Dehydroepiandrosterone Protects Vascular Endothelial Cells against Apoptosis through a Ga\(_i\) Protein-Dependent Activation of Phosphatidylinositol 3-Kinase/Akt and Regulation of Antiapoptotic Bcl-2 Expression

Dongmin Liu, Hongwei Si, Kathryn A. Reynolds, Wei Zhen, Zhenquan Jia, and Joseph S. Dillon

Departments of Human Nutrition, Foods, and Exercise (D.L., H.S., K.A.R., W.Z.) and Biomedical Sciences and Pathobiology (Z.J.), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061; and Iowa City Veterans Affairs Medical Center and Division of Endocrinology (J.S.D.), Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242

The adrenal steroid dehydroepiandrosterone (DHEA) may improve vascular function, but the mechanism is unclear. In the present study, we show that DHEA significantly increased cell viability, reduced caspase-3 activity, and protected both bovine and human vascular endothelial cells against serum deprivation-induced apoptosis. This effect was dose dependent and maximal at physiological concentrations (0.1–10 nM). DHEA stimulation of bovine aortic endothelial cells resulted in rapid and dose-dependent phosphorylation of Akt, which was blocked by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), the upstream kinase of Akt. Accordingly, inhibition of PI3K or transfection of the cells with dominant-negative Akt ablated the antiapoptotic effect of DHEA. The induced Akt phosphorylation and subsequent cytoprotective effect of DHEA were dependent on activation of Ga\(_i\) proteins, but were estrogen receptor independent, because these effects were blocked by pertussis toxin but not by the estrogen receptor inhibitor ICI182,780 or the aromatase inhibitor aminoglutethimide. Finally, DHEA enhanced antiapoptotic Bcl-2 protein expression, its promoter activity, and gene transcription attributable to the activation of the PI3K/Akt pathway. Neutralization of Bcl-2 by antibody transfection significantly decreased the antiapoptotic effect of DHEA. These findings provide the first evidence that DHEA acts as a survival factor for endothelial cells by triggering the Ga\(_i\)-PI3K/Akt-Bcl-2 pathway to protect cells against apoptosis. This may represent an important mechanism underlying the vascular protective effect of DHEA.

Dehydroepiandrosterone (DHEA) AND its sulfated form fall sharply with aging (1), and epidemiological studies show that atherosclerotic diseases and cardiovascular mortality are inversely associated with concentrations of DHEA and its sulfated form, particularly in males (2, 3). An abundance of animal and \textit{in vitro} studies suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11). Human intervention study data suggest a beneficial effect on angiographic evidence of atherosclerosis (9–11). Human intervention study data suggest beneficial effects of DHEA on vascular endothelium and smooth muscle (4–8) and on other key mediators of atherogenesis (9–11)
promoter activity, gene, and protein expression and that neutralization of Bcl-2 by antibody transfection reduced the antiapoptotic effect of DHEA.

Materials and Methods

Reagents

17β-Estradiol and DHEA were from Seraloid (Newport, RI); ICI 182,780 (ICI) was purchased from Tocris Bioscience (Ballwin, MO). Akt, phospho-Akt, ERK 1/2, phospho-ERK 1/2 and endothelial growth factors were obtained from Cambrex Bioscience (Rockland, ME). Akt, phospho-Akt, ERK 1/2, phospho-ERK 1/2 and CD34 antibodies were purchased from Cell Signaling Technology (Beverly, MA); nitrocellulose membranes and protein assay kit were from Bio-Rad (Hercules, CA); supersignal chemiluminescence detection system was purchased from Pierce (Rockford, IL). N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), caspase-3 assay kit and CellTiter96, a nonradioactive methylthiazolyltetrazolium-based cell viability assay kit was from Promega (Madison, WI); cell death detection ELISA (Promega) and terminal deoxynucleotidyltransferase dUTP nick-end labeling (TUNEL) kits were from Roche (Indianapolis, IN). A dominant-negative Akt cDNA plasmid was from Upstate (Charlottesville, VA); plasmid purification kits were from Qiagen; pcDNA 3.1/His/IacZ control vector was from Invitrogen. cDNA transfection reagent was purchased from Transfection Systems (Santee, CA); pRL luciferase control vector was from Invitrogen; pRL transfection reagent was purchased from Chariot protein transfection reagent was bought from Active Motif (Carlsbad, CA). RNAeasy kit and MinElute Purification kit were from Qiagen; pRL transfection reagent was purchased from Active Motif (Carlsbad, CA). RNAeasy kit and MinElute Purification kit were from Qiagen; iScript cDNA synthesis reagents and iQ Supermix were obtained from Bio-Rad; primers were synthesized by Integrated DNA Technologies (Coralville, IA). Pertussis toxin (PTX), 2-(4-morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002), protease and phosphatase inhibitor cocktails, and all other laboratory chemicals were from Sigma (St. Louis, MO). Stock solutions of steroids, at 10 mM in dimethylsulfoxide, were stored at −20 C before use.

