeam=65E9;  
EIbeam=Ebeam*Ibeam;  
Abeam=w*t;  
rhobeam=2700;  
  
len_beam=0.797;  
len_m=0.797;  
  
% Parameters for cable, rod, or no attached structu re:  
%__________________________________________________ ________  
% SELECT CABLE TYPE HERE:  
cablechoice=0;  
% Choose 7,19,48,749 for cables,  
% Choose 1,2,3 for Acetron, spring steel, tool stee l  
% Choose 0 for bare beam.  
calcopt=10;  
% Choose 1 for min, 5 for max, 3 for mid/avg, 8 for  stickmin  
% Choose 2 for min with new vals, chose 6 for max w ith new vals  
% Choose 10 for bare beam or rods on beam  
%__________________________________________________ ________  
 if  cablechoice==7;  
    disp( '1X7 Chosen' )  
    len_cable=0.7692;  
    MinDensity=2117.12;  
    DensityMid=3110.59;  
    MaxDensity=3233.14;  
    MinArea=2.76803*10^-5; % Calculated based on only wire components  
    MaxArea=4.34512*10^-5; % Calculated based on OUTER cable diameter  
    AreaMid=2.95737*10^-5; % Calcuated based on individual wire 
diameter  
     
    EIcablestickmin=1.65;  
    EIcablestickmax=1.868;  
    EIcable4ptslipmin=0.40;  
    EIcable4ptslipmax=0.438;  
     
    EIcablebslipmin=0.46;  
    EIcablebslipmax=0.51;  
  
    spr_p=1e4;  
     
 elseif  cablechoice==19;  
    disp( '1X19 Chosen' )  
    len_cable=0.7782;  
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    MinDensity=1926.46;  
    DensityExp=2162;  
    DensityExp2=2557;  
    DensityMid=3049;  
    MaxDensity=3258;  
    MinArea=7.51321*10^-5; % Calculated based on only wire components  
    MaxArea=1.27076*10^-4; % Calculated based on OUTER cable diameter  
    AreaMid=8.02715*10^-5; % Calcuated based on individual wire 
diameter  
      
    EIcablestickmin=13.818;  
    EIcablestickmax=15.71687;  
    EIcable4ptslipmin=1.55;  
    EIcable4ptslipmax=1.7128;  
     
    EIcablebslipmin=1.94;  
    EIcablebslipmax=2.16;  
  
    spr_p=6e4;  
     
 elseif  cablechoice==48;  
    disp( '1X48 Chosen' )  
    len_cable=0.7744;  
    MinDensity=1770.5;  
    DensityMid=2853.7;  
    MaxDensity=3048.9;  
    MinArea=1.89807*10^-4; % Calculated based on only wire components  
    MaxArea=3.26851*10^-4; % Calculated based on OUTER cable diameter  
    AreaMid=2.02791*10^-4; % Calcuated based on individual wire 
diameter  
  
    EIcablestickmin=93.6;  
    EIcablestickmax=106.7;  
    EIcable4ptslipmin=7.517;  
    EIcable4ptslipmax=8.1343;  
     
    EIcablebslipmin=16.82;  
    EIcablebslipmax=18.25;  
  
    spr_p=1e6;  
     
 elseif  cablechoice==749;  
    disp( '7X7 Chosen' )  
    len_cable=0.7744;  
    MinDensity=1742.326;  
    DensityMid=3084.06;  
    MaxDensity=3295.025;  
    MinArea=1.93762*10^-4; % Calculated based on only wire components  
    MaxArea=3.66435*10^-4; % Calculated based on OUTER cable diameter  
    AreaMid=2.07016*10^-4; % Calcuated based on individual wire 
diameter  
  
    EIcablestickmin=74.047;  
    EIcablestickmax=84.38;  
    EIcable4ptslipmin=2.596;  
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    EIcable4ptslipmax=2.82;  
     
    EIcablebslipmin=3.48;  
    EIcablebslipmax=3.83;  
  
    spr_p=6e5;  
     
 elseif  cablechoice==0; % This is for bare beam tests...  
    rhocable=0.000001;  
    Acable=0.00001;  
    EIcable=0.0001;  
    len_cable=0.780;  
    spr_p=1e5;  
elseif  cablechoice==1; % This is for Acetron rod  
    disp( 'Acetron rod chosen' )  
    rhocable=1410;  
    Acable=1.2728e-4;  
    EIcable=3.8028;  
    len_cable=0.780;  
    spr_p=1.3e6;  
    %spr_p=1e5;  
elseif  cablechoice==2; % This is for spring steel rod  
    disp( 'Spring steel rod chosen' )  
    rhocable=7990;  
    Acable=4.9017e-5;  
    EIcable=36.9008;  
    len_cable=0.780;  
    spr_p=1.3e6;  
elseif  cablechoice==3; % This is for spring steel rod  
    disp( 'Spring steel rod chosen' )  
    rhocable=7750;  
    Acable=1.2668e-4;  
    EIcable=242.6266;  
    len_cable=0.782;  
    spr_p=1.3e6;  
 else  
    disp( 'Invalid cable or attachment choice' )  
 end  
 % SELECTABLE OPTIONS  
 if  calcopt==1  
    Acable=MaxArea  
    rhocable=MaxDensity  
    EIcable=EIcable4ptslipmin  
 elseif  calcopt==5;  
     Acable=MinArea  
     rhocable=MinDensity  
     EIcable=EIcable4ptslipmax  
 elseif  calcopt==3;  
     Acable=AreaMid  
     rhocable=DensityMid  
     EIcable=(EIcable4ptslipmin+EIcable4ptslipmax)/ 2 
 elseif  calcopt==8;  
     Acable=AreaMid  
     rhocable=DensityMid  
     EIcable=EIcablestickmin  
 elseif  calcopt==2;  
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     Acable=MaxArea  
     rhocable=MaxDensity  
     EIcable=EIcablebslipmin  
 elseif  calcopt==6;  
     Acable=MinArea  
     rhocable=MinDensity  
     EIcable=EIcablebslipmax  
 end  
  
        rhoacable=rhocable*Acable; % In case...  
kappag=0.95;  
Gsh=651743193.3;  
cv=0;  
Tens=0;  
  
num_ev=8;  
  
% This is connection stiffness info for any damping  in connection 
stiffness  
% Note that spr_p is located within the cable value s.  
% spr_p=1e5; %ATTACHMENT STIFFNESS OVERRIDE  
damp_p=0;  
zeta_p=0.0; 
 
if  cablechoice~=0;  
CONSTRAIN(2,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 2 10];  
CONSTRAIN(10,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 10 2] ;  
  
CONSTRAIN(3,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 3 11];  
CONSTRAIN(11,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 11 3] ;  
  
CONSTRAIN(5,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 5 13];  
CONSTRAIN(13,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 13 5] ;  
  
CONSTRAIN(6,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 6 14];  
CONSTRAIN(14,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 14 6] ;  
  
CONSTRAIN(7,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 7 15];  
CONSTRAIN(15,:)=[1 5 0 spr_p damp_p 0 1 1 0 0 15 7] ;  
end 
 
% Three is pinned, two is free  
BC_type=[2 0 0 0 0 0 2 2 0 0 0 0 0 2];          % type of boundary 
condtion for each subsystem  
BC_node_ty=[2 0 0 0 0 0 0 2 2 0 0 0 0 0 0 2];  
  
m=14;                   % the number of subsystems  
node=16;                % the number of nodes  
%can=7;             % the number of known boundary displacements  
can=8;  
dof=2;              % the number of dof: ux, wy, w'  
  
xb=len_beam/2;  
xe=len_cable/2;  
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rhogl=zeros(1,m);  
EIgl=zeros(1,m);  
rhogl(1,1:(m/2))=rhobeam*Abeam*ones(1,m/2);  
rhogl(1,(m/2)+1:m)=rhocable*Acable*ones(1,m/2);  
EIgl(1,1:(m/2))=Ebeam*Ibeam*ones(1,m/2);  
EIgl(1,(m/2)+1:m)=EIcable*ones(1,m/2);  
  
 XY = [0  0.04 0.22 0.299 0.4 0.58 0.76 len_beam (l en_beam-len_cable)/2  
0.04 0.22 0.299 0.4 0.58 0.76 len_cable+(len_beam-l en_cable)/2     %X      
% X,Y position of each node, 2 X node  
    0 0 0 0 0 0 0 0 .015 .015 .015 .015 .015 .015 . 015 .015 ];          
%Y      % This is actual x,y not nondimensional  
  
CON=[1 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14;  
     0 2 3 4 5 6 7 0 0 9 10 11 12 13 14 0];     % which subsystems are 
connected at each node  
  
Sub_Con=[1 2 3 4 5 6 7 9 10 11 12 13 14 15;         % Shows how each 
subsytem is connected to each  
         2 3 4 5 6 7 8 10 11 12 13 14 15 16];           %   node    (2 
x m). top row is x=0 position of subsystem    
  
XX=[0 2 2 2 2 2 2 0 0 2 2 2 2 2 2 0];           % the number of 
subsystems connected at each node  
                    %   0 signifies that there is not a connection  
                    %   between 2 different subsystems. 1 signifies  
                    %   some sort of interface condition (1 x node)  
     
BND_DOF=[   1 1;        % Shows which DOF are constrained (node x dof)  
        0 0;        % dof = [wx  wy  theta]  
        0 0;  
        0 0;  
        0 0;  
        0 0;  
        0 0;  
        1 1;  
        1 1;  
        0 0;  
        0 0;  
        0 0;  
        0 0;  
        0 0;  
        0 0;  
        1 1];  
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Cabled Beam Stiffness Matrix Assembly Program 
% This file builds the global stiffness matrix for a 16 node cabled 
beam.  
% Sections 1-7 are beam, sections 8-14 are cable.  
% Created on 1/9/2014  Modified 3/15/2014  
% INPUT 
%   ij      frequency in Hz  
% 
% OUTPUT 
%   Kgl     Reduced Global Stiffness Matrix  
%   qgl     Reduced Global Force Vector  
% 
  