Cell culture

Bovine aortic endothelial cells (BAECs) were cultured as described previously (22). Human aortic endothelial cells (HAECs) (Cambrex Bioscience) were grown in M199 medium supplemented with 2% fetal bovine serum (FBS) and EC growth factors. Before experiments, the cells were cultured in the medium supplemented with 10% charcoal-stripped serum for 24 h before being switched to serum-free medium.

Cell viability assay

BAECs were serum starved for 24 h. Cells were then exposed to either vehicle or indicated concentrations of DHEA in serum-free M199 medium for 24 h. The number of viable cells was assessed using a CellTiter 96 aqueous assay kit (26).

Caspase-3 activity assay

Cytosolic enzymatic activity of caspase-3 was measured essentially as described by the protocol of the manufacturer. The caspase-3 activity in the cell lysates was normalized to the cellular protein concentration and expressed as percentage of increase over the FBS-treated cells.

Cell apoptosis assay

For apoptosis experiments, cells were serum starved for 24 h before incubation with 5% FBS, or DHEA or vehicle in serum-free medium, for 24 h. In some experiments, cells were preincubated with PTX (100 ng/ml) for 24 h, or with LY294002 (5 μM) or ICI (100 nm) for 30 min, or with aminoglutethimide (4 μM) for 60 min in serum-free medium followed by treatment with DHEA, 17β-estradiol, or vehicle in the continued presence or absence of these inhibitors for 24 h at 37 C. Cellular apoptosis was estimated by determination of cytoplasmic histone-associated DNA fragments in cell lysates using a cell death detection ELISAPLUS kit according to the protocol of the manufacturer. For quantification of apoptotic cells, cells seeded on chamber slides were fixed for 30 min in 4% paraformaldehyde and permeabilized with 0.1% Triton X-100 for 2 min on ice. The apoptotic cells were detected using TUNEL techniques as described previously (27).

Immunoblot analysis

Equal amounts of protein from cell extracts were subjected to immunoblot analysis as described previously (28, 29). Membranes were probed with antibody against phospho-Akt or Bcl-2. The immunoreactive proteins were detected by chemiluminescence. Nitrocellulose membranes were stripped and reprobed with Akt or β-actin in the case of Bcl-2. The protein bands were digitally imaged for densitometric quantitation with a software program (NIH Image).

Plasmid transfection

A dominant-negative Akt cDNA plasmid and a reporter plasmid containing a promoter region of the Bcl-2 gene linked to a firefly luciferase gene (Bcl-2-Luc; a kind gift from Dr. Linda M. Boxer, Stanford University, Stanford, CA) were purified using Maxi kit by Qiagen. BAECs were grown in 24-well plates in M199 medium until 60–70% confluence. Before transfection, the medium was changed to M199 with 1% FBS. BAECs were cotransfected with 0.5 μg Bcl-2-Luc reporter vector and 1 ng pRL reporter control plasmid per well using F-1 transfection reagent according to the protocol of the manufacturer. In some experiments, the cells were transfected with dominant-negative Akt plasmids. Transfection efficiencies were determined by cotransfecting the cells with a pCDNA 3.1/His/IacZ control vector. After transfection, cells were incubated with complete medium containing 20% charcoal-stripped FBS for 24 h before serum starvation for an additional 24 h. The transfected cells were then treated with DHEA or vehicle for 24 h in phenol-red-free M199 medium. Bcl-2-Luc-transfected cells were harvested in reporter lysis reagent. Luciferase activity, normalized to pRL activity in the cell extracts, was determined by using the dual luciferase reporter assay system. Akt-transfected cells were used for cell viability assay as above.

Quantitative real-time RT-PCR analysis

BAECs were exposed to vehicle or DHEA (1 nm) in M199 medium for 24 h. Total RNA was isolated from the cell lysates and was checked for quantity and quality using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Then, 1 μg total RNA from each sample was reverse transcribed to cdNA using the iScript cdNA synthesis kit. Standards were made from the purified amplicons generated from each set of primer pairs using the iQ Supermix. The PCR products were purified with the MinElute Purification kit and quantified on an agarose gel with the Precision Molecular Mass Ruler (Bio-Rad). Bcl-2 was amplified on an iCycler IQ real-time quantitative PCR system using iQ SYBR Green Supermix with ribosomal 18S rRNA (18S) as an internal control. A melting curve analysis was performed on each sample to verify that no nonspecific products were synthesized. A cdNA synthesis with no RNA template was included as a negative control to ensure that chromosomal DNA was not amplified. The primers used in quantitative real-time RT-PCR were Bcl-2 (forward, 5’–CGCATCGGCTCTTCTTGAATGC–3’; reverse, 5’–CGCCGTCTACGCTACGCTA–3’) and 18S (forward, 5’–CTTCCGGAGGATCCCATG–3’; reverse, 5’–CGCTCCAGAGTCACACTA–3’) (30). The Bcl-2 mRNA level was normalized to that of 18S and expressed as starting quantity of cdNA per microgram of RNA.

Antibody transfection

Antibody was delivered into BAECs using a Chariot reagent. Briefly, BAECs were grown in 24-well plates to achieve 50–60% confluence. Cells were then serum starved for 6 h before transfection. Polyclonal antibody against Bcl-2 or preimmune IgG diluted in PBS (1:250) were mixed with equal volume of Chariot dilution (7:100 in water) and then incubated at room temperature for 30 min to form complexes. Cells were sequentially overlaid with 50 μl/well Chariot, Bcl-2 or Chariot/preimmune IgG complex, 100 μl/well serum-free medium, and then incubated at 37 C. After 1.5 h, 250 μl/well medium containing 5% charcoal-stripped FBS was added to the cells, and transfection was continued for 5 h. The efficiency of antibody introduction was more than 60%, as measured by transfection with a software program (NIH Image).
determined by using IgG-labeled Alexa488. After transfection, the cells were cultured in the presence or absence of DHEA for 24 h, followed by apoptosis assay using a cell death detection ELISA.

Statistical analysis

Data were analyzed with one-way ANOVA using Prism software (GraphPad Software, San Diego, CA). Treatment differences were subjected to a Tukey’s multiple comparison test or paired t test as noted in figure legends, in which \(P < 0.05 \) was considered significantly different. Data were expressed as mean ± se derived from at least three independent experiments.

Results

Effect of DHEA on EC viability

Initially, we evaluated whether DHEA could promote viability of BAECs. As shown in Fig. 1A, administration of DHEA enhanced cell viability during serum deprivation. The effect of DHEA was concentration dependent, with DHEA concentrations of 0.1–10 nm inducing maximal protective effect (68.1–70.6 ± 5.58% viability of the control). We further evaluated the effect of DHEA on serum deprivation-induced apoptosis by measuring cytoplasmic histone-associated DNA fragments using ELISA. As shown in Fig. 1B, incubation of BAECs in serum-free medium induced an increase of nearly 100% in apoptosis. However, coincubation of the cells with DHEA significantly reduced the extent of apoptosis attributable to serum starvation by 36–56%, depending on concentrations. To further confirm the DHEA effect, TUNEL staining was performed to directly assess the percentage of apoptotic cells in the presence or absence of DHEA. Serum deprivation increased the percentage of apoptotic cells from 4.8 to 16.4% (Fig. 1, C and D). Consistent with the results observed by ELISA, addition of DHEA significantly reduced the percentage of apoptotic cells induced by serum starvation.

The caspase proteins are critical components responsible for apoptosis (31), and caspase-3 is one of the key proteases involved in the convergence of disparate apoptotic signaling pathways. In parallel with decreased cell viability, we observed that the cellular activity of caspase-3 was markedly induced after exposure of the cells to serum-free medium for 12 h. Coincubation with DHEA or the known caspase-3 inhibitor Z-VAD-FMK significantly reduced the activation of caspase-3 to a similar extent (Fig. 1E). This further supports the concept that DHEA exerts an antiapoptotic role in ECs.
Similarly, serum deprivation for 24 h induced over 200% increase in apoptosis of HAECs, but addition of DHEA reduced the serum starvation-induced apoptosis of HAECs by 21–41% (Fig. 1F), suggesting a nonspecies-specific antiapoptotic effect of DHEA.