% P-LIST  
%   BC_node_ty  The type of boundary conditions for  each node  
%   can     the number of known boundary displaceme nts  
%   CON         Shows which subsystems are connecte d to which  
%               nodes. '0' means no subsystem  
%   CONSTRAIN   Shows how each node is constrained.   
%   dof     the number of degrees of freedom of sub system  
%   E       compatibility matrix for subsystem  
%   Ea      E*A (Axial Stiffness) for a subsytem  
%   Ei      E*I (Flexural Rigidity) for a subsystem  
%   evals       Vector of eigenvalues  
%   F       matrix built by governing pdes (n x n)  
%   F_cstr      Force on system.  
%   filename    the name of file that holds initial ization data  
%   fptu        point force at subsystem in axial d irection  
%   fptu_pos    location of point force at subsyste m in axial direction  
%   fptw        point force at subsystem in transve rse direction  
%   fptw_pos        location of point force at subs ystem in axial 
direction  
%   Gu      Greens' function for axial displacement  
%   Ge_u        partioned G matrix  
%   Ge_w        partioned G matrix  
%   Gw      Green's function for transverse displac ement  
%   H       transfer function of Eta/Gamma  
%   He0     partitioned H matrix  
%   He1     partitioned H matrix  
%   ii      dummy variable  
%   ID      matrix used to assemble Kgl so that nod es with constraints  
%               will be removed from K (full blown Stiffness Matrix)  
%   jj      dummy variable  
%   K       global stiffness matrix (n x n)  
%   Kappa       vector used for BC calculation  
%   kk      dummy variable  
%   Len     length of each subsystems in vector  
%   Li      length of each subsystem  
%   M       Temporal-spatial operator for left end of subsystem  
%   Mgl     Global M for each subsystem  
%   m       the total number of subsystems  
%   N       Temporal-spatial operator for right end  of subsystem  
%   Ngl     Global N for each subsystem  
%   n       nth order linear pde (4:bendng, 2:axial )  
%   node        total number of nodes of system  
%   num     current subsystem  
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%   num_str current subsystem but of type string  
%   n1      nth order linear pde for axial vibratio ns  
%   n2      nth order linear pde for bending vibrat ions  
%   P       nodal forces  
%   P_nodal     nodal forces  
%   pts     the number of displacements of entire s ystem  
%   q       global Force vector (n x 1)  
%   qgl     Reduced Global Force Vector  
%   Rot     Rotation vector of 'rot' values  
%   rho     mass per unit length for a subsystem  
%   rot     rotation of subsystem wrt horizontal  
%   Sub_Con     Shows which subsystems are connecte d to which nodes (2 
x m)  
%               A zero value implies some sort of b oundary condition  
%   t_alpha     Alpha (i.e mass) term for proportio nal Damping  
%   t_beta      Beta (i.e. stiffness) term for prop ortional damping  
%   tmp,tmpi    dummy variables (i=1,2)  
%   var     used to convert degrees to radians  
%   s       frequency = ij * sqrt(-1)  
%   t1      beginning node location for subsystem  
%   t2      end node location for subsystem  
%   X       location of node points in local coordi nates  
%   XX      Shows at each node how many subsystems are connected to it.  
% 
  
function  [Kgl,qgl]=assemble_K_fbfe_diffbeams14(ij)  
% ij=10; %Used for checking a single frequency valu e.  
  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type pts;  
global  Len Ea Ei rho filename BC_node_ty CONSTRAIN CONSTR _SUB_PT X;  
global  Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPos;  
global  COUNT evals t_alpha t_beta EIgl rhogl;  
global  cv Acable Gsh kappag Tens;  
  
for  ii=1:m,  
    tmp=num2str(ii);  
    
eval([ '[R' ,tmp, '1,R' ,tmp, '2,S' ,tmp, '1,S' ,tmp, '2]=Rotation_Calc(Rot(' ,tm
p, '));' ])  
end  
  
% The following are the locations of node points co nnected  
% to each subsystem. The start point of each subsys tem is 0 and the  
% endpoint is 1.  
% This is initialized in freq_resp.m  
  
X = zeros(node,m);  
tmp1=[0;1];  
for  ii=1:m,  
    tmp2=Sub_Con(:,ii);  
    X([tmp2],ii)=X([tmp2],ii)+tmp1;  
end  
  
% Assembly of global stiffness matrix  
s = 1i*ij*2*pi;         % s = jw  
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K=zeros(pts);           % Zero out Global Stiffness Matrix  
q=zeros(pts,1);         % Zero out Global Force Vector  
  
for  kk=1:node,  
    P=P_Nodal(1:dof,kk);  
  
    loc1=ID(kk,:);  
  
    % Add nodal forces to q vector  
    q(loc1) = q(loc1) + P;  
  
% Add constraint forces  
    if  (CONSTRAIN(kk,1)==1 && CONSTRAIN(kk,2)==5)  
        loc2=ID(CONSTRAIN(kk,11),:);  
        K(loc1,loc2)=K(loc1,loc2) + constr_pt_act(C ONSTRAIN(kk,:),s,1);  
        loc2=ID(CONSTRAIN(kk,12),:);  
        K(loc1,loc2)=K(loc1,loc2) + constr_pt_act(C ONSTRAIN(kk,:),s,2);  
  
    elseif  (CONSTRAIN(kk,1)==2 && CONSTRAIN(kk,2)<=2)  
        l1=ID(CONSTRAIN(kk,11),:);  
        l2=ID(CONSTRAIN(kk,12),:);  
        if  CONSTRAIN(kk,2)==1,  
            if  CONSTRAIN(kk,11)>CONSTRAIN(kk,12)  
                K(loc1,l1)=K(loc1,l1) + 
constr_pt_act(CONSTRAIN(kk,:),s,1);  
                K(loc1,l2)=K(loc1,l2) - 
constr_pt_act(CONSTRAIN(kk,:),s,0);  
            else  
                K(loc1,l1)=K(loc1,l1) + 
constr_pt_act(CONSTRAIN(kk,:),s,0);  
                K(loc1,l2)=K(loc1,l2) - 
constr_pt_act(CONSTRAIN(kk,:),s,1);  
            end       
        elseif  CONSTRAIN(kk,2)==2,  
            if  CONSTRAIN(kk,11)>CONSTRAIN(kk,12)  
                K(loc1,l1)=K(loc1,l1) + 
constr_pt_act(CONSTRAIN(kk,:),s,0);  
                K(loc1,l2)=K(loc1,l2) - 
constr_pt_act(CONSTRAIN(kk,:),s,1);  
            else  
                K(loc1,l1)=K(loc1,l1) + 
constr_pt_act(CONSTRAIN(kk,:),s,1);  
                K(loc1,l2)=K(loc1,l2) - 
constr_pt_act(CONSTRAIN(kk,:),s,0);  
            end  
        end  
    elseif  (CONSTRAIN(kk,1)==2 && CONSTRAIN(kk,2)==3)  
        l1=ID(CONSTRAIN(kk,11),:);  
        l2=ID(CONSTRAIN(kk,12),:);  
            if  CONSTRAIN(kk,11)>CONSTRAIN(kk,12)  
                K(loc1,l1)=K(loc1,l1) + 
constr_pt_act(CONSTRAIN(kk,:),s,1);  
                K(loc1,l2)=K(loc1,l2) - 
constr_pt_act(CONSTRAIN(kk,:),s,0);  
            else  
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                K(loc1,l1)=K(loc1,l1) + 
constr_pt_act(CONSTRAIN(kk,:),s,0);  
                K(loc1,l2)=K(loc1,l2) - 
constr_pt_act(CONSTRAIN(kk,:),s,1);  
            end       
    end  
  
    % Asemble K matrix for each subsytem connected to e ach node  
     
    for  jj=1:XX(kk),  
        num=CON(jj,kk);     % Looking at subsystem num  
        % So for this case, num = 1-7 are the beam and num=  8-14 are  
        % the cable  
        num_str=num2str(num);   % string version for subsytem num  
  
        t1=Sub_Con(1,num);  % beginning node location for subsystem num  
        t2=Sub_Con(2,num);  % end node location for subsystem num  
    % Determine boundayr condition matrices for each su bsystem  
        M=Mgl(1:n,(num-1)*n+1:n*num);  
        N=Ngl(1:n,(num-1)*n+1:n*num);        
  
        x=X(kk,num);         
        R=eval([ 'R' ,num_str,num2str(x+1)]);  
        S=eval([ 'S' ,num_str,num2str(x+1)]);  
        Kap=Kappa(1:dof,jj);  
        L=Len(num);  
        E=[EIgl(num) 0;0 -EIgl(num)];  
         
        fptw=FPTw(1,num);  
        fpt_wpos=FPTwPos(1,num);  
% This program uses the Euler-Bernoulli formulation  for the aluminum 
beam,  
% and the shear hysteresis model for the cable.  
if  num > 0 && num < 7.5;  
      F=L*[     0               1   0   0;  
                0               0   1   0;  
                0               0   0   1;  
    -rhogl(num)*s*(s+t_alpha)/(EIgl(num)*(1+t_beta* s))  0   0   0];  
elseif  num > 7.5 && num < 15;  
    Gofs=0;  
%Gofs=(25*s^2+9000*s)/(4*s^2+1*s-8000); % For 1X7  
%Gofs=(70*s^2+6000*s)/(5*s^2+2*s+2000);  % For 1X19  
%Gofs=(180*s^2+40000*s)/(2*s^2+2*s-9000);  % For 1X 48 
%Gofs=(140*s^2+60000*s)/(2*s^2+2*s-15000);  % For 7 X7 
    FShearHyst=L*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rhogl(num)*s^2+cv*s)/(EIgl(num)-
(1/s)*Gofs),0,((rhogl(num)*EIgl(num)*s^2)/(kappag*A cable*Gsh)+(cv*EIgl(
num)*s)/(kappag*Acable*Gsh)-Tens)/(EIgl(num)-(1/s)* Gofs),0];  
    F=FShearHyst;  
else  
    disp( 'F matrix not defined for subsection greater than 1 4' )  
end  
  
        eFs=expm(F);  
        H=expm(F*x)*inv(M+N*eFs);    
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        He0=H(n1+n2/2+1:n,1:n/2);  
        He1=H(n1+n2/2+1:n,n/2+1:n);  
         
% Evaluate subsystem K matrices at each node  
    % NOTE: used if statements to check if this subsyst em has some sort 
of  
    % BC imposed on it. If there is then need to find h ow it adds to 
the  
    % global force vector as well to the global stiffne ss matrix  
  
        if  (BC_node_ty(Sub_Con(1,num))>0),       
            loc2=ID(t2,:);  
            K(loc1,loc2)=K(loc1,loc2)+R*E*He1*S;  
            q(loc1) = q(loc1) - R*E*He0*S*Kap;  
        elseif  (BC_node_ty(Sub_Con(2,num))>0),  
            loc2=ID(t1,:);  
            K(loc1,loc2)=K(loc1,loc2)+R*E*He1*S;  
            q(loc1) = q(loc1) - R*E*He0*S*Kap;  
        else  
            loc2_1=ID(t1,:);  
            loc2_2=ID(t2,:);  
            K(loc1,loc2_1)=K(loc1,loc2_1)+R*E*He0*S ;  
            K(loc1,loc2_2)=K(loc1,loc2_2)+R*E*He1*S ;  
        end  
  
        %   Evaluate q vector for each node from point forc es  
        if  abs(fptw) >0  
            if  fpt_wpos>x  
                Gw=-H*N*expm(F*(1-fpt_wpos));  
            else  
                Gw=H*M*expm(-F*fpt_wpos);  
            end  
            Ge_w=Gw(n2/2+1:n,n);  
            q(loc1) = q(loc1) - R*E*Ge_w*fptw;  
        end  
  
    end  
end  
Kgl=K(1:pts-can,1:pts-can);  
qgl=q(1:pts-can,1);  
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Cabled Beam Constraint Point Program 
% This file develops the constraint matrix for the cabled beam model.  
% function Cl=constraints(CONSTR,s,tmp)  
% 
%   CONSTR(1)       0=no constraint, 1=constraint,2 =active constraint  
%   CONSTR(2)       type of constraint (See below)  
%   CONSTR(3)       mass of rigid body  
%   CONSTR(4)       stiffness of spring  
%   CONSTR(5)       damping of dashpot  
%   CONSTR(6)       linear spring in axial directio n 
%   CONSTR(7)       linear spring in transverse dir ection  
%   CONSTR(8)       linear rotational spring  
%   CONSTR(9)       Moment of Inertia for Rigid Bod y  
%   CONSTR(10)      Distance of isolator from cg on  Rigid Body  
%   CONSTR(11)      node number of connection  
%   CONSTR(12)      node number of connection  
% 
%   NOTE: CONSTR(11,12) are used only for connectio n between subsystems  
% 
%   type=1      simple spring, mass, damper connect ed at 1 point  
%   type=2      point mass, no inertia  
%   type=3      point mass with inertia  
% 
% tmp is 1 or 2. If it is 1 then constraint is at n ode  
% if it is 2 the constraint force crops up due to a ttachment  
% at other node.  
  
function  CL=constr_pt_act(CONSTR,s,tmp)  
  
global  dof;  
  
CL=zeros(dof);  
type=CONSTR(2);  
m=CONSTR(3); 
k=CONSTR(4);  
d=CONSTR(5);  
x_=CONSTR(6);  
y_=CONSTR(7);  
rot_=CONSTR(8);  
Ir=CONSTR(9);  
ax=CONSTR(10);  
  
%krots=20; %This makes frequencies too high  
krots=2; % For cabled beam model  
crots=0; % Rotational damping  
Ibar=1*10^12;  
  
if  type==1  
    if  CONSTR(1)==1,  
        Cy=m*s^2*(d*s+k)/(m*s^2+d*s+k);  
    elseif  CONSTR(1)==2,  
        Cy=(m*s^2+d*s)*k/(m*s^2+d*s+k);  
    end  
elseif  type==2  
    Cx=m*s^2;  
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    Cy=Cx;  
elseif  type==3  
    Cx=m*s^2;  
    Cy=Cx;  
    Crot=Ir*s^2;  
else  
    disp( '*** WARNING: Unknown Constraint type' )  
end  
  
if  y_==1  
    CL(2,1)=Cy;  
end  
if  rot_==1 && type==5  
    if  tmp==1  
    % This is added in for a rotational spring and damp er.  
    CL(1,2)=(crots*s+krots);  
    elseif  tmp==2  
    CL(1,2)=-(crots*s+krots);  
    else  
        disp( '*** WARNING: Unknown value for tmp-(rot)' )  
    end  
end  
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Cabled Beam Force Input 
% This is the force input file for the cabled beam model.  
global  node  
if  COUNT==0 
    for  iii=1:m,  
        if  ((BC_type(iii)==1) || (BC_type(iii)==0)),  
            eval([ 'Kap' ,num2str(iii), '=zeros(dof,1)' ]);  
        end  
    end  
    % Since there are 14 subsections, 14 vectors are ne eded.  
    Kap1=[0;0];  
    Kap2=[0;0];  
    Kap3=[0;0];  
    Kap4=[0;0];  
    Kap5=[0;0];  
    Kap6=[0;0];  
    Kap7=[0;0];  
    Kap8=[0;0];  
    Kap9=[0;0];  
    Kap10=[0;0];  
    Kap11=[0;0];  
    Kap12=[0;0];  
    Kap13=[0;0];  
    Kap14=[0;0];  
% This puts all values of Kap for each subsystem in to global matrix 
Kappa  
    Kappa=[];  
    for  iii=1:m,  
        eval([ 'Kappa= [Kappa Kap' ,num2str(iii), '];' ]);  
    end  
  
% These are the pointwise forces and are functions of frequency in Hz  
% In this case they are function of the parameter s =frequency  
  
    fptw_1=0/EIbeam*Len(1); % magnitude of pointwise force on subsystem  
    fpt1_wpos=.5;       % position of pointwise on subsystem  
    fptw_2=0/EIbeam*Len(2); % magnitude of pointwise force on subsystem  
    fpt2_wpos=.55;      % position of pointwise on subsystem  
     fptw_3=1e5/EIbeam*Len(3);  
    fpt3_wpos=.9999;        % position of pointwise on subsystem  
    fptw_4=0/EIbeam*Len(4);    % magnitude of pointwise force on 
subsystem  
    fpt4_wpos=.6;       % position of pointwise on subsystem  
    fptw_5=.15e5/EIbeam*Len(5); % magnitude of pointwise force on 
subsystem  
    fpt5_wpos=.65;      % position of pointwise on subsystem  
    fptw_6=0/EIbeam*Len(6); % magnitude of pointwise force on subsystem  
    fpt6_wpos=.67;      % position of pointwise on subsystem  
    fptw_7=0/EIbeam*Len(7);    % magnitude of pointwise force on 
subsystem  
    fpt7_wpos=.7;       % position of pointwise on subsystem  
    fptw_8=0/EIcable*Len(8);    % magnitude of pointwise force on 
subsystem  
    fpt8_wpos=.75;      % position of pointwise on subsystem  
    fptw_9=0/EIbeam*Len(9); % magnitude of pointwise force on subsystem  
    fpt9_wpos=.77;      % position of pointwise on subsystem  
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    fptw_10=0/EIbeam*Len(10);   % magnitude of pointwise force on 
subsystem  
    fpt10_wpos=.8;      % position of pointwise on subsystem  
    fptw_11=0/EIcable*Len(11);  % magnitude of pointwise force on 
subsystem  
    fpt11_wpos=.85;     % position of pointwise on subsystem  
    fptw_12=0/EIcable*Len(12);  % magnitude of pointwise force on 
subsystem  
    fpt12_wpos=.87;     % position of pointwise on subsystem  
    if  node==15||node==16;  
     fptw_13=0/EIcable*Len(13); % magnitude of pointwise force on 
subsystem  
    fpt13_wpos=.87;     % position of pointwise on subsystem  
    end  
    if  node==16;  
     fptw_14=0/EIcable*Len(14); % magnitude of pointwise force on 
subsystem  
    fpt14_wpos=.87;     % position of pointwise on subsystem  
    end  
  
    FPTw=[];  
    FPTwPos=[];  
    for  iii=1:m,  
        eval([ 'FPTw=[FPTw fptw_' ,num2str(iii), '];' ])  
        eval([ 'FPTwPos=[FPTwPos fpt' ,num2str(iii), '_wpos];' ])  
    end  
  
    %These are the nodal forces and are functions of fr equency in Hz  
    % In this case they are function of the parameter s  (frequency)  
    P1=[0;0];  
    P2=[0;0];  
    P3=[0;0];  
    P4=[0;0];  
    P5=[0;0];  
    P6=[0;0];  
    P7=[0;0];  
    P8=[0;0];  
    P9=[0;0];  
    P10=[0;0];  
    P11=[0;0];  
    P12=[0;0];  
    P13=[0;0];  
    P14=[0;0];  
    P15=[0;0];  
    P16=[0;0];  
    % This puts all nodal forces into a global matrix c alled P_Nodal  
    P_Nodal=[];  
    for  iii=1:node  
        eval([ 'P_Nodal= [P_Nodal P' ,num2str(iii), '];' ])  
    end  
    F_cstr=[0;0];  
    COUNT=COUNT+1;  
end  
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Cabled Beam Frequency Response Program 
% This file calculates frequency response functions  for the cabled 
beam.  
% 
% INPUT:  
%   BND_DOF Shows which DOF are constrained (node x  dof)  
%               dof = [wx  wy  theta]  
% 
% OUTPUT: 
%   alpha1  values for local displacement at positi on x over frequency  
%   range  
% Parameter List  
%   alpha       local displacement vector at positi on x and frequency s  
%   CON         Shows which subsystems are connecte d to which  
%               nodes. '0' means no subsystem  
%   cnt     dummy counting variable  
%   dof     the number of degrees of freedom of sub system  
%   endvalue    the number of subsystems at locatio n of response  
%   F       matrix built by governing pdes (n x n)  
%   filename    the name of file that holds initial ization data  
%   fptu        point force at subsystem in axial d irection  
%   fptu_pos    location of point force at subsyste m in axial direction  
%   fptw        point force at subsystem in transve rse direction  
%   fptw_pos    location of point force at subsyste m in axial direction  
%   freqend the end frequency for frequency respons e 
%   freqst  the start frequency for frequency respo nse  
%   G       Greens' function  
%   Ga_u        partioned G matrix  
%   Ga_w        partioned G matrix  
%   H       transfer function of Eta/Gamma  
%   Ha0     partitioned H matrix  
%   Ha1     partitioned H matrix  
%   incr        the incremental frequency for frequ ency response  
%   jj      dummy counting variable  
%   K       reduced global stiffness matrix at freq uency s  
%   Kap     vector used for BC calculation  
%   kk      dummy counting variable  
%               also current subsystem for response  
%   Len     length of each subsystems in vector  
%   Li      length of each subsystem  
%   M       Temporal-spatial operator for left end of subsystem          
%   N       Temporal-spatial operator for right end  of subsystem  
%   node        total number of nodes of system  
%   num_str string of current subsystem for respons e 
%   pts     the number of displacements of entire s ystem  
%   q       reduced global force vector at frequenc y s  
%   R0      Rotation Matrix at the left end of the subsystem for Forces  
%   R1      Rotation Matrix at the right end of the  subsystem for 
Forces  
%   rho     mass per unit length for a subsystem  
%   S0      Rotation Matrix for left end of subsyst em for displacements  
%   S1      Rotation Matrix for right end of subsys tem for 
displacements  
%   s       frequency = ii * sqrt(-1) * 2 * pi  
%   Sub_Con Shows which subsystems are connected to  which nodes (2 x m)  
%               A zero value implies somer sort of boundary condition  
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%   sub     subsystem for which response is taken  
%   tt      dummy counting variable  
%   Ugl     global displacement vector at frequency  s  
%   Ugl_0       global displacement vector at right  end for current 
subsystem  
%   Ugl_1       global displacement vector at left end for current 
subsystem  
%   u       reduced global displacement vector at f requency s  
%   X       location of node points in local coordi nates  
%   XX      Shows at each node how many subsystems are connected to it.  
%   x       position of response  
%   which_node  if response is required at a node i t gives node number  
% 
function  [omega,alpha1,alphatf]=freq_resp(BND_DOF)  
  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type;  
global  Len XY Ea EIgl rho filename num_ev BC_node_ty AXIA L pts X;  
global  CONSTRAIN Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPo s;  
global  COUNT evals t_alpha t_beta len_m;  
global  cv Acable Gsh kappag Tens rhogl;  
  
%Choose subsystem to evaluate response on.  
sub=3;  
x=1;  
x1=x;  
  
% The following are the locations of node points co nnected  
% to each subsystem. The start point of each subsys tem is 0 and the  
% endpoint is 1.  
  