DHEA induces Akt phosphorylation

It is well recognized that the Akt signaling pathway plays an important protective role in cell viability and apoptosis (32). To investigate the underlying mechanism by which DHEA protects against serum deprivation-induced apoptosis, we therefore evaluated the effect of DHEA on Akt activation. Incubation of BAECs with DHEA induced a rapid increase in Akt phosphorylation detected by immunoblotting (Fig. 2A). The level of Akt phosphorylation peaked at 15 min of incubation with DHEA and returned to basal level over 60 min. Dose-response studies demonstrated that DHEA induced maximum Akt phosphorylation at a concentration of 0.1 nM (Fig. 2B). Total Akt expression was unaltered by DHEA over the time course of these studies. Pharmacological inhibition of PI3K, the upstream kinase of Akt with LY294002, completely prevented the phosphorylation of Akt induced by DHEA (Fig. 2C). These data suggest that DHEA activates the PI3K/Akt signaling cascade in these cells.

PI3K/Akt-dependent effects of DHEA on cell apoptosis

Given the evidence that DHEA both enhances serum-starved cell survival and induces Akt activation, we next determined whether the activation of Akt was involved in DHEA-induced cell viability. BAECs were preincubated with LY294002, for 30 min, or transfected with plasmids containing the dominant-negative Akt cDNA. Consistent with the LY294002 effect to inhibit DHEA-induced phosphorylation of Akt (Fig. 2C), inhibition of PI3K blocked the antiapoptotic effect of DHEA (Fig. 3A). Additionally, in cells transfected with the dominant-negative Akt plasmid, the cytoprotective effect of DHEA was reduced by 43.6%, whereas transfection of cells with the control plasmids was without effect (Fig. 3B).

Gαi-dependent effects of DHEA on Akt activation and cell viability

We have shown previously that PTX-sensitive G proteins are involved in the DHEA signaling in ECs (22). To further characterize the signaling events involved in the DHEA action in ECs, we examined whether DHEA-induced Akt activation was mediated through PTX-sensitive G proteins, which are expressed in ECs and are known to couple agonist-dependent membrane receptors to activate the Akt signaling cascade (22, 33). Preincubation of BAECs with PTX (100 ng/
ml) for 24 h did not alter the basal phosphorylation of Akt in BAECs but fully inhibited the phosphorylation of Akt induced by DHEA (Fig. 4A). Accordingly, exposure of the cells to DHEA in the presence of PTX effectively prevented the antiapoptotic effect of DHEA in ECs (Fig. 4B).

The antiapoptotic effect of DHEA is independent of the ER or conversion to estradiol

There is evidence that some of the long-term biological effects of DHEA are attributable to conversion of the hormone into estrogens (18). In addition, previous studies have shown that 17β-estradiol also can activate Akt in ECs (34). However, incubation of the cells with an excess amount of the ER antagonist ICI blocked the cytoprotective effect of estradiol but failed to block the antiapoptotic effect of DHEA in ECs (Fig. 4B).

The antiapoptotic effect of DHEA is independent of the ER or conversion to estradiol

There is evidence that some of the long-term biological effects of DHEA are attributable to conversion of the hormone into estrogens (18). In addition, previous studies have shown that 17β-estradiol also can activate Akt in ECs (34). However, incubation of the cells with an excess amount of the ER antagonist ICI blocked the cytoprotective effect of estradiol but failed to block the antiapoptotic effect of DHEA in ECs (Fig. 4B).
Data were expressed as mean ± SE of observations from three separate experiments, each performed in triplicate. *, *P < 0.05 vs. vehicle alone-treated cells; #, *P < 0.05 vs. 17β-estradiol alone-treated cells.

had an effect on mRNA expression in serum starved BAECs. As shown in Fig. 6D, exposure of ECs to 1 nM DHEA increased the Bcl-2 mRNA level by 47% over the control. Furthermore, we examined whether DHEA modulates Bcl-2 transcription through the PI3K/Akt signaling pathway. The Bcl-2 promoter-transfected cells were treated with DHEA in the presence or absence of LY294002 for 24 h. Consistent with its effect on DHEA-induced Bcl-2 protein expression, inhibition of the PI3K/Akt signaling by LY294002 inhibited the DHEA-induced promoter activity by 48% (Fig. 6E).