X = zeros(node,m);  
         
tmp1=[0;1];  
for  ii=1:m,  
    tmp2=Sub_Con(:,ii);  
    X([tmp2],ii)=X([tmp2],ii)+tmp1;  
end  
  
if  (x==0) || (x==1)  
    which_node=Sub_Con(x+1,sub);    % node number of measured response  
end  
  
% Find M and N for  subsystem sub  
  
    M=Mgl(1:n,(sub-1)*n+1:n*sub);  
    N=Ngl(1:n,(sub-1)*n+1:n*sub);  
  
    [R0,R1,S0,S1]=Rotation_Calc(Rot(sub));  
    Li=Len(sub);  
  
%omega=logspace(0,3,500); % Original  
omega=logspace(0,2.7,500); %Last number indicates number of points, 
higher number = greater resolution  
% Initialize parameters from input file.  
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filenameforce=[ 'C:\Users\Kaitlin\Dropbox\CABLED BEAM 
MODEL\forces_cablebeam14.m' ];  
run(filenameforce);  
  
alpha1=zeros(dof,size(omega,2));  
  
for  iji=1:size(omega,2),  
    ii=omega(iji);  
  
    s=ii*i*2*pi;  
    snonimag=ii*2*pi;  
  
    [K,q]=assemble_K_fbfe_diffbeams14(ii);  
    u=inv(K)*q;  
  
    % Place reduced global position and forces at speci fic frequeny   
    %       into actual global position and force vecto r  
    Ugl=zeros(1,pts);  
  
    cnt=1;  
    for  jj=1:node,  
        for  kk=1:dof,  
            if  (BND_DOF(jj,kk) < 1)  
            eval([ 'Ugl(1,dof*(jj-1)+kk)=u(' ,num2str(cnt), ');' ])  
                cnt=cnt+1;  
            end  
        end  
    end  
  
    alpha=zeros(dof,1);  
  
    % Begin to calculate frequency response.  
    num_str=num2str(sub);  
    tmp1=dof*(Sub_Con(1,sub)-1)+1;  
    tmp2=dof*(Sub_Con(2,sub)-1)+1;       
         
    % Find the global displacements at each node at x=0 ,1 for subsystem  
    Ugl_0=Ugl(tmp1:tmp1+dof-1);  
    Ugl_1=Ugl(tmp2:tmp2+dof-1);  
  
    fptw=FPTw(1,sub);  
    fpt_wpos=FPTwPos(1,sub);  
  
    Kap=Kappa(1:dof,sub);  
     
    if  (x==0) || (x==1)  
        x1=X(which_node,sub);  
    end  
  
%Use Euler Bernoulli formulation for the aluminum b eam, shear 
hysteresis  
%model for the cable.  
if  sub>0 && sub <7.5;  
      F=Li*[        0               1   0   0;  
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                0               0   1   0;  
                0               0   0   1;  
    -rhogl(sub)*s*(s+t_alpha)/(EIgl(sub)*(1+t_beta* s))  0   0   0];  
elseif  sub > 7.5 && sub < 15;  
    Gofs=0;  
%Gofs=(25*s^2+9000*s)/(4*s^2+1*s-8000); % For 1X7  
%Gofs=(70*s^2+6000*s)/(5*s^2+2*s+2000);  % For 1X19  
%Gofs=(180*s^2+40000*s)/(2*s^2+2*s-9000);  % For 1X 48 
%Gofs=(140*s^2+60000*s)/(2*s^2+2*s-15000);  % For 7 X7 
    FShearHyst=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rhogl(sub)*s^2+cv*s)/(EIgl(sub)-
(1/s)*Gofs),0,((rhogl(sub)*EIgl(sub)*s^2)/(kappag*A cable*Gsh)+(cv*EIgl(
sub)*s)/(kappag*Acable*Gsh)-Tens)/(EIgl(sub)-(1/s)* Gofs),0];  
    F=FShearHyst;  
else  
    disp( 'F matrix not defined for subsection greater than 1 4 in 
freq_resp' )  
end  
  
    eFs=expm(F);  
  
    %       Find alpha due to displacements  
  
    H=expm(F*x1)*inv(M+N*eFs);  
     
    Ha0=H(1:n2/2,1:n/2);  
    Ha1=H(1:n2/2,n/2+1:n);  
  
    if  (BC_node_ty(Sub_Con(1,sub))>0),       
        alpha=alpha+Ha0*Kap+Ha1*S1*Ugl_1';  
    elseif  (BC_node_ty(Sub_Con(2,sub))>0),       
        alpha=alpha+Ha0*Kap+Ha1*S0*Ugl_0';  
    else  
        alpha=alpha+Ha0*S0*Ugl_0'+Ha1*S1*Ugl_1';  
    end  
  
    %       Find alpha due to pointwise forces   
    if  abs(fptw) > 0  
        if  fpt_wpos>=x1  
            Gw=-H*N*expm(F*(1-fpt_wpos));  
        else  
            Gw=H*M*expm(-F*fpt_wpos);  
        end  
        Ga_w=Gw(1:n2/2,n);  
        alpha = alpha + Ga_w*fptw;  
    end  
  
% Displacement of Beam  
        alpha1(1:dof,iji)=alpha;  
        alphatf(1:dof,iji)=alpha1(1:dof,iji)/FPTw(1 ,sub);  
end  
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Cabled Beam Mode Shape Program 
% This program finds the mode shapes of the cabled beam systems.  
function  mode_shape_fbfe(BND_DOF)  
  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type Len XY 
Ea Ei rho rhogl Eigl  
global  filename BC_node_ty num_ev len_m t_alpha t_beta CO NSTRAIN;  
global  EIgl;  
% Load eigenvalues from eigen_find program.  
load([ 'C:\Users\Kaitlin\Dropbox\CABLED BEAM 
MODEL\evalues_cabledbeam.mat' ])  
nosub=[];  
YYpos=[];  
  
pts=node*dof;  
  
%   Redefine K_eval Matrices to Ki matrices for eac h mode  
%   where i ranges from 1 to num_ev  
  
for  ii=1:num_ev,  
    b=pts-can;  
    c=b*(ii-1)+1;  
    eval([ 'K' ,num2str(ii), '=K_eval(1:b,c:c+b-1);' ])  
end  
  
%   This part is finding the nontrivial sol'n of K( jlam)u(jlam)=0  
for  ii=1:num_ev,  
    eval([ 'u' ,num2str(ii), '=null(K' ,num2str(ii), ');' ])])  
     if  isempty(eval([ 'u' ,num2str(ii)]))  
        eval([ '[a1,b1]=eig(K' ,num2str(ii), ');' ])  
        c=min(abs(diag(b1)));  
        d=find(c==abs(diag(b1)));  
        if  size(d,1) > 1  
            d=d(1);  
            a1=a1(:,d);  
            eval([ 'u' ,num2str(ii), '=a1(1:b,1);' ])  
        else  
            eval([ 'u' ,num2str(ii), '=a1(1:b,d);' ])  
        end  
    end  
end  
  
%   This routine determines if subsystems are not p iecewise continuous.  
discont=1;  
for  ii=2:m,  
    if  (Sub_Con(1,ii) == Sub_Con(2,ii-1))  
        discont = [discont 0];  
    else  
        discont = [discont 1];  
    end  
end  
no = size(find(discont==1),2);  
  
%   Find the number of subsytems in each free subsy stem  
num=1;  
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for  ii=2:size(discont,2),  
    if  discont(ii)==1  
        nosub=[nosub num];  
        num=1;  
    else  
        num=num+1;  
    end  
end  
nosub=[nosub num];  
  
% Calculate displacements (i.e. mode shapes for eac h eigenvalue)  
incr=.01;  
  
for  ii=1:num_ev,  
    x_pos=[];  
    y_pos=[];  
    x_loc=[];  
    y2_pos=[];  
  
    Ugl=zeros(1,pts);  
    cnt=1;  
  
% Place reduced global position at specific eigenva lue into  
%       actual global position vector  
    for  jj=1:node,  
        for  kk=1:dof,  
            if  (BND_DOF(jj,kk) < 1)  
                eval([ 'Ugl(1,dof*(jj-
1)+kk)=u' ,num2str(ii), '(' ,num2str(cnt), ');' ])  
                cnt=cnt+1;  
            end  
        end  
    end  
         
% Find mode shape for each subsystem and plot it  
    for  kk=1:m,  
        alpha=[];  
        tmp1=dof*(Sub_Con(1,kk)-1)+1;  
        tmp2=dof*(Sub_Con(2,kk)-1)+1;  
         
    % Find the global displacements at each node at x=0 ,1 for subsystem  
        Ugl_0=Ugl(tmp1:tmp1+dof-1);  
        Ugl_1=Ugl(tmp2:tmp2+dof-1);  
  
    % FInd M and N for each subsystem  
        [M,N]=MN_Calc(BC_type(kk),kk,EIgl(kk),Ea);  
  
        [R0,R1,S0,S1]=Rotation_Calc(Rot(kk));  
        Li=Len(kk);  
        s=evals(ii)*i*2*pi;  
% This program uses Euler-Bernoulli formulation for  the aluminum beam 
and  
% shear hysteresis model for the cable.  
if  num > 0 && num < 7.5;  
      F=Li*[        0               1   0   0;  
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                0               0   1   0;  
                0               0   0   1;  
    -rhogl(num)*s*(s+t_alpha)/(EIgl(num)*(1+t_beta* s))  0   0   0];  
elseif  num > 7.5 && num < 15;  
    Gofs=0;  
%Gofs=(25*s^2+9000*s)/(4*s^2+1*s-8000); % For 1X7  
%Gofs=(70*s^2+6000*s)/(5*s^2+2*s+2000);  % For 1X19  
%Gofs=(180*s^2+40000*s)/(2*s^2+2*s-9000);  % For 1X 48 
%Gofs=(140*s^2+60000*s)/(2*s^2+2*s-15000);  % For 7 X7 
  
    FShearHyst=Li*[0,1,0,0;0,0,1,0;0,0,0,1;-
(rhogl(num)*s^2+cv*s)/(EIgl(num)-
(1/s)*Gofs),0,((rhogl(num)*EIgl(num)*s^2)/(kappag*A cable*Gsh)+(cv*EIgl(
num)*s)/(kappag*Acable*Gsh)-Tens)/(EIgl(num)-(1/s)* Gofs),0];  
    F=FShearHyst;  
else  
    disp( 'F matrix not defined for subsection greater than 1 4' )  
end  
  
        eFs=expm(F);  
        invers=inv(M+N*eFs);  
  
        XI=0:incr:1;  
  
    % Find mode shape along span of subsystem  
        for  xi=XI,  
            H=expm(F*xi)*invers;  
         