Finally, we tested whether Bcl-2 mediates the DHEA effect on apoptosis. We delivered Bcl-2 antibody into the BAECs with a protein delivery reagent that has been successfully used in previous studies (36) and further validated in our preliminary experiments. As shown in Fig. 6F, transfection of the cells with Bcl-2 antibody attenuated the antiapoptotic effect of DHEA by 43%, whereas preimmune IgG had no significant effect on blocking DHEA-induced cytoprotection, indicating that the antiapoptotic effect of DHEA was at least partially mediated by Bcl-2 protein through activation of Akt.

Discussion

Vascular ECs, which not only serve as a biological barrier separating circulating blood and peripheral tissues but also secrete various vasoactive substances, play a pivotal role in maintaining normal vascular function. Aging is known to be the major risk factor for the development of atherosclerosis. On a cellular level, enhanced EC apoptosis is associated with aging (25, 37) and may be an important factor that initiates the pathogenesis of aging-associated vascular disease such as atherosclerosis (38). Indeed, many studies have demonstrated that endothelial apoptosis is increased in atherosclerotic lesions compared with normal vessels (38, 39). In this study, we demonstrated that DHEA, at physiological concentrations, inhibited serum deprivation-induced apoptosis of both bovine and human vascular ECs. This suggests that DHEA may be a prosurvival factor for the vascular endothelium, providing a critical antiapoptotic environment to protect the vascular endothelial monolayer against apoptosis and thereby maintaining endothelial integrity and function. Based on these data, it is interesting to speculate that the rapid decline of DHEA with aging may contribute to the age-associated increase in apoptosis of ECs and thereby the development of atherosclerosis.

Several factors protect cells from apoptosis by activating the PI3K/Akt signaling pathway, leading to the inhibition of the apoptotic signaling cascade (40–42). We showed that DHEA stimulated a rapid Akt phosphorylation in vascular ECs, with a maximal activation at 15 min incubation, and the relative magnitude of the response declined after 30 min. Consistent with the dose-response relationship for the cytoprotective effect of DHEA, the activation of Akt by DHEA was also maximal at concentrations of DHEA between 0.1 and 10 nM. These concentrations are well within the physiological plasma concentrations of DHEA in adult humans. Our data further demonstrated that PI3K is a proximal element of Akt activation because inhibition of PI3K completely blocked DHEA-mediated activation of Akt. These findings provide the first evidence that DHEA activates a critical prosurvival protein kinase, Akt, in ECs. Indeed, the antiapoptotic effect of DHEA was inhibited by either a specific inhibitor of PI3K or by expression of a dominant-negative mutant of Akt. These data further confirmed that PI3K and Akt are crucial signaling components in the signal transduction pathway leading to endothelial survival induced by DHEA.

Although accumulating evidence indicates that DHEA has vascular effects that are independent of the estrogenic effects (19, 20, 22, 23), it may also exert its biological effect through conversion into estradiol (18), which has been shown to induce the PI3K/Akt pathway through the plasma membrane ER in ECs (34). However, the antiapoptotic effect of DHEA in ECs appears to be independent of estrogens. First, we found that there was no detectable estradiol in the conditioned culture media after 24 h incubation in the presence of DHEA and ECs (data not shown). This is consistent with data recently published by others (20). Second, inhibition of aromatase, the final enzyme involved in conversion of DHEA to estrogen, did not inhibit the effects of DHEA on Akt or apoptosis. Third, our data demonstrated that an ER antagonist completely blocked the antiapoptotic effect of estrogen but failed to reverse this action by DHEA. Consistent with this result, we (21, 22) and others (23) clearly show that the acute effect of DHEA on endothelial nitric oxide synthase
activation is not prevented by antagonism of ER or androgen receptor. Indeed, we demonstrated previously that estradiol does not compete for the DHEA membrane binding sites on vascular ECs (22). This observation has been extended recently to sympathoadrenal medulla cells (43). Collectively, these data support the concept that DHEA acts through a novel mechanism, which is different from the effects of estradiol, to regulate vascular endothelial function.