            Ha0=H(1:n2/2,1:n/2);  
            Ha1=H(1:n2/2,n/2+1:n);  
     
            if  (BC_node_ty(Sub_Con(1,kk))>0),        
                alpha=[alpha Ha1*S1*Ugl_1'];  
     
            elseif  (BC_node_ty(Sub_Con(2,kk))>0),        
                alpha=[alpha Ha1*S0*Ugl_0'];  
            else  
                alpha=[alpha Ha0*S0*Ugl_0'+Ha1*S1*U gl_1'];  
            end  
        end  
         
% Need to find mode shape in global coordinates for  plotting  
        x_beg=XY(1,Sub_Con(1,kk));  
        y_beg=XY(2,Sub_Con(1,kk));  
  
        trans=inv(S1)*alpha;  
        cc=size(trans,2);  
  
% These find the exact x,y locations and displaceme nts  
        Lc=Li*cos(Rot(kk));  
        Ls=Li*sin(Rot(kk));  
        if  Ls==0         
            Y_pos=ones(1,cc)*y_beg+trans(1,:);  
        else  
            Y_pos=(y_beg:(Ls)/(cc-1):Ls+y_beg)+tran s(1,:);       
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        end  
        if  Lc==0,  
            X_pos=ones(1,cc)*x_beg+trans(1,:);  
        else  
            X_pos=(x_beg:(Lc)/(cc-1):Lc+x_beg);  
        end  
  
% This routine ensures that subsystems are added to gether correctly if 
not  
% connected.  
        if  discont(kk) == 1  
            x_pos=[x_pos X_pos];  
            y_pos=[y_pos Y_pos];  
        else  
            tmp=size(X_pos,2);  
            x_pos=[x_pos X_pos(2:tmp)];  
            y_pos=[y_pos Y_pos(2:tmp)];  
        end  
    end  
     
% Plot mode shape for eigenvalue number ii  
    sz_of_x=size(XI,2);  
    sz(1)=0;  
    izz=1;  
    smnosub=0;   
     
    for  ijk=1:no,  
        sz(ijk+1) = sz_of_x*nosub(ijk)-nosub(ijk)+1 ;  
        smsz=sum(sz(1:ijk));  
        y1=y_pos(1+smsz:sz(ijk+1)+smsz);  
        x1=x_pos(1+smsz:sz(ijk+1)+smsz);  
  
    % Make all modes start out to be positive  
        if  real(y1(2))<0  
            y1=-y1;  
        end  
     
        plot(x1,y1)  
        y2_pos=[y2_pos y1];  
        hold on 
  
    % Find spring attachment between subsystems  
        begno=Sub_Con(1,1+smnosub);  
        endno=Sub_Con(2,smnosub+nosub(ijk));  
        for  iii=1:nosub(ijk)+1,          
            if  CONSTRAIN(iii,1)~=0  
                tmp=find(x1==XY(1,iii));  
                if  tmp==[]  
                    disp( 'Increment too large' )  
                end  
                if  ijk~=1  
                    tmp=tmp+smsz;  
                end  
                x_loc=[x_loc tmp];  
            end  
        end  
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        smnosub=smnosub+nosub(ijk);  
% Boundary conditions marked to differentiate BC ty pes  
        for  iii=1:2  
            if  iii==1  
                xbc=x1(1);  
                ybc=y1(1);  
            else  
                xbc=x1(size(x1,2));  
                ybc=y1(size(y1,2));  
            end  
            if  BC_type(izz)==2  
                plot(xbc,ybc, 'go' )  
            elseif  BC_type(izz)==1 || BC_type(izz)==3  
                plot(xbc,ybc, 'ro' )  
            end  
            izz=izz+1;  
        end  
    end  
  
    tmp=size(x_loc,2)/2;  
    % Plot connection point locations  
    zvec=0;  
    for  iii=1:tmp,  
        
plot(XY(1,2),zvec, 'mo' ,XY(1,3),zvec, 'mo' ,XY(1,5),zvec, 'mo' ,XY(1,6),zvec
, 'mo' ,XY(1,7),zvec, 'mo' )  
    end   
     
    title([ 'Mode' ,num2str(ii)])  
    xlabel( 'Distance along Beam' )  
    ylabel( 'Eigenfunction' )  
    legend([ 'Mode Shape at ' ,num2str(evals(ii)), ' Hz' ])  
  
    YYpos=[YYpos;y2_pos];  
    figure  
end  
% This is used for MAC Calculation.  
%AddedModes=[AddedModes;y_pos];  
    %xmodeplot=x_pos;  
  
eval([ 'save modes_ evals x_pos YYpos discont' ])  
 

Stiffness Matrix Reduction Function 
% This file determines which displacements need to be determined by  
% creating an ID matrix.  If a node has a boundary condition, then the  
% displacements at that node can be neglected and r emoved from the 
global  
% stiffness matrix.  
  
function  ID=identify(BND_DOF,pts)  
  
global  node dof can AXIAL  
  
    cnt1=0;  
    cnt2=1;  
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    for  ii=1:node,  
        for  jj=1:dof,  
            if  BND_DOF(ii,jj) == 1  
                ID(ii,jj)=pts-cnt1;  
                cnt1=cnt1+1;  
            else  
                ID(ii,jj)=cnt2;  
                cnt2=cnt2+1;  
            end  
        end  
    end  
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Boundary Condition Function 
% Calculation of boundary condition matrices for ea ch subsystem.  
% 
% INPUT 
%       B_user  User supplied BC (optional)  
%       Ei      Flexural Rigidity for beam in bendi ng: E*I  
%       sub     Subsystem in question  
%       type    Numerical value for type of BC  
% 
% OUTPUT 
%       M       Temporal-spatial operator for left end of subsystem          
%       N       Temporal-spatial operator for right  end of subsystem  
% 
% type = 0      No Boundary Condition  
% type = 1      Clamped Boundary Condition  
% type = 2      Free Boundary Condition  
% type = 3      Pinned Boundary Condition  
% 
  
% PARAMETER LIST 
% 
%       B_cl        the boundary conditon matrix fo r clamped end  
%       B_fr        the boundary conditon matrix fo r free end  
%       B_pin       the boundary conditon matrix fo r pinned end  
%       B_sl        the boundary conditon matrix fo r sliding end  
%       M_noBC  M matrix when subsystem has no boun dary conditions  
%       N_noBC  N matrix when subsystem has no boun dary conditions  
%       n       the order of the subsystem  
%       Sub_Con Shows which subsystems are connecte d to which nodes (2 
x m)  
%                   A zero value implies somer sort  of boundary 
condition  
%       XX      Shows at each node how many subsyst ems are connected to 
it.  
function  [M,N]=MN_Calc(type,sub,Ei)  
  
global  n1 n2 n Sub_Con XX BC_type BC_node_ty;  
  
    B_cl=[1 0 0 0;0 1 0 0];  
    B_fr=[0 0 Ei 0;0 0 0 -Ei];  
    B_pin=[1 0 0 0;0 0 Ei 0];  
     
    % The following are M,N for internal nodes (no BCs)  
    M_noBC=zeros(n);  
    M_noBC(n1/2+1:n/2,n1+1:n1+n2/2)=eye(n2/2);  
  
    N_noBC=zeros(n);  
    N_noBC(n/2+n1/2+1:n,n1+1:n1+n2/2)=eye(n2/2);  
     
    %       Select B for the subsystem  
    if  (type==0)  
        M=M_noBC;  
        N=N_noBC;  
    elseif  (type==1)  
        B=B_cl;  
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    elseif  (type==2)  
        B=B_fr;  
    elseif  (type==3)  
        B=B_pin;  
    else  
        disp( ' *** Warning **** Unknown Type for Boundary Condit ion' )  
        return  
    end  
     
    %  Calculate M, N given the type of Boundary Condit ion  
    if  (type> 0)  
        if  (BC_node_ty(Sub_Con(1,sub)) > 0) && 
(BC_node_ty(Sub_Con(2,sub))==0)  
            M=[B;zeros(n/2,n)];  
            N=N_noBC;  
        elseif  (BC_node_ty(Sub_Con(2,sub)) > 0) && 
(BC_node_ty(Sub_Con(1,sub)) ==0)  
            M=N_noBC;  
            N=[B;zeros(n/2,n)];  
        end  
    end  
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Rotation Function 
% This .m file will calculate the rotation matrices  for a subsystem  
% at end 1 and 2. End 1 is the left end of the subs ystem and end 2  
% is the right end of the subsystem.  
% 
% INPUT 
%   rot     Rotation angle in radians  
% 
% OUTPUT 
%   R1      Rotation Matrix at the left end of the subsystem for Forces  
%   R2      Rotation Matrix at the right end of the  subsystem for 
Forces  
%   S1      Rotation Matrix for left end of subsyst em for displacements  
%   S2      Rotation Matrix for right end of subsys tem for 
displacements  
  
function  [R1,R2,S1,S2]=Rotation_Calc(rot)  
ct=cos(rot);  
st=sin(rot);  
  
% These are rotation matrices for forces in x,momen t in z and  
% force in y  
R1=[-1 0;0 -ct];  
R2=[1 0;0 ct];  
% These are the rotation matrices for displacements  in x (u),  
% y (w) and theta (w') directions  
S1=[ct 0;0 1];  
S2=[ct 0;0 1];  
 

 
 
 
 
 
Determinant Function 
% This file finds the determinant of the global sti ffness matrix for a  
% given frequency input.  
function  determ=tmp(ij)  
K=assemble_K(ij);  
determ=det(K);  
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Eigenvalue Solver 
% Function to identify and save eigenvalues of the cable system  
  
% INPUT 
%   freqst  the first guess for the frequency range  start value  
%   freqend the last guess for the frequency range end value  
%   num_ev  the number of desired eigenvalues  
% OUTPUT 
%   Evals       vector of eigenvalues  
% 
function  evals=eigen_find(freqst,freqend,num_ev)  
  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl;  
global  filename;  
  
disp( 'Calculating Eigenvalues' )  
  
%   Search through the initial frequency range to g et an  
%   estimate of the evalues. The search routine loo ks for a  
%   minimum value whcih may be a possible candidate  for an  
%               eigenvalue  
  
incr=1;  
p=[];  
for  ii=freqst:incr:freqend+2,  
    K=assemble_K(ii);  
    p=[p abs(det(K))];  
end  
  
omega=[freqst:incr:freqend+2];  
  
col_p=size(p,2);  
a=p(1:col_p-2);  
b=p(2:col_p-1);  
c=[p(3:col_p)];  
  
g=omega(find(b<a & b<c))  
  
% if the desired number of eigenvalue is not within  the specified  
% range above, this loop will find guesses for the remaining evals  
% There may be cass where an initial guess is nowhe re near the  
% eval. This may lead to two guess going to the sam e eval. To  
% hopefully bypass these occurences, the number of initial guess  
% for the evals are incremented by 3  
P1=[];  
w1=[];  
while (size(g,2)<(num_ev+3))  
    freqst=freqend+incr;  
    freqend=freqend+100;  
    for  ii=freqst:incr:(freqend+2)  
        K=assemble_K(ii);  
        P1=[P1 abs(det(K))];  
        w1=[w1 ii];  
    end  
    col_P1=size(P1,2);  
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    a=P1(1:col_P1-2);  
    b=P1(2:col_P1-1);  
    c=P1(3:col_P1);  
    g1=w1(find(b<a & b<c));  
    g=[g g1];  
    g1=[];  
    P1=[];  
    w1=[];  
end  
  
% The Matlab routine fsolve is used to find the val ues of  
% the eigenvalues which make the determinant of the  stiffness  
% matrix zero. THe following will cycle through unt il num_ev  
% unique evals are found.  
  
disp( 'Solving for Evalues' )  
ii=0;  
tmp=1;  
K_eval=[];  
  
while (tmp<=num_ev)  
    ev=fsolve( 'tmp' ,g(ii+1))  
    if  abs(ev) < 1e-3  
        disp( 'Encountered eigenvalue < 1e-3, skipping ....' )  
    elseif  ev <0  
        disp( 'Encountered negative eigenvalue, discarding ...' )  
    else  
%   This if statement ensures that the eigenvalue f ound is an actual  
% solution (since there can be a case where you get  a minimum due to  
% numerical deficiencies but det(lam) is still larg e; fixed this by  
% checking that the determinant passes through zero  at the eigenvalue.  
  
            if  det(assemble_K(ev-0.01))<0 && det(assemble_K(ev+0. 01))>0  
                evals(tmp)=ev;  
                K_eval=[K_eval assemble_K(ev)];  
                tmp=tmp+1;  
            elseif  det(assemble_K(ev-0.01))>0 && 
det(assemble_K(ev+0.01))<0  
                evals(tmp)=ev;  
                K_eval=[K_eval assemble_K(ev)];  
                tmp=tmp+1;  
            end  
  
    end  
    ii=ii+1;  
end  
% This saves the eigenvalues for use in mode shape calculation.  
eval([ 'save evalues_bmcabletest evals K_eval' ])  
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Output File to Run for Eigenvalues, Frequency Response Functions, and Mode Shapes 
% This is the top level file that runs all cable or  cabled beam 
functions  
% required to find the eigenvalues, mode shapes, or  frequency response  
% function of a system, all of which can be determi ned by running this  
% program.  
  
% Based on a program originally created by Dino Sci ulli, 1996, altered 
for  
% cable and cabled beam shear beam models by Kaitli n Spak, 2014.  
  
clear all  
  
global  node m dof n1 n2 n can XX CON ID Sub_Con qgl Rot B C_type pts;  
global  Len XY Ea Ei rho filename num_ev BC_node_ty AXIAL CONSTRAIN A 
kappag Gsh cv c Tens;  
global  Mgl Ngl Kappa P_Nodal F_cstr FPTw FPTwPos;  
global  COUNT evals len_m t_alpha t_beta;  
global  AddedModes;  
  
% Initialization of Parameters  
CONSTRAIN=[];  
COUNT=0; 
  
% This is where the selection is made for either th e two-point cable,  
% four-point cable, or cabled beam model.  
% For two-point cable  
filename=[ 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca ble 
2Pinned Model\bmcable.m' ];  
% For four-point cable  
%filename=['C:\Users\Kaitlin\Desktop\Cable Data In Process\Test 2  
%Data\Cable 4Pt Model\bmcable.m'];  
run(filename);  
  
n1=0;               % nth order linear pde for axial vibrations  
n2=4;               % nth order linear pde for bending vibrations  
n=n1+n2;            % nth order linear pde (4:bendng, 2:axial)  
pts=node*dof;       % the number of displacements of entire system  
  
% Find the length and rotation angle of each subsyt em wrt horizontal  
% Find M and N matrices for each subsystem  
Mgl=[];  
Ngl=[];  
  
for  kk=1:m,      
    tmp1=Sub_Con(1,kk);  
    tmp2=Sub_Con(2,kk);  
    dx=XY(1,tmp2)-XY(1,tmp1);  
    dy=XY(2,tmp2)-XY(2,tmp1);  
    Len=[Len sqrt(dx^2+dy^2)];  
    Rot=[Rot atan2(dy,dx)];  
  
    [Mtmp,Ntmp]=MN_Calc(BC_type(kk),kk,Ei,Ea);  
    Mgl=[Mgl  Mtmp];  
    Ngl=[Ngl Ntmp];  
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end  
%   Create ID Matrix for reducing global stiffness matrix  
ID=identify(BND_DOF,pts);  
  
% Build constraint matrix for inclusion of attachme nt points  
  
a=size(CONSTRAIN,1);  
if  a < node  
    CONSTRAIN=[CONSTRAIN; zeros(node-a,12)];  
elseif  a==0  
    CONSTRAIN=zeros(node,12);  
else  
    disp( '*** Warning CONSTRAIN matrix is too big: dimension  should be 
(node x 12)' );  
end  
  
% Load input forces for appropriate model.  
% For two-poitn cable  
filenameforce=[ 'C:\Users\Kaitlin\Desktop\Pinned Cables Feb 2014\Ca ble 
2Pinned Model\forces_bmcable.m' ];  
% For four-point cable  
%filenameforce=['C:\Users\Kaitlin\Desktop\Cable Dat a In Process\Test 2 
Data\Cable 4Pt Model\forces_bmcable.m'];  
run(filenameforce);  
  
% Choose frequency range of interest.  
freqst=1;  
freqend=500;  
incr=1;  
  
% Calculation of eigenvalues, mode shapes, and FRFs .  
  
   evals=eigen_find(freqst,freqend,num_ev)  
   mode_shapeWMAC(BND_DOF);  
  
% hold on    
figure(num_ev+10) %Ensures that the mode_shapes are not overwritten b y 
new plots.  
[a,alpha1]=freq_resp(BND_DOF,1);  
% [a,alpha1,alphatf]=freq_resp(BND_DOF,1); % For ca bled beam transfer  
% function  
g=(20*log10((a/(2*pi)).*abs(alpha1(1,:)))); % For cable  
h=(20*log10((a/(2*pi)).*abs(alphatf(1,:)))); % For cabled beam  
%semilogx(a,g,'b') % Alternative plotting form  
plot(a,g, 'c' , 'LineWidth' ,2) %Use with "hold on" just prior to plot over 
cable exp data  
%plot(a,h,'c','LineWidth',2) %Use with "hold on" ju st prior to plot 
over cabled beam exp data  
%axis([0 160 -60 10])  
xlabel( 'Frequency (Hz)' )  
ylabel( 'Magnitude (dB)' )  
legend( 'Cable Model' )  
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Appendix D. MATLAB Program Files for Modal Assurance Criterion 
 
These are the representative files for data processing of experimental data and modal 

assurance criterion calculation from the model mode shapes found using the mode_shape 

files of Appendix C. 

 
Mode Shape From PSV Scan for Four-Point Cable 
% Kaitlin Spak  
% Mar 17, 2014  
% M File to Get Mode Shapes from Experimental Data for MAC  
% This file is for cables attached at FOUR points  
cabletype=749;  
%Choose 7, 19, 48, 749 or 45 for tool steel or 11 f or acetron  
scanum=2;  
%Choose 1 through 3 for full scan mode shapes  
len1X7=0.7692;  
len1X19=0.7782;  
len1X48=0.7744;  
len7X7=0.7744;  
  
if  cabletype==7;  
    if  scanum==1;  
    % Baked, Scan w Rigid Stinger, Scan 1  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar17_1X7D_4Pt_Scan1_mtlbScn.mat' ];  
    elseif  scanum==2;  
    % Baked, Scan w Tensioned String, Scan 2  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar18_1X7D_4Pt_Scan2_mtlbScn.mat' ];  
    elseif  scanum==3;  
    % Baked, Scan w Tensioned String, Scan 3  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar19_1X7D_4Pt_Scan3_mtlbScn.mat' ];    
    end  
    LENGTH=len1X7;  
    disp( '1X7 Cable chosen' )  
 elseif  cabletype==19;  
    if  scanum==1;  
    % Baked, Scan w Rigid Stinger, Scan 1  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar17_1X19B_4Pt_Scan1_mtlbScn.mat' ];  
    elseif  scanum==2;  
    % Baked, Scan w Tensioned String, Scan 2  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar18_1X19B_4Pt_Scan2_mtlbScn.mat' ];  
    elseif  scanum==3;  
    % Baked, Scan w Tensioned String, Scan 3  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar19_1X19B_4Pt_Scan3_mtlbScn.mat' ];  
     
    end  
    LENGTH=len1X19;  
    disp( '1X19 Cable chosen' )  
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elseif  cabletype==48;  
    if  scanum==1;  
    % Baked, Scan w Rigid Stinger, Scan 1  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar17_1X48D_4Pt_Scan1_mtlbScn.mat' ];  
    elseif  scanum==2;  
    % Baked, Scan w Tensioned String, Scan 2  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar18_1X48D_4Pt_Scan2_mtlbScn.mat' ];  
    elseif  scanum==3;  
    % Baked, Scan w Tensioned String, Scan 3  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar19_1X48D_4Pt_Scan3_mtlbScn.mat' ];  
    end  
    LENGTH=len1X48;  
    disp( '1X48 Cable chosen' )  
elseif  cabletype==749;  
    if  scanum==1;  
    % Baked, Scan w Rigid Stinger, Scan 1  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar17_7X7A_4Pt_Scan1_mtlbScn.mat' ];  
    elseif  scanum==2;  
    % Baked, Scan w Tensioned String, Scan 2  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar18_7X7A_4Pt_Scan2_mtlbScn.mat' ];  
    elseif  scanum==3;  
    % Baked, Scan w Tensioned String, Scan 3  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar19_7X7A_4Pt_Scan3_mtlbScn.mat' ];  
    end  
    LENGTH=len7X7;  
    disp( '7X7 Cable chosen' )  
elseif  cabletype==11;  
    if  scanum==1;  
    % Acetron, Scan w Rigid Stinger, Scan 1  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar17_Acetron_4Pt_Scan1_mtlbScn.mat' ];  
    end  
    LENGTH=len1X48;  
    disp( 'Acetron Rod chosen' )  
elseif  cabletype==45;  
    if  scanum==1;  
    % Tool Steel, Scan w Rigid Stinger, Scan 1  
    filename=[ 'C:/Users/Kaitlin/Desktop/Cable Mode 
Scans/Mar17_TS_4Pt_Scan1_mtlbScn.mat' ];  
    end  
    LENGTH=len7X7;  
    disp( '7X7 Cable chosen' )  
end  
  
load(filename)  
  
% % % This figure shows all of the scan point FRFs to determine 
frequencies to look at.  
% figure(20)  
% plot(xx.H2veldB,yy.H2veldB)  
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% % % This figure takes the average of all points f or an overall FRF.  
% figure(21)  
% plot(xx.H2veldB,mean(yy.H2veldB))  
% % And this figure is the driving point  
figure(22)  
plot(xx.H2veldB,yy.H2veldB(30,:))  
  
if  cabletype==7;  
    