The best characterized mechanism of steroid hormone action involves ligand interaction with intracellular receptors and initiation of gene transcription (44). There is also increasing evidence for rapid, plasma membrane-dependent actions of steroid hormones in various cell types (45–56). The rapid onset of Akt activation by DHEA supports the notion that DHEA may act on plasma membranes to initiate the Akt signaling cascade, because inhibition of Akt activation blocked the DHEA-induced Bcl-2 expression. Apparently, DHEA regulates Bcl-2 at the transcriptional levels, because exposure of the cells to DHEA increased Bcl-2 promoter activity and mRNA level. Although our data show that DHEA may regulate Bcl-2 expression via the PI3K/Akt pathway, the detailed molecular mechanism of this action is unclear. The promoter region of the Bcl-2 gene contains the cAMP responsive element and nuclear factor κB (NF-κB)-sensitive motifs, and Bcl-2 is directly up-regulated by the transcriptional factors cAMP responsive element-binding protein (CREB) and NF-κB (26, 57). In the present study, we demonstrated that DHEA stimulated the Bcl-2 promoter activity via the PI3K/Akt pathway. Akt has been found to be an upstream regulator of CREB and NF-κB (26, 57). Recent studies indicate that DHEA activates CREB and NF-κB in neuronal cells (43). Taking these results
together, it is tempting to speculate that DHEA may protect ECs against apoptosis through up-regulation of Bcl-2 expression by a transcriptional effect mediated through activation of Akt and possibly involving CREB and NF-κB. This hypothesis needs additional investigation. Nevertheless, the role of Bcl-2 in the cellular response to DHEA is important, because neutralization of Bcl-2 by its antibody significantly attenuated the protective effect of DHEA in ECs.

There are trends, which do not reach statistical significance, to dose-dependent biphasic effects of DHEA, seen in Figs. 1, A, B, and F, and 2B. Biphasic effects of steroids are well described (58), and there are many potential mechanisms for the concentration-dependent biphasic effects of DHEA. These include dose-dependent effects on plasma membrane fluidity (59), ion channel regulation (60), differential recruitment of specific G proteins (61), or related proteins (62) to the putative G protein-coupled DHEA receptor, effects of DHEA on other intracellular receptors (e.g. peroxisome proliferator-activated receptor) resulting in proapoptotic effects (63), or increased levels of potentially proapoptotic metabolites of DHEA [e.g. testosterone (64)]. It will be important to determine the concentration-dependent effects of DHEA to understand the potential effects or side effects of DHEA in vivo. However, it should be noted that human trials of DHEA have most frequently resulted in high physiological plasma concentrations of 20–40 nm (65, 66) rather than concentrations of 100 nm or greater. In our in vitro studies reported here, these concentrations of DHEA increase endothelial Akt activation and decrease apoptosis.

In summary, we provided data showing the ability of DHEA to inhibit apoptosis in ECs under serum deprivation conditions, suggesting that DHEA may act as a survival factor in these cells. We further demonstrated that the cytoprotective effects of DHEA were ER independent but were mediated through the Gαs/Pi3K/Akt-Bcl-2 module, thereby defining a novel mechanism of this DHEA action in vascular ECs. These findings potentially provide a basic mechanism underlying the physiological effects of DHEA in the vasculature.

Acknowledgments

Received October 10, 2006. Accepted March 16, 2007.

Address all correspondence and requests for reprints to: Dongmin Liu, Ph.D., Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060. E-mail: doliu@vt.edu; or Joseph S. Dillon, M.D., Iowa City Veterans Affairs Medical Center and Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242. E-mail: joseph-dillon@uiowa.edu.

This work was supported in part by the Thomas F. Jefferson and Kate Jefferson Memorial Trust (to D.L.), American Heart Association Mid-Atlantic Affiliate Grant 056 0565356U (to D.L.), a grant from Virginia Polytechnic Institute and State University (to D.L.), the Office of Research and Development, Department of Veterans Administration (to J.S.D.), an American Heart Association Heartland Affiliate grant (to J.S.D.), and National Institutes of Health Grant RO1AG055741.

Disclosure Statement: The authors have nothing to disclose.

References

22. Liu D, Dillon JS 2002 Dehydroepiandrosterone activates endothelial cell nitric oxide synthase by a specific plasma membrane receptor coupled to G(s), J Biol Chem 277:21379–21388

27. Matsuhashi H, Morishita R, Naka T, Aoki M, Nakagawa H, Taniyama Y,
47. Ling S, Dai A, Williams MB, Myles K, Dilley RJ, Komesaroff PA, Sudhir K 2002 Testosterone (T) enhances apoptosis-related damage in human vascular endothelial cells. Endocrinology 143:1119–1125

Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.