[pks,locs]=findpeaks((yy.H2veldB(30,:)), 'NPEAKS' ,6, 'MINPEAKDISTANCE' ,15
);  
elseif  cabletype==19;  
    
[pks,locs]=findpeaks((yy.H2veldB(30,:)), 'NPEAKS' ,10, 'MINPEAKDISTANCE' ,1
0);  
elseif  cabletype==48;  
    
[pks,locs]=findpeaks((yy.H2veldB(30,:)), 'NPEAKS' ,18, 'MINPEAKDISTANCE' ,1
0);  
elseif  cabletype==749;  
     
[pks,locs]=findpeaks((yy.H2veldB(30,:)), 'NPEAKS' ,10, 'MINPEAKDISTANCE' ,1
0);  
end  
  
% These are the frequencies to look at  
FreqVals=xx.H2(1,locs)  
  
% These are the point locations  
Numpoints=size(yy.H2);  
dist=LENGTH/(Numpoints(1)-1);  
xvals=0:dist:LENGTH;  
  
YValues=[];  
pvf=[];  
Iyf=[];  
for  ii=1:length(locs)  
    figure(ii)  
     
    normval=max(abs((yy.H2(:,locs(ii)).*sind(yy.Phs (:,locs(ii))))));  
    yvalspn=(yy.H2(:,locs(ii)).*sind(yy.Phs(:,locs( ii))))./normval;  
    yvalsp=(yy.H2(:,locs(ii)).*sind(yy.Phs(:,locs(i i))));  
  
    plot(xvals,yvalspn)  
    title([ 'Mode Shape at f=' ,num2str(xx.H2(1,locs(ii))), ' Hz' ])  
     
    YValues=[YValues,yvalspn];  
     
    xsm=0:0.01:LENGTH;  
     
    % Smoothing and Interpolating Section - for observa tion only, data 
used  
    % as raw for MAC comparison  
     Iy = interp1(xvals(:),yvalspn(:),0:.01:LENGTH) ;  
     Iyf=[Iyf;Iy];  
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hold on 
plot(0:.01:LENGTH,Iy, 'ro' )  
plot(0:.01:LENGTH,smooth(Iy,10), 'g' )  
  
p = polyfit(xvals(:),yvalspn(:),10);  
pv = polyval(p,0:.01:LENGTH);  
  
pvf=[pvf;pv];  
  
hold on 
plot(0:.01:LENGTH,pv, 'm' )  
legend( 'Raw Exp Data' , 'Interpolated' , 'Smoothed' , 'PolyFit' )  
end  
% This command will save the mode shape vector info rmation for use in 
the  
% MAC program.  
%eval(['save expmodes_4PT_',filename(43:length(file name)),' xvals 
YValues Iy pv FreqVals'])  
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Modal Assurance Criterion for Cable Model 
% MAC Calculations; this program takes in experimen tally determined 
mode 
% shapes and model mode shapes, processes them ,and  prepares a modal  
% assurance criterion.  
% First, run "ModeShapeFromPSVScanfor..." (Rod, Cab le, etc),  
% saves xvals, YValues, Iyf pvf  
% SECOND, run TF with mode_shapeWMAC to get "AddedM odes" file - first 
row is the x  values, subsequent rows are each mode.  
% Must manually load expmodes_filename .mat files f or experimental mode  
% shapes- make sure that they have YValues  
  
cabletype=749;  
%Must choose 7, 19, 48 or 749;  
numberofmodelmodes=6;  
numberofexperimentalmodes=12;  
  
clear phiExp  phiModel  phiMod  k MAC 
  
indexy=size(YValues);  
 for  i=1:indexy(1,2);  
phiExp(i,:)=YValues(:,i);  
% This gives the experimental mode shapes where eac h row is a mode.  
 end  
  
for  j=1:numberofmodelmodes;  
phiModel(j,:)=AddedModes((1+j),:); % 
% AddedModes is a number of modes+1 by 4001 array- using j turns it 
into a  
% j by 4001 vector  
end  
  
% This part finds the locations of the model data t o match the number 
of  
% points from polytec scan.  
if  cabletype==7;  
for  k=1:47  
%      locsMod(1,length(xvals))=zeros(1,length(xval s));  
%      locsMod(1)=0;  
locsfinder=find(AddedModes(1,:) <= xvals(k));  
nav=size(locsfinder);  
locsMod(k)=locsfinder(nav(2));  
end  
end  
  
if  cabletype==19;  
for  k=1:47  
locsfinder=find(AddedModes(1,:) <= xvals(k));  
nav=size(locsfinder);  
locsMod(k)=locsfinder(nav(2));  
end  
end  
  
if  cabletype==48;  
for  k=1:47  
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locsfinder=find(AddedModes(1,:) <= xvals(k));  
nav=size(locsfinder);  
locsMod(k)=locsfinder(nav(2));  
end  
end  
  
if  cabletype==749;  
for  k=1:47  
locsfinder=find(AddedModes(1,:) <= xvals(k));  
nav=size(locsfinder);  
locsMod(k)=locsfinder(nav(2));  
end  
end  
  
% This figures out the analytical y values to match  the experimental  
% points.  
for  jk=1:numberofmodelmodes;  
for  kj=2:length(xvals)  
phiMod(jk,kj)=AddedModes(jk+1,locsMod(kj))  
end  
end  
phiMod=fliplr(phiMod); % The laser vibrometer numbered the points in 
the  
% opposite direction than the model does, model is flipped to match  
% experimental data.  
  
 mdpts=size(phiMod)  
 mdptsexp=size(phiExp)  
 for  k=1:mdpts(1);  
 for  j=1:6;  
 iin=[1,2,3,4,5,7,8] % Choose which experimental vectors are bending 
modes.  
 i=iin(j);  
 % This is the actual MAC calculation.  
 numer=(abs(sum(phiExp(i,:).*conj(phiMod(k,:)))))^2 ;  
denomexp=sum(phiExp(i,:).*conj(phiExp(i,:)));  
denommod=sum(phiMod(k,:).*conj(phiMod(k,:)));  
  
denom=dot(denomexp,denommod);  
  
MAC(k,j)=numer/denom;  
end  
 end  
 ExpFreqs=FreqVals  
 ModFreqs=evals  
% This plots the MAC as a bar graph.  
figure(21)  
bar3cK(MAC)  
xlabel( 'Experimental Modes' )  
ylabel( 'Model Modes' )  
colorbar  
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Modal Assurance Criterion for Cabled Beam Model 
% MAC Calculations; this program takes in experimen tally determined 
mode 
% shapes and model mode shapes, processes them ,and  prepares a modal  
% assurance criterion for a cabled beam.  
  
% First, run "ModeShapeFromPSVScanfor..." (Rod, Cab le, whatever), saves  
% xbeam, xcab, yvalspn YValues FreqVals  
% SECOND, run TF with mode_shape_fbfe to get modes_ .mat file  
% Loading this gives you x_pos and YYpos  
% where x_pos(1,1:701) is the beam x position  
% and x_pos(1,702:1402) is the cable x position  
% and YYpos(mode,1:701) or YYpos(mode,702:1402) is the beam or cable 
mode 
% shape for the chosen mode.  
  
% Must manually load expmodes_filename .mat files f or experimental mode  
% shapes- make sure that they have YValues  
  
% MAC CALC 
cabletype=11;  
%Must choose 7, 19, 48 or 749;  
numberofmodelmodes=size(evals,2);  
numberofexpmodes=size(YValues);  
  
clear phiExp  phiModelBeam  phiModelCab  phiModBeam phiModCable  k MAC 
locsMod  
clear bmrw1 bmrw2 cabrw  bmrw3 bmrw4 
  
YValuest=transpose(YValues);  
  
for  ii=1:numberofexpmodes(2);  
if  length(yvalspn)==125;  
      % xbeam has 25 points  
        pt=25;  
    bmrw1(ii,1:pt)=YValuest(ii,1:25)  
    bmrw2(ii,1:pt)=YValuest(ii,26:50);  
    cabrw(ii,1:pt)=YValuest(ii,51:75);  
    bmrw3(ii,1:pt)=YValuest(ii,76:100);  
    bmrw4(ii,1:pt)=YValuest(ii,101:125)  
    bmtot=vertcat(bmrw1,bmrw2,bmrw3,bmrw4)  
    bmrw(ii,1:pt)=mean(bmtot)  
       
elseif  length(yvalspn)==57;  
     % xbeam has 19 points  
        pt=19;  
    bmrw1(ii,1:pt)=YValuest(ii,1:19);  
    cabrw(ii,1:pt)=YValuest(ii,20:38);  
    bmrw3(ii,1:pt)=YValuest(ii,39:57);  
    bmtot=vertcat(bmrw1,bmrw3)  
    bmrw(ii,1:pt)=mean(bmtot)  
        
end  
end  
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% So here bmrw and cabrw are the experimental mode shapes, where each 
row  
% is a mode.  
phiExp=horzcat(bmrw1,cabrw)  
  
xmbeam=x_pos(1,1:701);  
xmcable=x_pos(1,702:1402);  
  
for  j=1:numberofmodelmodes;  
phiModelBeam(j,:)=YYpos(j,1:701);  
maxBeam=max(phiModelBeam(j,1:701));  
phiModBeam(j,:)=phiModelBeam(j,1:701)./maxBeam;  
  
phiModelCab(j,:)=YYpos(j,702:1402);  
maxCable=max(phiModelCab(j,1:701));  
phiModCab(j,:)=phiModelCab(j,1:701)./maxCable;  
%  figure(j)  
%  plot(xmbeam,phiModBeam(j,:),'k')  
%  figure(j+10)  
%  plot(xmcable,phiModCab(j,:),'y')  
  
% So at this point, phiModBeam and phiModCab are th e mode shapes for 
the  
% beam and the cable, with jX701 size where j is th e mode number.  
  
% % This part finds the locations of the model data  to match the number 
of  
% % points from polytec scan.  
  
for  k=1:pt  
    locsfinder=find(xmbeam<=xbeam(k));  
    nav=size(locsfinder);  
    locsMod(k)=(nav(2));  
    phiModBm(j,k)=phiModBeam(j,locsMod(k));  
     
    locsfinderc=find(xmcable<=(xcab(k)+(xmcable(1,1 ))));  
    navc=size(locsfinderc);  
    locsModc(k)=navc(2);  
    phiModC(j,k)=phiModCab(j,locsModc(k));  
end  
%figure(j)  
%plot(xbeam,phiModBm(j,:),'k',(xcab+xmcable(1,1)),p hiModC(j,:),'r')  
  
%plot(xbeam,phiModBm(j,:),xbeam,bmrw1(j,:))  
end  
% At this point, I have the model modes for beam an d cable as  
% phiModBm(j,:) and phiModCab(j,:) against xbeam an d xcab  
% and experimental modes as bmrw1 etc  
phiMod=horzcat(phiModBm,phiModC)  
   
mdpts=size(phiMod,1)  
   
  for  kk=1:mdpts;  
  for  jj=1:numberofexpmodes(2);  
% This is the actual MAC calculation.  Note that th e cable and beam are  
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% comapred as a complete system.  
  numer=(abs(sum(phiExp(jj,:).*conj(phiMod(kk,:)))) )^2;  
  
 denomexp=sum(phiExp(jj,:).*conj(phiExp(jj,:)));  
 denommod=sum(phiMod(kk,:).*conj(phiMod(kk,:)));  
  
 denom=dot(denomexp,denommod);  
  
 MAC(kk,jj)=numer/denom;  
  
 end  
  end  
% Print the experimental and model frequencies to c ompare.  
ExpFreqs=FreqVals  
ModFreqs=evals  
% Plot the MAC bar graph.  
figure(22)  
bar3cK(MAC)  
title( 'MAC for Cabled Beam' )  
xlabel( 'Experimental Modes' )  
ylabel( 'Model Modes' )  
colorbar  
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Appendix E. Cable Bakeout Results: Individual Section Tables and 

Graphs of Cable Comparisons by Section 

 
Table E.1 1X7 Cable Section Averages 

1X7 
Section 

Unbaked First 
Mode Avg 
Frequency 

(Hz) 

Baked First 
Mode Avg 
Frequency 

(Hz) 

% 
Change 

Unbaked 
Second Mode 

Avg Frequency 
(Hz) 

Baked Second 
Mode Avg 
Frequency 

(Hz) 

% 
Change 

C 47.64 40.78 14.4% 204.40 177.48 13.2% 
D 45.14 39.41 12.7% 187.96 157.71 16.1% 
E 45.53 37.68 17.2% 194.40 165.21 15.0% 

Overall 46.11 39.29 14.8% 195.58 166.80 14.7% 
 
Table E.2 1X7 Cable Coefficients of Variation 

First Mode 
Unbaked 

First 
Mode 
Baked 

First 
Mode All 

Trials 

Second 
Mode 

Unbaked 

Second 
Mode 
Baked 

Second 
Mode All 

Trials 
C 0.072 0.039 0.110 0.039 0.036 0.100 
D 0.061 0.023 0.096 0.036 0.017 0.124 
E 0.043 0.035 0.133 0.041 0.043 0.115 
Overall 0.059 0.047 0.113 0.038 0.035 0.112 

 
Figure E.1: Baked and unbaked cable comparison for each section of 1X7 cable. 
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Table E.3 1X19 Cable Section Averages 

1X19 
Section 

Unbaked First 
Mode Avg 
Frequency 

(Hz) 

Baked First 
Mode Avg 
Frequency 

(Hz) 

% 
Change 

Unbaked Second 
Mode Avg 

Frequency (Hz) 

Baked Second 
Mode Avg 

Frequency (Hz) 

% 
Change 

A 73.96 61.95 16.2% 265.06 230.53 13.0% 
B 69.57 60.35 13.2% 255.46 223.24 12.6% 
C 67.84 57.54 15.2% 253.27 207.81 17.9% 

Overall 70.45 59.95 14.9% 257.93 220.53 14.5% 
 
Table E.4 1X19 Cable Coefficients of Variation 

First Mode 
Unbaked 

First 
Mode 
Baked 

First 
Mode All 

Trials 

Second 
Mode 

Unbaked 

Second 
Mode 
Baked 

Second 
Mode All 

Trials 
A 0.019 0.027 0.125 0.027 0.030 0.099 
B 0.011 0.020 0.100 0.022 0.036 0.095 
C 0.011 0.026 0.116 0.018 0.031 0.139 
Overall 0.015 0.025 0.115 0.023 0.033 0.111 

 

 
Figure E.2: Baked and unbaked cable comparison for each section of 1X19 cable. 
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Table E.5 1X48 Cable Section Averages 

1X48 
Section 

Unbaked First 
Mode Avg 
Frequency 

(Hz) 

Baked First 
Mode Avg 
Frequency 

(Hz) 

% 
Change 

Unbaked 
Second Mode 

Avg Frequency 
(Hz) 

Baked Second 
Mode Avg 
Frequency 

(Hz) 

% 
Change 

B 124.45 106.80 14.2% 384.06 346.91 9.7% 
D 120.82 104.77 13.3% 402.96 379.48 5.8% 
E 123.46 105.47 14.6% 396.47 354.90 10.5% 

Overall 122.91 105.68 14.0% 394.50 360.43 8.6% 
 

Table E.6 1X48 Cable Coefficients of Variation 

First Mode 
Unbaked 

First 
Mode 
Baked 

First 
Mode All 

Trials 

Second 
Mode 

Unbaked 

Second 
Mode 
Baked 

Second 
Mode All 

Trials 
B 0.022 0.021 0.108 0.014 0.021 0.072 
D 0.029 0.020 0.101 0.026 0.019 0.051 
E 0.048 0.026 0.111 0.021 0.049 0.078 
Overall 0.034 0.023 0.107 0.032 0.033 0.065 

 

 
Figure E.3: Baked and unbaked cable comparison for each section of 1X48 cable. 
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Table E.7 7X7 Cable Section Averages 

7X7 
Section 

Unbaked First 
Mode Avg 

Frequency (Hz) 

Baked First 
Mode Avg 

Frequency (Hz) 

% 
Change 

Unbaked 
Second Mode 

Avg Frequency 
(Hz) 

Baked Second 
Mode Avg 
Frequency 

(Hz) 

% 
Change 

A 82.79 62.42 24.6% 244.83 212.89 13.0% 
B 90.99 68.79 24.4% 250.63 207.23 17.3% 
D 84.98 64.00 24.7% 248.39 197.89 20.3% 

Overall 86.25 65.07 24.6% 247.95 206.00 16.9% 
 
Table E.8 7X7 Cable Coefficients of Variation 

First Mode 
Unbaked 

First 
Mode 
Baked 

First 
Mode All 

Trials 

Second 
Mode 

Unbaked 

Second 
Mode 
Baked 

Second 
Mode All 

Trials 
A 0.029 0.013 0.198 0.075 0.051 0.099 
B 0.020 0.039 0.196 0.014 0.040 0.134 
D 0.031 0.035 0.199 0.074 0.046 0.160 
Overall 0.026 0.032 0.198 0.059 0.047 0.131 
 

 
Figure E.4: Baked and unbaked cable comparison for each section of 7X7 cable. 
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Appendix F. Comparisons Between Four-Point Fixture Experimental 

Data and Hysteretically Damped Cable Model  

 
Use of the hysteretic damping coefficients determined for the cables in the two-point 

fixture (shown in Chapter 6) are effective for only the first mode of the four-point fixture, 

as shown in the following figures. 

 
Figure F.1: Comparison of experimental and hysteretically damped model FRFs for 1X7 

cable. 

 
Figure F.2: Comparison of experimental and hysteretically damped model FRFs for 1X19 

cable. 
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Figure F.3: Comparison of experimental and hysteretically damped model FRFs for 1X48 

cable. 

 
Figure F.4: Comparison of experimental and hysteretically damped model FRFs for 7X7 

cable. 
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Appendix G. Experimental Scans and Average FRFs for Cabled Beams 
 
Figures G.1 through G.4 show the mobility transfer functions for the cabled beam 

structure as measured on the beam structure.  Figures G.5 through G.8 show the trials and 

average mobility functions as measured on the cable, and Figure G.9 compares the 

different cable responses on the beam as measured on the cable. 

 

 

Figure G.1: Frequency response functions measured on the beam for sparse scan 

experimental trials of beam with 1X7 cable attached with average of 10 trials shown as 

bold line. 
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Figure G.2: Frequency response functions measured on the beam for sparse scan 

experimental trials of beam with 1X19 cable attached with average of 10 trials shown as 

bold line. 

 

Figure G.3: Frequency response functions measured on the beam for sparse scan 

experimental trials of beam with 1X48 cable attached with average of 10 trials shown as 

bold line. 
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Figure G.4: Frequency response functions measured on the beam for sparse scan 

experimental trials of beam with 7X7 cable attached with average of 10 trials shown as 

bold line. 

 

Figure G.5: Frequency response functions measured on the cable for sparse scan 

experimental trials of beam with 1X7 cable attached with average of 10 trials shown as 

bold line. 
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Figure G.6: Frequency response functions measured on the cable for sparse scan 

experimental trials of beam with 1X19 cable attached with average of 10 trials shown as 

bold line. 

 

Figure G.7: Frequency response functions measured on the cable for sparse scan 

experimental trials of beam with 1X48 cable attached with average of 10 trials shown as 

bold line. 
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Figure G.8: Frequency response functions measured on the cable for sparse scan 

experimental trials of beam with 7X7 cable attached with average of 10 trials shown as 

bold line. 

 

Figure G.9: Bare beam FRF and FRF averages of 10 trials for each cable on beam as 

measured on the cable. 
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Appendix H. Mode Shapes of Bare and Cabled Beams from Dense 
Scans 
 

 
 

Figure H.1: Mode shapes of bare beam as obtained from dense scan by laser vibrometer. 
 

 
 
Figure H.2: Mode shapes of 1X7 cabled beam as obtained from dense scan by laser 

vibrometer.  
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Figure H.3: Mode shapes of 1X19 cabled beam as obtained from dense scan by laser 

vibrometer.  

 

 

 

Figure H.4: Mode shapes of 1X48 cabled beam as obtained from dense scan by laser 

vibrometer.  
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Figure H.5: Mode shapes of 7X7 cabled beam as obtained from dense scan by laser 

vibrometer.  
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Appendix I. Comparison of Minimum and Maximum Cabled Beam 

Models with All Experimental Trials 

 

Figure I.1: Undamped DTFM cabled beam model maximum and minimum transfer 

function results compared to experimental trials for 1X7 cabled beam. 

 

Figure I.2: Damped DTFM cabled beam model maximum and minimum transfer function 

results compared to experimental trials for 1X7 cabled beam. 
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Figure I.3: Undamped DTFM cabled beam model maximum and minimum transfer 

function results compared to experimental trials for 1X19 cabled beam. 

 

Figure I.4: Damped DTFM cabled beam model maximum and minimum transfer function 

results compared to experimental trials for 1X19 cabled beam. 
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Figure I.5: Undamped DTFM cabled beam model maximum and minimum transfer 

function results compared to experimental trials for 1X48 cabled beam. 

 

Figure I.6: Damped DTFM cabled beam model maximum and minimum transfer function 

results compared to experimental trials for 1X48 cabled beam. 
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Figure I.7: Undamped DTFM cabled beam model maximum and minimum transfer 

function results compared to experimental trials for 7X7 cabled beam. 

 

Figure I.8: Damped DTFM cabled beam model maximum and minimum transfer function 

results compared to experimental trials for 7X7 cabled beam. 
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